1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329 #ifdef CONFIG_ARCH_HAS_PKEYS 330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #ifdef CONFIG_PPC 336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337 #else 338 # define VM_PKEY_BIT4 0 339 #endif 340 #endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342 #if defined(CONFIG_X86) 343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344 #elif defined(CONFIG_PPC) 345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346 #elif defined(CONFIG_PARISC) 347 # define VM_GROWSUP VM_ARCH_1 348 #elif defined(CONFIG_IA64) 349 # define VM_GROWSUP VM_ARCH_1 350 #elif defined(CONFIG_SPARC64) 351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352 # define VM_ARCH_CLEAR VM_SPARC_ADI 353 #elif defined(CONFIG_ARM64) 354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355 # define VM_ARCH_CLEAR VM_ARM64_BTI 356 #elif !defined(CONFIG_MMU) 357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358 #endif 359 360 #if defined(CONFIG_ARM64_MTE) 361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363 #else 364 # define VM_MTE VM_NONE 365 # define VM_MTE_ALLOWED VM_NONE 366 #endif 367 368 #ifndef VM_GROWSUP 369 # define VM_GROWSUP VM_NONE 370 #endif 371 372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373 # define VM_UFFD_MINOR_BIT 37 374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376 # define VM_UFFD_MINOR VM_NONE 377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379 /* Bits set in the VMA until the stack is in its final location */ 380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 381 382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384 /* Common data flag combinations */ 385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394 #endif 395 396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398 #endif 399 400 #ifdef CONFIG_STACK_GROWSUP 401 #define VM_STACK VM_GROWSUP 402 #else 403 #define VM_STACK VM_GROWSDOWN 404 #endif 405 406 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 407 408 /* VMA basic access permission flags */ 409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 410 411 412 /* 413 * Special vmas that are non-mergable, non-mlock()able. 414 */ 415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 416 417 /* This mask prevents VMA from being scanned with khugepaged */ 418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 419 420 /* This mask defines which mm->def_flags a process can inherit its parent */ 421 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 422 423 /* This mask represents all the VMA flag bits used by mlock */ 424 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 425 426 /* Arch-specific flags to clear when updating VM flags on protection change */ 427 #ifndef VM_ARCH_CLEAR 428 # define VM_ARCH_CLEAR VM_NONE 429 #endif 430 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 431 432 /* 433 * mapping from the currently active vm_flags protection bits (the 434 * low four bits) to a page protection mask.. 435 */ 436 437 /* 438 * The default fault flags that should be used by most of the 439 * arch-specific page fault handlers. 440 */ 441 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 442 FAULT_FLAG_KILLABLE | \ 443 FAULT_FLAG_INTERRUPTIBLE) 444 445 /** 446 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 447 * @flags: Fault flags. 448 * 449 * This is mostly used for places where we want to try to avoid taking 450 * the mmap_lock for too long a time when waiting for another condition 451 * to change, in which case we can try to be polite to release the 452 * mmap_lock in the first round to avoid potential starvation of other 453 * processes that would also want the mmap_lock. 454 * 455 * Return: true if the page fault allows retry and this is the first 456 * attempt of the fault handling; false otherwise. 457 */ 458 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 459 { 460 return (flags & FAULT_FLAG_ALLOW_RETRY) && 461 (!(flags & FAULT_FLAG_TRIED)); 462 } 463 464 #define FAULT_FLAG_TRACE \ 465 { FAULT_FLAG_WRITE, "WRITE" }, \ 466 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 467 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 468 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 469 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 470 { FAULT_FLAG_TRIED, "TRIED" }, \ 471 { FAULT_FLAG_USER, "USER" }, \ 472 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 473 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 474 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 475 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 476 477 /* 478 * vm_fault is filled by the pagefault handler and passed to the vma's 479 * ->fault function. The vma's ->fault is responsible for returning a bitmask 480 * of VM_FAULT_xxx flags that give details about how the fault was handled. 481 * 482 * MM layer fills up gfp_mask for page allocations but fault handler might 483 * alter it if its implementation requires a different allocation context. 484 * 485 * pgoff should be used in favour of virtual_address, if possible. 486 */ 487 struct vm_fault { 488 const struct { 489 struct vm_area_struct *vma; /* Target VMA */ 490 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 491 pgoff_t pgoff; /* Logical page offset based on vma */ 492 unsigned long address; /* Faulting virtual address - masked */ 493 unsigned long real_address; /* Faulting virtual address - unmasked */ 494 }; 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags 496 * XXX: should really be 'const' */ 497 pmd_t *pmd; /* Pointer to pmd entry matching 498 * the 'address' */ 499 pud_t *pud; /* Pointer to pud entry matching 500 * the 'address' 501 */ 502 union { 503 pte_t orig_pte; /* Value of PTE at the time of fault */ 504 pmd_t orig_pmd; /* Value of PMD at the time of fault, 505 * used by PMD fault only. 506 */ 507 }; 508 509 struct page *cow_page; /* Page handler may use for COW fault */ 510 struct page *page; /* ->fault handlers should return a 511 * page here, unless VM_FAULT_NOPAGE 512 * is set (which is also implied by 513 * VM_FAULT_ERROR). 514 */ 515 /* These three entries are valid only while holding ptl lock */ 516 pte_t *pte; /* Pointer to pte entry matching 517 * the 'address'. NULL if the page 518 * table hasn't been allocated. 519 */ 520 spinlock_t *ptl; /* Page table lock. 521 * Protects pte page table if 'pte' 522 * is not NULL, otherwise pmd. 523 */ 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 525 * vm_ops->map_pages() sets up a page 526 * table from atomic context. 527 * do_fault_around() pre-allocates 528 * page table to avoid allocation from 529 * atomic context. 530 */ 531 }; 532 533 /* page entry size for vm->huge_fault() */ 534 enum page_entry_size { 535 PE_SIZE_PTE = 0, 536 PE_SIZE_PMD, 537 PE_SIZE_PUD, 538 }; 539 540 /* 541 * These are the virtual MM functions - opening of an area, closing and 542 * unmapping it (needed to keep files on disk up-to-date etc), pointer 543 * to the functions called when a no-page or a wp-page exception occurs. 544 */ 545 struct vm_operations_struct { 546 void (*open)(struct vm_area_struct * area); 547 /** 548 * @close: Called when the VMA is being removed from the MM. 549 * Context: User context. May sleep. Caller holds mmap_lock. 550 */ 551 void (*close)(struct vm_area_struct * area); 552 /* Called any time before splitting to check if it's allowed */ 553 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 554 int (*mremap)(struct vm_area_struct *area); 555 /* 556 * Called by mprotect() to make driver-specific permission 557 * checks before mprotect() is finalised. The VMA must not 558 * be modified. Returns 0 if mprotect() can proceed. 559 */ 560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 561 unsigned long end, unsigned long newflags); 562 vm_fault_t (*fault)(struct vm_fault *vmf); 563 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 564 enum page_entry_size pe_size); 565 vm_fault_t (*map_pages)(struct vm_fault *vmf, 566 pgoff_t start_pgoff, pgoff_t end_pgoff); 567 unsigned long (*pagesize)(struct vm_area_struct * area); 568 569 /* notification that a previously read-only page is about to become 570 * writable, if an error is returned it will cause a SIGBUS */ 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 572 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 575 576 /* called by access_process_vm when get_user_pages() fails, typically 577 * for use by special VMAs. See also generic_access_phys() for a generic 578 * implementation useful for any iomem mapping. 579 */ 580 int (*access)(struct vm_area_struct *vma, unsigned long addr, 581 void *buf, int len, int write); 582 583 /* Called by the /proc/PID/maps code to ask the vma whether it 584 * has a special name. Returning non-NULL will also cause this 585 * vma to be dumped unconditionally. */ 586 const char *(*name)(struct vm_area_struct *vma); 587 588 #ifdef CONFIG_NUMA 589 /* 590 * set_policy() op must add a reference to any non-NULL @new mempolicy 591 * to hold the policy upon return. Caller should pass NULL @new to 592 * remove a policy and fall back to surrounding context--i.e. do not 593 * install a MPOL_DEFAULT policy, nor the task or system default 594 * mempolicy. 595 */ 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 597 598 /* 599 * get_policy() op must add reference [mpol_get()] to any policy at 600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 601 * in mm/mempolicy.c will do this automatically. 602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 605 * must return NULL--i.e., do not "fallback" to task or system default 606 * policy. 607 */ 608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 609 unsigned long addr); 610 #endif 611 /* 612 * Called by vm_normal_page() for special PTEs to find the 613 * page for @addr. This is useful if the default behavior 614 * (using pte_page()) would not find the correct page. 615 */ 616 struct page *(*find_special_page)(struct vm_area_struct *vma, 617 unsigned long addr); 618 }; 619 620 #ifdef CONFIG_NUMA_BALANCING 621 static inline void vma_numab_state_init(struct vm_area_struct *vma) 622 { 623 vma->numab_state = NULL; 624 } 625 static inline void vma_numab_state_free(struct vm_area_struct *vma) 626 { 627 kfree(vma->numab_state); 628 } 629 #else 630 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 631 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 632 #endif /* CONFIG_NUMA_BALANCING */ 633 634 #ifdef CONFIG_PER_VMA_LOCK 635 /* 636 * Try to read-lock a vma. The function is allowed to occasionally yield false 637 * locked result to avoid performance overhead, in which case we fall back to 638 * using mmap_lock. The function should never yield false unlocked result. 639 */ 640 static inline bool vma_start_read(struct vm_area_struct *vma) 641 { 642 /* Check before locking. A race might cause false locked result. */ 643 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq)) 644 return false; 645 646 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 647 return false; 648 649 /* 650 * Overflow might produce false locked result. 651 * False unlocked result is impossible because we modify and check 652 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 653 * modification invalidates all existing locks. 654 */ 655 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) { 656 up_read(&vma->vm_lock->lock); 657 return false; 658 } 659 return true; 660 } 661 662 static inline void vma_end_read(struct vm_area_struct *vma) 663 { 664 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 665 up_read(&vma->vm_lock->lock); 666 rcu_read_unlock(); 667 } 668 669 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 670 { 671 mmap_assert_write_locked(vma->vm_mm); 672 673 /* 674 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 675 * mm->mm_lock_seq can't be concurrently modified. 676 */ 677 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq); 678 return (vma->vm_lock_seq == *mm_lock_seq); 679 } 680 681 static inline void vma_start_write(struct vm_area_struct *vma) 682 { 683 int mm_lock_seq; 684 685 if (__is_vma_write_locked(vma, &mm_lock_seq)) 686 return; 687 688 down_write(&vma->vm_lock->lock); 689 vma->vm_lock_seq = mm_lock_seq; 690 up_write(&vma->vm_lock->lock); 691 } 692 693 static inline bool vma_try_start_write(struct vm_area_struct *vma) 694 { 695 int mm_lock_seq; 696 697 if (__is_vma_write_locked(vma, &mm_lock_seq)) 698 return true; 699 700 if (!down_write_trylock(&vma->vm_lock->lock)) 701 return false; 702 703 vma->vm_lock_seq = mm_lock_seq; 704 up_write(&vma->vm_lock->lock); 705 return true; 706 } 707 708 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 709 { 710 int mm_lock_seq; 711 712 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 713 } 714 715 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 716 { 717 /* When detaching vma should be write-locked */ 718 if (detached) 719 vma_assert_write_locked(vma); 720 vma->detached = detached; 721 } 722 723 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 724 unsigned long address); 725 726 #else /* CONFIG_PER_VMA_LOCK */ 727 728 static inline bool vma_start_read(struct vm_area_struct *vma) 729 { return false; } 730 static inline void vma_end_read(struct vm_area_struct *vma) {} 731 static inline void vma_start_write(struct vm_area_struct *vma) {} 732 static inline bool vma_try_start_write(struct vm_area_struct *vma) 733 { return true; } 734 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {} 735 static inline void vma_mark_detached(struct vm_area_struct *vma, 736 bool detached) {} 737 738 #endif /* CONFIG_PER_VMA_LOCK */ 739 740 /* 741 * WARNING: vma_init does not initialize vma->vm_lock. 742 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 743 */ 744 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 745 { 746 static const struct vm_operations_struct dummy_vm_ops = {}; 747 748 memset(vma, 0, sizeof(*vma)); 749 vma->vm_mm = mm; 750 vma->vm_ops = &dummy_vm_ops; 751 INIT_LIST_HEAD(&vma->anon_vma_chain); 752 vma_mark_detached(vma, false); 753 vma_numab_state_init(vma); 754 } 755 756 /* Use when VMA is not part of the VMA tree and needs no locking */ 757 static inline void vm_flags_init(struct vm_area_struct *vma, 758 vm_flags_t flags) 759 { 760 ACCESS_PRIVATE(vma, __vm_flags) = flags; 761 } 762 763 /* Use when VMA is part of the VMA tree and modifications need coordination */ 764 static inline void vm_flags_reset(struct vm_area_struct *vma, 765 vm_flags_t flags) 766 { 767 vma_start_write(vma); 768 vm_flags_init(vma, flags); 769 } 770 771 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 772 vm_flags_t flags) 773 { 774 vma_start_write(vma); 775 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 776 } 777 778 static inline void vm_flags_set(struct vm_area_struct *vma, 779 vm_flags_t flags) 780 { 781 vma_start_write(vma); 782 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 783 } 784 785 static inline void vm_flags_clear(struct vm_area_struct *vma, 786 vm_flags_t flags) 787 { 788 vma_start_write(vma); 789 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 790 } 791 792 /* 793 * Use only if VMA is not part of the VMA tree or has no other users and 794 * therefore needs no locking. 795 */ 796 static inline void __vm_flags_mod(struct vm_area_struct *vma, 797 vm_flags_t set, vm_flags_t clear) 798 { 799 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 800 } 801 802 /* 803 * Use only when the order of set/clear operations is unimportant, otherwise 804 * use vm_flags_{set|clear} explicitly. 805 */ 806 static inline void vm_flags_mod(struct vm_area_struct *vma, 807 vm_flags_t set, vm_flags_t clear) 808 { 809 vma_start_write(vma); 810 __vm_flags_mod(vma, set, clear); 811 } 812 813 static inline void vma_set_anonymous(struct vm_area_struct *vma) 814 { 815 vma->vm_ops = NULL; 816 } 817 818 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 819 { 820 return !vma->vm_ops; 821 } 822 823 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 824 { 825 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 826 827 if (!maybe_stack) 828 return false; 829 830 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 831 VM_STACK_INCOMPLETE_SETUP) 832 return true; 833 834 return false; 835 } 836 837 static inline bool vma_is_foreign(struct vm_area_struct *vma) 838 { 839 if (!current->mm) 840 return true; 841 842 if (current->mm != vma->vm_mm) 843 return true; 844 845 return false; 846 } 847 848 static inline bool vma_is_accessible(struct vm_area_struct *vma) 849 { 850 return vma->vm_flags & VM_ACCESS_FLAGS; 851 } 852 853 static inline 854 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 855 { 856 return mas_find(&vmi->mas, max - 1); 857 } 858 859 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 860 { 861 /* 862 * Uses mas_find() to get the first VMA when the iterator starts. 863 * Calling mas_next() could skip the first entry. 864 */ 865 return mas_find(&vmi->mas, ULONG_MAX); 866 } 867 868 static inline 869 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 870 { 871 return mas_next_range(&vmi->mas, ULONG_MAX); 872 } 873 874 875 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 876 { 877 return mas_prev(&vmi->mas, 0); 878 } 879 880 static inline 881 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 882 { 883 return mas_prev_range(&vmi->mas, 0); 884 } 885 886 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 887 { 888 return vmi->mas.index; 889 } 890 891 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 892 { 893 return vmi->mas.last + 1; 894 } 895 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 896 unsigned long count) 897 { 898 return mas_expected_entries(&vmi->mas, count); 899 } 900 901 /* Free any unused preallocations */ 902 static inline void vma_iter_free(struct vma_iterator *vmi) 903 { 904 mas_destroy(&vmi->mas); 905 } 906 907 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 908 struct vm_area_struct *vma) 909 { 910 vmi->mas.index = vma->vm_start; 911 vmi->mas.last = vma->vm_end - 1; 912 mas_store(&vmi->mas, vma); 913 if (unlikely(mas_is_err(&vmi->mas))) 914 return -ENOMEM; 915 916 return 0; 917 } 918 919 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 920 { 921 mas_pause(&vmi->mas); 922 } 923 924 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 925 { 926 mas_set(&vmi->mas, addr); 927 } 928 929 #define for_each_vma(__vmi, __vma) \ 930 while (((__vma) = vma_next(&(__vmi))) != NULL) 931 932 /* The MM code likes to work with exclusive end addresses */ 933 #define for_each_vma_range(__vmi, __vma, __end) \ 934 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 935 936 #ifdef CONFIG_SHMEM 937 /* 938 * The vma_is_shmem is not inline because it is used only by slow 939 * paths in userfault. 940 */ 941 bool vma_is_shmem(struct vm_area_struct *vma); 942 bool vma_is_anon_shmem(struct vm_area_struct *vma); 943 #else 944 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 945 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 946 #endif 947 948 int vma_is_stack_for_current(struct vm_area_struct *vma); 949 950 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 951 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 952 953 struct mmu_gather; 954 struct inode; 955 956 /* 957 * compound_order() can be called without holding a reference, which means 958 * that niceties like page_folio() don't work. These callers should be 959 * prepared to handle wild return values. For example, PG_head may be 960 * set before _folio_order is initialised, or this may be a tail page. 961 * See compaction.c for some good examples. 962 */ 963 static inline unsigned int compound_order(struct page *page) 964 { 965 struct folio *folio = (struct folio *)page; 966 967 if (!test_bit(PG_head, &folio->flags)) 968 return 0; 969 return folio->_folio_order; 970 } 971 972 /** 973 * folio_order - The allocation order of a folio. 974 * @folio: The folio. 975 * 976 * A folio is composed of 2^order pages. See get_order() for the definition 977 * of order. 978 * 979 * Return: The order of the folio. 980 */ 981 static inline unsigned int folio_order(struct folio *folio) 982 { 983 if (!folio_test_large(folio)) 984 return 0; 985 return folio->_folio_order; 986 } 987 988 #include <linux/huge_mm.h> 989 990 /* 991 * Methods to modify the page usage count. 992 * 993 * What counts for a page usage: 994 * - cache mapping (page->mapping) 995 * - private data (page->private) 996 * - page mapped in a task's page tables, each mapping 997 * is counted separately 998 * 999 * Also, many kernel routines increase the page count before a critical 1000 * routine so they can be sure the page doesn't go away from under them. 1001 */ 1002 1003 /* 1004 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1005 */ 1006 static inline int put_page_testzero(struct page *page) 1007 { 1008 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1009 return page_ref_dec_and_test(page); 1010 } 1011 1012 static inline int folio_put_testzero(struct folio *folio) 1013 { 1014 return put_page_testzero(&folio->page); 1015 } 1016 1017 /* 1018 * Try to grab a ref unless the page has a refcount of zero, return false if 1019 * that is the case. 1020 * This can be called when MMU is off so it must not access 1021 * any of the virtual mappings. 1022 */ 1023 static inline bool get_page_unless_zero(struct page *page) 1024 { 1025 return page_ref_add_unless(page, 1, 0); 1026 } 1027 1028 static inline struct folio *folio_get_nontail_page(struct page *page) 1029 { 1030 if (unlikely(!get_page_unless_zero(page))) 1031 return NULL; 1032 return (struct folio *)page; 1033 } 1034 1035 extern int page_is_ram(unsigned long pfn); 1036 1037 enum { 1038 REGION_INTERSECTS, 1039 REGION_DISJOINT, 1040 REGION_MIXED, 1041 }; 1042 1043 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1044 unsigned long desc); 1045 1046 /* Support for virtually mapped pages */ 1047 struct page *vmalloc_to_page(const void *addr); 1048 unsigned long vmalloc_to_pfn(const void *addr); 1049 1050 /* 1051 * Determine if an address is within the vmalloc range 1052 * 1053 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1054 * is no special casing required. 1055 */ 1056 1057 #ifndef is_ioremap_addr 1058 #define is_ioremap_addr(x) is_vmalloc_addr(x) 1059 #endif 1060 1061 #ifdef CONFIG_MMU 1062 extern bool is_vmalloc_addr(const void *x); 1063 extern int is_vmalloc_or_module_addr(const void *x); 1064 #else 1065 static inline bool is_vmalloc_addr(const void *x) 1066 { 1067 return false; 1068 } 1069 static inline int is_vmalloc_or_module_addr(const void *x) 1070 { 1071 return 0; 1072 } 1073 #endif 1074 1075 /* 1076 * How many times the entire folio is mapped as a single unit (eg by a 1077 * PMD or PUD entry). This is probably not what you want, except for 1078 * debugging purposes - it does not include PTE-mapped sub-pages; look 1079 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1080 */ 1081 static inline int folio_entire_mapcount(struct folio *folio) 1082 { 1083 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1084 return atomic_read(&folio->_entire_mapcount) + 1; 1085 } 1086 1087 /* 1088 * The atomic page->_mapcount, starts from -1: so that transitions 1089 * both from it and to it can be tracked, using atomic_inc_and_test 1090 * and atomic_add_negative(-1). 1091 */ 1092 static inline void page_mapcount_reset(struct page *page) 1093 { 1094 atomic_set(&(page)->_mapcount, -1); 1095 } 1096 1097 /** 1098 * page_mapcount() - Number of times this precise page is mapped. 1099 * @page: The page. 1100 * 1101 * The number of times this page is mapped. If this page is part of 1102 * a large folio, it includes the number of times this page is mapped 1103 * as part of that folio. 1104 * 1105 * The result is undefined for pages which cannot be mapped into userspace. 1106 * For example SLAB or special types of pages. See function page_has_type(). 1107 * They use this field in struct page differently. 1108 */ 1109 static inline int page_mapcount(struct page *page) 1110 { 1111 int mapcount = atomic_read(&page->_mapcount) + 1; 1112 1113 if (unlikely(PageCompound(page))) 1114 mapcount += folio_entire_mapcount(page_folio(page)); 1115 1116 return mapcount; 1117 } 1118 1119 int folio_total_mapcount(struct folio *folio); 1120 1121 /** 1122 * folio_mapcount() - Calculate the number of mappings of this folio. 1123 * @folio: The folio. 1124 * 1125 * A large folio tracks both how many times the entire folio is mapped, 1126 * and how many times each individual page in the folio is mapped. 1127 * This function calculates the total number of times the folio is 1128 * mapped. 1129 * 1130 * Return: The number of times this folio is mapped. 1131 */ 1132 static inline int folio_mapcount(struct folio *folio) 1133 { 1134 if (likely(!folio_test_large(folio))) 1135 return atomic_read(&folio->_mapcount) + 1; 1136 return folio_total_mapcount(folio); 1137 } 1138 1139 static inline int total_mapcount(struct page *page) 1140 { 1141 if (likely(!PageCompound(page))) 1142 return atomic_read(&page->_mapcount) + 1; 1143 return folio_total_mapcount(page_folio(page)); 1144 } 1145 1146 static inline bool folio_large_is_mapped(struct folio *folio) 1147 { 1148 /* 1149 * Reading _entire_mapcount below could be omitted if hugetlb 1150 * participated in incrementing nr_pages_mapped when compound mapped. 1151 */ 1152 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1153 atomic_read(&folio->_entire_mapcount) >= 0; 1154 } 1155 1156 /** 1157 * folio_mapped - Is this folio mapped into userspace? 1158 * @folio: The folio. 1159 * 1160 * Return: True if any page in this folio is referenced by user page tables. 1161 */ 1162 static inline bool folio_mapped(struct folio *folio) 1163 { 1164 if (likely(!folio_test_large(folio))) 1165 return atomic_read(&folio->_mapcount) >= 0; 1166 return folio_large_is_mapped(folio); 1167 } 1168 1169 /* 1170 * Return true if this page is mapped into pagetables. 1171 * For compound page it returns true if any sub-page of compound page is mapped, 1172 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1173 */ 1174 static inline bool page_mapped(struct page *page) 1175 { 1176 if (likely(!PageCompound(page))) 1177 return atomic_read(&page->_mapcount) >= 0; 1178 return folio_large_is_mapped(page_folio(page)); 1179 } 1180 1181 static inline struct page *virt_to_head_page(const void *x) 1182 { 1183 struct page *page = virt_to_page(x); 1184 1185 return compound_head(page); 1186 } 1187 1188 static inline struct folio *virt_to_folio(const void *x) 1189 { 1190 struct page *page = virt_to_page(x); 1191 1192 return page_folio(page); 1193 } 1194 1195 void __folio_put(struct folio *folio); 1196 1197 void put_pages_list(struct list_head *pages); 1198 1199 void split_page(struct page *page, unsigned int order); 1200 void folio_copy(struct folio *dst, struct folio *src); 1201 1202 unsigned long nr_free_buffer_pages(void); 1203 1204 /* 1205 * Compound pages have a destructor function. Provide a 1206 * prototype for that function and accessor functions. 1207 * These are _only_ valid on the head of a compound page. 1208 */ 1209 typedef void compound_page_dtor(struct page *); 1210 1211 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 1212 enum compound_dtor_id { 1213 NULL_COMPOUND_DTOR, 1214 COMPOUND_PAGE_DTOR, 1215 #ifdef CONFIG_HUGETLB_PAGE 1216 HUGETLB_PAGE_DTOR, 1217 #endif 1218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1219 TRANSHUGE_PAGE_DTOR, 1220 #endif 1221 NR_COMPOUND_DTORS, 1222 }; 1223 1224 static inline void folio_set_compound_dtor(struct folio *folio, 1225 enum compound_dtor_id compound_dtor) 1226 { 1227 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1228 folio->_folio_dtor = compound_dtor; 1229 } 1230 1231 void destroy_large_folio(struct folio *folio); 1232 1233 /* Returns the number of bytes in this potentially compound page. */ 1234 static inline unsigned long page_size(struct page *page) 1235 { 1236 return PAGE_SIZE << compound_order(page); 1237 } 1238 1239 /* Returns the number of bits needed for the number of bytes in a page */ 1240 static inline unsigned int page_shift(struct page *page) 1241 { 1242 return PAGE_SHIFT + compound_order(page); 1243 } 1244 1245 /** 1246 * thp_order - Order of a transparent huge page. 1247 * @page: Head page of a transparent huge page. 1248 */ 1249 static inline unsigned int thp_order(struct page *page) 1250 { 1251 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1252 return compound_order(page); 1253 } 1254 1255 /** 1256 * thp_size - Size of a transparent huge page. 1257 * @page: Head page of a transparent huge page. 1258 * 1259 * Return: Number of bytes in this page. 1260 */ 1261 static inline unsigned long thp_size(struct page *page) 1262 { 1263 return PAGE_SIZE << thp_order(page); 1264 } 1265 1266 void free_compound_page(struct page *page); 1267 1268 #ifdef CONFIG_MMU 1269 /* 1270 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1271 * servicing faults for write access. In the normal case, do always want 1272 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1273 * that do not have writing enabled, when used by access_process_vm. 1274 */ 1275 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1276 { 1277 if (likely(vma->vm_flags & VM_WRITE)) 1278 pte = pte_mkwrite(pte); 1279 return pte; 1280 } 1281 1282 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1283 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1284 1285 vm_fault_t finish_fault(struct vm_fault *vmf); 1286 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1287 #endif 1288 1289 /* 1290 * Multiple processes may "see" the same page. E.g. for untouched 1291 * mappings of /dev/null, all processes see the same page full of 1292 * zeroes, and text pages of executables and shared libraries have 1293 * only one copy in memory, at most, normally. 1294 * 1295 * For the non-reserved pages, page_count(page) denotes a reference count. 1296 * page_count() == 0 means the page is free. page->lru is then used for 1297 * freelist management in the buddy allocator. 1298 * page_count() > 0 means the page has been allocated. 1299 * 1300 * Pages are allocated by the slab allocator in order to provide memory 1301 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1302 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1303 * unless a particular usage is carefully commented. (the responsibility of 1304 * freeing the kmalloc memory is the caller's, of course). 1305 * 1306 * A page may be used by anyone else who does a __get_free_page(). 1307 * In this case, page_count still tracks the references, and should only 1308 * be used through the normal accessor functions. The top bits of page->flags 1309 * and page->virtual store page management information, but all other fields 1310 * are unused and could be used privately, carefully. The management of this 1311 * page is the responsibility of the one who allocated it, and those who have 1312 * subsequently been given references to it. 1313 * 1314 * The other pages (we may call them "pagecache pages") are completely 1315 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1316 * The following discussion applies only to them. 1317 * 1318 * A pagecache page contains an opaque `private' member, which belongs to the 1319 * page's address_space. Usually, this is the address of a circular list of 1320 * the page's disk buffers. PG_private must be set to tell the VM to call 1321 * into the filesystem to release these pages. 1322 * 1323 * A page may belong to an inode's memory mapping. In this case, page->mapping 1324 * is the pointer to the inode, and page->index is the file offset of the page, 1325 * in units of PAGE_SIZE. 1326 * 1327 * If pagecache pages are not associated with an inode, they are said to be 1328 * anonymous pages. These may become associated with the swapcache, and in that 1329 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1330 * 1331 * In either case (swapcache or inode backed), the pagecache itself holds one 1332 * reference to the page. Setting PG_private should also increment the 1333 * refcount. The each user mapping also has a reference to the page. 1334 * 1335 * The pagecache pages are stored in a per-mapping radix tree, which is 1336 * rooted at mapping->i_pages, and indexed by offset. 1337 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1338 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1339 * 1340 * All pagecache pages may be subject to I/O: 1341 * - inode pages may need to be read from disk, 1342 * - inode pages which have been modified and are MAP_SHARED may need 1343 * to be written back to the inode on disk, 1344 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1345 * modified may need to be swapped out to swap space and (later) to be read 1346 * back into memory. 1347 */ 1348 1349 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1350 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1351 1352 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1353 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1354 { 1355 if (!static_branch_unlikely(&devmap_managed_key)) 1356 return false; 1357 if (!is_zone_device_page(page)) 1358 return false; 1359 return __put_devmap_managed_page_refs(page, refs); 1360 } 1361 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1362 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1363 { 1364 return false; 1365 } 1366 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1367 1368 static inline bool put_devmap_managed_page(struct page *page) 1369 { 1370 return put_devmap_managed_page_refs(page, 1); 1371 } 1372 1373 /* 127: arbitrary random number, small enough to assemble well */ 1374 #define folio_ref_zero_or_close_to_overflow(folio) \ 1375 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1376 1377 /** 1378 * folio_get - Increment the reference count on a folio. 1379 * @folio: The folio. 1380 * 1381 * Context: May be called in any context, as long as you know that 1382 * you have a refcount on the folio. If you do not already have one, 1383 * folio_try_get() may be the right interface for you to use. 1384 */ 1385 static inline void folio_get(struct folio *folio) 1386 { 1387 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1388 folio_ref_inc(folio); 1389 } 1390 1391 static inline void get_page(struct page *page) 1392 { 1393 folio_get(page_folio(page)); 1394 } 1395 1396 static inline __must_check bool try_get_page(struct page *page) 1397 { 1398 page = compound_head(page); 1399 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1400 return false; 1401 page_ref_inc(page); 1402 return true; 1403 } 1404 1405 /** 1406 * folio_put - Decrement the reference count on a folio. 1407 * @folio: The folio. 1408 * 1409 * If the folio's reference count reaches zero, the memory will be 1410 * released back to the page allocator and may be used by another 1411 * allocation immediately. Do not access the memory or the struct folio 1412 * after calling folio_put() unless you can be sure that it wasn't the 1413 * last reference. 1414 * 1415 * Context: May be called in process or interrupt context, but not in NMI 1416 * context. May be called while holding a spinlock. 1417 */ 1418 static inline void folio_put(struct folio *folio) 1419 { 1420 if (folio_put_testzero(folio)) 1421 __folio_put(folio); 1422 } 1423 1424 /** 1425 * folio_put_refs - Reduce the reference count on a folio. 1426 * @folio: The folio. 1427 * @refs: The amount to subtract from the folio's reference count. 1428 * 1429 * If the folio's reference count reaches zero, the memory will be 1430 * released back to the page allocator and may be used by another 1431 * allocation immediately. Do not access the memory or the struct folio 1432 * after calling folio_put_refs() unless you can be sure that these weren't 1433 * the last references. 1434 * 1435 * Context: May be called in process or interrupt context, but not in NMI 1436 * context. May be called while holding a spinlock. 1437 */ 1438 static inline void folio_put_refs(struct folio *folio, int refs) 1439 { 1440 if (folio_ref_sub_and_test(folio, refs)) 1441 __folio_put(folio); 1442 } 1443 1444 /* 1445 * union release_pages_arg - an array of pages or folios 1446 * 1447 * release_pages() releases a simple array of multiple pages, and 1448 * accepts various different forms of said page array: either 1449 * a regular old boring array of pages, an array of folios, or 1450 * an array of encoded page pointers. 1451 * 1452 * The transparent union syntax for this kind of "any of these 1453 * argument types" is all kinds of ugly, so look away. 1454 */ 1455 typedef union { 1456 struct page **pages; 1457 struct folio **folios; 1458 struct encoded_page **encoded_pages; 1459 } release_pages_arg __attribute__ ((__transparent_union__)); 1460 1461 void release_pages(release_pages_arg, int nr); 1462 1463 /** 1464 * folios_put - Decrement the reference count on an array of folios. 1465 * @folios: The folios. 1466 * @nr: How many folios there are. 1467 * 1468 * Like folio_put(), but for an array of folios. This is more efficient 1469 * than writing the loop yourself as it will optimise the locks which 1470 * need to be taken if the folios are freed. 1471 * 1472 * Context: May be called in process or interrupt context, but not in NMI 1473 * context. May be called while holding a spinlock. 1474 */ 1475 static inline void folios_put(struct folio **folios, unsigned int nr) 1476 { 1477 release_pages(folios, nr); 1478 } 1479 1480 static inline void put_page(struct page *page) 1481 { 1482 struct folio *folio = page_folio(page); 1483 1484 /* 1485 * For some devmap managed pages we need to catch refcount transition 1486 * from 2 to 1: 1487 */ 1488 if (put_devmap_managed_page(&folio->page)) 1489 return; 1490 folio_put(folio); 1491 } 1492 1493 /* 1494 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1495 * the page's refcount so that two separate items are tracked: the original page 1496 * reference count, and also a new count of how many pin_user_pages() calls were 1497 * made against the page. ("gup-pinned" is another term for the latter). 1498 * 1499 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1500 * distinct from normal pages. As such, the unpin_user_page() call (and its 1501 * variants) must be used in order to release gup-pinned pages. 1502 * 1503 * Choice of value: 1504 * 1505 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1506 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1507 * simpler, due to the fact that adding an even power of two to the page 1508 * refcount has the effect of using only the upper N bits, for the code that 1509 * counts up using the bias value. This means that the lower bits are left for 1510 * the exclusive use of the original code that increments and decrements by one 1511 * (or at least, by much smaller values than the bias value). 1512 * 1513 * Of course, once the lower bits overflow into the upper bits (and this is 1514 * OK, because subtraction recovers the original values), then visual inspection 1515 * no longer suffices to directly view the separate counts. However, for normal 1516 * applications that don't have huge page reference counts, this won't be an 1517 * issue. 1518 * 1519 * Locking: the lockless algorithm described in folio_try_get_rcu() 1520 * provides safe operation for get_user_pages(), page_mkclean() and 1521 * other calls that race to set up page table entries. 1522 */ 1523 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1524 1525 void unpin_user_page(struct page *page); 1526 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1527 bool make_dirty); 1528 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1529 bool make_dirty); 1530 void unpin_user_pages(struct page **pages, unsigned long npages); 1531 1532 static inline bool is_cow_mapping(vm_flags_t flags) 1533 { 1534 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1535 } 1536 1537 #ifndef CONFIG_MMU 1538 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1539 { 1540 /* 1541 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1542 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1543 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1544 * underlying memory if ptrace is active, so this is only possible if 1545 * ptrace does not apply. Note that there is no mprotect() to upgrade 1546 * write permissions later. 1547 */ 1548 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1549 } 1550 #endif 1551 1552 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1553 #define SECTION_IN_PAGE_FLAGS 1554 #endif 1555 1556 /* 1557 * The identification function is mainly used by the buddy allocator for 1558 * determining if two pages could be buddies. We are not really identifying 1559 * the zone since we could be using the section number id if we do not have 1560 * node id available in page flags. 1561 * We only guarantee that it will return the same value for two combinable 1562 * pages in a zone. 1563 */ 1564 static inline int page_zone_id(struct page *page) 1565 { 1566 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1567 } 1568 1569 #ifdef NODE_NOT_IN_PAGE_FLAGS 1570 extern int page_to_nid(const struct page *page); 1571 #else 1572 static inline int page_to_nid(const struct page *page) 1573 { 1574 struct page *p = (struct page *)page; 1575 1576 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1577 } 1578 #endif 1579 1580 static inline int folio_nid(const struct folio *folio) 1581 { 1582 return page_to_nid(&folio->page); 1583 } 1584 1585 #ifdef CONFIG_NUMA_BALANCING 1586 /* page access time bits needs to hold at least 4 seconds */ 1587 #define PAGE_ACCESS_TIME_MIN_BITS 12 1588 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1589 #define PAGE_ACCESS_TIME_BUCKETS \ 1590 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1591 #else 1592 #define PAGE_ACCESS_TIME_BUCKETS 0 1593 #endif 1594 1595 #define PAGE_ACCESS_TIME_MASK \ 1596 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1597 1598 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1599 { 1600 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1601 } 1602 1603 static inline int cpupid_to_pid(int cpupid) 1604 { 1605 return cpupid & LAST__PID_MASK; 1606 } 1607 1608 static inline int cpupid_to_cpu(int cpupid) 1609 { 1610 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1611 } 1612 1613 static inline int cpupid_to_nid(int cpupid) 1614 { 1615 return cpu_to_node(cpupid_to_cpu(cpupid)); 1616 } 1617 1618 static inline bool cpupid_pid_unset(int cpupid) 1619 { 1620 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1621 } 1622 1623 static inline bool cpupid_cpu_unset(int cpupid) 1624 { 1625 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1626 } 1627 1628 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1629 { 1630 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1631 } 1632 1633 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1634 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1635 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1636 { 1637 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1638 } 1639 1640 static inline int page_cpupid_last(struct page *page) 1641 { 1642 return page->_last_cpupid; 1643 } 1644 static inline void page_cpupid_reset_last(struct page *page) 1645 { 1646 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1647 } 1648 #else 1649 static inline int page_cpupid_last(struct page *page) 1650 { 1651 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1652 } 1653 1654 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1655 1656 static inline void page_cpupid_reset_last(struct page *page) 1657 { 1658 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1659 } 1660 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1661 1662 static inline int xchg_page_access_time(struct page *page, int time) 1663 { 1664 int last_time; 1665 1666 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1667 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1668 } 1669 1670 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1671 { 1672 unsigned int pid_bit; 1673 1674 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1675 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1676 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1677 } 1678 } 1679 #else /* !CONFIG_NUMA_BALANCING */ 1680 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1681 { 1682 return page_to_nid(page); /* XXX */ 1683 } 1684 1685 static inline int xchg_page_access_time(struct page *page, int time) 1686 { 1687 return 0; 1688 } 1689 1690 static inline int page_cpupid_last(struct page *page) 1691 { 1692 return page_to_nid(page); /* XXX */ 1693 } 1694 1695 static inline int cpupid_to_nid(int cpupid) 1696 { 1697 return -1; 1698 } 1699 1700 static inline int cpupid_to_pid(int cpupid) 1701 { 1702 return -1; 1703 } 1704 1705 static inline int cpupid_to_cpu(int cpupid) 1706 { 1707 return -1; 1708 } 1709 1710 static inline int cpu_pid_to_cpupid(int nid, int pid) 1711 { 1712 return -1; 1713 } 1714 1715 static inline bool cpupid_pid_unset(int cpupid) 1716 { 1717 return true; 1718 } 1719 1720 static inline void page_cpupid_reset_last(struct page *page) 1721 { 1722 } 1723 1724 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1725 { 1726 return false; 1727 } 1728 1729 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1730 { 1731 } 1732 #endif /* CONFIG_NUMA_BALANCING */ 1733 1734 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1735 1736 /* 1737 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1738 * setting tags for all pages to native kernel tag value 0xff, as the default 1739 * value 0x00 maps to 0xff. 1740 */ 1741 1742 static inline u8 page_kasan_tag(const struct page *page) 1743 { 1744 u8 tag = 0xff; 1745 1746 if (kasan_enabled()) { 1747 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1748 tag ^= 0xff; 1749 } 1750 1751 return tag; 1752 } 1753 1754 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1755 { 1756 unsigned long old_flags, flags; 1757 1758 if (!kasan_enabled()) 1759 return; 1760 1761 tag ^= 0xff; 1762 old_flags = READ_ONCE(page->flags); 1763 do { 1764 flags = old_flags; 1765 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1766 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1767 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1768 } 1769 1770 static inline void page_kasan_tag_reset(struct page *page) 1771 { 1772 if (kasan_enabled()) 1773 page_kasan_tag_set(page, 0xff); 1774 } 1775 1776 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1777 1778 static inline u8 page_kasan_tag(const struct page *page) 1779 { 1780 return 0xff; 1781 } 1782 1783 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1784 static inline void page_kasan_tag_reset(struct page *page) { } 1785 1786 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1787 1788 static inline struct zone *page_zone(const struct page *page) 1789 { 1790 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1791 } 1792 1793 static inline pg_data_t *page_pgdat(const struct page *page) 1794 { 1795 return NODE_DATA(page_to_nid(page)); 1796 } 1797 1798 static inline struct zone *folio_zone(const struct folio *folio) 1799 { 1800 return page_zone(&folio->page); 1801 } 1802 1803 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1804 { 1805 return page_pgdat(&folio->page); 1806 } 1807 1808 #ifdef SECTION_IN_PAGE_FLAGS 1809 static inline void set_page_section(struct page *page, unsigned long section) 1810 { 1811 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1812 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1813 } 1814 1815 static inline unsigned long page_to_section(const struct page *page) 1816 { 1817 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1818 } 1819 #endif 1820 1821 /** 1822 * folio_pfn - Return the Page Frame Number of a folio. 1823 * @folio: The folio. 1824 * 1825 * A folio may contain multiple pages. The pages have consecutive 1826 * Page Frame Numbers. 1827 * 1828 * Return: The Page Frame Number of the first page in the folio. 1829 */ 1830 static inline unsigned long folio_pfn(struct folio *folio) 1831 { 1832 return page_to_pfn(&folio->page); 1833 } 1834 1835 static inline struct folio *pfn_folio(unsigned long pfn) 1836 { 1837 return page_folio(pfn_to_page(pfn)); 1838 } 1839 1840 /** 1841 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1842 * @folio: The folio. 1843 * 1844 * This function checks if a folio has been pinned via a call to 1845 * a function in the pin_user_pages() family. 1846 * 1847 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1848 * because it means "definitely not pinned for DMA", but true means "probably 1849 * pinned for DMA, but possibly a false positive due to having at least 1850 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1851 * 1852 * False positives are OK, because: a) it's unlikely for a folio to 1853 * get that many refcounts, and b) all the callers of this routine are 1854 * expected to be able to deal gracefully with a false positive. 1855 * 1856 * For large folios, the result will be exactly correct. That's because 1857 * we have more tracking data available: the _pincount field is used 1858 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1859 * 1860 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1861 * 1862 * Return: True, if it is likely that the page has been "dma-pinned". 1863 * False, if the page is definitely not dma-pinned. 1864 */ 1865 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1866 { 1867 if (folio_test_large(folio)) 1868 return atomic_read(&folio->_pincount) > 0; 1869 1870 /* 1871 * folio_ref_count() is signed. If that refcount overflows, then 1872 * folio_ref_count() returns a negative value, and callers will avoid 1873 * further incrementing the refcount. 1874 * 1875 * Here, for that overflow case, use the sign bit to count a little 1876 * bit higher via unsigned math, and thus still get an accurate result. 1877 */ 1878 return ((unsigned int)folio_ref_count(folio)) >= 1879 GUP_PIN_COUNTING_BIAS; 1880 } 1881 1882 static inline bool page_maybe_dma_pinned(struct page *page) 1883 { 1884 return folio_maybe_dma_pinned(page_folio(page)); 1885 } 1886 1887 /* 1888 * This should most likely only be called during fork() to see whether we 1889 * should break the cow immediately for an anon page on the src mm. 1890 * 1891 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1892 */ 1893 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1894 struct page *page) 1895 { 1896 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1897 1898 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1899 return false; 1900 1901 return page_maybe_dma_pinned(page); 1902 } 1903 1904 /** 1905 * is_zero_page - Query if a page is a zero page 1906 * @page: The page to query 1907 * 1908 * This returns true if @page is one of the permanent zero pages. 1909 */ 1910 static inline bool is_zero_page(const struct page *page) 1911 { 1912 return is_zero_pfn(page_to_pfn(page)); 1913 } 1914 1915 /** 1916 * is_zero_folio - Query if a folio is a zero page 1917 * @folio: The folio to query 1918 * 1919 * This returns true if @folio is one of the permanent zero pages. 1920 */ 1921 static inline bool is_zero_folio(const struct folio *folio) 1922 { 1923 return is_zero_page(&folio->page); 1924 } 1925 1926 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1927 #ifdef CONFIG_MIGRATION 1928 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1929 { 1930 #ifdef CONFIG_CMA 1931 int mt = folio_migratetype(folio); 1932 1933 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1934 return false; 1935 #endif 1936 /* The zero page can be "pinned" but gets special handling. */ 1937 if (is_zero_folio(folio)) 1938 return true; 1939 1940 /* Coherent device memory must always allow eviction. */ 1941 if (folio_is_device_coherent(folio)) 1942 return false; 1943 1944 /* Otherwise, non-movable zone folios can be pinned. */ 1945 return !folio_is_zone_movable(folio); 1946 1947 } 1948 #else 1949 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1950 { 1951 return true; 1952 } 1953 #endif 1954 1955 static inline void set_page_zone(struct page *page, enum zone_type zone) 1956 { 1957 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1958 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1959 } 1960 1961 static inline void set_page_node(struct page *page, unsigned long node) 1962 { 1963 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1964 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1965 } 1966 1967 static inline void set_page_links(struct page *page, enum zone_type zone, 1968 unsigned long node, unsigned long pfn) 1969 { 1970 set_page_zone(page, zone); 1971 set_page_node(page, node); 1972 #ifdef SECTION_IN_PAGE_FLAGS 1973 set_page_section(page, pfn_to_section_nr(pfn)); 1974 #endif 1975 } 1976 1977 /** 1978 * folio_nr_pages - The number of pages in the folio. 1979 * @folio: The folio. 1980 * 1981 * Return: A positive power of two. 1982 */ 1983 static inline long folio_nr_pages(struct folio *folio) 1984 { 1985 if (!folio_test_large(folio)) 1986 return 1; 1987 #ifdef CONFIG_64BIT 1988 return folio->_folio_nr_pages; 1989 #else 1990 return 1L << folio->_folio_order; 1991 #endif 1992 } 1993 1994 /* 1995 * compound_nr() returns the number of pages in this potentially compound 1996 * page. compound_nr() can be called on a tail page, and is defined to 1997 * return 1 in that case. 1998 */ 1999 static inline unsigned long compound_nr(struct page *page) 2000 { 2001 struct folio *folio = (struct folio *)page; 2002 2003 if (!test_bit(PG_head, &folio->flags)) 2004 return 1; 2005 #ifdef CONFIG_64BIT 2006 return folio->_folio_nr_pages; 2007 #else 2008 return 1L << folio->_folio_order; 2009 #endif 2010 } 2011 2012 /** 2013 * thp_nr_pages - The number of regular pages in this huge page. 2014 * @page: The head page of a huge page. 2015 */ 2016 static inline int thp_nr_pages(struct page *page) 2017 { 2018 return folio_nr_pages((struct folio *)page); 2019 } 2020 2021 /** 2022 * folio_next - Move to the next physical folio. 2023 * @folio: The folio we're currently operating on. 2024 * 2025 * If you have physically contiguous memory which may span more than 2026 * one folio (eg a &struct bio_vec), use this function to move from one 2027 * folio to the next. Do not use it if the memory is only virtually 2028 * contiguous as the folios are almost certainly not adjacent to each 2029 * other. This is the folio equivalent to writing ``page++``. 2030 * 2031 * Context: We assume that the folios are refcounted and/or locked at a 2032 * higher level and do not adjust the reference counts. 2033 * Return: The next struct folio. 2034 */ 2035 static inline struct folio *folio_next(struct folio *folio) 2036 { 2037 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2038 } 2039 2040 /** 2041 * folio_shift - The size of the memory described by this folio. 2042 * @folio: The folio. 2043 * 2044 * A folio represents a number of bytes which is a power-of-two in size. 2045 * This function tells you which power-of-two the folio is. See also 2046 * folio_size() and folio_order(). 2047 * 2048 * Context: The caller should have a reference on the folio to prevent 2049 * it from being split. It is not necessary for the folio to be locked. 2050 * Return: The base-2 logarithm of the size of this folio. 2051 */ 2052 static inline unsigned int folio_shift(struct folio *folio) 2053 { 2054 return PAGE_SHIFT + folio_order(folio); 2055 } 2056 2057 /** 2058 * folio_size - The number of bytes in a folio. 2059 * @folio: The folio. 2060 * 2061 * Context: The caller should have a reference on the folio to prevent 2062 * it from being split. It is not necessary for the folio to be locked. 2063 * Return: The number of bytes in this folio. 2064 */ 2065 static inline size_t folio_size(struct folio *folio) 2066 { 2067 return PAGE_SIZE << folio_order(folio); 2068 } 2069 2070 /** 2071 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2072 * @folio: The folio. 2073 * 2074 * folio_estimated_sharers() aims to serve as a function to efficiently 2075 * estimate the number of processes sharing a folio. This is done by 2076 * looking at the precise mapcount of the first subpage in the folio, and 2077 * assuming the other subpages are the same. This may not be true for large 2078 * folios. If you want exact mapcounts for exact calculations, look at 2079 * page_mapcount() or folio_total_mapcount(). 2080 * 2081 * Return: The estimated number of processes sharing a folio. 2082 */ 2083 static inline int folio_estimated_sharers(struct folio *folio) 2084 { 2085 return page_mapcount(folio_page(folio, 0)); 2086 } 2087 2088 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2089 static inline int arch_make_page_accessible(struct page *page) 2090 { 2091 return 0; 2092 } 2093 #endif 2094 2095 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2096 static inline int arch_make_folio_accessible(struct folio *folio) 2097 { 2098 int ret; 2099 long i, nr = folio_nr_pages(folio); 2100 2101 for (i = 0; i < nr; i++) { 2102 ret = arch_make_page_accessible(folio_page(folio, i)); 2103 if (ret) 2104 break; 2105 } 2106 2107 return ret; 2108 } 2109 #endif 2110 2111 /* 2112 * Some inline functions in vmstat.h depend on page_zone() 2113 */ 2114 #include <linux/vmstat.h> 2115 2116 static __always_inline void *lowmem_page_address(const struct page *page) 2117 { 2118 return page_to_virt(page); 2119 } 2120 2121 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2122 #define HASHED_PAGE_VIRTUAL 2123 #endif 2124 2125 #if defined(WANT_PAGE_VIRTUAL) 2126 static inline void *page_address(const struct page *page) 2127 { 2128 return page->virtual; 2129 } 2130 static inline void set_page_address(struct page *page, void *address) 2131 { 2132 page->virtual = address; 2133 } 2134 #define page_address_init() do { } while(0) 2135 #endif 2136 2137 #if defined(HASHED_PAGE_VIRTUAL) 2138 void *page_address(const struct page *page); 2139 void set_page_address(struct page *page, void *virtual); 2140 void page_address_init(void); 2141 #endif 2142 2143 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2144 #define page_address(page) lowmem_page_address(page) 2145 #define set_page_address(page, address) do { } while(0) 2146 #define page_address_init() do { } while(0) 2147 #endif 2148 2149 static inline void *folio_address(const struct folio *folio) 2150 { 2151 return page_address(&folio->page); 2152 } 2153 2154 extern void *page_rmapping(struct page *page); 2155 extern pgoff_t __page_file_index(struct page *page); 2156 2157 /* 2158 * Return the pagecache index of the passed page. Regular pagecache pages 2159 * use ->index whereas swapcache pages use swp_offset(->private) 2160 */ 2161 static inline pgoff_t page_index(struct page *page) 2162 { 2163 if (unlikely(PageSwapCache(page))) 2164 return __page_file_index(page); 2165 return page->index; 2166 } 2167 2168 /* 2169 * Return true only if the page has been allocated with 2170 * ALLOC_NO_WATERMARKS and the low watermark was not 2171 * met implying that the system is under some pressure. 2172 */ 2173 static inline bool page_is_pfmemalloc(const struct page *page) 2174 { 2175 /* 2176 * lru.next has bit 1 set if the page is allocated from the 2177 * pfmemalloc reserves. Callers may simply overwrite it if 2178 * they do not need to preserve that information. 2179 */ 2180 return (uintptr_t)page->lru.next & BIT(1); 2181 } 2182 2183 /* 2184 * Return true only if the folio has been allocated with 2185 * ALLOC_NO_WATERMARKS and the low watermark was not 2186 * met implying that the system is under some pressure. 2187 */ 2188 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2189 { 2190 /* 2191 * lru.next has bit 1 set if the page is allocated from the 2192 * pfmemalloc reserves. Callers may simply overwrite it if 2193 * they do not need to preserve that information. 2194 */ 2195 return (uintptr_t)folio->lru.next & BIT(1); 2196 } 2197 2198 /* 2199 * Only to be called by the page allocator on a freshly allocated 2200 * page. 2201 */ 2202 static inline void set_page_pfmemalloc(struct page *page) 2203 { 2204 page->lru.next = (void *)BIT(1); 2205 } 2206 2207 static inline void clear_page_pfmemalloc(struct page *page) 2208 { 2209 page->lru.next = NULL; 2210 } 2211 2212 /* 2213 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2214 */ 2215 extern void pagefault_out_of_memory(void); 2216 2217 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2218 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2219 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2220 2221 /* 2222 * Flags passed to show_mem() and show_free_areas() to suppress output in 2223 * various contexts. 2224 */ 2225 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 2226 2227 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2228 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 2229 { 2230 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 2231 } 2232 2233 /* 2234 * Parameter block passed down to zap_pte_range in exceptional cases. 2235 */ 2236 struct zap_details { 2237 struct folio *single_folio; /* Locked folio to be unmapped */ 2238 bool even_cows; /* Zap COWed private pages too? */ 2239 zap_flags_t zap_flags; /* Extra flags for zapping */ 2240 }; 2241 2242 /* 2243 * Whether to drop the pte markers, for example, the uffd-wp information for 2244 * file-backed memory. This should only be specified when we will completely 2245 * drop the page in the mm, either by truncation or unmapping of the vma. By 2246 * default, the flag is not set. 2247 */ 2248 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2249 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2250 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2251 2252 #ifdef CONFIG_SCHED_MM_CID 2253 void sched_mm_cid_before_execve(struct task_struct *t); 2254 void sched_mm_cid_after_execve(struct task_struct *t); 2255 void sched_mm_cid_fork(struct task_struct *t); 2256 void sched_mm_cid_exit_signals(struct task_struct *t); 2257 static inline int task_mm_cid(struct task_struct *t) 2258 { 2259 return t->mm_cid; 2260 } 2261 #else 2262 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2263 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2264 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2265 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2266 static inline int task_mm_cid(struct task_struct *t) 2267 { 2268 /* 2269 * Use the processor id as a fall-back when the mm cid feature is 2270 * disabled. This provides functional per-cpu data structure accesses 2271 * in user-space, althrough it won't provide the memory usage benefits. 2272 */ 2273 return raw_smp_processor_id(); 2274 } 2275 #endif 2276 2277 #ifdef CONFIG_MMU 2278 extern bool can_do_mlock(void); 2279 #else 2280 static inline bool can_do_mlock(void) { return false; } 2281 #endif 2282 extern int user_shm_lock(size_t, struct ucounts *); 2283 extern void user_shm_unlock(size_t, struct ucounts *); 2284 2285 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2286 pte_t pte); 2287 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2288 pte_t pte); 2289 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2290 pmd_t pmd); 2291 2292 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2293 unsigned long size); 2294 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2295 unsigned long size, struct zap_details *details); 2296 static inline void zap_vma_pages(struct vm_area_struct *vma) 2297 { 2298 zap_page_range_single(vma, vma->vm_start, 2299 vma->vm_end - vma->vm_start, NULL); 2300 } 2301 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2302 struct vm_area_struct *start_vma, unsigned long start, 2303 unsigned long end, bool mm_wr_locked); 2304 2305 struct mmu_notifier_range; 2306 2307 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2308 unsigned long end, unsigned long floor, unsigned long ceiling); 2309 int 2310 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2311 int follow_pte(struct mm_struct *mm, unsigned long address, 2312 pte_t **ptepp, spinlock_t **ptlp); 2313 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2314 unsigned long *pfn); 2315 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2316 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2317 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2318 void *buf, int len, int write); 2319 2320 extern void truncate_pagecache(struct inode *inode, loff_t new); 2321 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2322 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2323 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2324 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2325 2326 #ifdef CONFIG_MMU 2327 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2328 unsigned long address, unsigned int flags, 2329 struct pt_regs *regs); 2330 extern int fixup_user_fault(struct mm_struct *mm, 2331 unsigned long address, unsigned int fault_flags, 2332 bool *unlocked); 2333 void unmap_mapping_pages(struct address_space *mapping, 2334 pgoff_t start, pgoff_t nr, bool even_cows); 2335 void unmap_mapping_range(struct address_space *mapping, 2336 loff_t const holebegin, loff_t const holelen, int even_cows); 2337 #else 2338 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2339 unsigned long address, unsigned int flags, 2340 struct pt_regs *regs) 2341 { 2342 /* should never happen if there's no MMU */ 2343 BUG(); 2344 return VM_FAULT_SIGBUS; 2345 } 2346 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2347 unsigned int fault_flags, bool *unlocked) 2348 { 2349 /* should never happen if there's no MMU */ 2350 BUG(); 2351 return -EFAULT; 2352 } 2353 static inline void unmap_mapping_pages(struct address_space *mapping, 2354 pgoff_t start, pgoff_t nr, bool even_cows) { } 2355 static inline void unmap_mapping_range(struct address_space *mapping, 2356 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2357 #endif 2358 2359 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2360 loff_t const holebegin, loff_t const holelen) 2361 { 2362 unmap_mapping_range(mapping, holebegin, holelen, 0); 2363 } 2364 2365 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2366 unsigned long addr); 2367 2368 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2369 void *buf, int len, unsigned int gup_flags); 2370 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2371 void *buf, int len, unsigned int gup_flags); 2372 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2373 void *buf, int len, unsigned int gup_flags); 2374 2375 long get_user_pages_remote(struct mm_struct *mm, 2376 unsigned long start, unsigned long nr_pages, 2377 unsigned int gup_flags, struct page **pages, 2378 int *locked); 2379 long pin_user_pages_remote(struct mm_struct *mm, 2380 unsigned long start, unsigned long nr_pages, 2381 unsigned int gup_flags, struct page **pages, 2382 int *locked); 2383 2384 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2385 unsigned long addr, 2386 int gup_flags, 2387 struct vm_area_struct **vmap) 2388 { 2389 struct page *page; 2390 struct vm_area_struct *vma; 2391 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2392 2393 if (got < 0) 2394 return ERR_PTR(got); 2395 if (got == 0) 2396 return NULL; 2397 2398 vma = vma_lookup(mm, addr); 2399 if (WARN_ON_ONCE(!vma)) { 2400 put_page(page); 2401 return ERR_PTR(-EINVAL); 2402 } 2403 2404 *vmap = vma; 2405 return page; 2406 } 2407 2408 long get_user_pages(unsigned long start, unsigned long nr_pages, 2409 unsigned int gup_flags, struct page **pages); 2410 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2411 unsigned int gup_flags, struct page **pages); 2412 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2413 struct page **pages, unsigned int gup_flags); 2414 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2415 struct page **pages, unsigned int gup_flags); 2416 2417 int get_user_pages_fast(unsigned long start, int nr_pages, 2418 unsigned int gup_flags, struct page **pages); 2419 int pin_user_pages_fast(unsigned long start, int nr_pages, 2420 unsigned int gup_flags, struct page **pages); 2421 void folio_add_pin(struct folio *folio); 2422 2423 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2424 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2425 struct task_struct *task, bool bypass_rlim); 2426 2427 struct kvec; 2428 struct page *get_dump_page(unsigned long addr); 2429 2430 bool folio_mark_dirty(struct folio *folio); 2431 bool set_page_dirty(struct page *page); 2432 int set_page_dirty_lock(struct page *page); 2433 2434 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2435 2436 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2437 unsigned long old_addr, struct vm_area_struct *new_vma, 2438 unsigned long new_addr, unsigned long len, 2439 bool need_rmap_locks); 2440 2441 /* 2442 * Flags used by change_protection(). For now we make it a bitmap so 2443 * that we can pass in multiple flags just like parameters. However 2444 * for now all the callers are only use one of the flags at the same 2445 * time. 2446 */ 2447 /* 2448 * Whether we should manually check if we can map individual PTEs writable, 2449 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2450 * PTEs automatically in a writable mapping. 2451 */ 2452 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2453 /* Whether this protection change is for NUMA hints */ 2454 #define MM_CP_PROT_NUMA (1UL << 1) 2455 /* Whether this change is for write protecting */ 2456 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2457 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2458 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2459 MM_CP_UFFD_WP_RESOLVE) 2460 2461 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2462 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2463 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2464 { 2465 /* 2466 * We want to check manually if we can change individual PTEs writable 2467 * if we can't do that automatically for all PTEs in a mapping. For 2468 * private mappings, that's always the case when we have write 2469 * permissions as we properly have to handle COW. 2470 */ 2471 if (vma->vm_flags & VM_SHARED) 2472 return vma_wants_writenotify(vma, vma->vm_page_prot); 2473 return !!(vma->vm_flags & VM_WRITE); 2474 2475 } 2476 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2477 pte_t pte); 2478 extern long change_protection(struct mmu_gather *tlb, 2479 struct vm_area_struct *vma, unsigned long start, 2480 unsigned long end, unsigned long cp_flags); 2481 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2482 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2483 unsigned long start, unsigned long end, unsigned long newflags); 2484 2485 /* 2486 * doesn't attempt to fault and will return short. 2487 */ 2488 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2489 unsigned int gup_flags, struct page **pages); 2490 2491 static inline bool get_user_page_fast_only(unsigned long addr, 2492 unsigned int gup_flags, struct page **pagep) 2493 { 2494 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2495 } 2496 /* 2497 * per-process(per-mm_struct) statistics. 2498 */ 2499 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2500 { 2501 return percpu_counter_read_positive(&mm->rss_stat[member]); 2502 } 2503 2504 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2505 2506 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2507 { 2508 percpu_counter_add(&mm->rss_stat[member], value); 2509 2510 mm_trace_rss_stat(mm, member); 2511 } 2512 2513 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2514 { 2515 percpu_counter_inc(&mm->rss_stat[member]); 2516 2517 mm_trace_rss_stat(mm, member); 2518 } 2519 2520 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2521 { 2522 percpu_counter_dec(&mm->rss_stat[member]); 2523 2524 mm_trace_rss_stat(mm, member); 2525 } 2526 2527 /* Optimized variant when page is already known not to be PageAnon */ 2528 static inline int mm_counter_file(struct page *page) 2529 { 2530 if (PageSwapBacked(page)) 2531 return MM_SHMEMPAGES; 2532 return MM_FILEPAGES; 2533 } 2534 2535 static inline int mm_counter(struct page *page) 2536 { 2537 if (PageAnon(page)) 2538 return MM_ANONPAGES; 2539 return mm_counter_file(page); 2540 } 2541 2542 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2543 { 2544 return get_mm_counter(mm, MM_FILEPAGES) + 2545 get_mm_counter(mm, MM_ANONPAGES) + 2546 get_mm_counter(mm, MM_SHMEMPAGES); 2547 } 2548 2549 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2550 { 2551 return max(mm->hiwater_rss, get_mm_rss(mm)); 2552 } 2553 2554 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2555 { 2556 return max(mm->hiwater_vm, mm->total_vm); 2557 } 2558 2559 static inline void update_hiwater_rss(struct mm_struct *mm) 2560 { 2561 unsigned long _rss = get_mm_rss(mm); 2562 2563 if ((mm)->hiwater_rss < _rss) 2564 (mm)->hiwater_rss = _rss; 2565 } 2566 2567 static inline void update_hiwater_vm(struct mm_struct *mm) 2568 { 2569 if (mm->hiwater_vm < mm->total_vm) 2570 mm->hiwater_vm = mm->total_vm; 2571 } 2572 2573 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2574 { 2575 mm->hiwater_rss = get_mm_rss(mm); 2576 } 2577 2578 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2579 struct mm_struct *mm) 2580 { 2581 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2582 2583 if (*maxrss < hiwater_rss) 2584 *maxrss = hiwater_rss; 2585 } 2586 2587 #if defined(SPLIT_RSS_COUNTING) 2588 void sync_mm_rss(struct mm_struct *mm); 2589 #else 2590 static inline void sync_mm_rss(struct mm_struct *mm) 2591 { 2592 } 2593 #endif 2594 2595 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2596 static inline int pte_special(pte_t pte) 2597 { 2598 return 0; 2599 } 2600 2601 static inline pte_t pte_mkspecial(pte_t pte) 2602 { 2603 return pte; 2604 } 2605 #endif 2606 2607 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2608 static inline int pte_devmap(pte_t pte) 2609 { 2610 return 0; 2611 } 2612 #endif 2613 2614 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2615 spinlock_t **ptl); 2616 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2617 spinlock_t **ptl) 2618 { 2619 pte_t *ptep; 2620 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2621 return ptep; 2622 } 2623 2624 #ifdef __PAGETABLE_P4D_FOLDED 2625 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2626 unsigned long address) 2627 { 2628 return 0; 2629 } 2630 #else 2631 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2632 #endif 2633 2634 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2635 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2636 unsigned long address) 2637 { 2638 return 0; 2639 } 2640 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2641 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2642 2643 #else 2644 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2645 2646 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2647 { 2648 if (mm_pud_folded(mm)) 2649 return; 2650 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2651 } 2652 2653 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2654 { 2655 if (mm_pud_folded(mm)) 2656 return; 2657 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2658 } 2659 #endif 2660 2661 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2662 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2663 unsigned long address) 2664 { 2665 return 0; 2666 } 2667 2668 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2669 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2670 2671 #else 2672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2673 2674 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2675 { 2676 if (mm_pmd_folded(mm)) 2677 return; 2678 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2679 } 2680 2681 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2682 { 2683 if (mm_pmd_folded(mm)) 2684 return; 2685 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2686 } 2687 #endif 2688 2689 #ifdef CONFIG_MMU 2690 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2691 { 2692 atomic_long_set(&mm->pgtables_bytes, 0); 2693 } 2694 2695 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2696 { 2697 return atomic_long_read(&mm->pgtables_bytes); 2698 } 2699 2700 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2701 { 2702 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2703 } 2704 2705 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2706 { 2707 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2708 } 2709 #else 2710 2711 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2712 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2713 { 2714 return 0; 2715 } 2716 2717 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2718 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2719 #endif 2720 2721 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2722 int __pte_alloc_kernel(pmd_t *pmd); 2723 2724 #if defined(CONFIG_MMU) 2725 2726 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2727 unsigned long address) 2728 { 2729 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2730 NULL : p4d_offset(pgd, address); 2731 } 2732 2733 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2734 unsigned long address) 2735 { 2736 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2737 NULL : pud_offset(p4d, address); 2738 } 2739 2740 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2741 { 2742 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2743 NULL: pmd_offset(pud, address); 2744 } 2745 #endif /* CONFIG_MMU */ 2746 2747 #if USE_SPLIT_PTE_PTLOCKS 2748 #if ALLOC_SPLIT_PTLOCKS 2749 void __init ptlock_cache_init(void); 2750 extern bool ptlock_alloc(struct page *page); 2751 extern void ptlock_free(struct page *page); 2752 2753 static inline spinlock_t *ptlock_ptr(struct page *page) 2754 { 2755 return page->ptl; 2756 } 2757 #else /* ALLOC_SPLIT_PTLOCKS */ 2758 static inline void ptlock_cache_init(void) 2759 { 2760 } 2761 2762 static inline bool ptlock_alloc(struct page *page) 2763 { 2764 return true; 2765 } 2766 2767 static inline void ptlock_free(struct page *page) 2768 { 2769 } 2770 2771 static inline spinlock_t *ptlock_ptr(struct page *page) 2772 { 2773 return &page->ptl; 2774 } 2775 #endif /* ALLOC_SPLIT_PTLOCKS */ 2776 2777 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2778 { 2779 return ptlock_ptr(pmd_page(*pmd)); 2780 } 2781 2782 static inline bool ptlock_init(struct page *page) 2783 { 2784 /* 2785 * prep_new_page() initialize page->private (and therefore page->ptl) 2786 * with 0. Make sure nobody took it in use in between. 2787 * 2788 * It can happen if arch try to use slab for page table allocation: 2789 * slab code uses page->slab_cache, which share storage with page->ptl. 2790 */ 2791 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2792 if (!ptlock_alloc(page)) 2793 return false; 2794 spin_lock_init(ptlock_ptr(page)); 2795 return true; 2796 } 2797 2798 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2799 /* 2800 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2801 */ 2802 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2803 { 2804 return &mm->page_table_lock; 2805 } 2806 static inline void ptlock_cache_init(void) {} 2807 static inline bool ptlock_init(struct page *page) { return true; } 2808 static inline void ptlock_free(struct page *page) {} 2809 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2810 2811 static inline bool pgtable_pte_page_ctor(struct page *page) 2812 { 2813 if (!ptlock_init(page)) 2814 return false; 2815 __SetPageTable(page); 2816 inc_lruvec_page_state(page, NR_PAGETABLE); 2817 return true; 2818 } 2819 2820 static inline void pgtable_pte_page_dtor(struct page *page) 2821 { 2822 ptlock_free(page); 2823 __ClearPageTable(page); 2824 dec_lruvec_page_state(page, NR_PAGETABLE); 2825 } 2826 2827 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2828 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2829 { 2830 return __pte_offset_map(pmd, addr, NULL); 2831 } 2832 2833 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2834 unsigned long addr, spinlock_t **ptlp); 2835 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2836 unsigned long addr, spinlock_t **ptlp) 2837 { 2838 pte_t *pte; 2839 2840 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2841 return pte; 2842 } 2843 2844 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2845 unsigned long addr, spinlock_t **ptlp); 2846 2847 #define pte_unmap_unlock(pte, ptl) do { \ 2848 spin_unlock(ptl); \ 2849 pte_unmap(pte); \ 2850 } while (0) 2851 2852 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2853 2854 #define pte_alloc_map(mm, pmd, address) \ 2855 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2856 2857 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2858 (pte_alloc(mm, pmd) ? \ 2859 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2860 2861 #define pte_alloc_kernel(pmd, address) \ 2862 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2863 NULL: pte_offset_kernel(pmd, address)) 2864 2865 #if USE_SPLIT_PMD_PTLOCKS 2866 2867 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2868 { 2869 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2870 return virt_to_page((void *)((unsigned long) pmd & mask)); 2871 } 2872 2873 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2874 { 2875 return ptlock_ptr(pmd_pgtable_page(pmd)); 2876 } 2877 2878 static inline bool pmd_ptlock_init(struct page *page) 2879 { 2880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2881 page->pmd_huge_pte = NULL; 2882 #endif 2883 return ptlock_init(page); 2884 } 2885 2886 static inline void pmd_ptlock_free(struct page *page) 2887 { 2888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2889 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2890 #endif 2891 ptlock_free(page); 2892 } 2893 2894 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2895 2896 #else 2897 2898 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2899 { 2900 return &mm->page_table_lock; 2901 } 2902 2903 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2904 static inline void pmd_ptlock_free(struct page *page) {} 2905 2906 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2907 2908 #endif 2909 2910 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2911 { 2912 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2913 spin_lock(ptl); 2914 return ptl; 2915 } 2916 2917 static inline bool pgtable_pmd_page_ctor(struct page *page) 2918 { 2919 if (!pmd_ptlock_init(page)) 2920 return false; 2921 __SetPageTable(page); 2922 inc_lruvec_page_state(page, NR_PAGETABLE); 2923 return true; 2924 } 2925 2926 static inline void pgtable_pmd_page_dtor(struct page *page) 2927 { 2928 pmd_ptlock_free(page); 2929 __ClearPageTable(page); 2930 dec_lruvec_page_state(page, NR_PAGETABLE); 2931 } 2932 2933 /* 2934 * No scalability reason to split PUD locks yet, but follow the same pattern 2935 * as the PMD locks to make it easier if we decide to. The VM should not be 2936 * considered ready to switch to split PUD locks yet; there may be places 2937 * which need to be converted from page_table_lock. 2938 */ 2939 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2940 { 2941 return &mm->page_table_lock; 2942 } 2943 2944 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2945 { 2946 spinlock_t *ptl = pud_lockptr(mm, pud); 2947 2948 spin_lock(ptl); 2949 return ptl; 2950 } 2951 2952 extern void __init pagecache_init(void); 2953 extern void free_initmem(void); 2954 2955 /* 2956 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2957 * into the buddy system. The freed pages will be poisoned with pattern 2958 * "poison" if it's within range [0, UCHAR_MAX]. 2959 * Return pages freed into the buddy system. 2960 */ 2961 extern unsigned long free_reserved_area(void *start, void *end, 2962 int poison, const char *s); 2963 2964 extern void adjust_managed_page_count(struct page *page, long count); 2965 2966 extern void reserve_bootmem_region(phys_addr_t start, 2967 phys_addr_t end, int nid); 2968 2969 /* Free the reserved page into the buddy system, so it gets managed. */ 2970 static inline void free_reserved_page(struct page *page) 2971 { 2972 ClearPageReserved(page); 2973 init_page_count(page); 2974 __free_page(page); 2975 adjust_managed_page_count(page, 1); 2976 } 2977 #define free_highmem_page(page) free_reserved_page(page) 2978 2979 static inline void mark_page_reserved(struct page *page) 2980 { 2981 SetPageReserved(page); 2982 adjust_managed_page_count(page, -1); 2983 } 2984 2985 /* 2986 * Default method to free all the __init memory into the buddy system. 2987 * The freed pages will be poisoned with pattern "poison" if it's within 2988 * range [0, UCHAR_MAX]. 2989 * Return pages freed into the buddy system. 2990 */ 2991 static inline unsigned long free_initmem_default(int poison) 2992 { 2993 extern char __init_begin[], __init_end[]; 2994 2995 return free_reserved_area(&__init_begin, &__init_end, 2996 poison, "unused kernel image (initmem)"); 2997 } 2998 2999 static inline unsigned long get_num_physpages(void) 3000 { 3001 int nid; 3002 unsigned long phys_pages = 0; 3003 3004 for_each_online_node(nid) 3005 phys_pages += node_present_pages(nid); 3006 3007 return phys_pages; 3008 } 3009 3010 /* 3011 * Using memblock node mappings, an architecture may initialise its 3012 * zones, allocate the backing mem_map and account for memory holes in an 3013 * architecture independent manner. 3014 * 3015 * An architecture is expected to register range of page frames backed by 3016 * physical memory with memblock_add[_node]() before calling 3017 * free_area_init() passing in the PFN each zone ends at. At a basic 3018 * usage, an architecture is expected to do something like 3019 * 3020 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3021 * max_highmem_pfn}; 3022 * for_each_valid_physical_page_range() 3023 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3024 * free_area_init(max_zone_pfns); 3025 */ 3026 void free_area_init(unsigned long *max_zone_pfn); 3027 unsigned long node_map_pfn_alignment(void); 3028 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3029 unsigned long end_pfn); 3030 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3031 unsigned long end_pfn); 3032 extern void get_pfn_range_for_nid(unsigned int nid, 3033 unsigned long *start_pfn, unsigned long *end_pfn); 3034 3035 #ifndef CONFIG_NUMA 3036 static inline int early_pfn_to_nid(unsigned long pfn) 3037 { 3038 return 0; 3039 } 3040 #else 3041 /* please see mm/page_alloc.c */ 3042 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3043 #endif 3044 3045 extern void set_dma_reserve(unsigned long new_dma_reserve); 3046 extern void mem_init(void); 3047 extern void __init mmap_init(void); 3048 3049 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3050 static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 3051 { 3052 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 3053 } 3054 extern long si_mem_available(void); 3055 extern void si_meminfo(struct sysinfo * val); 3056 extern void si_meminfo_node(struct sysinfo *val, int nid); 3057 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3058 extern unsigned long arch_reserved_kernel_pages(void); 3059 #endif 3060 3061 extern __printf(3, 4) 3062 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3063 3064 extern void setup_per_cpu_pageset(void); 3065 3066 /* nommu.c */ 3067 extern atomic_long_t mmap_pages_allocated; 3068 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3069 3070 /* interval_tree.c */ 3071 void vma_interval_tree_insert(struct vm_area_struct *node, 3072 struct rb_root_cached *root); 3073 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3074 struct vm_area_struct *prev, 3075 struct rb_root_cached *root); 3076 void vma_interval_tree_remove(struct vm_area_struct *node, 3077 struct rb_root_cached *root); 3078 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3079 unsigned long start, unsigned long last); 3080 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3081 unsigned long start, unsigned long last); 3082 3083 #define vma_interval_tree_foreach(vma, root, start, last) \ 3084 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3085 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3086 3087 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3088 struct rb_root_cached *root); 3089 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3090 struct rb_root_cached *root); 3091 struct anon_vma_chain * 3092 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3093 unsigned long start, unsigned long last); 3094 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3095 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3096 #ifdef CONFIG_DEBUG_VM_RB 3097 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3098 #endif 3099 3100 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3101 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3102 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3103 3104 /* mmap.c */ 3105 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3106 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3107 unsigned long start, unsigned long end, pgoff_t pgoff, 3108 struct vm_area_struct *next); 3109 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3110 unsigned long start, unsigned long end, pgoff_t pgoff); 3111 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3112 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3113 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3114 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3115 struct anon_vma_name *); 3116 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3117 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3118 unsigned long addr, int new_below); 3119 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3120 unsigned long addr, int new_below); 3121 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3122 extern void unlink_file_vma(struct vm_area_struct *); 3123 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3124 unsigned long addr, unsigned long len, pgoff_t pgoff, 3125 bool *need_rmap_locks); 3126 extern void exit_mmap(struct mm_struct *); 3127 3128 static inline int check_data_rlimit(unsigned long rlim, 3129 unsigned long new, 3130 unsigned long start, 3131 unsigned long end_data, 3132 unsigned long start_data) 3133 { 3134 if (rlim < RLIM_INFINITY) { 3135 if (((new - start) + (end_data - start_data)) > rlim) 3136 return -ENOSPC; 3137 } 3138 3139 return 0; 3140 } 3141 3142 extern int mm_take_all_locks(struct mm_struct *mm); 3143 extern void mm_drop_all_locks(struct mm_struct *mm); 3144 3145 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3146 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3147 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3148 extern struct file *get_task_exe_file(struct task_struct *task); 3149 3150 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3151 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3152 3153 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3154 const struct vm_special_mapping *sm); 3155 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3156 unsigned long addr, unsigned long len, 3157 unsigned long flags, 3158 const struct vm_special_mapping *spec); 3159 /* This is an obsolete alternative to _install_special_mapping. */ 3160 extern int install_special_mapping(struct mm_struct *mm, 3161 unsigned long addr, unsigned long len, 3162 unsigned long flags, struct page **pages); 3163 3164 unsigned long randomize_stack_top(unsigned long stack_top); 3165 unsigned long randomize_page(unsigned long start, unsigned long range); 3166 3167 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3168 3169 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3170 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3171 struct list_head *uf); 3172 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3173 unsigned long len, unsigned long prot, unsigned long flags, 3174 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 3175 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3176 unsigned long start, size_t len, struct list_head *uf, 3177 bool downgrade); 3178 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3179 struct list_head *uf); 3180 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3181 3182 #ifdef CONFIG_MMU 3183 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3184 unsigned long start, unsigned long end, 3185 struct list_head *uf, bool downgrade); 3186 extern int __mm_populate(unsigned long addr, unsigned long len, 3187 int ignore_errors); 3188 static inline void mm_populate(unsigned long addr, unsigned long len) 3189 { 3190 /* Ignore errors */ 3191 (void) __mm_populate(addr, len, 1); 3192 } 3193 #else 3194 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3195 #endif 3196 3197 /* These take the mm semaphore themselves */ 3198 extern int __must_check vm_brk(unsigned long, unsigned long); 3199 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3200 extern int vm_munmap(unsigned long, size_t); 3201 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3202 unsigned long, unsigned long, 3203 unsigned long, unsigned long); 3204 3205 struct vm_unmapped_area_info { 3206 #define VM_UNMAPPED_AREA_TOPDOWN 1 3207 unsigned long flags; 3208 unsigned long length; 3209 unsigned long low_limit; 3210 unsigned long high_limit; 3211 unsigned long align_mask; 3212 unsigned long align_offset; 3213 }; 3214 3215 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3216 3217 /* truncate.c */ 3218 extern void truncate_inode_pages(struct address_space *, loff_t); 3219 extern void truncate_inode_pages_range(struct address_space *, 3220 loff_t lstart, loff_t lend); 3221 extern void truncate_inode_pages_final(struct address_space *); 3222 3223 /* generic vm_area_ops exported for stackable file systems */ 3224 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3225 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3226 pgoff_t start_pgoff, pgoff_t end_pgoff); 3227 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3228 3229 extern unsigned long stack_guard_gap; 3230 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3231 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 3232 3233 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3234 extern int expand_downwards(struct vm_area_struct *vma, 3235 unsigned long address); 3236 #if VM_GROWSUP 3237 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 3238 #else 3239 #define expand_upwards(vma, address) (0) 3240 #endif 3241 3242 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3243 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3244 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3245 struct vm_area_struct **pprev); 3246 3247 /* 3248 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3249 * NULL if none. Assume start_addr < end_addr. 3250 */ 3251 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3252 unsigned long start_addr, unsigned long end_addr); 3253 3254 /** 3255 * vma_lookup() - Find a VMA at a specific address 3256 * @mm: The process address space. 3257 * @addr: The user address. 3258 * 3259 * Return: The vm_area_struct at the given address, %NULL otherwise. 3260 */ 3261 static inline 3262 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3263 { 3264 return mtree_load(&mm->mm_mt, addr); 3265 } 3266 3267 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3268 { 3269 unsigned long vm_start = vma->vm_start; 3270 3271 if (vma->vm_flags & VM_GROWSDOWN) { 3272 vm_start -= stack_guard_gap; 3273 if (vm_start > vma->vm_start) 3274 vm_start = 0; 3275 } 3276 return vm_start; 3277 } 3278 3279 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3280 { 3281 unsigned long vm_end = vma->vm_end; 3282 3283 if (vma->vm_flags & VM_GROWSUP) { 3284 vm_end += stack_guard_gap; 3285 if (vm_end < vma->vm_end) 3286 vm_end = -PAGE_SIZE; 3287 } 3288 return vm_end; 3289 } 3290 3291 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3292 { 3293 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3294 } 3295 3296 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3297 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3298 unsigned long vm_start, unsigned long vm_end) 3299 { 3300 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3301 3302 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3303 vma = NULL; 3304 3305 return vma; 3306 } 3307 3308 static inline bool range_in_vma(struct vm_area_struct *vma, 3309 unsigned long start, unsigned long end) 3310 { 3311 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3312 } 3313 3314 #ifdef CONFIG_MMU 3315 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3316 void vma_set_page_prot(struct vm_area_struct *vma); 3317 #else 3318 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3319 { 3320 return __pgprot(0); 3321 } 3322 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3323 { 3324 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3325 } 3326 #endif 3327 3328 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3329 3330 #ifdef CONFIG_NUMA_BALANCING 3331 unsigned long change_prot_numa(struct vm_area_struct *vma, 3332 unsigned long start, unsigned long end); 3333 #endif 3334 3335 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 3336 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3337 unsigned long pfn, unsigned long size, pgprot_t); 3338 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3339 unsigned long pfn, unsigned long size, pgprot_t prot); 3340 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3341 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3342 struct page **pages, unsigned long *num); 3343 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3344 unsigned long num); 3345 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3346 unsigned long num); 3347 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3348 unsigned long pfn); 3349 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3350 unsigned long pfn, pgprot_t pgprot); 3351 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3352 pfn_t pfn); 3353 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3354 unsigned long addr, pfn_t pfn); 3355 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3356 3357 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3358 unsigned long addr, struct page *page) 3359 { 3360 int err = vm_insert_page(vma, addr, page); 3361 3362 if (err == -ENOMEM) 3363 return VM_FAULT_OOM; 3364 if (err < 0 && err != -EBUSY) 3365 return VM_FAULT_SIGBUS; 3366 3367 return VM_FAULT_NOPAGE; 3368 } 3369 3370 #ifndef io_remap_pfn_range 3371 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3372 unsigned long addr, unsigned long pfn, 3373 unsigned long size, pgprot_t prot) 3374 { 3375 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3376 } 3377 #endif 3378 3379 static inline vm_fault_t vmf_error(int err) 3380 { 3381 if (err == -ENOMEM) 3382 return VM_FAULT_OOM; 3383 return VM_FAULT_SIGBUS; 3384 } 3385 3386 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3387 unsigned int foll_flags); 3388 3389 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3390 { 3391 if (vm_fault & VM_FAULT_OOM) 3392 return -ENOMEM; 3393 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3394 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3395 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3396 return -EFAULT; 3397 return 0; 3398 } 3399 3400 /* 3401 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3402 * a (NUMA hinting) fault is required. 3403 */ 3404 static inline bool gup_can_follow_protnone(unsigned int flags) 3405 { 3406 /* 3407 * FOLL_FORCE has to be able to make progress even if the VMA is 3408 * inaccessible. Further, FOLL_FORCE access usually does not represent 3409 * application behaviour and we should avoid triggering NUMA hinting 3410 * faults. 3411 */ 3412 return flags & FOLL_FORCE; 3413 } 3414 3415 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3416 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3417 unsigned long size, pte_fn_t fn, void *data); 3418 extern int apply_to_existing_page_range(struct mm_struct *mm, 3419 unsigned long address, unsigned long size, 3420 pte_fn_t fn, void *data); 3421 3422 #ifdef CONFIG_PAGE_POISONING 3423 extern void __kernel_poison_pages(struct page *page, int numpages); 3424 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3425 extern bool _page_poisoning_enabled_early; 3426 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3427 static inline bool page_poisoning_enabled(void) 3428 { 3429 return _page_poisoning_enabled_early; 3430 } 3431 /* 3432 * For use in fast paths after init_mem_debugging() has run, or when a 3433 * false negative result is not harmful when called too early. 3434 */ 3435 static inline bool page_poisoning_enabled_static(void) 3436 { 3437 return static_branch_unlikely(&_page_poisoning_enabled); 3438 } 3439 static inline void kernel_poison_pages(struct page *page, int numpages) 3440 { 3441 if (page_poisoning_enabled_static()) 3442 __kernel_poison_pages(page, numpages); 3443 } 3444 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3445 { 3446 if (page_poisoning_enabled_static()) 3447 __kernel_unpoison_pages(page, numpages); 3448 } 3449 #else 3450 static inline bool page_poisoning_enabled(void) { return false; } 3451 static inline bool page_poisoning_enabled_static(void) { return false; } 3452 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3453 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3454 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3455 #endif 3456 3457 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3458 static inline bool want_init_on_alloc(gfp_t flags) 3459 { 3460 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3461 &init_on_alloc)) 3462 return true; 3463 return flags & __GFP_ZERO; 3464 } 3465 3466 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3467 static inline bool want_init_on_free(void) 3468 { 3469 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3470 &init_on_free); 3471 } 3472 3473 extern bool _debug_pagealloc_enabled_early; 3474 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3475 3476 static inline bool debug_pagealloc_enabled(void) 3477 { 3478 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3479 _debug_pagealloc_enabled_early; 3480 } 3481 3482 /* 3483 * For use in fast paths after init_debug_pagealloc() has run, or when a 3484 * false negative result is not harmful when called too early. 3485 */ 3486 static inline bool debug_pagealloc_enabled_static(void) 3487 { 3488 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3489 return false; 3490 3491 return static_branch_unlikely(&_debug_pagealloc_enabled); 3492 } 3493 3494 /* 3495 * To support DEBUG_PAGEALLOC architecture must ensure that 3496 * __kernel_map_pages() never fails 3497 */ 3498 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3499 #ifdef CONFIG_DEBUG_PAGEALLOC 3500 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3501 { 3502 if (debug_pagealloc_enabled_static()) 3503 __kernel_map_pages(page, numpages, 1); 3504 } 3505 3506 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3507 { 3508 if (debug_pagealloc_enabled_static()) 3509 __kernel_map_pages(page, numpages, 0); 3510 } 3511 3512 extern unsigned int _debug_guardpage_minorder; 3513 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3514 3515 static inline unsigned int debug_guardpage_minorder(void) 3516 { 3517 return _debug_guardpage_minorder; 3518 } 3519 3520 static inline bool debug_guardpage_enabled(void) 3521 { 3522 return static_branch_unlikely(&_debug_guardpage_enabled); 3523 } 3524 3525 static inline bool page_is_guard(struct page *page) 3526 { 3527 if (!debug_guardpage_enabled()) 3528 return false; 3529 3530 return PageGuard(page); 3531 } 3532 3533 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3534 int migratetype); 3535 static inline bool set_page_guard(struct zone *zone, struct page *page, 3536 unsigned int order, int migratetype) 3537 { 3538 if (!debug_guardpage_enabled()) 3539 return false; 3540 return __set_page_guard(zone, page, order, migratetype); 3541 } 3542 3543 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3544 int migratetype); 3545 static inline void clear_page_guard(struct zone *zone, struct page *page, 3546 unsigned int order, int migratetype) 3547 { 3548 if (!debug_guardpage_enabled()) 3549 return; 3550 __clear_page_guard(zone, page, order, migratetype); 3551 } 3552 3553 #else /* CONFIG_DEBUG_PAGEALLOC */ 3554 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3555 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3556 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3557 static inline bool debug_guardpage_enabled(void) { return false; } 3558 static inline bool page_is_guard(struct page *page) { return false; } 3559 static inline bool set_page_guard(struct zone *zone, struct page *page, 3560 unsigned int order, int migratetype) { return false; } 3561 static inline void clear_page_guard(struct zone *zone, struct page *page, 3562 unsigned int order, int migratetype) {} 3563 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3564 3565 #ifdef __HAVE_ARCH_GATE_AREA 3566 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3567 extern int in_gate_area_no_mm(unsigned long addr); 3568 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3569 #else 3570 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3571 { 3572 return NULL; 3573 } 3574 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3575 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3576 { 3577 return 0; 3578 } 3579 #endif /* __HAVE_ARCH_GATE_AREA */ 3580 3581 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3582 3583 #ifdef CONFIG_SYSCTL 3584 extern int sysctl_drop_caches; 3585 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3586 loff_t *); 3587 #endif 3588 3589 void drop_slab(void); 3590 3591 #ifndef CONFIG_MMU 3592 #define randomize_va_space 0 3593 #else 3594 extern int randomize_va_space; 3595 #endif 3596 3597 const char * arch_vma_name(struct vm_area_struct *vma); 3598 #ifdef CONFIG_MMU 3599 void print_vma_addr(char *prefix, unsigned long rip); 3600 #else 3601 static inline void print_vma_addr(char *prefix, unsigned long rip) 3602 { 3603 } 3604 #endif 3605 3606 void *sparse_buffer_alloc(unsigned long size); 3607 struct page * __populate_section_memmap(unsigned long pfn, 3608 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3609 struct dev_pagemap *pgmap); 3610 void pmd_init(void *addr); 3611 void pud_init(void *addr); 3612 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3613 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3614 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3615 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3616 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3617 struct vmem_altmap *altmap, struct page *reuse); 3618 void *vmemmap_alloc_block(unsigned long size, int node); 3619 struct vmem_altmap; 3620 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3621 struct vmem_altmap *altmap); 3622 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3623 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3624 unsigned long addr, unsigned long next); 3625 int vmemmap_check_pmd(pmd_t *pmd, int node, 3626 unsigned long addr, unsigned long next); 3627 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3628 int node, struct vmem_altmap *altmap); 3629 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3630 int node, struct vmem_altmap *altmap); 3631 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3632 struct vmem_altmap *altmap); 3633 void vmemmap_populate_print_last(void); 3634 #ifdef CONFIG_MEMORY_HOTPLUG 3635 void vmemmap_free(unsigned long start, unsigned long end, 3636 struct vmem_altmap *altmap); 3637 #endif 3638 3639 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP 3640 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3641 struct dev_pagemap *pgmap) 3642 { 3643 return is_power_of_2(sizeof(struct page)) && 3644 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap; 3645 } 3646 #else 3647 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3648 struct dev_pagemap *pgmap) 3649 { 3650 return false; 3651 } 3652 #endif 3653 3654 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3655 unsigned long nr_pages); 3656 3657 enum mf_flags { 3658 MF_COUNT_INCREASED = 1 << 0, 3659 MF_ACTION_REQUIRED = 1 << 1, 3660 MF_MUST_KILL = 1 << 2, 3661 MF_SOFT_OFFLINE = 1 << 3, 3662 MF_UNPOISON = 1 << 4, 3663 MF_SW_SIMULATED = 1 << 5, 3664 MF_NO_RETRY = 1 << 6, 3665 }; 3666 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3667 unsigned long count, int mf_flags); 3668 extern int memory_failure(unsigned long pfn, int flags); 3669 extern void memory_failure_queue_kick(int cpu); 3670 extern int unpoison_memory(unsigned long pfn); 3671 extern void shake_page(struct page *p); 3672 extern atomic_long_t num_poisoned_pages __read_mostly; 3673 extern int soft_offline_page(unsigned long pfn, int flags); 3674 #ifdef CONFIG_MEMORY_FAILURE 3675 /* 3676 * Sysfs entries for memory failure handling statistics. 3677 */ 3678 extern const struct attribute_group memory_failure_attr_group; 3679 extern void memory_failure_queue(unsigned long pfn, int flags); 3680 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3681 bool *migratable_cleared); 3682 void num_poisoned_pages_inc(unsigned long pfn); 3683 void num_poisoned_pages_sub(unsigned long pfn, long i); 3684 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3685 #else 3686 static inline void memory_failure_queue(unsigned long pfn, int flags) 3687 { 3688 } 3689 3690 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3691 bool *migratable_cleared) 3692 { 3693 return 0; 3694 } 3695 3696 static inline void num_poisoned_pages_inc(unsigned long pfn) 3697 { 3698 } 3699 3700 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3701 { 3702 } 3703 #endif 3704 3705 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3706 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3707 struct vm_area_struct *vma, struct list_head *to_kill, 3708 unsigned long ksm_addr); 3709 #endif 3710 3711 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3712 extern void memblk_nr_poison_inc(unsigned long pfn); 3713 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3714 #else 3715 static inline void memblk_nr_poison_inc(unsigned long pfn) 3716 { 3717 } 3718 3719 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3720 { 3721 } 3722 #endif 3723 3724 #ifndef arch_memory_failure 3725 static inline int arch_memory_failure(unsigned long pfn, int flags) 3726 { 3727 return -ENXIO; 3728 } 3729 #endif 3730 3731 #ifndef arch_is_platform_page 3732 static inline bool arch_is_platform_page(u64 paddr) 3733 { 3734 return false; 3735 } 3736 #endif 3737 3738 /* 3739 * Error handlers for various types of pages. 3740 */ 3741 enum mf_result { 3742 MF_IGNORED, /* Error: cannot be handled */ 3743 MF_FAILED, /* Error: handling failed */ 3744 MF_DELAYED, /* Will be handled later */ 3745 MF_RECOVERED, /* Successfully recovered */ 3746 }; 3747 3748 enum mf_action_page_type { 3749 MF_MSG_KERNEL, 3750 MF_MSG_KERNEL_HIGH_ORDER, 3751 MF_MSG_SLAB, 3752 MF_MSG_DIFFERENT_COMPOUND, 3753 MF_MSG_HUGE, 3754 MF_MSG_FREE_HUGE, 3755 MF_MSG_UNMAP_FAILED, 3756 MF_MSG_DIRTY_SWAPCACHE, 3757 MF_MSG_CLEAN_SWAPCACHE, 3758 MF_MSG_DIRTY_MLOCKED_LRU, 3759 MF_MSG_CLEAN_MLOCKED_LRU, 3760 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3761 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3762 MF_MSG_DIRTY_LRU, 3763 MF_MSG_CLEAN_LRU, 3764 MF_MSG_TRUNCATED_LRU, 3765 MF_MSG_BUDDY, 3766 MF_MSG_DAX, 3767 MF_MSG_UNSPLIT_THP, 3768 MF_MSG_UNKNOWN, 3769 }; 3770 3771 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3772 extern void clear_huge_page(struct page *page, 3773 unsigned long addr_hint, 3774 unsigned int pages_per_huge_page); 3775 int copy_user_large_folio(struct folio *dst, struct folio *src, 3776 unsigned long addr_hint, 3777 struct vm_area_struct *vma); 3778 long copy_folio_from_user(struct folio *dst_folio, 3779 const void __user *usr_src, 3780 bool allow_pagefault); 3781 3782 /** 3783 * vma_is_special_huge - Are transhuge page-table entries considered special? 3784 * @vma: Pointer to the struct vm_area_struct to consider 3785 * 3786 * Whether transhuge page-table entries are considered "special" following 3787 * the definition in vm_normal_page(). 3788 * 3789 * Return: true if transhuge page-table entries should be considered special, 3790 * false otherwise. 3791 */ 3792 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3793 { 3794 return vma_is_dax(vma) || (vma->vm_file && 3795 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3796 } 3797 3798 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3799 3800 #if MAX_NUMNODES > 1 3801 void __init setup_nr_node_ids(void); 3802 #else 3803 static inline void setup_nr_node_ids(void) {} 3804 #endif 3805 3806 extern int memcmp_pages(struct page *page1, struct page *page2); 3807 3808 static inline int pages_identical(struct page *page1, struct page *page2) 3809 { 3810 return !memcmp_pages(page1, page2); 3811 } 3812 3813 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3814 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3815 pgoff_t first_index, pgoff_t nr, 3816 pgoff_t bitmap_pgoff, 3817 unsigned long *bitmap, 3818 pgoff_t *start, 3819 pgoff_t *end); 3820 3821 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3822 pgoff_t first_index, pgoff_t nr); 3823 #endif 3824 3825 extern int sysctl_nr_trim_pages; 3826 3827 #ifdef CONFIG_PRINTK 3828 void mem_dump_obj(void *object); 3829 #else 3830 static inline void mem_dump_obj(void *object) {} 3831 #endif 3832 3833 /** 3834 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3835 * @seals: the seals to check 3836 * @vma: the vma to operate on 3837 * 3838 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3839 * the vma flags. Return 0 if check pass, or <0 for errors. 3840 */ 3841 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3842 { 3843 if (seals & F_SEAL_FUTURE_WRITE) { 3844 /* 3845 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3846 * "future write" seal active. 3847 */ 3848 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3849 return -EPERM; 3850 3851 /* 3852 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3853 * MAP_SHARED and read-only, take care to not allow mprotect to 3854 * revert protections on such mappings. Do this only for shared 3855 * mappings. For private mappings, don't need to mask 3856 * VM_MAYWRITE as we still want them to be COW-writable. 3857 */ 3858 if (vma->vm_flags & VM_SHARED) 3859 vm_flags_clear(vma, VM_MAYWRITE); 3860 } 3861 3862 return 0; 3863 } 3864 3865 #ifdef CONFIG_ANON_VMA_NAME 3866 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3867 unsigned long len_in, 3868 struct anon_vma_name *anon_name); 3869 #else 3870 static inline int 3871 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3872 unsigned long len_in, struct anon_vma_name *anon_name) { 3873 return 0; 3874 } 3875 #endif 3876 3877 #ifdef CONFIG_UNACCEPTED_MEMORY 3878 3879 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 3880 void accept_memory(phys_addr_t start, phys_addr_t end); 3881 3882 #else 3883 3884 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 3885 phys_addr_t end) 3886 { 3887 return false; 3888 } 3889 3890 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 3891 { 3892 } 3893 3894 #endif 3895 3896 #endif /* _LINUX_MM_H */ 3897