xref: /linux-6.15/include/linux/mm.h (revision bbb03029)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26 
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34 
35 void init_mm_internals(void);
36 
37 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
38 extern unsigned long max_mapnr;
39 
40 static inline void set_max_mapnr(unsigned long limit)
41 {
42 	max_mapnr = limit;
43 }
44 #else
45 static inline void set_max_mapnr(unsigned long limit) { }
46 #endif
47 
48 extern unsigned long totalram_pages;
49 extern void * high_memory;
50 extern int page_cluster;
51 
52 #ifdef CONFIG_SYSCTL
53 extern int sysctl_legacy_va_layout;
54 #else
55 #define sysctl_legacy_va_layout 0
56 #endif
57 
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 extern const int mmap_rnd_bits_min;
60 extern const int mmap_rnd_bits_max;
61 extern int mmap_rnd_bits __read_mostly;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 extern const int mmap_rnd_compat_bits_min;
65 extern const int mmap_rnd_compat_bits_max;
66 extern int mmap_rnd_compat_bits __read_mostly;
67 #endif
68 
69 #include <asm/page.h>
70 #include <asm/pgtable.h>
71 #include <asm/processor.h>
72 
73 #ifndef __pa_symbol
74 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
75 #endif
76 
77 #ifndef page_to_virt
78 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
79 #endif
80 
81 #ifndef lm_alias
82 #define lm_alias(x)	__va(__pa_symbol(x))
83 #endif
84 
85 /*
86  * To prevent common memory management code establishing
87  * a zero page mapping on a read fault.
88  * This macro should be defined within <asm/pgtable.h>.
89  * s390 does this to prevent multiplexing of hardware bits
90  * related to the physical page in case of virtualization.
91  */
92 #ifndef mm_forbids_zeropage
93 #define mm_forbids_zeropage(X)	(0)
94 #endif
95 
96 /*
97  * Default maximum number of active map areas, this limits the number of vmas
98  * per mm struct. Users can overwrite this number by sysctl but there is a
99  * problem.
100  *
101  * When a program's coredump is generated as ELF format, a section is created
102  * per a vma. In ELF, the number of sections is represented in unsigned short.
103  * This means the number of sections should be smaller than 65535 at coredump.
104  * Because the kernel adds some informative sections to a image of program at
105  * generating coredump, we need some margin. The number of extra sections is
106  * 1-3 now and depends on arch. We use "5" as safe margin, here.
107  *
108  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109  * not a hard limit any more. Although some userspace tools can be surprised by
110  * that.
111  */
112 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
113 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114 
115 extern int sysctl_max_map_count;
116 
117 extern unsigned long sysctl_user_reserve_kbytes;
118 extern unsigned long sysctl_admin_reserve_kbytes;
119 
120 extern int sysctl_overcommit_memory;
121 extern int sysctl_overcommit_ratio;
122 extern unsigned long sysctl_overcommit_kbytes;
123 
124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 				    size_t *, loff_t *);
126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 				    size_t *, loff_t *);
128 
129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130 
131 /* to align the pointer to the (next) page boundary */
132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133 
134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
135 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
136 
137 /*
138  * Linux kernel virtual memory manager primitives.
139  * The idea being to have a "virtual" mm in the same way
140  * we have a virtual fs - giving a cleaner interface to the
141  * mm details, and allowing different kinds of memory mappings
142  * (from shared memory to executable loading to arbitrary
143  * mmap() functions).
144  */
145 
146 extern struct kmem_cache *vm_area_cachep;
147 
148 #ifndef CONFIG_MMU
149 extern struct rb_root nommu_region_tree;
150 extern struct rw_semaphore nommu_region_sem;
151 
152 extern unsigned int kobjsize(const void *objp);
153 #endif
154 
155 /*
156  * vm_flags in vm_area_struct, see mm_types.h.
157  * When changing, update also include/trace/events/mmflags.h
158  */
159 #define VM_NONE		0x00000000
160 
161 #define VM_READ		0x00000001	/* currently active flags */
162 #define VM_WRITE	0x00000002
163 #define VM_EXEC		0x00000004
164 #define VM_SHARED	0x00000008
165 
166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
167 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
168 #define VM_MAYWRITE	0x00000020
169 #define VM_MAYEXEC	0x00000040
170 #define VM_MAYSHARE	0x00000080
171 
172 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
173 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
174 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
175 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
176 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
177 
178 #define VM_LOCKED	0x00002000
179 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
180 
181 					/* Used by sys_madvise() */
182 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
183 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
184 
185 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
186 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
187 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
188 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
189 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
190 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
191 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
192 #define VM_ARCH_2	0x02000000
193 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
194 
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
197 #else
198 # define VM_SOFTDIRTY	0
199 #endif
200 
201 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
202 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
203 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
204 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
205 
206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
212 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
213 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
214 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216 
217 #if defined(CONFIG_X86)
218 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
221 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
222 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1
223 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
224 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
225 #endif
226 #elif defined(CONFIG_PPC)
227 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
228 #elif defined(CONFIG_PARISC)
229 # define VM_GROWSUP	VM_ARCH_1
230 #elif defined(CONFIG_METAG)
231 # define VM_GROWSUP	VM_ARCH_1
232 #elif defined(CONFIG_IA64)
233 # define VM_GROWSUP	VM_ARCH_1
234 #elif !defined(CONFIG_MMU)
235 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
236 #endif
237 
238 #if defined(CONFIG_X86)
239 /* MPX specific bounds table or bounds directory */
240 # define VM_MPX		VM_ARCH_2
241 #endif
242 
243 #ifndef VM_GROWSUP
244 # define VM_GROWSUP	VM_NONE
245 #endif
246 
247 /* Bits set in the VMA until the stack is in its final location */
248 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
249 
250 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252 #endif
253 
254 #ifdef CONFIG_STACK_GROWSUP
255 #define VM_STACK	VM_GROWSUP
256 #else
257 #define VM_STACK	VM_GROWSDOWN
258 #endif
259 
260 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261 
262 /*
263  * Special vmas that are non-mergable, non-mlock()able.
264  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
265  */
266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
267 
268 /* This mask defines which mm->def_flags a process can inherit its parent */
269 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
270 
271 /* This mask is used to clear all the VMA flags used by mlock */
272 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
273 
274 /*
275  * mapping from the currently active vm_flags protection bits (the
276  * low four bits) to a page protection mask..
277  */
278 extern pgprot_t protection_map[16];
279 
280 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
281 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
282 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
283 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
284 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
285 #define FAULT_FLAG_TRIED	0x20	/* Second try */
286 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
287 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
288 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
289 
290 #define FAULT_FLAG_TRACE \
291 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
292 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
293 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
294 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
295 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
296 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
297 	{ FAULT_FLAG_USER,		"USER" }, \
298 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
299 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
300 
301 /*
302  * vm_fault is filled by the the pagefault handler and passed to the vma's
303  * ->fault function. The vma's ->fault is responsible for returning a bitmask
304  * of VM_FAULT_xxx flags that give details about how the fault was handled.
305  *
306  * MM layer fills up gfp_mask for page allocations but fault handler might
307  * alter it if its implementation requires a different allocation context.
308  *
309  * pgoff should be used in favour of virtual_address, if possible.
310  */
311 struct vm_fault {
312 	struct vm_area_struct *vma;	/* Target VMA */
313 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
314 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
315 	pgoff_t pgoff;			/* Logical page offset based on vma */
316 	unsigned long address;		/* Faulting virtual address */
317 	pmd_t *pmd;			/* Pointer to pmd entry matching
318 					 * the 'address' */
319 	pud_t *pud;			/* Pointer to pud entry matching
320 					 * the 'address'
321 					 */
322 	pte_t orig_pte;			/* Value of PTE at the time of fault */
323 
324 	struct page *cow_page;		/* Page handler may use for COW fault */
325 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
326 	struct page *page;		/* ->fault handlers should return a
327 					 * page here, unless VM_FAULT_NOPAGE
328 					 * is set (which is also implied by
329 					 * VM_FAULT_ERROR).
330 					 */
331 	/* These three entries are valid only while holding ptl lock */
332 	pte_t *pte;			/* Pointer to pte entry matching
333 					 * the 'address'. NULL if the page
334 					 * table hasn't been allocated.
335 					 */
336 	spinlock_t *ptl;		/* Page table lock.
337 					 * Protects pte page table if 'pte'
338 					 * is not NULL, otherwise pmd.
339 					 */
340 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
341 					 * vm_ops->map_pages() calls
342 					 * alloc_set_pte() from atomic context.
343 					 * do_fault_around() pre-allocates
344 					 * page table to avoid allocation from
345 					 * atomic context.
346 					 */
347 };
348 
349 /* page entry size for vm->huge_fault() */
350 enum page_entry_size {
351 	PE_SIZE_PTE = 0,
352 	PE_SIZE_PMD,
353 	PE_SIZE_PUD,
354 };
355 
356 /*
357  * These are the virtual MM functions - opening of an area, closing and
358  * unmapping it (needed to keep files on disk up-to-date etc), pointer
359  * to the functions called when a no-page or a wp-page exception occurs.
360  */
361 struct vm_operations_struct {
362 	void (*open)(struct vm_area_struct * area);
363 	void (*close)(struct vm_area_struct * area);
364 	int (*mremap)(struct vm_area_struct * area);
365 	int (*fault)(struct vm_fault *vmf);
366 	int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
367 	void (*map_pages)(struct vm_fault *vmf,
368 			pgoff_t start_pgoff, pgoff_t end_pgoff);
369 
370 	/* notification that a previously read-only page is about to become
371 	 * writable, if an error is returned it will cause a SIGBUS */
372 	int (*page_mkwrite)(struct vm_fault *vmf);
373 
374 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
375 	int (*pfn_mkwrite)(struct vm_fault *vmf);
376 
377 	/* called by access_process_vm when get_user_pages() fails, typically
378 	 * for use by special VMAs that can switch between memory and hardware
379 	 */
380 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 		      void *buf, int len, int write);
382 
383 	/* Called by the /proc/PID/maps code to ask the vma whether it
384 	 * has a special name.  Returning non-NULL will also cause this
385 	 * vma to be dumped unconditionally. */
386 	const char *(*name)(struct vm_area_struct *vma);
387 
388 #ifdef CONFIG_NUMA
389 	/*
390 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 	 * to hold the policy upon return.  Caller should pass NULL @new to
392 	 * remove a policy and fall back to surrounding context--i.e. do not
393 	 * install a MPOL_DEFAULT policy, nor the task or system default
394 	 * mempolicy.
395 	 */
396 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
397 
398 	/*
399 	 * get_policy() op must add reference [mpol_get()] to any policy at
400 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
401 	 * in mm/mempolicy.c will do this automatically.
402 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 	 * must return NULL--i.e., do not "fallback" to task or system default
406 	 * policy.
407 	 */
408 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 					unsigned long addr);
410 #endif
411 	/*
412 	 * Called by vm_normal_page() for special PTEs to find the
413 	 * page for @addr.  This is useful if the default behavior
414 	 * (using pte_page()) would not find the correct page.
415 	 */
416 	struct page *(*find_special_page)(struct vm_area_struct *vma,
417 					  unsigned long addr);
418 };
419 
420 struct mmu_gather;
421 struct inode;
422 
423 #define page_private(page)		((page)->private)
424 #define set_page_private(page, v)	((page)->private = (v))
425 
426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427 static inline int pmd_devmap(pmd_t pmd)
428 {
429 	return 0;
430 }
431 static inline int pud_devmap(pud_t pud)
432 {
433 	return 0;
434 }
435 static inline int pgd_devmap(pgd_t pgd)
436 {
437 	return 0;
438 }
439 #endif
440 
441 /*
442  * FIXME: take this include out, include page-flags.h in
443  * files which need it (119 of them)
444  */
445 #include <linux/page-flags.h>
446 #include <linux/huge_mm.h>
447 
448 /*
449  * Methods to modify the page usage count.
450  *
451  * What counts for a page usage:
452  * - cache mapping   (page->mapping)
453  * - private data    (page->private)
454  * - page mapped in a task's page tables, each mapping
455  *   is counted separately
456  *
457  * Also, many kernel routines increase the page count before a critical
458  * routine so they can be sure the page doesn't go away from under them.
459  */
460 
461 /*
462  * Drop a ref, return true if the refcount fell to zero (the page has no users)
463  */
464 static inline int put_page_testzero(struct page *page)
465 {
466 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
467 	return page_ref_dec_and_test(page);
468 }
469 
470 /*
471  * Try to grab a ref unless the page has a refcount of zero, return false if
472  * that is the case.
473  * This can be called when MMU is off so it must not access
474  * any of the virtual mappings.
475  */
476 static inline int get_page_unless_zero(struct page *page)
477 {
478 	return page_ref_add_unless(page, 1, 0);
479 }
480 
481 extern int page_is_ram(unsigned long pfn);
482 
483 enum {
484 	REGION_INTERSECTS,
485 	REGION_DISJOINT,
486 	REGION_MIXED,
487 };
488 
489 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
490 		      unsigned long desc);
491 
492 /* Support for virtually mapped pages */
493 struct page *vmalloc_to_page(const void *addr);
494 unsigned long vmalloc_to_pfn(const void *addr);
495 
496 /*
497  * Determine if an address is within the vmalloc range
498  *
499  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
500  * is no special casing required.
501  */
502 static inline bool is_vmalloc_addr(const void *x)
503 {
504 #ifdef CONFIG_MMU
505 	unsigned long addr = (unsigned long)x;
506 
507 	return addr >= VMALLOC_START && addr < VMALLOC_END;
508 #else
509 	return false;
510 #endif
511 }
512 #ifdef CONFIG_MMU
513 extern int is_vmalloc_or_module_addr(const void *x);
514 #else
515 static inline int is_vmalloc_or_module_addr(const void *x)
516 {
517 	return 0;
518 }
519 #endif
520 
521 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
522 static inline void *kvmalloc(size_t size, gfp_t flags)
523 {
524 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
525 }
526 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
527 {
528 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
529 }
530 static inline void *kvzalloc(size_t size, gfp_t flags)
531 {
532 	return kvmalloc(size, flags | __GFP_ZERO);
533 }
534 
535 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
536 {
537 	if (size != 0 && n > SIZE_MAX / size)
538 		return NULL;
539 
540 	return kvmalloc(n * size, flags);
541 }
542 
543 extern void kvfree(const void *addr);
544 
545 static inline atomic_t *compound_mapcount_ptr(struct page *page)
546 {
547 	return &page[1].compound_mapcount;
548 }
549 
550 static inline int compound_mapcount(struct page *page)
551 {
552 	VM_BUG_ON_PAGE(!PageCompound(page), page);
553 	page = compound_head(page);
554 	return atomic_read(compound_mapcount_ptr(page)) + 1;
555 }
556 
557 /*
558  * The atomic page->_mapcount, starts from -1: so that transitions
559  * both from it and to it can be tracked, using atomic_inc_and_test
560  * and atomic_add_negative(-1).
561  */
562 static inline void page_mapcount_reset(struct page *page)
563 {
564 	atomic_set(&(page)->_mapcount, -1);
565 }
566 
567 int __page_mapcount(struct page *page);
568 
569 static inline int page_mapcount(struct page *page)
570 {
571 	VM_BUG_ON_PAGE(PageSlab(page), page);
572 
573 	if (unlikely(PageCompound(page)))
574 		return __page_mapcount(page);
575 	return atomic_read(&page->_mapcount) + 1;
576 }
577 
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 int total_mapcount(struct page *page);
580 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
581 #else
582 static inline int total_mapcount(struct page *page)
583 {
584 	return page_mapcount(page);
585 }
586 static inline int page_trans_huge_mapcount(struct page *page,
587 					   int *total_mapcount)
588 {
589 	int mapcount = page_mapcount(page);
590 	if (total_mapcount)
591 		*total_mapcount = mapcount;
592 	return mapcount;
593 }
594 #endif
595 
596 static inline struct page *virt_to_head_page(const void *x)
597 {
598 	struct page *page = virt_to_page(x);
599 
600 	return compound_head(page);
601 }
602 
603 void __put_page(struct page *page);
604 
605 void put_pages_list(struct list_head *pages);
606 
607 void split_page(struct page *page, unsigned int order);
608 
609 /*
610  * Compound pages have a destructor function.  Provide a
611  * prototype for that function and accessor functions.
612  * These are _only_ valid on the head of a compound page.
613  */
614 typedef void compound_page_dtor(struct page *);
615 
616 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
617 enum compound_dtor_id {
618 	NULL_COMPOUND_DTOR,
619 	COMPOUND_PAGE_DTOR,
620 #ifdef CONFIG_HUGETLB_PAGE
621 	HUGETLB_PAGE_DTOR,
622 #endif
623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
624 	TRANSHUGE_PAGE_DTOR,
625 #endif
626 	NR_COMPOUND_DTORS,
627 };
628 extern compound_page_dtor * const compound_page_dtors[];
629 
630 static inline void set_compound_page_dtor(struct page *page,
631 		enum compound_dtor_id compound_dtor)
632 {
633 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
634 	page[1].compound_dtor = compound_dtor;
635 }
636 
637 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
638 {
639 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
640 	return compound_page_dtors[page[1].compound_dtor];
641 }
642 
643 static inline unsigned int compound_order(struct page *page)
644 {
645 	if (!PageHead(page))
646 		return 0;
647 	return page[1].compound_order;
648 }
649 
650 static inline void set_compound_order(struct page *page, unsigned int order)
651 {
652 	page[1].compound_order = order;
653 }
654 
655 void free_compound_page(struct page *page);
656 
657 #ifdef CONFIG_MMU
658 /*
659  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
660  * servicing faults for write access.  In the normal case, do always want
661  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
662  * that do not have writing enabled, when used by access_process_vm.
663  */
664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
665 {
666 	if (likely(vma->vm_flags & VM_WRITE))
667 		pte = pte_mkwrite(pte);
668 	return pte;
669 }
670 
671 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
672 		struct page *page);
673 int finish_fault(struct vm_fault *vmf);
674 int finish_mkwrite_fault(struct vm_fault *vmf);
675 #endif
676 
677 /*
678  * Multiple processes may "see" the same page. E.g. for untouched
679  * mappings of /dev/null, all processes see the same page full of
680  * zeroes, and text pages of executables and shared libraries have
681  * only one copy in memory, at most, normally.
682  *
683  * For the non-reserved pages, page_count(page) denotes a reference count.
684  *   page_count() == 0 means the page is free. page->lru is then used for
685  *   freelist management in the buddy allocator.
686  *   page_count() > 0  means the page has been allocated.
687  *
688  * Pages are allocated by the slab allocator in order to provide memory
689  * to kmalloc and kmem_cache_alloc. In this case, the management of the
690  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
691  * unless a particular usage is carefully commented. (the responsibility of
692  * freeing the kmalloc memory is the caller's, of course).
693  *
694  * A page may be used by anyone else who does a __get_free_page().
695  * In this case, page_count still tracks the references, and should only
696  * be used through the normal accessor functions. The top bits of page->flags
697  * and page->virtual store page management information, but all other fields
698  * are unused and could be used privately, carefully. The management of this
699  * page is the responsibility of the one who allocated it, and those who have
700  * subsequently been given references to it.
701  *
702  * The other pages (we may call them "pagecache pages") are completely
703  * managed by the Linux memory manager: I/O, buffers, swapping etc.
704  * The following discussion applies only to them.
705  *
706  * A pagecache page contains an opaque `private' member, which belongs to the
707  * page's address_space. Usually, this is the address of a circular list of
708  * the page's disk buffers. PG_private must be set to tell the VM to call
709  * into the filesystem to release these pages.
710  *
711  * A page may belong to an inode's memory mapping. In this case, page->mapping
712  * is the pointer to the inode, and page->index is the file offset of the page,
713  * in units of PAGE_SIZE.
714  *
715  * If pagecache pages are not associated with an inode, they are said to be
716  * anonymous pages. These may become associated with the swapcache, and in that
717  * case PG_swapcache is set, and page->private is an offset into the swapcache.
718  *
719  * In either case (swapcache or inode backed), the pagecache itself holds one
720  * reference to the page. Setting PG_private should also increment the
721  * refcount. The each user mapping also has a reference to the page.
722  *
723  * The pagecache pages are stored in a per-mapping radix tree, which is
724  * rooted at mapping->page_tree, and indexed by offset.
725  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
726  * lists, we instead now tag pages as dirty/writeback in the radix tree.
727  *
728  * All pagecache pages may be subject to I/O:
729  * - inode pages may need to be read from disk,
730  * - inode pages which have been modified and are MAP_SHARED may need
731  *   to be written back to the inode on disk,
732  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
733  *   modified may need to be swapped out to swap space and (later) to be read
734  *   back into memory.
735  */
736 
737 /*
738  * The zone field is never updated after free_area_init_core()
739  * sets it, so none of the operations on it need to be atomic.
740  */
741 
742 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
743 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
744 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
745 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
746 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
747 
748 /*
749  * Define the bit shifts to access each section.  For non-existent
750  * sections we define the shift as 0; that plus a 0 mask ensures
751  * the compiler will optimise away reference to them.
752  */
753 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
754 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
755 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
756 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
757 
758 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
759 #ifdef NODE_NOT_IN_PAGE_FLAGS
760 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
761 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
762 						SECTIONS_PGOFF : ZONES_PGOFF)
763 #else
764 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
765 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
766 						NODES_PGOFF : ZONES_PGOFF)
767 #endif
768 
769 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
770 
771 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
772 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
773 #endif
774 
775 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
776 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
777 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
778 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
779 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
780 
781 static inline enum zone_type page_zonenum(const struct page *page)
782 {
783 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
784 }
785 
786 #ifdef CONFIG_ZONE_DEVICE
787 static inline bool is_zone_device_page(const struct page *page)
788 {
789 	return page_zonenum(page) == ZONE_DEVICE;
790 }
791 #else
792 static inline bool is_zone_device_page(const struct page *page)
793 {
794 	return false;
795 }
796 #endif
797 
798 static inline void get_page(struct page *page)
799 {
800 	page = compound_head(page);
801 	/*
802 	 * Getting a normal page or the head of a compound page
803 	 * requires to already have an elevated page->_refcount.
804 	 */
805 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
806 	page_ref_inc(page);
807 }
808 
809 static inline void put_page(struct page *page)
810 {
811 	page = compound_head(page);
812 
813 	if (put_page_testzero(page))
814 		__put_page(page);
815 }
816 
817 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
818 #define SECTION_IN_PAGE_FLAGS
819 #endif
820 
821 /*
822  * The identification function is mainly used by the buddy allocator for
823  * determining if two pages could be buddies. We are not really identifying
824  * the zone since we could be using the section number id if we do not have
825  * node id available in page flags.
826  * We only guarantee that it will return the same value for two combinable
827  * pages in a zone.
828  */
829 static inline int page_zone_id(struct page *page)
830 {
831 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
832 }
833 
834 static inline int zone_to_nid(struct zone *zone)
835 {
836 #ifdef CONFIG_NUMA
837 	return zone->node;
838 #else
839 	return 0;
840 #endif
841 }
842 
843 #ifdef NODE_NOT_IN_PAGE_FLAGS
844 extern int page_to_nid(const struct page *page);
845 #else
846 static inline int page_to_nid(const struct page *page)
847 {
848 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
849 }
850 #endif
851 
852 #ifdef CONFIG_NUMA_BALANCING
853 static inline int cpu_pid_to_cpupid(int cpu, int pid)
854 {
855 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
856 }
857 
858 static inline int cpupid_to_pid(int cpupid)
859 {
860 	return cpupid & LAST__PID_MASK;
861 }
862 
863 static inline int cpupid_to_cpu(int cpupid)
864 {
865 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
866 }
867 
868 static inline int cpupid_to_nid(int cpupid)
869 {
870 	return cpu_to_node(cpupid_to_cpu(cpupid));
871 }
872 
873 static inline bool cpupid_pid_unset(int cpupid)
874 {
875 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
876 }
877 
878 static inline bool cpupid_cpu_unset(int cpupid)
879 {
880 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
881 }
882 
883 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
884 {
885 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
886 }
887 
888 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
889 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
890 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
891 {
892 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
893 }
894 
895 static inline int page_cpupid_last(struct page *page)
896 {
897 	return page->_last_cpupid;
898 }
899 static inline void page_cpupid_reset_last(struct page *page)
900 {
901 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
902 }
903 #else
904 static inline int page_cpupid_last(struct page *page)
905 {
906 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
907 }
908 
909 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
910 
911 static inline void page_cpupid_reset_last(struct page *page)
912 {
913 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
914 }
915 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
916 #else /* !CONFIG_NUMA_BALANCING */
917 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
918 {
919 	return page_to_nid(page); /* XXX */
920 }
921 
922 static inline int page_cpupid_last(struct page *page)
923 {
924 	return page_to_nid(page); /* XXX */
925 }
926 
927 static inline int cpupid_to_nid(int cpupid)
928 {
929 	return -1;
930 }
931 
932 static inline int cpupid_to_pid(int cpupid)
933 {
934 	return -1;
935 }
936 
937 static inline int cpupid_to_cpu(int cpupid)
938 {
939 	return -1;
940 }
941 
942 static inline int cpu_pid_to_cpupid(int nid, int pid)
943 {
944 	return -1;
945 }
946 
947 static inline bool cpupid_pid_unset(int cpupid)
948 {
949 	return 1;
950 }
951 
952 static inline void page_cpupid_reset_last(struct page *page)
953 {
954 }
955 
956 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
957 {
958 	return false;
959 }
960 #endif /* CONFIG_NUMA_BALANCING */
961 
962 static inline struct zone *page_zone(const struct page *page)
963 {
964 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
965 }
966 
967 static inline pg_data_t *page_pgdat(const struct page *page)
968 {
969 	return NODE_DATA(page_to_nid(page));
970 }
971 
972 #ifdef SECTION_IN_PAGE_FLAGS
973 static inline void set_page_section(struct page *page, unsigned long section)
974 {
975 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
976 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
977 }
978 
979 static inline unsigned long page_to_section(const struct page *page)
980 {
981 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
982 }
983 #endif
984 
985 static inline void set_page_zone(struct page *page, enum zone_type zone)
986 {
987 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
988 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
989 }
990 
991 static inline void set_page_node(struct page *page, unsigned long node)
992 {
993 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
994 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
995 }
996 
997 static inline void set_page_links(struct page *page, enum zone_type zone,
998 	unsigned long node, unsigned long pfn)
999 {
1000 	set_page_zone(page, zone);
1001 	set_page_node(page, node);
1002 #ifdef SECTION_IN_PAGE_FLAGS
1003 	set_page_section(page, pfn_to_section_nr(pfn));
1004 #endif
1005 }
1006 
1007 #ifdef CONFIG_MEMCG
1008 static inline struct mem_cgroup *page_memcg(struct page *page)
1009 {
1010 	return page->mem_cgroup;
1011 }
1012 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1013 {
1014 	WARN_ON_ONCE(!rcu_read_lock_held());
1015 	return READ_ONCE(page->mem_cgroup);
1016 }
1017 #else
1018 static inline struct mem_cgroup *page_memcg(struct page *page)
1019 {
1020 	return NULL;
1021 }
1022 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1023 {
1024 	WARN_ON_ONCE(!rcu_read_lock_held());
1025 	return NULL;
1026 }
1027 #endif
1028 
1029 /*
1030  * Some inline functions in vmstat.h depend on page_zone()
1031  */
1032 #include <linux/vmstat.h>
1033 
1034 static __always_inline void *lowmem_page_address(const struct page *page)
1035 {
1036 	return page_to_virt(page);
1037 }
1038 
1039 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1040 #define HASHED_PAGE_VIRTUAL
1041 #endif
1042 
1043 #if defined(WANT_PAGE_VIRTUAL)
1044 static inline void *page_address(const struct page *page)
1045 {
1046 	return page->virtual;
1047 }
1048 static inline void set_page_address(struct page *page, void *address)
1049 {
1050 	page->virtual = address;
1051 }
1052 #define page_address_init()  do { } while(0)
1053 #endif
1054 
1055 #if defined(HASHED_PAGE_VIRTUAL)
1056 void *page_address(const struct page *page);
1057 void set_page_address(struct page *page, void *virtual);
1058 void page_address_init(void);
1059 #endif
1060 
1061 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1062 #define page_address(page) lowmem_page_address(page)
1063 #define set_page_address(page, address)  do { } while(0)
1064 #define page_address_init()  do { } while(0)
1065 #endif
1066 
1067 extern void *page_rmapping(struct page *page);
1068 extern struct anon_vma *page_anon_vma(struct page *page);
1069 extern struct address_space *page_mapping(struct page *page);
1070 
1071 extern struct address_space *__page_file_mapping(struct page *);
1072 
1073 static inline
1074 struct address_space *page_file_mapping(struct page *page)
1075 {
1076 	if (unlikely(PageSwapCache(page)))
1077 		return __page_file_mapping(page);
1078 
1079 	return page->mapping;
1080 }
1081 
1082 extern pgoff_t __page_file_index(struct page *page);
1083 
1084 /*
1085  * Return the pagecache index of the passed page.  Regular pagecache pages
1086  * use ->index whereas swapcache pages use swp_offset(->private)
1087  */
1088 static inline pgoff_t page_index(struct page *page)
1089 {
1090 	if (unlikely(PageSwapCache(page)))
1091 		return __page_file_index(page);
1092 	return page->index;
1093 }
1094 
1095 bool page_mapped(struct page *page);
1096 struct address_space *page_mapping(struct page *page);
1097 
1098 /*
1099  * Return true only if the page has been allocated with
1100  * ALLOC_NO_WATERMARKS and the low watermark was not
1101  * met implying that the system is under some pressure.
1102  */
1103 static inline bool page_is_pfmemalloc(struct page *page)
1104 {
1105 	/*
1106 	 * Page index cannot be this large so this must be
1107 	 * a pfmemalloc page.
1108 	 */
1109 	return page->index == -1UL;
1110 }
1111 
1112 /*
1113  * Only to be called by the page allocator on a freshly allocated
1114  * page.
1115  */
1116 static inline void set_page_pfmemalloc(struct page *page)
1117 {
1118 	page->index = -1UL;
1119 }
1120 
1121 static inline void clear_page_pfmemalloc(struct page *page)
1122 {
1123 	page->index = 0;
1124 }
1125 
1126 /*
1127  * Different kinds of faults, as returned by handle_mm_fault().
1128  * Used to decide whether a process gets delivered SIGBUS or
1129  * just gets major/minor fault counters bumped up.
1130  */
1131 
1132 #define VM_FAULT_OOM	0x0001
1133 #define VM_FAULT_SIGBUS	0x0002
1134 #define VM_FAULT_MAJOR	0x0004
1135 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1136 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1137 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1138 #define VM_FAULT_SIGSEGV 0x0040
1139 
1140 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1141 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1142 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1143 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1144 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1145 
1146 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1147 
1148 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1149 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1150 			 VM_FAULT_FALLBACK)
1151 
1152 #define VM_FAULT_RESULT_TRACE \
1153 	{ VM_FAULT_OOM,			"OOM" }, \
1154 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1155 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1156 	{ VM_FAULT_WRITE,		"WRITE" }, \
1157 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1158 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1159 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1160 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1161 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1162 	{ VM_FAULT_RETRY,		"RETRY" }, \
1163 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1164 	{ VM_FAULT_DONE_COW,		"DONE_COW" }
1165 
1166 /* Encode hstate index for a hwpoisoned large page */
1167 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1168 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1169 
1170 /*
1171  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1172  */
1173 extern void pagefault_out_of_memory(void);
1174 
1175 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1176 
1177 /*
1178  * Flags passed to show_mem() and show_free_areas() to suppress output in
1179  * various contexts.
1180  */
1181 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1182 
1183 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1184 
1185 extern bool can_do_mlock(void);
1186 extern int user_shm_lock(size_t, struct user_struct *);
1187 extern void user_shm_unlock(size_t, struct user_struct *);
1188 
1189 /*
1190  * Parameter block passed down to zap_pte_range in exceptional cases.
1191  */
1192 struct zap_details {
1193 	struct address_space *check_mapping;	/* Check page->mapping if set */
1194 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1195 	pgoff_t last_index;			/* Highest page->index to unmap */
1196 };
1197 
1198 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1199 		pte_t pte);
1200 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1201 				pmd_t pmd);
1202 
1203 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1204 		unsigned long size);
1205 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1206 		unsigned long size);
1207 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1208 		unsigned long start, unsigned long end);
1209 
1210 /**
1211  * mm_walk - callbacks for walk_page_range
1212  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1213  *	       this handler should only handle pud_trans_huge() puds.
1214  *	       the pmd_entry or pte_entry callbacks will be used for
1215  *	       regular PUDs.
1216  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1217  *	       this handler is required to be able to handle
1218  *	       pmd_trans_huge() pmds.  They may simply choose to
1219  *	       split_huge_page() instead of handling it explicitly.
1220  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1221  * @pte_hole: if set, called for each hole at all levels
1222  * @hugetlb_entry: if set, called for each hugetlb entry
1223  * @test_walk: caller specific callback function to determine whether
1224  *             we walk over the current vma or not. Returning 0
1225  *             value means "do page table walk over the current vma,"
1226  *             and a negative one means "abort current page table walk
1227  *             right now." 1 means "skip the current vma."
1228  * @mm:        mm_struct representing the target process of page table walk
1229  * @vma:       vma currently walked (NULL if walking outside vmas)
1230  * @private:   private data for callbacks' usage
1231  *
1232  * (see the comment on walk_page_range() for more details)
1233  */
1234 struct mm_walk {
1235 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1236 			 unsigned long next, struct mm_walk *walk);
1237 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1238 			 unsigned long next, struct mm_walk *walk);
1239 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1240 			 unsigned long next, struct mm_walk *walk);
1241 	int (*pte_hole)(unsigned long addr, unsigned long next,
1242 			struct mm_walk *walk);
1243 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1244 			     unsigned long addr, unsigned long next,
1245 			     struct mm_walk *walk);
1246 	int (*test_walk)(unsigned long addr, unsigned long next,
1247 			struct mm_walk *walk);
1248 	struct mm_struct *mm;
1249 	struct vm_area_struct *vma;
1250 	void *private;
1251 };
1252 
1253 int walk_page_range(unsigned long addr, unsigned long end,
1254 		struct mm_walk *walk);
1255 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1256 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1257 		unsigned long end, unsigned long floor, unsigned long ceiling);
1258 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1259 			struct vm_area_struct *vma);
1260 void unmap_mapping_range(struct address_space *mapping,
1261 		loff_t const holebegin, loff_t const holelen, int even_cows);
1262 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1263 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1264 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1265 	unsigned long *pfn);
1266 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1267 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1268 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1269 			void *buf, int len, int write);
1270 
1271 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1272 		loff_t const holebegin, loff_t const holelen)
1273 {
1274 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1275 }
1276 
1277 extern void truncate_pagecache(struct inode *inode, loff_t new);
1278 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1279 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1280 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1281 int truncate_inode_page(struct address_space *mapping, struct page *page);
1282 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1283 int invalidate_inode_page(struct page *page);
1284 
1285 #ifdef CONFIG_MMU
1286 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1287 		unsigned int flags);
1288 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1289 			    unsigned long address, unsigned int fault_flags,
1290 			    bool *unlocked);
1291 #else
1292 static inline int handle_mm_fault(struct vm_area_struct *vma,
1293 		unsigned long address, unsigned int flags)
1294 {
1295 	/* should never happen if there's no MMU */
1296 	BUG();
1297 	return VM_FAULT_SIGBUS;
1298 }
1299 static inline int fixup_user_fault(struct task_struct *tsk,
1300 		struct mm_struct *mm, unsigned long address,
1301 		unsigned int fault_flags, bool *unlocked)
1302 {
1303 	/* should never happen if there's no MMU */
1304 	BUG();
1305 	return -EFAULT;
1306 }
1307 #endif
1308 
1309 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1310 		unsigned int gup_flags);
1311 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1312 		void *buf, int len, unsigned int gup_flags);
1313 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1314 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1315 
1316 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1317 			    unsigned long start, unsigned long nr_pages,
1318 			    unsigned int gup_flags, struct page **pages,
1319 			    struct vm_area_struct **vmas, int *locked);
1320 long get_user_pages(unsigned long start, unsigned long nr_pages,
1321 			    unsigned int gup_flags, struct page **pages,
1322 			    struct vm_area_struct **vmas);
1323 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1324 		    unsigned int gup_flags, struct page **pages, int *locked);
1325 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1326 		    struct page **pages, unsigned int gup_flags);
1327 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1328 			struct page **pages);
1329 
1330 /* Container for pinned pfns / pages */
1331 struct frame_vector {
1332 	unsigned int nr_allocated;	/* Number of frames we have space for */
1333 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1334 	bool got_ref;		/* Did we pin pages by getting page ref? */
1335 	bool is_pfns;		/* Does array contain pages or pfns? */
1336 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1337 				 * pfns_vector_pages() or pfns_vector_pfns()
1338 				 * for access */
1339 };
1340 
1341 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1342 void frame_vector_destroy(struct frame_vector *vec);
1343 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1344 		     unsigned int gup_flags, struct frame_vector *vec);
1345 void put_vaddr_frames(struct frame_vector *vec);
1346 int frame_vector_to_pages(struct frame_vector *vec);
1347 void frame_vector_to_pfns(struct frame_vector *vec);
1348 
1349 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1350 {
1351 	return vec->nr_frames;
1352 }
1353 
1354 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1355 {
1356 	if (vec->is_pfns) {
1357 		int err = frame_vector_to_pages(vec);
1358 
1359 		if (err)
1360 			return ERR_PTR(err);
1361 	}
1362 	return (struct page **)(vec->ptrs);
1363 }
1364 
1365 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1366 {
1367 	if (!vec->is_pfns)
1368 		frame_vector_to_pfns(vec);
1369 	return (unsigned long *)(vec->ptrs);
1370 }
1371 
1372 struct kvec;
1373 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1374 			struct page **pages);
1375 int get_kernel_page(unsigned long start, int write, struct page **pages);
1376 struct page *get_dump_page(unsigned long addr);
1377 
1378 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1379 extern void do_invalidatepage(struct page *page, unsigned int offset,
1380 			      unsigned int length);
1381 
1382 int __set_page_dirty_nobuffers(struct page *page);
1383 int __set_page_dirty_no_writeback(struct page *page);
1384 int redirty_page_for_writepage(struct writeback_control *wbc,
1385 				struct page *page);
1386 void account_page_dirtied(struct page *page, struct address_space *mapping);
1387 void account_page_cleaned(struct page *page, struct address_space *mapping,
1388 			  struct bdi_writeback *wb);
1389 int set_page_dirty(struct page *page);
1390 int set_page_dirty_lock(struct page *page);
1391 void cancel_dirty_page(struct page *page);
1392 int clear_page_dirty_for_io(struct page *page);
1393 
1394 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1395 
1396 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1397 {
1398 	return !vma->vm_ops;
1399 }
1400 
1401 #ifdef CONFIG_SHMEM
1402 /*
1403  * The vma_is_shmem is not inline because it is used only by slow
1404  * paths in userfault.
1405  */
1406 bool vma_is_shmem(struct vm_area_struct *vma);
1407 #else
1408 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1409 #endif
1410 
1411 int vma_is_stack_for_current(struct vm_area_struct *vma);
1412 
1413 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1414 		unsigned long old_addr, struct vm_area_struct *new_vma,
1415 		unsigned long new_addr, unsigned long len,
1416 		bool need_rmap_locks);
1417 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1418 			      unsigned long end, pgprot_t newprot,
1419 			      int dirty_accountable, int prot_numa);
1420 extern int mprotect_fixup(struct vm_area_struct *vma,
1421 			  struct vm_area_struct **pprev, unsigned long start,
1422 			  unsigned long end, unsigned long newflags);
1423 
1424 /*
1425  * doesn't attempt to fault and will return short.
1426  */
1427 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1428 			  struct page **pages);
1429 /*
1430  * per-process(per-mm_struct) statistics.
1431  */
1432 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1433 {
1434 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1435 
1436 #ifdef SPLIT_RSS_COUNTING
1437 	/*
1438 	 * counter is updated in asynchronous manner and may go to minus.
1439 	 * But it's never be expected number for users.
1440 	 */
1441 	if (val < 0)
1442 		val = 0;
1443 #endif
1444 	return (unsigned long)val;
1445 }
1446 
1447 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1448 {
1449 	atomic_long_add(value, &mm->rss_stat.count[member]);
1450 }
1451 
1452 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1453 {
1454 	atomic_long_inc(&mm->rss_stat.count[member]);
1455 }
1456 
1457 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1458 {
1459 	atomic_long_dec(&mm->rss_stat.count[member]);
1460 }
1461 
1462 /* Optimized variant when page is already known not to be PageAnon */
1463 static inline int mm_counter_file(struct page *page)
1464 {
1465 	if (PageSwapBacked(page))
1466 		return MM_SHMEMPAGES;
1467 	return MM_FILEPAGES;
1468 }
1469 
1470 static inline int mm_counter(struct page *page)
1471 {
1472 	if (PageAnon(page))
1473 		return MM_ANONPAGES;
1474 	return mm_counter_file(page);
1475 }
1476 
1477 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1478 {
1479 	return get_mm_counter(mm, MM_FILEPAGES) +
1480 		get_mm_counter(mm, MM_ANONPAGES) +
1481 		get_mm_counter(mm, MM_SHMEMPAGES);
1482 }
1483 
1484 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1485 {
1486 	return max(mm->hiwater_rss, get_mm_rss(mm));
1487 }
1488 
1489 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1490 {
1491 	return max(mm->hiwater_vm, mm->total_vm);
1492 }
1493 
1494 static inline void update_hiwater_rss(struct mm_struct *mm)
1495 {
1496 	unsigned long _rss = get_mm_rss(mm);
1497 
1498 	if ((mm)->hiwater_rss < _rss)
1499 		(mm)->hiwater_rss = _rss;
1500 }
1501 
1502 static inline void update_hiwater_vm(struct mm_struct *mm)
1503 {
1504 	if (mm->hiwater_vm < mm->total_vm)
1505 		mm->hiwater_vm = mm->total_vm;
1506 }
1507 
1508 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1509 {
1510 	mm->hiwater_rss = get_mm_rss(mm);
1511 }
1512 
1513 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1514 					 struct mm_struct *mm)
1515 {
1516 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1517 
1518 	if (*maxrss < hiwater_rss)
1519 		*maxrss = hiwater_rss;
1520 }
1521 
1522 #if defined(SPLIT_RSS_COUNTING)
1523 void sync_mm_rss(struct mm_struct *mm);
1524 #else
1525 static inline void sync_mm_rss(struct mm_struct *mm)
1526 {
1527 }
1528 #endif
1529 
1530 #ifndef __HAVE_ARCH_PTE_DEVMAP
1531 static inline int pte_devmap(pte_t pte)
1532 {
1533 	return 0;
1534 }
1535 #endif
1536 
1537 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1538 
1539 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1540 			       spinlock_t **ptl);
1541 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1542 				    spinlock_t **ptl)
1543 {
1544 	pte_t *ptep;
1545 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1546 	return ptep;
1547 }
1548 
1549 #ifdef __PAGETABLE_P4D_FOLDED
1550 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1551 						unsigned long address)
1552 {
1553 	return 0;
1554 }
1555 #else
1556 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1557 #endif
1558 
1559 #ifdef __PAGETABLE_PUD_FOLDED
1560 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1561 						unsigned long address)
1562 {
1563 	return 0;
1564 }
1565 #else
1566 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1567 #endif
1568 
1569 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1570 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1571 						unsigned long address)
1572 {
1573 	return 0;
1574 }
1575 
1576 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1577 
1578 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1579 {
1580 	return 0;
1581 }
1582 
1583 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1584 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1585 
1586 #else
1587 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1588 
1589 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1590 {
1591 	atomic_long_set(&mm->nr_pmds, 0);
1592 }
1593 
1594 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1595 {
1596 	return atomic_long_read(&mm->nr_pmds);
1597 }
1598 
1599 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1600 {
1601 	atomic_long_inc(&mm->nr_pmds);
1602 }
1603 
1604 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1605 {
1606 	atomic_long_dec(&mm->nr_pmds);
1607 }
1608 #endif
1609 
1610 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1612 
1613 /*
1614  * The following ifdef needed to get the 4level-fixup.h header to work.
1615  * Remove it when 4level-fixup.h has been removed.
1616  */
1617 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1618 
1619 #ifndef __ARCH_HAS_5LEVEL_HACK
1620 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1621 		unsigned long address)
1622 {
1623 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1624 		NULL : p4d_offset(pgd, address);
1625 }
1626 
1627 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1628 		unsigned long address)
1629 {
1630 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1631 		NULL : pud_offset(p4d, address);
1632 }
1633 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1634 
1635 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1636 {
1637 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1638 		NULL: pmd_offset(pud, address);
1639 }
1640 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1641 
1642 #if USE_SPLIT_PTE_PTLOCKS
1643 #if ALLOC_SPLIT_PTLOCKS
1644 void __init ptlock_cache_init(void);
1645 extern bool ptlock_alloc(struct page *page);
1646 extern void ptlock_free(struct page *page);
1647 
1648 static inline spinlock_t *ptlock_ptr(struct page *page)
1649 {
1650 	return page->ptl;
1651 }
1652 #else /* ALLOC_SPLIT_PTLOCKS */
1653 static inline void ptlock_cache_init(void)
1654 {
1655 }
1656 
1657 static inline bool ptlock_alloc(struct page *page)
1658 {
1659 	return true;
1660 }
1661 
1662 static inline void ptlock_free(struct page *page)
1663 {
1664 }
1665 
1666 static inline spinlock_t *ptlock_ptr(struct page *page)
1667 {
1668 	return &page->ptl;
1669 }
1670 #endif /* ALLOC_SPLIT_PTLOCKS */
1671 
1672 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1673 {
1674 	return ptlock_ptr(pmd_page(*pmd));
1675 }
1676 
1677 static inline bool ptlock_init(struct page *page)
1678 {
1679 	/*
1680 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1681 	 * with 0. Make sure nobody took it in use in between.
1682 	 *
1683 	 * It can happen if arch try to use slab for page table allocation:
1684 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1685 	 */
1686 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1687 	if (!ptlock_alloc(page))
1688 		return false;
1689 	spin_lock_init(ptlock_ptr(page));
1690 	return true;
1691 }
1692 
1693 /* Reset page->mapping so free_pages_check won't complain. */
1694 static inline void pte_lock_deinit(struct page *page)
1695 {
1696 	page->mapping = NULL;
1697 	ptlock_free(page);
1698 }
1699 
1700 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1701 /*
1702  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1703  */
1704 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1705 {
1706 	return &mm->page_table_lock;
1707 }
1708 static inline void ptlock_cache_init(void) {}
1709 static inline bool ptlock_init(struct page *page) { return true; }
1710 static inline void pte_lock_deinit(struct page *page) {}
1711 #endif /* USE_SPLIT_PTE_PTLOCKS */
1712 
1713 static inline void pgtable_init(void)
1714 {
1715 	ptlock_cache_init();
1716 	pgtable_cache_init();
1717 }
1718 
1719 static inline bool pgtable_page_ctor(struct page *page)
1720 {
1721 	if (!ptlock_init(page))
1722 		return false;
1723 	inc_zone_page_state(page, NR_PAGETABLE);
1724 	return true;
1725 }
1726 
1727 static inline void pgtable_page_dtor(struct page *page)
1728 {
1729 	pte_lock_deinit(page);
1730 	dec_zone_page_state(page, NR_PAGETABLE);
1731 }
1732 
1733 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1734 ({							\
1735 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1736 	pte_t *__pte = pte_offset_map(pmd, address);	\
1737 	*(ptlp) = __ptl;				\
1738 	spin_lock(__ptl);				\
1739 	__pte;						\
1740 })
1741 
1742 #define pte_unmap_unlock(pte, ptl)	do {		\
1743 	spin_unlock(ptl);				\
1744 	pte_unmap(pte);					\
1745 } while (0)
1746 
1747 #define pte_alloc(mm, pmd, address)			\
1748 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1749 
1750 #define pte_alloc_map(mm, pmd, address)			\
1751 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1752 
1753 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1754 	(pte_alloc(mm, pmd, address) ?			\
1755 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1756 
1757 #define pte_alloc_kernel(pmd, address)			\
1758 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1759 		NULL: pte_offset_kernel(pmd, address))
1760 
1761 #if USE_SPLIT_PMD_PTLOCKS
1762 
1763 static struct page *pmd_to_page(pmd_t *pmd)
1764 {
1765 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1766 	return virt_to_page((void *)((unsigned long) pmd & mask));
1767 }
1768 
1769 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1770 {
1771 	return ptlock_ptr(pmd_to_page(pmd));
1772 }
1773 
1774 static inline bool pgtable_pmd_page_ctor(struct page *page)
1775 {
1776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1777 	page->pmd_huge_pte = NULL;
1778 #endif
1779 	return ptlock_init(page);
1780 }
1781 
1782 static inline void pgtable_pmd_page_dtor(struct page *page)
1783 {
1784 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1785 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1786 #endif
1787 	ptlock_free(page);
1788 }
1789 
1790 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1791 
1792 #else
1793 
1794 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1795 {
1796 	return &mm->page_table_lock;
1797 }
1798 
1799 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1800 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1801 
1802 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1803 
1804 #endif
1805 
1806 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1807 {
1808 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1809 	spin_lock(ptl);
1810 	return ptl;
1811 }
1812 
1813 /*
1814  * No scalability reason to split PUD locks yet, but follow the same pattern
1815  * as the PMD locks to make it easier if we decide to.  The VM should not be
1816  * considered ready to switch to split PUD locks yet; there may be places
1817  * which need to be converted from page_table_lock.
1818  */
1819 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1820 {
1821 	return &mm->page_table_lock;
1822 }
1823 
1824 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1825 {
1826 	spinlock_t *ptl = pud_lockptr(mm, pud);
1827 
1828 	spin_lock(ptl);
1829 	return ptl;
1830 }
1831 
1832 extern void __init pagecache_init(void);
1833 extern void free_area_init(unsigned long * zones_size);
1834 extern void free_area_init_node(int nid, unsigned long * zones_size,
1835 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1836 extern void free_initmem(void);
1837 
1838 /*
1839  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1840  * into the buddy system. The freed pages will be poisoned with pattern
1841  * "poison" if it's within range [0, UCHAR_MAX].
1842  * Return pages freed into the buddy system.
1843  */
1844 extern unsigned long free_reserved_area(void *start, void *end,
1845 					int poison, char *s);
1846 
1847 #ifdef	CONFIG_HIGHMEM
1848 /*
1849  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1850  * and totalram_pages.
1851  */
1852 extern void free_highmem_page(struct page *page);
1853 #endif
1854 
1855 extern void adjust_managed_page_count(struct page *page, long count);
1856 extern void mem_init_print_info(const char *str);
1857 
1858 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1859 
1860 /* Free the reserved page into the buddy system, so it gets managed. */
1861 static inline void __free_reserved_page(struct page *page)
1862 {
1863 	ClearPageReserved(page);
1864 	init_page_count(page);
1865 	__free_page(page);
1866 }
1867 
1868 static inline void free_reserved_page(struct page *page)
1869 {
1870 	__free_reserved_page(page);
1871 	adjust_managed_page_count(page, 1);
1872 }
1873 
1874 static inline void mark_page_reserved(struct page *page)
1875 {
1876 	SetPageReserved(page);
1877 	adjust_managed_page_count(page, -1);
1878 }
1879 
1880 /*
1881  * Default method to free all the __init memory into the buddy system.
1882  * The freed pages will be poisoned with pattern "poison" if it's within
1883  * range [0, UCHAR_MAX].
1884  * Return pages freed into the buddy system.
1885  */
1886 static inline unsigned long free_initmem_default(int poison)
1887 {
1888 	extern char __init_begin[], __init_end[];
1889 
1890 	return free_reserved_area(&__init_begin, &__init_end,
1891 				  poison, "unused kernel");
1892 }
1893 
1894 static inline unsigned long get_num_physpages(void)
1895 {
1896 	int nid;
1897 	unsigned long phys_pages = 0;
1898 
1899 	for_each_online_node(nid)
1900 		phys_pages += node_present_pages(nid);
1901 
1902 	return phys_pages;
1903 }
1904 
1905 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1906 /*
1907  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1908  * zones, allocate the backing mem_map and account for memory holes in a more
1909  * architecture independent manner. This is a substitute for creating the
1910  * zone_sizes[] and zholes_size[] arrays and passing them to
1911  * free_area_init_node()
1912  *
1913  * An architecture is expected to register range of page frames backed by
1914  * physical memory with memblock_add[_node]() before calling
1915  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1916  * usage, an architecture is expected to do something like
1917  *
1918  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1919  * 							 max_highmem_pfn};
1920  * for_each_valid_physical_page_range()
1921  * 	memblock_add_node(base, size, nid)
1922  * free_area_init_nodes(max_zone_pfns);
1923  *
1924  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1925  * registered physical page range.  Similarly
1926  * sparse_memory_present_with_active_regions() calls memory_present() for
1927  * each range when SPARSEMEM is enabled.
1928  *
1929  * See mm/page_alloc.c for more information on each function exposed by
1930  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1931  */
1932 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1933 unsigned long node_map_pfn_alignment(void);
1934 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1935 						unsigned long end_pfn);
1936 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1937 						unsigned long end_pfn);
1938 extern void get_pfn_range_for_nid(unsigned int nid,
1939 			unsigned long *start_pfn, unsigned long *end_pfn);
1940 extern unsigned long find_min_pfn_with_active_regions(void);
1941 extern void free_bootmem_with_active_regions(int nid,
1942 						unsigned long max_low_pfn);
1943 extern void sparse_memory_present_with_active_regions(int nid);
1944 
1945 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1946 
1947 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1948     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1949 static inline int __early_pfn_to_nid(unsigned long pfn,
1950 					struct mminit_pfnnid_cache *state)
1951 {
1952 	return 0;
1953 }
1954 #else
1955 /* please see mm/page_alloc.c */
1956 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1957 /* there is a per-arch backend function. */
1958 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1959 					struct mminit_pfnnid_cache *state);
1960 #endif
1961 
1962 extern void set_dma_reserve(unsigned long new_dma_reserve);
1963 extern void memmap_init_zone(unsigned long, int, unsigned long,
1964 				unsigned long, enum memmap_context);
1965 extern void setup_per_zone_wmarks(void);
1966 extern int __meminit init_per_zone_wmark_min(void);
1967 extern void mem_init(void);
1968 extern void __init mmap_init(void);
1969 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1970 extern long si_mem_available(void);
1971 extern void si_meminfo(struct sysinfo * val);
1972 extern void si_meminfo_node(struct sysinfo *val, int nid);
1973 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1974 extern unsigned long arch_reserved_kernel_pages(void);
1975 #endif
1976 
1977 extern __printf(3, 4)
1978 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1979 
1980 extern void setup_per_cpu_pageset(void);
1981 
1982 extern void zone_pcp_update(struct zone *zone);
1983 extern void zone_pcp_reset(struct zone *zone);
1984 
1985 /* page_alloc.c */
1986 extern int min_free_kbytes;
1987 extern int watermark_scale_factor;
1988 
1989 /* nommu.c */
1990 extern atomic_long_t mmap_pages_allocated;
1991 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1992 
1993 /* interval_tree.c */
1994 void vma_interval_tree_insert(struct vm_area_struct *node,
1995 			      struct rb_root *root);
1996 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1997 				    struct vm_area_struct *prev,
1998 				    struct rb_root *root);
1999 void vma_interval_tree_remove(struct vm_area_struct *node,
2000 			      struct rb_root *root);
2001 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2002 				unsigned long start, unsigned long last);
2003 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2004 				unsigned long start, unsigned long last);
2005 
2006 #define vma_interval_tree_foreach(vma, root, start, last)		\
2007 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2008 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2009 
2010 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2011 				   struct rb_root *root);
2012 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2013 				   struct rb_root *root);
2014 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2015 	struct rb_root *root, unsigned long start, unsigned long last);
2016 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2017 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2018 #ifdef CONFIG_DEBUG_VM_RB
2019 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2020 #endif
2021 
2022 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2023 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2024 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2025 
2026 /* mmap.c */
2027 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2028 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2029 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2030 	struct vm_area_struct *expand);
2031 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2032 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2033 {
2034 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2035 }
2036 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2037 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2038 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2039 	struct mempolicy *, struct vm_userfaultfd_ctx);
2040 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2041 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2042 	unsigned long addr, int new_below);
2043 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2044 	unsigned long addr, int new_below);
2045 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2046 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2047 	struct rb_node **, struct rb_node *);
2048 extern void unlink_file_vma(struct vm_area_struct *);
2049 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2050 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2051 	bool *need_rmap_locks);
2052 extern void exit_mmap(struct mm_struct *);
2053 
2054 static inline int check_data_rlimit(unsigned long rlim,
2055 				    unsigned long new,
2056 				    unsigned long start,
2057 				    unsigned long end_data,
2058 				    unsigned long start_data)
2059 {
2060 	if (rlim < RLIM_INFINITY) {
2061 		if (((new - start) + (end_data - start_data)) > rlim)
2062 			return -ENOSPC;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 extern int mm_take_all_locks(struct mm_struct *mm);
2069 extern void mm_drop_all_locks(struct mm_struct *mm);
2070 
2071 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2072 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2073 extern struct file *get_task_exe_file(struct task_struct *task);
2074 
2075 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2076 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2077 
2078 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2079 				   const struct vm_special_mapping *sm);
2080 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2081 				   unsigned long addr, unsigned long len,
2082 				   unsigned long flags,
2083 				   const struct vm_special_mapping *spec);
2084 /* This is an obsolete alternative to _install_special_mapping. */
2085 extern int install_special_mapping(struct mm_struct *mm,
2086 				   unsigned long addr, unsigned long len,
2087 				   unsigned long flags, struct page **pages);
2088 
2089 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2090 
2091 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2092 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2093 	struct list_head *uf);
2094 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2095 	unsigned long len, unsigned long prot, unsigned long flags,
2096 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2097 	struct list_head *uf);
2098 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2099 		     struct list_head *uf);
2100 
2101 static inline unsigned long
2102 do_mmap_pgoff(struct file *file, unsigned long addr,
2103 	unsigned long len, unsigned long prot, unsigned long flags,
2104 	unsigned long pgoff, unsigned long *populate,
2105 	struct list_head *uf)
2106 {
2107 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2108 }
2109 
2110 #ifdef CONFIG_MMU
2111 extern int __mm_populate(unsigned long addr, unsigned long len,
2112 			 int ignore_errors);
2113 static inline void mm_populate(unsigned long addr, unsigned long len)
2114 {
2115 	/* Ignore errors */
2116 	(void) __mm_populate(addr, len, 1);
2117 }
2118 #else
2119 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2120 #endif
2121 
2122 /* These take the mm semaphore themselves */
2123 extern int __must_check vm_brk(unsigned long, unsigned long);
2124 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2125 extern int vm_munmap(unsigned long, size_t);
2126 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2127         unsigned long, unsigned long,
2128         unsigned long, unsigned long);
2129 
2130 struct vm_unmapped_area_info {
2131 #define VM_UNMAPPED_AREA_TOPDOWN 1
2132 	unsigned long flags;
2133 	unsigned long length;
2134 	unsigned long low_limit;
2135 	unsigned long high_limit;
2136 	unsigned long align_mask;
2137 	unsigned long align_offset;
2138 };
2139 
2140 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2141 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2142 
2143 /*
2144  * Search for an unmapped address range.
2145  *
2146  * We are looking for a range that:
2147  * - does not intersect with any VMA;
2148  * - is contained within the [low_limit, high_limit) interval;
2149  * - is at least the desired size.
2150  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2151  */
2152 static inline unsigned long
2153 vm_unmapped_area(struct vm_unmapped_area_info *info)
2154 {
2155 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2156 		return unmapped_area_topdown(info);
2157 	else
2158 		return unmapped_area(info);
2159 }
2160 
2161 /* truncate.c */
2162 extern void truncate_inode_pages(struct address_space *, loff_t);
2163 extern void truncate_inode_pages_range(struct address_space *,
2164 				       loff_t lstart, loff_t lend);
2165 extern void truncate_inode_pages_final(struct address_space *);
2166 
2167 /* generic vm_area_ops exported for stackable file systems */
2168 extern int filemap_fault(struct vm_fault *vmf);
2169 extern void filemap_map_pages(struct vm_fault *vmf,
2170 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2171 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2172 
2173 /* mm/page-writeback.c */
2174 int __must_check write_one_page(struct page *page);
2175 void task_dirty_inc(struct task_struct *tsk);
2176 
2177 /* readahead.c */
2178 #define VM_MAX_READAHEAD	128	/* kbytes */
2179 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2180 
2181 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2182 			pgoff_t offset, unsigned long nr_to_read);
2183 
2184 void page_cache_sync_readahead(struct address_space *mapping,
2185 			       struct file_ra_state *ra,
2186 			       struct file *filp,
2187 			       pgoff_t offset,
2188 			       unsigned long size);
2189 
2190 void page_cache_async_readahead(struct address_space *mapping,
2191 				struct file_ra_state *ra,
2192 				struct file *filp,
2193 				struct page *pg,
2194 				pgoff_t offset,
2195 				unsigned long size);
2196 
2197 extern unsigned long stack_guard_gap;
2198 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2199 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2200 
2201 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2202 extern int expand_downwards(struct vm_area_struct *vma,
2203 		unsigned long address);
2204 #if VM_GROWSUP
2205 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2206 #else
2207   #define expand_upwards(vma, address) (0)
2208 #endif
2209 
2210 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2211 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2212 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2213 					     struct vm_area_struct **pprev);
2214 
2215 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2216    NULL if none.  Assume start_addr < end_addr. */
2217 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2218 {
2219 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2220 
2221 	if (vma && end_addr <= vma->vm_start)
2222 		vma = NULL;
2223 	return vma;
2224 }
2225 
2226 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2227 {
2228 	unsigned long vm_start = vma->vm_start;
2229 
2230 	if (vma->vm_flags & VM_GROWSDOWN) {
2231 		vm_start -= stack_guard_gap;
2232 		if (vm_start > vma->vm_start)
2233 			vm_start = 0;
2234 	}
2235 	return vm_start;
2236 }
2237 
2238 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2239 {
2240 	unsigned long vm_end = vma->vm_end;
2241 
2242 	if (vma->vm_flags & VM_GROWSUP) {
2243 		vm_end += stack_guard_gap;
2244 		if (vm_end < vma->vm_end)
2245 			vm_end = -PAGE_SIZE;
2246 	}
2247 	return vm_end;
2248 }
2249 
2250 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2251 {
2252 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2253 }
2254 
2255 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2256 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2257 				unsigned long vm_start, unsigned long vm_end)
2258 {
2259 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2260 
2261 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2262 		vma = NULL;
2263 
2264 	return vma;
2265 }
2266 
2267 #ifdef CONFIG_MMU
2268 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2269 void vma_set_page_prot(struct vm_area_struct *vma);
2270 #else
2271 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2272 {
2273 	return __pgprot(0);
2274 }
2275 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2276 {
2277 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2278 }
2279 #endif
2280 
2281 #ifdef CONFIG_NUMA_BALANCING
2282 unsigned long change_prot_numa(struct vm_area_struct *vma,
2283 			unsigned long start, unsigned long end);
2284 #endif
2285 
2286 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2287 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2288 			unsigned long pfn, unsigned long size, pgprot_t);
2289 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2290 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2291 			unsigned long pfn);
2292 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2293 			unsigned long pfn, pgprot_t pgprot);
2294 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2295 			pfn_t pfn);
2296 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2297 
2298 
2299 struct page *follow_page_mask(struct vm_area_struct *vma,
2300 			      unsigned long address, unsigned int foll_flags,
2301 			      unsigned int *page_mask);
2302 
2303 static inline struct page *follow_page(struct vm_area_struct *vma,
2304 		unsigned long address, unsigned int foll_flags)
2305 {
2306 	unsigned int unused_page_mask;
2307 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2308 }
2309 
2310 #define FOLL_WRITE	0x01	/* check pte is writable */
2311 #define FOLL_TOUCH	0x02	/* mark page accessed */
2312 #define FOLL_GET	0x04	/* do get_page on page */
2313 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2314 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2315 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2316 				 * and return without waiting upon it */
2317 #define FOLL_POPULATE	0x40	/* fault in page */
2318 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2319 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2320 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2321 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2322 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2323 #define FOLL_MLOCK	0x1000	/* lock present pages */
2324 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2325 #define FOLL_COW	0x4000	/* internal GUP flag */
2326 
2327 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2328 {
2329 	if (vm_fault & VM_FAULT_OOM)
2330 		return -ENOMEM;
2331 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2332 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2333 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2334 		return -EFAULT;
2335 	return 0;
2336 }
2337 
2338 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2339 			void *data);
2340 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2341 			       unsigned long size, pte_fn_t fn, void *data);
2342 
2343 
2344 #ifdef CONFIG_PAGE_POISONING
2345 extern bool page_poisoning_enabled(void);
2346 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2347 extern bool page_is_poisoned(struct page *page);
2348 #else
2349 static inline bool page_poisoning_enabled(void) { return false; }
2350 static inline void kernel_poison_pages(struct page *page, int numpages,
2351 					int enable) { }
2352 static inline bool page_is_poisoned(struct page *page) { return false; }
2353 #endif
2354 
2355 #ifdef CONFIG_DEBUG_PAGEALLOC
2356 extern bool _debug_pagealloc_enabled;
2357 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2358 
2359 static inline bool debug_pagealloc_enabled(void)
2360 {
2361 	return _debug_pagealloc_enabled;
2362 }
2363 
2364 static inline void
2365 kernel_map_pages(struct page *page, int numpages, int enable)
2366 {
2367 	if (!debug_pagealloc_enabled())
2368 		return;
2369 
2370 	__kernel_map_pages(page, numpages, enable);
2371 }
2372 #ifdef CONFIG_HIBERNATION
2373 extern bool kernel_page_present(struct page *page);
2374 #endif	/* CONFIG_HIBERNATION */
2375 #else	/* CONFIG_DEBUG_PAGEALLOC */
2376 static inline void
2377 kernel_map_pages(struct page *page, int numpages, int enable) {}
2378 #ifdef CONFIG_HIBERNATION
2379 static inline bool kernel_page_present(struct page *page) { return true; }
2380 #endif	/* CONFIG_HIBERNATION */
2381 static inline bool debug_pagealloc_enabled(void)
2382 {
2383 	return false;
2384 }
2385 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2386 
2387 #ifdef __HAVE_ARCH_GATE_AREA
2388 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2389 extern int in_gate_area_no_mm(unsigned long addr);
2390 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2391 #else
2392 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2393 {
2394 	return NULL;
2395 }
2396 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2397 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2398 {
2399 	return 0;
2400 }
2401 #endif	/* __HAVE_ARCH_GATE_AREA */
2402 
2403 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2404 
2405 #ifdef CONFIG_SYSCTL
2406 extern int sysctl_drop_caches;
2407 int drop_caches_sysctl_handler(struct ctl_table *, int,
2408 					void __user *, size_t *, loff_t *);
2409 #endif
2410 
2411 void drop_slab(void);
2412 void drop_slab_node(int nid);
2413 
2414 #ifndef CONFIG_MMU
2415 #define randomize_va_space 0
2416 #else
2417 extern int randomize_va_space;
2418 #endif
2419 
2420 const char * arch_vma_name(struct vm_area_struct *vma);
2421 void print_vma_addr(char *prefix, unsigned long rip);
2422 
2423 void sparse_mem_maps_populate_node(struct page **map_map,
2424 				   unsigned long pnum_begin,
2425 				   unsigned long pnum_end,
2426 				   unsigned long map_count,
2427 				   int nodeid);
2428 
2429 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2430 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2431 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2432 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2433 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2434 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2435 void *vmemmap_alloc_block(unsigned long size, int node);
2436 struct vmem_altmap;
2437 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2438 		struct vmem_altmap *altmap);
2439 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2440 {
2441 	return __vmemmap_alloc_block_buf(size, node, NULL);
2442 }
2443 
2444 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2445 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2446 			       int node);
2447 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2448 void vmemmap_populate_print_last(void);
2449 #ifdef CONFIG_MEMORY_HOTPLUG
2450 void vmemmap_free(unsigned long start, unsigned long end);
2451 #endif
2452 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2453 				  unsigned long size);
2454 
2455 enum mf_flags {
2456 	MF_COUNT_INCREASED = 1 << 0,
2457 	MF_ACTION_REQUIRED = 1 << 1,
2458 	MF_MUST_KILL = 1 << 2,
2459 	MF_SOFT_OFFLINE = 1 << 3,
2460 };
2461 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2462 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2463 extern int unpoison_memory(unsigned long pfn);
2464 extern int get_hwpoison_page(struct page *page);
2465 #define put_hwpoison_page(page)	put_page(page)
2466 extern int sysctl_memory_failure_early_kill;
2467 extern int sysctl_memory_failure_recovery;
2468 extern void shake_page(struct page *p, int access);
2469 extern atomic_long_t num_poisoned_pages;
2470 extern int soft_offline_page(struct page *page, int flags);
2471 
2472 
2473 /*
2474  * Error handlers for various types of pages.
2475  */
2476 enum mf_result {
2477 	MF_IGNORED,	/* Error: cannot be handled */
2478 	MF_FAILED,	/* Error: handling failed */
2479 	MF_DELAYED,	/* Will be handled later */
2480 	MF_RECOVERED,	/* Successfully recovered */
2481 };
2482 
2483 enum mf_action_page_type {
2484 	MF_MSG_KERNEL,
2485 	MF_MSG_KERNEL_HIGH_ORDER,
2486 	MF_MSG_SLAB,
2487 	MF_MSG_DIFFERENT_COMPOUND,
2488 	MF_MSG_POISONED_HUGE,
2489 	MF_MSG_HUGE,
2490 	MF_MSG_FREE_HUGE,
2491 	MF_MSG_UNMAP_FAILED,
2492 	MF_MSG_DIRTY_SWAPCACHE,
2493 	MF_MSG_CLEAN_SWAPCACHE,
2494 	MF_MSG_DIRTY_MLOCKED_LRU,
2495 	MF_MSG_CLEAN_MLOCKED_LRU,
2496 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2497 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2498 	MF_MSG_DIRTY_LRU,
2499 	MF_MSG_CLEAN_LRU,
2500 	MF_MSG_TRUNCATED_LRU,
2501 	MF_MSG_BUDDY,
2502 	MF_MSG_BUDDY_2ND,
2503 	MF_MSG_UNKNOWN,
2504 };
2505 
2506 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2507 extern void clear_huge_page(struct page *page,
2508 			    unsigned long addr,
2509 			    unsigned int pages_per_huge_page);
2510 extern void copy_user_huge_page(struct page *dst, struct page *src,
2511 				unsigned long addr, struct vm_area_struct *vma,
2512 				unsigned int pages_per_huge_page);
2513 extern long copy_huge_page_from_user(struct page *dst_page,
2514 				const void __user *usr_src,
2515 				unsigned int pages_per_huge_page,
2516 				bool allow_pagefault);
2517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2518 
2519 extern struct page_ext_operations debug_guardpage_ops;
2520 
2521 #ifdef CONFIG_DEBUG_PAGEALLOC
2522 extern unsigned int _debug_guardpage_minorder;
2523 extern bool _debug_guardpage_enabled;
2524 
2525 static inline unsigned int debug_guardpage_minorder(void)
2526 {
2527 	return _debug_guardpage_minorder;
2528 }
2529 
2530 static inline bool debug_guardpage_enabled(void)
2531 {
2532 	return _debug_guardpage_enabled;
2533 }
2534 
2535 static inline bool page_is_guard(struct page *page)
2536 {
2537 	struct page_ext *page_ext;
2538 
2539 	if (!debug_guardpage_enabled())
2540 		return false;
2541 
2542 	page_ext = lookup_page_ext(page);
2543 	if (unlikely(!page_ext))
2544 		return false;
2545 
2546 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2547 }
2548 #else
2549 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2550 static inline bool debug_guardpage_enabled(void) { return false; }
2551 static inline bool page_is_guard(struct page *page) { return false; }
2552 #endif /* CONFIG_DEBUG_PAGEALLOC */
2553 
2554 #if MAX_NUMNODES > 1
2555 void __init setup_nr_node_ids(void);
2556 #else
2557 static inline void setup_nr_node_ids(void) {}
2558 #endif
2559 
2560 #endif /* __KERNEL__ */
2561 #endif /* _LINUX_MM_H */
2562