1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 29 struct mempolicy; 30 struct anon_vma; 31 struct anon_vma_chain; 32 struct file_ra_state; 33 struct user_struct; 34 struct writeback_control; 35 struct bdi_writeback; 36 37 void init_mm_internals(void); 38 39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 40 extern unsigned long max_mapnr; 41 42 static inline void set_max_mapnr(unsigned long limit) 43 { 44 max_mapnr = limit; 45 } 46 #else 47 static inline void set_max_mapnr(unsigned long limit) { } 48 #endif 49 50 extern unsigned long totalram_pages; 51 extern void * high_memory; 52 extern int page_cluster; 53 54 #ifdef CONFIG_SYSCTL 55 extern int sysctl_legacy_va_layout; 56 #else 57 #define sysctl_legacy_va_layout 0 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 extern const int mmap_rnd_bits_min; 62 extern const int mmap_rnd_bits_max; 63 extern int mmap_rnd_bits __read_mostly; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 extern const int mmap_rnd_compat_bits_min; 67 extern const int mmap_rnd_compat_bits_max; 68 extern int mmap_rnd_compat_bits __read_mostly; 69 #endif 70 71 #include <asm/page.h> 72 #include <asm/pgtable.h> 73 #include <asm/processor.h> 74 75 #ifndef __pa_symbol 76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 77 #endif 78 79 #ifndef page_to_virt 80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 81 #endif 82 83 #ifndef lm_alias 84 #define lm_alias(x) __va(__pa_symbol(x)) 85 #endif 86 87 /* 88 * To prevent common memory management code establishing 89 * a zero page mapping on a read fault. 90 * This macro should be defined within <asm/pgtable.h>. 91 * s390 does this to prevent multiplexing of hardware bits 92 * related to the physical page in case of virtualization. 93 */ 94 #ifndef mm_forbids_zeropage 95 #define mm_forbids_zeropage(X) (0) 96 #endif 97 98 /* 99 * On some architectures it is expensive to call memset() for small sizes. 100 * Those architectures should provide their own implementation of "struct page" 101 * zeroing by defining this macro in <asm/pgtable.h>. 102 */ 103 #ifndef mm_zero_struct_page 104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 105 #endif 106 107 /* 108 * Default maximum number of active map areas, this limits the number of vmas 109 * per mm struct. Users can overwrite this number by sysctl but there is a 110 * problem. 111 * 112 * When a program's coredump is generated as ELF format, a section is created 113 * per a vma. In ELF, the number of sections is represented in unsigned short. 114 * This means the number of sections should be smaller than 65535 at coredump. 115 * Because the kernel adds some informative sections to a image of program at 116 * generating coredump, we need some margin. The number of extra sections is 117 * 1-3 now and depends on arch. We use "5" as safe margin, here. 118 * 119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 120 * not a hard limit any more. Although some userspace tools can be surprised by 121 * that. 122 */ 123 #define MAPCOUNT_ELF_CORE_MARGIN (5) 124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 125 126 extern int sysctl_max_map_count; 127 128 extern unsigned long sysctl_user_reserve_kbytes; 129 extern unsigned long sysctl_admin_reserve_kbytes; 130 131 extern int sysctl_overcommit_memory; 132 extern int sysctl_overcommit_ratio; 133 extern unsigned long sysctl_overcommit_kbytes; 134 135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 136 size_t *, loff_t *); 137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 138 size_t *, loff_t *); 139 140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 141 142 /* to align the pointer to the (next) page boundary */ 143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 144 145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 147 148 /* 149 * Linux kernel virtual memory manager primitives. 150 * The idea being to have a "virtual" mm in the same way 151 * we have a virtual fs - giving a cleaner interface to the 152 * mm details, and allowing different kinds of memory mappings 153 * (from shared memory to executable loading to arbitrary 154 * mmap() functions). 155 */ 156 157 extern struct kmem_cache *vm_area_cachep; 158 159 #ifndef CONFIG_MMU 160 extern struct rb_root nommu_region_tree; 161 extern struct rw_semaphore nommu_region_sem; 162 163 extern unsigned int kobjsize(const void *objp); 164 #endif 165 166 /* 167 * vm_flags in vm_area_struct, see mm_types.h. 168 * When changing, update also include/trace/events/mmflags.h 169 */ 170 #define VM_NONE 0x00000000 171 172 #define VM_READ 0x00000001 /* currently active flags */ 173 #define VM_WRITE 0x00000002 174 #define VM_EXEC 0x00000004 175 #define VM_SHARED 0x00000008 176 177 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 178 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 179 #define VM_MAYWRITE 0x00000020 180 #define VM_MAYEXEC 0x00000040 181 #define VM_MAYSHARE 0x00000080 182 183 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 184 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 185 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 186 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 187 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 188 189 #define VM_LOCKED 0x00002000 190 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 191 192 /* Used by sys_madvise() */ 193 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 194 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 195 196 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 197 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 198 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 199 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 200 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 201 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 202 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 203 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 204 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 205 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 206 207 #ifdef CONFIG_MEM_SOFT_DIRTY 208 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 209 #else 210 # define VM_SOFTDIRTY 0 211 #endif 212 213 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 214 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 215 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 216 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 217 218 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 219 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 220 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 221 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 222 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 223 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 224 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 225 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 226 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 227 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 228 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 229 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 230 231 #if defined(CONFIG_X86) 232 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 233 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 234 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 235 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 236 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 237 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 238 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 239 #endif 240 #elif defined(CONFIG_PPC) 241 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 242 #elif defined(CONFIG_PARISC) 243 # define VM_GROWSUP VM_ARCH_1 244 #elif defined(CONFIG_IA64) 245 # define VM_GROWSUP VM_ARCH_1 246 #elif !defined(CONFIG_MMU) 247 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 248 #endif 249 250 #if defined(CONFIG_X86_INTEL_MPX) 251 /* MPX specific bounds table or bounds directory */ 252 # define VM_MPX VM_HIGH_ARCH_4 253 #else 254 # define VM_MPX VM_NONE 255 #endif 256 257 #ifndef VM_GROWSUP 258 # define VM_GROWSUP VM_NONE 259 #endif 260 261 /* Bits set in the VMA until the stack is in its final location */ 262 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 263 264 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 265 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 266 #endif 267 268 #ifdef CONFIG_STACK_GROWSUP 269 #define VM_STACK VM_GROWSUP 270 #else 271 #define VM_STACK VM_GROWSDOWN 272 #endif 273 274 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 275 276 /* 277 * Special vmas that are non-mergable, non-mlock()able. 278 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 279 */ 280 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 281 282 /* This mask defines which mm->def_flags a process can inherit its parent */ 283 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 284 285 /* This mask is used to clear all the VMA flags used by mlock */ 286 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 287 288 /* 289 * mapping from the currently active vm_flags protection bits (the 290 * low four bits) to a page protection mask.. 291 */ 292 extern pgprot_t protection_map[16]; 293 294 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 295 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 296 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 297 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 298 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 299 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 300 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 301 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 302 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 303 304 #define FAULT_FLAG_TRACE \ 305 { FAULT_FLAG_WRITE, "WRITE" }, \ 306 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 307 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 308 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 309 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 310 { FAULT_FLAG_TRIED, "TRIED" }, \ 311 { FAULT_FLAG_USER, "USER" }, \ 312 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 313 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 314 315 /* 316 * vm_fault is filled by the the pagefault handler and passed to the vma's 317 * ->fault function. The vma's ->fault is responsible for returning a bitmask 318 * of VM_FAULT_xxx flags that give details about how the fault was handled. 319 * 320 * MM layer fills up gfp_mask for page allocations but fault handler might 321 * alter it if its implementation requires a different allocation context. 322 * 323 * pgoff should be used in favour of virtual_address, if possible. 324 */ 325 struct vm_fault { 326 struct vm_area_struct *vma; /* Target VMA */ 327 unsigned int flags; /* FAULT_FLAG_xxx flags */ 328 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 329 pgoff_t pgoff; /* Logical page offset based on vma */ 330 unsigned long address; /* Faulting virtual address */ 331 pmd_t *pmd; /* Pointer to pmd entry matching 332 * the 'address' */ 333 pud_t *pud; /* Pointer to pud entry matching 334 * the 'address' 335 */ 336 pte_t orig_pte; /* Value of PTE at the time of fault */ 337 338 struct page *cow_page; /* Page handler may use for COW fault */ 339 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 340 struct page *page; /* ->fault handlers should return a 341 * page here, unless VM_FAULT_NOPAGE 342 * is set (which is also implied by 343 * VM_FAULT_ERROR). 344 */ 345 /* These three entries are valid only while holding ptl lock */ 346 pte_t *pte; /* Pointer to pte entry matching 347 * the 'address'. NULL if the page 348 * table hasn't been allocated. 349 */ 350 spinlock_t *ptl; /* Page table lock. 351 * Protects pte page table if 'pte' 352 * is not NULL, otherwise pmd. 353 */ 354 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 355 * vm_ops->map_pages() calls 356 * alloc_set_pte() from atomic context. 357 * do_fault_around() pre-allocates 358 * page table to avoid allocation from 359 * atomic context. 360 */ 361 }; 362 363 /* page entry size for vm->huge_fault() */ 364 enum page_entry_size { 365 PE_SIZE_PTE = 0, 366 PE_SIZE_PMD, 367 PE_SIZE_PUD, 368 }; 369 370 /* 371 * These are the virtual MM functions - opening of an area, closing and 372 * unmapping it (needed to keep files on disk up-to-date etc), pointer 373 * to the functions called when a no-page or a wp-page exception occurs. 374 */ 375 struct vm_operations_struct { 376 void (*open)(struct vm_area_struct * area); 377 void (*close)(struct vm_area_struct * area); 378 int (*split)(struct vm_area_struct * area, unsigned long addr); 379 int (*mremap)(struct vm_area_struct * area); 380 int (*fault)(struct vm_fault *vmf); 381 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 382 void (*map_pages)(struct vm_fault *vmf, 383 pgoff_t start_pgoff, pgoff_t end_pgoff); 384 385 /* notification that a previously read-only page is about to become 386 * writable, if an error is returned it will cause a SIGBUS */ 387 int (*page_mkwrite)(struct vm_fault *vmf); 388 389 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 390 int (*pfn_mkwrite)(struct vm_fault *vmf); 391 392 /* called by access_process_vm when get_user_pages() fails, typically 393 * for use by special VMAs that can switch between memory and hardware 394 */ 395 int (*access)(struct vm_area_struct *vma, unsigned long addr, 396 void *buf, int len, int write); 397 398 /* Called by the /proc/PID/maps code to ask the vma whether it 399 * has a special name. Returning non-NULL will also cause this 400 * vma to be dumped unconditionally. */ 401 const char *(*name)(struct vm_area_struct *vma); 402 403 #ifdef CONFIG_NUMA 404 /* 405 * set_policy() op must add a reference to any non-NULL @new mempolicy 406 * to hold the policy upon return. Caller should pass NULL @new to 407 * remove a policy and fall back to surrounding context--i.e. do not 408 * install a MPOL_DEFAULT policy, nor the task or system default 409 * mempolicy. 410 */ 411 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 412 413 /* 414 * get_policy() op must add reference [mpol_get()] to any policy at 415 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 416 * in mm/mempolicy.c will do this automatically. 417 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 418 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 419 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 420 * must return NULL--i.e., do not "fallback" to task or system default 421 * policy. 422 */ 423 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 424 unsigned long addr); 425 #endif 426 /* 427 * Called by vm_normal_page() for special PTEs to find the 428 * page for @addr. This is useful if the default behavior 429 * (using pte_page()) would not find the correct page. 430 */ 431 struct page *(*find_special_page)(struct vm_area_struct *vma, 432 unsigned long addr); 433 }; 434 435 struct mmu_gather; 436 struct inode; 437 438 #define page_private(page) ((page)->private) 439 #define set_page_private(page, v) ((page)->private = (v)) 440 441 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 442 static inline int pmd_devmap(pmd_t pmd) 443 { 444 return 0; 445 } 446 static inline int pud_devmap(pud_t pud) 447 { 448 return 0; 449 } 450 static inline int pgd_devmap(pgd_t pgd) 451 { 452 return 0; 453 } 454 #endif 455 456 /* 457 * FIXME: take this include out, include page-flags.h in 458 * files which need it (119 of them) 459 */ 460 #include <linux/page-flags.h> 461 #include <linux/huge_mm.h> 462 463 /* 464 * Methods to modify the page usage count. 465 * 466 * What counts for a page usage: 467 * - cache mapping (page->mapping) 468 * - private data (page->private) 469 * - page mapped in a task's page tables, each mapping 470 * is counted separately 471 * 472 * Also, many kernel routines increase the page count before a critical 473 * routine so they can be sure the page doesn't go away from under them. 474 */ 475 476 /* 477 * Drop a ref, return true if the refcount fell to zero (the page has no users) 478 */ 479 static inline int put_page_testzero(struct page *page) 480 { 481 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 482 return page_ref_dec_and_test(page); 483 } 484 485 /* 486 * Try to grab a ref unless the page has a refcount of zero, return false if 487 * that is the case. 488 * This can be called when MMU is off so it must not access 489 * any of the virtual mappings. 490 */ 491 static inline int get_page_unless_zero(struct page *page) 492 { 493 return page_ref_add_unless(page, 1, 0); 494 } 495 496 extern int page_is_ram(unsigned long pfn); 497 498 enum { 499 REGION_INTERSECTS, 500 REGION_DISJOINT, 501 REGION_MIXED, 502 }; 503 504 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 505 unsigned long desc); 506 507 /* Support for virtually mapped pages */ 508 struct page *vmalloc_to_page(const void *addr); 509 unsigned long vmalloc_to_pfn(const void *addr); 510 511 /* 512 * Determine if an address is within the vmalloc range 513 * 514 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 515 * is no special casing required. 516 */ 517 static inline bool is_vmalloc_addr(const void *x) 518 { 519 #ifdef CONFIG_MMU 520 unsigned long addr = (unsigned long)x; 521 522 return addr >= VMALLOC_START && addr < VMALLOC_END; 523 #else 524 return false; 525 #endif 526 } 527 #ifdef CONFIG_MMU 528 extern int is_vmalloc_or_module_addr(const void *x); 529 #else 530 static inline int is_vmalloc_or_module_addr(const void *x) 531 { 532 return 0; 533 } 534 #endif 535 536 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 537 static inline void *kvmalloc(size_t size, gfp_t flags) 538 { 539 return kvmalloc_node(size, flags, NUMA_NO_NODE); 540 } 541 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 542 { 543 return kvmalloc_node(size, flags | __GFP_ZERO, node); 544 } 545 static inline void *kvzalloc(size_t size, gfp_t flags) 546 { 547 return kvmalloc(size, flags | __GFP_ZERO); 548 } 549 550 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 551 { 552 if (size != 0 && n > SIZE_MAX / size) 553 return NULL; 554 555 return kvmalloc(n * size, flags); 556 } 557 558 extern void kvfree(const void *addr); 559 560 static inline atomic_t *compound_mapcount_ptr(struct page *page) 561 { 562 return &page[1].compound_mapcount; 563 } 564 565 static inline int compound_mapcount(struct page *page) 566 { 567 VM_BUG_ON_PAGE(!PageCompound(page), page); 568 page = compound_head(page); 569 return atomic_read(compound_mapcount_ptr(page)) + 1; 570 } 571 572 /* 573 * The atomic page->_mapcount, starts from -1: so that transitions 574 * both from it and to it can be tracked, using atomic_inc_and_test 575 * and atomic_add_negative(-1). 576 */ 577 static inline void page_mapcount_reset(struct page *page) 578 { 579 atomic_set(&(page)->_mapcount, -1); 580 } 581 582 int __page_mapcount(struct page *page); 583 584 static inline int page_mapcount(struct page *page) 585 { 586 VM_BUG_ON_PAGE(PageSlab(page), page); 587 588 if (unlikely(PageCompound(page))) 589 return __page_mapcount(page); 590 return atomic_read(&page->_mapcount) + 1; 591 } 592 593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 594 int total_mapcount(struct page *page); 595 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 596 #else 597 static inline int total_mapcount(struct page *page) 598 { 599 return page_mapcount(page); 600 } 601 static inline int page_trans_huge_mapcount(struct page *page, 602 int *total_mapcount) 603 { 604 int mapcount = page_mapcount(page); 605 if (total_mapcount) 606 *total_mapcount = mapcount; 607 return mapcount; 608 } 609 #endif 610 611 static inline struct page *virt_to_head_page(const void *x) 612 { 613 struct page *page = virt_to_page(x); 614 615 return compound_head(page); 616 } 617 618 void __put_page(struct page *page); 619 620 void put_pages_list(struct list_head *pages); 621 622 void split_page(struct page *page, unsigned int order); 623 624 /* 625 * Compound pages have a destructor function. Provide a 626 * prototype for that function and accessor functions. 627 * These are _only_ valid on the head of a compound page. 628 */ 629 typedef void compound_page_dtor(struct page *); 630 631 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 632 enum compound_dtor_id { 633 NULL_COMPOUND_DTOR, 634 COMPOUND_PAGE_DTOR, 635 #ifdef CONFIG_HUGETLB_PAGE 636 HUGETLB_PAGE_DTOR, 637 #endif 638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 639 TRANSHUGE_PAGE_DTOR, 640 #endif 641 NR_COMPOUND_DTORS, 642 }; 643 extern compound_page_dtor * const compound_page_dtors[]; 644 645 static inline void set_compound_page_dtor(struct page *page, 646 enum compound_dtor_id compound_dtor) 647 { 648 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 649 page[1].compound_dtor = compound_dtor; 650 } 651 652 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 653 { 654 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 655 return compound_page_dtors[page[1].compound_dtor]; 656 } 657 658 static inline unsigned int compound_order(struct page *page) 659 { 660 if (!PageHead(page)) 661 return 0; 662 return page[1].compound_order; 663 } 664 665 static inline void set_compound_order(struct page *page, unsigned int order) 666 { 667 page[1].compound_order = order; 668 } 669 670 void free_compound_page(struct page *page); 671 672 #ifdef CONFIG_MMU 673 /* 674 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 675 * servicing faults for write access. In the normal case, do always want 676 * pte_mkwrite. But get_user_pages can cause write faults for mappings 677 * that do not have writing enabled, when used by access_process_vm. 678 */ 679 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 680 { 681 if (likely(vma->vm_flags & VM_WRITE)) 682 pte = pte_mkwrite(pte); 683 return pte; 684 } 685 686 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 687 struct page *page); 688 int finish_fault(struct vm_fault *vmf); 689 int finish_mkwrite_fault(struct vm_fault *vmf); 690 #endif 691 692 /* 693 * Multiple processes may "see" the same page. E.g. for untouched 694 * mappings of /dev/null, all processes see the same page full of 695 * zeroes, and text pages of executables and shared libraries have 696 * only one copy in memory, at most, normally. 697 * 698 * For the non-reserved pages, page_count(page) denotes a reference count. 699 * page_count() == 0 means the page is free. page->lru is then used for 700 * freelist management in the buddy allocator. 701 * page_count() > 0 means the page has been allocated. 702 * 703 * Pages are allocated by the slab allocator in order to provide memory 704 * to kmalloc and kmem_cache_alloc. In this case, the management of the 705 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 706 * unless a particular usage is carefully commented. (the responsibility of 707 * freeing the kmalloc memory is the caller's, of course). 708 * 709 * A page may be used by anyone else who does a __get_free_page(). 710 * In this case, page_count still tracks the references, and should only 711 * be used through the normal accessor functions. The top bits of page->flags 712 * and page->virtual store page management information, but all other fields 713 * are unused and could be used privately, carefully. The management of this 714 * page is the responsibility of the one who allocated it, and those who have 715 * subsequently been given references to it. 716 * 717 * The other pages (we may call them "pagecache pages") are completely 718 * managed by the Linux memory manager: I/O, buffers, swapping etc. 719 * The following discussion applies only to them. 720 * 721 * A pagecache page contains an opaque `private' member, which belongs to the 722 * page's address_space. Usually, this is the address of a circular list of 723 * the page's disk buffers. PG_private must be set to tell the VM to call 724 * into the filesystem to release these pages. 725 * 726 * A page may belong to an inode's memory mapping. In this case, page->mapping 727 * is the pointer to the inode, and page->index is the file offset of the page, 728 * in units of PAGE_SIZE. 729 * 730 * If pagecache pages are not associated with an inode, they are said to be 731 * anonymous pages. These may become associated with the swapcache, and in that 732 * case PG_swapcache is set, and page->private is an offset into the swapcache. 733 * 734 * In either case (swapcache or inode backed), the pagecache itself holds one 735 * reference to the page. Setting PG_private should also increment the 736 * refcount. The each user mapping also has a reference to the page. 737 * 738 * The pagecache pages are stored in a per-mapping radix tree, which is 739 * rooted at mapping->page_tree, and indexed by offset. 740 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 741 * lists, we instead now tag pages as dirty/writeback in the radix tree. 742 * 743 * All pagecache pages may be subject to I/O: 744 * - inode pages may need to be read from disk, 745 * - inode pages which have been modified and are MAP_SHARED may need 746 * to be written back to the inode on disk, 747 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 748 * modified may need to be swapped out to swap space and (later) to be read 749 * back into memory. 750 */ 751 752 /* 753 * The zone field is never updated after free_area_init_core() 754 * sets it, so none of the operations on it need to be atomic. 755 */ 756 757 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 758 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 759 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 760 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 761 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 762 763 /* 764 * Define the bit shifts to access each section. For non-existent 765 * sections we define the shift as 0; that plus a 0 mask ensures 766 * the compiler will optimise away reference to them. 767 */ 768 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 769 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 770 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 771 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 772 773 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 774 #ifdef NODE_NOT_IN_PAGE_FLAGS 775 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 776 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 777 SECTIONS_PGOFF : ZONES_PGOFF) 778 #else 779 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 780 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 781 NODES_PGOFF : ZONES_PGOFF) 782 #endif 783 784 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 785 786 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 787 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 788 #endif 789 790 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 791 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 792 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 793 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 794 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 795 796 static inline enum zone_type page_zonenum(const struct page *page) 797 { 798 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 799 } 800 801 #ifdef CONFIG_ZONE_DEVICE 802 static inline bool is_zone_device_page(const struct page *page) 803 { 804 return page_zonenum(page) == ZONE_DEVICE; 805 } 806 #else 807 static inline bool is_zone_device_page(const struct page *page) 808 { 809 return false; 810 } 811 #endif 812 813 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) 814 void put_zone_device_private_or_public_page(struct page *page); 815 DECLARE_STATIC_KEY_FALSE(device_private_key); 816 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key) 817 static inline bool is_device_private_page(const struct page *page); 818 static inline bool is_device_public_page(const struct page *page); 819 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 820 static inline void put_zone_device_private_or_public_page(struct page *page) 821 { 822 } 823 #define IS_HMM_ENABLED 0 824 static inline bool is_device_private_page(const struct page *page) 825 { 826 return false; 827 } 828 static inline bool is_device_public_page(const struct page *page) 829 { 830 return false; 831 } 832 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 833 834 835 static inline void get_page(struct page *page) 836 { 837 page = compound_head(page); 838 /* 839 * Getting a normal page or the head of a compound page 840 * requires to already have an elevated page->_refcount. 841 */ 842 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 843 page_ref_inc(page); 844 } 845 846 static inline void put_page(struct page *page) 847 { 848 page = compound_head(page); 849 850 /* 851 * For private device pages we need to catch refcount transition from 852 * 2 to 1, when refcount reach one it means the private device page is 853 * free and we need to inform the device driver through callback. See 854 * include/linux/memremap.h and HMM for details. 855 */ 856 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) || 857 unlikely(is_device_public_page(page)))) { 858 put_zone_device_private_or_public_page(page); 859 return; 860 } 861 862 if (put_page_testzero(page)) 863 __put_page(page); 864 } 865 866 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 867 #define SECTION_IN_PAGE_FLAGS 868 #endif 869 870 /* 871 * The identification function is mainly used by the buddy allocator for 872 * determining if two pages could be buddies. We are not really identifying 873 * the zone since we could be using the section number id if we do not have 874 * node id available in page flags. 875 * We only guarantee that it will return the same value for two combinable 876 * pages in a zone. 877 */ 878 static inline int page_zone_id(struct page *page) 879 { 880 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 881 } 882 883 static inline int zone_to_nid(struct zone *zone) 884 { 885 #ifdef CONFIG_NUMA 886 return zone->node; 887 #else 888 return 0; 889 #endif 890 } 891 892 #ifdef NODE_NOT_IN_PAGE_FLAGS 893 extern int page_to_nid(const struct page *page); 894 #else 895 static inline int page_to_nid(const struct page *page) 896 { 897 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 898 } 899 #endif 900 901 #ifdef CONFIG_NUMA_BALANCING 902 static inline int cpu_pid_to_cpupid(int cpu, int pid) 903 { 904 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 905 } 906 907 static inline int cpupid_to_pid(int cpupid) 908 { 909 return cpupid & LAST__PID_MASK; 910 } 911 912 static inline int cpupid_to_cpu(int cpupid) 913 { 914 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 915 } 916 917 static inline int cpupid_to_nid(int cpupid) 918 { 919 return cpu_to_node(cpupid_to_cpu(cpupid)); 920 } 921 922 static inline bool cpupid_pid_unset(int cpupid) 923 { 924 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 925 } 926 927 static inline bool cpupid_cpu_unset(int cpupid) 928 { 929 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 930 } 931 932 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 933 { 934 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 935 } 936 937 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 938 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 939 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 940 { 941 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 942 } 943 944 static inline int page_cpupid_last(struct page *page) 945 { 946 return page->_last_cpupid; 947 } 948 static inline void page_cpupid_reset_last(struct page *page) 949 { 950 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 951 } 952 #else 953 static inline int page_cpupid_last(struct page *page) 954 { 955 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 956 } 957 958 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 959 960 static inline void page_cpupid_reset_last(struct page *page) 961 { 962 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 963 } 964 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 965 #else /* !CONFIG_NUMA_BALANCING */ 966 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 967 { 968 return page_to_nid(page); /* XXX */ 969 } 970 971 static inline int page_cpupid_last(struct page *page) 972 { 973 return page_to_nid(page); /* XXX */ 974 } 975 976 static inline int cpupid_to_nid(int cpupid) 977 { 978 return -1; 979 } 980 981 static inline int cpupid_to_pid(int cpupid) 982 { 983 return -1; 984 } 985 986 static inline int cpupid_to_cpu(int cpupid) 987 { 988 return -1; 989 } 990 991 static inline int cpu_pid_to_cpupid(int nid, int pid) 992 { 993 return -1; 994 } 995 996 static inline bool cpupid_pid_unset(int cpupid) 997 { 998 return 1; 999 } 1000 1001 static inline void page_cpupid_reset_last(struct page *page) 1002 { 1003 } 1004 1005 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1006 { 1007 return false; 1008 } 1009 #endif /* CONFIG_NUMA_BALANCING */ 1010 1011 static inline struct zone *page_zone(const struct page *page) 1012 { 1013 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1014 } 1015 1016 static inline pg_data_t *page_pgdat(const struct page *page) 1017 { 1018 return NODE_DATA(page_to_nid(page)); 1019 } 1020 1021 #ifdef SECTION_IN_PAGE_FLAGS 1022 static inline void set_page_section(struct page *page, unsigned long section) 1023 { 1024 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1025 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1026 } 1027 1028 static inline unsigned long page_to_section(const struct page *page) 1029 { 1030 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1031 } 1032 #endif 1033 1034 static inline void set_page_zone(struct page *page, enum zone_type zone) 1035 { 1036 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1037 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1038 } 1039 1040 static inline void set_page_node(struct page *page, unsigned long node) 1041 { 1042 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1043 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1044 } 1045 1046 static inline void set_page_links(struct page *page, enum zone_type zone, 1047 unsigned long node, unsigned long pfn) 1048 { 1049 set_page_zone(page, zone); 1050 set_page_node(page, node); 1051 #ifdef SECTION_IN_PAGE_FLAGS 1052 set_page_section(page, pfn_to_section_nr(pfn)); 1053 #endif 1054 } 1055 1056 #ifdef CONFIG_MEMCG 1057 static inline struct mem_cgroup *page_memcg(struct page *page) 1058 { 1059 return page->mem_cgroup; 1060 } 1061 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1062 { 1063 WARN_ON_ONCE(!rcu_read_lock_held()); 1064 return READ_ONCE(page->mem_cgroup); 1065 } 1066 #else 1067 static inline struct mem_cgroup *page_memcg(struct page *page) 1068 { 1069 return NULL; 1070 } 1071 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1072 { 1073 WARN_ON_ONCE(!rcu_read_lock_held()); 1074 return NULL; 1075 } 1076 #endif 1077 1078 /* 1079 * Some inline functions in vmstat.h depend on page_zone() 1080 */ 1081 #include <linux/vmstat.h> 1082 1083 static __always_inline void *lowmem_page_address(const struct page *page) 1084 { 1085 return page_to_virt(page); 1086 } 1087 1088 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1089 #define HASHED_PAGE_VIRTUAL 1090 #endif 1091 1092 #if defined(WANT_PAGE_VIRTUAL) 1093 static inline void *page_address(const struct page *page) 1094 { 1095 return page->virtual; 1096 } 1097 static inline void set_page_address(struct page *page, void *address) 1098 { 1099 page->virtual = address; 1100 } 1101 #define page_address_init() do { } while(0) 1102 #endif 1103 1104 #if defined(HASHED_PAGE_VIRTUAL) 1105 void *page_address(const struct page *page); 1106 void set_page_address(struct page *page, void *virtual); 1107 void page_address_init(void); 1108 #endif 1109 1110 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1111 #define page_address(page) lowmem_page_address(page) 1112 #define set_page_address(page, address) do { } while(0) 1113 #define page_address_init() do { } while(0) 1114 #endif 1115 1116 extern void *page_rmapping(struct page *page); 1117 extern struct anon_vma *page_anon_vma(struct page *page); 1118 extern struct address_space *page_mapping(struct page *page); 1119 1120 extern struct address_space *__page_file_mapping(struct page *); 1121 1122 static inline 1123 struct address_space *page_file_mapping(struct page *page) 1124 { 1125 if (unlikely(PageSwapCache(page))) 1126 return __page_file_mapping(page); 1127 1128 return page->mapping; 1129 } 1130 1131 extern pgoff_t __page_file_index(struct page *page); 1132 1133 /* 1134 * Return the pagecache index of the passed page. Regular pagecache pages 1135 * use ->index whereas swapcache pages use swp_offset(->private) 1136 */ 1137 static inline pgoff_t page_index(struct page *page) 1138 { 1139 if (unlikely(PageSwapCache(page))) 1140 return __page_file_index(page); 1141 return page->index; 1142 } 1143 1144 bool page_mapped(struct page *page); 1145 struct address_space *page_mapping(struct page *page); 1146 1147 /* 1148 * Return true only if the page has been allocated with 1149 * ALLOC_NO_WATERMARKS and the low watermark was not 1150 * met implying that the system is under some pressure. 1151 */ 1152 static inline bool page_is_pfmemalloc(struct page *page) 1153 { 1154 /* 1155 * Page index cannot be this large so this must be 1156 * a pfmemalloc page. 1157 */ 1158 return page->index == -1UL; 1159 } 1160 1161 /* 1162 * Only to be called by the page allocator on a freshly allocated 1163 * page. 1164 */ 1165 static inline void set_page_pfmemalloc(struct page *page) 1166 { 1167 page->index = -1UL; 1168 } 1169 1170 static inline void clear_page_pfmemalloc(struct page *page) 1171 { 1172 page->index = 0; 1173 } 1174 1175 /* 1176 * Different kinds of faults, as returned by handle_mm_fault(). 1177 * Used to decide whether a process gets delivered SIGBUS or 1178 * just gets major/minor fault counters bumped up. 1179 */ 1180 1181 #define VM_FAULT_OOM 0x0001 1182 #define VM_FAULT_SIGBUS 0x0002 1183 #define VM_FAULT_MAJOR 0x0004 1184 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1185 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1186 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1187 #define VM_FAULT_SIGSEGV 0x0040 1188 1189 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1190 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1191 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1192 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1193 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1194 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1195 * and needs fsync() to complete (for 1196 * synchronous page faults in DAX) */ 1197 1198 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1199 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1200 VM_FAULT_FALLBACK) 1201 1202 #define VM_FAULT_RESULT_TRACE \ 1203 { VM_FAULT_OOM, "OOM" }, \ 1204 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1205 { VM_FAULT_MAJOR, "MAJOR" }, \ 1206 { VM_FAULT_WRITE, "WRITE" }, \ 1207 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1208 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1209 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1210 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1211 { VM_FAULT_LOCKED, "LOCKED" }, \ 1212 { VM_FAULT_RETRY, "RETRY" }, \ 1213 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1214 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1215 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1216 1217 /* Encode hstate index for a hwpoisoned large page */ 1218 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1219 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1220 1221 /* 1222 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1223 */ 1224 extern void pagefault_out_of_memory(void); 1225 1226 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1227 1228 /* 1229 * Flags passed to show_mem() and show_free_areas() to suppress output in 1230 * various contexts. 1231 */ 1232 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1233 1234 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1235 1236 extern bool can_do_mlock(void); 1237 extern int user_shm_lock(size_t, struct user_struct *); 1238 extern void user_shm_unlock(size_t, struct user_struct *); 1239 1240 /* 1241 * Parameter block passed down to zap_pte_range in exceptional cases. 1242 */ 1243 struct zap_details { 1244 struct address_space *check_mapping; /* Check page->mapping if set */ 1245 pgoff_t first_index; /* Lowest page->index to unmap */ 1246 pgoff_t last_index; /* Highest page->index to unmap */ 1247 }; 1248 1249 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1250 pte_t pte, bool with_public_device); 1251 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1252 1253 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1254 pmd_t pmd); 1255 1256 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1257 unsigned long size); 1258 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1259 unsigned long size); 1260 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1261 unsigned long start, unsigned long end); 1262 1263 /** 1264 * mm_walk - callbacks for walk_page_range 1265 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1266 * this handler should only handle pud_trans_huge() puds. 1267 * the pmd_entry or pte_entry callbacks will be used for 1268 * regular PUDs. 1269 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1270 * this handler is required to be able to handle 1271 * pmd_trans_huge() pmds. They may simply choose to 1272 * split_huge_page() instead of handling it explicitly. 1273 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1274 * @pte_hole: if set, called for each hole at all levels 1275 * @hugetlb_entry: if set, called for each hugetlb entry 1276 * @test_walk: caller specific callback function to determine whether 1277 * we walk over the current vma or not. Returning 0 1278 * value means "do page table walk over the current vma," 1279 * and a negative one means "abort current page table walk 1280 * right now." 1 means "skip the current vma." 1281 * @mm: mm_struct representing the target process of page table walk 1282 * @vma: vma currently walked (NULL if walking outside vmas) 1283 * @private: private data for callbacks' usage 1284 * 1285 * (see the comment on walk_page_range() for more details) 1286 */ 1287 struct mm_walk { 1288 int (*pud_entry)(pud_t *pud, unsigned long addr, 1289 unsigned long next, struct mm_walk *walk); 1290 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1291 unsigned long next, struct mm_walk *walk); 1292 int (*pte_entry)(pte_t *pte, unsigned long addr, 1293 unsigned long next, struct mm_walk *walk); 1294 int (*pte_hole)(unsigned long addr, unsigned long next, 1295 struct mm_walk *walk); 1296 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1297 unsigned long addr, unsigned long next, 1298 struct mm_walk *walk); 1299 int (*test_walk)(unsigned long addr, unsigned long next, 1300 struct mm_walk *walk); 1301 struct mm_struct *mm; 1302 struct vm_area_struct *vma; 1303 void *private; 1304 }; 1305 1306 int walk_page_range(unsigned long addr, unsigned long end, 1307 struct mm_walk *walk); 1308 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1310 unsigned long end, unsigned long floor, unsigned long ceiling); 1311 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1312 struct vm_area_struct *vma); 1313 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1314 unsigned long *start, unsigned long *end, 1315 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1316 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1317 unsigned long *pfn); 1318 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1319 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1320 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1321 void *buf, int len, int write); 1322 1323 extern void truncate_pagecache(struct inode *inode, loff_t new); 1324 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1325 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1326 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1327 int truncate_inode_page(struct address_space *mapping, struct page *page); 1328 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1329 int invalidate_inode_page(struct page *page); 1330 1331 #ifdef CONFIG_MMU 1332 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1333 unsigned int flags); 1334 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1335 unsigned long address, unsigned int fault_flags, 1336 bool *unlocked); 1337 void unmap_mapping_pages(struct address_space *mapping, 1338 pgoff_t start, pgoff_t nr, bool even_cows); 1339 void unmap_mapping_range(struct address_space *mapping, 1340 loff_t const holebegin, loff_t const holelen, int even_cows); 1341 #else 1342 static inline int handle_mm_fault(struct vm_area_struct *vma, 1343 unsigned long address, unsigned int flags) 1344 { 1345 /* should never happen if there's no MMU */ 1346 BUG(); 1347 return VM_FAULT_SIGBUS; 1348 } 1349 static inline int fixup_user_fault(struct task_struct *tsk, 1350 struct mm_struct *mm, unsigned long address, 1351 unsigned int fault_flags, bool *unlocked) 1352 { 1353 /* should never happen if there's no MMU */ 1354 BUG(); 1355 return -EFAULT; 1356 } 1357 static inline void unmap_mapping_pages(struct address_space *mapping, 1358 pgoff_t start, pgoff_t nr, bool even_cows) { } 1359 static inline void unmap_mapping_range(struct address_space *mapping, 1360 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1361 #endif 1362 1363 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1364 loff_t const holebegin, loff_t const holelen) 1365 { 1366 unmap_mapping_range(mapping, holebegin, holelen, 0); 1367 } 1368 1369 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1370 void *buf, int len, unsigned int gup_flags); 1371 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1372 void *buf, int len, unsigned int gup_flags); 1373 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1374 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1375 1376 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1377 unsigned long start, unsigned long nr_pages, 1378 unsigned int gup_flags, struct page **pages, 1379 struct vm_area_struct **vmas, int *locked); 1380 long get_user_pages(unsigned long start, unsigned long nr_pages, 1381 unsigned int gup_flags, struct page **pages, 1382 struct vm_area_struct **vmas); 1383 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1384 unsigned int gup_flags, struct page **pages, int *locked); 1385 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1386 struct page **pages, unsigned int gup_flags); 1387 #ifdef CONFIG_FS_DAX 1388 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1389 unsigned int gup_flags, struct page **pages, 1390 struct vm_area_struct **vmas); 1391 #else 1392 static inline long get_user_pages_longterm(unsigned long start, 1393 unsigned long nr_pages, unsigned int gup_flags, 1394 struct page **pages, struct vm_area_struct **vmas) 1395 { 1396 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1397 } 1398 #endif /* CONFIG_FS_DAX */ 1399 1400 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1401 struct page **pages); 1402 1403 /* Container for pinned pfns / pages */ 1404 struct frame_vector { 1405 unsigned int nr_allocated; /* Number of frames we have space for */ 1406 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1407 bool got_ref; /* Did we pin pages by getting page ref? */ 1408 bool is_pfns; /* Does array contain pages or pfns? */ 1409 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1410 * pfns_vector_pages() or pfns_vector_pfns() 1411 * for access */ 1412 }; 1413 1414 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1415 void frame_vector_destroy(struct frame_vector *vec); 1416 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1417 unsigned int gup_flags, struct frame_vector *vec); 1418 void put_vaddr_frames(struct frame_vector *vec); 1419 int frame_vector_to_pages(struct frame_vector *vec); 1420 void frame_vector_to_pfns(struct frame_vector *vec); 1421 1422 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1423 { 1424 return vec->nr_frames; 1425 } 1426 1427 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1428 { 1429 if (vec->is_pfns) { 1430 int err = frame_vector_to_pages(vec); 1431 1432 if (err) 1433 return ERR_PTR(err); 1434 } 1435 return (struct page **)(vec->ptrs); 1436 } 1437 1438 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1439 { 1440 if (!vec->is_pfns) 1441 frame_vector_to_pfns(vec); 1442 return (unsigned long *)(vec->ptrs); 1443 } 1444 1445 struct kvec; 1446 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1447 struct page **pages); 1448 int get_kernel_page(unsigned long start, int write, struct page **pages); 1449 struct page *get_dump_page(unsigned long addr); 1450 1451 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1452 extern void do_invalidatepage(struct page *page, unsigned int offset, 1453 unsigned int length); 1454 1455 int __set_page_dirty_nobuffers(struct page *page); 1456 int __set_page_dirty_no_writeback(struct page *page); 1457 int redirty_page_for_writepage(struct writeback_control *wbc, 1458 struct page *page); 1459 void account_page_dirtied(struct page *page, struct address_space *mapping); 1460 void account_page_cleaned(struct page *page, struct address_space *mapping, 1461 struct bdi_writeback *wb); 1462 int set_page_dirty(struct page *page); 1463 int set_page_dirty_lock(struct page *page); 1464 void __cancel_dirty_page(struct page *page); 1465 static inline void cancel_dirty_page(struct page *page) 1466 { 1467 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1468 if (PageDirty(page)) 1469 __cancel_dirty_page(page); 1470 } 1471 int clear_page_dirty_for_io(struct page *page); 1472 1473 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1474 1475 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1476 { 1477 return !vma->vm_ops; 1478 } 1479 1480 #ifdef CONFIG_SHMEM 1481 /* 1482 * The vma_is_shmem is not inline because it is used only by slow 1483 * paths in userfault. 1484 */ 1485 bool vma_is_shmem(struct vm_area_struct *vma); 1486 #else 1487 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1488 #endif 1489 1490 int vma_is_stack_for_current(struct vm_area_struct *vma); 1491 1492 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1493 unsigned long old_addr, struct vm_area_struct *new_vma, 1494 unsigned long new_addr, unsigned long len, 1495 bool need_rmap_locks); 1496 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1497 unsigned long end, pgprot_t newprot, 1498 int dirty_accountable, int prot_numa); 1499 extern int mprotect_fixup(struct vm_area_struct *vma, 1500 struct vm_area_struct **pprev, unsigned long start, 1501 unsigned long end, unsigned long newflags); 1502 1503 /* 1504 * doesn't attempt to fault and will return short. 1505 */ 1506 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1507 struct page **pages); 1508 /* 1509 * per-process(per-mm_struct) statistics. 1510 */ 1511 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1512 { 1513 long val = atomic_long_read(&mm->rss_stat.count[member]); 1514 1515 #ifdef SPLIT_RSS_COUNTING 1516 /* 1517 * counter is updated in asynchronous manner and may go to minus. 1518 * But it's never be expected number for users. 1519 */ 1520 if (val < 0) 1521 val = 0; 1522 #endif 1523 return (unsigned long)val; 1524 } 1525 1526 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1527 { 1528 atomic_long_add(value, &mm->rss_stat.count[member]); 1529 } 1530 1531 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1532 { 1533 atomic_long_inc(&mm->rss_stat.count[member]); 1534 } 1535 1536 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1537 { 1538 atomic_long_dec(&mm->rss_stat.count[member]); 1539 } 1540 1541 /* Optimized variant when page is already known not to be PageAnon */ 1542 static inline int mm_counter_file(struct page *page) 1543 { 1544 if (PageSwapBacked(page)) 1545 return MM_SHMEMPAGES; 1546 return MM_FILEPAGES; 1547 } 1548 1549 static inline int mm_counter(struct page *page) 1550 { 1551 if (PageAnon(page)) 1552 return MM_ANONPAGES; 1553 return mm_counter_file(page); 1554 } 1555 1556 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1557 { 1558 return get_mm_counter(mm, MM_FILEPAGES) + 1559 get_mm_counter(mm, MM_ANONPAGES) + 1560 get_mm_counter(mm, MM_SHMEMPAGES); 1561 } 1562 1563 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1564 { 1565 return max(mm->hiwater_rss, get_mm_rss(mm)); 1566 } 1567 1568 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1569 { 1570 return max(mm->hiwater_vm, mm->total_vm); 1571 } 1572 1573 static inline void update_hiwater_rss(struct mm_struct *mm) 1574 { 1575 unsigned long _rss = get_mm_rss(mm); 1576 1577 if ((mm)->hiwater_rss < _rss) 1578 (mm)->hiwater_rss = _rss; 1579 } 1580 1581 static inline void update_hiwater_vm(struct mm_struct *mm) 1582 { 1583 if (mm->hiwater_vm < mm->total_vm) 1584 mm->hiwater_vm = mm->total_vm; 1585 } 1586 1587 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1588 { 1589 mm->hiwater_rss = get_mm_rss(mm); 1590 } 1591 1592 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1593 struct mm_struct *mm) 1594 { 1595 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1596 1597 if (*maxrss < hiwater_rss) 1598 *maxrss = hiwater_rss; 1599 } 1600 1601 #if defined(SPLIT_RSS_COUNTING) 1602 void sync_mm_rss(struct mm_struct *mm); 1603 #else 1604 static inline void sync_mm_rss(struct mm_struct *mm) 1605 { 1606 } 1607 #endif 1608 1609 #ifndef __HAVE_ARCH_PTE_DEVMAP 1610 static inline int pte_devmap(pte_t pte) 1611 { 1612 return 0; 1613 } 1614 #endif 1615 1616 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1617 1618 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1619 spinlock_t **ptl); 1620 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1621 spinlock_t **ptl) 1622 { 1623 pte_t *ptep; 1624 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1625 return ptep; 1626 } 1627 1628 #ifdef __PAGETABLE_P4D_FOLDED 1629 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1630 unsigned long address) 1631 { 1632 return 0; 1633 } 1634 #else 1635 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1636 #endif 1637 1638 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1639 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1640 unsigned long address) 1641 { 1642 return 0; 1643 } 1644 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1645 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1646 1647 #else 1648 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1649 1650 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1651 { 1652 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1653 } 1654 1655 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1656 { 1657 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1658 } 1659 #endif 1660 1661 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1662 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1663 unsigned long address) 1664 { 1665 return 0; 1666 } 1667 1668 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1669 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1670 1671 #else 1672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1673 1674 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1675 { 1676 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1677 } 1678 1679 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1680 { 1681 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1682 } 1683 #endif 1684 1685 #ifdef CONFIG_MMU 1686 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1687 { 1688 atomic_long_set(&mm->pgtables_bytes, 0); 1689 } 1690 1691 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1692 { 1693 return atomic_long_read(&mm->pgtables_bytes); 1694 } 1695 1696 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1697 { 1698 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1699 } 1700 1701 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1702 { 1703 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1704 } 1705 #else 1706 1707 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1708 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1709 { 1710 return 0; 1711 } 1712 1713 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1714 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1715 #endif 1716 1717 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1718 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1719 1720 /* 1721 * The following ifdef needed to get the 4level-fixup.h header to work. 1722 * Remove it when 4level-fixup.h has been removed. 1723 */ 1724 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1725 1726 #ifndef __ARCH_HAS_5LEVEL_HACK 1727 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1728 unsigned long address) 1729 { 1730 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1731 NULL : p4d_offset(pgd, address); 1732 } 1733 1734 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1735 unsigned long address) 1736 { 1737 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1738 NULL : pud_offset(p4d, address); 1739 } 1740 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1741 1742 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1743 { 1744 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1745 NULL: pmd_offset(pud, address); 1746 } 1747 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1748 1749 #if USE_SPLIT_PTE_PTLOCKS 1750 #if ALLOC_SPLIT_PTLOCKS 1751 void __init ptlock_cache_init(void); 1752 extern bool ptlock_alloc(struct page *page); 1753 extern void ptlock_free(struct page *page); 1754 1755 static inline spinlock_t *ptlock_ptr(struct page *page) 1756 { 1757 return page->ptl; 1758 } 1759 #else /* ALLOC_SPLIT_PTLOCKS */ 1760 static inline void ptlock_cache_init(void) 1761 { 1762 } 1763 1764 static inline bool ptlock_alloc(struct page *page) 1765 { 1766 return true; 1767 } 1768 1769 static inline void ptlock_free(struct page *page) 1770 { 1771 } 1772 1773 static inline spinlock_t *ptlock_ptr(struct page *page) 1774 { 1775 return &page->ptl; 1776 } 1777 #endif /* ALLOC_SPLIT_PTLOCKS */ 1778 1779 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1780 { 1781 return ptlock_ptr(pmd_page(*pmd)); 1782 } 1783 1784 static inline bool ptlock_init(struct page *page) 1785 { 1786 /* 1787 * prep_new_page() initialize page->private (and therefore page->ptl) 1788 * with 0. Make sure nobody took it in use in between. 1789 * 1790 * It can happen if arch try to use slab for page table allocation: 1791 * slab code uses page->slab_cache, which share storage with page->ptl. 1792 */ 1793 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1794 if (!ptlock_alloc(page)) 1795 return false; 1796 spin_lock_init(ptlock_ptr(page)); 1797 return true; 1798 } 1799 1800 /* Reset page->mapping so free_pages_check won't complain. */ 1801 static inline void pte_lock_deinit(struct page *page) 1802 { 1803 page->mapping = NULL; 1804 ptlock_free(page); 1805 } 1806 1807 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1808 /* 1809 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1810 */ 1811 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1812 { 1813 return &mm->page_table_lock; 1814 } 1815 static inline void ptlock_cache_init(void) {} 1816 static inline bool ptlock_init(struct page *page) { return true; } 1817 static inline void pte_lock_deinit(struct page *page) {} 1818 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1819 1820 static inline void pgtable_init(void) 1821 { 1822 ptlock_cache_init(); 1823 pgtable_cache_init(); 1824 } 1825 1826 static inline bool pgtable_page_ctor(struct page *page) 1827 { 1828 if (!ptlock_init(page)) 1829 return false; 1830 inc_zone_page_state(page, NR_PAGETABLE); 1831 return true; 1832 } 1833 1834 static inline void pgtable_page_dtor(struct page *page) 1835 { 1836 pte_lock_deinit(page); 1837 dec_zone_page_state(page, NR_PAGETABLE); 1838 } 1839 1840 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1841 ({ \ 1842 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1843 pte_t *__pte = pte_offset_map(pmd, address); \ 1844 *(ptlp) = __ptl; \ 1845 spin_lock(__ptl); \ 1846 __pte; \ 1847 }) 1848 1849 #define pte_unmap_unlock(pte, ptl) do { \ 1850 spin_unlock(ptl); \ 1851 pte_unmap(pte); \ 1852 } while (0) 1853 1854 #define pte_alloc(mm, pmd, address) \ 1855 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1856 1857 #define pte_alloc_map(mm, pmd, address) \ 1858 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1859 1860 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1861 (pte_alloc(mm, pmd, address) ? \ 1862 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1863 1864 #define pte_alloc_kernel(pmd, address) \ 1865 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1866 NULL: pte_offset_kernel(pmd, address)) 1867 1868 #if USE_SPLIT_PMD_PTLOCKS 1869 1870 static struct page *pmd_to_page(pmd_t *pmd) 1871 { 1872 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1873 return virt_to_page((void *)((unsigned long) pmd & mask)); 1874 } 1875 1876 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1877 { 1878 return ptlock_ptr(pmd_to_page(pmd)); 1879 } 1880 1881 static inline bool pgtable_pmd_page_ctor(struct page *page) 1882 { 1883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1884 page->pmd_huge_pte = NULL; 1885 #endif 1886 return ptlock_init(page); 1887 } 1888 1889 static inline void pgtable_pmd_page_dtor(struct page *page) 1890 { 1891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1892 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1893 #endif 1894 ptlock_free(page); 1895 } 1896 1897 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1898 1899 #else 1900 1901 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1902 { 1903 return &mm->page_table_lock; 1904 } 1905 1906 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1907 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1908 1909 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1910 1911 #endif 1912 1913 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1914 { 1915 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1916 spin_lock(ptl); 1917 return ptl; 1918 } 1919 1920 /* 1921 * No scalability reason to split PUD locks yet, but follow the same pattern 1922 * as the PMD locks to make it easier if we decide to. The VM should not be 1923 * considered ready to switch to split PUD locks yet; there may be places 1924 * which need to be converted from page_table_lock. 1925 */ 1926 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1927 { 1928 return &mm->page_table_lock; 1929 } 1930 1931 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1932 { 1933 spinlock_t *ptl = pud_lockptr(mm, pud); 1934 1935 spin_lock(ptl); 1936 return ptl; 1937 } 1938 1939 extern void __init pagecache_init(void); 1940 extern void free_area_init(unsigned long * zones_size); 1941 extern void free_area_init_node(int nid, unsigned long * zones_size, 1942 unsigned long zone_start_pfn, unsigned long *zholes_size); 1943 extern void free_initmem(void); 1944 1945 /* 1946 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1947 * into the buddy system. The freed pages will be poisoned with pattern 1948 * "poison" if it's within range [0, UCHAR_MAX]. 1949 * Return pages freed into the buddy system. 1950 */ 1951 extern unsigned long free_reserved_area(void *start, void *end, 1952 int poison, char *s); 1953 1954 #ifdef CONFIG_HIGHMEM 1955 /* 1956 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1957 * and totalram_pages. 1958 */ 1959 extern void free_highmem_page(struct page *page); 1960 #endif 1961 1962 extern void adjust_managed_page_count(struct page *page, long count); 1963 extern void mem_init_print_info(const char *str); 1964 1965 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1966 1967 /* Free the reserved page into the buddy system, so it gets managed. */ 1968 static inline void __free_reserved_page(struct page *page) 1969 { 1970 ClearPageReserved(page); 1971 init_page_count(page); 1972 __free_page(page); 1973 } 1974 1975 static inline void free_reserved_page(struct page *page) 1976 { 1977 __free_reserved_page(page); 1978 adjust_managed_page_count(page, 1); 1979 } 1980 1981 static inline void mark_page_reserved(struct page *page) 1982 { 1983 SetPageReserved(page); 1984 adjust_managed_page_count(page, -1); 1985 } 1986 1987 /* 1988 * Default method to free all the __init memory into the buddy system. 1989 * The freed pages will be poisoned with pattern "poison" if it's within 1990 * range [0, UCHAR_MAX]. 1991 * Return pages freed into the buddy system. 1992 */ 1993 static inline unsigned long free_initmem_default(int poison) 1994 { 1995 extern char __init_begin[], __init_end[]; 1996 1997 return free_reserved_area(&__init_begin, &__init_end, 1998 poison, "unused kernel"); 1999 } 2000 2001 static inline unsigned long get_num_physpages(void) 2002 { 2003 int nid; 2004 unsigned long phys_pages = 0; 2005 2006 for_each_online_node(nid) 2007 phys_pages += node_present_pages(nid); 2008 2009 return phys_pages; 2010 } 2011 2012 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2013 /* 2014 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2015 * zones, allocate the backing mem_map and account for memory holes in a more 2016 * architecture independent manner. This is a substitute for creating the 2017 * zone_sizes[] and zholes_size[] arrays and passing them to 2018 * free_area_init_node() 2019 * 2020 * An architecture is expected to register range of page frames backed by 2021 * physical memory with memblock_add[_node]() before calling 2022 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2023 * usage, an architecture is expected to do something like 2024 * 2025 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2026 * max_highmem_pfn}; 2027 * for_each_valid_physical_page_range() 2028 * memblock_add_node(base, size, nid) 2029 * free_area_init_nodes(max_zone_pfns); 2030 * 2031 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2032 * registered physical page range. Similarly 2033 * sparse_memory_present_with_active_regions() calls memory_present() for 2034 * each range when SPARSEMEM is enabled. 2035 * 2036 * See mm/page_alloc.c for more information on each function exposed by 2037 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2038 */ 2039 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2040 unsigned long node_map_pfn_alignment(void); 2041 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2042 unsigned long end_pfn); 2043 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2044 unsigned long end_pfn); 2045 extern void get_pfn_range_for_nid(unsigned int nid, 2046 unsigned long *start_pfn, unsigned long *end_pfn); 2047 extern unsigned long find_min_pfn_with_active_regions(void); 2048 extern void free_bootmem_with_active_regions(int nid, 2049 unsigned long max_low_pfn); 2050 extern void sparse_memory_present_with_active_regions(int nid); 2051 2052 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2053 2054 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2055 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2056 static inline int __early_pfn_to_nid(unsigned long pfn, 2057 struct mminit_pfnnid_cache *state) 2058 { 2059 return 0; 2060 } 2061 #else 2062 /* please see mm/page_alloc.c */ 2063 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2064 /* there is a per-arch backend function. */ 2065 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2066 struct mminit_pfnnid_cache *state); 2067 #endif 2068 2069 #ifdef CONFIG_HAVE_MEMBLOCK 2070 void zero_resv_unavail(void); 2071 #else 2072 static inline void zero_resv_unavail(void) {} 2073 #endif 2074 2075 extern void set_dma_reserve(unsigned long new_dma_reserve); 2076 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2077 enum memmap_context, struct vmem_altmap *); 2078 extern void setup_per_zone_wmarks(void); 2079 extern int __meminit init_per_zone_wmark_min(void); 2080 extern void mem_init(void); 2081 extern void __init mmap_init(void); 2082 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2083 extern long si_mem_available(void); 2084 extern void si_meminfo(struct sysinfo * val); 2085 extern void si_meminfo_node(struct sysinfo *val, int nid); 2086 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2087 extern unsigned long arch_reserved_kernel_pages(void); 2088 #endif 2089 2090 extern __printf(3, 4) 2091 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2092 2093 extern void setup_per_cpu_pageset(void); 2094 2095 extern void zone_pcp_update(struct zone *zone); 2096 extern void zone_pcp_reset(struct zone *zone); 2097 2098 /* page_alloc.c */ 2099 extern int min_free_kbytes; 2100 extern int watermark_scale_factor; 2101 2102 /* nommu.c */ 2103 extern atomic_long_t mmap_pages_allocated; 2104 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2105 2106 /* interval_tree.c */ 2107 void vma_interval_tree_insert(struct vm_area_struct *node, 2108 struct rb_root_cached *root); 2109 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2110 struct vm_area_struct *prev, 2111 struct rb_root_cached *root); 2112 void vma_interval_tree_remove(struct vm_area_struct *node, 2113 struct rb_root_cached *root); 2114 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2115 unsigned long start, unsigned long last); 2116 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2117 unsigned long start, unsigned long last); 2118 2119 #define vma_interval_tree_foreach(vma, root, start, last) \ 2120 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2121 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2122 2123 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2124 struct rb_root_cached *root); 2125 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2126 struct rb_root_cached *root); 2127 struct anon_vma_chain * 2128 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2129 unsigned long start, unsigned long last); 2130 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2131 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2132 #ifdef CONFIG_DEBUG_VM_RB 2133 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2134 #endif 2135 2136 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2137 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2138 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2139 2140 /* mmap.c */ 2141 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2142 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2143 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2144 struct vm_area_struct *expand); 2145 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2146 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2147 { 2148 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2149 } 2150 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2151 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2152 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2153 struct mempolicy *, struct vm_userfaultfd_ctx); 2154 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2155 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2156 unsigned long addr, int new_below); 2157 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2158 unsigned long addr, int new_below); 2159 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2160 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2161 struct rb_node **, struct rb_node *); 2162 extern void unlink_file_vma(struct vm_area_struct *); 2163 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2164 unsigned long addr, unsigned long len, pgoff_t pgoff, 2165 bool *need_rmap_locks); 2166 extern void exit_mmap(struct mm_struct *); 2167 2168 static inline int check_data_rlimit(unsigned long rlim, 2169 unsigned long new, 2170 unsigned long start, 2171 unsigned long end_data, 2172 unsigned long start_data) 2173 { 2174 if (rlim < RLIM_INFINITY) { 2175 if (((new - start) + (end_data - start_data)) > rlim) 2176 return -ENOSPC; 2177 } 2178 2179 return 0; 2180 } 2181 2182 extern int mm_take_all_locks(struct mm_struct *mm); 2183 extern void mm_drop_all_locks(struct mm_struct *mm); 2184 2185 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2186 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2187 extern struct file *get_task_exe_file(struct task_struct *task); 2188 2189 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2190 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2191 2192 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2193 const struct vm_special_mapping *sm); 2194 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2195 unsigned long addr, unsigned long len, 2196 unsigned long flags, 2197 const struct vm_special_mapping *spec); 2198 /* This is an obsolete alternative to _install_special_mapping. */ 2199 extern int install_special_mapping(struct mm_struct *mm, 2200 unsigned long addr, unsigned long len, 2201 unsigned long flags, struct page **pages); 2202 2203 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2204 2205 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2206 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2207 struct list_head *uf); 2208 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2209 unsigned long len, unsigned long prot, unsigned long flags, 2210 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2211 struct list_head *uf); 2212 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2213 struct list_head *uf); 2214 2215 static inline unsigned long 2216 do_mmap_pgoff(struct file *file, unsigned long addr, 2217 unsigned long len, unsigned long prot, unsigned long flags, 2218 unsigned long pgoff, unsigned long *populate, 2219 struct list_head *uf) 2220 { 2221 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2222 } 2223 2224 #ifdef CONFIG_MMU 2225 extern int __mm_populate(unsigned long addr, unsigned long len, 2226 int ignore_errors); 2227 static inline void mm_populate(unsigned long addr, unsigned long len) 2228 { 2229 /* Ignore errors */ 2230 (void) __mm_populate(addr, len, 1); 2231 } 2232 #else 2233 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2234 #endif 2235 2236 /* These take the mm semaphore themselves */ 2237 extern int __must_check vm_brk(unsigned long, unsigned long); 2238 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2239 extern int vm_munmap(unsigned long, size_t); 2240 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2241 unsigned long, unsigned long, 2242 unsigned long, unsigned long); 2243 2244 struct vm_unmapped_area_info { 2245 #define VM_UNMAPPED_AREA_TOPDOWN 1 2246 unsigned long flags; 2247 unsigned long length; 2248 unsigned long low_limit; 2249 unsigned long high_limit; 2250 unsigned long align_mask; 2251 unsigned long align_offset; 2252 }; 2253 2254 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2255 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2256 2257 /* 2258 * Search for an unmapped address range. 2259 * 2260 * We are looking for a range that: 2261 * - does not intersect with any VMA; 2262 * - is contained within the [low_limit, high_limit) interval; 2263 * - is at least the desired size. 2264 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2265 */ 2266 static inline unsigned long 2267 vm_unmapped_area(struct vm_unmapped_area_info *info) 2268 { 2269 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2270 return unmapped_area_topdown(info); 2271 else 2272 return unmapped_area(info); 2273 } 2274 2275 /* truncate.c */ 2276 extern void truncate_inode_pages(struct address_space *, loff_t); 2277 extern void truncate_inode_pages_range(struct address_space *, 2278 loff_t lstart, loff_t lend); 2279 extern void truncate_inode_pages_final(struct address_space *); 2280 2281 /* generic vm_area_ops exported for stackable file systems */ 2282 extern int filemap_fault(struct vm_fault *vmf); 2283 extern void filemap_map_pages(struct vm_fault *vmf, 2284 pgoff_t start_pgoff, pgoff_t end_pgoff); 2285 extern int filemap_page_mkwrite(struct vm_fault *vmf); 2286 2287 /* mm/page-writeback.c */ 2288 int __must_check write_one_page(struct page *page); 2289 void task_dirty_inc(struct task_struct *tsk); 2290 2291 /* readahead.c */ 2292 #define VM_MAX_READAHEAD 128 /* kbytes */ 2293 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2294 2295 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2296 pgoff_t offset, unsigned long nr_to_read); 2297 2298 void page_cache_sync_readahead(struct address_space *mapping, 2299 struct file_ra_state *ra, 2300 struct file *filp, 2301 pgoff_t offset, 2302 unsigned long size); 2303 2304 void page_cache_async_readahead(struct address_space *mapping, 2305 struct file_ra_state *ra, 2306 struct file *filp, 2307 struct page *pg, 2308 pgoff_t offset, 2309 unsigned long size); 2310 2311 extern unsigned long stack_guard_gap; 2312 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2313 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2314 2315 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2316 extern int expand_downwards(struct vm_area_struct *vma, 2317 unsigned long address); 2318 #if VM_GROWSUP 2319 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2320 #else 2321 #define expand_upwards(vma, address) (0) 2322 #endif 2323 2324 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2325 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2326 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2327 struct vm_area_struct **pprev); 2328 2329 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2330 NULL if none. Assume start_addr < end_addr. */ 2331 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2332 { 2333 struct vm_area_struct * vma = find_vma(mm,start_addr); 2334 2335 if (vma && end_addr <= vma->vm_start) 2336 vma = NULL; 2337 return vma; 2338 } 2339 2340 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2341 { 2342 unsigned long vm_start = vma->vm_start; 2343 2344 if (vma->vm_flags & VM_GROWSDOWN) { 2345 vm_start -= stack_guard_gap; 2346 if (vm_start > vma->vm_start) 2347 vm_start = 0; 2348 } 2349 return vm_start; 2350 } 2351 2352 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2353 { 2354 unsigned long vm_end = vma->vm_end; 2355 2356 if (vma->vm_flags & VM_GROWSUP) { 2357 vm_end += stack_guard_gap; 2358 if (vm_end < vma->vm_end) 2359 vm_end = -PAGE_SIZE; 2360 } 2361 return vm_end; 2362 } 2363 2364 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2365 { 2366 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2367 } 2368 2369 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2370 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2371 unsigned long vm_start, unsigned long vm_end) 2372 { 2373 struct vm_area_struct *vma = find_vma(mm, vm_start); 2374 2375 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2376 vma = NULL; 2377 2378 return vma; 2379 } 2380 2381 #ifdef CONFIG_MMU 2382 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2383 void vma_set_page_prot(struct vm_area_struct *vma); 2384 #else 2385 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2386 { 2387 return __pgprot(0); 2388 } 2389 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2390 { 2391 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2392 } 2393 #endif 2394 2395 #ifdef CONFIG_NUMA_BALANCING 2396 unsigned long change_prot_numa(struct vm_area_struct *vma, 2397 unsigned long start, unsigned long end); 2398 #endif 2399 2400 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2401 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2402 unsigned long pfn, unsigned long size, pgprot_t); 2403 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2404 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2405 unsigned long pfn); 2406 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2407 unsigned long pfn, pgprot_t pgprot); 2408 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2409 pfn_t pfn); 2410 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 2411 pfn_t pfn); 2412 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2413 2414 2415 struct page *follow_page_mask(struct vm_area_struct *vma, 2416 unsigned long address, unsigned int foll_flags, 2417 unsigned int *page_mask); 2418 2419 static inline struct page *follow_page(struct vm_area_struct *vma, 2420 unsigned long address, unsigned int foll_flags) 2421 { 2422 unsigned int unused_page_mask; 2423 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2424 } 2425 2426 #define FOLL_WRITE 0x01 /* check pte is writable */ 2427 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2428 #define FOLL_GET 0x04 /* do get_page on page */ 2429 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2430 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2431 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2432 * and return without waiting upon it */ 2433 #define FOLL_POPULATE 0x40 /* fault in page */ 2434 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2435 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2436 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2437 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2438 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2439 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2440 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2441 #define FOLL_COW 0x4000 /* internal GUP flag */ 2442 2443 static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2444 { 2445 if (vm_fault & VM_FAULT_OOM) 2446 return -ENOMEM; 2447 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2448 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2449 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2450 return -EFAULT; 2451 return 0; 2452 } 2453 2454 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2455 void *data); 2456 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2457 unsigned long size, pte_fn_t fn, void *data); 2458 2459 2460 #ifdef CONFIG_PAGE_POISONING 2461 extern bool page_poisoning_enabled(void); 2462 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2463 extern bool page_is_poisoned(struct page *page); 2464 #else 2465 static inline bool page_poisoning_enabled(void) { return false; } 2466 static inline void kernel_poison_pages(struct page *page, int numpages, 2467 int enable) { } 2468 static inline bool page_is_poisoned(struct page *page) { return false; } 2469 #endif 2470 2471 #ifdef CONFIG_DEBUG_PAGEALLOC 2472 extern bool _debug_pagealloc_enabled; 2473 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2474 2475 static inline bool debug_pagealloc_enabled(void) 2476 { 2477 return _debug_pagealloc_enabled; 2478 } 2479 2480 static inline void 2481 kernel_map_pages(struct page *page, int numpages, int enable) 2482 { 2483 if (!debug_pagealloc_enabled()) 2484 return; 2485 2486 __kernel_map_pages(page, numpages, enable); 2487 } 2488 #ifdef CONFIG_HIBERNATION 2489 extern bool kernel_page_present(struct page *page); 2490 #endif /* CONFIG_HIBERNATION */ 2491 #else /* CONFIG_DEBUG_PAGEALLOC */ 2492 static inline void 2493 kernel_map_pages(struct page *page, int numpages, int enable) {} 2494 #ifdef CONFIG_HIBERNATION 2495 static inline bool kernel_page_present(struct page *page) { return true; } 2496 #endif /* CONFIG_HIBERNATION */ 2497 static inline bool debug_pagealloc_enabled(void) 2498 { 2499 return false; 2500 } 2501 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2502 2503 #ifdef __HAVE_ARCH_GATE_AREA 2504 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2505 extern int in_gate_area_no_mm(unsigned long addr); 2506 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2507 #else 2508 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2509 { 2510 return NULL; 2511 } 2512 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2513 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2514 { 2515 return 0; 2516 } 2517 #endif /* __HAVE_ARCH_GATE_AREA */ 2518 2519 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2520 2521 #ifdef CONFIG_SYSCTL 2522 extern int sysctl_drop_caches; 2523 int drop_caches_sysctl_handler(struct ctl_table *, int, 2524 void __user *, size_t *, loff_t *); 2525 #endif 2526 2527 void drop_slab(void); 2528 void drop_slab_node(int nid); 2529 2530 #ifndef CONFIG_MMU 2531 #define randomize_va_space 0 2532 #else 2533 extern int randomize_va_space; 2534 #endif 2535 2536 const char * arch_vma_name(struct vm_area_struct *vma); 2537 void print_vma_addr(char *prefix, unsigned long rip); 2538 2539 void sparse_mem_maps_populate_node(struct page **map_map, 2540 unsigned long pnum_begin, 2541 unsigned long pnum_end, 2542 unsigned long map_count, 2543 int nodeid); 2544 2545 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2546 struct vmem_altmap *altmap); 2547 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2548 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2549 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2550 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2551 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2552 void *vmemmap_alloc_block(unsigned long size, int node); 2553 struct vmem_altmap; 2554 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2555 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2556 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2557 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2558 int node); 2559 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2560 struct vmem_altmap *altmap); 2561 void vmemmap_populate_print_last(void); 2562 #ifdef CONFIG_MEMORY_HOTPLUG 2563 void vmemmap_free(unsigned long start, unsigned long end, 2564 struct vmem_altmap *altmap); 2565 #endif 2566 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2567 unsigned long nr_pages); 2568 2569 enum mf_flags { 2570 MF_COUNT_INCREASED = 1 << 0, 2571 MF_ACTION_REQUIRED = 1 << 1, 2572 MF_MUST_KILL = 1 << 2, 2573 MF_SOFT_OFFLINE = 1 << 3, 2574 }; 2575 extern int memory_failure(unsigned long pfn, int flags); 2576 extern void memory_failure_queue(unsigned long pfn, int flags); 2577 extern int unpoison_memory(unsigned long pfn); 2578 extern int get_hwpoison_page(struct page *page); 2579 #define put_hwpoison_page(page) put_page(page) 2580 extern int sysctl_memory_failure_early_kill; 2581 extern int sysctl_memory_failure_recovery; 2582 extern void shake_page(struct page *p, int access); 2583 extern atomic_long_t num_poisoned_pages; 2584 extern int soft_offline_page(struct page *page, int flags); 2585 2586 2587 /* 2588 * Error handlers for various types of pages. 2589 */ 2590 enum mf_result { 2591 MF_IGNORED, /* Error: cannot be handled */ 2592 MF_FAILED, /* Error: handling failed */ 2593 MF_DELAYED, /* Will be handled later */ 2594 MF_RECOVERED, /* Successfully recovered */ 2595 }; 2596 2597 enum mf_action_page_type { 2598 MF_MSG_KERNEL, 2599 MF_MSG_KERNEL_HIGH_ORDER, 2600 MF_MSG_SLAB, 2601 MF_MSG_DIFFERENT_COMPOUND, 2602 MF_MSG_POISONED_HUGE, 2603 MF_MSG_HUGE, 2604 MF_MSG_FREE_HUGE, 2605 MF_MSG_UNMAP_FAILED, 2606 MF_MSG_DIRTY_SWAPCACHE, 2607 MF_MSG_CLEAN_SWAPCACHE, 2608 MF_MSG_DIRTY_MLOCKED_LRU, 2609 MF_MSG_CLEAN_MLOCKED_LRU, 2610 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2611 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2612 MF_MSG_DIRTY_LRU, 2613 MF_MSG_CLEAN_LRU, 2614 MF_MSG_TRUNCATED_LRU, 2615 MF_MSG_BUDDY, 2616 MF_MSG_BUDDY_2ND, 2617 MF_MSG_UNKNOWN, 2618 }; 2619 2620 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2621 extern void clear_huge_page(struct page *page, 2622 unsigned long addr_hint, 2623 unsigned int pages_per_huge_page); 2624 extern void copy_user_huge_page(struct page *dst, struct page *src, 2625 unsigned long addr, struct vm_area_struct *vma, 2626 unsigned int pages_per_huge_page); 2627 extern long copy_huge_page_from_user(struct page *dst_page, 2628 const void __user *usr_src, 2629 unsigned int pages_per_huge_page, 2630 bool allow_pagefault); 2631 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2632 2633 extern struct page_ext_operations debug_guardpage_ops; 2634 2635 #ifdef CONFIG_DEBUG_PAGEALLOC 2636 extern unsigned int _debug_guardpage_minorder; 2637 extern bool _debug_guardpage_enabled; 2638 2639 static inline unsigned int debug_guardpage_minorder(void) 2640 { 2641 return _debug_guardpage_minorder; 2642 } 2643 2644 static inline bool debug_guardpage_enabled(void) 2645 { 2646 return _debug_guardpage_enabled; 2647 } 2648 2649 static inline bool page_is_guard(struct page *page) 2650 { 2651 struct page_ext *page_ext; 2652 2653 if (!debug_guardpage_enabled()) 2654 return false; 2655 2656 page_ext = lookup_page_ext(page); 2657 if (unlikely(!page_ext)) 2658 return false; 2659 2660 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2661 } 2662 #else 2663 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2664 static inline bool debug_guardpage_enabled(void) { return false; } 2665 static inline bool page_is_guard(struct page *page) { return false; } 2666 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2667 2668 #if MAX_NUMNODES > 1 2669 void __init setup_nr_node_ids(void); 2670 #else 2671 static inline void setup_nr_node_ids(void) {} 2672 #endif 2673 2674 #endif /* __KERNEL__ */ 2675 #endif /* _LINUX_MM_H */ 2676