xref: /linux-6.15/include/linux/mm.h (revision bfe2e8f5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328 
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
333 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4  0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341 
342 #if defined(CONFIG_X86)
343 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP	VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP	VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR	VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR	VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
358 #endif
359 
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
363 #else
364 # define VM_MTE		VM_NONE
365 # define VM_MTE_ALLOWED	VM_NONE
366 #endif
367 
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP	VM_NONE
370 #endif
371 
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT	37
374 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR		VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378 
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
381 
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383 
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
388 				 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
390 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391 
392 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
394 #endif
395 
396 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399 
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK	VM_GROWSUP
402 #else
403 #define VM_STACK	VM_GROWSDOWN
404 #endif
405 
406 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407 
408 /* VMA basic access permission flags */
409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410 
411 
412 /*
413  * Special vmas that are non-mergable, non-mlock()able.
414  */
415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
416 
417 /* This mask prevents VMA from being scanned with khugepaged */
418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419 
420 /* This mask defines which mm->def_flags a process can inherit its parent */
421 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
422 
423 /* This mask represents all the VMA flag bits used by mlock */
424 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
425 
426 /* Arch-specific flags to clear when updating VM flags on protection change */
427 #ifndef VM_ARCH_CLEAR
428 # define VM_ARCH_CLEAR	VM_NONE
429 #endif
430 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431 
432 /*
433  * mapping from the currently active vm_flags protection bits (the
434  * low four bits) to a page protection mask..
435  */
436 
437 /*
438  * The default fault flags that should be used by most of the
439  * arch-specific page fault handlers.
440  */
441 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
442 			     FAULT_FLAG_KILLABLE | \
443 			     FAULT_FLAG_INTERRUPTIBLE)
444 
445 /**
446  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
447  * @flags: Fault flags.
448  *
449  * This is mostly used for places where we want to try to avoid taking
450  * the mmap_lock for too long a time when waiting for another condition
451  * to change, in which case we can try to be polite to release the
452  * mmap_lock in the first round to avoid potential starvation of other
453  * processes that would also want the mmap_lock.
454  *
455  * Return: true if the page fault allows retry and this is the first
456  * attempt of the fault handling; false otherwise.
457  */
458 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
459 {
460 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
461 	    (!(flags & FAULT_FLAG_TRIED));
462 }
463 
464 #define FAULT_FLAG_TRACE \
465 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
466 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
467 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
468 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
469 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
470 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
471 	{ FAULT_FLAG_USER,		"USER" }, \
472 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
473 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
474 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
475 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
476 
477 /*
478  * vm_fault is filled by the pagefault handler and passed to the vma's
479  * ->fault function. The vma's ->fault is responsible for returning a bitmask
480  * of VM_FAULT_xxx flags that give details about how the fault was handled.
481  *
482  * MM layer fills up gfp_mask for page allocations but fault handler might
483  * alter it if its implementation requires a different allocation context.
484  *
485  * pgoff should be used in favour of virtual_address, if possible.
486  */
487 struct vm_fault {
488 	const struct {
489 		struct vm_area_struct *vma;	/* Target VMA */
490 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
491 		pgoff_t pgoff;			/* Logical page offset based on vma */
492 		unsigned long address;		/* Faulting virtual address - masked */
493 		unsigned long real_address;	/* Faulting virtual address - unmasked */
494 	};
495 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
496 					 * XXX: should really be 'const' */
497 	pmd_t *pmd;			/* Pointer to pmd entry matching
498 					 * the 'address' */
499 	pud_t *pud;			/* Pointer to pud entry matching
500 					 * the 'address'
501 					 */
502 	union {
503 		pte_t orig_pte;		/* Value of PTE at the time of fault */
504 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
505 					 * used by PMD fault only.
506 					 */
507 	};
508 
509 	struct page *cow_page;		/* Page handler may use for COW fault */
510 	struct page *page;		/* ->fault handlers should return a
511 					 * page here, unless VM_FAULT_NOPAGE
512 					 * is set (which is also implied by
513 					 * VM_FAULT_ERROR).
514 					 */
515 	/* These three entries are valid only while holding ptl lock */
516 	pte_t *pte;			/* Pointer to pte entry matching
517 					 * the 'address'. NULL if the page
518 					 * table hasn't been allocated.
519 					 */
520 	spinlock_t *ptl;		/* Page table lock.
521 					 * Protects pte page table if 'pte'
522 					 * is not NULL, otherwise pmd.
523 					 */
524 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
525 					 * vm_ops->map_pages() sets up a page
526 					 * table from atomic context.
527 					 * do_fault_around() pre-allocates
528 					 * page table to avoid allocation from
529 					 * atomic context.
530 					 */
531 };
532 
533 /* page entry size for vm->huge_fault() */
534 enum page_entry_size {
535 	PE_SIZE_PTE = 0,
536 	PE_SIZE_PMD,
537 	PE_SIZE_PUD,
538 };
539 
540 /*
541  * These are the virtual MM functions - opening of an area, closing and
542  * unmapping it (needed to keep files on disk up-to-date etc), pointer
543  * to the functions called when a no-page or a wp-page exception occurs.
544  */
545 struct vm_operations_struct {
546 	void (*open)(struct vm_area_struct * area);
547 	/**
548 	 * @close: Called when the VMA is being removed from the MM.
549 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
550 	 */
551 	void (*close)(struct vm_area_struct * area);
552 	/* Called any time before splitting to check if it's allowed */
553 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
554 	int (*mremap)(struct vm_area_struct *area);
555 	/*
556 	 * Called by mprotect() to make driver-specific permission
557 	 * checks before mprotect() is finalised.   The VMA must not
558 	 * be modified.  Returns 0 if mprotect() can proceed.
559 	 */
560 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 			unsigned long end, unsigned long newflags);
562 	vm_fault_t (*fault)(struct vm_fault *vmf);
563 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 			enum page_entry_size pe_size);
565 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
566 			pgoff_t start_pgoff, pgoff_t end_pgoff);
567 	unsigned long (*pagesize)(struct vm_area_struct * area);
568 
569 	/* notification that a previously read-only page is about to become
570 	 * writable, if an error is returned it will cause a SIGBUS */
571 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572 
573 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575 
576 	/* called by access_process_vm when get_user_pages() fails, typically
577 	 * for use by special VMAs. See also generic_access_phys() for a generic
578 	 * implementation useful for any iomem mapping.
579 	 */
580 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 		      void *buf, int len, int write);
582 
583 	/* Called by the /proc/PID/maps code to ask the vma whether it
584 	 * has a special name.  Returning non-NULL will also cause this
585 	 * vma to be dumped unconditionally. */
586 	const char *(*name)(struct vm_area_struct *vma);
587 
588 #ifdef CONFIG_NUMA
589 	/*
590 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 	 * to hold the policy upon return.  Caller should pass NULL @new to
592 	 * remove a policy and fall back to surrounding context--i.e. do not
593 	 * install a MPOL_DEFAULT policy, nor the task or system default
594 	 * mempolicy.
595 	 */
596 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
597 
598 	/*
599 	 * get_policy() op must add reference [mpol_get()] to any policy at
600 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
601 	 * in mm/mempolicy.c will do this automatically.
602 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
603 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
604 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 	 * must return NULL--i.e., do not "fallback" to task or system default
606 	 * policy.
607 	 */
608 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 					unsigned long addr);
610 #endif
611 	/*
612 	 * Called by vm_normal_page() for special PTEs to find the
613 	 * page for @addr.  This is useful if the default behavior
614 	 * (using pte_page()) would not find the correct page.
615 	 */
616 	struct page *(*find_special_page)(struct vm_area_struct *vma,
617 					  unsigned long addr);
618 };
619 
620 #ifdef CONFIG_NUMA_BALANCING
621 static inline void vma_numab_state_init(struct vm_area_struct *vma)
622 {
623 	vma->numab_state = NULL;
624 }
625 static inline void vma_numab_state_free(struct vm_area_struct *vma)
626 {
627 	kfree(vma->numab_state);
628 }
629 #else
630 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
631 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
632 #endif /* CONFIG_NUMA_BALANCING */
633 
634 #ifdef CONFIG_PER_VMA_LOCK
635 /*
636  * Try to read-lock a vma. The function is allowed to occasionally yield false
637  * locked result to avoid performance overhead, in which case we fall back to
638  * using mmap_lock. The function should never yield false unlocked result.
639  */
640 static inline bool vma_start_read(struct vm_area_struct *vma)
641 {
642 	/* Check before locking. A race might cause false locked result. */
643 	if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
644 		return false;
645 
646 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
647 		return false;
648 
649 	/*
650 	 * Overflow might produce false locked result.
651 	 * False unlocked result is impossible because we modify and check
652 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
653 	 * modification invalidates all existing locks.
654 	 */
655 	if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
656 		up_read(&vma->vm_lock->lock);
657 		return false;
658 	}
659 	return true;
660 }
661 
662 static inline void vma_end_read(struct vm_area_struct *vma)
663 {
664 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
665 	up_read(&vma->vm_lock->lock);
666 	rcu_read_unlock();
667 }
668 
669 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
670 {
671 	mmap_assert_write_locked(vma->vm_mm);
672 
673 	/*
674 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
675 	 * mm->mm_lock_seq can't be concurrently modified.
676 	 */
677 	*mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
678 	return (vma->vm_lock_seq == *mm_lock_seq);
679 }
680 
681 static inline void vma_start_write(struct vm_area_struct *vma)
682 {
683 	int mm_lock_seq;
684 
685 	if (__is_vma_write_locked(vma, &mm_lock_seq))
686 		return;
687 
688 	down_write(&vma->vm_lock->lock);
689 	vma->vm_lock_seq = mm_lock_seq;
690 	up_write(&vma->vm_lock->lock);
691 }
692 
693 static inline bool vma_try_start_write(struct vm_area_struct *vma)
694 {
695 	int mm_lock_seq;
696 
697 	if (__is_vma_write_locked(vma, &mm_lock_seq))
698 		return true;
699 
700 	if (!down_write_trylock(&vma->vm_lock->lock))
701 		return false;
702 
703 	vma->vm_lock_seq = mm_lock_seq;
704 	up_write(&vma->vm_lock->lock);
705 	return true;
706 }
707 
708 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
709 {
710 	int mm_lock_seq;
711 
712 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
713 }
714 
715 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
716 {
717 	/* When detaching vma should be write-locked */
718 	if (detached)
719 		vma_assert_write_locked(vma);
720 	vma->detached = detached;
721 }
722 
723 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
724 					  unsigned long address);
725 
726 #else /* CONFIG_PER_VMA_LOCK */
727 
728 static inline void vma_init_lock(struct vm_area_struct *vma) {}
729 static inline bool vma_start_read(struct vm_area_struct *vma)
730 		{ return false; }
731 static inline void vma_end_read(struct vm_area_struct *vma) {}
732 static inline void vma_start_write(struct vm_area_struct *vma) {}
733 static inline bool vma_try_start_write(struct vm_area_struct *vma)
734 		{ return true; }
735 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
736 static inline void vma_mark_detached(struct vm_area_struct *vma,
737 				     bool detached) {}
738 
739 #endif /* CONFIG_PER_VMA_LOCK */
740 
741 /*
742  * WARNING: vma_init does not initialize vma->vm_lock.
743  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
744  */
745 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
746 {
747 	static const struct vm_operations_struct dummy_vm_ops = {};
748 
749 	memset(vma, 0, sizeof(*vma));
750 	vma->vm_mm = mm;
751 	vma->vm_ops = &dummy_vm_ops;
752 	INIT_LIST_HEAD(&vma->anon_vma_chain);
753 	vma_mark_detached(vma, false);
754 	vma_numab_state_init(vma);
755 }
756 
757 /* Use when VMA is not part of the VMA tree and needs no locking */
758 static inline void vm_flags_init(struct vm_area_struct *vma,
759 				 vm_flags_t flags)
760 {
761 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
762 }
763 
764 /* Use when VMA is part of the VMA tree and modifications need coordination */
765 static inline void vm_flags_reset(struct vm_area_struct *vma,
766 				  vm_flags_t flags)
767 {
768 	vma_start_write(vma);
769 	vm_flags_init(vma, flags);
770 }
771 
772 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
773 				       vm_flags_t flags)
774 {
775 	vma_start_write(vma);
776 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
777 }
778 
779 static inline void vm_flags_set(struct vm_area_struct *vma,
780 				vm_flags_t flags)
781 {
782 	vma_start_write(vma);
783 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
784 }
785 
786 static inline void vm_flags_clear(struct vm_area_struct *vma,
787 				  vm_flags_t flags)
788 {
789 	vma_start_write(vma);
790 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
791 }
792 
793 /*
794  * Use only if VMA is not part of the VMA tree or has no other users and
795  * therefore needs no locking.
796  */
797 static inline void __vm_flags_mod(struct vm_area_struct *vma,
798 				  vm_flags_t set, vm_flags_t clear)
799 {
800 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
801 }
802 
803 /*
804  * Use only when the order of set/clear operations is unimportant, otherwise
805  * use vm_flags_{set|clear} explicitly.
806  */
807 static inline void vm_flags_mod(struct vm_area_struct *vma,
808 				vm_flags_t set, vm_flags_t clear)
809 {
810 	vma_start_write(vma);
811 	__vm_flags_mod(vma, set, clear);
812 }
813 
814 static inline void vma_set_anonymous(struct vm_area_struct *vma)
815 {
816 	vma->vm_ops = NULL;
817 }
818 
819 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
820 {
821 	return !vma->vm_ops;
822 }
823 
824 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
825 {
826 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
827 
828 	if (!maybe_stack)
829 		return false;
830 
831 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
832 						VM_STACK_INCOMPLETE_SETUP)
833 		return true;
834 
835 	return false;
836 }
837 
838 static inline bool vma_is_foreign(struct vm_area_struct *vma)
839 {
840 	if (!current->mm)
841 		return true;
842 
843 	if (current->mm != vma->vm_mm)
844 		return true;
845 
846 	return false;
847 }
848 
849 static inline bool vma_is_accessible(struct vm_area_struct *vma)
850 {
851 	return vma->vm_flags & VM_ACCESS_FLAGS;
852 }
853 
854 static inline
855 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856 {
857 	return mas_find(&vmi->mas, max - 1);
858 }
859 
860 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861 {
862 	/*
863 	 * Uses mas_find() to get the first VMA when the iterator starts.
864 	 * Calling mas_next() could skip the first entry.
865 	 */
866 	return mas_find(&vmi->mas, ULONG_MAX);
867 }
868 
869 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
870 {
871 	return mas_prev(&vmi->mas, 0);
872 }
873 
874 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
875 {
876 	return vmi->mas.index;
877 }
878 
879 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
880 {
881 	return vmi->mas.last + 1;
882 }
883 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
884 				      unsigned long count)
885 {
886 	return mas_expected_entries(&vmi->mas, count);
887 }
888 
889 /* Free any unused preallocations */
890 static inline void vma_iter_free(struct vma_iterator *vmi)
891 {
892 	mas_destroy(&vmi->mas);
893 }
894 
895 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
896 				      struct vm_area_struct *vma)
897 {
898 	vmi->mas.index = vma->vm_start;
899 	vmi->mas.last = vma->vm_end - 1;
900 	mas_store(&vmi->mas, vma);
901 	if (unlikely(mas_is_err(&vmi->mas)))
902 		return -ENOMEM;
903 
904 	return 0;
905 }
906 
907 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
908 {
909 	mas_pause(&vmi->mas);
910 }
911 
912 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
913 {
914 	mas_set(&vmi->mas, addr);
915 }
916 
917 #define for_each_vma(__vmi, __vma)					\
918 	while (((__vma) = vma_next(&(__vmi))) != NULL)
919 
920 /* The MM code likes to work with exclusive end addresses */
921 #define for_each_vma_range(__vmi, __vma, __end)				\
922 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
923 
924 #ifdef CONFIG_SHMEM
925 /*
926  * The vma_is_shmem is not inline because it is used only by slow
927  * paths in userfault.
928  */
929 bool vma_is_shmem(struct vm_area_struct *vma);
930 bool vma_is_anon_shmem(struct vm_area_struct *vma);
931 #else
932 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
933 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
934 #endif
935 
936 int vma_is_stack_for_current(struct vm_area_struct *vma);
937 
938 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
939 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
940 
941 struct mmu_gather;
942 struct inode;
943 
944 /*
945  * compound_order() can be called without holding a reference, which means
946  * that niceties like page_folio() don't work.  These callers should be
947  * prepared to handle wild return values.  For example, PG_head may be
948  * set before _folio_order is initialised, or this may be a tail page.
949  * See compaction.c for some good examples.
950  */
951 static inline unsigned int compound_order(struct page *page)
952 {
953 	struct folio *folio = (struct folio *)page;
954 
955 	if (!test_bit(PG_head, &folio->flags))
956 		return 0;
957 	return folio->_folio_order;
958 }
959 
960 /**
961  * folio_order - The allocation order of a folio.
962  * @folio: The folio.
963  *
964  * A folio is composed of 2^order pages.  See get_order() for the definition
965  * of order.
966  *
967  * Return: The order of the folio.
968  */
969 static inline unsigned int folio_order(struct folio *folio)
970 {
971 	if (!folio_test_large(folio))
972 		return 0;
973 	return folio->_folio_order;
974 }
975 
976 #include <linux/huge_mm.h>
977 
978 /*
979  * Methods to modify the page usage count.
980  *
981  * What counts for a page usage:
982  * - cache mapping   (page->mapping)
983  * - private data    (page->private)
984  * - page mapped in a task's page tables, each mapping
985  *   is counted separately
986  *
987  * Also, many kernel routines increase the page count before a critical
988  * routine so they can be sure the page doesn't go away from under them.
989  */
990 
991 /*
992  * Drop a ref, return true if the refcount fell to zero (the page has no users)
993  */
994 static inline int put_page_testzero(struct page *page)
995 {
996 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
997 	return page_ref_dec_and_test(page);
998 }
999 
1000 static inline int folio_put_testzero(struct folio *folio)
1001 {
1002 	return put_page_testzero(&folio->page);
1003 }
1004 
1005 /*
1006  * Try to grab a ref unless the page has a refcount of zero, return false if
1007  * that is the case.
1008  * This can be called when MMU is off so it must not access
1009  * any of the virtual mappings.
1010  */
1011 static inline bool get_page_unless_zero(struct page *page)
1012 {
1013 	return page_ref_add_unless(page, 1, 0);
1014 }
1015 
1016 static inline struct folio *folio_get_nontail_page(struct page *page)
1017 {
1018 	if (unlikely(!get_page_unless_zero(page)))
1019 		return NULL;
1020 	return (struct folio *)page;
1021 }
1022 
1023 extern int page_is_ram(unsigned long pfn);
1024 
1025 enum {
1026 	REGION_INTERSECTS,
1027 	REGION_DISJOINT,
1028 	REGION_MIXED,
1029 };
1030 
1031 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1032 		      unsigned long desc);
1033 
1034 /* Support for virtually mapped pages */
1035 struct page *vmalloc_to_page(const void *addr);
1036 unsigned long vmalloc_to_pfn(const void *addr);
1037 
1038 /*
1039  * Determine if an address is within the vmalloc range
1040  *
1041  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1042  * is no special casing required.
1043  */
1044 
1045 #ifndef is_ioremap_addr
1046 #define is_ioremap_addr(x) is_vmalloc_addr(x)
1047 #endif
1048 
1049 #ifdef CONFIG_MMU
1050 extern bool is_vmalloc_addr(const void *x);
1051 extern int is_vmalloc_or_module_addr(const void *x);
1052 #else
1053 static inline bool is_vmalloc_addr(const void *x)
1054 {
1055 	return false;
1056 }
1057 static inline int is_vmalloc_or_module_addr(const void *x)
1058 {
1059 	return 0;
1060 }
1061 #endif
1062 
1063 /*
1064  * How many times the entire folio is mapped as a single unit (eg by a
1065  * PMD or PUD entry).  This is probably not what you want, except for
1066  * debugging purposes - it does not include PTE-mapped sub-pages; look
1067  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1068  */
1069 static inline int folio_entire_mapcount(struct folio *folio)
1070 {
1071 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1072 	return atomic_read(&folio->_entire_mapcount) + 1;
1073 }
1074 
1075 /*
1076  * The atomic page->_mapcount, starts from -1: so that transitions
1077  * both from it and to it can be tracked, using atomic_inc_and_test
1078  * and atomic_add_negative(-1).
1079  */
1080 static inline void page_mapcount_reset(struct page *page)
1081 {
1082 	atomic_set(&(page)->_mapcount, -1);
1083 }
1084 
1085 /**
1086  * page_mapcount() - Number of times this precise page is mapped.
1087  * @page: The page.
1088  *
1089  * The number of times this page is mapped.  If this page is part of
1090  * a large folio, it includes the number of times this page is mapped
1091  * as part of that folio.
1092  *
1093  * The result is undefined for pages which cannot be mapped into userspace.
1094  * For example SLAB or special types of pages. See function page_has_type().
1095  * They use this field in struct page differently.
1096  */
1097 static inline int page_mapcount(struct page *page)
1098 {
1099 	int mapcount = atomic_read(&page->_mapcount) + 1;
1100 
1101 	if (unlikely(PageCompound(page)))
1102 		mapcount += folio_entire_mapcount(page_folio(page));
1103 
1104 	return mapcount;
1105 }
1106 
1107 int folio_total_mapcount(struct folio *folio);
1108 
1109 /**
1110  * folio_mapcount() - Calculate the number of mappings of this folio.
1111  * @folio: The folio.
1112  *
1113  * A large folio tracks both how many times the entire folio is mapped,
1114  * and how many times each individual page in the folio is mapped.
1115  * This function calculates the total number of times the folio is
1116  * mapped.
1117  *
1118  * Return: The number of times this folio is mapped.
1119  */
1120 static inline int folio_mapcount(struct folio *folio)
1121 {
1122 	if (likely(!folio_test_large(folio)))
1123 		return atomic_read(&folio->_mapcount) + 1;
1124 	return folio_total_mapcount(folio);
1125 }
1126 
1127 static inline int total_mapcount(struct page *page)
1128 {
1129 	if (likely(!PageCompound(page)))
1130 		return atomic_read(&page->_mapcount) + 1;
1131 	return folio_total_mapcount(page_folio(page));
1132 }
1133 
1134 static inline bool folio_large_is_mapped(struct folio *folio)
1135 {
1136 	/*
1137 	 * Reading _entire_mapcount below could be omitted if hugetlb
1138 	 * participated in incrementing nr_pages_mapped when compound mapped.
1139 	 */
1140 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1141 		atomic_read(&folio->_entire_mapcount) >= 0;
1142 }
1143 
1144 /**
1145  * folio_mapped - Is this folio mapped into userspace?
1146  * @folio: The folio.
1147  *
1148  * Return: True if any page in this folio is referenced by user page tables.
1149  */
1150 static inline bool folio_mapped(struct folio *folio)
1151 {
1152 	if (likely(!folio_test_large(folio)))
1153 		return atomic_read(&folio->_mapcount) >= 0;
1154 	return folio_large_is_mapped(folio);
1155 }
1156 
1157 /*
1158  * Return true if this page is mapped into pagetables.
1159  * For compound page it returns true if any sub-page of compound page is mapped,
1160  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1161  */
1162 static inline bool page_mapped(struct page *page)
1163 {
1164 	if (likely(!PageCompound(page)))
1165 		return atomic_read(&page->_mapcount) >= 0;
1166 	return folio_large_is_mapped(page_folio(page));
1167 }
1168 
1169 static inline struct page *virt_to_head_page(const void *x)
1170 {
1171 	struct page *page = virt_to_page(x);
1172 
1173 	return compound_head(page);
1174 }
1175 
1176 static inline struct folio *virt_to_folio(const void *x)
1177 {
1178 	struct page *page = virt_to_page(x);
1179 
1180 	return page_folio(page);
1181 }
1182 
1183 void __folio_put(struct folio *folio);
1184 
1185 void put_pages_list(struct list_head *pages);
1186 
1187 void split_page(struct page *page, unsigned int order);
1188 void folio_copy(struct folio *dst, struct folio *src);
1189 
1190 unsigned long nr_free_buffer_pages(void);
1191 
1192 /*
1193  * Compound pages have a destructor function.  Provide a
1194  * prototype for that function and accessor functions.
1195  * These are _only_ valid on the head of a compound page.
1196  */
1197 typedef void compound_page_dtor(struct page *);
1198 
1199 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1200 enum compound_dtor_id {
1201 	NULL_COMPOUND_DTOR,
1202 	COMPOUND_PAGE_DTOR,
1203 #ifdef CONFIG_HUGETLB_PAGE
1204 	HUGETLB_PAGE_DTOR,
1205 #endif
1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 	TRANSHUGE_PAGE_DTOR,
1208 #endif
1209 	NR_COMPOUND_DTORS,
1210 };
1211 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
1212 
1213 static inline void set_compound_page_dtor(struct page *page,
1214 		enum compound_dtor_id compound_dtor)
1215 {
1216 	struct folio *folio = (struct folio *)page;
1217 
1218 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1219 	VM_BUG_ON_PAGE(!PageHead(page), page);
1220 	folio->_folio_dtor = compound_dtor;
1221 }
1222 
1223 static inline void folio_set_compound_dtor(struct folio *folio,
1224 		enum compound_dtor_id compound_dtor)
1225 {
1226 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1227 	folio->_folio_dtor = compound_dtor;
1228 }
1229 
1230 void destroy_large_folio(struct folio *folio);
1231 
1232 static inline void set_compound_order(struct page *page, unsigned int order)
1233 {
1234 	struct folio *folio = (struct folio *)page;
1235 
1236 	folio->_folio_order = order;
1237 #ifdef CONFIG_64BIT
1238 	folio->_folio_nr_pages = 1U << order;
1239 #endif
1240 }
1241 
1242 /* Returns the number of bytes in this potentially compound page. */
1243 static inline unsigned long page_size(struct page *page)
1244 {
1245 	return PAGE_SIZE << compound_order(page);
1246 }
1247 
1248 /* Returns the number of bits needed for the number of bytes in a page */
1249 static inline unsigned int page_shift(struct page *page)
1250 {
1251 	return PAGE_SHIFT + compound_order(page);
1252 }
1253 
1254 /**
1255  * thp_order - Order of a transparent huge page.
1256  * @page: Head page of a transparent huge page.
1257  */
1258 static inline unsigned int thp_order(struct page *page)
1259 {
1260 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1261 	return compound_order(page);
1262 }
1263 
1264 /**
1265  * thp_size - Size of a transparent huge page.
1266  * @page: Head page of a transparent huge page.
1267  *
1268  * Return: Number of bytes in this page.
1269  */
1270 static inline unsigned long thp_size(struct page *page)
1271 {
1272 	return PAGE_SIZE << thp_order(page);
1273 }
1274 
1275 void free_compound_page(struct page *page);
1276 
1277 #ifdef CONFIG_MMU
1278 /*
1279  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1280  * servicing faults for write access.  In the normal case, do always want
1281  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1282  * that do not have writing enabled, when used by access_process_vm.
1283  */
1284 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1285 {
1286 	if (likely(vma->vm_flags & VM_WRITE))
1287 		pte = pte_mkwrite(pte);
1288 	return pte;
1289 }
1290 
1291 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1292 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1293 
1294 vm_fault_t finish_fault(struct vm_fault *vmf);
1295 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1296 #endif
1297 
1298 /*
1299  * Multiple processes may "see" the same page. E.g. for untouched
1300  * mappings of /dev/null, all processes see the same page full of
1301  * zeroes, and text pages of executables and shared libraries have
1302  * only one copy in memory, at most, normally.
1303  *
1304  * For the non-reserved pages, page_count(page) denotes a reference count.
1305  *   page_count() == 0 means the page is free. page->lru is then used for
1306  *   freelist management in the buddy allocator.
1307  *   page_count() > 0  means the page has been allocated.
1308  *
1309  * Pages are allocated by the slab allocator in order to provide memory
1310  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1311  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1312  * unless a particular usage is carefully commented. (the responsibility of
1313  * freeing the kmalloc memory is the caller's, of course).
1314  *
1315  * A page may be used by anyone else who does a __get_free_page().
1316  * In this case, page_count still tracks the references, and should only
1317  * be used through the normal accessor functions. The top bits of page->flags
1318  * and page->virtual store page management information, but all other fields
1319  * are unused and could be used privately, carefully. The management of this
1320  * page is the responsibility of the one who allocated it, and those who have
1321  * subsequently been given references to it.
1322  *
1323  * The other pages (we may call them "pagecache pages") are completely
1324  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1325  * The following discussion applies only to them.
1326  *
1327  * A pagecache page contains an opaque `private' member, which belongs to the
1328  * page's address_space. Usually, this is the address of a circular list of
1329  * the page's disk buffers. PG_private must be set to tell the VM to call
1330  * into the filesystem to release these pages.
1331  *
1332  * A page may belong to an inode's memory mapping. In this case, page->mapping
1333  * is the pointer to the inode, and page->index is the file offset of the page,
1334  * in units of PAGE_SIZE.
1335  *
1336  * If pagecache pages are not associated with an inode, they are said to be
1337  * anonymous pages. These may become associated with the swapcache, and in that
1338  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1339  *
1340  * In either case (swapcache or inode backed), the pagecache itself holds one
1341  * reference to the page. Setting PG_private should also increment the
1342  * refcount. The each user mapping also has a reference to the page.
1343  *
1344  * The pagecache pages are stored in a per-mapping radix tree, which is
1345  * rooted at mapping->i_pages, and indexed by offset.
1346  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1347  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1348  *
1349  * All pagecache pages may be subject to I/O:
1350  * - inode pages may need to be read from disk,
1351  * - inode pages which have been modified and are MAP_SHARED may need
1352  *   to be written back to the inode on disk,
1353  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1354  *   modified may need to be swapped out to swap space and (later) to be read
1355  *   back into memory.
1356  */
1357 
1358 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1359 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1360 
1361 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1362 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1363 {
1364 	if (!static_branch_unlikely(&devmap_managed_key))
1365 		return false;
1366 	if (!is_zone_device_page(page))
1367 		return false;
1368 	return __put_devmap_managed_page_refs(page, refs);
1369 }
1370 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1371 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1372 {
1373 	return false;
1374 }
1375 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1376 
1377 static inline bool put_devmap_managed_page(struct page *page)
1378 {
1379 	return put_devmap_managed_page_refs(page, 1);
1380 }
1381 
1382 /* 127: arbitrary random number, small enough to assemble well */
1383 #define folio_ref_zero_or_close_to_overflow(folio) \
1384 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1385 
1386 /**
1387  * folio_get - Increment the reference count on a folio.
1388  * @folio: The folio.
1389  *
1390  * Context: May be called in any context, as long as you know that
1391  * you have a refcount on the folio.  If you do not already have one,
1392  * folio_try_get() may be the right interface for you to use.
1393  */
1394 static inline void folio_get(struct folio *folio)
1395 {
1396 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1397 	folio_ref_inc(folio);
1398 }
1399 
1400 static inline void get_page(struct page *page)
1401 {
1402 	folio_get(page_folio(page));
1403 }
1404 
1405 static inline __must_check bool try_get_page(struct page *page)
1406 {
1407 	page = compound_head(page);
1408 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1409 		return false;
1410 	page_ref_inc(page);
1411 	return true;
1412 }
1413 
1414 /**
1415  * folio_put - Decrement the reference count on a folio.
1416  * @folio: The folio.
1417  *
1418  * If the folio's reference count reaches zero, the memory will be
1419  * released back to the page allocator and may be used by another
1420  * allocation immediately.  Do not access the memory or the struct folio
1421  * after calling folio_put() unless you can be sure that it wasn't the
1422  * last reference.
1423  *
1424  * Context: May be called in process or interrupt context, but not in NMI
1425  * context.  May be called while holding a spinlock.
1426  */
1427 static inline void folio_put(struct folio *folio)
1428 {
1429 	if (folio_put_testzero(folio))
1430 		__folio_put(folio);
1431 }
1432 
1433 /**
1434  * folio_put_refs - Reduce the reference count on a folio.
1435  * @folio: The folio.
1436  * @refs: The amount to subtract from the folio's reference count.
1437  *
1438  * If the folio's reference count reaches zero, the memory will be
1439  * released back to the page allocator and may be used by another
1440  * allocation immediately.  Do not access the memory or the struct folio
1441  * after calling folio_put_refs() unless you can be sure that these weren't
1442  * the last references.
1443  *
1444  * Context: May be called in process or interrupt context, but not in NMI
1445  * context.  May be called while holding a spinlock.
1446  */
1447 static inline void folio_put_refs(struct folio *folio, int refs)
1448 {
1449 	if (folio_ref_sub_and_test(folio, refs))
1450 		__folio_put(folio);
1451 }
1452 
1453 /*
1454  * union release_pages_arg - an array of pages or folios
1455  *
1456  * release_pages() releases a simple array of multiple pages, and
1457  * accepts various different forms of said page array: either
1458  * a regular old boring array of pages, an array of folios, or
1459  * an array of encoded page pointers.
1460  *
1461  * The transparent union syntax for this kind of "any of these
1462  * argument types" is all kinds of ugly, so look away.
1463  */
1464 typedef union {
1465 	struct page **pages;
1466 	struct folio **folios;
1467 	struct encoded_page **encoded_pages;
1468 } release_pages_arg __attribute__ ((__transparent_union__));
1469 
1470 void release_pages(release_pages_arg, int nr);
1471 
1472 /**
1473  * folios_put - Decrement the reference count on an array of folios.
1474  * @folios: The folios.
1475  * @nr: How many folios there are.
1476  *
1477  * Like folio_put(), but for an array of folios.  This is more efficient
1478  * than writing the loop yourself as it will optimise the locks which
1479  * need to be taken if the folios are freed.
1480  *
1481  * Context: May be called in process or interrupt context, but not in NMI
1482  * context.  May be called while holding a spinlock.
1483  */
1484 static inline void folios_put(struct folio **folios, unsigned int nr)
1485 {
1486 	release_pages(folios, nr);
1487 }
1488 
1489 static inline void put_page(struct page *page)
1490 {
1491 	struct folio *folio = page_folio(page);
1492 
1493 	/*
1494 	 * For some devmap managed pages we need to catch refcount transition
1495 	 * from 2 to 1:
1496 	 */
1497 	if (put_devmap_managed_page(&folio->page))
1498 		return;
1499 	folio_put(folio);
1500 }
1501 
1502 /*
1503  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1504  * the page's refcount so that two separate items are tracked: the original page
1505  * reference count, and also a new count of how many pin_user_pages() calls were
1506  * made against the page. ("gup-pinned" is another term for the latter).
1507  *
1508  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1509  * distinct from normal pages. As such, the unpin_user_page() call (and its
1510  * variants) must be used in order to release gup-pinned pages.
1511  *
1512  * Choice of value:
1513  *
1514  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1515  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1516  * simpler, due to the fact that adding an even power of two to the page
1517  * refcount has the effect of using only the upper N bits, for the code that
1518  * counts up using the bias value. This means that the lower bits are left for
1519  * the exclusive use of the original code that increments and decrements by one
1520  * (or at least, by much smaller values than the bias value).
1521  *
1522  * Of course, once the lower bits overflow into the upper bits (and this is
1523  * OK, because subtraction recovers the original values), then visual inspection
1524  * no longer suffices to directly view the separate counts. However, for normal
1525  * applications that don't have huge page reference counts, this won't be an
1526  * issue.
1527  *
1528  * Locking: the lockless algorithm described in folio_try_get_rcu()
1529  * provides safe operation for get_user_pages(), page_mkclean() and
1530  * other calls that race to set up page table entries.
1531  */
1532 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1533 
1534 void unpin_user_page(struct page *page);
1535 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1536 				 bool make_dirty);
1537 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1538 				      bool make_dirty);
1539 void unpin_user_pages(struct page **pages, unsigned long npages);
1540 
1541 static inline bool is_cow_mapping(vm_flags_t flags)
1542 {
1543 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1544 }
1545 
1546 #ifndef CONFIG_MMU
1547 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1548 {
1549 	/*
1550 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1551 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1552 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1553 	 * underlying memory if ptrace is active, so this is only possible if
1554 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1555 	 * write permissions later.
1556 	 */
1557 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1558 }
1559 #endif
1560 
1561 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1562 #define SECTION_IN_PAGE_FLAGS
1563 #endif
1564 
1565 /*
1566  * The identification function is mainly used by the buddy allocator for
1567  * determining if two pages could be buddies. We are not really identifying
1568  * the zone since we could be using the section number id if we do not have
1569  * node id available in page flags.
1570  * We only guarantee that it will return the same value for two combinable
1571  * pages in a zone.
1572  */
1573 static inline int page_zone_id(struct page *page)
1574 {
1575 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1576 }
1577 
1578 #ifdef NODE_NOT_IN_PAGE_FLAGS
1579 extern int page_to_nid(const struct page *page);
1580 #else
1581 static inline int page_to_nid(const struct page *page)
1582 {
1583 	struct page *p = (struct page *)page;
1584 
1585 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1586 }
1587 #endif
1588 
1589 static inline int folio_nid(const struct folio *folio)
1590 {
1591 	return page_to_nid(&folio->page);
1592 }
1593 
1594 #ifdef CONFIG_NUMA_BALANCING
1595 /* page access time bits needs to hold at least 4 seconds */
1596 #define PAGE_ACCESS_TIME_MIN_BITS	12
1597 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1598 #define PAGE_ACCESS_TIME_BUCKETS				\
1599 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1600 #else
1601 #define PAGE_ACCESS_TIME_BUCKETS	0
1602 #endif
1603 
1604 #define PAGE_ACCESS_TIME_MASK				\
1605 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1606 
1607 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1608 {
1609 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1610 }
1611 
1612 static inline int cpupid_to_pid(int cpupid)
1613 {
1614 	return cpupid & LAST__PID_MASK;
1615 }
1616 
1617 static inline int cpupid_to_cpu(int cpupid)
1618 {
1619 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1620 }
1621 
1622 static inline int cpupid_to_nid(int cpupid)
1623 {
1624 	return cpu_to_node(cpupid_to_cpu(cpupid));
1625 }
1626 
1627 static inline bool cpupid_pid_unset(int cpupid)
1628 {
1629 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1630 }
1631 
1632 static inline bool cpupid_cpu_unset(int cpupid)
1633 {
1634 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1635 }
1636 
1637 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1638 {
1639 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1640 }
1641 
1642 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1643 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1644 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1645 {
1646 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1647 }
1648 
1649 static inline int page_cpupid_last(struct page *page)
1650 {
1651 	return page->_last_cpupid;
1652 }
1653 static inline void page_cpupid_reset_last(struct page *page)
1654 {
1655 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1656 }
1657 #else
1658 static inline int page_cpupid_last(struct page *page)
1659 {
1660 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1661 }
1662 
1663 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1664 
1665 static inline void page_cpupid_reset_last(struct page *page)
1666 {
1667 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1668 }
1669 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1670 
1671 static inline int xchg_page_access_time(struct page *page, int time)
1672 {
1673 	int last_time;
1674 
1675 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1676 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1677 }
1678 
1679 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1680 {
1681 	unsigned int pid_bit;
1682 
1683 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1684 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1685 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1686 	}
1687 }
1688 #else /* !CONFIG_NUMA_BALANCING */
1689 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1690 {
1691 	return page_to_nid(page); /* XXX */
1692 }
1693 
1694 static inline int xchg_page_access_time(struct page *page, int time)
1695 {
1696 	return 0;
1697 }
1698 
1699 static inline int page_cpupid_last(struct page *page)
1700 {
1701 	return page_to_nid(page); /* XXX */
1702 }
1703 
1704 static inline int cpupid_to_nid(int cpupid)
1705 {
1706 	return -1;
1707 }
1708 
1709 static inline int cpupid_to_pid(int cpupid)
1710 {
1711 	return -1;
1712 }
1713 
1714 static inline int cpupid_to_cpu(int cpupid)
1715 {
1716 	return -1;
1717 }
1718 
1719 static inline int cpu_pid_to_cpupid(int nid, int pid)
1720 {
1721 	return -1;
1722 }
1723 
1724 static inline bool cpupid_pid_unset(int cpupid)
1725 {
1726 	return true;
1727 }
1728 
1729 static inline void page_cpupid_reset_last(struct page *page)
1730 {
1731 }
1732 
1733 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1734 {
1735 	return false;
1736 }
1737 
1738 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1739 {
1740 }
1741 #endif /* CONFIG_NUMA_BALANCING */
1742 
1743 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1744 
1745 /*
1746  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1747  * setting tags for all pages to native kernel tag value 0xff, as the default
1748  * value 0x00 maps to 0xff.
1749  */
1750 
1751 static inline u8 page_kasan_tag(const struct page *page)
1752 {
1753 	u8 tag = 0xff;
1754 
1755 	if (kasan_enabled()) {
1756 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1757 		tag ^= 0xff;
1758 	}
1759 
1760 	return tag;
1761 }
1762 
1763 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1764 {
1765 	unsigned long old_flags, flags;
1766 
1767 	if (!kasan_enabled())
1768 		return;
1769 
1770 	tag ^= 0xff;
1771 	old_flags = READ_ONCE(page->flags);
1772 	do {
1773 		flags = old_flags;
1774 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1775 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1776 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1777 }
1778 
1779 static inline void page_kasan_tag_reset(struct page *page)
1780 {
1781 	if (kasan_enabled())
1782 		page_kasan_tag_set(page, 0xff);
1783 }
1784 
1785 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1786 
1787 static inline u8 page_kasan_tag(const struct page *page)
1788 {
1789 	return 0xff;
1790 }
1791 
1792 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1793 static inline void page_kasan_tag_reset(struct page *page) { }
1794 
1795 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1796 
1797 static inline struct zone *page_zone(const struct page *page)
1798 {
1799 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1800 }
1801 
1802 static inline pg_data_t *page_pgdat(const struct page *page)
1803 {
1804 	return NODE_DATA(page_to_nid(page));
1805 }
1806 
1807 static inline struct zone *folio_zone(const struct folio *folio)
1808 {
1809 	return page_zone(&folio->page);
1810 }
1811 
1812 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1813 {
1814 	return page_pgdat(&folio->page);
1815 }
1816 
1817 #ifdef SECTION_IN_PAGE_FLAGS
1818 static inline void set_page_section(struct page *page, unsigned long section)
1819 {
1820 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1821 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1822 }
1823 
1824 static inline unsigned long page_to_section(const struct page *page)
1825 {
1826 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1827 }
1828 #endif
1829 
1830 /**
1831  * folio_pfn - Return the Page Frame Number of a folio.
1832  * @folio: The folio.
1833  *
1834  * A folio may contain multiple pages.  The pages have consecutive
1835  * Page Frame Numbers.
1836  *
1837  * Return: The Page Frame Number of the first page in the folio.
1838  */
1839 static inline unsigned long folio_pfn(struct folio *folio)
1840 {
1841 	return page_to_pfn(&folio->page);
1842 }
1843 
1844 static inline struct folio *pfn_folio(unsigned long pfn)
1845 {
1846 	return page_folio(pfn_to_page(pfn));
1847 }
1848 
1849 /**
1850  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1851  * @folio: The folio.
1852  *
1853  * This function checks if a folio has been pinned via a call to
1854  * a function in the pin_user_pages() family.
1855  *
1856  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1857  * because it means "definitely not pinned for DMA", but true means "probably
1858  * pinned for DMA, but possibly a false positive due to having at least
1859  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1860  *
1861  * False positives are OK, because: a) it's unlikely for a folio to
1862  * get that many refcounts, and b) all the callers of this routine are
1863  * expected to be able to deal gracefully with a false positive.
1864  *
1865  * For large folios, the result will be exactly correct. That's because
1866  * we have more tracking data available: the _pincount field is used
1867  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1868  *
1869  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1870  *
1871  * Return: True, if it is likely that the page has been "dma-pinned".
1872  * False, if the page is definitely not dma-pinned.
1873  */
1874 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1875 {
1876 	if (folio_test_large(folio))
1877 		return atomic_read(&folio->_pincount) > 0;
1878 
1879 	/*
1880 	 * folio_ref_count() is signed. If that refcount overflows, then
1881 	 * folio_ref_count() returns a negative value, and callers will avoid
1882 	 * further incrementing the refcount.
1883 	 *
1884 	 * Here, for that overflow case, use the sign bit to count a little
1885 	 * bit higher via unsigned math, and thus still get an accurate result.
1886 	 */
1887 	return ((unsigned int)folio_ref_count(folio)) >=
1888 		GUP_PIN_COUNTING_BIAS;
1889 }
1890 
1891 static inline bool page_maybe_dma_pinned(struct page *page)
1892 {
1893 	return folio_maybe_dma_pinned(page_folio(page));
1894 }
1895 
1896 /*
1897  * This should most likely only be called during fork() to see whether we
1898  * should break the cow immediately for an anon page on the src mm.
1899  *
1900  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1901  */
1902 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1903 					  struct page *page)
1904 {
1905 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1906 
1907 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1908 		return false;
1909 
1910 	return page_maybe_dma_pinned(page);
1911 }
1912 
1913 /**
1914  * is_zero_page - Query if a page is a zero page
1915  * @page: The page to query
1916  *
1917  * This returns true if @page is one of the permanent zero pages.
1918  */
1919 static inline bool is_zero_page(const struct page *page)
1920 {
1921 	return is_zero_pfn(page_to_pfn(page));
1922 }
1923 
1924 /**
1925  * is_zero_folio - Query if a folio is a zero page
1926  * @folio: The folio to query
1927  *
1928  * This returns true if @folio is one of the permanent zero pages.
1929  */
1930 static inline bool is_zero_folio(const struct folio *folio)
1931 {
1932 	return is_zero_page(&folio->page);
1933 }
1934 
1935 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1936 #ifdef CONFIG_MIGRATION
1937 static inline bool is_longterm_pinnable_page(struct page *page)
1938 {
1939 #ifdef CONFIG_CMA
1940 	int mt = get_pageblock_migratetype(page);
1941 
1942 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1943 		return false;
1944 #endif
1945 	/* The zero page can be "pinned" but gets special handling. */
1946 	if (is_zero_page(page))
1947 		return true;
1948 
1949 	/* Coherent device memory must always allow eviction. */
1950 	if (is_device_coherent_page(page))
1951 		return false;
1952 
1953 	/* Otherwise, non-movable zone pages can be pinned. */
1954 	return !is_zone_movable_page(page);
1955 }
1956 #else
1957 static inline bool is_longterm_pinnable_page(struct page *page)
1958 {
1959 	return true;
1960 }
1961 #endif
1962 
1963 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1964 {
1965 	return is_longterm_pinnable_page(&folio->page);
1966 }
1967 
1968 static inline void set_page_zone(struct page *page, enum zone_type zone)
1969 {
1970 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1971 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1972 }
1973 
1974 static inline void set_page_node(struct page *page, unsigned long node)
1975 {
1976 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1977 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1978 }
1979 
1980 static inline void set_page_links(struct page *page, enum zone_type zone,
1981 	unsigned long node, unsigned long pfn)
1982 {
1983 	set_page_zone(page, zone);
1984 	set_page_node(page, node);
1985 #ifdef SECTION_IN_PAGE_FLAGS
1986 	set_page_section(page, pfn_to_section_nr(pfn));
1987 #endif
1988 }
1989 
1990 /**
1991  * folio_nr_pages - The number of pages in the folio.
1992  * @folio: The folio.
1993  *
1994  * Return: A positive power of two.
1995  */
1996 static inline long folio_nr_pages(struct folio *folio)
1997 {
1998 	if (!folio_test_large(folio))
1999 		return 1;
2000 #ifdef CONFIG_64BIT
2001 	return folio->_folio_nr_pages;
2002 #else
2003 	return 1L << folio->_folio_order;
2004 #endif
2005 }
2006 
2007 /*
2008  * compound_nr() returns the number of pages in this potentially compound
2009  * page.  compound_nr() can be called on a tail page, and is defined to
2010  * return 1 in that case.
2011  */
2012 static inline unsigned long compound_nr(struct page *page)
2013 {
2014 	struct folio *folio = (struct folio *)page;
2015 
2016 	if (!test_bit(PG_head, &folio->flags))
2017 		return 1;
2018 #ifdef CONFIG_64BIT
2019 	return folio->_folio_nr_pages;
2020 #else
2021 	return 1L << folio->_folio_order;
2022 #endif
2023 }
2024 
2025 /**
2026  * thp_nr_pages - The number of regular pages in this huge page.
2027  * @page: The head page of a huge page.
2028  */
2029 static inline int thp_nr_pages(struct page *page)
2030 {
2031 	return folio_nr_pages((struct folio *)page);
2032 }
2033 
2034 /**
2035  * folio_next - Move to the next physical folio.
2036  * @folio: The folio we're currently operating on.
2037  *
2038  * If you have physically contiguous memory which may span more than
2039  * one folio (eg a &struct bio_vec), use this function to move from one
2040  * folio to the next.  Do not use it if the memory is only virtually
2041  * contiguous as the folios are almost certainly not adjacent to each
2042  * other.  This is the folio equivalent to writing ``page++``.
2043  *
2044  * Context: We assume that the folios are refcounted and/or locked at a
2045  * higher level and do not adjust the reference counts.
2046  * Return: The next struct folio.
2047  */
2048 static inline struct folio *folio_next(struct folio *folio)
2049 {
2050 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2051 }
2052 
2053 /**
2054  * folio_shift - The size of the memory described by this folio.
2055  * @folio: The folio.
2056  *
2057  * A folio represents a number of bytes which is a power-of-two in size.
2058  * This function tells you which power-of-two the folio is.  See also
2059  * folio_size() and folio_order().
2060  *
2061  * Context: The caller should have a reference on the folio to prevent
2062  * it from being split.  It is not necessary for the folio to be locked.
2063  * Return: The base-2 logarithm of the size of this folio.
2064  */
2065 static inline unsigned int folio_shift(struct folio *folio)
2066 {
2067 	return PAGE_SHIFT + folio_order(folio);
2068 }
2069 
2070 /**
2071  * folio_size - The number of bytes in a folio.
2072  * @folio: The folio.
2073  *
2074  * Context: The caller should have a reference on the folio to prevent
2075  * it from being split.  It is not necessary for the folio to be locked.
2076  * Return: The number of bytes in this folio.
2077  */
2078 static inline size_t folio_size(struct folio *folio)
2079 {
2080 	return PAGE_SIZE << folio_order(folio);
2081 }
2082 
2083 /**
2084  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2085  * @folio: The folio.
2086  *
2087  * folio_estimated_sharers() aims to serve as a function to efficiently
2088  * estimate the number of processes sharing a folio. This is done by
2089  * looking at the precise mapcount of the first subpage in the folio, and
2090  * assuming the other subpages are the same. This may not be true for large
2091  * folios. If you want exact mapcounts for exact calculations, look at
2092  * page_mapcount() or folio_total_mapcount().
2093  *
2094  * Return: The estimated number of processes sharing a folio.
2095  */
2096 static inline int folio_estimated_sharers(struct folio *folio)
2097 {
2098 	return page_mapcount(folio_page(folio, 0));
2099 }
2100 
2101 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2102 static inline int arch_make_page_accessible(struct page *page)
2103 {
2104 	return 0;
2105 }
2106 #endif
2107 
2108 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2109 static inline int arch_make_folio_accessible(struct folio *folio)
2110 {
2111 	int ret;
2112 	long i, nr = folio_nr_pages(folio);
2113 
2114 	for (i = 0; i < nr; i++) {
2115 		ret = arch_make_page_accessible(folio_page(folio, i));
2116 		if (ret)
2117 			break;
2118 	}
2119 
2120 	return ret;
2121 }
2122 #endif
2123 
2124 /*
2125  * Some inline functions in vmstat.h depend on page_zone()
2126  */
2127 #include <linux/vmstat.h>
2128 
2129 static __always_inline void *lowmem_page_address(const struct page *page)
2130 {
2131 	return page_to_virt(page);
2132 }
2133 
2134 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2135 #define HASHED_PAGE_VIRTUAL
2136 #endif
2137 
2138 #if defined(WANT_PAGE_VIRTUAL)
2139 static inline void *page_address(const struct page *page)
2140 {
2141 	return page->virtual;
2142 }
2143 static inline void set_page_address(struct page *page, void *address)
2144 {
2145 	page->virtual = address;
2146 }
2147 #define page_address_init()  do { } while(0)
2148 #endif
2149 
2150 #if defined(HASHED_PAGE_VIRTUAL)
2151 void *page_address(const struct page *page);
2152 void set_page_address(struct page *page, void *virtual);
2153 void page_address_init(void);
2154 #endif
2155 
2156 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2157 #define page_address(page) lowmem_page_address(page)
2158 #define set_page_address(page, address)  do { } while(0)
2159 #define page_address_init()  do { } while(0)
2160 #endif
2161 
2162 static inline void *folio_address(const struct folio *folio)
2163 {
2164 	return page_address(&folio->page);
2165 }
2166 
2167 extern void *page_rmapping(struct page *page);
2168 extern pgoff_t __page_file_index(struct page *page);
2169 
2170 /*
2171  * Return the pagecache index of the passed page.  Regular pagecache pages
2172  * use ->index whereas swapcache pages use swp_offset(->private)
2173  */
2174 static inline pgoff_t page_index(struct page *page)
2175 {
2176 	if (unlikely(PageSwapCache(page)))
2177 		return __page_file_index(page);
2178 	return page->index;
2179 }
2180 
2181 /*
2182  * Return true only if the page has been allocated with
2183  * ALLOC_NO_WATERMARKS and the low watermark was not
2184  * met implying that the system is under some pressure.
2185  */
2186 static inline bool page_is_pfmemalloc(const struct page *page)
2187 {
2188 	/*
2189 	 * lru.next has bit 1 set if the page is allocated from the
2190 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2191 	 * they do not need to preserve that information.
2192 	 */
2193 	return (uintptr_t)page->lru.next & BIT(1);
2194 }
2195 
2196 /*
2197  * Return true only if the folio has been allocated with
2198  * ALLOC_NO_WATERMARKS and the low watermark was not
2199  * met implying that the system is under some pressure.
2200  */
2201 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2202 {
2203 	/*
2204 	 * lru.next has bit 1 set if the page is allocated from the
2205 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2206 	 * they do not need to preserve that information.
2207 	 */
2208 	return (uintptr_t)folio->lru.next & BIT(1);
2209 }
2210 
2211 /*
2212  * Only to be called by the page allocator on a freshly allocated
2213  * page.
2214  */
2215 static inline void set_page_pfmemalloc(struct page *page)
2216 {
2217 	page->lru.next = (void *)BIT(1);
2218 }
2219 
2220 static inline void clear_page_pfmemalloc(struct page *page)
2221 {
2222 	page->lru.next = NULL;
2223 }
2224 
2225 /*
2226  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2227  */
2228 extern void pagefault_out_of_memory(void);
2229 
2230 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2231 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2232 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2233 
2234 /*
2235  * Flags passed to show_mem() and show_free_areas() to suppress output in
2236  * various contexts.
2237  */
2238 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
2239 
2240 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2241 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2242 {
2243 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2244 }
2245 
2246 /*
2247  * Parameter block passed down to zap_pte_range in exceptional cases.
2248  */
2249 struct zap_details {
2250 	struct folio *single_folio;	/* Locked folio to be unmapped */
2251 	bool even_cows;			/* Zap COWed private pages too? */
2252 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2253 };
2254 
2255 /*
2256  * Whether to drop the pte markers, for example, the uffd-wp information for
2257  * file-backed memory.  This should only be specified when we will completely
2258  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2259  * default, the flag is not set.
2260  */
2261 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2262 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2263 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2264 
2265 #ifdef CONFIG_SCHED_MM_CID
2266 void sched_mm_cid_before_execve(struct task_struct *t);
2267 void sched_mm_cid_after_execve(struct task_struct *t);
2268 void sched_mm_cid_fork(struct task_struct *t);
2269 void sched_mm_cid_exit_signals(struct task_struct *t);
2270 static inline int task_mm_cid(struct task_struct *t)
2271 {
2272 	return t->mm_cid;
2273 }
2274 #else
2275 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2276 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2277 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2278 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2279 static inline int task_mm_cid(struct task_struct *t)
2280 {
2281 	/*
2282 	 * Use the processor id as a fall-back when the mm cid feature is
2283 	 * disabled. This provides functional per-cpu data structure accesses
2284 	 * in user-space, althrough it won't provide the memory usage benefits.
2285 	 */
2286 	return raw_smp_processor_id();
2287 }
2288 #endif
2289 
2290 #ifdef CONFIG_MMU
2291 extern bool can_do_mlock(void);
2292 #else
2293 static inline bool can_do_mlock(void) { return false; }
2294 #endif
2295 extern int user_shm_lock(size_t, struct ucounts *);
2296 extern void user_shm_unlock(size_t, struct ucounts *);
2297 
2298 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2299 			     pte_t pte);
2300 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2301 			     pte_t pte);
2302 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2303 				pmd_t pmd);
2304 
2305 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2306 		  unsigned long size);
2307 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2308 			   unsigned long size, struct zap_details *details);
2309 static inline void zap_vma_pages(struct vm_area_struct *vma)
2310 {
2311 	zap_page_range_single(vma, vma->vm_start,
2312 			      vma->vm_end - vma->vm_start, NULL);
2313 }
2314 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2315 		struct vm_area_struct *start_vma, unsigned long start,
2316 		unsigned long end, bool mm_wr_locked);
2317 
2318 struct mmu_notifier_range;
2319 
2320 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2321 		unsigned long end, unsigned long floor, unsigned long ceiling);
2322 int
2323 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2324 int follow_pte(struct mm_struct *mm, unsigned long address,
2325 	       pte_t **ptepp, spinlock_t **ptlp);
2326 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2327 	unsigned long *pfn);
2328 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2329 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2330 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2331 			void *buf, int len, int write);
2332 
2333 extern void truncate_pagecache(struct inode *inode, loff_t new);
2334 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2335 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2336 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2337 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2338 
2339 #ifdef CONFIG_MMU
2340 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2341 				  unsigned long address, unsigned int flags,
2342 				  struct pt_regs *regs);
2343 extern int fixup_user_fault(struct mm_struct *mm,
2344 			    unsigned long address, unsigned int fault_flags,
2345 			    bool *unlocked);
2346 void unmap_mapping_pages(struct address_space *mapping,
2347 		pgoff_t start, pgoff_t nr, bool even_cows);
2348 void unmap_mapping_range(struct address_space *mapping,
2349 		loff_t const holebegin, loff_t const holelen, int even_cows);
2350 #else
2351 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2352 					 unsigned long address, unsigned int flags,
2353 					 struct pt_regs *regs)
2354 {
2355 	/* should never happen if there's no MMU */
2356 	BUG();
2357 	return VM_FAULT_SIGBUS;
2358 }
2359 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2360 		unsigned int fault_flags, bool *unlocked)
2361 {
2362 	/* should never happen if there's no MMU */
2363 	BUG();
2364 	return -EFAULT;
2365 }
2366 static inline void unmap_mapping_pages(struct address_space *mapping,
2367 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2368 static inline void unmap_mapping_range(struct address_space *mapping,
2369 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2370 #endif
2371 
2372 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2373 		loff_t const holebegin, loff_t const holelen)
2374 {
2375 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2376 }
2377 
2378 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2379 		void *buf, int len, unsigned int gup_flags);
2380 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2381 		void *buf, int len, unsigned int gup_flags);
2382 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2383 			      void *buf, int len, unsigned int gup_flags);
2384 
2385 long get_user_pages_remote(struct mm_struct *mm,
2386 			    unsigned long start, unsigned long nr_pages,
2387 			    unsigned int gup_flags, struct page **pages,
2388 			    struct vm_area_struct **vmas, int *locked);
2389 long pin_user_pages_remote(struct mm_struct *mm,
2390 			   unsigned long start, unsigned long nr_pages,
2391 			   unsigned int gup_flags, struct page **pages,
2392 			   struct vm_area_struct **vmas, int *locked);
2393 long get_user_pages(unsigned long start, unsigned long nr_pages,
2394 			    unsigned int gup_flags, struct page **pages,
2395 			    struct vm_area_struct **vmas);
2396 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2397 		    unsigned int gup_flags, struct page **pages,
2398 		    struct vm_area_struct **vmas);
2399 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2400 		    struct page **pages, unsigned int gup_flags);
2401 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2402 		    struct page **pages, unsigned int gup_flags);
2403 
2404 int get_user_pages_fast(unsigned long start, int nr_pages,
2405 			unsigned int gup_flags, struct page **pages);
2406 int pin_user_pages_fast(unsigned long start, int nr_pages,
2407 			unsigned int gup_flags, struct page **pages);
2408 void folio_add_pin(struct folio *folio);
2409 
2410 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2411 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2412 			struct task_struct *task, bool bypass_rlim);
2413 
2414 struct kvec;
2415 struct page *get_dump_page(unsigned long addr);
2416 
2417 bool folio_mark_dirty(struct folio *folio);
2418 bool set_page_dirty(struct page *page);
2419 int set_page_dirty_lock(struct page *page);
2420 
2421 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2422 
2423 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2424 		unsigned long old_addr, struct vm_area_struct *new_vma,
2425 		unsigned long new_addr, unsigned long len,
2426 		bool need_rmap_locks);
2427 
2428 /*
2429  * Flags used by change_protection().  For now we make it a bitmap so
2430  * that we can pass in multiple flags just like parameters.  However
2431  * for now all the callers are only use one of the flags at the same
2432  * time.
2433  */
2434 /*
2435  * Whether we should manually check if we can map individual PTEs writable,
2436  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2437  * PTEs automatically in a writable mapping.
2438  */
2439 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2440 /* Whether this protection change is for NUMA hints */
2441 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2442 /* Whether this change is for write protecting */
2443 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2444 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2445 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2446 					    MM_CP_UFFD_WP_RESOLVE)
2447 
2448 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2449 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2450 {
2451 	/*
2452 	 * We want to check manually if we can change individual PTEs writable
2453 	 * if we can't do that automatically for all PTEs in a mapping. For
2454 	 * private mappings, that's always the case when we have write
2455 	 * permissions as we properly have to handle COW.
2456 	 */
2457 	if (vma->vm_flags & VM_SHARED)
2458 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2459 	return !!(vma->vm_flags & VM_WRITE);
2460 
2461 }
2462 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2463 			     pte_t pte);
2464 extern long change_protection(struct mmu_gather *tlb,
2465 			      struct vm_area_struct *vma, unsigned long start,
2466 			      unsigned long end, unsigned long cp_flags);
2467 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2468 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2469 	  unsigned long start, unsigned long end, unsigned long newflags);
2470 
2471 /*
2472  * doesn't attempt to fault and will return short.
2473  */
2474 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2475 			     unsigned int gup_flags, struct page **pages);
2476 
2477 static inline bool get_user_page_fast_only(unsigned long addr,
2478 			unsigned int gup_flags, struct page **pagep)
2479 {
2480 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2481 }
2482 /*
2483  * per-process(per-mm_struct) statistics.
2484  */
2485 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2486 {
2487 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2488 }
2489 
2490 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2491 
2492 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2493 {
2494 	percpu_counter_add(&mm->rss_stat[member], value);
2495 
2496 	mm_trace_rss_stat(mm, member);
2497 }
2498 
2499 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2500 {
2501 	percpu_counter_inc(&mm->rss_stat[member]);
2502 
2503 	mm_trace_rss_stat(mm, member);
2504 }
2505 
2506 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2507 {
2508 	percpu_counter_dec(&mm->rss_stat[member]);
2509 
2510 	mm_trace_rss_stat(mm, member);
2511 }
2512 
2513 /* Optimized variant when page is already known not to be PageAnon */
2514 static inline int mm_counter_file(struct page *page)
2515 {
2516 	if (PageSwapBacked(page))
2517 		return MM_SHMEMPAGES;
2518 	return MM_FILEPAGES;
2519 }
2520 
2521 static inline int mm_counter(struct page *page)
2522 {
2523 	if (PageAnon(page))
2524 		return MM_ANONPAGES;
2525 	return mm_counter_file(page);
2526 }
2527 
2528 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2529 {
2530 	return get_mm_counter(mm, MM_FILEPAGES) +
2531 		get_mm_counter(mm, MM_ANONPAGES) +
2532 		get_mm_counter(mm, MM_SHMEMPAGES);
2533 }
2534 
2535 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2536 {
2537 	return max(mm->hiwater_rss, get_mm_rss(mm));
2538 }
2539 
2540 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2541 {
2542 	return max(mm->hiwater_vm, mm->total_vm);
2543 }
2544 
2545 static inline void update_hiwater_rss(struct mm_struct *mm)
2546 {
2547 	unsigned long _rss = get_mm_rss(mm);
2548 
2549 	if ((mm)->hiwater_rss < _rss)
2550 		(mm)->hiwater_rss = _rss;
2551 }
2552 
2553 static inline void update_hiwater_vm(struct mm_struct *mm)
2554 {
2555 	if (mm->hiwater_vm < mm->total_vm)
2556 		mm->hiwater_vm = mm->total_vm;
2557 }
2558 
2559 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2560 {
2561 	mm->hiwater_rss = get_mm_rss(mm);
2562 }
2563 
2564 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2565 					 struct mm_struct *mm)
2566 {
2567 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2568 
2569 	if (*maxrss < hiwater_rss)
2570 		*maxrss = hiwater_rss;
2571 }
2572 
2573 #if defined(SPLIT_RSS_COUNTING)
2574 void sync_mm_rss(struct mm_struct *mm);
2575 #else
2576 static inline void sync_mm_rss(struct mm_struct *mm)
2577 {
2578 }
2579 #endif
2580 
2581 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2582 static inline int pte_special(pte_t pte)
2583 {
2584 	return 0;
2585 }
2586 
2587 static inline pte_t pte_mkspecial(pte_t pte)
2588 {
2589 	return pte;
2590 }
2591 #endif
2592 
2593 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2594 static inline int pte_devmap(pte_t pte)
2595 {
2596 	return 0;
2597 }
2598 #endif
2599 
2600 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2601 			       spinlock_t **ptl);
2602 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2603 				    spinlock_t **ptl)
2604 {
2605 	pte_t *ptep;
2606 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2607 	return ptep;
2608 }
2609 
2610 #ifdef __PAGETABLE_P4D_FOLDED
2611 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2612 						unsigned long address)
2613 {
2614 	return 0;
2615 }
2616 #else
2617 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2618 #endif
2619 
2620 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2621 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2622 						unsigned long address)
2623 {
2624 	return 0;
2625 }
2626 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2627 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2628 
2629 #else
2630 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2631 
2632 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2633 {
2634 	if (mm_pud_folded(mm))
2635 		return;
2636 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2637 }
2638 
2639 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2640 {
2641 	if (mm_pud_folded(mm))
2642 		return;
2643 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2644 }
2645 #endif
2646 
2647 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2648 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2649 						unsigned long address)
2650 {
2651 	return 0;
2652 }
2653 
2654 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2655 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2656 
2657 #else
2658 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2659 
2660 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2661 {
2662 	if (mm_pmd_folded(mm))
2663 		return;
2664 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2665 }
2666 
2667 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2668 {
2669 	if (mm_pmd_folded(mm))
2670 		return;
2671 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2672 }
2673 #endif
2674 
2675 #ifdef CONFIG_MMU
2676 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2677 {
2678 	atomic_long_set(&mm->pgtables_bytes, 0);
2679 }
2680 
2681 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2682 {
2683 	return atomic_long_read(&mm->pgtables_bytes);
2684 }
2685 
2686 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2687 {
2688 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2689 }
2690 
2691 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2692 {
2693 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2694 }
2695 #else
2696 
2697 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2698 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2699 {
2700 	return 0;
2701 }
2702 
2703 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2704 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2705 #endif
2706 
2707 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2708 int __pte_alloc_kernel(pmd_t *pmd);
2709 
2710 #if defined(CONFIG_MMU)
2711 
2712 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2713 		unsigned long address)
2714 {
2715 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2716 		NULL : p4d_offset(pgd, address);
2717 }
2718 
2719 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2720 		unsigned long address)
2721 {
2722 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2723 		NULL : pud_offset(p4d, address);
2724 }
2725 
2726 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2727 {
2728 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2729 		NULL: pmd_offset(pud, address);
2730 }
2731 #endif /* CONFIG_MMU */
2732 
2733 #if USE_SPLIT_PTE_PTLOCKS
2734 #if ALLOC_SPLIT_PTLOCKS
2735 void __init ptlock_cache_init(void);
2736 extern bool ptlock_alloc(struct page *page);
2737 extern void ptlock_free(struct page *page);
2738 
2739 static inline spinlock_t *ptlock_ptr(struct page *page)
2740 {
2741 	return page->ptl;
2742 }
2743 #else /* ALLOC_SPLIT_PTLOCKS */
2744 static inline void ptlock_cache_init(void)
2745 {
2746 }
2747 
2748 static inline bool ptlock_alloc(struct page *page)
2749 {
2750 	return true;
2751 }
2752 
2753 static inline void ptlock_free(struct page *page)
2754 {
2755 }
2756 
2757 static inline spinlock_t *ptlock_ptr(struct page *page)
2758 {
2759 	return &page->ptl;
2760 }
2761 #endif /* ALLOC_SPLIT_PTLOCKS */
2762 
2763 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2764 {
2765 	return ptlock_ptr(pmd_page(*pmd));
2766 }
2767 
2768 static inline bool ptlock_init(struct page *page)
2769 {
2770 	/*
2771 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2772 	 * with 0. Make sure nobody took it in use in between.
2773 	 *
2774 	 * It can happen if arch try to use slab for page table allocation:
2775 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2776 	 */
2777 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2778 	if (!ptlock_alloc(page))
2779 		return false;
2780 	spin_lock_init(ptlock_ptr(page));
2781 	return true;
2782 }
2783 
2784 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2785 /*
2786  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2787  */
2788 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2789 {
2790 	return &mm->page_table_lock;
2791 }
2792 static inline void ptlock_cache_init(void) {}
2793 static inline bool ptlock_init(struct page *page) { return true; }
2794 static inline void ptlock_free(struct page *page) {}
2795 #endif /* USE_SPLIT_PTE_PTLOCKS */
2796 
2797 static inline bool pgtable_pte_page_ctor(struct page *page)
2798 {
2799 	if (!ptlock_init(page))
2800 		return false;
2801 	__SetPageTable(page);
2802 	inc_lruvec_page_state(page, NR_PAGETABLE);
2803 	return true;
2804 }
2805 
2806 static inline void pgtable_pte_page_dtor(struct page *page)
2807 {
2808 	ptlock_free(page);
2809 	__ClearPageTable(page);
2810 	dec_lruvec_page_state(page, NR_PAGETABLE);
2811 }
2812 
2813 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2814 ({							\
2815 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2816 	pte_t *__pte = pte_offset_map(pmd, address);	\
2817 	*(ptlp) = __ptl;				\
2818 	spin_lock(__ptl);				\
2819 	__pte;						\
2820 })
2821 
2822 #define pte_unmap_unlock(pte, ptl)	do {		\
2823 	spin_unlock(ptl);				\
2824 	pte_unmap(pte);					\
2825 } while (0)
2826 
2827 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2828 
2829 #define pte_alloc_map(mm, pmd, address)			\
2830 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2831 
2832 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2833 	(pte_alloc(mm, pmd) ?			\
2834 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2835 
2836 #define pte_alloc_kernel(pmd, address)			\
2837 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2838 		NULL: pte_offset_kernel(pmd, address))
2839 
2840 #if USE_SPLIT_PMD_PTLOCKS
2841 
2842 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2843 {
2844 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2845 	return virt_to_page((void *)((unsigned long) pmd & mask));
2846 }
2847 
2848 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2849 {
2850 	return ptlock_ptr(pmd_pgtable_page(pmd));
2851 }
2852 
2853 static inline bool pmd_ptlock_init(struct page *page)
2854 {
2855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2856 	page->pmd_huge_pte = NULL;
2857 #endif
2858 	return ptlock_init(page);
2859 }
2860 
2861 static inline void pmd_ptlock_free(struct page *page)
2862 {
2863 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2864 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2865 #endif
2866 	ptlock_free(page);
2867 }
2868 
2869 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2870 
2871 #else
2872 
2873 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2874 {
2875 	return &mm->page_table_lock;
2876 }
2877 
2878 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2879 static inline void pmd_ptlock_free(struct page *page) {}
2880 
2881 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2882 
2883 #endif
2884 
2885 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2886 {
2887 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2888 	spin_lock(ptl);
2889 	return ptl;
2890 }
2891 
2892 static inline bool pgtable_pmd_page_ctor(struct page *page)
2893 {
2894 	if (!pmd_ptlock_init(page))
2895 		return false;
2896 	__SetPageTable(page);
2897 	inc_lruvec_page_state(page, NR_PAGETABLE);
2898 	return true;
2899 }
2900 
2901 static inline void pgtable_pmd_page_dtor(struct page *page)
2902 {
2903 	pmd_ptlock_free(page);
2904 	__ClearPageTable(page);
2905 	dec_lruvec_page_state(page, NR_PAGETABLE);
2906 }
2907 
2908 /*
2909  * No scalability reason to split PUD locks yet, but follow the same pattern
2910  * as the PMD locks to make it easier if we decide to.  The VM should not be
2911  * considered ready to switch to split PUD locks yet; there may be places
2912  * which need to be converted from page_table_lock.
2913  */
2914 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2915 {
2916 	return &mm->page_table_lock;
2917 }
2918 
2919 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2920 {
2921 	spinlock_t *ptl = pud_lockptr(mm, pud);
2922 
2923 	spin_lock(ptl);
2924 	return ptl;
2925 }
2926 
2927 extern void __init pagecache_init(void);
2928 extern void free_initmem(void);
2929 
2930 /*
2931  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2932  * into the buddy system. The freed pages will be poisoned with pattern
2933  * "poison" if it's within range [0, UCHAR_MAX].
2934  * Return pages freed into the buddy system.
2935  */
2936 extern unsigned long free_reserved_area(void *start, void *end,
2937 					int poison, const char *s);
2938 
2939 extern void adjust_managed_page_count(struct page *page, long count);
2940 
2941 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2942 
2943 /* Free the reserved page into the buddy system, so it gets managed. */
2944 static inline void free_reserved_page(struct page *page)
2945 {
2946 	ClearPageReserved(page);
2947 	init_page_count(page);
2948 	__free_page(page);
2949 	adjust_managed_page_count(page, 1);
2950 }
2951 #define free_highmem_page(page) free_reserved_page(page)
2952 
2953 static inline void mark_page_reserved(struct page *page)
2954 {
2955 	SetPageReserved(page);
2956 	adjust_managed_page_count(page, -1);
2957 }
2958 
2959 /*
2960  * Default method to free all the __init memory into the buddy system.
2961  * The freed pages will be poisoned with pattern "poison" if it's within
2962  * range [0, UCHAR_MAX].
2963  * Return pages freed into the buddy system.
2964  */
2965 static inline unsigned long free_initmem_default(int poison)
2966 {
2967 	extern char __init_begin[], __init_end[];
2968 
2969 	return free_reserved_area(&__init_begin, &__init_end,
2970 				  poison, "unused kernel image (initmem)");
2971 }
2972 
2973 static inline unsigned long get_num_physpages(void)
2974 {
2975 	int nid;
2976 	unsigned long phys_pages = 0;
2977 
2978 	for_each_online_node(nid)
2979 		phys_pages += node_present_pages(nid);
2980 
2981 	return phys_pages;
2982 }
2983 
2984 /*
2985  * Using memblock node mappings, an architecture may initialise its
2986  * zones, allocate the backing mem_map and account for memory holes in an
2987  * architecture independent manner.
2988  *
2989  * An architecture is expected to register range of page frames backed by
2990  * physical memory with memblock_add[_node]() before calling
2991  * free_area_init() passing in the PFN each zone ends at. At a basic
2992  * usage, an architecture is expected to do something like
2993  *
2994  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2995  * 							 max_highmem_pfn};
2996  * for_each_valid_physical_page_range()
2997  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2998  * free_area_init(max_zone_pfns);
2999  */
3000 void free_area_init(unsigned long *max_zone_pfn);
3001 unsigned long node_map_pfn_alignment(void);
3002 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3003 						unsigned long end_pfn);
3004 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3005 						unsigned long end_pfn);
3006 extern void get_pfn_range_for_nid(unsigned int nid,
3007 			unsigned long *start_pfn, unsigned long *end_pfn);
3008 
3009 #ifndef CONFIG_NUMA
3010 static inline int early_pfn_to_nid(unsigned long pfn)
3011 {
3012 	return 0;
3013 }
3014 #else
3015 /* please see mm/page_alloc.c */
3016 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3017 #endif
3018 
3019 extern void set_dma_reserve(unsigned long new_dma_reserve);
3020 extern void memmap_init_range(unsigned long, int, unsigned long,
3021 		unsigned long, unsigned long, enum meminit_context,
3022 		struct vmem_altmap *, int migratetype);
3023 extern void setup_per_zone_wmarks(void);
3024 extern void calculate_min_free_kbytes(void);
3025 extern int __meminit init_per_zone_wmark_min(void);
3026 extern void mem_init(void);
3027 extern void __init mmap_init(void);
3028 
3029 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3030 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3031 {
3032 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3033 }
3034 extern long si_mem_available(void);
3035 extern void si_meminfo(struct sysinfo * val);
3036 extern void si_meminfo_node(struct sysinfo *val, int nid);
3037 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3038 extern unsigned long arch_reserved_kernel_pages(void);
3039 #endif
3040 
3041 extern __printf(3, 4)
3042 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3043 
3044 extern void setup_per_cpu_pageset(void);
3045 
3046 /* page_alloc.c */
3047 extern int min_free_kbytes;
3048 extern int watermark_boost_factor;
3049 extern int watermark_scale_factor;
3050 
3051 /* nommu.c */
3052 extern atomic_long_t mmap_pages_allocated;
3053 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3054 
3055 /* interval_tree.c */
3056 void vma_interval_tree_insert(struct vm_area_struct *node,
3057 			      struct rb_root_cached *root);
3058 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3059 				    struct vm_area_struct *prev,
3060 				    struct rb_root_cached *root);
3061 void vma_interval_tree_remove(struct vm_area_struct *node,
3062 			      struct rb_root_cached *root);
3063 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3064 				unsigned long start, unsigned long last);
3065 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3066 				unsigned long start, unsigned long last);
3067 
3068 #define vma_interval_tree_foreach(vma, root, start, last)		\
3069 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3070 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3071 
3072 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3073 				   struct rb_root_cached *root);
3074 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3075 				   struct rb_root_cached *root);
3076 struct anon_vma_chain *
3077 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3078 				  unsigned long start, unsigned long last);
3079 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3080 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3081 #ifdef CONFIG_DEBUG_VM_RB
3082 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3083 #endif
3084 
3085 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3086 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3087 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3088 
3089 /* mmap.c */
3090 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3091 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3092 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3093 		      struct vm_area_struct *next);
3094 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3095 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3096 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3097 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3098 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3099 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3100 	struct anon_vma_name *);
3101 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3102 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3103 		       unsigned long addr, int new_below);
3104 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3105 			 unsigned long addr, int new_below);
3106 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3107 extern void unlink_file_vma(struct vm_area_struct *);
3108 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3109 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3110 	bool *need_rmap_locks);
3111 extern void exit_mmap(struct mm_struct *);
3112 
3113 static inline int check_data_rlimit(unsigned long rlim,
3114 				    unsigned long new,
3115 				    unsigned long start,
3116 				    unsigned long end_data,
3117 				    unsigned long start_data)
3118 {
3119 	if (rlim < RLIM_INFINITY) {
3120 		if (((new - start) + (end_data - start_data)) > rlim)
3121 			return -ENOSPC;
3122 	}
3123 
3124 	return 0;
3125 }
3126 
3127 extern int mm_take_all_locks(struct mm_struct *mm);
3128 extern void mm_drop_all_locks(struct mm_struct *mm);
3129 
3130 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3131 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3132 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3133 extern struct file *get_task_exe_file(struct task_struct *task);
3134 
3135 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3136 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3137 
3138 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3139 				   const struct vm_special_mapping *sm);
3140 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3141 				   unsigned long addr, unsigned long len,
3142 				   unsigned long flags,
3143 				   const struct vm_special_mapping *spec);
3144 /* This is an obsolete alternative to _install_special_mapping. */
3145 extern int install_special_mapping(struct mm_struct *mm,
3146 				   unsigned long addr, unsigned long len,
3147 				   unsigned long flags, struct page **pages);
3148 
3149 unsigned long randomize_stack_top(unsigned long stack_top);
3150 unsigned long randomize_page(unsigned long start, unsigned long range);
3151 
3152 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3153 
3154 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3155 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3156 	struct list_head *uf);
3157 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3158 	unsigned long len, unsigned long prot, unsigned long flags,
3159 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3160 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3161 			 unsigned long start, size_t len, struct list_head *uf,
3162 			 bool downgrade);
3163 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3164 		     struct list_head *uf);
3165 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3166 
3167 #ifdef CONFIG_MMU
3168 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3169 			 unsigned long start, unsigned long end,
3170 			 struct list_head *uf, bool downgrade);
3171 extern int __mm_populate(unsigned long addr, unsigned long len,
3172 			 int ignore_errors);
3173 static inline void mm_populate(unsigned long addr, unsigned long len)
3174 {
3175 	/* Ignore errors */
3176 	(void) __mm_populate(addr, len, 1);
3177 }
3178 #else
3179 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3180 #endif
3181 
3182 /* These take the mm semaphore themselves */
3183 extern int __must_check vm_brk(unsigned long, unsigned long);
3184 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3185 extern int vm_munmap(unsigned long, size_t);
3186 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3187         unsigned long, unsigned long,
3188         unsigned long, unsigned long);
3189 
3190 struct vm_unmapped_area_info {
3191 #define VM_UNMAPPED_AREA_TOPDOWN 1
3192 	unsigned long flags;
3193 	unsigned long length;
3194 	unsigned long low_limit;
3195 	unsigned long high_limit;
3196 	unsigned long align_mask;
3197 	unsigned long align_offset;
3198 };
3199 
3200 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3201 
3202 /* truncate.c */
3203 extern void truncate_inode_pages(struct address_space *, loff_t);
3204 extern void truncate_inode_pages_range(struct address_space *,
3205 				       loff_t lstart, loff_t lend);
3206 extern void truncate_inode_pages_final(struct address_space *);
3207 
3208 /* generic vm_area_ops exported for stackable file systems */
3209 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3210 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3211 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3212 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3213 
3214 extern unsigned long stack_guard_gap;
3215 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3216 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
3217 
3218 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3219 extern int expand_downwards(struct vm_area_struct *vma,
3220 		unsigned long address);
3221 #if VM_GROWSUP
3222 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
3223 #else
3224   #define expand_upwards(vma, address) (0)
3225 #endif
3226 
3227 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3228 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3229 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3230 					     struct vm_area_struct **pprev);
3231 
3232 /*
3233  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3234  * NULL if none.  Assume start_addr < end_addr.
3235  */
3236 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3237 			unsigned long start_addr, unsigned long end_addr);
3238 
3239 /**
3240  * vma_lookup() - Find a VMA at a specific address
3241  * @mm: The process address space.
3242  * @addr: The user address.
3243  *
3244  * Return: The vm_area_struct at the given address, %NULL otherwise.
3245  */
3246 static inline
3247 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3248 {
3249 	return mtree_load(&mm->mm_mt, addr);
3250 }
3251 
3252 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3253 {
3254 	unsigned long vm_start = vma->vm_start;
3255 
3256 	if (vma->vm_flags & VM_GROWSDOWN) {
3257 		vm_start -= stack_guard_gap;
3258 		if (vm_start > vma->vm_start)
3259 			vm_start = 0;
3260 	}
3261 	return vm_start;
3262 }
3263 
3264 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3265 {
3266 	unsigned long vm_end = vma->vm_end;
3267 
3268 	if (vma->vm_flags & VM_GROWSUP) {
3269 		vm_end += stack_guard_gap;
3270 		if (vm_end < vma->vm_end)
3271 			vm_end = -PAGE_SIZE;
3272 	}
3273 	return vm_end;
3274 }
3275 
3276 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3277 {
3278 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3279 }
3280 
3281 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3282 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3283 				unsigned long vm_start, unsigned long vm_end)
3284 {
3285 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3286 
3287 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3288 		vma = NULL;
3289 
3290 	return vma;
3291 }
3292 
3293 static inline bool range_in_vma(struct vm_area_struct *vma,
3294 				unsigned long start, unsigned long end)
3295 {
3296 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3297 }
3298 
3299 #ifdef CONFIG_MMU
3300 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3301 void vma_set_page_prot(struct vm_area_struct *vma);
3302 #else
3303 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3304 {
3305 	return __pgprot(0);
3306 }
3307 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3308 {
3309 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3310 }
3311 #endif
3312 
3313 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3314 
3315 #ifdef CONFIG_NUMA_BALANCING
3316 unsigned long change_prot_numa(struct vm_area_struct *vma,
3317 			unsigned long start, unsigned long end);
3318 #endif
3319 
3320 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3321 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3322 			unsigned long pfn, unsigned long size, pgprot_t);
3323 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3324 		unsigned long pfn, unsigned long size, pgprot_t prot);
3325 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3326 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3327 			struct page **pages, unsigned long *num);
3328 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3329 				unsigned long num);
3330 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3331 				unsigned long num);
3332 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3333 			unsigned long pfn);
3334 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3335 			unsigned long pfn, pgprot_t pgprot);
3336 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3337 			pfn_t pfn);
3338 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3339 		unsigned long addr, pfn_t pfn);
3340 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3341 
3342 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3343 				unsigned long addr, struct page *page)
3344 {
3345 	int err = vm_insert_page(vma, addr, page);
3346 
3347 	if (err == -ENOMEM)
3348 		return VM_FAULT_OOM;
3349 	if (err < 0 && err != -EBUSY)
3350 		return VM_FAULT_SIGBUS;
3351 
3352 	return VM_FAULT_NOPAGE;
3353 }
3354 
3355 #ifndef io_remap_pfn_range
3356 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3357 				     unsigned long addr, unsigned long pfn,
3358 				     unsigned long size, pgprot_t prot)
3359 {
3360 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3361 }
3362 #endif
3363 
3364 static inline vm_fault_t vmf_error(int err)
3365 {
3366 	if (err == -ENOMEM)
3367 		return VM_FAULT_OOM;
3368 	return VM_FAULT_SIGBUS;
3369 }
3370 
3371 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3372 			 unsigned int foll_flags);
3373 
3374 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3375 {
3376 	if (vm_fault & VM_FAULT_OOM)
3377 		return -ENOMEM;
3378 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3379 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3380 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3381 		return -EFAULT;
3382 	return 0;
3383 }
3384 
3385 /*
3386  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3387  * a (NUMA hinting) fault is required.
3388  */
3389 static inline bool gup_can_follow_protnone(unsigned int flags)
3390 {
3391 	/*
3392 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3393 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3394 	 * application behaviour and we should avoid triggering NUMA hinting
3395 	 * faults.
3396 	 */
3397 	return flags & FOLL_FORCE;
3398 }
3399 
3400 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3401 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3402 			       unsigned long size, pte_fn_t fn, void *data);
3403 extern int apply_to_existing_page_range(struct mm_struct *mm,
3404 				   unsigned long address, unsigned long size,
3405 				   pte_fn_t fn, void *data);
3406 
3407 #ifdef CONFIG_PAGE_POISONING
3408 extern void __kernel_poison_pages(struct page *page, int numpages);
3409 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3410 extern bool _page_poisoning_enabled_early;
3411 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3412 static inline bool page_poisoning_enabled(void)
3413 {
3414 	return _page_poisoning_enabled_early;
3415 }
3416 /*
3417  * For use in fast paths after init_mem_debugging() has run, or when a
3418  * false negative result is not harmful when called too early.
3419  */
3420 static inline bool page_poisoning_enabled_static(void)
3421 {
3422 	return static_branch_unlikely(&_page_poisoning_enabled);
3423 }
3424 static inline void kernel_poison_pages(struct page *page, int numpages)
3425 {
3426 	if (page_poisoning_enabled_static())
3427 		__kernel_poison_pages(page, numpages);
3428 }
3429 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3430 {
3431 	if (page_poisoning_enabled_static())
3432 		__kernel_unpoison_pages(page, numpages);
3433 }
3434 #else
3435 static inline bool page_poisoning_enabled(void) { return false; }
3436 static inline bool page_poisoning_enabled_static(void) { return false; }
3437 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3438 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3439 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3440 #endif
3441 
3442 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3443 static inline bool want_init_on_alloc(gfp_t flags)
3444 {
3445 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3446 				&init_on_alloc))
3447 		return true;
3448 	return flags & __GFP_ZERO;
3449 }
3450 
3451 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3452 static inline bool want_init_on_free(void)
3453 {
3454 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3455 				   &init_on_free);
3456 }
3457 
3458 extern bool _debug_pagealloc_enabled_early;
3459 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3460 
3461 static inline bool debug_pagealloc_enabled(void)
3462 {
3463 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3464 		_debug_pagealloc_enabled_early;
3465 }
3466 
3467 /*
3468  * For use in fast paths after init_debug_pagealloc() has run, or when a
3469  * false negative result is not harmful when called too early.
3470  */
3471 static inline bool debug_pagealloc_enabled_static(void)
3472 {
3473 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3474 		return false;
3475 
3476 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3477 }
3478 
3479 #ifdef CONFIG_DEBUG_PAGEALLOC
3480 /*
3481  * To support DEBUG_PAGEALLOC architecture must ensure that
3482  * __kernel_map_pages() never fails
3483  */
3484 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3485 
3486 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3487 {
3488 	if (debug_pagealloc_enabled_static())
3489 		__kernel_map_pages(page, numpages, 1);
3490 }
3491 
3492 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3493 {
3494 	if (debug_pagealloc_enabled_static())
3495 		__kernel_map_pages(page, numpages, 0);
3496 }
3497 #else	/* CONFIG_DEBUG_PAGEALLOC */
3498 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3499 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3500 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3501 
3502 #ifdef __HAVE_ARCH_GATE_AREA
3503 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3504 extern int in_gate_area_no_mm(unsigned long addr);
3505 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3506 #else
3507 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3508 {
3509 	return NULL;
3510 }
3511 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3512 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3513 {
3514 	return 0;
3515 }
3516 #endif	/* __HAVE_ARCH_GATE_AREA */
3517 
3518 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3519 
3520 #ifdef CONFIG_SYSCTL
3521 extern int sysctl_drop_caches;
3522 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3523 		loff_t *);
3524 #endif
3525 
3526 void drop_slab(void);
3527 
3528 #ifndef CONFIG_MMU
3529 #define randomize_va_space 0
3530 #else
3531 extern int randomize_va_space;
3532 #endif
3533 
3534 const char * arch_vma_name(struct vm_area_struct *vma);
3535 #ifdef CONFIG_MMU
3536 void print_vma_addr(char *prefix, unsigned long rip);
3537 #else
3538 static inline void print_vma_addr(char *prefix, unsigned long rip)
3539 {
3540 }
3541 #endif
3542 
3543 void *sparse_buffer_alloc(unsigned long size);
3544 struct page * __populate_section_memmap(unsigned long pfn,
3545 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3546 		struct dev_pagemap *pgmap);
3547 void pmd_init(void *addr);
3548 void pud_init(void *addr);
3549 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3550 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3551 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3552 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3553 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3554 			    struct vmem_altmap *altmap, struct page *reuse);
3555 void *vmemmap_alloc_block(unsigned long size, int node);
3556 struct vmem_altmap;
3557 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3558 			      struct vmem_altmap *altmap);
3559 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3560 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3561 		     unsigned long addr, unsigned long next);
3562 int vmemmap_check_pmd(pmd_t *pmd, int node,
3563 		      unsigned long addr, unsigned long next);
3564 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3565 			       int node, struct vmem_altmap *altmap);
3566 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3567 			       int node, struct vmem_altmap *altmap);
3568 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3569 		struct vmem_altmap *altmap);
3570 void vmemmap_populate_print_last(void);
3571 #ifdef CONFIG_MEMORY_HOTPLUG
3572 void vmemmap_free(unsigned long start, unsigned long end,
3573 		struct vmem_altmap *altmap);
3574 #endif
3575 
3576 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3577 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3578 					   struct dev_pagemap *pgmap)
3579 {
3580 	return is_power_of_2(sizeof(struct page)) &&
3581 		pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3582 }
3583 #else
3584 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3585 					   struct dev_pagemap *pgmap)
3586 {
3587 	return false;
3588 }
3589 #endif
3590 
3591 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3592 				  unsigned long nr_pages);
3593 
3594 enum mf_flags {
3595 	MF_COUNT_INCREASED = 1 << 0,
3596 	MF_ACTION_REQUIRED = 1 << 1,
3597 	MF_MUST_KILL = 1 << 2,
3598 	MF_SOFT_OFFLINE = 1 << 3,
3599 	MF_UNPOISON = 1 << 4,
3600 	MF_SW_SIMULATED = 1 << 5,
3601 	MF_NO_RETRY = 1 << 6,
3602 };
3603 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3604 		      unsigned long count, int mf_flags);
3605 extern int memory_failure(unsigned long pfn, int flags);
3606 extern void memory_failure_queue_kick(int cpu);
3607 extern int unpoison_memory(unsigned long pfn);
3608 extern void shake_page(struct page *p);
3609 extern atomic_long_t num_poisoned_pages __read_mostly;
3610 extern int soft_offline_page(unsigned long pfn, int flags);
3611 #ifdef CONFIG_MEMORY_FAILURE
3612 extern void memory_failure_queue(unsigned long pfn, int flags);
3613 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3614 					bool *migratable_cleared);
3615 void num_poisoned_pages_inc(unsigned long pfn);
3616 void num_poisoned_pages_sub(unsigned long pfn, long i);
3617 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3618 #else
3619 static inline void memory_failure_queue(unsigned long pfn, int flags)
3620 {
3621 }
3622 
3623 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3624 					bool *migratable_cleared)
3625 {
3626 	return 0;
3627 }
3628 
3629 static inline void num_poisoned_pages_inc(unsigned long pfn)
3630 {
3631 }
3632 
3633 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3634 {
3635 }
3636 #endif
3637 
3638 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3639 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3640 		     struct vm_area_struct *vma, struct list_head *to_kill,
3641 		     unsigned long ksm_addr);
3642 #endif
3643 
3644 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3645 extern void memblk_nr_poison_inc(unsigned long pfn);
3646 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3647 #else
3648 static inline void memblk_nr_poison_inc(unsigned long pfn)
3649 {
3650 }
3651 
3652 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3653 {
3654 }
3655 #endif
3656 
3657 #ifndef arch_memory_failure
3658 static inline int arch_memory_failure(unsigned long pfn, int flags)
3659 {
3660 	return -ENXIO;
3661 }
3662 #endif
3663 
3664 #ifndef arch_is_platform_page
3665 static inline bool arch_is_platform_page(u64 paddr)
3666 {
3667 	return false;
3668 }
3669 #endif
3670 
3671 /*
3672  * Error handlers for various types of pages.
3673  */
3674 enum mf_result {
3675 	MF_IGNORED,	/* Error: cannot be handled */
3676 	MF_FAILED,	/* Error: handling failed */
3677 	MF_DELAYED,	/* Will be handled later */
3678 	MF_RECOVERED,	/* Successfully recovered */
3679 };
3680 
3681 enum mf_action_page_type {
3682 	MF_MSG_KERNEL,
3683 	MF_MSG_KERNEL_HIGH_ORDER,
3684 	MF_MSG_SLAB,
3685 	MF_MSG_DIFFERENT_COMPOUND,
3686 	MF_MSG_HUGE,
3687 	MF_MSG_FREE_HUGE,
3688 	MF_MSG_UNMAP_FAILED,
3689 	MF_MSG_DIRTY_SWAPCACHE,
3690 	MF_MSG_CLEAN_SWAPCACHE,
3691 	MF_MSG_DIRTY_MLOCKED_LRU,
3692 	MF_MSG_CLEAN_MLOCKED_LRU,
3693 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3694 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3695 	MF_MSG_DIRTY_LRU,
3696 	MF_MSG_CLEAN_LRU,
3697 	MF_MSG_TRUNCATED_LRU,
3698 	MF_MSG_BUDDY,
3699 	MF_MSG_DAX,
3700 	MF_MSG_UNSPLIT_THP,
3701 	MF_MSG_UNKNOWN,
3702 };
3703 
3704 /*
3705  * Sysfs entries for memory failure handling statistics.
3706  */
3707 extern const struct attribute_group memory_failure_attr_group;
3708 
3709 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3710 extern void clear_huge_page(struct page *page,
3711 			    unsigned long addr_hint,
3712 			    unsigned int pages_per_huge_page);
3713 int copy_user_large_folio(struct folio *dst, struct folio *src,
3714 			  unsigned long addr_hint,
3715 			  struct vm_area_struct *vma);
3716 long copy_folio_from_user(struct folio *dst_folio,
3717 			   const void __user *usr_src,
3718 			   bool allow_pagefault);
3719 
3720 /**
3721  * vma_is_special_huge - Are transhuge page-table entries considered special?
3722  * @vma: Pointer to the struct vm_area_struct to consider
3723  *
3724  * Whether transhuge page-table entries are considered "special" following
3725  * the definition in vm_normal_page().
3726  *
3727  * Return: true if transhuge page-table entries should be considered special,
3728  * false otherwise.
3729  */
3730 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3731 {
3732 	return vma_is_dax(vma) || (vma->vm_file &&
3733 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3734 }
3735 
3736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3737 
3738 #ifdef CONFIG_DEBUG_PAGEALLOC
3739 extern unsigned int _debug_guardpage_minorder;
3740 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3741 
3742 static inline unsigned int debug_guardpage_minorder(void)
3743 {
3744 	return _debug_guardpage_minorder;
3745 }
3746 
3747 static inline bool debug_guardpage_enabled(void)
3748 {
3749 	return static_branch_unlikely(&_debug_guardpage_enabled);
3750 }
3751 
3752 static inline bool page_is_guard(struct page *page)
3753 {
3754 	if (!debug_guardpage_enabled())
3755 		return false;
3756 
3757 	return PageGuard(page);
3758 }
3759 #else
3760 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3761 static inline bool debug_guardpage_enabled(void) { return false; }
3762 static inline bool page_is_guard(struct page *page) { return false; }
3763 #endif /* CONFIG_DEBUG_PAGEALLOC */
3764 
3765 #if MAX_NUMNODES > 1
3766 void __init setup_nr_node_ids(void);
3767 #else
3768 static inline void setup_nr_node_ids(void) {}
3769 #endif
3770 
3771 extern int memcmp_pages(struct page *page1, struct page *page2);
3772 
3773 static inline int pages_identical(struct page *page1, struct page *page2)
3774 {
3775 	return !memcmp_pages(page1, page2);
3776 }
3777 
3778 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3779 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3780 						pgoff_t first_index, pgoff_t nr,
3781 						pgoff_t bitmap_pgoff,
3782 						unsigned long *bitmap,
3783 						pgoff_t *start,
3784 						pgoff_t *end);
3785 
3786 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3787 				      pgoff_t first_index, pgoff_t nr);
3788 #endif
3789 
3790 extern int sysctl_nr_trim_pages;
3791 
3792 #ifdef CONFIG_PRINTK
3793 void mem_dump_obj(void *object);
3794 #else
3795 static inline void mem_dump_obj(void *object) {}
3796 #endif
3797 
3798 /**
3799  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3800  * @seals: the seals to check
3801  * @vma: the vma to operate on
3802  *
3803  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3804  * the vma flags.  Return 0 if check pass, or <0 for errors.
3805  */
3806 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3807 {
3808 	if (seals & F_SEAL_FUTURE_WRITE) {
3809 		/*
3810 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3811 		 * "future write" seal active.
3812 		 */
3813 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3814 			return -EPERM;
3815 
3816 		/*
3817 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3818 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3819 		 * revert protections on such mappings. Do this only for shared
3820 		 * mappings. For private mappings, don't need to mask
3821 		 * VM_MAYWRITE as we still want them to be COW-writable.
3822 		 */
3823 		if (vma->vm_flags & VM_SHARED)
3824 			vm_flags_clear(vma, VM_MAYWRITE);
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 #ifdef CONFIG_ANON_VMA_NAME
3831 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3832 			  unsigned long len_in,
3833 			  struct anon_vma_name *anon_name);
3834 #else
3835 static inline int
3836 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3837 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3838 	return 0;
3839 }
3840 #endif
3841 
3842 #ifdef CONFIG_UNACCEPTED_MEMORY
3843 
3844 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3845 void accept_memory(phys_addr_t start, phys_addr_t end);
3846 
3847 #else
3848 
3849 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3850 						    phys_addr_t end)
3851 {
3852 	return false;
3853 }
3854 
3855 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3856 {
3857 }
3858 
3859 #endif
3860 
3861 #endif /* _LINUX_MM_H */
3862