xref: /linux-6.15/include/linux/mm.h (revision bb9d8126)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36 
37 void init_mm_internals(void);
38 
39 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41 
42 static inline void set_max_mapnr(unsigned long limit)
43 {
44 	max_mapnr = limit;
45 }
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49 
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53 
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59 
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70 
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74 
75 #ifndef __pa_symbol
76 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78 
79 #ifndef page_to_virt
80 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82 
83 #ifndef lm_alias
84 #define lm_alias(x)	__va(__pa_symbol(x))
85 #endif
86 
87 /*
88  * To prevent common memory management code establishing
89  * a zero page mapping on a read fault.
90  * This macro should be defined within <asm/pgtable.h>.
91  * s390 does this to prevent multiplexing of hardware bits
92  * related to the physical page in case of virtualization.
93  */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X)	(0)
96 #endif
97 
98 /*
99  * On some architectures it is expensive to call memset() for small sizes.
100  * Those architectures should provide their own implementation of "struct page"
101  * zeroing by defining this macro in <asm/pgtable.h>.
102  */
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
106 
107 /*
108  * Default maximum number of active map areas, this limits the number of vmas
109  * per mm struct. Users can overwrite this number by sysctl but there is a
110  * problem.
111  *
112  * When a program's coredump is generated as ELF format, a section is created
113  * per a vma. In ELF, the number of sections is represented in unsigned short.
114  * This means the number of sections should be smaller than 65535 at coredump.
115  * Because the kernel adds some informative sections to a image of program at
116  * generating coredump, we need some margin. The number of extra sections is
117  * 1-3 now and depends on arch. We use "5" as safe margin, here.
118  *
119  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120  * not a hard limit any more. Although some userspace tools can be surprised by
121  * that.
122  */
123 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
124 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125 
126 extern int sysctl_max_map_count;
127 
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
130 
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
134 
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 				    size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 				    size_t *, loff_t *);
139 
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141 
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144 
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147 
148 /*
149  * Linux kernel virtual memory manager primitives.
150  * The idea being to have a "virtual" mm in the same way
151  * we have a virtual fs - giving a cleaner interface to the
152  * mm details, and allowing different kinds of memory mappings
153  * (from shared memory to executable loading to arbitrary
154  * mmap() functions).
155  */
156 
157 extern struct kmem_cache *vm_area_cachep;
158 
159 #ifndef CONFIG_MMU
160 extern struct rb_root nommu_region_tree;
161 extern struct rw_semaphore nommu_region_sem;
162 
163 extern unsigned int kobjsize(const void *objp);
164 #endif
165 
166 /*
167  * vm_flags in vm_area_struct, see mm_types.h.
168  * When changing, update also include/trace/events/mmflags.h
169  */
170 #define VM_NONE		0x00000000
171 
172 #define VM_READ		0x00000001	/* currently active flags */
173 #define VM_WRITE	0x00000002
174 #define VM_EXEC		0x00000004
175 #define VM_SHARED	0x00000008
176 
177 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
178 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
179 #define VM_MAYWRITE	0x00000020
180 #define VM_MAYEXEC	0x00000040
181 #define VM_MAYSHARE	0x00000080
182 
183 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
184 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
185 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
186 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
187 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
188 
189 #define VM_LOCKED	0x00002000
190 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
191 
192 					/* Used by sys_madvise() */
193 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
194 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
195 
196 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
197 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
198 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
199 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
200 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
201 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
202 #define VM_SYNC		0x00800000	/* Synchronous page faults */
203 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
204 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
205 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
206 
207 #ifdef CONFIG_MEM_SOFT_DIRTY
208 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
209 #else
210 # define VM_SOFTDIRTY	0
211 #endif
212 
213 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
214 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
215 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
216 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
217 
218 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
220 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
221 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
225 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
226 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
227 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
228 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
229 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230 
231 #if defined(CONFIG_X86)
232 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
233 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
235 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
236 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1
237 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
238 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
239 #endif
240 #elif defined(CONFIG_PPC)
241 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
242 #elif defined(CONFIG_PARISC)
243 # define VM_GROWSUP	VM_ARCH_1
244 #elif defined(CONFIG_IA64)
245 # define VM_GROWSUP	VM_ARCH_1
246 #elif !defined(CONFIG_MMU)
247 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
248 #endif
249 
250 #if defined(CONFIG_X86_INTEL_MPX)
251 /* MPX specific bounds table or bounds directory */
252 # define VM_MPX		VM_HIGH_ARCH_4
253 #else
254 # define VM_MPX		VM_NONE
255 #endif
256 
257 #ifndef VM_GROWSUP
258 # define VM_GROWSUP	VM_NONE
259 #endif
260 
261 /* Bits set in the VMA until the stack is in its final location */
262 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
263 
264 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
265 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
266 #endif
267 
268 #ifdef CONFIG_STACK_GROWSUP
269 #define VM_STACK	VM_GROWSUP
270 #else
271 #define VM_STACK	VM_GROWSDOWN
272 #endif
273 
274 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
275 
276 /*
277  * Special vmas that are non-mergable, non-mlock()able.
278  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
279  */
280 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
281 
282 /* This mask defines which mm->def_flags a process can inherit its parent */
283 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
284 
285 /* This mask is used to clear all the VMA flags used by mlock */
286 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
287 
288 /*
289  * mapping from the currently active vm_flags protection bits (the
290  * low four bits) to a page protection mask..
291  */
292 extern pgprot_t protection_map[16];
293 
294 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
295 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
296 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
297 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
298 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
299 #define FAULT_FLAG_TRIED	0x20	/* Second try */
300 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
301 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
302 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
303 
304 #define FAULT_FLAG_TRACE \
305 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
306 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
307 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
308 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
309 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
310 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
311 	{ FAULT_FLAG_USER,		"USER" }, \
312 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
313 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
314 
315 /*
316  * vm_fault is filled by the the pagefault handler and passed to the vma's
317  * ->fault function. The vma's ->fault is responsible for returning a bitmask
318  * of VM_FAULT_xxx flags that give details about how the fault was handled.
319  *
320  * MM layer fills up gfp_mask for page allocations but fault handler might
321  * alter it if its implementation requires a different allocation context.
322  *
323  * pgoff should be used in favour of virtual_address, if possible.
324  */
325 struct vm_fault {
326 	struct vm_area_struct *vma;	/* Target VMA */
327 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
328 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
329 	pgoff_t pgoff;			/* Logical page offset based on vma */
330 	unsigned long address;		/* Faulting virtual address */
331 	pmd_t *pmd;			/* Pointer to pmd entry matching
332 					 * the 'address' */
333 	pud_t *pud;			/* Pointer to pud entry matching
334 					 * the 'address'
335 					 */
336 	pte_t orig_pte;			/* Value of PTE at the time of fault */
337 
338 	struct page *cow_page;		/* Page handler may use for COW fault */
339 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
340 	struct page *page;		/* ->fault handlers should return a
341 					 * page here, unless VM_FAULT_NOPAGE
342 					 * is set (which is also implied by
343 					 * VM_FAULT_ERROR).
344 					 */
345 	/* These three entries are valid only while holding ptl lock */
346 	pte_t *pte;			/* Pointer to pte entry matching
347 					 * the 'address'. NULL if the page
348 					 * table hasn't been allocated.
349 					 */
350 	spinlock_t *ptl;		/* Page table lock.
351 					 * Protects pte page table if 'pte'
352 					 * is not NULL, otherwise pmd.
353 					 */
354 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
355 					 * vm_ops->map_pages() calls
356 					 * alloc_set_pte() from atomic context.
357 					 * do_fault_around() pre-allocates
358 					 * page table to avoid allocation from
359 					 * atomic context.
360 					 */
361 };
362 
363 /* page entry size for vm->huge_fault() */
364 enum page_entry_size {
365 	PE_SIZE_PTE = 0,
366 	PE_SIZE_PMD,
367 	PE_SIZE_PUD,
368 };
369 
370 /*
371  * These are the virtual MM functions - opening of an area, closing and
372  * unmapping it (needed to keep files on disk up-to-date etc), pointer
373  * to the functions called when a no-page or a wp-page exception occurs.
374  */
375 struct vm_operations_struct {
376 	void (*open)(struct vm_area_struct * area);
377 	void (*close)(struct vm_area_struct * area);
378 	int (*split)(struct vm_area_struct * area, unsigned long addr);
379 	int (*mremap)(struct vm_area_struct * area);
380 	int (*fault)(struct vm_fault *vmf);
381 	int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
382 	void (*map_pages)(struct vm_fault *vmf,
383 			pgoff_t start_pgoff, pgoff_t end_pgoff);
384 
385 	/* notification that a previously read-only page is about to become
386 	 * writable, if an error is returned it will cause a SIGBUS */
387 	int (*page_mkwrite)(struct vm_fault *vmf);
388 
389 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
390 	int (*pfn_mkwrite)(struct vm_fault *vmf);
391 
392 	/* called by access_process_vm when get_user_pages() fails, typically
393 	 * for use by special VMAs that can switch between memory and hardware
394 	 */
395 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
396 		      void *buf, int len, int write);
397 
398 	/* Called by the /proc/PID/maps code to ask the vma whether it
399 	 * has a special name.  Returning non-NULL will also cause this
400 	 * vma to be dumped unconditionally. */
401 	const char *(*name)(struct vm_area_struct *vma);
402 
403 #ifdef CONFIG_NUMA
404 	/*
405 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
406 	 * to hold the policy upon return.  Caller should pass NULL @new to
407 	 * remove a policy and fall back to surrounding context--i.e. do not
408 	 * install a MPOL_DEFAULT policy, nor the task or system default
409 	 * mempolicy.
410 	 */
411 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
412 
413 	/*
414 	 * get_policy() op must add reference [mpol_get()] to any policy at
415 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
416 	 * in mm/mempolicy.c will do this automatically.
417 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
418 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
419 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
420 	 * must return NULL--i.e., do not "fallback" to task or system default
421 	 * policy.
422 	 */
423 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
424 					unsigned long addr);
425 #endif
426 	/*
427 	 * Called by vm_normal_page() for special PTEs to find the
428 	 * page for @addr.  This is useful if the default behavior
429 	 * (using pte_page()) would not find the correct page.
430 	 */
431 	struct page *(*find_special_page)(struct vm_area_struct *vma,
432 					  unsigned long addr);
433 };
434 
435 struct mmu_gather;
436 struct inode;
437 
438 #define page_private(page)		((page)->private)
439 #define set_page_private(page, v)	((page)->private = (v))
440 
441 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
442 static inline int pmd_devmap(pmd_t pmd)
443 {
444 	return 0;
445 }
446 static inline int pud_devmap(pud_t pud)
447 {
448 	return 0;
449 }
450 static inline int pgd_devmap(pgd_t pgd)
451 {
452 	return 0;
453 }
454 #endif
455 
456 /*
457  * FIXME: take this include out, include page-flags.h in
458  * files which need it (119 of them)
459  */
460 #include <linux/page-flags.h>
461 #include <linux/huge_mm.h>
462 
463 /*
464  * Methods to modify the page usage count.
465  *
466  * What counts for a page usage:
467  * - cache mapping   (page->mapping)
468  * - private data    (page->private)
469  * - page mapped in a task's page tables, each mapping
470  *   is counted separately
471  *
472  * Also, many kernel routines increase the page count before a critical
473  * routine so they can be sure the page doesn't go away from under them.
474  */
475 
476 /*
477  * Drop a ref, return true if the refcount fell to zero (the page has no users)
478  */
479 static inline int put_page_testzero(struct page *page)
480 {
481 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
482 	return page_ref_dec_and_test(page);
483 }
484 
485 /*
486  * Try to grab a ref unless the page has a refcount of zero, return false if
487  * that is the case.
488  * This can be called when MMU is off so it must not access
489  * any of the virtual mappings.
490  */
491 static inline int get_page_unless_zero(struct page *page)
492 {
493 	return page_ref_add_unless(page, 1, 0);
494 }
495 
496 extern int page_is_ram(unsigned long pfn);
497 
498 enum {
499 	REGION_INTERSECTS,
500 	REGION_DISJOINT,
501 	REGION_MIXED,
502 };
503 
504 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
505 		      unsigned long desc);
506 
507 /* Support for virtually mapped pages */
508 struct page *vmalloc_to_page(const void *addr);
509 unsigned long vmalloc_to_pfn(const void *addr);
510 
511 /*
512  * Determine if an address is within the vmalloc range
513  *
514  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
515  * is no special casing required.
516  */
517 static inline bool is_vmalloc_addr(const void *x)
518 {
519 #ifdef CONFIG_MMU
520 	unsigned long addr = (unsigned long)x;
521 
522 	return addr >= VMALLOC_START && addr < VMALLOC_END;
523 #else
524 	return false;
525 #endif
526 }
527 #ifdef CONFIG_MMU
528 extern int is_vmalloc_or_module_addr(const void *x);
529 #else
530 static inline int is_vmalloc_or_module_addr(const void *x)
531 {
532 	return 0;
533 }
534 #endif
535 
536 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
537 static inline void *kvmalloc(size_t size, gfp_t flags)
538 {
539 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
540 }
541 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
542 {
543 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
544 }
545 static inline void *kvzalloc(size_t size, gfp_t flags)
546 {
547 	return kvmalloc(size, flags | __GFP_ZERO);
548 }
549 
550 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
551 {
552 	if (size != 0 && n > SIZE_MAX / size)
553 		return NULL;
554 
555 	return kvmalloc(n * size, flags);
556 }
557 
558 extern void kvfree(const void *addr);
559 
560 static inline atomic_t *compound_mapcount_ptr(struct page *page)
561 {
562 	return &page[1].compound_mapcount;
563 }
564 
565 static inline int compound_mapcount(struct page *page)
566 {
567 	VM_BUG_ON_PAGE(!PageCompound(page), page);
568 	page = compound_head(page);
569 	return atomic_read(compound_mapcount_ptr(page)) + 1;
570 }
571 
572 /*
573  * The atomic page->_mapcount, starts from -1: so that transitions
574  * both from it and to it can be tracked, using atomic_inc_and_test
575  * and atomic_add_negative(-1).
576  */
577 static inline void page_mapcount_reset(struct page *page)
578 {
579 	atomic_set(&(page)->_mapcount, -1);
580 }
581 
582 int __page_mapcount(struct page *page);
583 
584 static inline int page_mapcount(struct page *page)
585 {
586 	VM_BUG_ON_PAGE(PageSlab(page), page);
587 
588 	if (unlikely(PageCompound(page)))
589 		return __page_mapcount(page);
590 	return atomic_read(&page->_mapcount) + 1;
591 }
592 
593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
594 int total_mapcount(struct page *page);
595 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
596 #else
597 static inline int total_mapcount(struct page *page)
598 {
599 	return page_mapcount(page);
600 }
601 static inline int page_trans_huge_mapcount(struct page *page,
602 					   int *total_mapcount)
603 {
604 	int mapcount = page_mapcount(page);
605 	if (total_mapcount)
606 		*total_mapcount = mapcount;
607 	return mapcount;
608 }
609 #endif
610 
611 static inline struct page *virt_to_head_page(const void *x)
612 {
613 	struct page *page = virt_to_page(x);
614 
615 	return compound_head(page);
616 }
617 
618 void __put_page(struct page *page);
619 
620 void put_pages_list(struct list_head *pages);
621 
622 void split_page(struct page *page, unsigned int order);
623 
624 /*
625  * Compound pages have a destructor function.  Provide a
626  * prototype for that function and accessor functions.
627  * These are _only_ valid on the head of a compound page.
628  */
629 typedef void compound_page_dtor(struct page *);
630 
631 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
632 enum compound_dtor_id {
633 	NULL_COMPOUND_DTOR,
634 	COMPOUND_PAGE_DTOR,
635 #ifdef CONFIG_HUGETLB_PAGE
636 	HUGETLB_PAGE_DTOR,
637 #endif
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 	TRANSHUGE_PAGE_DTOR,
640 #endif
641 	NR_COMPOUND_DTORS,
642 };
643 extern compound_page_dtor * const compound_page_dtors[];
644 
645 static inline void set_compound_page_dtor(struct page *page,
646 		enum compound_dtor_id compound_dtor)
647 {
648 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
649 	page[1].compound_dtor = compound_dtor;
650 }
651 
652 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
653 {
654 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
655 	return compound_page_dtors[page[1].compound_dtor];
656 }
657 
658 static inline unsigned int compound_order(struct page *page)
659 {
660 	if (!PageHead(page))
661 		return 0;
662 	return page[1].compound_order;
663 }
664 
665 static inline void set_compound_order(struct page *page, unsigned int order)
666 {
667 	page[1].compound_order = order;
668 }
669 
670 void free_compound_page(struct page *page);
671 
672 #ifdef CONFIG_MMU
673 /*
674  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
675  * servicing faults for write access.  In the normal case, do always want
676  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
677  * that do not have writing enabled, when used by access_process_vm.
678  */
679 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
680 {
681 	if (likely(vma->vm_flags & VM_WRITE))
682 		pte = pte_mkwrite(pte);
683 	return pte;
684 }
685 
686 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
687 		struct page *page);
688 int finish_fault(struct vm_fault *vmf);
689 int finish_mkwrite_fault(struct vm_fault *vmf);
690 #endif
691 
692 /*
693  * Multiple processes may "see" the same page. E.g. for untouched
694  * mappings of /dev/null, all processes see the same page full of
695  * zeroes, and text pages of executables and shared libraries have
696  * only one copy in memory, at most, normally.
697  *
698  * For the non-reserved pages, page_count(page) denotes a reference count.
699  *   page_count() == 0 means the page is free. page->lru is then used for
700  *   freelist management in the buddy allocator.
701  *   page_count() > 0  means the page has been allocated.
702  *
703  * Pages are allocated by the slab allocator in order to provide memory
704  * to kmalloc and kmem_cache_alloc. In this case, the management of the
705  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
706  * unless a particular usage is carefully commented. (the responsibility of
707  * freeing the kmalloc memory is the caller's, of course).
708  *
709  * A page may be used by anyone else who does a __get_free_page().
710  * In this case, page_count still tracks the references, and should only
711  * be used through the normal accessor functions. The top bits of page->flags
712  * and page->virtual store page management information, but all other fields
713  * are unused and could be used privately, carefully. The management of this
714  * page is the responsibility of the one who allocated it, and those who have
715  * subsequently been given references to it.
716  *
717  * The other pages (we may call them "pagecache pages") are completely
718  * managed by the Linux memory manager: I/O, buffers, swapping etc.
719  * The following discussion applies only to them.
720  *
721  * A pagecache page contains an opaque `private' member, which belongs to the
722  * page's address_space. Usually, this is the address of a circular list of
723  * the page's disk buffers. PG_private must be set to tell the VM to call
724  * into the filesystem to release these pages.
725  *
726  * A page may belong to an inode's memory mapping. In this case, page->mapping
727  * is the pointer to the inode, and page->index is the file offset of the page,
728  * in units of PAGE_SIZE.
729  *
730  * If pagecache pages are not associated with an inode, they are said to be
731  * anonymous pages. These may become associated with the swapcache, and in that
732  * case PG_swapcache is set, and page->private is an offset into the swapcache.
733  *
734  * In either case (swapcache or inode backed), the pagecache itself holds one
735  * reference to the page. Setting PG_private should also increment the
736  * refcount. The each user mapping also has a reference to the page.
737  *
738  * The pagecache pages are stored in a per-mapping radix tree, which is
739  * rooted at mapping->page_tree, and indexed by offset.
740  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
741  * lists, we instead now tag pages as dirty/writeback in the radix tree.
742  *
743  * All pagecache pages may be subject to I/O:
744  * - inode pages may need to be read from disk,
745  * - inode pages which have been modified and are MAP_SHARED may need
746  *   to be written back to the inode on disk,
747  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
748  *   modified may need to be swapped out to swap space and (later) to be read
749  *   back into memory.
750  */
751 
752 /*
753  * The zone field is never updated after free_area_init_core()
754  * sets it, so none of the operations on it need to be atomic.
755  */
756 
757 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
758 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
759 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
760 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
761 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
762 
763 /*
764  * Define the bit shifts to access each section.  For non-existent
765  * sections we define the shift as 0; that plus a 0 mask ensures
766  * the compiler will optimise away reference to them.
767  */
768 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
769 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
770 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
771 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
772 
773 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
774 #ifdef NODE_NOT_IN_PAGE_FLAGS
775 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
776 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
777 						SECTIONS_PGOFF : ZONES_PGOFF)
778 #else
779 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
780 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
781 						NODES_PGOFF : ZONES_PGOFF)
782 #endif
783 
784 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
785 
786 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
787 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
788 #endif
789 
790 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
791 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
792 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
793 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
794 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
795 
796 static inline enum zone_type page_zonenum(const struct page *page)
797 {
798 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
799 }
800 
801 #ifdef CONFIG_ZONE_DEVICE
802 static inline bool is_zone_device_page(const struct page *page)
803 {
804 	return page_zonenum(page) == ZONE_DEVICE;
805 }
806 #else
807 static inline bool is_zone_device_page(const struct page *page)
808 {
809 	return false;
810 }
811 #endif
812 
813 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
814 void put_zone_device_private_or_public_page(struct page *page);
815 DECLARE_STATIC_KEY_FALSE(device_private_key);
816 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
817 static inline bool is_device_private_page(const struct page *page);
818 static inline bool is_device_public_page(const struct page *page);
819 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
820 static inline void put_zone_device_private_or_public_page(struct page *page)
821 {
822 }
823 #define IS_HMM_ENABLED 0
824 static inline bool is_device_private_page(const struct page *page)
825 {
826 	return false;
827 }
828 static inline bool is_device_public_page(const struct page *page)
829 {
830 	return false;
831 }
832 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
833 
834 
835 static inline void get_page(struct page *page)
836 {
837 	page = compound_head(page);
838 	/*
839 	 * Getting a normal page or the head of a compound page
840 	 * requires to already have an elevated page->_refcount.
841 	 */
842 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
843 	page_ref_inc(page);
844 }
845 
846 static inline void put_page(struct page *page)
847 {
848 	page = compound_head(page);
849 
850 	/*
851 	 * For private device pages we need to catch refcount transition from
852 	 * 2 to 1, when refcount reach one it means the private device page is
853 	 * free and we need to inform the device driver through callback. See
854 	 * include/linux/memremap.h and HMM for details.
855 	 */
856 	if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
857 	    unlikely(is_device_public_page(page)))) {
858 		put_zone_device_private_or_public_page(page);
859 		return;
860 	}
861 
862 	if (put_page_testzero(page))
863 		__put_page(page);
864 }
865 
866 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
867 #define SECTION_IN_PAGE_FLAGS
868 #endif
869 
870 /*
871  * The identification function is mainly used by the buddy allocator for
872  * determining if two pages could be buddies. We are not really identifying
873  * the zone since we could be using the section number id if we do not have
874  * node id available in page flags.
875  * We only guarantee that it will return the same value for two combinable
876  * pages in a zone.
877  */
878 static inline int page_zone_id(struct page *page)
879 {
880 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
881 }
882 
883 static inline int zone_to_nid(struct zone *zone)
884 {
885 #ifdef CONFIG_NUMA
886 	return zone->node;
887 #else
888 	return 0;
889 #endif
890 }
891 
892 #ifdef NODE_NOT_IN_PAGE_FLAGS
893 extern int page_to_nid(const struct page *page);
894 #else
895 static inline int page_to_nid(const struct page *page)
896 {
897 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
898 }
899 #endif
900 
901 #ifdef CONFIG_NUMA_BALANCING
902 static inline int cpu_pid_to_cpupid(int cpu, int pid)
903 {
904 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
905 }
906 
907 static inline int cpupid_to_pid(int cpupid)
908 {
909 	return cpupid & LAST__PID_MASK;
910 }
911 
912 static inline int cpupid_to_cpu(int cpupid)
913 {
914 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
915 }
916 
917 static inline int cpupid_to_nid(int cpupid)
918 {
919 	return cpu_to_node(cpupid_to_cpu(cpupid));
920 }
921 
922 static inline bool cpupid_pid_unset(int cpupid)
923 {
924 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
925 }
926 
927 static inline bool cpupid_cpu_unset(int cpupid)
928 {
929 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
930 }
931 
932 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
933 {
934 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
935 }
936 
937 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
938 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
939 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
940 {
941 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
942 }
943 
944 static inline int page_cpupid_last(struct page *page)
945 {
946 	return page->_last_cpupid;
947 }
948 static inline void page_cpupid_reset_last(struct page *page)
949 {
950 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
951 }
952 #else
953 static inline int page_cpupid_last(struct page *page)
954 {
955 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
956 }
957 
958 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
959 
960 static inline void page_cpupid_reset_last(struct page *page)
961 {
962 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
963 }
964 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
965 #else /* !CONFIG_NUMA_BALANCING */
966 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
967 {
968 	return page_to_nid(page); /* XXX */
969 }
970 
971 static inline int page_cpupid_last(struct page *page)
972 {
973 	return page_to_nid(page); /* XXX */
974 }
975 
976 static inline int cpupid_to_nid(int cpupid)
977 {
978 	return -1;
979 }
980 
981 static inline int cpupid_to_pid(int cpupid)
982 {
983 	return -1;
984 }
985 
986 static inline int cpupid_to_cpu(int cpupid)
987 {
988 	return -1;
989 }
990 
991 static inline int cpu_pid_to_cpupid(int nid, int pid)
992 {
993 	return -1;
994 }
995 
996 static inline bool cpupid_pid_unset(int cpupid)
997 {
998 	return 1;
999 }
1000 
1001 static inline void page_cpupid_reset_last(struct page *page)
1002 {
1003 }
1004 
1005 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1006 {
1007 	return false;
1008 }
1009 #endif /* CONFIG_NUMA_BALANCING */
1010 
1011 static inline struct zone *page_zone(const struct page *page)
1012 {
1013 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1014 }
1015 
1016 static inline pg_data_t *page_pgdat(const struct page *page)
1017 {
1018 	return NODE_DATA(page_to_nid(page));
1019 }
1020 
1021 #ifdef SECTION_IN_PAGE_FLAGS
1022 static inline void set_page_section(struct page *page, unsigned long section)
1023 {
1024 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1025 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1026 }
1027 
1028 static inline unsigned long page_to_section(const struct page *page)
1029 {
1030 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1031 }
1032 #endif
1033 
1034 static inline void set_page_zone(struct page *page, enum zone_type zone)
1035 {
1036 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1037 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1038 }
1039 
1040 static inline void set_page_node(struct page *page, unsigned long node)
1041 {
1042 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1043 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1044 }
1045 
1046 static inline void set_page_links(struct page *page, enum zone_type zone,
1047 	unsigned long node, unsigned long pfn)
1048 {
1049 	set_page_zone(page, zone);
1050 	set_page_node(page, node);
1051 #ifdef SECTION_IN_PAGE_FLAGS
1052 	set_page_section(page, pfn_to_section_nr(pfn));
1053 #endif
1054 }
1055 
1056 #ifdef CONFIG_MEMCG
1057 static inline struct mem_cgroup *page_memcg(struct page *page)
1058 {
1059 	return page->mem_cgroup;
1060 }
1061 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1062 {
1063 	WARN_ON_ONCE(!rcu_read_lock_held());
1064 	return READ_ONCE(page->mem_cgroup);
1065 }
1066 #else
1067 static inline struct mem_cgroup *page_memcg(struct page *page)
1068 {
1069 	return NULL;
1070 }
1071 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1072 {
1073 	WARN_ON_ONCE(!rcu_read_lock_held());
1074 	return NULL;
1075 }
1076 #endif
1077 
1078 /*
1079  * Some inline functions in vmstat.h depend on page_zone()
1080  */
1081 #include <linux/vmstat.h>
1082 
1083 static __always_inline void *lowmem_page_address(const struct page *page)
1084 {
1085 	return page_to_virt(page);
1086 }
1087 
1088 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1089 #define HASHED_PAGE_VIRTUAL
1090 #endif
1091 
1092 #if defined(WANT_PAGE_VIRTUAL)
1093 static inline void *page_address(const struct page *page)
1094 {
1095 	return page->virtual;
1096 }
1097 static inline void set_page_address(struct page *page, void *address)
1098 {
1099 	page->virtual = address;
1100 }
1101 #define page_address_init()  do { } while(0)
1102 #endif
1103 
1104 #if defined(HASHED_PAGE_VIRTUAL)
1105 void *page_address(const struct page *page);
1106 void set_page_address(struct page *page, void *virtual);
1107 void page_address_init(void);
1108 #endif
1109 
1110 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1111 #define page_address(page) lowmem_page_address(page)
1112 #define set_page_address(page, address)  do { } while(0)
1113 #define page_address_init()  do { } while(0)
1114 #endif
1115 
1116 extern void *page_rmapping(struct page *page);
1117 extern struct anon_vma *page_anon_vma(struct page *page);
1118 extern struct address_space *page_mapping(struct page *page);
1119 
1120 extern struct address_space *__page_file_mapping(struct page *);
1121 
1122 static inline
1123 struct address_space *page_file_mapping(struct page *page)
1124 {
1125 	if (unlikely(PageSwapCache(page)))
1126 		return __page_file_mapping(page);
1127 
1128 	return page->mapping;
1129 }
1130 
1131 extern pgoff_t __page_file_index(struct page *page);
1132 
1133 /*
1134  * Return the pagecache index of the passed page.  Regular pagecache pages
1135  * use ->index whereas swapcache pages use swp_offset(->private)
1136  */
1137 static inline pgoff_t page_index(struct page *page)
1138 {
1139 	if (unlikely(PageSwapCache(page)))
1140 		return __page_file_index(page);
1141 	return page->index;
1142 }
1143 
1144 bool page_mapped(struct page *page);
1145 struct address_space *page_mapping(struct page *page);
1146 
1147 /*
1148  * Return true only if the page has been allocated with
1149  * ALLOC_NO_WATERMARKS and the low watermark was not
1150  * met implying that the system is under some pressure.
1151  */
1152 static inline bool page_is_pfmemalloc(struct page *page)
1153 {
1154 	/*
1155 	 * Page index cannot be this large so this must be
1156 	 * a pfmemalloc page.
1157 	 */
1158 	return page->index == -1UL;
1159 }
1160 
1161 /*
1162  * Only to be called by the page allocator on a freshly allocated
1163  * page.
1164  */
1165 static inline void set_page_pfmemalloc(struct page *page)
1166 {
1167 	page->index = -1UL;
1168 }
1169 
1170 static inline void clear_page_pfmemalloc(struct page *page)
1171 {
1172 	page->index = 0;
1173 }
1174 
1175 /*
1176  * Different kinds of faults, as returned by handle_mm_fault().
1177  * Used to decide whether a process gets delivered SIGBUS or
1178  * just gets major/minor fault counters bumped up.
1179  */
1180 
1181 #define VM_FAULT_OOM	0x0001
1182 #define VM_FAULT_SIGBUS	0x0002
1183 #define VM_FAULT_MAJOR	0x0004
1184 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1185 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1186 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1187 #define VM_FAULT_SIGSEGV 0x0040
1188 
1189 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1190 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1191 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1192 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1193 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1194 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1195 					 * and needs fsync() to complete (for
1196 					 * synchronous page faults in DAX) */
1197 
1198 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1199 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1200 			 VM_FAULT_FALLBACK)
1201 
1202 #define VM_FAULT_RESULT_TRACE \
1203 	{ VM_FAULT_OOM,			"OOM" }, \
1204 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1205 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1206 	{ VM_FAULT_WRITE,		"WRITE" }, \
1207 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1208 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1209 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1210 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1211 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1212 	{ VM_FAULT_RETRY,		"RETRY" }, \
1213 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1214 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1215 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1216 
1217 /* Encode hstate index for a hwpoisoned large page */
1218 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1219 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1220 
1221 /*
1222  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1223  */
1224 extern void pagefault_out_of_memory(void);
1225 
1226 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1227 
1228 /*
1229  * Flags passed to show_mem() and show_free_areas() to suppress output in
1230  * various contexts.
1231  */
1232 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1233 
1234 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1235 
1236 extern bool can_do_mlock(void);
1237 extern int user_shm_lock(size_t, struct user_struct *);
1238 extern void user_shm_unlock(size_t, struct user_struct *);
1239 
1240 /*
1241  * Parameter block passed down to zap_pte_range in exceptional cases.
1242  */
1243 struct zap_details {
1244 	struct address_space *check_mapping;	/* Check page->mapping if set */
1245 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1246 	pgoff_t last_index;			/* Highest page->index to unmap */
1247 };
1248 
1249 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1250 			     pte_t pte, bool with_public_device);
1251 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1252 
1253 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1254 				pmd_t pmd);
1255 
1256 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1257 		unsigned long size);
1258 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1259 		unsigned long size);
1260 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1261 		unsigned long start, unsigned long end);
1262 
1263 /**
1264  * mm_walk - callbacks for walk_page_range
1265  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1266  *	       this handler should only handle pud_trans_huge() puds.
1267  *	       the pmd_entry or pte_entry callbacks will be used for
1268  *	       regular PUDs.
1269  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1270  *	       this handler is required to be able to handle
1271  *	       pmd_trans_huge() pmds.  They may simply choose to
1272  *	       split_huge_page() instead of handling it explicitly.
1273  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1274  * @pte_hole: if set, called for each hole at all levels
1275  * @hugetlb_entry: if set, called for each hugetlb entry
1276  * @test_walk: caller specific callback function to determine whether
1277  *             we walk over the current vma or not. Returning 0
1278  *             value means "do page table walk over the current vma,"
1279  *             and a negative one means "abort current page table walk
1280  *             right now." 1 means "skip the current vma."
1281  * @mm:        mm_struct representing the target process of page table walk
1282  * @vma:       vma currently walked (NULL if walking outside vmas)
1283  * @private:   private data for callbacks' usage
1284  *
1285  * (see the comment on walk_page_range() for more details)
1286  */
1287 struct mm_walk {
1288 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1289 			 unsigned long next, struct mm_walk *walk);
1290 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1291 			 unsigned long next, struct mm_walk *walk);
1292 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1293 			 unsigned long next, struct mm_walk *walk);
1294 	int (*pte_hole)(unsigned long addr, unsigned long next,
1295 			struct mm_walk *walk);
1296 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1297 			     unsigned long addr, unsigned long next,
1298 			     struct mm_walk *walk);
1299 	int (*test_walk)(unsigned long addr, unsigned long next,
1300 			struct mm_walk *walk);
1301 	struct mm_struct *mm;
1302 	struct vm_area_struct *vma;
1303 	void *private;
1304 };
1305 
1306 int walk_page_range(unsigned long addr, unsigned long end,
1307 		struct mm_walk *walk);
1308 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1310 		unsigned long end, unsigned long floor, unsigned long ceiling);
1311 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1312 			struct vm_area_struct *vma);
1313 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1314 			     unsigned long *start, unsigned long *end,
1315 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1316 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1317 	unsigned long *pfn);
1318 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1319 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1320 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1321 			void *buf, int len, int write);
1322 
1323 extern void truncate_pagecache(struct inode *inode, loff_t new);
1324 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1325 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1326 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1327 int truncate_inode_page(struct address_space *mapping, struct page *page);
1328 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1329 int invalidate_inode_page(struct page *page);
1330 
1331 #ifdef CONFIG_MMU
1332 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1333 		unsigned int flags);
1334 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1335 			    unsigned long address, unsigned int fault_flags,
1336 			    bool *unlocked);
1337 void unmap_mapping_pages(struct address_space *mapping,
1338 		pgoff_t start, pgoff_t nr, bool even_cows);
1339 void unmap_mapping_range(struct address_space *mapping,
1340 		loff_t const holebegin, loff_t const holelen, int even_cows);
1341 #else
1342 static inline int handle_mm_fault(struct vm_area_struct *vma,
1343 		unsigned long address, unsigned int flags)
1344 {
1345 	/* should never happen if there's no MMU */
1346 	BUG();
1347 	return VM_FAULT_SIGBUS;
1348 }
1349 static inline int fixup_user_fault(struct task_struct *tsk,
1350 		struct mm_struct *mm, unsigned long address,
1351 		unsigned int fault_flags, bool *unlocked)
1352 {
1353 	/* should never happen if there's no MMU */
1354 	BUG();
1355 	return -EFAULT;
1356 }
1357 static inline void unmap_mapping_pages(struct address_space *mapping,
1358 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1359 static inline void unmap_mapping_range(struct address_space *mapping,
1360 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1361 #endif
1362 
1363 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1364 		loff_t const holebegin, loff_t const holelen)
1365 {
1366 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1367 }
1368 
1369 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1370 		void *buf, int len, unsigned int gup_flags);
1371 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1372 		void *buf, int len, unsigned int gup_flags);
1373 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1374 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1375 
1376 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1377 			    unsigned long start, unsigned long nr_pages,
1378 			    unsigned int gup_flags, struct page **pages,
1379 			    struct vm_area_struct **vmas, int *locked);
1380 long get_user_pages(unsigned long start, unsigned long nr_pages,
1381 			    unsigned int gup_flags, struct page **pages,
1382 			    struct vm_area_struct **vmas);
1383 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1384 		    unsigned int gup_flags, struct page **pages, int *locked);
1385 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1386 		    struct page **pages, unsigned int gup_flags);
1387 #ifdef CONFIG_FS_DAX
1388 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1389 			    unsigned int gup_flags, struct page **pages,
1390 			    struct vm_area_struct **vmas);
1391 #else
1392 static inline long get_user_pages_longterm(unsigned long start,
1393 		unsigned long nr_pages, unsigned int gup_flags,
1394 		struct page **pages, struct vm_area_struct **vmas)
1395 {
1396 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1397 }
1398 #endif /* CONFIG_FS_DAX */
1399 
1400 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1401 			struct page **pages);
1402 
1403 /* Container for pinned pfns / pages */
1404 struct frame_vector {
1405 	unsigned int nr_allocated;	/* Number of frames we have space for */
1406 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1407 	bool got_ref;		/* Did we pin pages by getting page ref? */
1408 	bool is_pfns;		/* Does array contain pages or pfns? */
1409 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1410 				 * pfns_vector_pages() or pfns_vector_pfns()
1411 				 * for access */
1412 };
1413 
1414 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1415 void frame_vector_destroy(struct frame_vector *vec);
1416 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1417 		     unsigned int gup_flags, struct frame_vector *vec);
1418 void put_vaddr_frames(struct frame_vector *vec);
1419 int frame_vector_to_pages(struct frame_vector *vec);
1420 void frame_vector_to_pfns(struct frame_vector *vec);
1421 
1422 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1423 {
1424 	return vec->nr_frames;
1425 }
1426 
1427 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1428 {
1429 	if (vec->is_pfns) {
1430 		int err = frame_vector_to_pages(vec);
1431 
1432 		if (err)
1433 			return ERR_PTR(err);
1434 	}
1435 	return (struct page **)(vec->ptrs);
1436 }
1437 
1438 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1439 {
1440 	if (!vec->is_pfns)
1441 		frame_vector_to_pfns(vec);
1442 	return (unsigned long *)(vec->ptrs);
1443 }
1444 
1445 struct kvec;
1446 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1447 			struct page **pages);
1448 int get_kernel_page(unsigned long start, int write, struct page **pages);
1449 struct page *get_dump_page(unsigned long addr);
1450 
1451 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1452 extern void do_invalidatepage(struct page *page, unsigned int offset,
1453 			      unsigned int length);
1454 
1455 int __set_page_dirty_nobuffers(struct page *page);
1456 int __set_page_dirty_no_writeback(struct page *page);
1457 int redirty_page_for_writepage(struct writeback_control *wbc,
1458 				struct page *page);
1459 void account_page_dirtied(struct page *page, struct address_space *mapping);
1460 void account_page_cleaned(struct page *page, struct address_space *mapping,
1461 			  struct bdi_writeback *wb);
1462 int set_page_dirty(struct page *page);
1463 int set_page_dirty_lock(struct page *page);
1464 void __cancel_dirty_page(struct page *page);
1465 static inline void cancel_dirty_page(struct page *page)
1466 {
1467 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1468 	if (PageDirty(page))
1469 		__cancel_dirty_page(page);
1470 }
1471 int clear_page_dirty_for_io(struct page *page);
1472 
1473 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1474 
1475 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1476 {
1477 	return !vma->vm_ops;
1478 }
1479 
1480 #ifdef CONFIG_SHMEM
1481 /*
1482  * The vma_is_shmem is not inline because it is used only by slow
1483  * paths in userfault.
1484  */
1485 bool vma_is_shmem(struct vm_area_struct *vma);
1486 #else
1487 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1488 #endif
1489 
1490 int vma_is_stack_for_current(struct vm_area_struct *vma);
1491 
1492 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1493 		unsigned long old_addr, struct vm_area_struct *new_vma,
1494 		unsigned long new_addr, unsigned long len,
1495 		bool need_rmap_locks);
1496 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1497 			      unsigned long end, pgprot_t newprot,
1498 			      int dirty_accountable, int prot_numa);
1499 extern int mprotect_fixup(struct vm_area_struct *vma,
1500 			  struct vm_area_struct **pprev, unsigned long start,
1501 			  unsigned long end, unsigned long newflags);
1502 
1503 /*
1504  * doesn't attempt to fault and will return short.
1505  */
1506 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1507 			  struct page **pages);
1508 /*
1509  * per-process(per-mm_struct) statistics.
1510  */
1511 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1512 {
1513 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1514 
1515 #ifdef SPLIT_RSS_COUNTING
1516 	/*
1517 	 * counter is updated in asynchronous manner and may go to minus.
1518 	 * But it's never be expected number for users.
1519 	 */
1520 	if (val < 0)
1521 		val = 0;
1522 #endif
1523 	return (unsigned long)val;
1524 }
1525 
1526 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1527 {
1528 	atomic_long_add(value, &mm->rss_stat.count[member]);
1529 }
1530 
1531 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1532 {
1533 	atomic_long_inc(&mm->rss_stat.count[member]);
1534 }
1535 
1536 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1537 {
1538 	atomic_long_dec(&mm->rss_stat.count[member]);
1539 }
1540 
1541 /* Optimized variant when page is already known not to be PageAnon */
1542 static inline int mm_counter_file(struct page *page)
1543 {
1544 	if (PageSwapBacked(page))
1545 		return MM_SHMEMPAGES;
1546 	return MM_FILEPAGES;
1547 }
1548 
1549 static inline int mm_counter(struct page *page)
1550 {
1551 	if (PageAnon(page))
1552 		return MM_ANONPAGES;
1553 	return mm_counter_file(page);
1554 }
1555 
1556 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1557 {
1558 	return get_mm_counter(mm, MM_FILEPAGES) +
1559 		get_mm_counter(mm, MM_ANONPAGES) +
1560 		get_mm_counter(mm, MM_SHMEMPAGES);
1561 }
1562 
1563 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1564 {
1565 	return max(mm->hiwater_rss, get_mm_rss(mm));
1566 }
1567 
1568 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1569 {
1570 	return max(mm->hiwater_vm, mm->total_vm);
1571 }
1572 
1573 static inline void update_hiwater_rss(struct mm_struct *mm)
1574 {
1575 	unsigned long _rss = get_mm_rss(mm);
1576 
1577 	if ((mm)->hiwater_rss < _rss)
1578 		(mm)->hiwater_rss = _rss;
1579 }
1580 
1581 static inline void update_hiwater_vm(struct mm_struct *mm)
1582 {
1583 	if (mm->hiwater_vm < mm->total_vm)
1584 		mm->hiwater_vm = mm->total_vm;
1585 }
1586 
1587 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1588 {
1589 	mm->hiwater_rss = get_mm_rss(mm);
1590 }
1591 
1592 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1593 					 struct mm_struct *mm)
1594 {
1595 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1596 
1597 	if (*maxrss < hiwater_rss)
1598 		*maxrss = hiwater_rss;
1599 }
1600 
1601 #if defined(SPLIT_RSS_COUNTING)
1602 void sync_mm_rss(struct mm_struct *mm);
1603 #else
1604 static inline void sync_mm_rss(struct mm_struct *mm)
1605 {
1606 }
1607 #endif
1608 
1609 #ifndef __HAVE_ARCH_PTE_DEVMAP
1610 static inline int pte_devmap(pte_t pte)
1611 {
1612 	return 0;
1613 }
1614 #endif
1615 
1616 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1617 
1618 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1619 			       spinlock_t **ptl);
1620 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1621 				    spinlock_t **ptl)
1622 {
1623 	pte_t *ptep;
1624 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1625 	return ptep;
1626 }
1627 
1628 #ifdef __PAGETABLE_P4D_FOLDED
1629 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1630 						unsigned long address)
1631 {
1632 	return 0;
1633 }
1634 #else
1635 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1636 #endif
1637 
1638 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1639 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1640 						unsigned long address)
1641 {
1642 	return 0;
1643 }
1644 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1645 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1646 
1647 #else
1648 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1649 
1650 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1651 {
1652 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1653 }
1654 
1655 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1656 {
1657 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1658 }
1659 #endif
1660 
1661 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1662 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1663 						unsigned long address)
1664 {
1665 	return 0;
1666 }
1667 
1668 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1669 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1670 
1671 #else
1672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1673 
1674 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1675 {
1676 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1677 }
1678 
1679 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1680 {
1681 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1682 }
1683 #endif
1684 
1685 #ifdef CONFIG_MMU
1686 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1687 {
1688 	atomic_long_set(&mm->pgtables_bytes, 0);
1689 }
1690 
1691 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1692 {
1693 	return atomic_long_read(&mm->pgtables_bytes);
1694 }
1695 
1696 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1697 {
1698 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1699 }
1700 
1701 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1702 {
1703 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1704 }
1705 #else
1706 
1707 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1708 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1709 {
1710 	return 0;
1711 }
1712 
1713 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1714 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1715 #endif
1716 
1717 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1718 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1719 
1720 /*
1721  * The following ifdef needed to get the 4level-fixup.h header to work.
1722  * Remove it when 4level-fixup.h has been removed.
1723  */
1724 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1725 
1726 #ifndef __ARCH_HAS_5LEVEL_HACK
1727 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1728 		unsigned long address)
1729 {
1730 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1731 		NULL : p4d_offset(pgd, address);
1732 }
1733 
1734 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1735 		unsigned long address)
1736 {
1737 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1738 		NULL : pud_offset(p4d, address);
1739 }
1740 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1741 
1742 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1743 {
1744 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1745 		NULL: pmd_offset(pud, address);
1746 }
1747 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1748 
1749 #if USE_SPLIT_PTE_PTLOCKS
1750 #if ALLOC_SPLIT_PTLOCKS
1751 void __init ptlock_cache_init(void);
1752 extern bool ptlock_alloc(struct page *page);
1753 extern void ptlock_free(struct page *page);
1754 
1755 static inline spinlock_t *ptlock_ptr(struct page *page)
1756 {
1757 	return page->ptl;
1758 }
1759 #else /* ALLOC_SPLIT_PTLOCKS */
1760 static inline void ptlock_cache_init(void)
1761 {
1762 }
1763 
1764 static inline bool ptlock_alloc(struct page *page)
1765 {
1766 	return true;
1767 }
1768 
1769 static inline void ptlock_free(struct page *page)
1770 {
1771 }
1772 
1773 static inline spinlock_t *ptlock_ptr(struct page *page)
1774 {
1775 	return &page->ptl;
1776 }
1777 #endif /* ALLOC_SPLIT_PTLOCKS */
1778 
1779 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1780 {
1781 	return ptlock_ptr(pmd_page(*pmd));
1782 }
1783 
1784 static inline bool ptlock_init(struct page *page)
1785 {
1786 	/*
1787 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1788 	 * with 0. Make sure nobody took it in use in between.
1789 	 *
1790 	 * It can happen if arch try to use slab for page table allocation:
1791 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1792 	 */
1793 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1794 	if (!ptlock_alloc(page))
1795 		return false;
1796 	spin_lock_init(ptlock_ptr(page));
1797 	return true;
1798 }
1799 
1800 /* Reset page->mapping so free_pages_check won't complain. */
1801 static inline void pte_lock_deinit(struct page *page)
1802 {
1803 	page->mapping = NULL;
1804 	ptlock_free(page);
1805 }
1806 
1807 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1808 /*
1809  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1810  */
1811 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1812 {
1813 	return &mm->page_table_lock;
1814 }
1815 static inline void ptlock_cache_init(void) {}
1816 static inline bool ptlock_init(struct page *page) { return true; }
1817 static inline void pte_lock_deinit(struct page *page) {}
1818 #endif /* USE_SPLIT_PTE_PTLOCKS */
1819 
1820 static inline void pgtable_init(void)
1821 {
1822 	ptlock_cache_init();
1823 	pgtable_cache_init();
1824 }
1825 
1826 static inline bool pgtable_page_ctor(struct page *page)
1827 {
1828 	if (!ptlock_init(page))
1829 		return false;
1830 	inc_zone_page_state(page, NR_PAGETABLE);
1831 	return true;
1832 }
1833 
1834 static inline void pgtable_page_dtor(struct page *page)
1835 {
1836 	pte_lock_deinit(page);
1837 	dec_zone_page_state(page, NR_PAGETABLE);
1838 }
1839 
1840 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1841 ({							\
1842 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1843 	pte_t *__pte = pte_offset_map(pmd, address);	\
1844 	*(ptlp) = __ptl;				\
1845 	spin_lock(__ptl);				\
1846 	__pte;						\
1847 })
1848 
1849 #define pte_unmap_unlock(pte, ptl)	do {		\
1850 	spin_unlock(ptl);				\
1851 	pte_unmap(pte);					\
1852 } while (0)
1853 
1854 #define pte_alloc(mm, pmd, address)			\
1855 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1856 
1857 #define pte_alloc_map(mm, pmd, address)			\
1858 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1859 
1860 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1861 	(pte_alloc(mm, pmd, address) ?			\
1862 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1863 
1864 #define pte_alloc_kernel(pmd, address)			\
1865 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1866 		NULL: pte_offset_kernel(pmd, address))
1867 
1868 #if USE_SPLIT_PMD_PTLOCKS
1869 
1870 static struct page *pmd_to_page(pmd_t *pmd)
1871 {
1872 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1873 	return virt_to_page((void *)((unsigned long) pmd & mask));
1874 }
1875 
1876 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1877 {
1878 	return ptlock_ptr(pmd_to_page(pmd));
1879 }
1880 
1881 static inline bool pgtable_pmd_page_ctor(struct page *page)
1882 {
1883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1884 	page->pmd_huge_pte = NULL;
1885 #endif
1886 	return ptlock_init(page);
1887 }
1888 
1889 static inline void pgtable_pmd_page_dtor(struct page *page)
1890 {
1891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1892 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1893 #endif
1894 	ptlock_free(page);
1895 }
1896 
1897 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1898 
1899 #else
1900 
1901 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1902 {
1903 	return &mm->page_table_lock;
1904 }
1905 
1906 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1907 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1908 
1909 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1910 
1911 #endif
1912 
1913 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1914 {
1915 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1916 	spin_lock(ptl);
1917 	return ptl;
1918 }
1919 
1920 /*
1921  * No scalability reason to split PUD locks yet, but follow the same pattern
1922  * as the PMD locks to make it easier if we decide to.  The VM should not be
1923  * considered ready to switch to split PUD locks yet; there may be places
1924  * which need to be converted from page_table_lock.
1925  */
1926 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1927 {
1928 	return &mm->page_table_lock;
1929 }
1930 
1931 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1932 {
1933 	spinlock_t *ptl = pud_lockptr(mm, pud);
1934 
1935 	spin_lock(ptl);
1936 	return ptl;
1937 }
1938 
1939 extern void __init pagecache_init(void);
1940 extern void free_area_init(unsigned long * zones_size);
1941 extern void free_area_init_node(int nid, unsigned long * zones_size,
1942 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1943 extern void free_initmem(void);
1944 
1945 /*
1946  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1947  * into the buddy system. The freed pages will be poisoned with pattern
1948  * "poison" if it's within range [0, UCHAR_MAX].
1949  * Return pages freed into the buddy system.
1950  */
1951 extern unsigned long free_reserved_area(void *start, void *end,
1952 					int poison, char *s);
1953 
1954 #ifdef	CONFIG_HIGHMEM
1955 /*
1956  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1957  * and totalram_pages.
1958  */
1959 extern void free_highmem_page(struct page *page);
1960 #endif
1961 
1962 extern void adjust_managed_page_count(struct page *page, long count);
1963 extern void mem_init_print_info(const char *str);
1964 
1965 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1966 
1967 /* Free the reserved page into the buddy system, so it gets managed. */
1968 static inline void __free_reserved_page(struct page *page)
1969 {
1970 	ClearPageReserved(page);
1971 	init_page_count(page);
1972 	__free_page(page);
1973 }
1974 
1975 static inline void free_reserved_page(struct page *page)
1976 {
1977 	__free_reserved_page(page);
1978 	adjust_managed_page_count(page, 1);
1979 }
1980 
1981 static inline void mark_page_reserved(struct page *page)
1982 {
1983 	SetPageReserved(page);
1984 	adjust_managed_page_count(page, -1);
1985 }
1986 
1987 /*
1988  * Default method to free all the __init memory into the buddy system.
1989  * The freed pages will be poisoned with pattern "poison" if it's within
1990  * range [0, UCHAR_MAX].
1991  * Return pages freed into the buddy system.
1992  */
1993 static inline unsigned long free_initmem_default(int poison)
1994 {
1995 	extern char __init_begin[], __init_end[];
1996 
1997 	return free_reserved_area(&__init_begin, &__init_end,
1998 				  poison, "unused kernel");
1999 }
2000 
2001 static inline unsigned long get_num_physpages(void)
2002 {
2003 	int nid;
2004 	unsigned long phys_pages = 0;
2005 
2006 	for_each_online_node(nid)
2007 		phys_pages += node_present_pages(nid);
2008 
2009 	return phys_pages;
2010 }
2011 
2012 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2013 /*
2014  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2015  * zones, allocate the backing mem_map and account for memory holes in a more
2016  * architecture independent manner. This is a substitute for creating the
2017  * zone_sizes[] and zholes_size[] arrays and passing them to
2018  * free_area_init_node()
2019  *
2020  * An architecture is expected to register range of page frames backed by
2021  * physical memory with memblock_add[_node]() before calling
2022  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2023  * usage, an architecture is expected to do something like
2024  *
2025  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2026  * 							 max_highmem_pfn};
2027  * for_each_valid_physical_page_range()
2028  * 	memblock_add_node(base, size, nid)
2029  * free_area_init_nodes(max_zone_pfns);
2030  *
2031  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2032  * registered physical page range.  Similarly
2033  * sparse_memory_present_with_active_regions() calls memory_present() for
2034  * each range when SPARSEMEM is enabled.
2035  *
2036  * See mm/page_alloc.c for more information on each function exposed by
2037  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2038  */
2039 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2040 unsigned long node_map_pfn_alignment(void);
2041 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2042 						unsigned long end_pfn);
2043 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2044 						unsigned long end_pfn);
2045 extern void get_pfn_range_for_nid(unsigned int nid,
2046 			unsigned long *start_pfn, unsigned long *end_pfn);
2047 extern unsigned long find_min_pfn_with_active_regions(void);
2048 extern void free_bootmem_with_active_regions(int nid,
2049 						unsigned long max_low_pfn);
2050 extern void sparse_memory_present_with_active_regions(int nid);
2051 
2052 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2053 
2054 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2055     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2056 static inline int __early_pfn_to_nid(unsigned long pfn,
2057 					struct mminit_pfnnid_cache *state)
2058 {
2059 	return 0;
2060 }
2061 #else
2062 /* please see mm/page_alloc.c */
2063 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2064 /* there is a per-arch backend function. */
2065 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2066 					struct mminit_pfnnid_cache *state);
2067 #endif
2068 
2069 #ifdef CONFIG_HAVE_MEMBLOCK
2070 void zero_resv_unavail(void);
2071 #else
2072 static inline void zero_resv_unavail(void) {}
2073 #endif
2074 
2075 extern void set_dma_reserve(unsigned long new_dma_reserve);
2076 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2077 		enum memmap_context, struct vmem_altmap *);
2078 extern void setup_per_zone_wmarks(void);
2079 extern int __meminit init_per_zone_wmark_min(void);
2080 extern void mem_init(void);
2081 extern void __init mmap_init(void);
2082 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2083 extern long si_mem_available(void);
2084 extern void si_meminfo(struct sysinfo * val);
2085 extern void si_meminfo_node(struct sysinfo *val, int nid);
2086 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2087 extern unsigned long arch_reserved_kernel_pages(void);
2088 #endif
2089 
2090 extern __printf(3, 4)
2091 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2092 
2093 extern void setup_per_cpu_pageset(void);
2094 
2095 extern void zone_pcp_update(struct zone *zone);
2096 extern void zone_pcp_reset(struct zone *zone);
2097 
2098 /* page_alloc.c */
2099 extern int min_free_kbytes;
2100 extern int watermark_scale_factor;
2101 
2102 /* nommu.c */
2103 extern atomic_long_t mmap_pages_allocated;
2104 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2105 
2106 /* interval_tree.c */
2107 void vma_interval_tree_insert(struct vm_area_struct *node,
2108 			      struct rb_root_cached *root);
2109 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2110 				    struct vm_area_struct *prev,
2111 				    struct rb_root_cached *root);
2112 void vma_interval_tree_remove(struct vm_area_struct *node,
2113 			      struct rb_root_cached *root);
2114 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2115 				unsigned long start, unsigned long last);
2116 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2117 				unsigned long start, unsigned long last);
2118 
2119 #define vma_interval_tree_foreach(vma, root, start, last)		\
2120 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2121 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2122 
2123 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2124 				   struct rb_root_cached *root);
2125 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2126 				   struct rb_root_cached *root);
2127 struct anon_vma_chain *
2128 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2129 				  unsigned long start, unsigned long last);
2130 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2131 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2132 #ifdef CONFIG_DEBUG_VM_RB
2133 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2134 #endif
2135 
2136 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2137 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2138 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2139 
2140 /* mmap.c */
2141 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2142 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2143 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2144 	struct vm_area_struct *expand);
2145 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2146 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2147 {
2148 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2149 }
2150 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2151 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2152 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2153 	struct mempolicy *, struct vm_userfaultfd_ctx);
2154 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2155 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2156 	unsigned long addr, int new_below);
2157 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2158 	unsigned long addr, int new_below);
2159 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2160 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2161 	struct rb_node **, struct rb_node *);
2162 extern void unlink_file_vma(struct vm_area_struct *);
2163 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2164 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2165 	bool *need_rmap_locks);
2166 extern void exit_mmap(struct mm_struct *);
2167 
2168 static inline int check_data_rlimit(unsigned long rlim,
2169 				    unsigned long new,
2170 				    unsigned long start,
2171 				    unsigned long end_data,
2172 				    unsigned long start_data)
2173 {
2174 	if (rlim < RLIM_INFINITY) {
2175 		if (((new - start) + (end_data - start_data)) > rlim)
2176 			return -ENOSPC;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 extern int mm_take_all_locks(struct mm_struct *mm);
2183 extern void mm_drop_all_locks(struct mm_struct *mm);
2184 
2185 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2186 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2187 extern struct file *get_task_exe_file(struct task_struct *task);
2188 
2189 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2190 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2191 
2192 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2193 				   const struct vm_special_mapping *sm);
2194 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2195 				   unsigned long addr, unsigned long len,
2196 				   unsigned long flags,
2197 				   const struct vm_special_mapping *spec);
2198 /* This is an obsolete alternative to _install_special_mapping. */
2199 extern int install_special_mapping(struct mm_struct *mm,
2200 				   unsigned long addr, unsigned long len,
2201 				   unsigned long flags, struct page **pages);
2202 
2203 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2204 
2205 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2206 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2207 	struct list_head *uf);
2208 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2209 	unsigned long len, unsigned long prot, unsigned long flags,
2210 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2211 	struct list_head *uf);
2212 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2213 		     struct list_head *uf);
2214 
2215 static inline unsigned long
2216 do_mmap_pgoff(struct file *file, unsigned long addr,
2217 	unsigned long len, unsigned long prot, unsigned long flags,
2218 	unsigned long pgoff, unsigned long *populate,
2219 	struct list_head *uf)
2220 {
2221 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2222 }
2223 
2224 #ifdef CONFIG_MMU
2225 extern int __mm_populate(unsigned long addr, unsigned long len,
2226 			 int ignore_errors);
2227 static inline void mm_populate(unsigned long addr, unsigned long len)
2228 {
2229 	/* Ignore errors */
2230 	(void) __mm_populate(addr, len, 1);
2231 }
2232 #else
2233 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2234 #endif
2235 
2236 /* These take the mm semaphore themselves */
2237 extern int __must_check vm_brk(unsigned long, unsigned long);
2238 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2239 extern int vm_munmap(unsigned long, size_t);
2240 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2241         unsigned long, unsigned long,
2242         unsigned long, unsigned long);
2243 
2244 struct vm_unmapped_area_info {
2245 #define VM_UNMAPPED_AREA_TOPDOWN 1
2246 	unsigned long flags;
2247 	unsigned long length;
2248 	unsigned long low_limit;
2249 	unsigned long high_limit;
2250 	unsigned long align_mask;
2251 	unsigned long align_offset;
2252 };
2253 
2254 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2255 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2256 
2257 /*
2258  * Search for an unmapped address range.
2259  *
2260  * We are looking for a range that:
2261  * - does not intersect with any VMA;
2262  * - is contained within the [low_limit, high_limit) interval;
2263  * - is at least the desired size.
2264  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2265  */
2266 static inline unsigned long
2267 vm_unmapped_area(struct vm_unmapped_area_info *info)
2268 {
2269 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2270 		return unmapped_area_topdown(info);
2271 	else
2272 		return unmapped_area(info);
2273 }
2274 
2275 /* truncate.c */
2276 extern void truncate_inode_pages(struct address_space *, loff_t);
2277 extern void truncate_inode_pages_range(struct address_space *,
2278 				       loff_t lstart, loff_t lend);
2279 extern void truncate_inode_pages_final(struct address_space *);
2280 
2281 /* generic vm_area_ops exported for stackable file systems */
2282 extern int filemap_fault(struct vm_fault *vmf);
2283 extern void filemap_map_pages(struct vm_fault *vmf,
2284 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2285 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2286 
2287 /* mm/page-writeback.c */
2288 int __must_check write_one_page(struct page *page);
2289 void task_dirty_inc(struct task_struct *tsk);
2290 
2291 /* readahead.c */
2292 #define VM_MAX_READAHEAD	128	/* kbytes */
2293 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2294 
2295 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2296 			pgoff_t offset, unsigned long nr_to_read);
2297 
2298 void page_cache_sync_readahead(struct address_space *mapping,
2299 			       struct file_ra_state *ra,
2300 			       struct file *filp,
2301 			       pgoff_t offset,
2302 			       unsigned long size);
2303 
2304 void page_cache_async_readahead(struct address_space *mapping,
2305 				struct file_ra_state *ra,
2306 				struct file *filp,
2307 				struct page *pg,
2308 				pgoff_t offset,
2309 				unsigned long size);
2310 
2311 extern unsigned long stack_guard_gap;
2312 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2313 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2314 
2315 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2316 extern int expand_downwards(struct vm_area_struct *vma,
2317 		unsigned long address);
2318 #if VM_GROWSUP
2319 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2320 #else
2321   #define expand_upwards(vma, address) (0)
2322 #endif
2323 
2324 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2325 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2326 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2327 					     struct vm_area_struct **pprev);
2328 
2329 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2330    NULL if none.  Assume start_addr < end_addr. */
2331 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2332 {
2333 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2334 
2335 	if (vma && end_addr <= vma->vm_start)
2336 		vma = NULL;
2337 	return vma;
2338 }
2339 
2340 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2341 {
2342 	unsigned long vm_start = vma->vm_start;
2343 
2344 	if (vma->vm_flags & VM_GROWSDOWN) {
2345 		vm_start -= stack_guard_gap;
2346 		if (vm_start > vma->vm_start)
2347 			vm_start = 0;
2348 	}
2349 	return vm_start;
2350 }
2351 
2352 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2353 {
2354 	unsigned long vm_end = vma->vm_end;
2355 
2356 	if (vma->vm_flags & VM_GROWSUP) {
2357 		vm_end += stack_guard_gap;
2358 		if (vm_end < vma->vm_end)
2359 			vm_end = -PAGE_SIZE;
2360 	}
2361 	return vm_end;
2362 }
2363 
2364 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2365 {
2366 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2367 }
2368 
2369 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2370 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2371 				unsigned long vm_start, unsigned long vm_end)
2372 {
2373 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2374 
2375 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2376 		vma = NULL;
2377 
2378 	return vma;
2379 }
2380 
2381 #ifdef CONFIG_MMU
2382 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2383 void vma_set_page_prot(struct vm_area_struct *vma);
2384 #else
2385 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2386 {
2387 	return __pgprot(0);
2388 }
2389 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2390 {
2391 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2392 }
2393 #endif
2394 
2395 #ifdef CONFIG_NUMA_BALANCING
2396 unsigned long change_prot_numa(struct vm_area_struct *vma,
2397 			unsigned long start, unsigned long end);
2398 #endif
2399 
2400 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2401 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2402 			unsigned long pfn, unsigned long size, pgprot_t);
2403 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2404 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2405 			unsigned long pfn);
2406 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2407 			unsigned long pfn, pgprot_t pgprot);
2408 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2409 			pfn_t pfn);
2410 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2411 			pfn_t pfn);
2412 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2413 
2414 
2415 struct page *follow_page_mask(struct vm_area_struct *vma,
2416 			      unsigned long address, unsigned int foll_flags,
2417 			      unsigned int *page_mask);
2418 
2419 static inline struct page *follow_page(struct vm_area_struct *vma,
2420 		unsigned long address, unsigned int foll_flags)
2421 {
2422 	unsigned int unused_page_mask;
2423 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2424 }
2425 
2426 #define FOLL_WRITE	0x01	/* check pte is writable */
2427 #define FOLL_TOUCH	0x02	/* mark page accessed */
2428 #define FOLL_GET	0x04	/* do get_page on page */
2429 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2430 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2431 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2432 				 * and return without waiting upon it */
2433 #define FOLL_POPULATE	0x40	/* fault in page */
2434 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2435 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2436 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2437 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2438 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2439 #define FOLL_MLOCK	0x1000	/* lock present pages */
2440 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2441 #define FOLL_COW	0x4000	/* internal GUP flag */
2442 
2443 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2444 {
2445 	if (vm_fault & VM_FAULT_OOM)
2446 		return -ENOMEM;
2447 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2448 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2449 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2450 		return -EFAULT;
2451 	return 0;
2452 }
2453 
2454 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2455 			void *data);
2456 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2457 			       unsigned long size, pte_fn_t fn, void *data);
2458 
2459 
2460 #ifdef CONFIG_PAGE_POISONING
2461 extern bool page_poisoning_enabled(void);
2462 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2463 extern bool page_is_poisoned(struct page *page);
2464 #else
2465 static inline bool page_poisoning_enabled(void) { return false; }
2466 static inline void kernel_poison_pages(struct page *page, int numpages,
2467 					int enable) { }
2468 static inline bool page_is_poisoned(struct page *page) { return false; }
2469 #endif
2470 
2471 #ifdef CONFIG_DEBUG_PAGEALLOC
2472 extern bool _debug_pagealloc_enabled;
2473 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2474 
2475 static inline bool debug_pagealloc_enabled(void)
2476 {
2477 	return _debug_pagealloc_enabled;
2478 }
2479 
2480 static inline void
2481 kernel_map_pages(struct page *page, int numpages, int enable)
2482 {
2483 	if (!debug_pagealloc_enabled())
2484 		return;
2485 
2486 	__kernel_map_pages(page, numpages, enable);
2487 }
2488 #ifdef CONFIG_HIBERNATION
2489 extern bool kernel_page_present(struct page *page);
2490 #endif	/* CONFIG_HIBERNATION */
2491 #else	/* CONFIG_DEBUG_PAGEALLOC */
2492 static inline void
2493 kernel_map_pages(struct page *page, int numpages, int enable) {}
2494 #ifdef CONFIG_HIBERNATION
2495 static inline bool kernel_page_present(struct page *page) { return true; }
2496 #endif	/* CONFIG_HIBERNATION */
2497 static inline bool debug_pagealloc_enabled(void)
2498 {
2499 	return false;
2500 }
2501 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2502 
2503 #ifdef __HAVE_ARCH_GATE_AREA
2504 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2505 extern int in_gate_area_no_mm(unsigned long addr);
2506 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2507 #else
2508 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2509 {
2510 	return NULL;
2511 }
2512 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2513 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2514 {
2515 	return 0;
2516 }
2517 #endif	/* __HAVE_ARCH_GATE_AREA */
2518 
2519 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2520 
2521 #ifdef CONFIG_SYSCTL
2522 extern int sysctl_drop_caches;
2523 int drop_caches_sysctl_handler(struct ctl_table *, int,
2524 					void __user *, size_t *, loff_t *);
2525 #endif
2526 
2527 void drop_slab(void);
2528 void drop_slab_node(int nid);
2529 
2530 #ifndef CONFIG_MMU
2531 #define randomize_va_space 0
2532 #else
2533 extern int randomize_va_space;
2534 #endif
2535 
2536 const char * arch_vma_name(struct vm_area_struct *vma);
2537 void print_vma_addr(char *prefix, unsigned long rip);
2538 
2539 void sparse_mem_maps_populate_node(struct page **map_map,
2540 				   unsigned long pnum_begin,
2541 				   unsigned long pnum_end,
2542 				   unsigned long map_count,
2543 				   int nodeid);
2544 
2545 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2546 		struct vmem_altmap *altmap);
2547 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2548 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2549 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2550 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2551 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2552 void *vmemmap_alloc_block(unsigned long size, int node);
2553 struct vmem_altmap;
2554 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2555 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2556 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2557 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2558 			       int node);
2559 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2560 		struct vmem_altmap *altmap);
2561 void vmemmap_populate_print_last(void);
2562 #ifdef CONFIG_MEMORY_HOTPLUG
2563 void vmemmap_free(unsigned long start, unsigned long end,
2564 		struct vmem_altmap *altmap);
2565 #endif
2566 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2567 				  unsigned long nr_pages);
2568 
2569 enum mf_flags {
2570 	MF_COUNT_INCREASED = 1 << 0,
2571 	MF_ACTION_REQUIRED = 1 << 1,
2572 	MF_MUST_KILL = 1 << 2,
2573 	MF_SOFT_OFFLINE = 1 << 3,
2574 };
2575 extern int memory_failure(unsigned long pfn, int flags);
2576 extern void memory_failure_queue(unsigned long pfn, int flags);
2577 extern int unpoison_memory(unsigned long pfn);
2578 extern int get_hwpoison_page(struct page *page);
2579 #define put_hwpoison_page(page)	put_page(page)
2580 extern int sysctl_memory_failure_early_kill;
2581 extern int sysctl_memory_failure_recovery;
2582 extern void shake_page(struct page *p, int access);
2583 extern atomic_long_t num_poisoned_pages;
2584 extern int soft_offline_page(struct page *page, int flags);
2585 
2586 
2587 /*
2588  * Error handlers for various types of pages.
2589  */
2590 enum mf_result {
2591 	MF_IGNORED,	/* Error: cannot be handled */
2592 	MF_FAILED,	/* Error: handling failed */
2593 	MF_DELAYED,	/* Will be handled later */
2594 	MF_RECOVERED,	/* Successfully recovered */
2595 };
2596 
2597 enum mf_action_page_type {
2598 	MF_MSG_KERNEL,
2599 	MF_MSG_KERNEL_HIGH_ORDER,
2600 	MF_MSG_SLAB,
2601 	MF_MSG_DIFFERENT_COMPOUND,
2602 	MF_MSG_POISONED_HUGE,
2603 	MF_MSG_HUGE,
2604 	MF_MSG_FREE_HUGE,
2605 	MF_MSG_UNMAP_FAILED,
2606 	MF_MSG_DIRTY_SWAPCACHE,
2607 	MF_MSG_CLEAN_SWAPCACHE,
2608 	MF_MSG_DIRTY_MLOCKED_LRU,
2609 	MF_MSG_CLEAN_MLOCKED_LRU,
2610 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2611 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2612 	MF_MSG_DIRTY_LRU,
2613 	MF_MSG_CLEAN_LRU,
2614 	MF_MSG_TRUNCATED_LRU,
2615 	MF_MSG_BUDDY,
2616 	MF_MSG_BUDDY_2ND,
2617 	MF_MSG_UNKNOWN,
2618 };
2619 
2620 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2621 extern void clear_huge_page(struct page *page,
2622 			    unsigned long addr_hint,
2623 			    unsigned int pages_per_huge_page);
2624 extern void copy_user_huge_page(struct page *dst, struct page *src,
2625 				unsigned long addr, struct vm_area_struct *vma,
2626 				unsigned int pages_per_huge_page);
2627 extern long copy_huge_page_from_user(struct page *dst_page,
2628 				const void __user *usr_src,
2629 				unsigned int pages_per_huge_page,
2630 				bool allow_pagefault);
2631 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2632 
2633 extern struct page_ext_operations debug_guardpage_ops;
2634 
2635 #ifdef CONFIG_DEBUG_PAGEALLOC
2636 extern unsigned int _debug_guardpage_minorder;
2637 extern bool _debug_guardpage_enabled;
2638 
2639 static inline unsigned int debug_guardpage_minorder(void)
2640 {
2641 	return _debug_guardpage_minorder;
2642 }
2643 
2644 static inline bool debug_guardpage_enabled(void)
2645 {
2646 	return _debug_guardpage_enabled;
2647 }
2648 
2649 static inline bool page_is_guard(struct page *page)
2650 {
2651 	struct page_ext *page_ext;
2652 
2653 	if (!debug_guardpage_enabled())
2654 		return false;
2655 
2656 	page_ext = lookup_page_ext(page);
2657 	if (unlikely(!page_ext))
2658 		return false;
2659 
2660 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2661 }
2662 #else
2663 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2664 static inline bool debug_guardpage_enabled(void) { return false; }
2665 static inline bool page_is_guard(struct page *page) { return false; }
2666 #endif /* CONFIG_DEBUG_PAGEALLOC */
2667 
2668 #if MAX_NUMNODES > 1
2669 void __init setup_nr_node_ids(void);
2670 #else
2671 static inline void setup_nr_node_ids(void) {}
2672 #endif
2673 
2674 #endif /* __KERNEL__ */
2675 #endif /* _LINUX_MM_H */
2676