1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct user_struct; 40 struct pt_regs; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 /* 102 * Architectures that support memory tagging (assigning tags to memory regions, 103 * embedding these tags into addresses that point to these memory regions, and 104 * checking that the memory and the pointer tags match on memory accesses) 105 * redefine this macro to strip tags from pointers. 106 * It's defined as noop for architectures that don't support memory tagging. 107 */ 108 #ifndef untagged_addr 109 #define untagged_addr(addr) (addr) 110 #endif 111 112 #ifndef __pa_symbol 113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114 #endif 115 116 #ifndef page_to_virt 117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118 #endif 119 120 #ifndef lm_alias 121 #define lm_alias(x) __va(__pa_symbol(x)) 122 #endif 123 124 /* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131 #ifndef mm_forbids_zeropage 132 #define mm_forbids_zeropage(X) (0) 133 #endif 134 135 /* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141 #if BITS_PER_LONG == 64 142 /* This function must be updated when the size of struct page grows above 80 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statements if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149 static inline void __mm_zero_struct_page(struct page *page) 150 { 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 80); 157 158 switch (sizeof(struct page)) { 159 case 80: 160 _pp[9] = 0; 161 fallthrough; 162 case 72: 163 _pp[8] = 0; 164 fallthrough; 165 case 64: 166 _pp[7] = 0; 167 fallthrough; 168 case 56: 169 _pp[6] = 0; 170 _pp[5] = 0; 171 _pp[4] = 0; 172 _pp[3] = 0; 173 _pp[2] = 0; 174 _pp[1] = 0; 175 _pp[0] = 0; 176 } 177 } 178 #else 179 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 180 #endif 181 182 /* 183 * Default maximum number of active map areas, this limits the number of vmas 184 * per mm struct. Users can overwrite this number by sysctl but there is a 185 * problem. 186 * 187 * When a program's coredump is generated as ELF format, a section is created 188 * per a vma. In ELF, the number of sections is represented in unsigned short. 189 * This means the number of sections should be smaller than 65535 at coredump. 190 * Because the kernel adds some informative sections to a image of program at 191 * generating coredump, we need some margin. The number of extra sections is 192 * 1-3 now and depends on arch. We use "5" as safe margin, here. 193 * 194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 195 * not a hard limit any more. Although some userspace tools can be surprised by 196 * that. 197 */ 198 #define MAPCOUNT_ELF_CORE_MARGIN (5) 199 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 200 201 extern int sysctl_max_map_count; 202 203 extern unsigned long sysctl_user_reserve_kbytes; 204 extern unsigned long sysctl_admin_reserve_kbytes; 205 206 extern int sysctl_overcommit_memory; 207 extern int sysctl_overcommit_ratio; 208 extern unsigned long sysctl_overcommit_kbytes; 209 210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216 217 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 218 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 219 #else 220 #define nth_page(page,n) ((page) + (n)) 221 #endif 222 223 /* to align the pointer to the (next) page boundary */ 224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 231 void setup_initial_init_mm(void *start_code, void *end_code, 232 void *end_data, void *brk); 233 234 /* 235 * Linux kernel virtual memory manager primitives. 236 * The idea being to have a "virtual" mm in the same way 237 * we have a virtual fs - giving a cleaner interface to the 238 * mm details, and allowing different kinds of memory mappings 239 * (from shared memory to executable loading to arbitrary 240 * mmap() functions). 241 */ 242 243 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 244 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 245 void vm_area_free(struct vm_area_struct *); 246 247 #ifndef CONFIG_MMU 248 extern struct rb_root nommu_region_tree; 249 extern struct rw_semaphore nommu_region_sem; 250 251 extern unsigned int kobjsize(const void *objp); 252 #endif 253 254 /* 255 * vm_flags in vm_area_struct, see mm_types.h. 256 * When changing, update also include/trace/events/mmflags.h 257 */ 258 #define VM_NONE 0x00000000 259 260 #define VM_READ 0x00000001 /* currently active flags */ 261 #define VM_WRITE 0x00000002 262 #define VM_EXEC 0x00000004 263 #define VM_SHARED 0x00000008 264 265 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 266 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 267 #define VM_MAYWRITE 0x00000020 268 #define VM_MAYEXEC 0x00000040 269 #define VM_MAYSHARE 0x00000080 270 271 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 272 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 273 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 274 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 275 276 #define VM_LOCKED 0x00002000 277 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 278 279 /* Used by sys_madvise() */ 280 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 281 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 282 283 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 284 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 285 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 286 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 287 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 288 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 289 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 290 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 291 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 292 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 293 294 #ifdef CONFIG_MEM_SOFT_DIRTY 295 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 296 #else 297 # define VM_SOFTDIRTY 0 298 #endif 299 300 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 301 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 302 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 303 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 304 305 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 306 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 308 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 309 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 310 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 311 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 312 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 313 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 314 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 315 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 317 318 #ifdef CONFIG_ARCH_HAS_PKEYS 319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 324 #ifdef CONFIG_PPC 325 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 326 #else 327 # define VM_PKEY_BIT4 0 328 #endif 329 #endif /* CONFIG_ARCH_HAS_PKEYS */ 330 331 #if defined(CONFIG_X86) 332 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 333 #elif defined(CONFIG_PPC) 334 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 335 #elif defined(CONFIG_PARISC) 336 # define VM_GROWSUP VM_ARCH_1 337 #elif defined(CONFIG_IA64) 338 # define VM_GROWSUP VM_ARCH_1 339 #elif defined(CONFIG_SPARC64) 340 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 341 # define VM_ARCH_CLEAR VM_SPARC_ADI 342 #elif defined(CONFIG_ARM64) 343 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 344 # define VM_ARCH_CLEAR VM_ARM64_BTI 345 #elif !defined(CONFIG_MMU) 346 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 347 #endif 348 349 #if defined(CONFIG_ARM64_MTE) 350 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 351 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 352 #else 353 # define VM_MTE VM_NONE 354 # define VM_MTE_ALLOWED VM_NONE 355 #endif 356 357 #ifndef VM_GROWSUP 358 # define VM_GROWSUP VM_NONE 359 #endif 360 361 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 362 # define VM_UFFD_MINOR_BIT 37 363 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 364 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 365 # define VM_UFFD_MINOR VM_NONE 366 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367 368 /* Bits set in the VMA until the stack is in its final location */ 369 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 370 371 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 372 373 /* Common data flag combinations */ 374 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 376 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 377 VM_MAYWRITE | VM_MAYEXEC) 378 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 380 381 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 382 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 383 #endif 384 385 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 386 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 387 #endif 388 389 #ifdef CONFIG_STACK_GROWSUP 390 #define VM_STACK VM_GROWSUP 391 #else 392 #define VM_STACK VM_GROWSDOWN 393 #endif 394 395 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 396 397 /* VMA basic access permission flags */ 398 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 399 400 401 /* 402 * Special vmas that are non-mergable, non-mlock()able. 403 */ 404 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 405 406 /* This mask prevents VMA from being scanned with khugepaged */ 407 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 408 409 /* This mask defines which mm->def_flags a process can inherit its parent */ 410 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 411 412 /* This mask is used to clear all the VMA flags used by mlock */ 413 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 414 415 /* Arch-specific flags to clear when updating VM flags on protection change */ 416 #ifndef VM_ARCH_CLEAR 417 # define VM_ARCH_CLEAR VM_NONE 418 #endif 419 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 420 421 /* 422 * mapping from the currently active vm_flags protection bits (the 423 * low four bits) to a page protection mask.. 424 */ 425 extern pgprot_t protection_map[16]; 426 427 /* 428 * The default fault flags that should be used by most of the 429 * arch-specific page fault handlers. 430 */ 431 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 432 FAULT_FLAG_KILLABLE | \ 433 FAULT_FLAG_INTERRUPTIBLE) 434 435 /** 436 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 437 * @flags: Fault flags. 438 * 439 * This is mostly used for places where we want to try to avoid taking 440 * the mmap_lock for too long a time when waiting for another condition 441 * to change, in which case we can try to be polite to release the 442 * mmap_lock in the first round to avoid potential starvation of other 443 * processes that would also want the mmap_lock. 444 * 445 * Return: true if the page fault allows retry and this is the first 446 * attempt of the fault handling; false otherwise. 447 */ 448 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 449 { 450 return (flags & FAULT_FLAG_ALLOW_RETRY) && 451 (!(flags & FAULT_FLAG_TRIED)); 452 } 453 454 #define FAULT_FLAG_TRACE \ 455 { FAULT_FLAG_WRITE, "WRITE" }, \ 456 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 457 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 458 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 459 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 460 { FAULT_FLAG_TRIED, "TRIED" }, \ 461 { FAULT_FLAG_USER, "USER" }, \ 462 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 463 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 464 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 465 466 /* 467 * vm_fault is filled by the pagefault handler and passed to the vma's 468 * ->fault function. The vma's ->fault is responsible for returning a bitmask 469 * of VM_FAULT_xxx flags that give details about how the fault was handled. 470 * 471 * MM layer fills up gfp_mask for page allocations but fault handler might 472 * alter it if its implementation requires a different allocation context. 473 * 474 * pgoff should be used in favour of virtual_address, if possible. 475 */ 476 struct vm_fault { 477 const struct { 478 struct vm_area_struct *vma; /* Target VMA */ 479 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 480 pgoff_t pgoff; /* Logical page offset based on vma */ 481 unsigned long address; /* Faulting virtual address */ 482 }; 483 enum fault_flag flags; /* FAULT_FLAG_xxx flags 484 * XXX: should really be 'const' */ 485 pmd_t *pmd; /* Pointer to pmd entry matching 486 * the 'address' */ 487 pud_t *pud; /* Pointer to pud entry matching 488 * the 'address' 489 */ 490 union { 491 pte_t orig_pte; /* Value of PTE at the time of fault */ 492 pmd_t orig_pmd; /* Value of PMD at the time of fault, 493 * used by PMD fault only. 494 */ 495 }; 496 497 struct page *cow_page; /* Page handler may use for COW fault */ 498 struct page *page; /* ->fault handlers should return a 499 * page here, unless VM_FAULT_NOPAGE 500 * is set (which is also implied by 501 * VM_FAULT_ERROR). 502 */ 503 /* These three entries are valid only while holding ptl lock */ 504 pte_t *pte; /* Pointer to pte entry matching 505 * the 'address'. NULL if the page 506 * table hasn't been allocated. 507 */ 508 spinlock_t *ptl; /* Page table lock. 509 * Protects pte page table if 'pte' 510 * is not NULL, otherwise pmd. 511 */ 512 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 513 * vm_ops->map_pages() sets up a page 514 * table from atomic context. 515 * do_fault_around() pre-allocates 516 * page table to avoid allocation from 517 * atomic context. 518 */ 519 }; 520 521 /* page entry size for vm->huge_fault() */ 522 enum page_entry_size { 523 PE_SIZE_PTE = 0, 524 PE_SIZE_PMD, 525 PE_SIZE_PUD, 526 }; 527 528 /* 529 * These are the virtual MM functions - opening of an area, closing and 530 * unmapping it (needed to keep files on disk up-to-date etc), pointer 531 * to the functions called when a no-page or a wp-page exception occurs. 532 */ 533 struct vm_operations_struct { 534 void (*open)(struct vm_area_struct * area); 535 /** 536 * @close: Called when the VMA is being removed from the MM. 537 * Context: User context. May sleep. Caller holds mmap_lock. 538 */ 539 void (*close)(struct vm_area_struct * area); 540 /* Called any time before splitting to check if it's allowed */ 541 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 542 int (*mremap)(struct vm_area_struct *area); 543 /* 544 * Called by mprotect() to make driver-specific permission 545 * checks before mprotect() is finalised. The VMA must not 546 * be modified. Returns 0 if eprotect() can proceed. 547 */ 548 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 549 unsigned long end, unsigned long newflags); 550 vm_fault_t (*fault)(struct vm_fault *vmf); 551 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 552 enum page_entry_size pe_size); 553 vm_fault_t (*map_pages)(struct vm_fault *vmf, 554 pgoff_t start_pgoff, pgoff_t end_pgoff); 555 unsigned long (*pagesize)(struct vm_area_struct * area); 556 557 /* notification that a previously read-only page is about to become 558 * writable, if an error is returned it will cause a SIGBUS */ 559 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 560 561 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 562 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 563 564 /* called by access_process_vm when get_user_pages() fails, typically 565 * for use by special VMAs. See also generic_access_phys() for a generic 566 * implementation useful for any iomem mapping. 567 */ 568 int (*access)(struct vm_area_struct *vma, unsigned long addr, 569 void *buf, int len, int write); 570 571 /* Called by the /proc/PID/maps code to ask the vma whether it 572 * has a special name. Returning non-NULL will also cause this 573 * vma to be dumped unconditionally. */ 574 const char *(*name)(struct vm_area_struct *vma); 575 576 #ifdef CONFIG_NUMA 577 /* 578 * set_policy() op must add a reference to any non-NULL @new mempolicy 579 * to hold the policy upon return. Caller should pass NULL @new to 580 * remove a policy and fall back to surrounding context--i.e. do not 581 * install a MPOL_DEFAULT policy, nor the task or system default 582 * mempolicy. 583 */ 584 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 585 586 /* 587 * get_policy() op must add reference [mpol_get()] to any policy at 588 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 589 * in mm/mempolicy.c will do this automatically. 590 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 591 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 592 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 593 * must return NULL--i.e., do not "fallback" to task or system default 594 * policy. 595 */ 596 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 597 unsigned long addr); 598 #endif 599 /* 600 * Called by vm_normal_page() for special PTEs to find the 601 * page for @addr. This is useful if the default behavior 602 * (using pte_page()) would not find the correct page. 603 */ 604 struct page *(*find_special_page)(struct vm_area_struct *vma, 605 unsigned long addr); 606 }; 607 608 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 609 { 610 static const struct vm_operations_struct dummy_vm_ops = {}; 611 612 memset(vma, 0, sizeof(*vma)); 613 vma->vm_mm = mm; 614 vma->vm_ops = &dummy_vm_ops; 615 INIT_LIST_HEAD(&vma->anon_vma_chain); 616 } 617 618 static inline void vma_set_anonymous(struct vm_area_struct *vma) 619 { 620 vma->vm_ops = NULL; 621 } 622 623 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 624 { 625 return !vma->vm_ops; 626 } 627 628 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 629 { 630 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 631 632 if (!maybe_stack) 633 return false; 634 635 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 636 VM_STACK_INCOMPLETE_SETUP) 637 return true; 638 639 return false; 640 } 641 642 static inline bool vma_is_foreign(struct vm_area_struct *vma) 643 { 644 if (!current->mm) 645 return true; 646 647 if (current->mm != vma->vm_mm) 648 return true; 649 650 return false; 651 } 652 653 static inline bool vma_is_accessible(struct vm_area_struct *vma) 654 { 655 return vma->vm_flags & VM_ACCESS_FLAGS; 656 } 657 658 #ifdef CONFIG_SHMEM 659 /* 660 * The vma_is_shmem is not inline because it is used only by slow 661 * paths in userfault. 662 */ 663 bool vma_is_shmem(struct vm_area_struct *vma); 664 #else 665 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 666 #endif 667 668 int vma_is_stack_for_current(struct vm_area_struct *vma); 669 670 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 671 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 672 673 struct mmu_gather; 674 struct inode; 675 676 static inline unsigned int compound_order(struct page *page) 677 { 678 if (!PageHead(page)) 679 return 0; 680 return page[1].compound_order; 681 } 682 683 /** 684 * folio_order - The allocation order of a folio. 685 * @folio: The folio. 686 * 687 * A folio is composed of 2^order pages. See get_order() for the definition 688 * of order. 689 * 690 * Return: The order of the folio. 691 */ 692 static inline unsigned int folio_order(struct folio *folio) 693 { 694 return compound_order(&folio->page); 695 } 696 697 #include <linux/huge_mm.h> 698 699 /* 700 * Methods to modify the page usage count. 701 * 702 * What counts for a page usage: 703 * - cache mapping (page->mapping) 704 * - private data (page->private) 705 * - page mapped in a task's page tables, each mapping 706 * is counted separately 707 * 708 * Also, many kernel routines increase the page count before a critical 709 * routine so they can be sure the page doesn't go away from under them. 710 */ 711 712 /* 713 * Drop a ref, return true if the refcount fell to zero (the page has no users) 714 */ 715 static inline int put_page_testzero(struct page *page) 716 { 717 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 718 return page_ref_dec_and_test(page); 719 } 720 721 static inline int folio_put_testzero(struct folio *folio) 722 { 723 return put_page_testzero(&folio->page); 724 } 725 726 /* 727 * Try to grab a ref unless the page has a refcount of zero, return false if 728 * that is the case. 729 * This can be called when MMU is off so it must not access 730 * any of the virtual mappings. 731 */ 732 static inline bool get_page_unless_zero(struct page *page) 733 { 734 return page_ref_add_unless(page, 1, 0); 735 } 736 737 extern int page_is_ram(unsigned long pfn); 738 739 enum { 740 REGION_INTERSECTS, 741 REGION_DISJOINT, 742 REGION_MIXED, 743 }; 744 745 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 746 unsigned long desc); 747 748 /* Support for virtually mapped pages */ 749 struct page *vmalloc_to_page(const void *addr); 750 unsigned long vmalloc_to_pfn(const void *addr); 751 752 /* 753 * Determine if an address is within the vmalloc range 754 * 755 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 756 * is no special casing required. 757 */ 758 759 #ifndef is_ioremap_addr 760 #define is_ioremap_addr(x) is_vmalloc_addr(x) 761 #endif 762 763 #ifdef CONFIG_MMU 764 extern bool is_vmalloc_addr(const void *x); 765 extern int is_vmalloc_or_module_addr(const void *x); 766 #else 767 static inline bool is_vmalloc_addr(const void *x) 768 { 769 return false; 770 } 771 static inline int is_vmalloc_or_module_addr(const void *x) 772 { 773 return 0; 774 } 775 #endif 776 777 static inline int head_compound_mapcount(struct page *head) 778 { 779 return atomic_read(compound_mapcount_ptr(head)) + 1; 780 } 781 782 /* 783 * Mapcount of compound page as a whole, does not include mapped sub-pages. 784 * 785 * Must be called only for compound pages or any their tail sub-pages. 786 */ 787 static inline int compound_mapcount(struct page *page) 788 { 789 VM_BUG_ON_PAGE(!PageCompound(page), page); 790 page = compound_head(page); 791 return head_compound_mapcount(page); 792 } 793 794 /* 795 * The atomic page->_mapcount, starts from -1: so that transitions 796 * both from it and to it can be tracked, using atomic_inc_and_test 797 * and atomic_add_negative(-1). 798 */ 799 static inline void page_mapcount_reset(struct page *page) 800 { 801 atomic_set(&(page)->_mapcount, -1); 802 } 803 804 int __page_mapcount(struct page *page); 805 806 /* 807 * Mapcount of 0-order page; when compound sub-page, includes 808 * compound_mapcount(). 809 * 810 * Result is undefined for pages which cannot be mapped into userspace. 811 * For example SLAB or special types of pages. See function page_has_type(). 812 * They use this place in struct page differently. 813 */ 814 static inline int page_mapcount(struct page *page) 815 { 816 if (unlikely(PageCompound(page))) 817 return __page_mapcount(page); 818 return atomic_read(&page->_mapcount) + 1; 819 } 820 821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 822 int total_mapcount(struct page *page); 823 int page_trans_huge_mapcount(struct page *page); 824 #else 825 static inline int total_mapcount(struct page *page) 826 { 827 return page_mapcount(page); 828 } 829 static inline int page_trans_huge_mapcount(struct page *page) 830 { 831 return page_mapcount(page); 832 } 833 #endif 834 835 static inline struct page *virt_to_head_page(const void *x) 836 { 837 struct page *page = virt_to_page(x); 838 839 return compound_head(page); 840 } 841 842 static inline struct folio *virt_to_folio(const void *x) 843 { 844 struct page *page = virt_to_page(x); 845 846 return page_folio(page); 847 } 848 849 void __put_page(struct page *page); 850 851 void put_pages_list(struct list_head *pages); 852 853 void split_page(struct page *page, unsigned int order); 854 void folio_copy(struct folio *dst, struct folio *src); 855 856 unsigned long nr_free_buffer_pages(void); 857 858 /* 859 * Compound pages have a destructor function. Provide a 860 * prototype for that function and accessor functions. 861 * These are _only_ valid on the head of a compound page. 862 */ 863 typedef void compound_page_dtor(struct page *); 864 865 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 866 enum compound_dtor_id { 867 NULL_COMPOUND_DTOR, 868 COMPOUND_PAGE_DTOR, 869 #ifdef CONFIG_HUGETLB_PAGE 870 HUGETLB_PAGE_DTOR, 871 #endif 872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 873 TRANSHUGE_PAGE_DTOR, 874 #endif 875 NR_COMPOUND_DTORS, 876 }; 877 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 878 879 static inline void set_compound_page_dtor(struct page *page, 880 enum compound_dtor_id compound_dtor) 881 { 882 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 883 page[1].compound_dtor = compound_dtor; 884 } 885 886 static inline void destroy_compound_page(struct page *page) 887 { 888 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 889 compound_page_dtors[page[1].compound_dtor](page); 890 } 891 892 static inline bool hpage_pincount_available(struct page *page) 893 { 894 /* 895 * Can the page->hpage_pinned_refcount field be used? That field is in 896 * the 3rd page of the compound page, so the smallest (2-page) compound 897 * pages cannot support it. 898 */ 899 page = compound_head(page); 900 return PageCompound(page) && compound_order(page) > 1; 901 } 902 903 static inline int head_compound_pincount(struct page *head) 904 { 905 return atomic_read(compound_pincount_ptr(head)); 906 } 907 908 static inline int compound_pincount(struct page *page) 909 { 910 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 911 page = compound_head(page); 912 return head_compound_pincount(page); 913 } 914 915 static inline void set_compound_order(struct page *page, unsigned int order) 916 { 917 page[1].compound_order = order; 918 page[1].compound_nr = 1U << order; 919 } 920 921 /* Returns the number of pages in this potentially compound page. */ 922 static inline unsigned long compound_nr(struct page *page) 923 { 924 if (!PageHead(page)) 925 return 1; 926 return page[1].compound_nr; 927 } 928 929 /* Returns the number of bytes in this potentially compound page. */ 930 static inline unsigned long page_size(struct page *page) 931 { 932 return PAGE_SIZE << compound_order(page); 933 } 934 935 /* Returns the number of bits needed for the number of bytes in a page */ 936 static inline unsigned int page_shift(struct page *page) 937 { 938 return PAGE_SHIFT + compound_order(page); 939 } 940 941 void free_compound_page(struct page *page); 942 943 #ifdef CONFIG_MMU 944 /* 945 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 946 * servicing faults for write access. In the normal case, do always want 947 * pte_mkwrite. But get_user_pages can cause write faults for mappings 948 * that do not have writing enabled, when used by access_process_vm. 949 */ 950 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 951 { 952 if (likely(vma->vm_flags & VM_WRITE)) 953 pte = pte_mkwrite(pte); 954 return pte; 955 } 956 957 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 958 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 959 960 vm_fault_t finish_fault(struct vm_fault *vmf); 961 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 962 #endif 963 964 /* 965 * Multiple processes may "see" the same page. E.g. for untouched 966 * mappings of /dev/null, all processes see the same page full of 967 * zeroes, and text pages of executables and shared libraries have 968 * only one copy in memory, at most, normally. 969 * 970 * For the non-reserved pages, page_count(page) denotes a reference count. 971 * page_count() == 0 means the page is free. page->lru is then used for 972 * freelist management in the buddy allocator. 973 * page_count() > 0 means the page has been allocated. 974 * 975 * Pages are allocated by the slab allocator in order to provide memory 976 * to kmalloc and kmem_cache_alloc. In this case, the management of the 977 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 978 * unless a particular usage is carefully commented. (the responsibility of 979 * freeing the kmalloc memory is the caller's, of course). 980 * 981 * A page may be used by anyone else who does a __get_free_page(). 982 * In this case, page_count still tracks the references, and should only 983 * be used through the normal accessor functions. The top bits of page->flags 984 * and page->virtual store page management information, but all other fields 985 * are unused and could be used privately, carefully. The management of this 986 * page is the responsibility of the one who allocated it, and those who have 987 * subsequently been given references to it. 988 * 989 * The other pages (we may call them "pagecache pages") are completely 990 * managed by the Linux memory manager: I/O, buffers, swapping etc. 991 * The following discussion applies only to them. 992 * 993 * A pagecache page contains an opaque `private' member, which belongs to the 994 * page's address_space. Usually, this is the address of a circular list of 995 * the page's disk buffers. PG_private must be set to tell the VM to call 996 * into the filesystem to release these pages. 997 * 998 * A page may belong to an inode's memory mapping. In this case, page->mapping 999 * is the pointer to the inode, and page->index is the file offset of the page, 1000 * in units of PAGE_SIZE. 1001 * 1002 * If pagecache pages are not associated with an inode, they are said to be 1003 * anonymous pages. These may become associated with the swapcache, and in that 1004 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1005 * 1006 * In either case (swapcache or inode backed), the pagecache itself holds one 1007 * reference to the page. Setting PG_private should also increment the 1008 * refcount. The each user mapping also has a reference to the page. 1009 * 1010 * The pagecache pages are stored in a per-mapping radix tree, which is 1011 * rooted at mapping->i_pages, and indexed by offset. 1012 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1013 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1014 * 1015 * All pagecache pages may be subject to I/O: 1016 * - inode pages may need to be read from disk, 1017 * - inode pages which have been modified and are MAP_SHARED may need 1018 * to be written back to the inode on disk, 1019 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1020 * modified may need to be swapped out to swap space and (later) to be read 1021 * back into memory. 1022 */ 1023 1024 /* 1025 * The zone field is never updated after free_area_init_core() 1026 * sets it, so none of the operations on it need to be atomic. 1027 */ 1028 1029 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1030 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1031 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1032 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1033 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1034 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1035 1036 /* 1037 * Define the bit shifts to access each section. For non-existent 1038 * sections we define the shift as 0; that plus a 0 mask ensures 1039 * the compiler will optimise away reference to them. 1040 */ 1041 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1042 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1043 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1044 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1045 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1046 1047 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1048 #ifdef NODE_NOT_IN_PAGE_FLAGS 1049 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1050 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1051 SECTIONS_PGOFF : ZONES_PGOFF) 1052 #else 1053 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1054 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1055 NODES_PGOFF : ZONES_PGOFF) 1056 #endif 1057 1058 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1059 1060 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1061 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1062 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1063 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1064 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1065 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1066 1067 static inline enum zone_type page_zonenum(const struct page *page) 1068 { 1069 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1070 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1071 } 1072 1073 static inline enum zone_type folio_zonenum(const struct folio *folio) 1074 { 1075 return page_zonenum(&folio->page); 1076 } 1077 1078 #ifdef CONFIG_ZONE_DEVICE 1079 static inline bool is_zone_device_page(const struct page *page) 1080 { 1081 return page_zonenum(page) == ZONE_DEVICE; 1082 } 1083 extern void memmap_init_zone_device(struct zone *, unsigned long, 1084 unsigned long, struct dev_pagemap *); 1085 #else 1086 static inline bool is_zone_device_page(const struct page *page) 1087 { 1088 return false; 1089 } 1090 #endif 1091 1092 static inline bool is_zone_movable_page(const struct page *page) 1093 { 1094 return page_zonenum(page) == ZONE_MOVABLE; 1095 } 1096 1097 #ifdef CONFIG_DEV_PAGEMAP_OPS 1098 void free_devmap_managed_page(struct page *page); 1099 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1100 1101 static inline bool page_is_devmap_managed(struct page *page) 1102 { 1103 if (!static_branch_unlikely(&devmap_managed_key)) 1104 return false; 1105 if (!is_zone_device_page(page)) 1106 return false; 1107 switch (page->pgmap->type) { 1108 case MEMORY_DEVICE_PRIVATE: 1109 case MEMORY_DEVICE_FS_DAX: 1110 return true; 1111 default: 1112 break; 1113 } 1114 return false; 1115 } 1116 1117 void put_devmap_managed_page(struct page *page); 1118 1119 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1120 static inline bool page_is_devmap_managed(struct page *page) 1121 { 1122 return false; 1123 } 1124 1125 static inline void put_devmap_managed_page(struct page *page) 1126 { 1127 } 1128 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1129 1130 static inline bool is_device_private_page(const struct page *page) 1131 { 1132 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1133 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1134 is_zone_device_page(page) && 1135 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1136 } 1137 1138 static inline bool is_pci_p2pdma_page(const struct page *page) 1139 { 1140 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1141 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1142 is_zone_device_page(page) && 1143 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1144 } 1145 1146 /* 127: arbitrary random number, small enough to assemble well */ 1147 #define folio_ref_zero_or_close_to_overflow(folio) \ 1148 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1149 1150 /** 1151 * folio_get - Increment the reference count on a folio. 1152 * @folio: The folio. 1153 * 1154 * Context: May be called in any context, as long as you know that 1155 * you have a refcount on the folio. If you do not already have one, 1156 * folio_try_get() may be the right interface for you to use. 1157 */ 1158 static inline void folio_get(struct folio *folio) 1159 { 1160 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1161 folio_ref_inc(folio); 1162 } 1163 1164 static inline void get_page(struct page *page) 1165 { 1166 folio_get(page_folio(page)); 1167 } 1168 1169 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1170 struct page *try_grab_compound_head(struct page *page, int refs, 1171 unsigned int flags); 1172 1173 1174 static inline __must_check bool try_get_page(struct page *page) 1175 { 1176 page = compound_head(page); 1177 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1178 return false; 1179 page_ref_inc(page); 1180 return true; 1181 } 1182 1183 /** 1184 * folio_put - Decrement the reference count on a folio. 1185 * @folio: The folio. 1186 * 1187 * If the folio's reference count reaches zero, the memory will be 1188 * released back to the page allocator and may be used by another 1189 * allocation immediately. Do not access the memory or the struct folio 1190 * after calling folio_put() unless you can be sure that it wasn't the 1191 * last reference. 1192 * 1193 * Context: May be called in process or interrupt context, but not in NMI 1194 * context. May be called while holding a spinlock. 1195 */ 1196 static inline void folio_put(struct folio *folio) 1197 { 1198 if (folio_put_testzero(folio)) 1199 __put_page(&folio->page); 1200 } 1201 1202 /** 1203 * folio_put_refs - Reduce the reference count on a folio. 1204 * @folio: The folio. 1205 * @refs: The amount to subtract from the folio's reference count. 1206 * 1207 * If the folio's reference count reaches zero, the memory will be 1208 * released back to the page allocator and may be used by another 1209 * allocation immediately. Do not access the memory or the struct folio 1210 * after calling folio_put_refs() unless you can be sure that these weren't 1211 * the last references. 1212 * 1213 * Context: May be called in process or interrupt context, but not in NMI 1214 * context. May be called while holding a spinlock. 1215 */ 1216 static inline void folio_put_refs(struct folio *folio, int refs) 1217 { 1218 if (folio_ref_sub_and_test(folio, refs)) 1219 __put_page(&folio->page); 1220 } 1221 1222 static inline void put_page(struct page *page) 1223 { 1224 struct folio *folio = page_folio(page); 1225 1226 /* 1227 * For devmap managed pages we need to catch refcount transition from 1228 * 2 to 1, when refcount reach one it means the page is free and we 1229 * need to inform the device driver through callback. See 1230 * include/linux/memremap.h and HMM for details. 1231 */ 1232 if (page_is_devmap_managed(&folio->page)) { 1233 put_devmap_managed_page(&folio->page); 1234 return; 1235 } 1236 1237 folio_put(folio); 1238 } 1239 1240 /* 1241 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1242 * the page's refcount so that two separate items are tracked: the original page 1243 * reference count, and also a new count of how many pin_user_pages() calls were 1244 * made against the page. ("gup-pinned" is another term for the latter). 1245 * 1246 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1247 * distinct from normal pages. As such, the unpin_user_page() call (and its 1248 * variants) must be used in order to release gup-pinned pages. 1249 * 1250 * Choice of value: 1251 * 1252 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1253 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1254 * simpler, due to the fact that adding an even power of two to the page 1255 * refcount has the effect of using only the upper N bits, for the code that 1256 * counts up using the bias value. This means that the lower bits are left for 1257 * the exclusive use of the original code that increments and decrements by one 1258 * (or at least, by much smaller values than the bias value). 1259 * 1260 * Of course, once the lower bits overflow into the upper bits (and this is 1261 * OK, because subtraction recovers the original values), then visual inspection 1262 * no longer suffices to directly view the separate counts. However, for normal 1263 * applications that don't have huge page reference counts, this won't be an 1264 * issue. 1265 * 1266 * Locking: the lockless algorithm described in page_cache_get_speculative() 1267 * and page_cache_gup_pin_speculative() provides safe operation for 1268 * get_user_pages and page_mkclean and other calls that race to set up page 1269 * table entries. 1270 */ 1271 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1272 1273 void unpin_user_page(struct page *page); 1274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1275 bool make_dirty); 1276 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1277 bool make_dirty); 1278 void unpin_user_pages(struct page **pages, unsigned long npages); 1279 1280 /** 1281 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1282 * @page: The page. 1283 * 1284 * This function checks if a page has been pinned via a call to 1285 * a function in the pin_user_pages() family. 1286 * 1287 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1288 * because it means "definitely not pinned for DMA", but true means "probably 1289 * pinned for DMA, but possibly a false positive due to having at least 1290 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1291 * 1292 * False positives are OK, because: a) it's unlikely for a page to get that many 1293 * refcounts, and b) all the callers of this routine are expected to be able to 1294 * deal gracefully with a false positive. 1295 * 1296 * For huge pages, the result will be exactly correct. That's because we have 1297 * more tracking data available: the 3rd struct page in the compound page is 1298 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1299 * scheme). 1300 * 1301 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1302 * 1303 * Return: True, if it is likely that the page has been "dma-pinned". 1304 * False, if the page is definitely not dma-pinned. 1305 */ 1306 static inline bool page_maybe_dma_pinned(struct page *page) 1307 { 1308 if (hpage_pincount_available(page)) 1309 return compound_pincount(page) > 0; 1310 1311 /* 1312 * page_ref_count() is signed. If that refcount overflows, then 1313 * page_ref_count() returns a negative value, and callers will avoid 1314 * further incrementing the refcount. 1315 * 1316 * Here, for that overflow case, use the signed bit to count a little 1317 * bit higher via unsigned math, and thus still get an accurate result. 1318 */ 1319 return ((unsigned int)page_ref_count(compound_head(page))) >= 1320 GUP_PIN_COUNTING_BIAS; 1321 } 1322 1323 static inline bool is_cow_mapping(vm_flags_t flags) 1324 { 1325 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1326 } 1327 1328 /* 1329 * This should most likely only be called during fork() to see whether we 1330 * should break the cow immediately for a page on the src mm. 1331 */ 1332 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1333 struct page *page) 1334 { 1335 if (!is_cow_mapping(vma->vm_flags)) 1336 return false; 1337 1338 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1339 return false; 1340 1341 return page_maybe_dma_pinned(page); 1342 } 1343 1344 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1345 #define SECTION_IN_PAGE_FLAGS 1346 #endif 1347 1348 /* 1349 * The identification function is mainly used by the buddy allocator for 1350 * determining if two pages could be buddies. We are not really identifying 1351 * the zone since we could be using the section number id if we do not have 1352 * node id available in page flags. 1353 * We only guarantee that it will return the same value for two combinable 1354 * pages in a zone. 1355 */ 1356 static inline int page_zone_id(struct page *page) 1357 { 1358 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1359 } 1360 1361 #ifdef NODE_NOT_IN_PAGE_FLAGS 1362 extern int page_to_nid(const struct page *page); 1363 #else 1364 static inline int page_to_nid(const struct page *page) 1365 { 1366 struct page *p = (struct page *)page; 1367 1368 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1369 } 1370 #endif 1371 1372 static inline int folio_nid(const struct folio *folio) 1373 { 1374 return page_to_nid(&folio->page); 1375 } 1376 1377 #ifdef CONFIG_NUMA_BALANCING 1378 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1379 { 1380 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1381 } 1382 1383 static inline int cpupid_to_pid(int cpupid) 1384 { 1385 return cpupid & LAST__PID_MASK; 1386 } 1387 1388 static inline int cpupid_to_cpu(int cpupid) 1389 { 1390 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1391 } 1392 1393 static inline int cpupid_to_nid(int cpupid) 1394 { 1395 return cpu_to_node(cpupid_to_cpu(cpupid)); 1396 } 1397 1398 static inline bool cpupid_pid_unset(int cpupid) 1399 { 1400 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1401 } 1402 1403 static inline bool cpupid_cpu_unset(int cpupid) 1404 { 1405 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1406 } 1407 1408 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1409 { 1410 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1411 } 1412 1413 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1414 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1415 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1416 { 1417 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1418 } 1419 1420 static inline int page_cpupid_last(struct page *page) 1421 { 1422 return page->_last_cpupid; 1423 } 1424 static inline void page_cpupid_reset_last(struct page *page) 1425 { 1426 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1427 } 1428 #else 1429 static inline int page_cpupid_last(struct page *page) 1430 { 1431 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1432 } 1433 1434 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1435 1436 static inline void page_cpupid_reset_last(struct page *page) 1437 { 1438 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1439 } 1440 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1441 #else /* !CONFIG_NUMA_BALANCING */ 1442 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1443 { 1444 return page_to_nid(page); /* XXX */ 1445 } 1446 1447 static inline int page_cpupid_last(struct page *page) 1448 { 1449 return page_to_nid(page); /* XXX */ 1450 } 1451 1452 static inline int cpupid_to_nid(int cpupid) 1453 { 1454 return -1; 1455 } 1456 1457 static inline int cpupid_to_pid(int cpupid) 1458 { 1459 return -1; 1460 } 1461 1462 static inline int cpupid_to_cpu(int cpupid) 1463 { 1464 return -1; 1465 } 1466 1467 static inline int cpu_pid_to_cpupid(int nid, int pid) 1468 { 1469 return -1; 1470 } 1471 1472 static inline bool cpupid_pid_unset(int cpupid) 1473 { 1474 return true; 1475 } 1476 1477 static inline void page_cpupid_reset_last(struct page *page) 1478 { 1479 } 1480 1481 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1482 { 1483 return false; 1484 } 1485 #endif /* CONFIG_NUMA_BALANCING */ 1486 1487 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1488 1489 /* 1490 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1491 * setting tags for all pages to native kernel tag value 0xff, as the default 1492 * value 0x00 maps to 0xff. 1493 */ 1494 1495 static inline u8 page_kasan_tag(const struct page *page) 1496 { 1497 u8 tag = 0xff; 1498 1499 if (kasan_enabled()) { 1500 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1501 tag ^= 0xff; 1502 } 1503 1504 return tag; 1505 } 1506 1507 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1508 { 1509 unsigned long old_flags, flags; 1510 1511 if (!kasan_enabled()) 1512 return; 1513 1514 tag ^= 0xff; 1515 old_flags = READ_ONCE(page->flags); 1516 do { 1517 flags = old_flags; 1518 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1519 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1520 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1521 } 1522 1523 static inline void page_kasan_tag_reset(struct page *page) 1524 { 1525 if (kasan_enabled()) 1526 page_kasan_tag_set(page, 0xff); 1527 } 1528 1529 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1530 1531 static inline u8 page_kasan_tag(const struct page *page) 1532 { 1533 return 0xff; 1534 } 1535 1536 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1537 static inline void page_kasan_tag_reset(struct page *page) { } 1538 1539 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1540 1541 static inline struct zone *page_zone(const struct page *page) 1542 { 1543 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1544 } 1545 1546 static inline pg_data_t *page_pgdat(const struct page *page) 1547 { 1548 return NODE_DATA(page_to_nid(page)); 1549 } 1550 1551 static inline struct zone *folio_zone(const struct folio *folio) 1552 { 1553 return page_zone(&folio->page); 1554 } 1555 1556 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1557 { 1558 return page_pgdat(&folio->page); 1559 } 1560 1561 #ifdef SECTION_IN_PAGE_FLAGS 1562 static inline void set_page_section(struct page *page, unsigned long section) 1563 { 1564 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1565 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1566 } 1567 1568 static inline unsigned long page_to_section(const struct page *page) 1569 { 1570 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1571 } 1572 #endif 1573 1574 /** 1575 * folio_pfn - Return the Page Frame Number of a folio. 1576 * @folio: The folio. 1577 * 1578 * A folio may contain multiple pages. The pages have consecutive 1579 * Page Frame Numbers. 1580 * 1581 * Return: The Page Frame Number of the first page in the folio. 1582 */ 1583 static inline unsigned long folio_pfn(struct folio *folio) 1584 { 1585 return page_to_pfn(&folio->page); 1586 } 1587 1588 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1589 #ifdef CONFIG_MIGRATION 1590 static inline bool is_pinnable_page(struct page *page) 1591 { 1592 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1593 is_zero_pfn(page_to_pfn(page)); 1594 } 1595 #else 1596 static inline bool is_pinnable_page(struct page *page) 1597 { 1598 return true; 1599 } 1600 #endif 1601 1602 static inline void set_page_zone(struct page *page, enum zone_type zone) 1603 { 1604 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1605 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1606 } 1607 1608 static inline void set_page_node(struct page *page, unsigned long node) 1609 { 1610 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1611 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1612 } 1613 1614 static inline void set_page_links(struct page *page, enum zone_type zone, 1615 unsigned long node, unsigned long pfn) 1616 { 1617 set_page_zone(page, zone); 1618 set_page_node(page, node); 1619 #ifdef SECTION_IN_PAGE_FLAGS 1620 set_page_section(page, pfn_to_section_nr(pfn)); 1621 #endif 1622 } 1623 1624 /** 1625 * folio_nr_pages - The number of pages in the folio. 1626 * @folio: The folio. 1627 * 1628 * Return: A positive power of two. 1629 */ 1630 static inline long folio_nr_pages(struct folio *folio) 1631 { 1632 return compound_nr(&folio->page); 1633 } 1634 1635 /** 1636 * folio_next - Move to the next physical folio. 1637 * @folio: The folio we're currently operating on. 1638 * 1639 * If you have physically contiguous memory which may span more than 1640 * one folio (eg a &struct bio_vec), use this function to move from one 1641 * folio to the next. Do not use it if the memory is only virtually 1642 * contiguous as the folios are almost certainly not adjacent to each 1643 * other. This is the folio equivalent to writing ``page++``. 1644 * 1645 * Context: We assume that the folios are refcounted and/or locked at a 1646 * higher level and do not adjust the reference counts. 1647 * Return: The next struct folio. 1648 */ 1649 static inline struct folio *folio_next(struct folio *folio) 1650 { 1651 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1652 } 1653 1654 /** 1655 * folio_shift - The size of the memory described by this folio. 1656 * @folio: The folio. 1657 * 1658 * A folio represents a number of bytes which is a power-of-two in size. 1659 * This function tells you which power-of-two the folio is. See also 1660 * folio_size() and folio_order(). 1661 * 1662 * Context: The caller should have a reference on the folio to prevent 1663 * it from being split. It is not necessary for the folio to be locked. 1664 * Return: The base-2 logarithm of the size of this folio. 1665 */ 1666 static inline unsigned int folio_shift(struct folio *folio) 1667 { 1668 return PAGE_SHIFT + folio_order(folio); 1669 } 1670 1671 /** 1672 * folio_size - The number of bytes in a folio. 1673 * @folio: The folio. 1674 * 1675 * Context: The caller should have a reference on the folio to prevent 1676 * it from being split. It is not necessary for the folio to be locked. 1677 * Return: The number of bytes in this folio. 1678 */ 1679 static inline size_t folio_size(struct folio *folio) 1680 { 1681 return PAGE_SIZE << folio_order(folio); 1682 } 1683 1684 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1685 static inline int arch_make_page_accessible(struct page *page) 1686 { 1687 return 0; 1688 } 1689 #endif 1690 1691 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1692 static inline int arch_make_folio_accessible(struct folio *folio) 1693 { 1694 int ret; 1695 long i, nr = folio_nr_pages(folio); 1696 1697 for (i = 0; i < nr; i++) { 1698 ret = arch_make_page_accessible(folio_page(folio, i)); 1699 if (ret) 1700 break; 1701 } 1702 1703 return ret; 1704 } 1705 #endif 1706 1707 /* 1708 * Some inline functions in vmstat.h depend on page_zone() 1709 */ 1710 #include <linux/vmstat.h> 1711 1712 static __always_inline void *lowmem_page_address(const struct page *page) 1713 { 1714 return page_to_virt(page); 1715 } 1716 1717 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1718 #define HASHED_PAGE_VIRTUAL 1719 #endif 1720 1721 #if defined(WANT_PAGE_VIRTUAL) 1722 static inline void *page_address(const struct page *page) 1723 { 1724 return page->virtual; 1725 } 1726 static inline void set_page_address(struct page *page, void *address) 1727 { 1728 page->virtual = address; 1729 } 1730 #define page_address_init() do { } while(0) 1731 #endif 1732 1733 #if defined(HASHED_PAGE_VIRTUAL) 1734 void *page_address(const struct page *page); 1735 void set_page_address(struct page *page, void *virtual); 1736 void page_address_init(void); 1737 #endif 1738 1739 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1740 #define page_address(page) lowmem_page_address(page) 1741 #define set_page_address(page, address) do { } while(0) 1742 #define page_address_init() do { } while(0) 1743 #endif 1744 1745 static inline void *folio_address(const struct folio *folio) 1746 { 1747 return page_address(&folio->page); 1748 } 1749 1750 extern void *page_rmapping(struct page *page); 1751 extern struct anon_vma *page_anon_vma(struct page *page); 1752 extern pgoff_t __page_file_index(struct page *page); 1753 1754 /* 1755 * Return the pagecache index of the passed page. Regular pagecache pages 1756 * use ->index whereas swapcache pages use swp_offset(->private) 1757 */ 1758 static inline pgoff_t page_index(struct page *page) 1759 { 1760 if (unlikely(PageSwapCache(page))) 1761 return __page_file_index(page); 1762 return page->index; 1763 } 1764 1765 bool page_mapped(struct page *page); 1766 bool folio_mapped(struct folio *folio); 1767 1768 /* 1769 * Return true only if the page has been allocated with 1770 * ALLOC_NO_WATERMARKS and the low watermark was not 1771 * met implying that the system is under some pressure. 1772 */ 1773 static inline bool page_is_pfmemalloc(const struct page *page) 1774 { 1775 /* 1776 * lru.next has bit 1 set if the page is allocated from the 1777 * pfmemalloc reserves. Callers may simply overwrite it if 1778 * they do not need to preserve that information. 1779 */ 1780 return (uintptr_t)page->lru.next & BIT(1); 1781 } 1782 1783 /* 1784 * Only to be called by the page allocator on a freshly allocated 1785 * page. 1786 */ 1787 static inline void set_page_pfmemalloc(struct page *page) 1788 { 1789 page->lru.next = (void *)BIT(1); 1790 } 1791 1792 static inline void clear_page_pfmemalloc(struct page *page) 1793 { 1794 page->lru.next = NULL; 1795 } 1796 1797 /* 1798 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1799 */ 1800 extern void pagefault_out_of_memory(void); 1801 1802 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1803 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1804 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1805 1806 /* 1807 * Flags passed to show_mem() and show_free_areas() to suppress output in 1808 * various contexts. 1809 */ 1810 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1811 1812 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1813 1814 #ifdef CONFIG_MMU 1815 extern bool can_do_mlock(void); 1816 #else 1817 static inline bool can_do_mlock(void) { return false; } 1818 #endif 1819 extern int user_shm_lock(size_t, struct ucounts *); 1820 extern void user_shm_unlock(size_t, struct ucounts *); 1821 1822 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1823 pte_t pte); 1824 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1825 pmd_t pmd); 1826 1827 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1828 unsigned long size); 1829 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1830 unsigned long size); 1831 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1832 unsigned long start, unsigned long end); 1833 1834 struct mmu_notifier_range; 1835 1836 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1837 unsigned long end, unsigned long floor, unsigned long ceiling); 1838 int 1839 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1840 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1841 struct mmu_notifier_range *range, pte_t **ptepp, 1842 pmd_t **pmdpp, spinlock_t **ptlp); 1843 int follow_pte(struct mm_struct *mm, unsigned long address, 1844 pte_t **ptepp, spinlock_t **ptlp); 1845 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1846 unsigned long *pfn); 1847 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1848 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1849 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1850 void *buf, int len, int write); 1851 1852 extern void truncate_pagecache(struct inode *inode, loff_t new); 1853 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1854 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1855 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1856 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1857 int invalidate_inode_page(struct page *page); 1858 1859 #ifdef CONFIG_MMU 1860 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1861 unsigned long address, unsigned int flags, 1862 struct pt_regs *regs); 1863 extern int fixup_user_fault(struct mm_struct *mm, 1864 unsigned long address, unsigned int fault_flags, 1865 bool *unlocked); 1866 void unmap_mapping_pages(struct address_space *mapping, 1867 pgoff_t start, pgoff_t nr, bool even_cows); 1868 void unmap_mapping_range(struct address_space *mapping, 1869 loff_t const holebegin, loff_t const holelen, int even_cows); 1870 #else 1871 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1872 unsigned long address, unsigned int flags, 1873 struct pt_regs *regs) 1874 { 1875 /* should never happen if there's no MMU */ 1876 BUG(); 1877 return VM_FAULT_SIGBUS; 1878 } 1879 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1880 unsigned int fault_flags, bool *unlocked) 1881 { 1882 /* should never happen if there's no MMU */ 1883 BUG(); 1884 return -EFAULT; 1885 } 1886 static inline void unmap_mapping_pages(struct address_space *mapping, 1887 pgoff_t start, pgoff_t nr, bool even_cows) { } 1888 static inline void unmap_mapping_range(struct address_space *mapping, 1889 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1890 #endif 1891 1892 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1893 loff_t const holebegin, loff_t const holelen) 1894 { 1895 unmap_mapping_range(mapping, holebegin, holelen, 0); 1896 } 1897 1898 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1899 void *buf, int len, unsigned int gup_flags); 1900 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1901 void *buf, int len, unsigned int gup_flags); 1902 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1903 void *buf, int len, unsigned int gup_flags); 1904 1905 long get_user_pages_remote(struct mm_struct *mm, 1906 unsigned long start, unsigned long nr_pages, 1907 unsigned int gup_flags, struct page **pages, 1908 struct vm_area_struct **vmas, int *locked); 1909 long pin_user_pages_remote(struct mm_struct *mm, 1910 unsigned long start, unsigned long nr_pages, 1911 unsigned int gup_flags, struct page **pages, 1912 struct vm_area_struct **vmas, int *locked); 1913 long get_user_pages(unsigned long start, unsigned long nr_pages, 1914 unsigned int gup_flags, struct page **pages, 1915 struct vm_area_struct **vmas); 1916 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1917 unsigned int gup_flags, struct page **pages, 1918 struct vm_area_struct **vmas); 1919 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1920 unsigned int gup_flags, struct page **pages, int *locked); 1921 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1922 unsigned int gup_flags, struct page **pages, int *locked); 1923 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1924 struct page **pages, unsigned int gup_flags); 1925 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1926 struct page **pages, unsigned int gup_flags); 1927 1928 int get_user_pages_fast(unsigned long start, int nr_pages, 1929 unsigned int gup_flags, struct page **pages); 1930 int pin_user_pages_fast(unsigned long start, int nr_pages, 1931 unsigned int gup_flags, struct page **pages); 1932 1933 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1934 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1935 struct task_struct *task, bool bypass_rlim); 1936 1937 struct kvec; 1938 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1939 struct page **pages); 1940 struct page *get_dump_page(unsigned long addr); 1941 1942 extern void do_invalidatepage(struct page *page, unsigned int offset, 1943 unsigned int length); 1944 1945 bool folio_mark_dirty(struct folio *folio); 1946 bool set_page_dirty(struct page *page); 1947 int set_page_dirty_lock(struct page *page); 1948 1949 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1950 1951 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1952 unsigned long old_addr, struct vm_area_struct *new_vma, 1953 unsigned long new_addr, unsigned long len, 1954 bool need_rmap_locks); 1955 1956 /* 1957 * Flags used by change_protection(). For now we make it a bitmap so 1958 * that we can pass in multiple flags just like parameters. However 1959 * for now all the callers are only use one of the flags at the same 1960 * time. 1961 */ 1962 /* Whether we should allow dirty bit accounting */ 1963 #define MM_CP_DIRTY_ACCT (1UL << 0) 1964 /* Whether this protection change is for NUMA hints */ 1965 #define MM_CP_PROT_NUMA (1UL << 1) 1966 /* Whether this change is for write protecting */ 1967 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1968 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1969 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1970 MM_CP_UFFD_WP_RESOLVE) 1971 1972 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1973 unsigned long end, pgprot_t newprot, 1974 unsigned long cp_flags); 1975 extern int mprotect_fixup(struct vm_area_struct *vma, 1976 struct vm_area_struct **pprev, unsigned long start, 1977 unsigned long end, unsigned long newflags); 1978 1979 /* 1980 * doesn't attempt to fault and will return short. 1981 */ 1982 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1983 unsigned int gup_flags, struct page **pages); 1984 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1985 unsigned int gup_flags, struct page **pages); 1986 1987 static inline bool get_user_page_fast_only(unsigned long addr, 1988 unsigned int gup_flags, struct page **pagep) 1989 { 1990 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1991 } 1992 /* 1993 * per-process(per-mm_struct) statistics. 1994 */ 1995 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1996 { 1997 long val = atomic_long_read(&mm->rss_stat.count[member]); 1998 1999 #ifdef SPLIT_RSS_COUNTING 2000 /* 2001 * counter is updated in asynchronous manner and may go to minus. 2002 * But it's never be expected number for users. 2003 */ 2004 if (val < 0) 2005 val = 0; 2006 #endif 2007 return (unsigned long)val; 2008 } 2009 2010 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2011 2012 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2013 { 2014 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2015 2016 mm_trace_rss_stat(mm, member, count); 2017 } 2018 2019 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2020 { 2021 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2022 2023 mm_trace_rss_stat(mm, member, count); 2024 } 2025 2026 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2027 { 2028 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2029 2030 mm_trace_rss_stat(mm, member, count); 2031 } 2032 2033 /* Optimized variant when page is already known not to be PageAnon */ 2034 static inline int mm_counter_file(struct page *page) 2035 { 2036 if (PageSwapBacked(page)) 2037 return MM_SHMEMPAGES; 2038 return MM_FILEPAGES; 2039 } 2040 2041 static inline int mm_counter(struct page *page) 2042 { 2043 if (PageAnon(page)) 2044 return MM_ANONPAGES; 2045 return mm_counter_file(page); 2046 } 2047 2048 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2049 { 2050 return get_mm_counter(mm, MM_FILEPAGES) + 2051 get_mm_counter(mm, MM_ANONPAGES) + 2052 get_mm_counter(mm, MM_SHMEMPAGES); 2053 } 2054 2055 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2056 { 2057 return max(mm->hiwater_rss, get_mm_rss(mm)); 2058 } 2059 2060 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2061 { 2062 return max(mm->hiwater_vm, mm->total_vm); 2063 } 2064 2065 static inline void update_hiwater_rss(struct mm_struct *mm) 2066 { 2067 unsigned long _rss = get_mm_rss(mm); 2068 2069 if ((mm)->hiwater_rss < _rss) 2070 (mm)->hiwater_rss = _rss; 2071 } 2072 2073 static inline void update_hiwater_vm(struct mm_struct *mm) 2074 { 2075 if (mm->hiwater_vm < mm->total_vm) 2076 mm->hiwater_vm = mm->total_vm; 2077 } 2078 2079 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2080 { 2081 mm->hiwater_rss = get_mm_rss(mm); 2082 } 2083 2084 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2085 struct mm_struct *mm) 2086 { 2087 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2088 2089 if (*maxrss < hiwater_rss) 2090 *maxrss = hiwater_rss; 2091 } 2092 2093 #if defined(SPLIT_RSS_COUNTING) 2094 void sync_mm_rss(struct mm_struct *mm); 2095 #else 2096 static inline void sync_mm_rss(struct mm_struct *mm) 2097 { 2098 } 2099 #endif 2100 2101 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2102 static inline int pte_special(pte_t pte) 2103 { 2104 return 0; 2105 } 2106 2107 static inline pte_t pte_mkspecial(pte_t pte) 2108 { 2109 return pte; 2110 } 2111 #endif 2112 2113 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2114 static inline int pte_devmap(pte_t pte) 2115 { 2116 return 0; 2117 } 2118 #endif 2119 2120 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2121 2122 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2123 spinlock_t **ptl); 2124 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2125 spinlock_t **ptl) 2126 { 2127 pte_t *ptep; 2128 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2129 return ptep; 2130 } 2131 2132 #ifdef __PAGETABLE_P4D_FOLDED 2133 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2134 unsigned long address) 2135 { 2136 return 0; 2137 } 2138 #else 2139 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2140 #endif 2141 2142 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2143 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2144 unsigned long address) 2145 { 2146 return 0; 2147 } 2148 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2149 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2150 2151 #else 2152 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2153 2154 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2155 { 2156 if (mm_pud_folded(mm)) 2157 return; 2158 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2159 } 2160 2161 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2162 { 2163 if (mm_pud_folded(mm)) 2164 return; 2165 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2166 } 2167 #endif 2168 2169 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2170 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2171 unsigned long address) 2172 { 2173 return 0; 2174 } 2175 2176 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2177 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2178 2179 #else 2180 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2181 2182 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2183 { 2184 if (mm_pmd_folded(mm)) 2185 return; 2186 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2187 } 2188 2189 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2190 { 2191 if (mm_pmd_folded(mm)) 2192 return; 2193 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2194 } 2195 #endif 2196 2197 #ifdef CONFIG_MMU 2198 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2199 { 2200 atomic_long_set(&mm->pgtables_bytes, 0); 2201 } 2202 2203 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2204 { 2205 return atomic_long_read(&mm->pgtables_bytes); 2206 } 2207 2208 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2209 { 2210 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2211 } 2212 2213 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2214 { 2215 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2216 } 2217 #else 2218 2219 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2220 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2221 { 2222 return 0; 2223 } 2224 2225 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2226 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2227 #endif 2228 2229 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2230 int __pte_alloc_kernel(pmd_t *pmd); 2231 2232 #if defined(CONFIG_MMU) 2233 2234 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2235 unsigned long address) 2236 { 2237 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2238 NULL : p4d_offset(pgd, address); 2239 } 2240 2241 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2242 unsigned long address) 2243 { 2244 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2245 NULL : pud_offset(p4d, address); 2246 } 2247 2248 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2249 { 2250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2251 NULL: pmd_offset(pud, address); 2252 } 2253 #endif /* CONFIG_MMU */ 2254 2255 #if USE_SPLIT_PTE_PTLOCKS 2256 #if ALLOC_SPLIT_PTLOCKS 2257 void __init ptlock_cache_init(void); 2258 extern bool ptlock_alloc(struct page *page); 2259 extern void ptlock_free(struct page *page); 2260 2261 static inline spinlock_t *ptlock_ptr(struct page *page) 2262 { 2263 return page->ptl; 2264 } 2265 #else /* ALLOC_SPLIT_PTLOCKS */ 2266 static inline void ptlock_cache_init(void) 2267 { 2268 } 2269 2270 static inline bool ptlock_alloc(struct page *page) 2271 { 2272 return true; 2273 } 2274 2275 static inline void ptlock_free(struct page *page) 2276 { 2277 } 2278 2279 static inline spinlock_t *ptlock_ptr(struct page *page) 2280 { 2281 return &page->ptl; 2282 } 2283 #endif /* ALLOC_SPLIT_PTLOCKS */ 2284 2285 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2286 { 2287 return ptlock_ptr(pmd_page(*pmd)); 2288 } 2289 2290 static inline bool ptlock_init(struct page *page) 2291 { 2292 /* 2293 * prep_new_page() initialize page->private (and therefore page->ptl) 2294 * with 0. Make sure nobody took it in use in between. 2295 * 2296 * It can happen if arch try to use slab for page table allocation: 2297 * slab code uses page->slab_cache, which share storage with page->ptl. 2298 */ 2299 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2300 if (!ptlock_alloc(page)) 2301 return false; 2302 spin_lock_init(ptlock_ptr(page)); 2303 return true; 2304 } 2305 2306 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2307 /* 2308 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2309 */ 2310 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2311 { 2312 return &mm->page_table_lock; 2313 } 2314 static inline void ptlock_cache_init(void) {} 2315 static inline bool ptlock_init(struct page *page) { return true; } 2316 static inline void ptlock_free(struct page *page) {} 2317 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2318 2319 static inline void pgtable_init(void) 2320 { 2321 ptlock_cache_init(); 2322 pgtable_cache_init(); 2323 } 2324 2325 static inline bool pgtable_pte_page_ctor(struct page *page) 2326 { 2327 if (!ptlock_init(page)) 2328 return false; 2329 __SetPageTable(page); 2330 inc_lruvec_page_state(page, NR_PAGETABLE); 2331 return true; 2332 } 2333 2334 static inline void pgtable_pte_page_dtor(struct page *page) 2335 { 2336 ptlock_free(page); 2337 __ClearPageTable(page); 2338 dec_lruvec_page_state(page, NR_PAGETABLE); 2339 } 2340 2341 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2342 ({ \ 2343 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2344 pte_t *__pte = pte_offset_map(pmd, address); \ 2345 *(ptlp) = __ptl; \ 2346 spin_lock(__ptl); \ 2347 __pte; \ 2348 }) 2349 2350 #define pte_unmap_unlock(pte, ptl) do { \ 2351 spin_unlock(ptl); \ 2352 pte_unmap(pte); \ 2353 } while (0) 2354 2355 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2356 2357 #define pte_alloc_map(mm, pmd, address) \ 2358 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2359 2360 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2361 (pte_alloc(mm, pmd) ? \ 2362 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2363 2364 #define pte_alloc_kernel(pmd, address) \ 2365 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2366 NULL: pte_offset_kernel(pmd, address)) 2367 2368 #if USE_SPLIT_PMD_PTLOCKS 2369 2370 static struct page *pmd_to_page(pmd_t *pmd) 2371 { 2372 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2373 return virt_to_page((void *)((unsigned long) pmd & mask)); 2374 } 2375 2376 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2377 { 2378 return ptlock_ptr(pmd_to_page(pmd)); 2379 } 2380 2381 static inline bool pmd_ptlock_init(struct page *page) 2382 { 2383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2384 page->pmd_huge_pte = NULL; 2385 #endif 2386 return ptlock_init(page); 2387 } 2388 2389 static inline void pmd_ptlock_free(struct page *page) 2390 { 2391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2392 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2393 #endif 2394 ptlock_free(page); 2395 } 2396 2397 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2398 2399 #else 2400 2401 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2402 { 2403 return &mm->page_table_lock; 2404 } 2405 2406 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2407 static inline void pmd_ptlock_free(struct page *page) {} 2408 2409 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2410 2411 #endif 2412 2413 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2414 { 2415 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2416 spin_lock(ptl); 2417 return ptl; 2418 } 2419 2420 static inline bool pgtable_pmd_page_ctor(struct page *page) 2421 { 2422 if (!pmd_ptlock_init(page)) 2423 return false; 2424 __SetPageTable(page); 2425 inc_lruvec_page_state(page, NR_PAGETABLE); 2426 return true; 2427 } 2428 2429 static inline void pgtable_pmd_page_dtor(struct page *page) 2430 { 2431 pmd_ptlock_free(page); 2432 __ClearPageTable(page); 2433 dec_lruvec_page_state(page, NR_PAGETABLE); 2434 } 2435 2436 /* 2437 * No scalability reason to split PUD locks yet, but follow the same pattern 2438 * as the PMD locks to make it easier if we decide to. The VM should not be 2439 * considered ready to switch to split PUD locks yet; there may be places 2440 * which need to be converted from page_table_lock. 2441 */ 2442 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2443 { 2444 return &mm->page_table_lock; 2445 } 2446 2447 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2448 { 2449 spinlock_t *ptl = pud_lockptr(mm, pud); 2450 2451 spin_lock(ptl); 2452 return ptl; 2453 } 2454 2455 extern void __init pagecache_init(void); 2456 extern void __init free_area_init_memoryless_node(int nid); 2457 extern void free_initmem(void); 2458 2459 /* 2460 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2461 * into the buddy system. The freed pages will be poisoned with pattern 2462 * "poison" if it's within range [0, UCHAR_MAX]. 2463 * Return pages freed into the buddy system. 2464 */ 2465 extern unsigned long free_reserved_area(void *start, void *end, 2466 int poison, const char *s); 2467 2468 extern void adjust_managed_page_count(struct page *page, long count); 2469 extern void mem_init_print_info(void); 2470 2471 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2472 2473 /* Free the reserved page into the buddy system, so it gets managed. */ 2474 static inline void free_reserved_page(struct page *page) 2475 { 2476 ClearPageReserved(page); 2477 init_page_count(page); 2478 __free_page(page); 2479 adjust_managed_page_count(page, 1); 2480 } 2481 #define free_highmem_page(page) free_reserved_page(page) 2482 2483 static inline void mark_page_reserved(struct page *page) 2484 { 2485 SetPageReserved(page); 2486 adjust_managed_page_count(page, -1); 2487 } 2488 2489 /* 2490 * Default method to free all the __init memory into the buddy system. 2491 * The freed pages will be poisoned with pattern "poison" if it's within 2492 * range [0, UCHAR_MAX]. 2493 * Return pages freed into the buddy system. 2494 */ 2495 static inline unsigned long free_initmem_default(int poison) 2496 { 2497 extern char __init_begin[], __init_end[]; 2498 2499 return free_reserved_area(&__init_begin, &__init_end, 2500 poison, "unused kernel image (initmem)"); 2501 } 2502 2503 static inline unsigned long get_num_physpages(void) 2504 { 2505 int nid; 2506 unsigned long phys_pages = 0; 2507 2508 for_each_online_node(nid) 2509 phys_pages += node_present_pages(nid); 2510 2511 return phys_pages; 2512 } 2513 2514 /* 2515 * Using memblock node mappings, an architecture may initialise its 2516 * zones, allocate the backing mem_map and account for memory holes in an 2517 * architecture independent manner. 2518 * 2519 * An architecture is expected to register range of page frames backed by 2520 * physical memory with memblock_add[_node]() before calling 2521 * free_area_init() passing in the PFN each zone ends at. At a basic 2522 * usage, an architecture is expected to do something like 2523 * 2524 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2525 * max_highmem_pfn}; 2526 * for_each_valid_physical_page_range() 2527 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2528 * free_area_init(max_zone_pfns); 2529 */ 2530 void free_area_init(unsigned long *max_zone_pfn); 2531 unsigned long node_map_pfn_alignment(void); 2532 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2533 unsigned long end_pfn); 2534 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2535 unsigned long end_pfn); 2536 extern void get_pfn_range_for_nid(unsigned int nid, 2537 unsigned long *start_pfn, unsigned long *end_pfn); 2538 extern unsigned long find_min_pfn_with_active_regions(void); 2539 2540 #ifndef CONFIG_NUMA 2541 static inline int early_pfn_to_nid(unsigned long pfn) 2542 { 2543 return 0; 2544 } 2545 #else 2546 /* please see mm/page_alloc.c */ 2547 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2548 #endif 2549 2550 extern void set_dma_reserve(unsigned long new_dma_reserve); 2551 extern void memmap_init_range(unsigned long, int, unsigned long, 2552 unsigned long, unsigned long, enum meminit_context, 2553 struct vmem_altmap *, int migratetype); 2554 extern void setup_per_zone_wmarks(void); 2555 extern void calculate_min_free_kbytes(void); 2556 extern int __meminit init_per_zone_wmark_min(void); 2557 extern void mem_init(void); 2558 extern void __init mmap_init(void); 2559 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2560 extern long si_mem_available(void); 2561 extern void si_meminfo(struct sysinfo * val); 2562 extern void si_meminfo_node(struct sysinfo *val, int nid); 2563 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2564 extern unsigned long arch_reserved_kernel_pages(void); 2565 #endif 2566 2567 extern __printf(3, 4) 2568 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2569 2570 extern void setup_per_cpu_pageset(void); 2571 2572 /* page_alloc.c */ 2573 extern int min_free_kbytes; 2574 extern int watermark_boost_factor; 2575 extern int watermark_scale_factor; 2576 extern bool arch_has_descending_max_zone_pfns(void); 2577 2578 /* nommu.c */ 2579 extern atomic_long_t mmap_pages_allocated; 2580 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2581 2582 /* interval_tree.c */ 2583 void vma_interval_tree_insert(struct vm_area_struct *node, 2584 struct rb_root_cached *root); 2585 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2586 struct vm_area_struct *prev, 2587 struct rb_root_cached *root); 2588 void vma_interval_tree_remove(struct vm_area_struct *node, 2589 struct rb_root_cached *root); 2590 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2591 unsigned long start, unsigned long last); 2592 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2593 unsigned long start, unsigned long last); 2594 2595 #define vma_interval_tree_foreach(vma, root, start, last) \ 2596 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2597 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2598 2599 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2600 struct rb_root_cached *root); 2601 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2602 struct rb_root_cached *root); 2603 struct anon_vma_chain * 2604 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2605 unsigned long start, unsigned long last); 2606 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2607 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2608 #ifdef CONFIG_DEBUG_VM_RB 2609 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2610 #endif 2611 2612 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2613 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2614 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2615 2616 /* mmap.c */ 2617 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2618 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2619 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2620 struct vm_area_struct *expand); 2621 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2622 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2623 { 2624 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2625 } 2626 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2627 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2628 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2629 struct mempolicy *, struct vm_userfaultfd_ctx, const char *); 2630 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2631 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2632 unsigned long addr, int new_below); 2633 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2634 unsigned long addr, int new_below); 2635 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2636 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2637 struct rb_node **, struct rb_node *); 2638 extern void unlink_file_vma(struct vm_area_struct *); 2639 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2640 unsigned long addr, unsigned long len, pgoff_t pgoff, 2641 bool *need_rmap_locks); 2642 extern void exit_mmap(struct mm_struct *); 2643 2644 static inline int check_data_rlimit(unsigned long rlim, 2645 unsigned long new, 2646 unsigned long start, 2647 unsigned long end_data, 2648 unsigned long start_data) 2649 { 2650 if (rlim < RLIM_INFINITY) { 2651 if (((new - start) + (end_data - start_data)) > rlim) 2652 return -ENOSPC; 2653 } 2654 2655 return 0; 2656 } 2657 2658 extern int mm_take_all_locks(struct mm_struct *mm); 2659 extern void mm_drop_all_locks(struct mm_struct *mm); 2660 2661 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2662 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2663 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2664 extern struct file *get_task_exe_file(struct task_struct *task); 2665 2666 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2667 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2668 2669 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2670 const struct vm_special_mapping *sm); 2671 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2672 unsigned long addr, unsigned long len, 2673 unsigned long flags, 2674 const struct vm_special_mapping *spec); 2675 /* This is an obsolete alternative to _install_special_mapping. */ 2676 extern int install_special_mapping(struct mm_struct *mm, 2677 unsigned long addr, unsigned long len, 2678 unsigned long flags, struct page **pages); 2679 2680 unsigned long randomize_stack_top(unsigned long stack_top); 2681 2682 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2683 2684 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2685 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2686 struct list_head *uf); 2687 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2688 unsigned long len, unsigned long prot, unsigned long flags, 2689 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2690 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2691 struct list_head *uf, bool downgrade); 2692 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2693 struct list_head *uf); 2694 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2695 2696 #ifdef CONFIG_MMU 2697 extern int __mm_populate(unsigned long addr, unsigned long len, 2698 int ignore_errors); 2699 static inline void mm_populate(unsigned long addr, unsigned long len) 2700 { 2701 /* Ignore errors */ 2702 (void) __mm_populate(addr, len, 1); 2703 } 2704 #else 2705 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2706 #endif 2707 2708 /* These take the mm semaphore themselves */ 2709 extern int __must_check vm_brk(unsigned long, unsigned long); 2710 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2711 extern int vm_munmap(unsigned long, size_t); 2712 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2713 unsigned long, unsigned long, 2714 unsigned long, unsigned long); 2715 2716 struct vm_unmapped_area_info { 2717 #define VM_UNMAPPED_AREA_TOPDOWN 1 2718 unsigned long flags; 2719 unsigned long length; 2720 unsigned long low_limit; 2721 unsigned long high_limit; 2722 unsigned long align_mask; 2723 unsigned long align_offset; 2724 }; 2725 2726 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2727 2728 /* truncate.c */ 2729 extern void truncate_inode_pages(struct address_space *, loff_t); 2730 extern void truncate_inode_pages_range(struct address_space *, 2731 loff_t lstart, loff_t lend); 2732 extern void truncate_inode_pages_final(struct address_space *); 2733 2734 /* generic vm_area_ops exported for stackable file systems */ 2735 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2736 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2737 pgoff_t start_pgoff, pgoff_t end_pgoff); 2738 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2739 2740 extern unsigned long stack_guard_gap; 2741 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2742 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2743 2744 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2745 extern int expand_downwards(struct vm_area_struct *vma, 2746 unsigned long address); 2747 #if VM_GROWSUP 2748 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2749 #else 2750 #define expand_upwards(vma, address) (0) 2751 #endif 2752 2753 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2754 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2755 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2756 struct vm_area_struct **pprev); 2757 2758 /** 2759 * find_vma_intersection() - Look up the first VMA which intersects the interval 2760 * @mm: The process address space. 2761 * @start_addr: The inclusive start user address. 2762 * @end_addr: The exclusive end user address. 2763 * 2764 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2765 * start_addr < end_addr. 2766 */ 2767 static inline 2768 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2769 unsigned long start_addr, 2770 unsigned long end_addr) 2771 { 2772 struct vm_area_struct *vma = find_vma(mm, start_addr); 2773 2774 if (vma && end_addr <= vma->vm_start) 2775 vma = NULL; 2776 return vma; 2777 } 2778 2779 /** 2780 * vma_lookup() - Find a VMA at a specific address 2781 * @mm: The process address space. 2782 * @addr: The user address. 2783 * 2784 * Return: The vm_area_struct at the given address, %NULL otherwise. 2785 */ 2786 static inline 2787 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2788 { 2789 struct vm_area_struct *vma = find_vma(mm, addr); 2790 2791 if (vma && addr < vma->vm_start) 2792 vma = NULL; 2793 2794 return vma; 2795 } 2796 2797 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2798 { 2799 unsigned long vm_start = vma->vm_start; 2800 2801 if (vma->vm_flags & VM_GROWSDOWN) { 2802 vm_start -= stack_guard_gap; 2803 if (vm_start > vma->vm_start) 2804 vm_start = 0; 2805 } 2806 return vm_start; 2807 } 2808 2809 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2810 { 2811 unsigned long vm_end = vma->vm_end; 2812 2813 if (vma->vm_flags & VM_GROWSUP) { 2814 vm_end += stack_guard_gap; 2815 if (vm_end < vma->vm_end) 2816 vm_end = -PAGE_SIZE; 2817 } 2818 return vm_end; 2819 } 2820 2821 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2822 { 2823 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2824 } 2825 2826 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2827 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2828 unsigned long vm_start, unsigned long vm_end) 2829 { 2830 struct vm_area_struct *vma = find_vma(mm, vm_start); 2831 2832 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2833 vma = NULL; 2834 2835 return vma; 2836 } 2837 2838 static inline bool range_in_vma(struct vm_area_struct *vma, 2839 unsigned long start, unsigned long end) 2840 { 2841 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2842 } 2843 2844 #ifdef CONFIG_MMU 2845 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2846 void vma_set_page_prot(struct vm_area_struct *vma); 2847 #else 2848 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2849 { 2850 return __pgprot(0); 2851 } 2852 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2853 { 2854 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2855 } 2856 #endif 2857 2858 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2859 2860 #ifdef CONFIG_NUMA_BALANCING 2861 unsigned long change_prot_numa(struct vm_area_struct *vma, 2862 unsigned long start, unsigned long end); 2863 #endif 2864 2865 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2866 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2867 unsigned long pfn, unsigned long size, pgprot_t); 2868 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2869 unsigned long pfn, unsigned long size, pgprot_t prot); 2870 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2871 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2872 struct page **pages, unsigned long *num); 2873 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2874 unsigned long num); 2875 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2876 unsigned long num); 2877 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2878 unsigned long pfn); 2879 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2880 unsigned long pfn, pgprot_t pgprot); 2881 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2882 pfn_t pfn); 2883 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2884 pfn_t pfn, pgprot_t pgprot); 2885 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2886 unsigned long addr, pfn_t pfn); 2887 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2888 2889 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2890 unsigned long addr, struct page *page) 2891 { 2892 int err = vm_insert_page(vma, addr, page); 2893 2894 if (err == -ENOMEM) 2895 return VM_FAULT_OOM; 2896 if (err < 0 && err != -EBUSY) 2897 return VM_FAULT_SIGBUS; 2898 2899 return VM_FAULT_NOPAGE; 2900 } 2901 2902 #ifndef io_remap_pfn_range 2903 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2904 unsigned long addr, unsigned long pfn, 2905 unsigned long size, pgprot_t prot) 2906 { 2907 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2908 } 2909 #endif 2910 2911 static inline vm_fault_t vmf_error(int err) 2912 { 2913 if (err == -ENOMEM) 2914 return VM_FAULT_OOM; 2915 return VM_FAULT_SIGBUS; 2916 } 2917 2918 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2919 unsigned int foll_flags); 2920 2921 #define FOLL_WRITE 0x01 /* check pte is writable */ 2922 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2923 #define FOLL_GET 0x04 /* do get_page on page */ 2924 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2925 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2926 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2927 * and return without waiting upon it */ 2928 #define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */ 2929 #define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2930 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2931 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2932 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2933 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2934 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2935 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2936 #define FOLL_COW 0x4000 /* internal GUP flag */ 2937 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2938 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2939 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2940 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2941 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2942 2943 /* 2944 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2945 * other. Here is what they mean, and how to use them: 2946 * 2947 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2948 * period _often_ under userspace control. This is in contrast to 2949 * iov_iter_get_pages(), whose usages are transient. 2950 * 2951 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2952 * lifetime enforced by the filesystem and we need guarantees that longterm 2953 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2954 * the filesystem. Ideas for this coordination include revoking the longterm 2955 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2956 * added after the problem with filesystems was found FS DAX VMAs are 2957 * specifically failed. Filesystem pages are still subject to bugs and use of 2958 * FOLL_LONGTERM should be avoided on those pages. 2959 * 2960 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2961 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2962 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2963 * is due to an incompatibility with the FS DAX check and 2964 * FAULT_FLAG_ALLOW_RETRY. 2965 * 2966 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2967 * that region. And so, CMA attempts to migrate the page before pinning, when 2968 * FOLL_LONGTERM is specified. 2969 * 2970 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2971 * but an additional pin counting system) will be invoked. This is intended for 2972 * anything that gets a page reference and then touches page data (for example, 2973 * Direct IO). This lets the filesystem know that some non-file-system entity is 2974 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2975 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2976 * a call to unpin_user_page(). 2977 * 2978 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2979 * and separate refcounting mechanisms, however, and that means that each has 2980 * its own acquire and release mechanisms: 2981 * 2982 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2983 * 2984 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2985 * 2986 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2987 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2988 * calls applied to them, and that's perfectly OK. This is a constraint on the 2989 * callers, not on the pages.) 2990 * 2991 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2992 * directly by the caller. That's in order to help avoid mismatches when 2993 * releasing pages: get_user_pages*() pages must be released via put_page(), 2994 * while pin_user_pages*() pages must be released via unpin_user_page(). 2995 * 2996 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2997 */ 2998 2999 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3000 { 3001 if (vm_fault & VM_FAULT_OOM) 3002 return -ENOMEM; 3003 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3004 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3005 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3006 return -EFAULT; 3007 return 0; 3008 } 3009 3010 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3011 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3012 unsigned long size, pte_fn_t fn, void *data); 3013 extern int apply_to_existing_page_range(struct mm_struct *mm, 3014 unsigned long address, unsigned long size, 3015 pte_fn_t fn, void *data); 3016 3017 extern void init_mem_debugging_and_hardening(void); 3018 #ifdef CONFIG_PAGE_POISONING 3019 extern void __kernel_poison_pages(struct page *page, int numpages); 3020 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3021 extern bool _page_poisoning_enabled_early; 3022 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3023 static inline bool page_poisoning_enabled(void) 3024 { 3025 return _page_poisoning_enabled_early; 3026 } 3027 /* 3028 * For use in fast paths after init_mem_debugging() has run, or when a 3029 * false negative result is not harmful when called too early. 3030 */ 3031 static inline bool page_poisoning_enabled_static(void) 3032 { 3033 return static_branch_unlikely(&_page_poisoning_enabled); 3034 } 3035 static inline void kernel_poison_pages(struct page *page, int numpages) 3036 { 3037 if (page_poisoning_enabled_static()) 3038 __kernel_poison_pages(page, numpages); 3039 } 3040 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3041 { 3042 if (page_poisoning_enabled_static()) 3043 __kernel_unpoison_pages(page, numpages); 3044 } 3045 #else 3046 static inline bool page_poisoning_enabled(void) { return false; } 3047 static inline bool page_poisoning_enabled_static(void) { return false; } 3048 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3049 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3050 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3051 #endif 3052 3053 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3054 static inline bool want_init_on_alloc(gfp_t flags) 3055 { 3056 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3057 &init_on_alloc)) 3058 return true; 3059 return flags & __GFP_ZERO; 3060 } 3061 3062 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3063 static inline bool want_init_on_free(void) 3064 { 3065 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3066 &init_on_free); 3067 } 3068 3069 extern bool _debug_pagealloc_enabled_early; 3070 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3071 3072 static inline bool debug_pagealloc_enabled(void) 3073 { 3074 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3075 _debug_pagealloc_enabled_early; 3076 } 3077 3078 /* 3079 * For use in fast paths after init_debug_pagealloc() has run, or when a 3080 * false negative result is not harmful when called too early. 3081 */ 3082 static inline bool debug_pagealloc_enabled_static(void) 3083 { 3084 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3085 return false; 3086 3087 return static_branch_unlikely(&_debug_pagealloc_enabled); 3088 } 3089 3090 #ifdef CONFIG_DEBUG_PAGEALLOC 3091 /* 3092 * To support DEBUG_PAGEALLOC architecture must ensure that 3093 * __kernel_map_pages() never fails 3094 */ 3095 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3096 3097 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3098 { 3099 if (debug_pagealloc_enabled_static()) 3100 __kernel_map_pages(page, numpages, 1); 3101 } 3102 3103 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3104 { 3105 if (debug_pagealloc_enabled_static()) 3106 __kernel_map_pages(page, numpages, 0); 3107 } 3108 #else /* CONFIG_DEBUG_PAGEALLOC */ 3109 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3110 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3111 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3112 3113 #ifdef __HAVE_ARCH_GATE_AREA 3114 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3115 extern int in_gate_area_no_mm(unsigned long addr); 3116 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3117 #else 3118 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3119 { 3120 return NULL; 3121 } 3122 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3123 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3124 { 3125 return 0; 3126 } 3127 #endif /* __HAVE_ARCH_GATE_AREA */ 3128 3129 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3130 3131 #ifdef CONFIG_SYSCTL 3132 extern int sysctl_drop_caches; 3133 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3134 loff_t *); 3135 #endif 3136 3137 void drop_slab(void); 3138 3139 #ifndef CONFIG_MMU 3140 #define randomize_va_space 0 3141 #else 3142 extern int randomize_va_space; 3143 #endif 3144 3145 const char * arch_vma_name(struct vm_area_struct *vma); 3146 #ifdef CONFIG_MMU 3147 void print_vma_addr(char *prefix, unsigned long rip); 3148 #else 3149 static inline void print_vma_addr(char *prefix, unsigned long rip) 3150 { 3151 } 3152 #endif 3153 3154 int vmemmap_remap_free(unsigned long start, unsigned long end, 3155 unsigned long reuse); 3156 int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3157 unsigned long reuse, gfp_t gfp_mask); 3158 3159 void *sparse_buffer_alloc(unsigned long size); 3160 struct page * __populate_section_memmap(unsigned long pfn, 3161 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3162 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3163 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3164 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3165 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3166 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3167 struct vmem_altmap *altmap); 3168 void *vmemmap_alloc_block(unsigned long size, int node); 3169 struct vmem_altmap; 3170 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3171 struct vmem_altmap *altmap); 3172 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3173 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3174 int node, struct vmem_altmap *altmap); 3175 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3176 struct vmem_altmap *altmap); 3177 void vmemmap_populate_print_last(void); 3178 #ifdef CONFIG_MEMORY_HOTPLUG 3179 void vmemmap_free(unsigned long start, unsigned long end, 3180 struct vmem_altmap *altmap); 3181 #endif 3182 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3183 unsigned long nr_pages); 3184 3185 enum mf_flags { 3186 MF_COUNT_INCREASED = 1 << 0, 3187 MF_ACTION_REQUIRED = 1 << 1, 3188 MF_MUST_KILL = 1 << 2, 3189 MF_SOFT_OFFLINE = 1 << 3, 3190 MF_UNPOISON = 1 << 4, 3191 }; 3192 extern int memory_failure(unsigned long pfn, int flags); 3193 extern void memory_failure_queue(unsigned long pfn, int flags); 3194 extern void memory_failure_queue_kick(int cpu); 3195 extern int unpoison_memory(unsigned long pfn); 3196 extern int sysctl_memory_failure_early_kill; 3197 extern int sysctl_memory_failure_recovery; 3198 extern void shake_page(struct page *p); 3199 extern atomic_long_t num_poisoned_pages __read_mostly; 3200 extern int soft_offline_page(unsigned long pfn, int flags); 3201 3202 #ifndef arch_memory_failure 3203 static inline int arch_memory_failure(unsigned long pfn, int flags) 3204 { 3205 return -ENXIO; 3206 } 3207 #endif 3208 3209 #ifndef arch_is_platform_page 3210 static inline bool arch_is_platform_page(u64 paddr) 3211 { 3212 return false; 3213 } 3214 #endif 3215 3216 /* 3217 * Error handlers for various types of pages. 3218 */ 3219 enum mf_result { 3220 MF_IGNORED, /* Error: cannot be handled */ 3221 MF_FAILED, /* Error: handling failed */ 3222 MF_DELAYED, /* Will be handled later */ 3223 MF_RECOVERED, /* Successfully recovered */ 3224 }; 3225 3226 enum mf_action_page_type { 3227 MF_MSG_KERNEL, 3228 MF_MSG_KERNEL_HIGH_ORDER, 3229 MF_MSG_SLAB, 3230 MF_MSG_DIFFERENT_COMPOUND, 3231 MF_MSG_HUGE, 3232 MF_MSG_FREE_HUGE, 3233 MF_MSG_NON_PMD_HUGE, 3234 MF_MSG_UNMAP_FAILED, 3235 MF_MSG_DIRTY_SWAPCACHE, 3236 MF_MSG_CLEAN_SWAPCACHE, 3237 MF_MSG_DIRTY_MLOCKED_LRU, 3238 MF_MSG_CLEAN_MLOCKED_LRU, 3239 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3240 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3241 MF_MSG_DIRTY_LRU, 3242 MF_MSG_CLEAN_LRU, 3243 MF_MSG_TRUNCATED_LRU, 3244 MF_MSG_BUDDY, 3245 MF_MSG_DAX, 3246 MF_MSG_UNSPLIT_THP, 3247 MF_MSG_UNKNOWN, 3248 }; 3249 3250 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3251 extern void clear_huge_page(struct page *page, 3252 unsigned long addr_hint, 3253 unsigned int pages_per_huge_page); 3254 extern void copy_user_huge_page(struct page *dst, struct page *src, 3255 unsigned long addr_hint, 3256 struct vm_area_struct *vma, 3257 unsigned int pages_per_huge_page); 3258 extern long copy_huge_page_from_user(struct page *dst_page, 3259 const void __user *usr_src, 3260 unsigned int pages_per_huge_page, 3261 bool allow_pagefault); 3262 3263 /** 3264 * vma_is_special_huge - Are transhuge page-table entries considered special? 3265 * @vma: Pointer to the struct vm_area_struct to consider 3266 * 3267 * Whether transhuge page-table entries are considered "special" following 3268 * the definition in vm_normal_page(). 3269 * 3270 * Return: true if transhuge page-table entries should be considered special, 3271 * false otherwise. 3272 */ 3273 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3274 { 3275 return vma_is_dax(vma) || (vma->vm_file && 3276 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3277 } 3278 3279 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3280 3281 #ifdef CONFIG_DEBUG_PAGEALLOC 3282 extern unsigned int _debug_guardpage_minorder; 3283 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3284 3285 static inline unsigned int debug_guardpage_minorder(void) 3286 { 3287 return _debug_guardpage_minorder; 3288 } 3289 3290 static inline bool debug_guardpage_enabled(void) 3291 { 3292 return static_branch_unlikely(&_debug_guardpage_enabled); 3293 } 3294 3295 static inline bool page_is_guard(struct page *page) 3296 { 3297 if (!debug_guardpage_enabled()) 3298 return false; 3299 3300 return PageGuard(page); 3301 } 3302 #else 3303 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3304 static inline bool debug_guardpage_enabled(void) { return false; } 3305 static inline bool page_is_guard(struct page *page) { return false; } 3306 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3307 3308 #if MAX_NUMNODES > 1 3309 void __init setup_nr_node_ids(void); 3310 #else 3311 static inline void setup_nr_node_ids(void) {} 3312 #endif 3313 3314 extern int memcmp_pages(struct page *page1, struct page *page2); 3315 3316 static inline int pages_identical(struct page *page1, struct page *page2) 3317 { 3318 return !memcmp_pages(page1, page2); 3319 } 3320 3321 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3322 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3323 pgoff_t first_index, pgoff_t nr, 3324 pgoff_t bitmap_pgoff, 3325 unsigned long *bitmap, 3326 pgoff_t *start, 3327 pgoff_t *end); 3328 3329 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3330 pgoff_t first_index, pgoff_t nr); 3331 #endif 3332 3333 extern int sysctl_nr_trim_pages; 3334 3335 #ifdef CONFIG_PRINTK 3336 void mem_dump_obj(void *object); 3337 #else 3338 static inline void mem_dump_obj(void *object) {} 3339 #endif 3340 3341 /** 3342 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3343 * @seals: the seals to check 3344 * @vma: the vma to operate on 3345 * 3346 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3347 * the vma flags. Return 0 if check pass, or <0 for errors. 3348 */ 3349 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3350 { 3351 if (seals & F_SEAL_FUTURE_WRITE) { 3352 /* 3353 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3354 * "future write" seal active. 3355 */ 3356 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3357 return -EPERM; 3358 3359 /* 3360 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3361 * MAP_SHARED and read-only, take care to not allow mprotect to 3362 * revert protections on such mappings. Do this only for shared 3363 * mappings. For private mappings, don't need to mask 3364 * VM_MAYWRITE as we still want them to be COW-writable. 3365 */ 3366 if (vma->vm_flags & VM_SHARED) 3367 vma->vm_flags &= ~(VM_MAYWRITE); 3368 } 3369 3370 return 0; 3371 } 3372 3373 #ifdef CONFIG_ANON_VMA_NAME 3374 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3375 unsigned long len_in, const char *name); 3376 #else 3377 static inline int 3378 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3379 unsigned long len_in, const char *name) { 3380 return 0; 3381 } 3382 #endif 3383 3384 #endif /* __KERNEL__ */ 3385 #endif /* _LINUX_MM_H */ 3386