xref: /linux-6.15/include/linux/mm.h (revision bb7e5ce7)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26 #include <linux/memremap.h>
27 
28 struct mempolicy;
29 struct anon_vma;
30 struct anon_vma_chain;
31 struct file_ra_state;
32 struct user_struct;
33 struct writeback_control;
34 struct bdi_writeback;
35 
36 void init_mm_internals(void);
37 
38 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
39 extern unsigned long max_mapnr;
40 
41 static inline void set_max_mapnr(unsigned long limit)
42 {
43 	max_mapnr = limit;
44 }
45 #else
46 static inline void set_max_mapnr(unsigned long limit) { }
47 #endif
48 
49 extern unsigned long totalram_pages;
50 extern void * high_memory;
51 extern int page_cluster;
52 
53 #ifdef CONFIG_SYSCTL
54 extern int sysctl_legacy_va_layout;
55 #else
56 #define sysctl_legacy_va_layout 0
57 #endif
58 
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 extern const int mmap_rnd_bits_min;
61 extern const int mmap_rnd_bits_max;
62 extern int mmap_rnd_bits __read_mostly;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 extern const int mmap_rnd_compat_bits_min;
66 extern const int mmap_rnd_compat_bits_max;
67 extern int mmap_rnd_compat_bits __read_mostly;
68 #endif
69 
70 #include <asm/page.h>
71 #include <asm/pgtable.h>
72 #include <asm/processor.h>
73 
74 #ifndef __pa_symbol
75 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
76 #endif
77 
78 #ifndef page_to_virt
79 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
80 #endif
81 
82 #ifndef lm_alias
83 #define lm_alias(x)	__va(__pa_symbol(x))
84 #endif
85 
86 /*
87  * To prevent common memory management code establishing
88  * a zero page mapping on a read fault.
89  * This macro should be defined within <asm/pgtable.h>.
90  * s390 does this to prevent multiplexing of hardware bits
91  * related to the physical page in case of virtualization.
92  */
93 #ifndef mm_forbids_zeropage
94 #define mm_forbids_zeropage(X)	(0)
95 #endif
96 
97 /*
98  * Default maximum number of active map areas, this limits the number of vmas
99  * per mm struct. Users can overwrite this number by sysctl but there is a
100  * problem.
101  *
102  * When a program's coredump is generated as ELF format, a section is created
103  * per a vma. In ELF, the number of sections is represented in unsigned short.
104  * This means the number of sections should be smaller than 65535 at coredump.
105  * Because the kernel adds some informative sections to a image of program at
106  * generating coredump, we need some margin. The number of extra sections is
107  * 1-3 now and depends on arch. We use "5" as safe margin, here.
108  *
109  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
110  * not a hard limit any more. Although some userspace tools can be surprised by
111  * that.
112  */
113 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
114 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
115 
116 extern int sysctl_max_map_count;
117 
118 extern unsigned long sysctl_user_reserve_kbytes;
119 extern unsigned long sysctl_admin_reserve_kbytes;
120 
121 extern int sysctl_overcommit_memory;
122 extern int sysctl_overcommit_ratio;
123 extern unsigned long sysctl_overcommit_kbytes;
124 
125 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
126 				    size_t *, loff_t *);
127 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
128 				    size_t *, loff_t *);
129 
130 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
131 
132 /* to align the pointer to the (next) page boundary */
133 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
134 
135 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
136 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
137 
138 /*
139  * Linux kernel virtual memory manager primitives.
140  * The idea being to have a "virtual" mm in the same way
141  * we have a virtual fs - giving a cleaner interface to the
142  * mm details, and allowing different kinds of memory mappings
143  * (from shared memory to executable loading to arbitrary
144  * mmap() functions).
145  */
146 
147 extern struct kmem_cache *vm_area_cachep;
148 
149 #ifndef CONFIG_MMU
150 extern struct rb_root nommu_region_tree;
151 extern struct rw_semaphore nommu_region_sem;
152 
153 extern unsigned int kobjsize(const void *objp);
154 #endif
155 
156 /*
157  * vm_flags in vm_area_struct, see mm_types.h.
158  * When changing, update also include/trace/events/mmflags.h
159  */
160 #define VM_NONE		0x00000000
161 
162 #define VM_READ		0x00000001	/* currently active flags */
163 #define VM_WRITE	0x00000002
164 #define VM_EXEC		0x00000004
165 #define VM_SHARED	0x00000008
166 
167 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
168 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
169 #define VM_MAYWRITE	0x00000020
170 #define VM_MAYEXEC	0x00000040
171 #define VM_MAYSHARE	0x00000080
172 
173 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
174 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
175 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
176 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
177 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
178 
179 #define VM_LOCKED	0x00002000
180 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
181 
182 					/* Used by sys_madvise() */
183 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
184 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
185 
186 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
187 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
188 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
189 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
190 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
191 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
192 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
193 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
194 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
195 
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
198 #else
199 # define VM_SOFTDIRTY	0
200 #endif
201 
202 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
203 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
204 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
205 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
206 
207 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
208 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
212 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
213 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
214 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
215 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
216 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
217 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
218 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
219 
220 #if defined(CONFIG_X86)
221 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
222 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
223 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
224 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
225 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1
226 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
227 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
228 #endif
229 #elif defined(CONFIG_PPC)
230 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
231 #elif defined(CONFIG_PARISC)
232 # define VM_GROWSUP	VM_ARCH_1
233 #elif defined(CONFIG_METAG)
234 # define VM_GROWSUP	VM_ARCH_1
235 #elif defined(CONFIG_IA64)
236 # define VM_GROWSUP	VM_ARCH_1
237 #elif !defined(CONFIG_MMU)
238 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
239 #endif
240 
241 #if defined(CONFIG_X86_INTEL_MPX)
242 /* MPX specific bounds table or bounds directory */
243 # define VM_MPX		VM_HIGH_ARCH_4
244 #else
245 # define VM_MPX		VM_NONE
246 #endif
247 
248 #ifndef VM_GROWSUP
249 # define VM_GROWSUP	VM_NONE
250 #endif
251 
252 /* Bits set in the VMA until the stack is in its final location */
253 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
254 
255 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
256 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
257 #endif
258 
259 #ifdef CONFIG_STACK_GROWSUP
260 #define VM_STACK	VM_GROWSUP
261 #else
262 #define VM_STACK	VM_GROWSDOWN
263 #endif
264 
265 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
266 
267 /*
268  * Special vmas that are non-mergable, non-mlock()able.
269  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
270  */
271 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
272 
273 /* This mask defines which mm->def_flags a process can inherit its parent */
274 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
275 
276 /* This mask is used to clear all the VMA flags used by mlock */
277 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
278 
279 /*
280  * mapping from the currently active vm_flags protection bits (the
281  * low four bits) to a page protection mask..
282  */
283 extern pgprot_t protection_map[16];
284 
285 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
286 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
287 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
288 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
289 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
290 #define FAULT_FLAG_TRIED	0x20	/* Second try */
291 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
292 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
293 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
294 
295 #define FAULT_FLAG_TRACE \
296 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
297 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
298 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
299 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
300 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
301 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
302 	{ FAULT_FLAG_USER,		"USER" }, \
303 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
304 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
305 
306 /*
307  * vm_fault is filled by the the pagefault handler and passed to the vma's
308  * ->fault function. The vma's ->fault is responsible for returning a bitmask
309  * of VM_FAULT_xxx flags that give details about how the fault was handled.
310  *
311  * MM layer fills up gfp_mask for page allocations but fault handler might
312  * alter it if its implementation requires a different allocation context.
313  *
314  * pgoff should be used in favour of virtual_address, if possible.
315  */
316 struct vm_fault {
317 	struct vm_area_struct *vma;	/* Target VMA */
318 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
319 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
320 	pgoff_t pgoff;			/* Logical page offset based on vma */
321 	unsigned long address;		/* Faulting virtual address */
322 	pmd_t *pmd;			/* Pointer to pmd entry matching
323 					 * the 'address' */
324 	pud_t *pud;			/* Pointer to pud entry matching
325 					 * the 'address'
326 					 */
327 	pte_t orig_pte;			/* Value of PTE at the time of fault */
328 
329 	struct page *cow_page;		/* Page handler may use for COW fault */
330 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
331 	struct page *page;		/* ->fault handlers should return a
332 					 * page here, unless VM_FAULT_NOPAGE
333 					 * is set (which is also implied by
334 					 * VM_FAULT_ERROR).
335 					 */
336 	/* These three entries are valid only while holding ptl lock */
337 	pte_t *pte;			/* Pointer to pte entry matching
338 					 * the 'address'. NULL if the page
339 					 * table hasn't been allocated.
340 					 */
341 	spinlock_t *ptl;		/* Page table lock.
342 					 * Protects pte page table if 'pte'
343 					 * is not NULL, otherwise pmd.
344 					 */
345 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
346 					 * vm_ops->map_pages() calls
347 					 * alloc_set_pte() from atomic context.
348 					 * do_fault_around() pre-allocates
349 					 * page table to avoid allocation from
350 					 * atomic context.
351 					 */
352 };
353 
354 /* page entry size for vm->huge_fault() */
355 enum page_entry_size {
356 	PE_SIZE_PTE = 0,
357 	PE_SIZE_PMD,
358 	PE_SIZE_PUD,
359 };
360 
361 /*
362  * These are the virtual MM functions - opening of an area, closing and
363  * unmapping it (needed to keep files on disk up-to-date etc), pointer
364  * to the functions called when a no-page or a wp-page exception occurs.
365  */
366 struct vm_operations_struct {
367 	void (*open)(struct vm_area_struct * area);
368 	void (*close)(struct vm_area_struct * area);
369 	int (*mremap)(struct vm_area_struct * area);
370 	int (*fault)(struct vm_fault *vmf);
371 	int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
372 	void (*map_pages)(struct vm_fault *vmf,
373 			pgoff_t start_pgoff, pgoff_t end_pgoff);
374 
375 	/* notification that a previously read-only page is about to become
376 	 * writable, if an error is returned it will cause a SIGBUS */
377 	int (*page_mkwrite)(struct vm_fault *vmf);
378 
379 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
380 	int (*pfn_mkwrite)(struct vm_fault *vmf);
381 
382 	/* called by access_process_vm when get_user_pages() fails, typically
383 	 * for use by special VMAs that can switch between memory and hardware
384 	 */
385 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
386 		      void *buf, int len, int write);
387 
388 	/* Called by the /proc/PID/maps code to ask the vma whether it
389 	 * has a special name.  Returning non-NULL will also cause this
390 	 * vma to be dumped unconditionally. */
391 	const char *(*name)(struct vm_area_struct *vma);
392 
393 #ifdef CONFIG_NUMA
394 	/*
395 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
396 	 * to hold the policy upon return.  Caller should pass NULL @new to
397 	 * remove a policy and fall back to surrounding context--i.e. do not
398 	 * install a MPOL_DEFAULT policy, nor the task or system default
399 	 * mempolicy.
400 	 */
401 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
402 
403 	/*
404 	 * get_policy() op must add reference [mpol_get()] to any policy at
405 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
406 	 * in mm/mempolicy.c will do this automatically.
407 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
408 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
409 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
410 	 * must return NULL--i.e., do not "fallback" to task or system default
411 	 * policy.
412 	 */
413 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
414 					unsigned long addr);
415 #endif
416 	/*
417 	 * Called by vm_normal_page() for special PTEs to find the
418 	 * page for @addr.  This is useful if the default behavior
419 	 * (using pte_page()) would not find the correct page.
420 	 */
421 	struct page *(*find_special_page)(struct vm_area_struct *vma,
422 					  unsigned long addr);
423 };
424 
425 struct mmu_gather;
426 struct inode;
427 
428 #define page_private(page)		((page)->private)
429 #define set_page_private(page, v)	((page)->private = (v))
430 
431 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
432 static inline int pmd_devmap(pmd_t pmd)
433 {
434 	return 0;
435 }
436 static inline int pud_devmap(pud_t pud)
437 {
438 	return 0;
439 }
440 static inline int pgd_devmap(pgd_t pgd)
441 {
442 	return 0;
443 }
444 #endif
445 
446 /*
447  * FIXME: take this include out, include page-flags.h in
448  * files which need it (119 of them)
449  */
450 #include <linux/page-flags.h>
451 #include <linux/huge_mm.h>
452 
453 /*
454  * Methods to modify the page usage count.
455  *
456  * What counts for a page usage:
457  * - cache mapping   (page->mapping)
458  * - private data    (page->private)
459  * - page mapped in a task's page tables, each mapping
460  *   is counted separately
461  *
462  * Also, many kernel routines increase the page count before a critical
463  * routine so they can be sure the page doesn't go away from under them.
464  */
465 
466 /*
467  * Drop a ref, return true if the refcount fell to zero (the page has no users)
468  */
469 static inline int put_page_testzero(struct page *page)
470 {
471 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
472 	return page_ref_dec_and_test(page);
473 }
474 
475 /*
476  * Try to grab a ref unless the page has a refcount of zero, return false if
477  * that is the case.
478  * This can be called when MMU is off so it must not access
479  * any of the virtual mappings.
480  */
481 static inline int get_page_unless_zero(struct page *page)
482 {
483 	return page_ref_add_unless(page, 1, 0);
484 }
485 
486 extern int page_is_ram(unsigned long pfn);
487 
488 enum {
489 	REGION_INTERSECTS,
490 	REGION_DISJOINT,
491 	REGION_MIXED,
492 };
493 
494 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
495 		      unsigned long desc);
496 
497 /* Support for virtually mapped pages */
498 struct page *vmalloc_to_page(const void *addr);
499 unsigned long vmalloc_to_pfn(const void *addr);
500 
501 /*
502  * Determine if an address is within the vmalloc range
503  *
504  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
505  * is no special casing required.
506  */
507 static inline bool is_vmalloc_addr(const void *x)
508 {
509 #ifdef CONFIG_MMU
510 	unsigned long addr = (unsigned long)x;
511 
512 	return addr >= VMALLOC_START && addr < VMALLOC_END;
513 #else
514 	return false;
515 #endif
516 }
517 #ifdef CONFIG_MMU
518 extern int is_vmalloc_or_module_addr(const void *x);
519 #else
520 static inline int is_vmalloc_or_module_addr(const void *x)
521 {
522 	return 0;
523 }
524 #endif
525 
526 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
527 static inline void *kvmalloc(size_t size, gfp_t flags)
528 {
529 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
530 }
531 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
532 {
533 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
534 }
535 static inline void *kvzalloc(size_t size, gfp_t flags)
536 {
537 	return kvmalloc(size, flags | __GFP_ZERO);
538 }
539 
540 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
541 {
542 	if (size != 0 && n > SIZE_MAX / size)
543 		return NULL;
544 
545 	return kvmalloc(n * size, flags);
546 }
547 
548 extern void kvfree(const void *addr);
549 
550 static inline atomic_t *compound_mapcount_ptr(struct page *page)
551 {
552 	return &page[1].compound_mapcount;
553 }
554 
555 static inline int compound_mapcount(struct page *page)
556 {
557 	VM_BUG_ON_PAGE(!PageCompound(page), page);
558 	page = compound_head(page);
559 	return atomic_read(compound_mapcount_ptr(page)) + 1;
560 }
561 
562 /*
563  * The atomic page->_mapcount, starts from -1: so that transitions
564  * both from it and to it can be tracked, using atomic_inc_and_test
565  * and atomic_add_negative(-1).
566  */
567 static inline void page_mapcount_reset(struct page *page)
568 {
569 	atomic_set(&(page)->_mapcount, -1);
570 }
571 
572 int __page_mapcount(struct page *page);
573 
574 static inline int page_mapcount(struct page *page)
575 {
576 	VM_BUG_ON_PAGE(PageSlab(page), page);
577 
578 	if (unlikely(PageCompound(page)))
579 		return __page_mapcount(page);
580 	return atomic_read(&page->_mapcount) + 1;
581 }
582 
583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
584 int total_mapcount(struct page *page);
585 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
586 #else
587 static inline int total_mapcount(struct page *page)
588 {
589 	return page_mapcount(page);
590 }
591 static inline int page_trans_huge_mapcount(struct page *page,
592 					   int *total_mapcount)
593 {
594 	int mapcount = page_mapcount(page);
595 	if (total_mapcount)
596 		*total_mapcount = mapcount;
597 	return mapcount;
598 }
599 #endif
600 
601 static inline struct page *virt_to_head_page(const void *x)
602 {
603 	struct page *page = virt_to_page(x);
604 
605 	return compound_head(page);
606 }
607 
608 void __put_page(struct page *page);
609 
610 void put_pages_list(struct list_head *pages);
611 
612 void split_page(struct page *page, unsigned int order);
613 
614 /*
615  * Compound pages have a destructor function.  Provide a
616  * prototype for that function and accessor functions.
617  * These are _only_ valid on the head of a compound page.
618  */
619 typedef void compound_page_dtor(struct page *);
620 
621 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
622 enum compound_dtor_id {
623 	NULL_COMPOUND_DTOR,
624 	COMPOUND_PAGE_DTOR,
625 #ifdef CONFIG_HUGETLB_PAGE
626 	HUGETLB_PAGE_DTOR,
627 #endif
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 	TRANSHUGE_PAGE_DTOR,
630 #endif
631 	NR_COMPOUND_DTORS,
632 };
633 extern compound_page_dtor * const compound_page_dtors[];
634 
635 static inline void set_compound_page_dtor(struct page *page,
636 		enum compound_dtor_id compound_dtor)
637 {
638 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
639 	page[1].compound_dtor = compound_dtor;
640 }
641 
642 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
643 {
644 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
645 	return compound_page_dtors[page[1].compound_dtor];
646 }
647 
648 static inline unsigned int compound_order(struct page *page)
649 {
650 	if (!PageHead(page))
651 		return 0;
652 	return page[1].compound_order;
653 }
654 
655 static inline void set_compound_order(struct page *page, unsigned int order)
656 {
657 	page[1].compound_order = order;
658 }
659 
660 void free_compound_page(struct page *page);
661 
662 #ifdef CONFIG_MMU
663 /*
664  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
665  * servicing faults for write access.  In the normal case, do always want
666  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
667  * that do not have writing enabled, when used by access_process_vm.
668  */
669 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
670 {
671 	if (likely(vma->vm_flags & VM_WRITE))
672 		pte = pte_mkwrite(pte);
673 	return pte;
674 }
675 
676 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
677 		struct page *page);
678 int finish_fault(struct vm_fault *vmf);
679 int finish_mkwrite_fault(struct vm_fault *vmf);
680 #endif
681 
682 /*
683  * Multiple processes may "see" the same page. E.g. for untouched
684  * mappings of /dev/null, all processes see the same page full of
685  * zeroes, and text pages of executables and shared libraries have
686  * only one copy in memory, at most, normally.
687  *
688  * For the non-reserved pages, page_count(page) denotes a reference count.
689  *   page_count() == 0 means the page is free. page->lru is then used for
690  *   freelist management in the buddy allocator.
691  *   page_count() > 0  means the page has been allocated.
692  *
693  * Pages are allocated by the slab allocator in order to provide memory
694  * to kmalloc and kmem_cache_alloc. In this case, the management of the
695  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
696  * unless a particular usage is carefully commented. (the responsibility of
697  * freeing the kmalloc memory is the caller's, of course).
698  *
699  * A page may be used by anyone else who does a __get_free_page().
700  * In this case, page_count still tracks the references, and should only
701  * be used through the normal accessor functions. The top bits of page->flags
702  * and page->virtual store page management information, but all other fields
703  * are unused and could be used privately, carefully. The management of this
704  * page is the responsibility of the one who allocated it, and those who have
705  * subsequently been given references to it.
706  *
707  * The other pages (we may call them "pagecache pages") are completely
708  * managed by the Linux memory manager: I/O, buffers, swapping etc.
709  * The following discussion applies only to them.
710  *
711  * A pagecache page contains an opaque `private' member, which belongs to the
712  * page's address_space. Usually, this is the address of a circular list of
713  * the page's disk buffers. PG_private must be set to tell the VM to call
714  * into the filesystem to release these pages.
715  *
716  * A page may belong to an inode's memory mapping. In this case, page->mapping
717  * is the pointer to the inode, and page->index is the file offset of the page,
718  * in units of PAGE_SIZE.
719  *
720  * If pagecache pages are not associated with an inode, they are said to be
721  * anonymous pages. These may become associated with the swapcache, and in that
722  * case PG_swapcache is set, and page->private is an offset into the swapcache.
723  *
724  * In either case (swapcache or inode backed), the pagecache itself holds one
725  * reference to the page. Setting PG_private should also increment the
726  * refcount. The each user mapping also has a reference to the page.
727  *
728  * The pagecache pages are stored in a per-mapping radix tree, which is
729  * rooted at mapping->page_tree, and indexed by offset.
730  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
731  * lists, we instead now tag pages as dirty/writeback in the radix tree.
732  *
733  * All pagecache pages may be subject to I/O:
734  * - inode pages may need to be read from disk,
735  * - inode pages which have been modified and are MAP_SHARED may need
736  *   to be written back to the inode on disk,
737  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
738  *   modified may need to be swapped out to swap space and (later) to be read
739  *   back into memory.
740  */
741 
742 /*
743  * The zone field is never updated after free_area_init_core()
744  * sets it, so none of the operations on it need to be atomic.
745  */
746 
747 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
748 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
749 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
750 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
751 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
752 
753 /*
754  * Define the bit shifts to access each section.  For non-existent
755  * sections we define the shift as 0; that plus a 0 mask ensures
756  * the compiler will optimise away reference to them.
757  */
758 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
759 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
760 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
761 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
762 
763 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
764 #ifdef NODE_NOT_IN_PAGE_FLAGS
765 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
766 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
767 						SECTIONS_PGOFF : ZONES_PGOFF)
768 #else
769 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
770 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
771 						NODES_PGOFF : ZONES_PGOFF)
772 #endif
773 
774 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
775 
776 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
777 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
778 #endif
779 
780 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
781 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
782 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
783 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
784 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
785 
786 static inline enum zone_type page_zonenum(const struct page *page)
787 {
788 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
789 }
790 
791 #ifdef CONFIG_ZONE_DEVICE
792 static inline bool is_zone_device_page(const struct page *page)
793 {
794 	return page_zonenum(page) == ZONE_DEVICE;
795 }
796 #else
797 static inline bool is_zone_device_page(const struct page *page)
798 {
799 	return false;
800 }
801 #endif
802 
803 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
804 void put_zone_device_private_or_public_page(struct page *page);
805 DECLARE_STATIC_KEY_FALSE(device_private_key);
806 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
807 static inline bool is_device_private_page(const struct page *page);
808 static inline bool is_device_public_page(const struct page *page);
809 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
810 static inline void put_zone_device_private_or_public_page(struct page *page)
811 {
812 }
813 #define IS_HMM_ENABLED 0
814 static inline bool is_device_private_page(const struct page *page)
815 {
816 	return false;
817 }
818 static inline bool is_device_public_page(const struct page *page)
819 {
820 	return false;
821 }
822 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
823 
824 
825 static inline void get_page(struct page *page)
826 {
827 	page = compound_head(page);
828 	/*
829 	 * Getting a normal page or the head of a compound page
830 	 * requires to already have an elevated page->_refcount.
831 	 */
832 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
833 	page_ref_inc(page);
834 }
835 
836 static inline void put_page(struct page *page)
837 {
838 	page = compound_head(page);
839 
840 	/*
841 	 * For private device pages we need to catch refcount transition from
842 	 * 2 to 1, when refcount reach one it means the private device page is
843 	 * free and we need to inform the device driver through callback. See
844 	 * include/linux/memremap.h and HMM for details.
845 	 */
846 	if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
847 	    unlikely(is_device_public_page(page)))) {
848 		put_zone_device_private_or_public_page(page);
849 		return;
850 	}
851 
852 	if (put_page_testzero(page))
853 		__put_page(page);
854 }
855 
856 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
857 #define SECTION_IN_PAGE_FLAGS
858 #endif
859 
860 /*
861  * The identification function is mainly used by the buddy allocator for
862  * determining if two pages could be buddies. We are not really identifying
863  * the zone since we could be using the section number id if we do not have
864  * node id available in page flags.
865  * We only guarantee that it will return the same value for two combinable
866  * pages in a zone.
867  */
868 static inline int page_zone_id(struct page *page)
869 {
870 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
871 }
872 
873 static inline int zone_to_nid(struct zone *zone)
874 {
875 #ifdef CONFIG_NUMA
876 	return zone->node;
877 #else
878 	return 0;
879 #endif
880 }
881 
882 #ifdef NODE_NOT_IN_PAGE_FLAGS
883 extern int page_to_nid(const struct page *page);
884 #else
885 static inline int page_to_nid(const struct page *page)
886 {
887 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
888 }
889 #endif
890 
891 #ifdef CONFIG_NUMA_BALANCING
892 static inline int cpu_pid_to_cpupid(int cpu, int pid)
893 {
894 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
895 }
896 
897 static inline int cpupid_to_pid(int cpupid)
898 {
899 	return cpupid & LAST__PID_MASK;
900 }
901 
902 static inline int cpupid_to_cpu(int cpupid)
903 {
904 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
905 }
906 
907 static inline int cpupid_to_nid(int cpupid)
908 {
909 	return cpu_to_node(cpupid_to_cpu(cpupid));
910 }
911 
912 static inline bool cpupid_pid_unset(int cpupid)
913 {
914 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
915 }
916 
917 static inline bool cpupid_cpu_unset(int cpupid)
918 {
919 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
920 }
921 
922 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
923 {
924 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
925 }
926 
927 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
928 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
929 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
930 {
931 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
932 }
933 
934 static inline int page_cpupid_last(struct page *page)
935 {
936 	return page->_last_cpupid;
937 }
938 static inline void page_cpupid_reset_last(struct page *page)
939 {
940 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
941 }
942 #else
943 static inline int page_cpupid_last(struct page *page)
944 {
945 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
946 }
947 
948 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
949 
950 static inline void page_cpupid_reset_last(struct page *page)
951 {
952 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
953 }
954 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
955 #else /* !CONFIG_NUMA_BALANCING */
956 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
957 {
958 	return page_to_nid(page); /* XXX */
959 }
960 
961 static inline int page_cpupid_last(struct page *page)
962 {
963 	return page_to_nid(page); /* XXX */
964 }
965 
966 static inline int cpupid_to_nid(int cpupid)
967 {
968 	return -1;
969 }
970 
971 static inline int cpupid_to_pid(int cpupid)
972 {
973 	return -1;
974 }
975 
976 static inline int cpupid_to_cpu(int cpupid)
977 {
978 	return -1;
979 }
980 
981 static inline int cpu_pid_to_cpupid(int nid, int pid)
982 {
983 	return -1;
984 }
985 
986 static inline bool cpupid_pid_unset(int cpupid)
987 {
988 	return 1;
989 }
990 
991 static inline void page_cpupid_reset_last(struct page *page)
992 {
993 }
994 
995 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
996 {
997 	return false;
998 }
999 #endif /* CONFIG_NUMA_BALANCING */
1000 
1001 static inline struct zone *page_zone(const struct page *page)
1002 {
1003 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1004 }
1005 
1006 static inline pg_data_t *page_pgdat(const struct page *page)
1007 {
1008 	return NODE_DATA(page_to_nid(page));
1009 }
1010 
1011 #ifdef SECTION_IN_PAGE_FLAGS
1012 static inline void set_page_section(struct page *page, unsigned long section)
1013 {
1014 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1015 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1016 }
1017 
1018 static inline unsigned long page_to_section(const struct page *page)
1019 {
1020 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1021 }
1022 #endif
1023 
1024 static inline void set_page_zone(struct page *page, enum zone_type zone)
1025 {
1026 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1027 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1028 }
1029 
1030 static inline void set_page_node(struct page *page, unsigned long node)
1031 {
1032 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1033 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1034 }
1035 
1036 static inline void set_page_links(struct page *page, enum zone_type zone,
1037 	unsigned long node, unsigned long pfn)
1038 {
1039 	set_page_zone(page, zone);
1040 	set_page_node(page, node);
1041 #ifdef SECTION_IN_PAGE_FLAGS
1042 	set_page_section(page, pfn_to_section_nr(pfn));
1043 #endif
1044 }
1045 
1046 #ifdef CONFIG_MEMCG
1047 static inline struct mem_cgroup *page_memcg(struct page *page)
1048 {
1049 	return page->mem_cgroup;
1050 }
1051 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1052 {
1053 	WARN_ON_ONCE(!rcu_read_lock_held());
1054 	return READ_ONCE(page->mem_cgroup);
1055 }
1056 #else
1057 static inline struct mem_cgroup *page_memcg(struct page *page)
1058 {
1059 	return NULL;
1060 }
1061 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1062 {
1063 	WARN_ON_ONCE(!rcu_read_lock_held());
1064 	return NULL;
1065 }
1066 #endif
1067 
1068 /*
1069  * Some inline functions in vmstat.h depend on page_zone()
1070  */
1071 #include <linux/vmstat.h>
1072 
1073 static __always_inline void *lowmem_page_address(const struct page *page)
1074 {
1075 	return page_to_virt(page);
1076 }
1077 
1078 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1079 #define HASHED_PAGE_VIRTUAL
1080 #endif
1081 
1082 #if defined(WANT_PAGE_VIRTUAL)
1083 static inline void *page_address(const struct page *page)
1084 {
1085 	return page->virtual;
1086 }
1087 static inline void set_page_address(struct page *page, void *address)
1088 {
1089 	page->virtual = address;
1090 }
1091 #define page_address_init()  do { } while(0)
1092 #endif
1093 
1094 #if defined(HASHED_PAGE_VIRTUAL)
1095 void *page_address(const struct page *page);
1096 void set_page_address(struct page *page, void *virtual);
1097 void page_address_init(void);
1098 #endif
1099 
1100 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1101 #define page_address(page) lowmem_page_address(page)
1102 #define set_page_address(page, address)  do { } while(0)
1103 #define page_address_init()  do { } while(0)
1104 #endif
1105 
1106 extern void *page_rmapping(struct page *page);
1107 extern struct anon_vma *page_anon_vma(struct page *page);
1108 extern struct address_space *page_mapping(struct page *page);
1109 
1110 extern struct address_space *__page_file_mapping(struct page *);
1111 
1112 static inline
1113 struct address_space *page_file_mapping(struct page *page)
1114 {
1115 	if (unlikely(PageSwapCache(page)))
1116 		return __page_file_mapping(page);
1117 
1118 	return page->mapping;
1119 }
1120 
1121 extern pgoff_t __page_file_index(struct page *page);
1122 
1123 /*
1124  * Return the pagecache index of the passed page.  Regular pagecache pages
1125  * use ->index whereas swapcache pages use swp_offset(->private)
1126  */
1127 static inline pgoff_t page_index(struct page *page)
1128 {
1129 	if (unlikely(PageSwapCache(page)))
1130 		return __page_file_index(page);
1131 	return page->index;
1132 }
1133 
1134 bool page_mapped(struct page *page);
1135 struct address_space *page_mapping(struct page *page);
1136 
1137 /*
1138  * Return true only if the page has been allocated with
1139  * ALLOC_NO_WATERMARKS and the low watermark was not
1140  * met implying that the system is under some pressure.
1141  */
1142 static inline bool page_is_pfmemalloc(struct page *page)
1143 {
1144 	/*
1145 	 * Page index cannot be this large so this must be
1146 	 * a pfmemalloc page.
1147 	 */
1148 	return page->index == -1UL;
1149 }
1150 
1151 /*
1152  * Only to be called by the page allocator on a freshly allocated
1153  * page.
1154  */
1155 static inline void set_page_pfmemalloc(struct page *page)
1156 {
1157 	page->index = -1UL;
1158 }
1159 
1160 static inline void clear_page_pfmemalloc(struct page *page)
1161 {
1162 	page->index = 0;
1163 }
1164 
1165 /*
1166  * Different kinds of faults, as returned by handle_mm_fault().
1167  * Used to decide whether a process gets delivered SIGBUS or
1168  * just gets major/minor fault counters bumped up.
1169  */
1170 
1171 #define VM_FAULT_OOM	0x0001
1172 #define VM_FAULT_SIGBUS	0x0002
1173 #define VM_FAULT_MAJOR	0x0004
1174 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1175 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1176 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1177 #define VM_FAULT_SIGSEGV 0x0040
1178 
1179 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1180 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1181 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1182 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1183 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1184 
1185 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1186 
1187 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1188 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1189 			 VM_FAULT_FALLBACK)
1190 
1191 #define VM_FAULT_RESULT_TRACE \
1192 	{ VM_FAULT_OOM,			"OOM" }, \
1193 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1194 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1195 	{ VM_FAULT_WRITE,		"WRITE" }, \
1196 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1197 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1198 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1199 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1200 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1201 	{ VM_FAULT_RETRY,		"RETRY" }, \
1202 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1203 	{ VM_FAULT_DONE_COW,		"DONE_COW" }
1204 
1205 /* Encode hstate index for a hwpoisoned large page */
1206 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1207 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1208 
1209 /*
1210  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1211  */
1212 extern void pagefault_out_of_memory(void);
1213 
1214 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1215 
1216 /*
1217  * Flags passed to show_mem() and show_free_areas() to suppress output in
1218  * various contexts.
1219  */
1220 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1221 
1222 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1223 
1224 extern bool can_do_mlock(void);
1225 extern int user_shm_lock(size_t, struct user_struct *);
1226 extern void user_shm_unlock(size_t, struct user_struct *);
1227 
1228 /*
1229  * Parameter block passed down to zap_pte_range in exceptional cases.
1230  */
1231 struct zap_details {
1232 	struct address_space *check_mapping;	/* Check page->mapping if set */
1233 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1234 	pgoff_t last_index;			/* Highest page->index to unmap */
1235 };
1236 
1237 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1238 			     pte_t pte, bool with_public_device);
1239 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1240 
1241 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1242 				pmd_t pmd);
1243 
1244 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1245 		unsigned long size);
1246 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1247 		unsigned long size);
1248 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1249 		unsigned long start, unsigned long end);
1250 
1251 /**
1252  * mm_walk - callbacks for walk_page_range
1253  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1254  *	       this handler should only handle pud_trans_huge() puds.
1255  *	       the pmd_entry or pte_entry callbacks will be used for
1256  *	       regular PUDs.
1257  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1258  *	       this handler is required to be able to handle
1259  *	       pmd_trans_huge() pmds.  They may simply choose to
1260  *	       split_huge_page() instead of handling it explicitly.
1261  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1262  * @pte_hole: if set, called for each hole at all levels
1263  * @hugetlb_entry: if set, called for each hugetlb entry
1264  * @test_walk: caller specific callback function to determine whether
1265  *             we walk over the current vma or not. Returning 0
1266  *             value means "do page table walk over the current vma,"
1267  *             and a negative one means "abort current page table walk
1268  *             right now." 1 means "skip the current vma."
1269  * @mm:        mm_struct representing the target process of page table walk
1270  * @vma:       vma currently walked (NULL if walking outside vmas)
1271  * @private:   private data for callbacks' usage
1272  *
1273  * (see the comment on walk_page_range() for more details)
1274  */
1275 struct mm_walk {
1276 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1277 			 unsigned long next, struct mm_walk *walk);
1278 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1279 			 unsigned long next, struct mm_walk *walk);
1280 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1281 			 unsigned long next, struct mm_walk *walk);
1282 	int (*pte_hole)(unsigned long addr, unsigned long next,
1283 			struct mm_walk *walk);
1284 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1285 			     unsigned long addr, unsigned long next,
1286 			     struct mm_walk *walk);
1287 	int (*test_walk)(unsigned long addr, unsigned long next,
1288 			struct mm_walk *walk);
1289 	struct mm_struct *mm;
1290 	struct vm_area_struct *vma;
1291 	void *private;
1292 };
1293 
1294 int walk_page_range(unsigned long addr, unsigned long end,
1295 		struct mm_walk *walk);
1296 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1297 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1298 		unsigned long end, unsigned long floor, unsigned long ceiling);
1299 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1300 			struct vm_area_struct *vma);
1301 void unmap_mapping_range(struct address_space *mapping,
1302 		loff_t const holebegin, loff_t const holelen, int even_cows);
1303 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1304 			     unsigned long *start, unsigned long *end,
1305 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1306 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1307 	unsigned long *pfn);
1308 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1309 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1310 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1311 			void *buf, int len, int write);
1312 
1313 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1314 		loff_t const holebegin, loff_t const holelen)
1315 {
1316 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1317 }
1318 
1319 extern void truncate_pagecache(struct inode *inode, loff_t new);
1320 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1321 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1322 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1323 int truncate_inode_page(struct address_space *mapping, struct page *page);
1324 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1325 int invalidate_inode_page(struct page *page);
1326 
1327 #ifdef CONFIG_MMU
1328 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1329 		unsigned int flags);
1330 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1331 			    unsigned long address, unsigned int fault_flags,
1332 			    bool *unlocked);
1333 #else
1334 static inline int handle_mm_fault(struct vm_area_struct *vma,
1335 		unsigned long address, unsigned int flags)
1336 {
1337 	/* should never happen if there's no MMU */
1338 	BUG();
1339 	return VM_FAULT_SIGBUS;
1340 }
1341 static inline int fixup_user_fault(struct task_struct *tsk,
1342 		struct mm_struct *mm, unsigned long address,
1343 		unsigned int fault_flags, bool *unlocked)
1344 {
1345 	/* should never happen if there's no MMU */
1346 	BUG();
1347 	return -EFAULT;
1348 }
1349 #endif
1350 
1351 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1352 		unsigned int gup_flags);
1353 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1354 		void *buf, int len, unsigned int gup_flags);
1355 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1356 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1357 
1358 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1359 			    unsigned long start, unsigned long nr_pages,
1360 			    unsigned int gup_flags, struct page **pages,
1361 			    struct vm_area_struct **vmas, int *locked);
1362 long get_user_pages(unsigned long start, unsigned long nr_pages,
1363 			    unsigned int gup_flags, struct page **pages,
1364 			    struct vm_area_struct **vmas);
1365 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1366 		    unsigned int gup_flags, struct page **pages, int *locked);
1367 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1368 		    struct page **pages, unsigned int gup_flags);
1369 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1370 			struct page **pages);
1371 
1372 /* Container for pinned pfns / pages */
1373 struct frame_vector {
1374 	unsigned int nr_allocated;	/* Number of frames we have space for */
1375 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1376 	bool got_ref;		/* Did we pin pages by getting page ref? */
1377 	bool is_pfns;		/* Does array contain pages or pfns? */
1378 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1379 				 * pfns_vector_pages() or pfns_vector_pfns()
1380 				 * for access */
1381 };
1382 
1383 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1384 void frame_vector_destroy(struct frame_vector *vec);
1385 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1386 		     unsigned int gup_flags, struct frame_vector *vec);
1387 void put_vaddr_frames(struct frame_vector *vec);
1388 int frame_vector_to_pages(struct frame_vector *vec);
1389 void frame_vector_to_pfns(struct frame_vector *vec);
1390 
1391 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1392 {
1393 	return vec->nr_frames;
1394 }
1395 
1396 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1397 {
1398 	if (vec->is_pfns) {
1399 		int err = frame_vector_to_pages(vec);
1400 
1401 		if (err)
1402 			return ERR_PTR(err);
1403 	}
1404 	return (struct page **)(vec->ptrs);
1405 }
1406 
1407 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1408 {
1409 	if (!vec->is_pfns)
1410 		frame_vector_to_pfns(vec);
1411 	return (unsigned long *)(vec->ptrs);
1412 }
1413 
1414 struct kvec;
1415 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1416 			struct page **pages);
1417 int get_kernel_page(unsigned long start, int write, struct page **pages);
1418 struct page *get_dump_page(unsigned long addr);
1419 
1420 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1421 extern void do_invalidatepage(struct page *page, unsigned int offset,
1422 			      unsigned int length);
1423 
1424 int __set_page_dirty_nobuffers(struct page *page);
1425 int __set_page_dirty_no_writeback(struct page *page);
1426 int redirty_page_for_writepage(struct writeback_control *wbc,
1427 				struct page *page);
1428 void account_page_dirtied(struct page *page, struct address_space *mapping);
1429 void account_page_cleaned(struct page *page, struct address_space *mapping,
1430 			  struct bdi_writeback *wb);
1431 int set_page_dirty(struct page *page);
1432 int set_page_dirty_lock(struct page *page);
1433 void cancel_dirty_page(struct page *page);
1434 int clear_page_dirty_for_io(struct page *page);
1435 
1436 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1437 
1438 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1439 {
1440 	return !vma->vm_ops;
1441 }
1442 
1443 #ifdef CONFIG_SHMEM
1444 /*
1445  * The vma_is_shmem is not inline because it is used only by slow
1446  * paths in userfault.
1447  */
1448 bool vma_is_shmem(struct vm_area_struct *vma);
1449 #else
1450 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1451 #endif
1452 
1453 int vma_is_stack_for_current(struct vm_area_struct *vma);
1454 
1455 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1456 		unsigned long old_addr, struct vm_area_struct *new_vma,
1457 		unsigned long new_addr, unsigned long len,
1458 		bool need_rmap_locks);
1459 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1460 			      unsigned long end, pgprot_t newprot,
1461 			      int dirty_accountable, int prot_numa);
1462 extern int mprotect_fixup(struct vm_area_struct *vma,
1463 			  struct vm_area_struct **pprev, unsigned long start,
1464 			  unsigned long end, unsigned long newflags);
1465 
1466 /*
1467  * doesn't attempt to fault and will return short.
1468  */
1469 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1470 			  struct page **pages);
1471 /*
1472  * per-process(per-mm_struct) statistics.
1473  */
1474 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1475 {
1476 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1477 
1478 #ifdef SPLIT_RSS_COUNTING
1479 	/*
1480 	 * counter is updated in asynchronous manner and may go to minus.
1481 	 * But it's never be expected number for users.
1482 	 */
1483 	if (val < 0)
1484 		val = 0;
1485 #endif
1486 	return (unsigned long)val;
1487 }
1488 
1489 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1490 {
1491 	atomic_long_add(value, &mm->rss_stat.count[member]);
1492 }
1493 
1494 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1495 {
1496 	atomic_long_inc(&mm->rss_stat.count[member]);
1497 }
1498 
1499 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1500 {
1501 	atomic_long_dec(&mm->rss_stat.count[member]);
1502 }
1503 
1504 /* Optimized variant when page is already known not to be PageAnon */
1505 static inline int mm_counter_file(struct page *page)
1506 {
1507 	if (PageSwapBacked(page))
1508 		return MM_SHMEMPAGES;
1509 	return MM_FILEPAGES;
1510 }
1511 
1512 static inline int mm_counter(struct page *page)
1513 {
1514 	if (PageAnon(page))
1515 		return MM_ANONPAGES;
1516 	return mm_counter_file(page);
1517 }
1518 
1519 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1520 {
1521 	return get_mm_counter(mm, MM_FILEPAGES) +
1522 		get_mm_counter(mm, MM_ANONPAGES) +
1523 		get_mm_counter(mm, MM_SHMEMPAGES);
1524 }
1525 
1526 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1527 {
1528 	return max(mm->hiwater_rss, get_mm_rss(mm));
1529 }
1530 
1531 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1532 {
1533 	return max(mm->hiwater_vm, mm->total_vm);
1534 }
1535 
1536 static inline void update_hiwater_rss(struct mm_struct *mm)
1537 {
1538 	unsigned long _rss = get_mm_rss(mm);
1539 
1540 	if ((mm)->hiwater_rss < _rss)
1541 		(mm)->hiwater_rss = _rss;
1542 }
1543 
1544 static inline void update_hiwater_vm(struct mm_struct *mm)
1545 {
1546 	if (mm->hiwater_vm < mm->total_vm)
1547 		mm->hiwater_vm = mm->total_vm;
1548 }
1549 
1550 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1551 {
1552 	mm->hiwater_rss = get_mm_rss(mm);
1553 }
1554 
1555 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1556 					 struct mm_struct *mm)
1557 {
1558 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1559 
1560 	if (*maxrss < hiwater_rss)
1561 		*maxrss = hiwater_rss;
1562 }
1563 
1564 #if defined(SPLIT_RSS_COUNTING)
1565 void sync_mm_rss(struct mm_struct *mm);
1566 #else
1567 static inline void sync_mm_rss(struct mm_struct *mm)
1568 {
1569 }
1570 #endif
1571 
1572 #ifndef __HAVE_ARCH_PTE_DEVMAP
1573 static inline int pte_devmap(pte_t pte)
1574 {
1575 	return 0;
1576 }
1577 #endif
1578 
1579 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1580 
1581 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1582 			       spinlock_t **ptl);
1583 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1584 				    spinlock_t **ptl)
1585 {
1586 	pte_t *ptep;
1587 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1588 	return ptep;
1589 }
1590 
1591 #ifdef __PAGETABLE_P4D_FOLDED
1592 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1593 						unsigned long address)
1594 {
1595 	return 0;
1596 }
1597 #else
1598 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1599 #endif
1600 
1601 #ifdef __PAGETABLE_PUD_FOLDED
1602 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1603 						unsigned long address)
1604 {
1605 	return 0;
1606 }
1607 #else
1608 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1609 #endif
1610 
1611 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1612 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1613 						unsigned long address)
1614 {
1615 	return 0;
1616 }
1617 
1618 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1619 
1620 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1621 {
1622 	return 0;
1623 }
1624 
1625 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1626 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1627 
1628 #else
1629 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1630 
1631 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1632 {
1633 	atomic_long_set(&mm->nr_pmds, 0);
1634 }
1635 
1636 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1637 {
1638 	return atomic_long_read(&mm->nr_pmds);
1639 }
1640 
1641 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1642 {
1643 	atomic_long_inc(&mm->nr_pmds);
1644 }
1645 
1646 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1647 {
1648 	atomic_long_dec(&mm->nr_pmds);
1649 }
1650 #endif
1651 
1652 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1653 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1654 
1655 /*
1656  * The following ifdef needed to get the 4level-fixup.h header to work.
1657  * Remove it when 4level-fixup.h has been removed.
1658  */
1659 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1660 
1661 #ifndef __ARCH_HAS_5LEVEL_HACK
1662 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1663 		unsigned long address)
1664 {
1665 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1666 		NULL : p4d_offset(pgd, address);
1667 }
1668 
1669 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1670 		unsigned long address)
1671 {
1672 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1673 		NULL : pud_offset(p4d, address);
1674 }
1675 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1676 
1677 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1678 {
1679 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1680 		NULL: pmd_offset(pud, address);
1681 }
1682 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1683 
1684 #if USE_SPLIT_PTE_PTLOCKS
1685 #if ALLOC_SPLIT_PTLOCKS
1686 void __init ptlock_cache_init(void);
1687 extern bool ptlock_alloc(struct page *page);
1688 extern void ptlock_free(struct page *page);
1689 
1690 static inline spinlock_t *ptlock_ptr(struct page *page)
1691 {
1692 	return page->ptl;
1693 }
1694 #else /* ALLOC_SPLIT_PTLOCKS */
1695 static inline void ptlock_cache_init(void)
1696 {
1697 }
1698 
1699 static inline bool ptlock_alloc(struct page *page)
1700 {
1701 	return true;
1702 }
1703 
1704 static inline void ptlock_free(struct page *page)
1705 {
1706 }
1707 
1708 static inline spinlock_t *ptlock_ptr(struct page *page)
1709 {
1710 	return &page->ptl;
1711 }
1712 #endif /* ALLOC_SPLIT_PTLOCKS */
1713 
1714 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1715 {
1716 	return ptlock_ptr(pmd_page(*pmd));
1717 }
1718 
1719 static inline bool ptlock_init(struct page *page)
1720 {
1721 	/*
1722 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1723 	 * with 0. Make sure nobody took it in use in between.
1724 	 *
1725 	 * It can happen if arch try to use slab for page table allocation:
1726 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1727 	 */
1728 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1729 	if (!ptlock_alloc(page))
1730 		return false;
1731 	spin_lock_init(ptlock_ptr(page));
1732 	return true;
1733 }
1734 
1735 /* Reset page->mapping so free_pages_check won't complain. */
1736 static inline void pte_lock_deinit(struct page *page)
1737 {
1738 	page->mapping = NULL;
1739 	ptlock_free(page);
1740 }
1741 
1742 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1743 /*
1744  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1745  */
1746 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1747 {
1748 	return &mm->page_table_lock;
1749 }
1750 static inline void ptlock_cache_init(void) {}
1751 static inline bool ptlock_init(struct page *page) { return true; }
1752 static inline void pte_lock_deinit(struct page *page) {}
1753 #endif /* USE_SPLIT_PTE_PTLOCKS */
1754 
1755 static inline void pgtable_init(void)
1756 {
1757 	ptlock_cache_init();
1758 	pgtable_cache_init();
1759 }
1760 
1761 static inline bool pgtable_page_ctor(struct page *page)
1762 {
1763 	if (!ptlock_init(page))
1764 		return false;
1765 	inc_zone_page_state(page, NR_PAGETABLE);
1766 	return true;
1767 }
1768 
1769 static inline void pgtable_page_dtor(struct page *page)
1770 {
1771 	pte_lock_deinit(page);
1772 	dec_zone_page_state(page, NR_PAGETABLE);
1773 }
1774 
1775 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1776 ({							\
1777 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1778 	pte_t *__pte = pte_offset_map(pmd, address);	\
1779 	*(ptlp) = __ptl;				\
1780 	spin_lock(__ptl);				\
1781 	__pte;						\
1782 })
1783 
1784 #define pte_unmap_unlock(pte, ptl)	do {		\
1785 	spin_unlock(ptl);				\
1786 	pte_unmap(pte);					\
1787 } while (0)
1788 
1789 #define pte_alloc(mm, pmd, address)			\
1790 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1791 
1792 #define pte_alloc_map(mm, pmd, address)			\
1793 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1794 
1795 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1796 	(pte_alloc(mm, pmd, address) ?			\
1797 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1798 
1799 #define pte_alloc_kernel(pmd, address)			\
1800 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1801 		NULL: pte_offset_kernel(pmd, address))
1802 
1803 #if USE_SPLIT_PMD_PTLOCKS
1804 
1805 static struct page *pmd_to_page(pmd_t *pmd)
1806 {
1807 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1808 	return virt_to_page((void *)((unsigned long) pmd & mask));
1809 }
1810 
1811 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1812 {
1813 	return ptlock_ptr(pmd_to_page(pmd));
1814 }
1815 
1816 static inline bool pgtable_pmd_page_ctor(struct page *page)
1817 {
1818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1819 	page->pmd_huge_pte = NULL;
1820 #endif
1821 	return ptlock_init(page);
1822 }
1823 
1824 static inline void pgtable_pmd_page_dtor(struct page *page)
1825 {
1826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1827 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1828 #endif
1829 	ptlock_free(page);
1830 }
1831 
1832 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1833 
1834 #else
1835 
1836 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1837 {
1838 	return &mm->page_table_lock;
1839 }
1840 
1841 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1842 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1843 
1844 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1845 
1846 #endif
1847 
1848 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1849 {
1850 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1851 	spin_lock(ptl);
1852 	return ptl;
1853 }
1854 
1855 /*
1856  * No scalability reason to split PUD locks yet, but follow the same pattern
1857  * as the PMD locks to make it easier if we decide to.  The VM should not be
1858  * considered ready to switch to split PUD locks yet; there may be places
1859  * which need to be converted from page_table_lock.
1860  */
1861 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1862 {
1863 	return &mm->page_table_lock;
1864 }
1865 
1866 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1867 {
1868 	spinlock_t *ptl = pud_lockptr(mm, pud);
1869 
1870 	spin_lock(ptl);
1871 	return ptl;
1872 }
1873 
1874 extern void __init pagecache_init(void);
1875 extern void free_area_init(unsigned long * zones_size);
1876 extern void free_area_init_node(int nid, unsigned long * zones_size,
1877 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1878 extern void free_initmem(void);
1879 
1880 /*
1881  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1882  * into the buddy system. The freed pages will be poisoned with pattern
1883  * "poison" if it's within range [0, UCHAR_MAX].
1884  * Return pages freed into the buddy system.
1885  */
1886 extern unsigned long free_reserved_area(void *start, void *end,
1887 					int poison, char *s);
1888 
1889 #ifdef	CONFIG_HIGHMEM
1890 /*
1891  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1892  * and totalram_pages.
1893  */
1894 extern void free_highmem_page(struct page *page);
1895 #endif
1896 
1897 extern void adjust_managed_page_count(struct page *page, long count);
1898 extern void mem_init_print_info(const char *str);
1899 
1900 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1901 
1902 /* Free the reserved page into the buddy system, so it gets managed. */
1903 static inline void __free_reserved_page(struct page *page)
1904 {
1905 	ClearPageReserved(page);
1906 	init_page_count(page);
1907 	__free_page(page);
1908 }
1909 
1910 static inline void free_reserved_page(struct page *page)
1911 {
1912 	__free_reserved_page(page);
1913 	adjust_managed_page_count(page, 1);
1914 }
1915 
1916 static inline void mark_page_reserved(struct page *page)
1917 {
1918 	SetPageReserved(page);
1919 	adjust_managed_page_count(page, -1);
1920 }
1921 
1922 /*
1923  * Default method to free all the __init memory into the buddy system.
1924  * The freed pages will be poisoned with pattern "poison" if it's within
1925  * range [0, UCHAR_MAX].
1926  * Return pages freed into the buddy system.
1927  */
1928 static inline unsigned long free_initmem_default(int poison)
1929 {
1930 	extern char __init_begin[], __init_end[];
1931 
1932 	return free_reserved_area(&__init_begin, &__init_end,
1933 				  poison, "unused kernel");
1934 }
1935 
1936 static inline unsigned long get_num_physpages(void)
1937 {
1938 	int nid;
1939 	unsigned long phys_pages = 0;
1940 
1941 	for_each_online_node(nid)
1942 		phys_pages += node_present_pages(nid);
1943 
1944 	return phys_pages;
1945 }
1946 
1947 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1948 /*
1949  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1950  * zones, allocate the backing mem_map and account for memory holes in a more
1951  * architecture independent manner. This is a substitute for creating the
1952  * zone_sizes[] and zholes_size[] arrays and passing them to
1953  * free_area_init_node()
1954  *
1955  * An architecture is expected to register range of page frames backed by
1956  * physical memory with memblock_add[_node]() before calling
1957  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1958  * usage, an architecture is expected to do something like
1959  *
1960  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1961  * 							 max_highmem_pfn};
1962  * for_each_valid_physical_page_range()
1963  * 	memblock_add_node(base, size, nid)
1964  * free_area_init_nodes(max_zone_pfns);
1965  *
1966  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1967  * registered physical page range.  Similarly
1968  * sparse_memory_present_with_active_regions() calls memory_present() for
1969  * each range when SPARSEMEM is enabled.
1970  *
1971  * See mm/page_alloc.c for more information on each function exposed by
1972  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1973  */
1974 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1975 unsigned long node_map_pfn_alignment(void);
1976 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1977 						unsigned long end_pfn);
1978 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1979 						unsigned long end_pfn);
1980 extern void get_pfn_range_for_nid(unsigned int nid,
1981 			unsigned long *start_pfn, unsigned long *end_pfn);
1982 extern unsigned long find_min_pfn_with_active_regions(void);
1983 extern void free_bootmem_with_active_regions(int nid,
1984 						unsigned long max_low_pfn);
1985 extern void sparse_memory_present_with_active_regions(int nid);
1986 
1987 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1988 
1989 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1990     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1991 static inline int __early_pfn_to_nid(unsigned long pfn,
1992 					struct mminit_pfnnid_cache *state)
1993 {
1994 	return 0;
1995 }
1996 #else
1997 /* please see mm/page_alloc.c */
1998 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1999 /* there is a per-arch backend function. */
2000 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2001 					struct mminit_pfnnid_cache *state);
2002 #endif
2003 
2004 extern void set_dma_reserve(unsigned long new_dma_reserve);
2005 extern void memmap_init_zone(unsigned long, int, unsigned long,
2006 				unsigned long, enum memmap_context);
2007 extern void setup_per_zone_wmarks(void);
2008 extern int __meminit init_per_zone_wmark_min(void);
2009 extern void mem_init(void);
2010 extern void __init mmap_init(void);
2011 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2012 extern long si_mem_available(void);
2013 extern void si_meminfo(struct sysinfo * val);
2014 extern void si_meminfo_node(struct sysinfo *val, int nid);
2015 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2016 extern unsigned long arch_reserved_kernel_pages(void);
2017 #endif
2018 
2019 extern __printf(3, 4)
2020 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2021 
2022 extern void setup_per_cpu_pageset(void);
2023 
2024 extern void zone_pcp_update(struct zone *zone);
2025 extern void zone_pcp_reset(struct zone *zone);
2026 
2027 /* page_alloc.c */
2028 extern int min_free_kbytes;
2029 extern int watermark_scale_factor;
2030 
2031 /* nommu.c */
2032 extern atomic_long_t mmap_pages_allocated;
2033 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2034 
2035 /* interval_tree.c */
2036 void vma_interval_tree_insert(struct vm_area_struct *node,
2037 			      struct rb_root_cached *root);
2038 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2039 				    struct vm_area_struct *prev,
2040 				    struct rb_root_cached *root);
2041 void vma_interval_tree_remove(struct vm_area_struct *node,
2042 			      struct rb_root_cached *root);
2043 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2044 				unsigned long start, unsigned long last);
2045 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2046 				unsigned long start, unsigned long last);
2047 
2048 #define vma_interval_tree_foreach(vma, root, start, last)		\
2049 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2050 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2051 
2052 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2053 				   struct rb_root_cached *root);
2054 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2055 				   struct rb_root_cached *root);
2056 struct anon_vma_chain *
2057 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2058 				  unsigned long start, unsigned long last);
2059 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2060 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2061 #ifdef CONFIG_DEBUG_VM_RB
2062 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2063 #endif
2064 
2065 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2066 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2067 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2068 
2069 /* mmap.c */
2070 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2071 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2072 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2073 	struct vm_area_struct *expand);
2074 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2075 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2076 {
2077 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2078 }
2079 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2080 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2081 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2082 	struct mempolicy *, struct vm_userfaultfd_ctx);
2083 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2084 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2085 	unsigned long addr, int new_below);
2086 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2087 	unsigned long addr, int new_below);
2088 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2089 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2090 	struct rb_node **, struct rb_node *);
2091 extern void unlink_file_vma(struct vm_area_struct *);
2092 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2093 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2094 	bool *need_rmap_locks);
2095 extern void exit_mmap(struct mm_struct *);
2096 
2097 static inline int check_data_rlimit(unsigned long rlim,
2098 				    unsigned long new,
2099 				    unsigned long start,
2100 				    unsigned long end_data,
2101 				    unsigned long start_data)
2102 {
2103 	if (rlim < RLIM_INFINITY) {
2104 		if (((new - start) + (end_data - start_data)) > rlim)
2105 			return -ENOSPC;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 extern int mm_take_all_locks(struct mm_struct *mm);
2112 extern void mm_drop_all_locks(struct mm_struct *mm);
2113 
2114 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2115 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2116 extern struct file *get_task_exe_file(struct task_struct *task);
2117 
2118 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2119 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2120 
2121 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2122 				   const struct vm_special_mapping *sm);
2123 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2124 				   unsigned long addr, unsigned long len,
2125 				   unsigned long flags,
2126 				   const struct vm_special_mapping *spec);
2127 /* This is an obsolete alternative to _install_special_mapping. */
2128 extern int install_special_mapping(struct mm_struct *mm,
2129 				   unsigned long addr, unsigned long len,
2130 				   unsigned long flags, struct page **pages);
2131 
2132 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2133 
2134 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2135 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2136 	struct list_head *uf);
2137 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2138 	unsigned long len, unsigned long prot, unsigned long flags,
2139 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2140 	struct list_head *uf);
2141 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2142 		     struct list_head *uf);
2143 
2144 static inline unsigned long
2145 do_mmap_pgoff(struct file *file, unsigned long addr,
2146 	unsigned long len, unsigned long prot, unsigned long flags,
2147 	unsigned long pgoff, unsigned long *populate,
2148 	struct list_head *uf)
2149 {
2150 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2151 }
2152 
2153 #ifdef CONFIG_MMU
2154 extern int __mm_populate(unsigned long addr, unsigned long len,
2155 			 int ignore_errors);
2156 static inline void mm_populate(unsigned long addr, unsigned long len)
2157 {
2158 	/* Ignore errors */
2159 	(void) __mm_populate(addr, len, 1);
2160 }
2161 #else
2162 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2163 #endif
2164 
2165 /* These take the mm semaphore themselves */
2166 extern int __must_check vm_brk(unsigned long, unsigned long);
2167 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2168 extern int vm_munmap(unsigned long, size_t);
2169 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2170         unsigned long, unsigned long,
2171         unsigned long, unsigned long);
2172 
2173 struct vm_unmapped_area_info {
2174 #define VM_UNMAPPED_AREA_TOPDOWN 1
2175 	unsigned long flags;
2176 	unsigned long length;
2177 	unsigned long low_limit;
2178 	unsigned long high_limit;
2179 	unsigned long align_mask;
2180 	unsigned long align_offset;
2181 };
2182 
2183 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2184 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2185 
2186 /*
2187  * Search for an unmapped address range.
2188  *
2189  * We are looking for a range that:
2190  * - does not intersect with any VMA;
2191  * - is contained within the [low_limit, high_limit) interval;
2192  * - is at least the desired size.
2193  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2194  */
2195 static inline unsigned long
2196 vm_unmapped_area(struct vm_unmapped_area_info *info)
2197 {
2198 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2199 		return unmapped_area_topdown(info);
2200 	else
2201 		return unmapped_area(info);
2202 }
2203 
2204 /* truncate.c */
2205 extern void truncate_inode_pages(struct address_space *, loff_t);
2206 extern void truncate_inode_pages_range(struct address_space *,
2207 				       loff_t lstart, loff_t lend);
2208 extern void truncate_inode_pages_final(struct address_space *);
2209 
2210 /* generic vm_area_ops exported for stackable file systems */
2211 extern int filemap_fault(struct vm_fault *vmf);
2212 extern void filemap_map_pages(struct vm_fault *vmf,
2213 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2214 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2215 
2216 /* mm/page-writeback.c */
2217 int __must_check write_one_page(struct page *page);
2218 void task_dirty_inc(struct task_struct *tsk);
2219 
2220 /* readahead.c */
2221 #define VM_MAX_READAHEAD	128	/* kbytes */
2222 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2223 
2224 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2225 			pgoff_t offset, unsigned long nr_to_read);
2226 
2227 void page_cache_sync_readahead(struct address_space *mapping,
2228 			       struct file_ra_state *ra,
2229 			       struct file *filp,
2230 			       pgoff_t offset,
2231 			       unsigned long size);
2232 
2233 void page_cache_async_readahead(struct address_space *mapping,
2234 				struct file_ra_state *ra,
2235 				struct file *filp,
2236 				struct page *pg,
2237 				pgoff_t offset,
2238 				unsigned long size);
2239 
2240 extern unsigned long stack_guard_gap;
2241 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2242 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2243 
2244 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2245 extern int expand_downwards(struct vm_area_struct *vma,
2246 		unsigned long address);
2247 #if VM_GROWSUP
2248 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2249 #else
2250   #define expand_upwards(vma, address) (0)
2251 #endif
2252 
2253 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2254 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2255 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2256 					     struct vm_area_struct **pprev);
2257 
2258 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2259    NULL if none.  Assume start_addr < end_addr. */
2260 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2261 {
2262 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2263 
2264 	if (vma && end_addr <= vma->vm_start)
2265 		vma = NULL;
2266 	return vma;
2267 }
2268 
2269 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2270 {
2271 	unsigned long vm_start = vma->vm_start;
2272 
2273 	if (vma->vm_flags & VM_GROWSDOWN) {
2274 		vm_start -= stack_guard_gap;
2275 		if (vm_start > vma->vm_start)
2276 			vm_start = 0;
2277 	}
2278 	return vm_start;
2279 }
2280 
2281 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2282 {
2283 	unsigned long vm_end = vma->vm_end;
2284 
2285 	if (vma->vm_flags & VM_GROWSUP) {
2286 		vm_end += stack_guard_gap;
2287 		if (vm_end < vma->vm_end)
2288 			vm_end = -PAGE_SIZE;
2289 	}
2290 	return vm_end;
2291 }
2292 
2293 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2294 {
2295 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2296 }
2297 
2298 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2299 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2300 				unsigned long vm_start, unsigned long vm_end)
2301 {
2302 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2303 
2304 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2305 		vma = NULL;
2306 
2307 	return vma;
2308 }
2309 
2310 #ifdef CONFIG_MMU
2311 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2312 void vma_set_page_prot(struct vm_area_struct *vma);
2313 #else
2314 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2315 {
2316 	return __pgprot(0);
2317 }
2318 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2319 {
2320 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2321 }
2322 #endif
2323 
2324 #ifdef CONFIG_NUMA_BALANCING
2325 unsigned long change_prot_numa(struct vm_area_struct *vma,
2326 			unsigned long start, unsigned long end);
2327 #endif
2328 
2329 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2330 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2331 			unsigned long pfn, unsigned long size, pgprot_t);
2332 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2333 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2334 			unsigned long pfn);
2335 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2336 			unsigned long pfn, pgprot_t pgprot);
2337 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2338 			pfn_t pfn);
2339 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2340 			pfn_t pfn);
2341 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2342 
2343 
2344 struct page *follow_page_mask(struct vm_area_struct *vma,
2345 			      unsigned long address, unsigned int foll_flags,
2346 			      unsigned int *page_mask);
2347 
2348 static inline struct page *follow_page(struct vm_area_struct *vma,
2349 		unsigned long address, unsigned int foll_flags)
2350 {
2351 	unsigned int unused_page_mask;
2352 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2353 }
2354 
2355 #define FOLL_WRITE	0x01	/* check pte is writable */
2356 #define FOLL_TOUCH	0x02	/* mark page accessed */
2357 #define FOLL_GET	0x04	/* do get_page on page */
2358 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2359 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2360 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2361 				 * and return without waiting upon it */
2362 #define FOLL_POPULATE	0x40	/* fault in page */
2363 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2364 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2365 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2366 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2367 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2368 #define FOLL_MLOCK	0x1000	/* lock present pages */
2369 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2370 #define FOLL_COW	0x4000	/* internal GUP flag */
2371 
2372 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2373 {
2374 	if (vm_fault & VM_FAULT_OOM)
2375 		return -ENOMEM;
2376 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2377 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2378 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2379 		return -EFAULT;
2380 	return 0;
2381 }
2382 
2383 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2384 			void *data);
2385 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2386 			       unsigned long size, pte_fn_t fn, void *data);
2387 
2388 
2389 #ifdef CONFIG_PAGE_POISONING
2390 extern bool page_poisoning_enabled(void);
2391 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2392 extern bool page_is_poisoned(struct page *page);
2393 #else
2394 static inline bool page_poisoning_enabled(void) { return false; }
2395 static inline void kernel_poison_pages(struct page *page, int numpages,
2396 					int enable) { }
2397 static inline bool page_is_poisoned(struct page *page) { return false; }
2398 #endif
2399 
2400 #ifdef CONFIG_DEBUG_PAGEALLOC
2401 extern bool _debug_pagealloc_enabled;
2402 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2403 
2404 static inline bool debug_pagealloc_enabled(void)
2405 {
2406 	return _debug_pagealloc_enabled;
2407 }
2408 
2409 static inline void
2410 kernel_map_pages(struct page *page, int numpages, int enable)
2411 {
2412 	if (!debug_pagealloc_enabled())
2413 		return;
2414 
2415 	__kernel_map_pages(page, numpages, enable);
2416 }
2417 #ifdef CONFIG_HIBERNATION
2418 extern bool kernel_page_present(struct page *page);
2419 #endif	/* CONFIG_HIBERNATION */
2420 #else	/* CONFIG_DEBUG_PAGEALLOC */
2421 static inline void
2422 kernel_map_pages(struct page *page, int numpages, int enable) {}
2423 #ifdef CONFIG_HIBERNATION
2424 static inline bool kernel_page_present(struct page *page) { return true; }
2425 #endif	/* CONFIG_HIBERNATION */
2426 static inline bool debug_pagealloc_enabled(void)
2427 {
2428 	return false;
2429 }
2430 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2431 
2432 #ifdef __HAVE_ARCH_GATE_AREA
2433 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2434 extern int in_gate_area_no_mm(unsigned long addr);
2435 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2436 #else
2437 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2438 {
2439 	return NULL;
2440 }
2441 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2442 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2443 {
2444 	return 0;
2445 }
2446 #endif	/* __HAVE_ARCH_GATE_AREA */
2447 
2448 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2449 
2450 #ifdef CONFIG_SYSCTL
2451 extern int sysctl_drop_caches;
2452 int drop_caches_sysctl_handler(struct ctl_table *, int,
2453 					void __user *, size_t *, loff_t *);
2454 #endif
2455 
2456 void drop_slab(void);
2457 void drop_slab_node(int nid);
2458 
2459 #ifndef CONFIG_MMU
2460 #define randomize_va_space 0
2461 #else
2462 extern int randomize_va_space;
2463 #endif
2464 
2465 const char * arch_vma_name(struct vm_area_struct *vma);
2466 void print_vma_addr(char *prefix, unsigned long rip);
2467 
2468 void sparse_mem_maps_populate_node(struct page **map_map,
2469 				   unsigned long pnum_begin,
2470 				   unsigned long pnum_end,
2471 				   unsigned long map_count,
2472 				   int nodeid);
2473 
2474 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2475 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2476 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2477 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2478 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2479 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2480 void *vmemmap_alloc_block(unsigned long size, int node);
2481 struct vmem_altmap;
2482 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2483 		struct vmem_altmap *altmap);
2484 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2485 {
2486 	return __vmemmap_alloc_block_buf(size, node, NULL);
2487 }
2488 
2489 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2490 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2491 			       int node);
2492 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2493 void vmemmap_populate_print_last(void);
2494 #ifdef CONFIG_MEMORY_HOTPLUG
2495 void vmemmap_free(unsigned long start, unsigned long end);
2496 #endif
2497 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2498 				  unsigned long size);
2499 
2500 enum mf_flags {
2501 	MF_COUNT_INCREASED = 1 << 0,
2502 	MF_ACTION_REQUIRED = 1 << 1,
2503 	MF_MUST_KILL = 1 << 2,
2504 	MF_SOFT_OFFLINE = 1 << 3,
2505 };
2506 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2507 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2508 extern int unpoison_memory(unsigned long pfn);
2509 extern int get_hwpoison_page(struct page *page);
2510 #define put_hwpoison_page(page)	put_page(page)
2511 extern int sysctl_memory_failure_early_kill;
2512 extern int sysctl_memory_failure_recovery;
2513 extern void shake_page(struct page *p, int access);
2514 extern atomic_long_t num_poisoned_pages;
2515 extern int soft_offline_page(struct page *page, int flags);
2516 
2517 
2518 /*
2519  * Error handlers for various types of pages.
2520  */
2521 enum mf_result {
2522 	MF_IGNORED,	/* Error: cannot be handled */
2523 	MF_FAILED,	/* Error: handling failed */
2524 	MF_DELAYED,	/* Will be handled later */
2525 	MF_RECOVERED,	/* Successfully recovered */
2526 };
2527 
2528 enum mf_action_page_type {
2529 	MF_MSG_KERNEL,
2530 	MF_MSG_KERNEL_HIGH_ORDER,
2531 	MF_MSG_SLAB,
2532 	MF_MSG_DIFFERENT_COMPOUND,
2533 	MF_MSG_POISONED_HUGE,
2534 	MF_MSG_HUGE,
2535 	MF_MSG_FREE_HUGE,
2536 	MF_MSG_UNMAP_FAILED,
2537 	MF_MSG_DIRTY_SWAPCACHE,
2538 	MF_MSG_CLEAN_SWAPCACHE,
2539 	MF_MSG_DIRTY_MLOCKED_LRU,
2540 	MF_MSG_CLEAN_MLOCKED_LRU,
2541 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2542 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2543 	MF_MSG_DIRTY_LRU,
2544 	MF_MSG_CLEAN_LRU,
2545 	MF_MSG_TRUNCATED_LRU,
2546 	MF_MSG_BUDDY,
2547 	MF_MSG_BUDDY_2ND,
2548 	MF_MSG_UNKNOWN,
2549 };
2550 
2551 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2552 extern void clear_huge_page(struct page *page,
2553 			    unsigned long addr_hint,
2554 			    unsigned int pages_per_huge_page);
2555 extern void copy_user_huge_page(struct page *dst, struct page *src,
2556 				unsigned long addr, struct vm_area_struct *vma,
2557 				unsigned int pages_per_huge_page);
2558 extern long copy_huge_page_from_user(struct page *dst_page,
2559 				const void __user *usr_src,
2560 				unsigned int pages_per_huge_page,
2561 				bool allow_pagefault);
2562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2563 
2564 extern struct page_ext_operations debug_guardpage_ops;
2565 
2566 #ifdef CONFIG_DEBUG_PAGEALLOC
2567 extern unsigned int _debug_guardpage_minorder;
2568 extern bool _debug_guardpage_enabled;
2569 
2570 static inline unsigned int debug_guardpage_minorder(void)
2571 {
2572 	return _debug_guardpage_minorder;
2573 }
2574 
2575 static inline bool debug_guardpage_enabled(void)
2576 {
2577 	return _debug_guardpage_enabled;
2578 }
2579 
2580 static inline bool page_is_guard(struct page *page)
2581 {
2582 	struct page_ext *page_ext;
2583 
2584 	if (!debug_guardpage_enabled())
2585 		return false;
2586 
2587 	page_ext = lookup_page_ext(page);
2588 	if (unlikely(!page_ext))
2589 		return false;
2590 
2591 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2592 }
2593 #else
2594 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2595 static inline bool debug_guardpage_enabled(void) { return false; }
2596 static inline bool page_is_guard(struct page *page) { return false; }
2597 #endif /* CONFIG_DEBUG_PAGEALLOC */
2598 
2599 #if MAX_NUMNODES > 1
2600 void __init setup_nr_node_ids(void);
2601 #else
2602 static inline void setup_nr_node_ids(void) {}
2603 #endif
2604 
2605 #endif /* __KERNEL__ */
2606 #endif /* _LINUX_MM_H */
2607