1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct file_ra_state; 39 struct user_struct; 40 struct writeback_control; 41 struct bdi_writeback; 42 struct pt_regs; 43 44 extern int sysctl_page_lock_unfairness; 45 46 void init_mm_internals(void); 47 48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 49 extern unsigned long max_mapnr; 50 51 static inline void set_max_mapnr(unsigned long limit) 52 { 53 max_mapnr = limit; 54 } 55 #else 56 static inline void set_max_mapnr(unsigned long limit) { } 57 #endif 58 59 extern atomic_long_t _totalram_pages; 60 static inline unsigned long totalram_pages(void) 61 { 62 return (unsigned long)atomic_long_read(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_inc(void) 66 { 67 atomic_long_inc(&_totalram_pages); 68 } 69 70 static inline void totalram_pages_dec(void) 71 { 72 atomic_long_dec(&_totalram_pages); 73 } 74 75 static inline void totalram_pages_add(long count) 76 { 77 atomic_long_add(count, &_totalram_pages); 78 } 79 80 extern void * high_memory; 81 extern int page_cluster; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern const int mmap_rnd_bits_max; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 /* 104 * Architectures that support memory tagging (assigning tags to memory regions, 105 * embedding these tags into addresses that point to these memory regions, and 106 * checking that the memory and the pointer tags match on memory accesses) 107 * redefine this macro to strip tags from pointers. 108 * It's defined as noop for arcitectures that don't support memory tagging. 109 */ 110 #ifndef untagged_addr 111 #define untagged_addr(addr) (addr) 112 #endif 113 114 #ifndef __pa_symbol 115 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 116 #endif 117 118 #ifndef page_to_virt 119 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 120 #endif 121 122 #ifndef lm_alias 123 #define lm_alias(x) __va(__pa_symbol(x)) 124 #endif 125 126 /* 127 * To prevent common memory management code establishing 128 * a zero page mapping on a read fault. 129 * This macro should be defined within <asm/pgtable.h>. 130 * s390 does this to prevent multiplexing of hardware bits 131 * related to the physical page in case of virtualization. 132 */ 133 #ifndef mm_forbids_zeropage 134 #define mm_forbids_zeropage(X) (0) 135 #endif 136 137 /* 138 * On some architectures it is expensive to call memset() for small sizes. 139 * If an architecture decides to implement their own version of 140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 141 * define their own version of this macro in <asm/pgtable.h> 142 */ 143 #if BITS_PER_LONG == 64 144 /* This function must be updated when the size of struct page grows above 80 145 * or reduces below 56. The idea that compiler optimizes out switch() 146 * statement, and only leaves move/store instructions. Also the compiler can 147 * combine write statments if they are both assignments and can be reordered, 148 * this can result in several of the writes here being dropped. 149 */ 150 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 151 static inline void __mm_zero_struct_page(struct page *page) 152 { 153 unsigned long *_pp = (void *)page; 154 155 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 156 BUILD_BUG_ON(sizeof(struct page) & 7); 157 BUILD_BUG_ON(sizeof(struct page) < 56); 158 BUILD_BUG_ON(sizeof(struct page) > 80); 159 160 switch (sizeof(struct page)) { 161 case 80: 162 _pp[9] = 0; 163 fallthrough; 164 case 72: 165 _pp[8] = 0; 166 fallthrough; 167 case 64: 168 _pp[7] = 0; 169 fallthrough; 170 case 56: 171 _pp[6] = 0; 172 _pp[5] = 0; 173 _pp[4] = 0; 174 _pp[3] = 0; 175 _pp[2] = 0; 176 _pp[1] = 0; 177 _pp[0] = 0; 178 } 179 } 180 #else 181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 182 #endif 183 184 /* 185 * Default maximum number of active map areas, this limits the number of vmas 186 * per mm struct. Users can overwrite this number by sysctl but there is a 187 * problem. 188 * 189 * When a program's coredump is generated as ELF format, a section is created 190 * per a vma. In ELF, the number of sections is represented in unsigned short. 191 * This means the number of sections should be smaller than 65535 at coredump. 192 * Because the kernel adds some informative sections to a image of program at 193 * generating coredump, we need some margin. The number of extra sections is 194 * 1-3 now and depends on arch. We use "5" as safe margin, here. 195 * 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 197 * not a hard limit any more. Although some userspace tools can be surprised by 198 * that. 199 */ 200 #define MAPCOUNT_ELF_CORE_MARGIN (5) 201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 202 203 extern int sysctl_max_map_count; 204 205 extern unsigned long sysctl_user_reserve_kbytes; 206 extern unsigned long sysctl_admin_reserve_kbytes; 207 208 extern int sysctl_overcommit_memory; 209 extern int sysctl_overcommit_ratio; 210 extern unsigned long sysctl_overcommit_kbytes; 211 212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218 219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228 229 /* 230 * Linux kernel virtual memory manager primitives. 231 * The idea being to have a "virtual" mm in the same way 232 * we have a virtual fs - giving a cleaner interface to the 233 * mm details, and allowing different kinds of memory mappings 234 * (from shared memory to executable loading to arbitrary 235 * mmap() functions). 236 */ 237 238 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 240 void vm_area_free(struct vm_area_struct *); 241 242 #ifndef CONFIG_MMU 243 extern struct rb_root nommu_region_tree; 244 extern struct rw_semaphore nommu_region_sem; 245 246 extern unsigned int kobjsize(const void *objp); 247 #endif 248 249 /* 250 * vm_flags in vm_area_struct, see mm_types.h. 251 * When changing, update also include/trace/events/mmflags.h 252 */ 253 #define VM_NONE 0x00000000 254 255 #define VM_READ 0x00000001 /* currently active flags */ 256 #define VM_WRITE 0x00000002 257 #define VM_EXEC 0x00000004 258 #define VM_SHARED 0x00000008 259 260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 261 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 262 #define VM_MAYWRITE 0x00000020 263 #define VM_MAYEXEC 0x00000040 264 #define VM_MAYSHARE 0x00000080 265 266 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 267 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272 #define VM_LOCKED 0x00002000 273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290 #ifdef CONFIG_MEM_SOFT_DIRTY 291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292 #else 293 # define VM_SOFTDIRTY 0 294 #endif 295 296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 308 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 309 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 310 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 311 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 313 314 #ifdef CONFIG_ARCH_HAS_PKEYS 315 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 316 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 317 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 318 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 319 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 320 #ifdef CONFIG_PPC 321 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 322 #else 323 # define VM_PKEY_BIT4 0 324 #endif 325 #endif /* CONFIG_ARCH_HAS_PKEYS */ 326 327 #if defined(CONFIG_X86) 328 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 329 #elif defined(CONFIG_PPC) 330 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 331 #elif defined(CONFIG_PARISC) 332 # define VM_GROWSUP VM_ARCH_1 333 #elif defined(CONFIG_IA64) 334 # define VM_GROWSUP VM_ARCH_1 335 #elif defined(CONFIG_SPARC64) 336 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 337 # define VM_ARCH_CLEAR VM_SPARC_ADI 338 #elif defined(CONFIG_ARM64) 339 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 340 # define VM_ARCH_CLEAR VM_ARM64_BTI 341 #elif !defined(CONFIG_MMU) 342 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 343 #endif 344 345 #if defined(CONFIG_ARM64_MTE) 346 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 347 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 348 #else 349 # define VM_MTE VM_NONE 350 # define VM_MTE_ALLOWED VM_NONE 351 #endif 352 353 #ifndef VM_GROWSUP 354 # define VM_GROWSUP VM_NONE 355 #endif 356 357 /* Bits set in the VMA until the stack is in its final location */ 358 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 359 360 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 361 362 /* Common data flag combinations */ 363 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 365 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 366 VM_MAYWRITE | VM_MAYEXEC) 367 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 369 370 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 371 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 372 #endif 373 374 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 375 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 376 #endif 377 378 #ifdef CONFIG_STACK_GROWSUP 379 #define VM_STACK VM_GROWSUP 380 #else 381 #define VM_STACK VM_GROWSDOWN 382 #endif 383 384 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 385 386 /* VMA basic access permission flags */ 387 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 388 389 390 /* 391 * Special vmas that are non-mergable, non-mlock()able. 392 */ 393 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 394 395 /* This mask prevents VMA from being scanned with khugepaged */ 396 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 397 398 /* This mask defines which mm->def_flags a process can inherit its parent */ 399 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 400 401 /* This mask is used to clear all the VMA flags used by mlock */ 402 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 403 404 /* Arch-specific flags to clear when updating VM flags on protection change */ 405 #ifndef VM_ARCH_CLEAR 406 # define VM_ARCH_CLEAR VM_NONE 407 #endif 408 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 409 410 /* 411 * mapping from the currently active vm_flags protection bits (the 412 * low four bits) to a page protection mask.. 413 */ 414 extern pgprot_t protection_map[16]; 415 416 /** 417 * Fault flag definitions. 418 * 419 * @FAULT_FLAG_WRITE: Fault was a write fault. 420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 424 * @FAULT_FLAG_TRIED: The fault has been tried once. 425 * @FAULT_FLAG_USER: The fault originated in userspace. 426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 429 * 430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 431 * whether we would allow page faults to retry by specifying these two 432 * fault flags correctly. Currently there can be three legal combinations: 433 * 434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 435 * this is the first try 436 * 437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 438 * we've already tried at least once 439 * 440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 441 * 442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 443 * be used. Note that page faults can be allowed to retry for multiple times, 444 * in which case we'll have an initial fault with flags (a) then later on 445 * continuous faults with flags (b). We should always try to detect pending 446 * signals before a retry to make sure the continuous page faults can still be 447 * interrupted if necessary. 448 */ 449 #define FAULT_FLAG_WRITE 0x01 450 #define FAULT_FLAG_MKWRITE 0x02 451 #define FAULT_FLAG_ALLOW_RETRY 0x04 452 #define FAULT_FLAG_RETRY_NOWAIT 0x08 453 #define FAULT_FLAG_KILLABLE 0x10 454 #define FAULT_FLAG_TRIED 0x20 455 #define FAULT_FLAG_USER 0x40 456 #define FAULT_FLAG_REMOTE 0x80 457 #define FAULT_FLAG_INSTRUCTION 0x100 458 #define FAULT_FLAG_INTERRUPTIBLE 0x200 459 460 /* 461 * The default fault flags that should be used by most of the 462 * arch-specific page fault handlers. 463 */ 464 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 465 FAULT_FLAG_KILLABLE | \ 466 FAULT_FLAG_INTERRUPTIBLE) 467 468 /** 469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 470 * 471 * This is mostly used for places where we want to try to avoid taking 472 * the mmap_lock for too long a time when waiting for another condition 473 * to change, in which case we can try to be polite to release the 474 * mmap_lock in the first round to avoid potential starvation of other 475 * processes that would also want the mmap_lock. 476 * 477 * Return: true if the page fault allows retry and this is the first 478 * attempt of the fault handling; false otherwise. 479 */ 480 static inline bool fault_flag_allow_retry_first(unsigned int flags) 481 { 482 return (flags & FAULT_FLAG_ALLOW_RETRY) && 483 (!(flags & FAULT_FLAG_TRIED)); 484 } 485 486 #define FAULT_FLAG_TRACE \ 487 { FAULT_FLAG_WRITE, "WRITE" }, \ 488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 492 { FAULT_FLAG_TRIED, "TRIED" }, \ 493 { FAULT_FLAG_USER, "USER" }, \ 494 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 497 498 /* 499 * vm_fault is filled by the pagefault handler and passed to the vma's 500 * ->fault function. The vma's ->fault is responsible for returning a bitmask 501 * of VM_FAULT_xxx flags that give details about how the fault was handled. 502 * 503 * MM layer fills up gfp_mask for page allocations but fault handler might 504 * alter it if its implementation requires a different allocation context. 505 * 506 * pgoff should be used in favour of virtual_address, if possible. 507 */ 508 struct vm_fault { 509 struct vm_area_struct *vma; /* Target VMA */ 510 unsigned int flags; /* FAULT_FLAG_xxx flags */ 511 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 512 pgoff_t pgoff; /* Logical page offset based on vma */ 513 unsigned long address; /* Faulting virtual address */ 514 pmd_t *pmd; /* Pointer to pmd entry matching 515 * the 'address' */ 516 pud_t *pud; /* Pointer to pud entry matching 517 * the 'address' 518 */ 519 pte_t orig_pte; /* Value of PTE at the time of fault */ 520 521 struct page *cow_page; /* Page handler may use for COW fault */ 522 struct page *page; /* ->fault handlers should return a 523 * page here, unless VM_FAULT_NOPAGE 524 * is set (which is also implied by 525 * VM_FAULT_ERROR). 526 */ 527 /* These three entries are valid only while holding ptl lock */ 528 pte_t *pte; /* Pointer to pte entry matching 529 * the 'address'. NULL if the page 530 * table hasn't been allocated. 531 */ 532 spinlock_t *ptl; /* Page table lock. 533 * Protects pte page table if 'pte' 534 * is not NULL, otherwise pmd. 535 */ 536 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 537 * vm_ops->map_pages() calls 538 * alloc_set_pte() from atomic context. 539 * do_fault_around() pre-allocates 540 * page table to avoid allocation from 541 * atomic context. 542 */ 543 }; 544 545 /* page entry size for vm->huge_fault() */ 546 enum page_entry_size { 547 PE_SIZE_PTE = 0, 548 PE_SIZE_PMD, 549 PE_SIZE_PUD, 550 }; 551 552 /* 553 * These are the virtual MM functions - opening of an area, closing and 554 * unmapping it (needed to keep files on disk up-to-date etc), pointer 555 * to the functions called when a no-page or a wp-page exception occurs. 556 */ 557 struct vm_operations_struct { 558 void (*open)(struct vm_area_struct * area); 559 void (*close)(struct vm_area_struct * area); 560 int (*split)(struct vm_area_struct * area, unsigned long addr); 561 int (*mremap)(struct vm_area_struct * area); 562 vm_fault_t (*fault)(struct vm_fault *vmf); 563 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 564 enum page_entry_size pe_size); 565 void (*map_pages)(struct vm_fault *vmf, 566 pgoff_t start_pgoff, pgoff_t end_pgoff); 567 unsigned long (*pagesize)(struct vm_area_struct * area); 568 569 /* notification that a previously read-only page is about to become 570 * writable, if an error is returned it will cause a SIGBUS */ 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 572 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 575 576 /* called by access_process_vm when get_user_pages() fails, typically 577 * for use by special VMAs that can switch between memory and hardware 578 */ 579 int (*access)(struct vm_area_struct *vma, unsigned long addr, 580 void *buf, int len, int write); 581 582 /* Called by the /proc/PID/maps code to ask the vma whether it 583 * has a special name. Returning non-NULL will also cause this 584 * vma to be dumped unconditionally. */ 585 const char *(*name)(struct vm_area_struct *vma); 586 587 #ifdef CONFIG_NUMA 588 /* 589 * set_policy() op must add a reference to any non-NULL @new mempolicy 590 * to hold the policy upon return. Caller should pass NULL @new to 591 * remove a policy and fall back to surrounding context--i.e. do not 592 * install a MPOL_DEFAULT policy, nor the task or system default 593 * mempolicy. 594 */ 595 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 596 597 /* 598 * get_policy() op must add reference [mpol_get()] to any policy at 599 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 600 * in mm/mempolicy.c will do this automatically. 601 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 602 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 603 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 604 * must return NULL--i.e., do not "fallback" to task or system default 605 * policy. 606 */ 607 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 608 unsigned long addr); 609 #endif 610 /* 611 * Called by vm_normal_page() for special PTEs to find the 612 * page for @addr. This is useful if the default behavior 613 * (using pte_page()) would not find the correct page. 614 */ 615 struct page *(*find_special_page)(struct vm_area_struct *vma, 616 unsigned long addr); 617 }; 618 619 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 620 { 621 static const struct vm_operations_struct dummy_vm_ops = {}; 622 623 memset(vma, 0, sizeof(*vma)); 624 vma->vm_mm = mm; 625 vma->vm_ops = &dummy_vm_ops; 626 INIT_LIST_HEAD(&vma->anon_vma_chain); 627 } 628 629 static inline void vma_set_anonymous(struct vm_area_struct *vma) 630 { 631 vma->vm_ops = NULL; 632 } 633 634 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 635 { 636 return !vma->vm_ops; 637 } 638 639 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 640 { 641 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 642 643 if (!maybe_stack) 644 return false; 645 646 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 647 VM_STACK_INCOMPLETE_SETUP) 648 return true; 649 650 return false; 651 } 652 653 static inline bool vma_is_foreign(struct vm_area_struct *vma) 654 { 655 if (!current->mm) 656 return true; 657 658 if (current->mm != vma->vm_mm) 659 return true; 660 661 return false; 662 } 663 664 static inline bool vma_is_accessible(struct vm_area_struct *vma) 665 { 666 return vma->vm_flags & VM_ACCESS_FLAGS; 667 } 668 669 #ifdef CONFIG_SHMEM 670 /* 671 * The vma_is_shmem is not inline because it is used only by slow 672 * paths in userfault. 673 */ 674 bool vma_is_shmem(struct vm_area_struct *vma); 675 #else 676 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 677 #endif 678 679 int vma_is_stack_for_current(struct vm_area_struct *vma); 680 681 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 682 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 683 684 struct mmu_gather; 685 struct inode; 686 687 #include <linux/huge_mm.h> 688 689 /* 690 * Methods to modify the page usage count. 691 * 692 * What counts for a page usage: 693 * - cache mapping (page->mapping) 694 * - private data (page->private) 695 * - page mapped in a task's page tables, each mapping 696 * is counted separately 697 * 698 * Also, many kernel routines increase the page count before a critical 699 * routine so they can be sure the page doesn't go away from under them. 700 */ 701 702 /* 703 * Drop a ref, return true if the refcount fell to zero (the page has no users) 704 */ 705 static inline int put_page_testzero(struct page *page) 706 { 707 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 708 return page_ref_dec_and_test(page); 709 } 710 711 /* 712 * Try to grab a ref unless the page has a refcount of zero, return false if 713 * that is the case. 714 * This can be called when MMU is off so it must not access 715 * any of the virtual mappings. 716 */ 717 static inline int get_page_unless_zero(struct page *page) 718 { 719 return page_ref_add_unless(page, 1, 0); 720 } 721 722 extern int page_is_ram(unsigned long pfn); 723 724 enum { 725 REGION_INTERSECTS, 726 REGION_DISJOINT, 727 REGION_MIXED, 728 }; 729 730 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 731 unsigned long desc); 732 733 /* Support for virtually mapped pages */ 734 struct page *vmalloc_to_page(const void *addr); 735 unsigned long vmalloc_to_pfn(const void *addr); 736 737 /* 738 * Determine if an address is within the vmalloc range 739 * 740 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 741 * is no special casing required. 742 */ 743 744 #ifndef is_ioremap_addr 745 #define is_ioremap_addr(x) is_vmalloc_addr(x) 746 #endif 747 748 #ifdef CONFIG_MMU 749 extern bool is_vmalloc_addr(const void *x); 750 extern int is_vmalloc_or_module_addr(const void *x); 751 #else 752 static inline bool is_vmalloc_addr(const void *x) 753 { 754 return false; 755 } 756 static inline int is_vmalloc_or_module_addr(const void *x) 757 { 758 return 0; 759 } 760 #endif 761 762 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 763 static inline void *kvmalloc(size_t size, gfp_t flags) 764 { 765 return kvmalloc_node(size, flags, NUMA_NO_NODE); 766 } 767 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 768 { 769 return kvmalloc_node(size, flags | __GFP_ZERO, node); 770 } 771 static inline void *kvzalloc(size_t size, gfp_t flags) 772 { 773 return kvmalloc(size, flags | __GFP_ZERO); 774 } 775 776 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 777 { 778 size_t bytes; 779 780 if (unlikely(check_mul_overflow(n, size, &bytes))) 781 return NULL; 782 783 return kvmalloc(bytes, flags); 784 } 785 786 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 787 { 788 return kvmalloc_array(n, size, flags | __GFP_ZERO); 789 } 790 791 extern void kvfree(const void *addr); 792 extern void kvfree_sensitive(const void *addr, size_t len); 793 794 static inline int head_compound_mapcount(struct page *head) 795 { 796 return atomic_read(compound_mapcount_ptr(head)) + 1; 797 } 798 799 /* 800 * Mapcount of compound page as a whole, does not include mapped sub-pages. 801 * 802 * Must be called only for compound pages or any their tail sub-pages. 803 */ 804 static inline int compound_mapcount(struct page *page) 805 { 806 VM_BUG_ON_PAGE(!PageCompound(page), page); 807 page = compound_head(page); 808 return head_compound_mapcount(page); 809 } 810 811 /* 812 * The atomic page->_mapcount, starts from -1: so that transitions 813 * both from it and to it can be tracked, using atomic_inc_and_test 814 * and atomic_add_negative(-1). 815 */ 816 static inline void page_mapcount_reset(struct page *page) 817 { 818 atomic_set(&(page)->_mapcount, -1); 819 } 820 821 int __page_mapcount(struct page *page); 822 823 /* 824 * Mapcount of 0-order page; when compound sub-page, includes 825 * compound_mapcount(). 826 * 827 * Result is undefined for pages which cannot be mapped into userspace. 828 * For example SLAB or special types of pages. See function page_has_type(). 829 * They use this place in struct page differently. 830 */ 831 static inline int page_mapcount(struct page *page) 832 { 833 if (unlikely(PageCompound(page))) 834 return __page_mapcount(page); 835 return atomic_read(&page->_mapcount) + 1; 836 } 837 838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 839 int total_mapcount(struct page *page); 840 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 841 #else 842 static inline int total_mapcount(struct page *page) 843 { 844 return page_mapcount(page); 845 } 846 static inline int page_trans_huge_mapcount(struct page *page, 847 int *total_mapcount) 848 { 849 int mapcount = page_mapcount(page); 850 if (total_mapcount) 851 *total_mapcount = mapcount; 852 return mapcount; 853 } 854 #endif 855 856 static inline struct page *virt_to_head_page(const void *x) 857 { 858 struct page *page = virt_to_page(x); 859 860 return compound_head(page); 861 } 862 863 void __put_page(struct page *page); 864 865 void put_pages_list(struct list_head *pages); 866 867 void split_page(struct page *page, unsigned int order); 868 869 /* 870 * Compound pages have a destructor function. Provide a 871 * prototype for that function and accessor functions. 872 * These are _only_ valid on the head of a compound page. 873 */ 874 typedef void compound_page_dtor(struct page *); 875 876 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 877 enum compound_dtor_id { 878 NULL_COMPOUND_DTOR, 879 COMPOUND_PAGE_DTOR, 880 #ifdef CONFIG_HUGETLB_PAGE 881 HUGETLB_PAGE_DTOR, 882 #endif 883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 884 TRANSHUGE_PAGE_DTOR, 885 #endif 886 NR_COMPOUND_DTORS, 887 }; 888 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 889 890 static inline void set_compound_page_dtor(struct page *page, 891 enum compound_dtor_id compound_dtor) 892 { 893 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 894 page[1].compound_dtor = compound_dtor; 895 } 896 897 static inline void destroy_compound_page(struct page *page) 898 { 899 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 900 compound_page_dtors[page[1].compound_dtor](page); 901 } 902 903 static inline unsigned int compound_order(struct page *page) 904 { 905 if (!PageHead(page)) 906 return 0; 907 return page[1].compound_order; 908 } 909 910 static inline bool hpage_pincount_available(struct page *page) 911 { 912 /* 913 * Can the page->hpage_pinned_refcount field be used? That field is in 914 * the 3rd page of the compound page, so the smallest (2-page) compound 915 * pages cannot support it. 916 */ 917 page = compound_head(page); 918 return PageCompound(page) && compound_order(page) > 1; 919 } 920 921 static inline int head_compound_pincount(struct page *head) 922 { 923 return atomic_read(compound_pincount_ptr(head)); 924 } 925 926 static inline int compound_pincount(struct page *page) 927 { 928 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 929 page = compound_head(page); 930 return head_compound_pincount(page); 931 } 932 933 static inline void set_compound_order(struct page *page, unsigned int order) 934 { 935 page[1].compound_order = order; 936 page[1].compound_nr = 1U << order; 937 } 938 939 /* Returns the number of pages in this potentially compound page. */ 940 static inline unsigned long compound_nr(struct page *page) 941 { 942 if (!PageHead(page)) 943 return 1; 944 return page[1].compound_nr; 945 } 946 947 /* Returns the number of bytes in this potentially compound page. */ 948 static inline unsigned long page_size(struct page *page) 949 { 950 return PAGE_SIZE << compound_order(page); 951 } 952 953 /* Returns the number of bits needed for the number of bytes in a page */ 954 static inline unsigned int page_shift(struct page *page) 955 { 956 return PAGE_SHIFT + compound_order(page); 957 } 958 959 void free_compound_page(struct page *page); 960 961 #ifdef CONFIG_MMU 962 /* 963 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 964 * servicing faults for write access. In the normal case, do always want 965 * pte_mkwrite. But get_user_pages can cause write faults for mappings 966 * that do not have writing enabled, when used by access_process_vm. 967 */ 968 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 969 { 970 if (likely(vma->vm_flags & VM_WRITE)) 971 pte = pte_mkwrite(pte); 972 return pte; 973 } 974 975 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 976 vm_fault_t finish_fault(struct vm_fault *vmf); 977 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 978 #endif 979 980 /* 981 * Multiple processes may "see" the same page. E.g. for untouched 982 * mappings of /dev/null, all processes see the same page full of 983 * zeroes, and text pages of executables and shared libraries have 984 * only one copy in memory, at most, normally. 985 * 986 * For the non-reserved pages, page_count(page) denotes a reference count. 987 * page_count() == 0 means the page is free. page->lru is then used for 988 * freelist management in the buddy allocator. 989 * page_count() > 0 means the page has been allocated. 990 * 991 * Pages are allocated by the slab allocator in order to provide memory 992 * to kmalloc and kmem_cache_alloc. In this case, the management of the 993 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 994 * unless a particular usage is carefully commented. (the responsibility of 995 * freeing the kmalloc memory is the caller's, of course). 996 * 997 * A page may be used by anyone else who does a __get_free_page(). 998 * In this case, page_count still tracks the references, and should only 999 * be used through the normal accessor functions. The top bits of page->flags 1000 * and page->virtual store page management information, but all other fields 1001 * are unused and could be used privately, carefully. The management of this 1002 * page is the responsibility of the one who allocated it, and those who have 1003 * subsequently been given references to it. 1004 * 1005 * The other pages (we may call them "pagecache pages") are completely 1006 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1007 * The following discussion applies only to them. 1008 * 1009 * A pagecache page contains an opaque `private' member, which belongs to the 1010 * page's address_space. Usually, this is the address of a circular list of 1011 * the page's disk buffers. PG_private must be set to tell the VM to call 1012 * into the filesystem to release these pages. 1013 * 1014 * A page may belong to an inode's memory mapping. In this case, page->mapping 1015 * is the pointer to the inode, and page->index is the file offset of the page, 1016 * in units of PAGE_SIZE. 1017 * 1018 * If pagecache pages are not associated with an inode, they are said to be 1019 * anonymous pages. These may become associated with the swapcache, and in that 1020 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1021 * 1022 * In either case (swapcache or inode backed), the pagecache itself holds one 1023 * reference to the page. Setting PG_private should also increment the 1024 * refcount. The each user mapping also has a reference to the page. 1025 * 1026 * The pagecache pages are stored in a per-mapping radix tree, which is 1027 * rooted at mapping->i_pages, and indexed by offset. 1028 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1029 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1030 * 1031 * All pagecache pages may be subject to I/O: 1032 * - inode pages may need to be read from disk, 1033 * - inode pages which have been modified and are MAP_SHARED may need 1034 * to be written back to the inode on disk, 1035 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1036 * modified may need to be swapped out to swap space and (later) to be read 1037 * back into memory. 1038 */ 1039 1040 /* 1041 * The zone field is never updated after free_area_init_core() 1042 * sets it, so none of the operations on it need to be atomic. 1043 */ 1044 1045 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1046 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1047 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1048 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1049 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1050 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1051 1052 /* 1053 * Define the bit shifts to access each section. For non-existent 1054 * sections we define the shift as 0; that plus a 0 mask ensures 1055 * the compiler will optimise away reference to them. 1056 */ 1057 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1058 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1059 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1060 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1061 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1062 1063 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1064 #ifdef NODE_NOT_IN_PAGE_FLAGS 1065 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1066 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1067 SECTIONS_PGOFF : ZONES_PGOFF) 1068 #else 1069 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1070 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1071 NODES_PGOFF : ZONES_PGOFF) 1072 #endif 1073 1074 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1075 1076 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1077 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1078 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1079 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1080 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1081 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1082 1083 static inline enum zone_type page_zonenum(const struct page *page) 1084 { 1085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1087 } 1088 1089 #ifdef CONFIG_ZONE_DEVICE 1090 static inline bool is_zone_device_page(const struct page *page) 1091 { 1092 return page_zonenum(page) == ZONE_DEVICE; 1093 } 1094 extern void memmap_init_zone_device(struct zone *, unsigned long, 1095 unsigned long, struct dev_pagemap *); 1096 #else 1097 static inline bool is_zone_device_page(const struct page *page) 1098 { 1099 return false; 1100 } 1101 #endif 1102 1103 #ifdef CONFIG_DEV_PAGEMAP_OPS 1104 void free_devmap_managed_page(struct page *page); 1105 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1106 1107 static inline bool page_is_devmap_managed(struct page *page) 1108 { 1109 if (!static_branch_unlikely(&devmap_managed_key)) 1110 return false; 1111 if (!is_zone_device_page(page)) 1112 return false; 1113 switch (page->pgmap->type) { 1114 case MEMORY_DEVICE_PRIVATE: 1115 case MEMORY_DEVICE_FS_DAX: 1116 return true; 1117 default: 1118 break; 1119 } 1120 return false; 1121 } 1122 1123 void put_devmap_managed_page(struct page *page); 1124 1125 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1126 static inline bool page_is_devmap_managed(struct page *page) 1127 { 1128 return false; 1129 } 1130 1131 static inline void put_devmap_managed_page(struct page *page) 1132 { 1133 } 1134 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1135 1136 static inline bool is_device_private_page(const struct page *page) 1137 { 1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1139 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1140 is_zone_device_page(page) && 1141 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1142 } 1143 1144 static inline bool is_pci_p2pdma_page(const struct page *page) 1145 { 1146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1147 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1148 is_zone_device_page(page) && 1149 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1150 } 1151 1152 /* 127: arbitrary random number, small enough to assemble well */ 1153 #define page_ref_zero_or_close_to_overflow(page) \ 1154 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1155 1156 static inline void get_page(struct page *page) 1157 { 1158 page = compound_head(page); 1159 /* 1160 * Getting a normal page or the head of a compound page 1161 * requires to already have an elevated page->_refcount. 1162 */ 1163 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1164 page_ref_inc(page); 1165 } 1166 1167 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1168 1169 static inline __must_check bool try_get_page(struct page *page) 1170 { 1171 page = compound_head(page); 1172 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1173 return false; 1174 page_ref_inc(page); 1175 return true; 1176 } 1177 1178 static inline void put_page(struct page *page) 1179 { 1180 page = compound_head(page); 1181 1182 /* 1183 * For devmap managed pages we need to catch refcount transition from 1184 * 2 to 1, when refcount reach one it means the page is free and we 1185 * need to inform the device driver through callback. See 1186 * include/linux/memremap.h and HMM for details. 1187 */ 1188 if (page_is_devmap_managed(page)) { 1189 put_devmap_managed_page(page); 1190 return; 1191 } 1192 1193 if (put_page_testzero(page)) 1194 __put_page(page); 1195 } 1196 1197 /* 1198 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1199 * the page's refcount so that two separate items are tracked: the original page 1200 * reference count, and also a new count of how many pin_user_pages() calls were 1201 * made against the page. ("gup-pinned" is another term for the latter). 1202 * 1203 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1204 * distinct from normal pages. As such, the unpin_user_page() call (and its 1205 * variants) must be used in order to release gup-pinned pages. 1206 * 1207 * Choice of value: 1208 * 1209 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1210 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1211 * simpler, due to the fact that adding an even power of two to the page 1212 * refcount has the effect of using only the upper N bits, for the code that 1213 * counts up using the bias value. This means that the lower bits are left for 1214 * the exclusive use of the original code that increments and decrements by one 1215 * (or at least, by much smaller values than the bias value). 1216 * 1217 * Of course, once the lower bits overflow into the upper bits (and this is 1218 * OK, because subtraction recovers the original values), then visual inspection 1219 * no longer suffices to directly view the separate counts. However, for normal 1220 * applications that don't have huge page reference counts, this won't be an 1221 * issue. 1222 * 1223 * Locking: the lockless algorithm described in page_cache_get_speculative() 1224 * and page_cache_gup_pin_speculative() provides safe operation for 1225 * get_user_pages and page_mkclean and other calls that race to set up page 1226 * table entries. 1227 */ 1228 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1229 1230 void unpin_user_page(struct page *page); 1231 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1232 bool make_dirty); 1233 void unpin_user_pages(struct page **pages, unsigned long npages); 1234 1235 /** 1236 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1237 * 1238 * This function checks if a page has been pinned via a call to 1239 * pin_user_pages*(). 1240 * 1241 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1242 * because it means "definitely not pinned for DMA", but true means "probably 1243 * pinned for DMA, but possibly a false positive due to having at least 1244 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1245 * 1246 * False positives are OK, because: a) it's unlikely for a page to get that many 1247 * refcounts, and b) all the callers of this routine are expected to be able to 1248 * deal gracefully with a false positive. 1249 * 1250 * For huge pages, the result will be exactly correct. That's because we have 1251 * more tracking data available: the 3rd struct page in the compound page is 1252 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1253 * scheme). 1254 * 1255 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1256 * 1257 * @page: pointer to page to be queried. 1258 * @Return: True, if it is likely that the page has been "dma-pinned". 1259 * False, if the page is definitely not dma-pinned. 1260 */ 1261 static inline bool page_maybe_dma_pinned(struct page *page) 1262 { 1263 if (hpage_pincount_available(page)) 1264 return compound_pincount(page) > 0; 1265 1266 /* 1267 * page_ref_count() is signed. If that refcount overflows, then 1268 * page_ref_count() returns a negative value, and callers will avoid 1269 * further incrementing the refcount. 1270 * 1271 * Here, for that overflow case, use the signed bit to count a little 1272 * bit higher via unsigned math, and thus still get an accurate result. 1273 */ 1274 return ((unsigned int)page_ref_count(compound_head(page))) >= 1275 GUP_PIN_COUNTING_BIAS; 1276 } 1277 1278 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1279 #define SECTION_IN_PAGE_FLAGS 1280 #endif 1281 1282 /* 1283 * The identification function is mainly used by the buddy allocator for 1284 * determining if two pages could be buddies. We are not really identifying 1285 * the zone since we could be using the section number id if we do not have 1286 * node id available in page flags. 1287 * We only guarantee that it will return the same value for two combinable 1288 * pages in a zone. 1289 */ 1290 static inline int page_zone_id(struct page *page) 1291 { 1292 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1293 } 1294 1295 #ifdef NODE_NOT_IN_PAGE_FLAGS 1296 extern int page_to_nid(const struct page *page); 1297 #else 1298 static inline int page_to_nid(const struct page *page) 1299 { 1300 struct page *p = (struct page *)page; 1301 1302 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1303 } 1304 #endif 1305 1306 #ifdef CONFIG_NUMA_BALANCING 1307 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1308 { 1309 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1310 } 1311 1312 static inline int cpupid_to_pid(int cpupid) 1313 { 1314 return cpupid & LAST__PID_MASK; 1315 } 1316 1317 static inline int cpupid_to_cpu(int cpupid) 1318 { 1319 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1320 } 1321 1322 static inline int cpupid_to_nid(int cpupid) 1323 { 1324 return cpu_to_node(cpupid_to_cpu(cpupid)); 1325 } 1326 1327 static inline bool cpupid_pid_unset(int cpupid) 1328 { 1329 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1330 } 1331 1332 static inline bool cpupid_cpu_unset(int cpupid) 1333 { 1334 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1335 } 1336 1337 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1338 { 1339 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1340 } 1341 1342 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1343 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1344 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1345 { 1346 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1347 } 1348 1349 static inline int page_cpupid_last(struct page *page) 1350 { 1351 return page->_last_cpupid; 1352 } 1353 static inline void page_cpupid_reset_last(struct page *page) 1354 { 1355 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1356 } 1357 #else 1358 static inline int page_cpupid_last(struct page *page) 1359 { 1360 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1361 } 1362 1363 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1364 1365 static inline void page_cpupid_reset_last(struct page *page) 1366 { 1367 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1368 } 1369 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1370 #else /* !CONFIG_NUMA_BALANCING */ 1371 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1372 { 1373 return page_to_nid(page); /* XXX */ 1374 } 1375 1376 static inline int page_cpupid_last(struct page *page) 1377 { 1378 return page_to_nid(page); /* XXX */ 1379 } 1380 1381 static inline int cpupid_to_nid(int cpupid) 1382 { 1383 return -1; 1384 } 1385 1386 static inline int cpupid_to_pid(int cpupid) 1387 { 1388 return -1; 1389 } 1390 1391 static inline int cpupid_to_cpu(int cpupid) 1392 { 1393 return -1; 1394 } 1395 1396 static inline int cpu_pid_to_cpupid(int nid, int pid) 1397 { 1398 return -1; 1399 } 1400 1401 static inline bool cpupid_pid_unset(int cpupid) 1402 { 1403 return true; 1404 } 1405 1406 static inline void page_cpupid_reset_last(struct page *page) 1407 { 1408 } 1409 1410 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1411 { 1412 return false; 1413 } 1414 #endif /* CONFIG_NUMA_BALANCING */ 1415 1416 #ifdef CONFIG_KASAN_SW_TAGS 1417 static inline u8 page_kasan_tag(const struct page *page) 1418 { 1419 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1420 } 1421 1422 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1423 { 1424 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1425 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1426 } 1427 1428 static inline void page_kasan_tag_reset(struct page *page) 1429 { 1430 page_kasan_tag_set(page, 0xff); 1431 } 1432 #else 1433 static inline u8 page_kasan_tag(const struct page *page) 1434 { 1435 return 0xff; 1436 } 1437 1438 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1439 static inline void page_kasan_tag_reset(struct page *page) { } 1440 #endif 1441 1442 static inline struct zone *page_zone(const struct page *page) 1443 { 1444 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1445 } 1446 1447 static inline pg_data_t *page_pgdat(const struct page *page) 1448 { 1449 return NODE_DATA(page_to_nid(page)); 1450 } 1451 1452 #ifdef SECTION_IN_PAGE_FLAGS 1453 static inline void set_page_section(struct page *page, unsigned long section) 1454 { 1455 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1456 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1457 } 1458 1459 static inline unsigned long page_to_section(const struct page *page) 1460 { 1461 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1462 } 1463 #endif 1464 1465 static inline void set_page_zone(struct page *page, enum zone_type zone) 1466 { 1467 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1468 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1469 } 1470 1471 static inline void set_page_node(struct page *page, unsigned long node) 1472 { 1473 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1474 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1475 } 1476 1477 static inline void set_page_links(struct page *page, enum zone_type zone, 1478 unsigned long node, unsigned long pfn) 1479 { 1480 set_page_zone(page, zone); 1481 set_page_node(page, node); 1482 #ifdef SECTION_IN_PAGE_FLAGS 1483 set_page_section(page, pfn_to_section_nr(pfn)); 1484 #endif 1485 } 1486 1487 #ifdef CONFIG_MEMCG 1488 static inline struct mem_cgroup *page_memcg(struct page *page) 1489 { 1490 return page->mem_cgroup; 1491 } 1492 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1493 { 1494 WARN_ON_ONCE(!rcu_read_lock_held()); 1495 return READ_ONCE(page->mem_cgroup); 1496 } 1497 #else 1498 static inline struct mem_cgroup *page_memcg(struct page *page) 1499 { 1500 return NULL; 1501 } 1502 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1503 { 1504 WARN_ON_ONCE(!rcu_read_lock_held()); 1505 return NULL; 1506 } 1507 #endif 1508 1509 /* 1510 * Some inline functions in vmstat.h depend on page_zone() 1511 */ 1512 #include <linux/vmstat.h> 1513 1514 static __always_inline void *lowmem_page_address(const struct page *page) 1515 { 1516 return page_to_virt(page); 1517 } 1518 1519 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1520 #define HASHED_PAGE_VIRTUAL 1521 #endif 1522 1523 #if defined(WANT_PAGE_VIRTUAL) 1524 static inline void *page_address(const struct page *page) 1525 { 1526 return page->virtual; 1527 } 1528 static inline void set_page_address(struct page *page, void *address) 1529 { 1530 page->virtual = address; 1531 } 1532 #define page_address_init() do { } while(0) 1533 #endif 1534 1535 #if defined(HASHED_PAGE_VIRTUAL) 1536 void *page_address(const struct page *page); 1537 void set_page_address(struct page *page, void *virtual); 1538 void page_address_init(void); 1539 #endif 1540 1541 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1542 #define page_address(page) lowmem_page_address(page) 1543 #define set_page_address(page, address) do { } while(0) 1544 #define page_address_init() do { } while(0) 1545 #endif 1546 1547 extern void *page_rmapping(struct page *page); 1548 extern struct anon_vma *page_anon_vma(struct page *page); 1549 extern struct address_space *page_mapping(struct page *page); 1550 1551 extern struct address_space *__page_file_mapping(struct page *); 1552 1553 static inline 1554 struct address_space *page_file_mapping(struct page *page) 1555 { 1556 if (unlikely(PageSwapCache(page))) 1557 return __page_file_mapping(page); 1558 1559 return page->mapping; 1560 } 1561 1562 extern pgoff_t __page_file_index(struct page *page); 1563 1564 /* 1565 * Return the pagecache index of the passed page. Regular pagecache pages 1566 * use ->index whereas swapcache pages use swp_offset(->private) 1567 */ 1568 static inline pgoff_t page_index(struct page *page) 1569 { 1570 if (unlikely(PageSwapCache(page))) 1571 return __page_file_index(page); 1572 return page->index; 1573 } 1574 1575 bool page_mapped(struct page *page); 1576 struct address_space *page_mapping(struct page *page); 1577 struct address_space *page_mapping_file(struct page *page); 1578 1579 /* 1580 * Return true only if the page has been allocated with 1581 * ALLOC_NO_WATERMARKS and the low watermark was not 1582 * met implying that the system is under some pressure. 1583 */ 1584 static inline bool page_is_pfmemalloc(struct page *page) 1585 { 1586 /* 1587 * Page index cannot be this large so this must be 1588 * a pfmemalloc page. 1589 */ 1590 return page->index == -1UL; 1591 } 1592 1593 /* 1594 * Only to be called by the page allocator on a freshly allocated 1595 * page. 1596 */ 1597 static inline void set_page_pfmemalloc(struct page *page) 1598 { 1599 page->index = -1UL; 1600 } 1601 1602 static inline void clear_page_pfmemalloc(struct page *page) 1603 { 1604 page->index = 0; 1605 } 1606 1607 /* 1608 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1609 */ 1610 extern void pagefault_out_of_memory(void); 1611 1612 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1613 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1614 1615 /* 1616 * Flags passed to show_mem() and show_free_areas() to suppress output in 1617 * various contexts. 1618 */ 1619 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1620 1621 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1622 1623 #ifdef CONFIG_MMU 1624 extern bool can_do_mlock(void); 1625 #else 1626 static inline bool can_do_mlock(void) { return false; } 1627 #endif 1628 extern int user_shm_lock(size_t, struct user_struct *); 1629 extern void user_shm_unlock(size_t, struct user_struct *); 1630 1631 /* 1632 * Parameter block passed down to zap_pte_range in exceptional cases. 1633 */ 1634 struct zap_details { 1635 struct address_space *check_mapping; /* Check page->mapping if set */ 1636 pgoff_t first_index; /* Lowest page->index to unmap */ 1637 pgoff_t last_index; /* Highest page->index to unmap */ 1638 }; 1639 1640 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1641 pte_t pte); 1642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1643 pmd_t pmd); 1644 1645 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1646 unsigned long size); 1647 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1648 unsigned long size); 1649 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1650 unsigned long start, unsigned long end); 1651 1652 struct mmu_notifier_range; 1653 1654 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1655 unsigned long end, unsigned long floor, unsigned long ceiling); 1656 int 1657 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1658 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1659 struct mmu_notifier_range *range, 1660 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1661 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1662 unsigned long *pfn); 1663 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1664 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1665 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1666 void *buf, int len, int write); 1667 1668 extern void truncate_pagecache(struct inode *inode, loff_t new); 1669 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1670 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1671 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1672 int truncate_inode_page(struct address_space *mapping, struct page *page); 1673 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1674 int invalidate_inode_page(struct page *page); 1675 1676 #ifdef CONFIG_MMU 1677 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1678 unsigned long address, unsigned int flags, 1679 struct pt_regs *regs); 1680 extern int fixup_user_fault(struct mm_struct *mm, 1681 unsigned long address, unsigned int fault_flags, 1682 bool *unlocked); 1683 void unmap_mapping_pages(struct address_space *mapping, 1684 pgoff_t start, pgoff_t nr, bool even_cows); 1685 void unmap_mapping_range(struct address_space *mapping, 1686 loff_t const holebegin, loff_t const holelen, int even_cows); 1687 #else 1688 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1689 unsigned long address, unsigned int flags, 1690 struct pt_regs *regs) 1691 { 1692 /* should never happen if there's no MMU */ 1693 BUG(); 1694 return VM_FAULT_SIGBUS; 1695 } 1696 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1697 unsigned int fault_flags, bool *unlocked) 1698 { 1699 /* should never happen if there's no MMU */ 1700 BUG(); 1701 return -EFAULT; 1702 } 1703 static inline void unmap_mapping_pages(struct address_space *mapping, 1704 pgoff_t start, pgoff_t nr, bool even_cows) { } 1705 static inline void unmap_mapping_range(struct address_space *mapping, 1706 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1707 #endif 1708 1709 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1710 loff_t const holebegin, loff_t const holelen) 1711 { 1712 unmap_mapping_range(mapping, holebegin, holelen, 0); 1713 } 1714 1715 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1716 void *buf, int len, unsigned int gup_flags); 1717 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1718 void *buf, int len, unsigned int gup_flags); 1719 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1720 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1721 1722 long get_user_pages_remote(struct mm_struct *mm, 1723 unsigned long start, unsigned long nr_pages, 1724 unsigned int gup_flags, struct page **pages, 1725 struct vm_area_struct **vmas, int *locked); 1726 long pin_user_pages_remote(struct mm_struct *mm, 1727 unsigned long start, unsigned long nr_pages, 1728 unsigned int gup_flags, struct page **pages, 1729 struct vm_area_struct **vmas, int *locked); 1730 long get_user_pages(unsigned long start, unsigned long nr_pages, 1731 unsigned int gup_flags, struct page **pages, 1732 struct vm_area_struct **vmas); 1733 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1734 unsigned int gup_flags, struct page **pages, 1735 struct vm_area_struct **vmas); 1736 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1737 unsigned int gup_flags, struct page **pages, int *locked); 1738 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1739 unsigned int gup_flags, struct page **pages, int *locked); 1740 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1741 struct page **pages, unsigned int gup_flags); 1742 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1743 struct page **pages, unsigned int gup_flags); 1744 1745 int get_user_pages_fast(unsigned long start, int nr_pages, 1746 unsigned int gup_flags, struct page **pages); 1747 int pin_user_pages_fast(unsigned long start, int nr_pages, 1748 unsigned int gup_flags, struct page **pages); 1749 1750 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1751 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1752 struct task_struct *task, bool bypass_rlim); 1753 1754 /* Container for pinned pfns / pages */ 1755 struct frame_vector { 1756 unsigned int nr_allocated; /* Number of frames we have space for */ 1757 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1758 bool got_ref; /* Did we pin pages by getting page ref? */ 1759 bool is_pfns; /* Does array contain pages or pfns? */ 1760 void *ptrs[]; /* Array of pinned pfns / pages. Use 1761 * pfns_vector_pages() or pfns_vector_pfns() 1762 * for access */ 1763 }; 1764 1765 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1766 void frame_vector_destroy(struct frame_vector *vec); 1767 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1768 unsigned int gup_flags, struct frame_vector *vec); 1769 void put_vaddr_frames(struct frame_vector *vec); 1770 int frame_vector_to_pages(struct frame_vector *vec); 1771 void frame_vector_to_pfns(struct frame_vector *vec); 1772 1773 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1774 { 1775 return vec->nr_frames; 1776 } 1777 1778 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1779 { 1780 if (vec->is_pfns) { 1781 int err = frame_vector_to_pages(vec); 1782 1783 if (err) 1784 return ERR_PTR(err); 1785 } 1786 return (struct page **)(vec->ptrs); 1787 } 1788 1789 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1790 { 1791 if (!vec->is_pfns) 1792 frame_vector_to_pfns(vec); 1793 return (unsigned long *)(vec->ptrs); 1794 } 1795 1796 struct kvec; 1797 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1798 struct page **pages); 1799 int get_kernel_page(unsigned long start, int write, struct page **pages); 1800 struct page *get_dump_page(unsigned long addr); 1801 1802 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1803 extern void do_invalidatepage(struct page *page, unsigned int offset, 1804 unsigned int length); 1805 1806 void __set_page_dirty(struct page *, struct address_space *, int warn); 1807 int __set_page_dirty_nobuffers(struct page *page); 1808 int __set_page_dirty_no_writeback(struct page *page); 1809 int redirty_page_for_writepage(struct writeback_control *wbc, 1810 struct page *page); 1811 void account_page_dirtied(struct page *page, struct address_space *mapping); 1812 void account_page_cleaned(struct page *page, struct address_space *mapping, 1813 struct bdi_writeback *wb); 1814 int set_page_dirty(struct page *page); 1815 int set_page_dirty_lock(struct page *page); 1816 void __cancel_dirty_page(struct page *page); 1817 static inline void cancel_dirty_page(struct page *page) 1818 { 1819 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1820 if (PageDirty(page)) 1821 __cancel_dirty_page(page); 1822 } 1823 int clear_page_dirty_for_io(struct page *page); 1824 1825 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1826 1827 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1828 unsigned long old_addr, struct vm_area_struct *new_vma, 1829 unsigned long new_addr, unsigned long len, 1830 bool need_rmap_locks); 1831 1832 /* 1833 * Flags used by change_protection(). For now we make it a bitmap so 1834 * that we can pass in multiple flags just like parameters. However 1835 * for now all the callers are only use one of the flags at the same 1836 * time. 1837 */ 1838 /* Whether we should allow dirty bit accounting */ 1839 #define MM_CP_DIRTY_ACCT (1UL << 0) 1840 /* Whether this protection change is for NUMA hints */ 1841 #define MM_CP_PROT_NUMA (1UL << 1) 1842 /* Whether this change is for write protecting */ 1843 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1844 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1845 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1846 MM_CP_UFFD_WP_RESOLVE) 1847 1848 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1849 unsigned long end, pgprot_t newprot, 1850 unsigned long cp_flags); 1851 extern int mprotect_fixup(struct vm_area_struct *vma, 1852 struct vm_area_struct **pprev, unsigned long start, 1853 unsigned long end, unsigned long newflags); 1854 1855 /* 1856 * doesn't attempt to fault and will return short. 1857 */ 1858 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1859 unsigned int gup_flags, struct page **pages); 1860 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1861 unsigned int gup_flags, struct page **pages); 1862 1863 static inline bool get_user_page_fast_only(unsigned long addr, 1864 unsigned int gup_flags, struct page **pagep) 1865 { 1866 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1867 } 1868 /* 1869 * per-process(per-mm_struct) statistics. 1870 */ 1871 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1872 { 1873 long val = atomic_long_read(&mm->rss_stat.count[member]); 1874 1875 #ifdef SPLIT_RSS_COUNTING 1876 /* 1877 * counter is updated in asynchronous manner and may go to minus. 1878 * But it's never be expected number for users. 1879 */ 1880 if (val < 0) 1881 val = 0; 1882 #endif 1883 return (unsigned long)val; 1884 } 1885 1886 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1887 1888 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1889 { 1890 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1891 1892 mm_trace_rss_stat(mm, member, count); 1893 } 1894 1895 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1896 { 1897 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1898 1899 mm_trace_rss_stat(mm, member, count); 1900 } 1901 1902 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1903 { 1904 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1905 1906 mm_trace_rss_stat(mm, member, count); 1907 } 1908 1909 /* Optimized variant when page is already known not to be PageAnon */ 1910 static inline int mm_counter_file(struct page *page) 1911 { 1912 if (PageSwapBacked(page)) 1913 return MM_SHMEMPAGES; 1914 return MM_FILEPAGES; 1915 } 1916 1917 static inline int mm_counter(struct page *page) 1918 { 1919 if (PageAnon(page)) 1920 return MM_ANONPAGES; 1921 return mm_counter_file(page); 1922 } 1923 1924 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1925 { 1926 return get_mm_counter(mm, MM_FILEPAGES) + 1927 get_mm_counter(mm, MM_ANONPAGES) + 1928 get_mm_counter(mm, MM_SHMEMPAGES); 1929 } 1930 1931 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1932 { 1933 return max(mm->hiwater_rss, get_mm_rss(mm)); 1934 } 1935 1936 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1937 { 1938 return max(mm->hiwater_vm, mm->total_vm); 1939 } 1940 1941 static inline void update_hiwater_rss(struct mm_struct *mm) 1942 { 1943 unsigned long _rss = get_mm_rss(mm); 1944 1945 if ((mm)->hiwater_rss < _rss) 1946 (mm)->hiwater_rss = _rss; 1947 } 1948 1949 static inline void update_hiwater_vm(struct mm_struct *mm) 1950 { 1951 if (mm->hiwater_vm < mm->total_vm) 1952 mm->hiwater_vm = mm->total_vm; 1953 } 1954 1955 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1956 { 1957 mm->hiwater_rss = get_mm_rss(mm); 1958 } 1959 1960 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1961 struct mm_struct *mm) 1962 { 1963 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1964 1965 if (*maxrss < hiwater_rss) 1966 *maxrss = hiwater_rss; 1967 } 1968 1969 #if defined(SPLIT_RSS_COUNTING) 1970 void sync_mm_rss(struct mm_struct *mm); 1971 #else 1972 static inline void sync_mm_rss(struct mm_struct *mm) 1973 { 1974 } 1975 #endif 1976 1977 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1978 static inline int pte_special(pte_t pte) 1979 { 1980 return 0; 1981 } 1982 1983 static inline pte_t pte_mkspecial(pte_t pte) 1984 { 1985 return pte; 1986 } 1987 #endif 1988 1989 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1990 static inline int pte_devmap(pte_t pte) 1991 { 1992 return 0; 1993 } 1994 #endif 1995 1996 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1997 1998 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1999 spinlock_t **ptl); 2000 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2001 spinlock_t **ptl) 2002 { 2003 pte_t *ptep; 2004 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2005 return ptep; 2006 } 2007 2008 #ifdef __PAGETABLE_P4D_FOLDED 2009 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2010 unsigned long address) 2011 { 2012 return 0; 2013 } 2014 #else 2015 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2016 #endif 2017 2018 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2019 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2020 unsigned long address) 2021 { 2022 return 0; 2023 } 2024 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2025 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2026 2027 #else 2028 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2029 2030 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2031 { 2032 if (mm_pud_folded(mm)) 2033 return; 2034 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2035 } 2036 2037 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2038 { 2039 if (mm_pud_folded(mm)) 2040 return; 2041 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2042 } 2043 #endif 2044 2045 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2046 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2047 unsigned long address) 2048 { 2049 return 0; 2050 } 2051 2052 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2053 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2054 2055 #else 2056 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2057 2058 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2059 { 2060 if (mm_pmd_folded(mm)) 2061 return; 2062 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2063 } 2064 2065 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2066 { 2067 if (mm_pmd_folded(mm)) 2068 return; 2069 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2070 } 2071 #endif 2072 2073 #ifdef CONFIG_MMU 2074 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2075 { 2076 atomic_long_set(&mm->pgtables_bytes, 0); 2077 } 2078 2079 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2080 { 2081 return atomic_long_read(&mm->pgtables_bytes); 2082 } 2083 2084 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2085 { 2086 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2087 } 2088 2089 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2090 { 2091 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2092 } 2093 #else 2094 2095 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2096 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2097 { 2098 return 0; 2099 } 2100 2101 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2102 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2103 #endif 2104 2105 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2106 int __pte_alloc_kernel(pmd_t *pmd); 2107 2108 #if defined(CONFIG_MMU) 2109 2110 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2111 unsigned long address) 2112 { 2113 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2114 NULL : p4d_offset(pgd, address); 2115 } 2116 2117 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2118 unsigned long address) 2119 { 2120 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2121 NULL : pud_offset(p4d, address); 2122 } 2123 2124 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2125 { 2126 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2127 NULL: pmd_offset(pud, address); 2128 } 2129 #endif /* CONFIG_MMU */ 2130 2131 #if USE_SPLIT_PTE_PTLOCKS 2132 #if ALLOC_SPLIT_PTLOCKS 2133 void __init ptlock_cache_init(void); 2134 extern bool ptlock_alloc(struct page *page); 2135 extern void ptlock_free(struct page *page); 2136 2137 static inline spinlock_t *ptlock_ptr(struct page *page) 2138 { 2139 return page->ptl; 2140 } 2141 #else /* ALLOC_SPLIT_PTLOCKS */ 2142 static inline void ptlock_cache_init(void) 2143 { 2144 } 2145 2146 static inline bool ptlock_alloc(struct page *page) 2147 { 2148 return true; 2149 } 2150 2151 static inline void ptlock_free(struct page *page) 2152 { 2153 } 2154 2155 static inline spinlock_t *ptlock_ptr(struct page *page) 2156 { 2157 return &page->ptl; 2158 } 2159 #endif /* ALLOC_SPLIT_PTLOCKS */ 2160 2161 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2162 { 2163 return ptlock_ptr(pmd_page(*pmd)); 2164 } 2165 2166 static inline bool ptlock_init(struct page *page) 2167 { 2168 /* 2169 * prep_new_page() initialize page->private (and therefore page->ptl) 2170 * with 0. Make sure nobody took it in use in between. 2171 * 2172 * It can happen if arch try to use slab for page table allocation: 2173 * slab code uses page->slab_cache, which share storage with page->ptl. 2174 */ 2175 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2176 if (!ptlock_alloc(page)) 2177 return false; 2178 spin_lock_init(ptlock_ptr(page)); 2179 return true; 2180 } 2181 2182 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2183 /* 2184 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2185 */ 2186 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2187 { 2188 return &mm->page_table_lock; 2189 } 2190 static inline void ptlock_cache_init(void) {} 2191 static inline bool ptlock_init(struct page *page) { return true; } 2192 static inline void ptlock_free(struct page *page) {} 2193 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2194 2195 static inline void pgtable_init(void) 2196 { 2197 ptlock_cache_init(); 2198 pgtable_cache_init(); 2199 } 2200 2201 static inline bool pgtable_pte_page_ctor(struct page *page) 2202 { 2203 if (!ptlock_init(page)) 2204 return false; 2205 __SetPageTable(page); 2206 inc_zone_page_state(page, NR_PAGETABLE); 2207 return true; 2208 } 2209 2210 static inline void pgtable_pte_page_dtor(struct page *page) 2211 { 2212 ptlock_free(page); 2213 __ClearPageTable(page); 2214 dec_zone_page_state(page, NR_PAGETABLE); 2215 } 2216 2217 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2218 ({ \ 2219 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2220 pte_t *__pte = pte_offset_map(pmd, address); \ 2221 *(ptlp) = __ptl; \ 2222 spin_lock(__ptl); \ 2223 __pte; \ 2224 }) 2225 2226 #define pte_unmap_unlock(pte, ptl) do { \ 2227 spin_unlock(ptl); \ 2228 pte_unmap(pte); \ 2229 } while (0) 2230 2231 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2232 2233 #define pte_alloc_map(mm, pmd, address) \ 2234 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2235 2236 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2237 (pte_alloc(mm, pmd) ? \ 2238 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2239 2240 #define pte_alloc_kernel(pmd, address) \ 2241 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2242 NULL: pte_offset_kernel(pmd, address)) 2243 2244 #if USE_SPLIT_PMD_PTLOCKS 2245 2246 static struct page *pmd_to_page(pmd_t *pmd) 2247 { 2248 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2249 return virt_to_page((void *)((unsigned long) pmd & mask)); 2250 } 2251 2252 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2253 { 2254 return ptlock_ptr(pmd_to_page(pmd)); 2255 } 2256 2257 static inline bool pmd_ptlock_init(struct page *page) 2258 { 2259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2260 page->pmd_huge_pte = NULL; 2261 #endif 2262 return ptlock_init(page); 2263 } 2264 2265 static inline void pmd_ptlock_free(struct page *page) 2266 { 2267 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2268 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2269 #endif 2270 ptlock_free(page); 2271 } 2272 2273 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2274 2275 #else 2276 2277 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2278 { 2279 return &mm->page_table_lock; 2280 } 2281 2282 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2283 static inline void pmd_ptlock_free(struct page *page) {} 2284 2285 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2286 2287 #endif 2288 2289 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2290 { 2291 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2292 spin_lock(ptl); 2293 return ptl; 2294 } 2295 2296 static inline bool pgtable_pmd_page_ctor(struct page *page) 2297 { 2298 if (!pmd_ptlock_init(page)) 2299 return false; 2300 __SetPageTable(page); 2301 inc_zone_page_state(page, NR_PAGETABLE); 2302 return true; 2303 } 2304 2305 static inline void pgtable_pmd_page_dtor(struct page *page) 2306 { 2307 pmd_ptlock_free(page); 2308 __ClearPageTable(page); 2309 dec_zone_page_state(page, NR_PAGETABLE); 2310 } 2311 2312 /* 2313 * No scalability reason to split PUD locks yet, but follow the same pattern 2314 * as the PMD locks to make it easier if we decide to. The VM should not be 2315 * considered ready to switch to split PUD locks yet; there may be places 2316 * which need to be converted from page_table_lock. 2317 */ 2318 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2319 { 2320 return &mm->page_table_lock; 2321 } 2322 2323 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2324 { 2325 spinlock_t *ptl = pud_lockptr(mm, pud); 2326 2327 spin_lock(ptl); 2328 return ptl; 2329 } 2330 2331 extern void __init pagecache_init(void); 2332 extern void __init free_area_init_memoryless_node(int nid); 2333 extern void free_initmem(void); 2334 2335 /* 2336 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2337 * into the buddy system. The freed pages will be poisoned with pattern 2338 * "poison" if it's within range [0, UCHAR_MAX]. 2339 * Return pages freed into the buddy system. 2340 */ 2341 extern unsigned long free_reserved_area(void *start, void *end, 2342 int poison, const char *s); 2343 2344 #ifdef CONFIG_HIGHMEM 2345 /* 2346 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2347 * and totalram_pages. 2348 */ 2349 extern void free_highmem_page(struct page *page); 2350 #endif 2351 2352 extern void adjust_managed_page_count(struct page *page, long count); 2353 extern void mem_init_print_info(const char *str); 2354 2355 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2356 2357 /* Free the reserved page into the buddy system, so it gets managed. */ 2358 static inline void __free_reserved_page(struct page *page) 2359 { 2360 ClearPageReserved(page); 2361 init_page_count(page); 2362 __free_page(page); 2363 } 2364 2365 static inline void free_reserved_page(struct page *page) 2366 { 2367 __free_reserved_page(page); 2368 adjust_managed_page_count(page, 1); 2369 } 2370 2371 static inline void mark_page_reserved(struct page *page) 2372 { 2373 SetPageReserved(page); 2374 adjust_managed_page_count(page, -1); 2375 } 2376 2377 /* 2378 * Default method to free all the __init memory into the buddy system. 2379 * The freed pages will be poisoned with pattern "poison" if it's within 2380 * range [0, UCHAR_MAX]. 2381 * Return pages freed into the buddy system. 2382 */ 2383 static inline unsigned long free_initmem_default(int poison) 2384 { 2385 extern char __init_begin[], __init_end[]; 2386 2387 return free_reserved_area(&__init_begin, &__init_end, 2388 poison, "unused kernel"); 2389 } 2390 2391 static inline unsigned long get_num_physpages(void) 2392 { 2393 int nid; 2394 unsigned long phys_pages = 0; 2395 2396 for_each_online_node(nid) 2397 phys_pages += node_present_pages(nid); 2398 2399 return phys_pages; 2400 } 2401 2402 /* 2403 * Using memblock node mappings, an architecture may initialise its 2404 * zones, allocate the backing mem_map and account for memory holes in an 2405 * architecture independent manner. 2406 * 2407 * An architecture is expected to register range of page frames backed by 2408 * physical memory with memblock_add[_node]() before calling 2409 * free_area_init() passing in the PFN each zone ends at. At a basic 2410 * usage, an architecture is expected to do something like 2411 * 2412 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2413 * max_highmem_pfn}; 2414 * for_each_valid_physical_page_range() 2415 * memblock_add_node(base, size, nid) 2416 * free_area_init(max_zone_pfns); 2417 */ 2418 void free_area_init(unsigned long *max_zone_pfn); 2419 unsigned long node_map_pfn_alignment(void); 2420 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2421 unsigned long end_pfn); 2422 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2423 unsigned long end_pfn); 2424 extern void get_pfn_range_for_nid(unsigned int nid, 2425 unsigned long *start_pfn, unsigned long *end_pfn); 2426 extern unsigned long find_min_pfn_with_active_regions(void); 2427 2428 #ifndef CONFIG_NEED_MULTIPLE_NODES 2429 static inline int early_pfn_to_nid(unsigned long pfn) 2430 { 2431 return 0; 2432 } 2433 #else 2434 /* please see mm/page_alloc.c */ 2435 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2436 /* there is a per-arch backend function. */ 2437 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2438 struct mminit_pfnnid_cache *state); 2439 #endif 2440 2441 extern void set_dma_reserve(unsigned long new_dma_reserve); 2442 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2443 enum meminit_context, struct vmem_altmap *, int migratetype); 2444 extern void setup_per_zone_wmarks(void); 2445 extern int __meminit init_per_zone_wmark_min(void); 2446 extern void mem_init(void); 2447 extern void __init mmap_init(void); 2448 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2449 extern long si_mem_available(void); 2450 extern void si_meminfo(struct sysinfo * val); 2451 extern void si_meminfo_node(struct sysinfo *val, int nid); 2452 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2453 extern unsigned long arch_reserved_kernel_pages(void); 2454 #endif 2455 2456 extern __printf(3, 4) 2457 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2458 2459 extern void setup_per_cpu_pageset(void); 2460 2461 /* page_alloc.c */ 2462 extern int min_free_kbytes; 2463 extern int watermark_boost_factor; 2464 extern int watermark_scale_factor; 2465 extern bool arch_has_descending_max_zone_pfns(void); 2466 2467 /* nommu.c */ 2468 extern atomic_long_t mmap_pages_allocated; 2469 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2470 2471 /* interval_tree.c */ 2472 void vma_interval_tree_insert(struct vm_area_struct *node, 2473 struct rb_root_cached *root); 2474 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2475 struct vm_area_struct *prev, 2476 struct rb_root_cached *root); 2477 void vma_interval_tree_remove(struct vm_area_struct *node, 2478 struct rb_root_cached *root); 2479 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2480 unsigned long start, unsigned long last); 2481 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2482 unsigned long start, unsigned long last); 2483 2484 #define vma_interval_tree_foreach(vma, root, start, last) \ 2485 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2486 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2487 2488 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2489 struct rb_root_cached *root); 2490 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2491 struct rb_root_cached *root); 2492 struct anon_vma_chain * 2493 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2494 unsigned long start, unsigned long last); 2495 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2496 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2497 #ifdef CONFIG_DEBUG_VM_RB 2498 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2499 #endif 2500 2501 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2502 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2503 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2504 2505 /* mmap.c */ 2506 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2507 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2508 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2509 struct vm_area_struct *expand); 2510 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2512 { 2513 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2514 } 2515 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2516 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2517 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2518 struct mempolicy *, struct vm_userfaultfd_ctx); 2519 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2520 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2521 unsigned long addr, int new_below); 2522 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2523 unsigned long addr, int new_below); 2524 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2525 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2526 struct rb_node **, struct rb_node *); 2527 extern void unlink_file_vma(struct vm_area_struct *); 2528 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2529 unsigned long addr, unsigned long len, pgoff_t pgoff, 2530 bool *need_rmap_locks); 2531 extern void exit_mmap(struct mm_struct *); 2532 2533 static inline int check_data_rlimit(unsigned long rlim, 2534 unsigned long new, 2535 unsigned long start, 2536 unsigned long end_data, 2537 unsigned long start_data) 2538 { 2539 if (rlim < RLIM_INFINITY) { 2540 if (((new - start) + (end_data - start_data)) > rlim) 2541 return -ENOSPC; 2542 } 2543 2544 return 0; 2545 } 2546 2547 extern int mm_take_all_locks(struct mm_struct *mm); 2548 extern void mm_drop_all_locks(struct mm_struct *mm); 2549 2550 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2551 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2552 extern struct file *get_task_exe_file(struct task_struct *task); 2553 2554 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2555 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2556 2557 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2558 const struct vm_special_mapping *sm); 2559 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2560 unsigned long addr, unsigned long len, 2561 unsigned long flags, 2562 const struct vm_special_mapping *spec); 2563 /* This is an obsolete alternative to _install_special_mapping. */ 2564 extern int install_special_mapping(struct mm_struct *mm, 2565 unsigned long addr, unsigned long len, 2566 unsigned long flags, struct page **pages); 2567 2568 unsigned long randomize_stack_top(unsigned long stack_top); 2569 2570 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2571 2572 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2573 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2574 struct list_head *uf); 2575 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2576 unsigned long len, unsigned long prot, unsigned long flags, 2577 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2578 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2579 struct list_head *uf, bool downgrade); 2580 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2581 struct list_head *uf); 2582 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2583 2584 #ifdef CONFIG_MMU 2585 extern int __mm_populate(unsigned long addr, unsigned long len, 2586 int ignore_errors); 2587 static inline void mm_populate(unsigned long addr, unsigned long len) 2588 { 2589 /* Ignore errors */ 2590 (void) __mm_populate(addr, len, 1); 2591 } 2592 #else 2593 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2594 #endif 2595 2596 /* These take the mm semaphore themselves */ 2597 extern int __must_check vm_brk(unsigned long, unsigned long); 2598 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2599 extern int vm_munmap(unsigned long, size_t); 2600 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2601 unsigned long, unsigned long, 2602 unsigned long, unsigned long); 2603 2604 struct vm_unmapped_area_info { 2605 #define VM_UNMAPPED_AREA_TOPDOWN 1 2606 unsigned long flags; 2607 unsigned long length; 2608 unsigned long low_limit; 2609 unsigned long high_limit; 2610 unsigned long align_mask; 2611 unsigned long align_offset; 2612 }; 2613 2614 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2615 2616 /* truncate.c */ 2617 extern void truncate_inode_pages(struct address_space *, loff_t); 2618 extern void truncate_inode_pages_range(struct address_space *, 2619 loff_t lstart, loff_t lend); 2620 extern void truncate_inode_pages_final(struct address_space *); 2621 2622 /* generic vm_area_ops exported for stackable file systems */ 2623 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2624 extern void filemap_map_pages(struct vm_fault *vmf, 2625 pgoff_t start_pgoff, pgoff_t end_pgoff); 2626 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2627 2628 /* mm/page-writeback.c */ 2629 int __must_check write_one_page(struct page *page); 2630 void task_dirty_inc(struct task_struct *tsk); 2631 2632 extern unsigned long stack_guard_gap; 2633 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2634 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2635 2636 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2637 extern int expand_downwards(struct vm_area_struct *vma, 2638 unsigned long address); 2639 #if VM_GROWSUP 2640 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2641 #else 2642 #define expand_upwards(vma, address) (0) 2643 #endif 2644 2645 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2646 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2647 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2648 struct vm_area_struct **pprev); 2649 2650 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2651 NULL if none. Assume start_addr < end_addr. */ 2652 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2653 { 2654 struct vm_area_struct * vma = find_vma(mm,start_addr); 2655 2656 if (vma && end_addr <= vma->vm_start) 2657 vma = NULL; 2658 return vma; 2659 } 2660 2661 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2662 { 2663 unsigned long vm_start = vma->vm_start; 2664 2665 if (vma->vm_flags & VM_GROWSDOWN) { 2666 vm_start -= stack_guard_gap; 2667 if (vm_start > vma->vm_start) 2668 vm_start = 0; 2669 } 2670 return vm_start; 2671 } 2672 2673 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2674 { 2675 unsigned long vm_end = vma->vm_end; 2676 2677 if (vma->vm_flags & VM_GROWSUP) { 2678 vm_end += stack_guard_gap; 2679 if (vm_end < vma->vm_end) 2680 vm_end = -PAGE_SIZE; 2681 } 2682 return vm_end; 2683 } 2684 2685 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2686 { 2687 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2688 } 2689 2690 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2691 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2692 unsigned long vm_start, unsigned long vm_end) 2693 { 2694 struct vm_area_struct *vma = find_vma(mm, vm_start); 2695 2696 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2697 vma = NULL; 2698 2699 return vma; 2700 } 2701 2702 static inline bool range_in_vma(struct vm_area_struct *vma, 2703 unsigned long start, unsigned long end) 2704 { 2705 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2706 } 2707 2708 #ifdef CONFIG_MMU 2709 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2710 void vma_set_page_prot(struct vm_area_struct *vma); 2711 #else 2712 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2713 { 2714 return __pgprot(0); 2715 } 2716 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2717 { 2718 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2719 } 2720 #endif 2721 2722 #ifdef CONFIG_NUMA_BALANCING 2723 unsigned long change_prot_numa(struct vm_area_struct *vma, 2724 unsigned long start, unsigned long end); 2725 #endif 2726 2727 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2728 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2729 unsigned long pfn, unsigned long size, pgprot_t); 2730 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2731 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2732 struct page **pages, unsigned long *num); 2733 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2734 unsigned long num); 2735 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2736 unsigned long num); 2737 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2738 unsigned long pfn); 2739 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2740 unsigned long pfn, pgprot_t pgprot); 2741 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2742 pfn_t pfn); 2743 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2744 pfn_t pfn, pgprot_t pgprot); 2745 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2746 unsigned long addr, pfn_t pfn); 2747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2748 2749 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2750 unsigned long addr, struct page *page) 2751 { 2752 int err = vm_insert_page(vma, addr, page); 2753 2754 if (err == -ENOMEM) 2755 return VM_FAULT_OOM; 2756 if (err < 0 && err != -EBUSY) 2757 return VM_FAULT_SIGBUS; 2758 2759 return VM_FAULT_NOPAGE; 2760 } 2761 2762 #ifndef io_remap_pfn_range 2763 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2764 unsigned long addr, unsigned long pfn, 2765 unsigned long size, pgprot_t prot) 2766 { 2767 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2768 } 2769 #endif 2770 2771 static inline vm_fault_t vmf_error(int err) 2772 { 2773 if (err == -ENOMEM) 2774 return VM_FAULT_OOM; 2775 return VM_FAULT_SIGBUS; 2776 } 2777 2778 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2779 unsigned int foll_flags); 2780 2781 #define FOLL_WRITE 0x01 /* check pte is writable */ 2782 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2783 #define FOLL_GET 0x04 /* do get_page on page */ 2784 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2785 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2786 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2787 * and return without waiting upon it */ 2788 #define FOLL_POPULATE 0x40 /* fault in page */ 2789 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2790 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2791 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2792 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2793 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2794 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2795 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2796 #define FOLL_COW 0x4000 /* internal GUP flag */ 2797 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2798 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2799 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2800 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2801 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2802 2803 /* 2804 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2805 * other. Here is what they mean, and how to use them: 2806 * 2807 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2808 * period _often_ under userspace control. This is in contrast to 2809 * iov_iter_get_pages(), whose usages are transient. 2810 * 2811 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2812 * lifetime enforced by the filesystem and we need guarantees that longterm 2813 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2814 * the filesystem. Ideas for this coordination include revoking the longterm 2815 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2816 * added after the problem with filesystems was found FS DAX VMAs are 2817 * specifically failed. Filesystem pages are still subject to bugs and use of 2818 * FOLL_LONGTERM should be avoided on those pages. 2819 * 2820 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2821 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2822 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2823 * is due to an incompatibility with the FS DAX check and 2824 * FAULT_FLAG_ALLOW_RETRY. 2825 * 2826 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2827 * that region. And so, CMA attempts to migrate the page before pinning, when 2828 * FOLL_LONGTERM is specified. 2829 * 2830 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2831 * but an additional pin counting system) will be invoked. This is intended for 2832 * anything that gets a page reference and then touches page data (for example, 2833 * Direct IO). This lets the filesystem know that some non-file-system entity is 2834 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2835 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2836 * a call to unpin_user_page(). 2837 * 2838 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2839 * and separate refcounting mechanisms, however, and that means that each has 2840 * its own acquire and release mechanisms: 2841 * 2842 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2843 * 2844 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2845 * 2846 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2847 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2848 * calls applied to them, and that's perfectly OK. This is a constraint on the 2849 * callers, not on the pages.) 2850 * 2851 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2852 * directly by the caller. That's in order to help avoid mismatches when 2853 * releasing pages: get_user_pages*() pages must be released via put_page(), 2854 * while pin_user_pages*() pages must be released via unpin_user_page(). 2855 * 2856 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2857 */ 2858 2859 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2860 { 2861 if (vm_fault & VM_FAULT_OOM) 2862 return -ENOMEM; 2863 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2864 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2865 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2866 return -EFAULT; 2867 return 0; 2868 } 2869 2870 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2871 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2872 unsigned long size, pte_fn_t fn, void *data); 2873 extern int apply_to_existing_page_range(struct mm_struct *mm, 2874 unsigned long address, unsigned long size, 2875 pte_fn_t fn, void *data); 2876 2877 #ifdef CONFIG_PAGE_POISONING 2878 extern bool page_poisoning_enabled(void); 2879 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2880 #else 2881 static inline bool page_poisoning_enabled(void) { return false; } 2882 static inline void kernel_poison_pages(struct page *page, int numpages, 2883 int enable) { } 2884 #endif 2885 2886 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2887 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2888 #else 2889 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2890 #endif 2891 static inline bool want_init_on_alloc(gfp_t flags) 2892 { 2893 if (static_branch_unlikely(&init_on_alloc) && 2894 !page_poisoning_enabled()) 2895 return true; 2896 return flags & __GFP_ZERO; 2897 } 2898 2899 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2900 DECLARE_STATIC_KEY_TRUE(init_on_free); 2901 #else 2902 DECLARE_STATIC_KEY_FALSE(init_on_free); 2903 #endif 2904 static inline bool want_init_on_free(void) 2905 { 2906 return static_branch_unlikely(&init_on_free) && 2907 !page_poisoning_enabled(); 2908 } 2909 2910 #ifdef CONFIG_DEBUG_PAGEALLOC 2911 extern void init_debug_pagealloc(void); 2912 #else 2913 static inline void init_debug_pagealloc(void) {} 2914 #endif 2915 extern bool _debug_pagealloc_enabled_early; 2916 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2917 2918 static inline bool debug_pagealloc_enabled(void) 2919 { 2920 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2921 _debug_pagealloc_enabled_early; 2922 } 2923 2924 /* 2925 * For use in fast paths after init_debug_pagealloc() has run, or when a 2926 * false negative result is not harmful when called too early. 2927 */ 2928 static inline bool debug_pagealloc_enabled_static(void) 2929 { 2930 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2931 return false; 2932 2933 return static_branch_unlikely(&_debug_pagealloc_enabled); 2934 } 2935 2936 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2937 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2938 2939 /* 2940 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2941 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2942 */ 2943 static inline void 2944 kernel_map_pages(struct page *page, int numpages, int enable) 2945 { 2946 __kernel_map_pages(page, numpages, enable); 2947 } 2948 #ifdef CONFIG_HIBERNATION 2949 extern bool kernel_page_present(struct page *page); 2950 #endif /* CONFIG_HIBERNATION */ 2951 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2952 static inline void 2953 kernel_map_pages(struct page *page, int numpages, int enable) {} 2954 #ifdef CONFIG_HIBERNATION 2955 static inline bool kernel_page_present(struct page *page) { return true; } 2956 #endif /* CONFIG_HIBERNATION */ 2957 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2958 2959 #ifdef __HAVE_ARCH_GATE_AREA 2960 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2961 extern int in_gate_area_no_mm(unsigned long addr); 2962 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2963 #else 2964 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2965 { 2966 return NULL; 2967 } 2968 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2969 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2970 { 2971 return 0; 2972 } 2973 #endif /* __HAVE_ARCH_GATE_AREA */ 2974 2975 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2976 2977 #ifdef CONFIG_SYSCTL 2978 extern int sysctl_drop_caches; 2979 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2980 loff_t *); 2981 #endif 2982 2983 void drop_slab(void); 2984 void drop_slab_node(int nid); 2985 2986 #ifndef CONFIG_MMU 2987 #define randomize_va_space 0 2988 #else 2989 extern int randomize_va_space; 2990 #endif 2991 2992 const char * arch_vma_name(struct vm_area_struct *vma); 2993 #ifdef CONFIG_MMU 2994 void print_vma_addr(char *prefix, unsigned long rip); 2995 #else 2996 static inline void print_vma_addr(char *prefix, unsigned long rip) 2997 { 2998 } 2999 #endif 3000 3001 void *sparse_buffer_alloc(unsigned long size); 3002 struct page * __populate_section_memmap(unsigned long pfn, 3003 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3004 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3005 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3006 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3007 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3008 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3009 struct vmem_altmap *altmap); 3010 void *vmemmap_alloc_block(unsigned long size, int node); 3011 struct vmem_altmap; 3012 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3013 struct vmem_altmap *altmap); 3014 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3015 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3016 int node, struct vmem_altmap *altmap); 3017 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3018 struct vmem_altmap *altmap); 3019 void vmemmap_populate_print_last(void); 3020 #ifdef CONFIG_MEMORY_HOTPLUG 3021 void vmemmap_free(unsigned long start, unsigned long end, 3022 struct vmem_altmap *altmap); 3023 #endif 3024 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3025 unsigned long nr_pages); 3026 3027 enum mf_flags { 3028 MF_COUNT_INCREASED = 1 << 0, 3029 MF_ACTION_REQUIRED = 1 << 1, 3030 MF_MUST_KILL = 1 << 2, 3031 MF_SOFT_OFFLINE = 1 << 3, 3032 }; 3033 extern int memory_failure(unsigned long pfn, int flags); 3034 extern void memory_failure_queue(unsigned long pfn, int flags); 3035 extern void memory_failure_queue_kick(int cpu); 3036 extern int unpoison_memory(unsigned long pfn); 3037 extern int sysctl_memory_failure_early_kill; 3038 extern int sysctl_memory_failure_recovery; 3039 extern void shake_page(struct page *p, int access); 3040 extern atomic_long_t num_poisoned_pages __read_mostly; 3041 extern int soft_offline_page(unsigned long pfn, int flags); 3042 3043 3044 /* 3045 * Error handlers for various types of pages. 3046 */ 3047 enum mf_result { 3048 MF_IGNORED, /* Error: cannot be handled */ 3049 MF_FAILED, /* Error: handling failed */ 3050 MF_DELAYED, /* Will be handled later */ 3051 MF_RECOVERED, /* Successfully recovered */ 3052 }; 3053 3054 enum mf_action_page_type { 3055 MF_MSG_KERNEL, 3056 MF_MSG_KERNEL_HIGH_ORDER, 3057 MF_MSG_SLAB, 3058 MF_MSG_DIFFERENT_COMPOUND, 3059 MF_MSG_POISONED_HUGE, 3060 MF_MSG_HUGE, 3061 MF_MSG_FREE_HUGE, 3062 MF_MSG_NON_PMD_HUGE, 3063 MF_MSG_UNMAP_FAILED, 3064 MF_MSG_DIRTY_SWAPCACHE, 3065 MF_MSG_CLEAN_SWAPCACHE, 3066 MF_MSG_DIRTY_MLOCKED_LRU, 3067 MF_MSG_CLEAN_MLOCKED_LRU, 3068 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3069 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3070 MF_MSG_DIRTY_LRU, 3071 MF_MSG_CLEAN_LRU, 3072 MF_MSG_TRUNCATED_LRU, 3073 MF_MSG_BUDDY, 3074 MF_MSG_BUDDY_2ND, 3075 MF_MSG_DAX, 3076 MF_MSG_UNSPLIT_THP, 3077 MF_MSG_UNKNOWN, 3078 }; 3079 3080 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3081 extern void clear_huge_page(struct page *page, 3082 unsigned long addr_hint, 3083 unsigned int pages_per_huge_page); 3084 extern void copy_user_huge_page(struct page *dst, struct page *src, 3085 unsigned long addr_hint, 3086 struct vm_area_struct *vma, 3087 unsigned int pages_per_huge_page); 3088 extern long copy_huge_page_from_user(struct page *dst_page, 3089 const void __user *usr_src, 3090 unsigned int pages_per_huge_page, 3091 bool allow_pagefault); 3092 3093 /** 3094 * vma_is_special_huge - Are transhuge page-table entries considered special? 3095 * @vma: Pointer to the struct vm_area_struct to consider 3096 * 3097 * Whether transhuge page-table entries are considered "special" following 3098 * the definition in vm_normal_page(). 3099 * 3100 * Return: true if transhuge page-table entries should be considered special, 3101 * false otherwise. 3102 */ 3103 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3104 { 3105 return vma_is_dax(vma) || (vma->vm_file && 3106 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3107 } 3108 3109 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3110 3111 #ifdef CONFIG_DEBUG_PAGEALLOC 3112 extern unsigned int _debug_guardpage_minorder; 3113 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3114 3115 static inline unsigned int debug_guardpage_minorder(void) 3116 { 3117 return _debug_guardpage_minorder; 3118 } 3119 3120 static inline bool debug_guardpage_enabled(void) 3121 { 3122 return static_branch_unlikely(&_debug_guardpage_enabled); 3123 } 3124 3125 static inline bool page_is_guard(struct page *page) 3126 { 3127 if (!debug_guardpage_enabled()) 3128 return false; 3129 3130 return PageGuard(page); 3131 } 3132 #else 3133 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3134 static inline bool debug_guardpage_enabled(void) { return false; } 3135 static inline bool page_is_guard(struct page *page) { return false; } 3136 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3137 3138 #if MAX_NUMNODES > 1 3139 void __init setup_nr_node_ids(void); 3140 #else 3141 static inline void setup_nr_node_ids(void) {} 3142 #endif 3143 3144 extern int memcmp_pages(struct page *page1, struct page *page2); 3145 3146 static inline int pages_identical(struct page *page1, struct page *page2) 3147 { 3148 return !memcmp_pages(page1, page2); 3149 } 3150 3151 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3152 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3153 pgoff_t first_index, pgoff_t nr, 3154 pgoff_t bitmap_pgoff, 3155 unsigned long *bitmap, 3156 pgoff_t *start, 3157 pgoff_t *end); 3158 3159 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3160 pgoff_t first_index, pgoff_t nr); 3161 #endif 3162 3163 extern int sysctl_nr_trim_pages; 3164 3165 #endif /* __KERNEL__ */ 3166 #endif /* _LINUX_MM_H */ 3167