1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 #include <linux/memremap.h> 27 28 struct mempolicy; 29 struct anon_vma; 30 struct anon_vma_chain; 31 struct file_ra_state; 32 struct user_struct; 33 struct writeback_control; 34 struct bdi_writeback; 35 36 void init_mm_internals(void); 37 38 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 39 extern unsigned long max_mapnr; 40 41 static inline void set_max_mapnr(unsigned long limit) 42 { 43 max_mapnr = limit; 44 } 45 #else 46 static inline void set_max_mapnr(unsigned long limit) { } 47 #endif 48 49 extern unsigned long totalram_pages; 50 extern void * high_memory; 51 extern int page_cluster; 52 53 #ifdef CONFIG_SYSCTL 54 extern int sysctl_legacy_va_layout; 55 #else 56 #define sysctl_legacy_va_layout 0 57 #endif 58 59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 60 extern const int mmap_rnd_bits_min; 61 extern const int mmap_rnd_bits_max; 62 extern int mmap_rnd_bits __read_mostly; 63 #endif 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 65 extern const int mmap_rnd_compat_bits_min; 66 extern const int mmap_rnd_compat_bits_max; 67 extern int mmap_rnd_compat_bits __read_mostly; 68 #endif 69 70 #include <asm/page.h> 71 #include <asm/pgtable.h> 72 #include <asm/processor.h> 73 74 #ifndef __pa_symbol 75 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 76 #endif 77 78 #ifndef page_to_virt 79 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 80 #endif 81 82 #ifndef lm_alias 83 #define lm_alias(x) __va(__pa_symbol(x)) 84 #endif 85 86 /* 87 * To prevent common memory management code establishing 88 * a zero page mapping on a read fault. 89 * This macro should be defined within <asm/pgtable.h>. 90 * s390 does this to prevent multiplexing of hardware bits 91 * related to the physical page in case of virtualization. 92 */ 93 #ifndef mm_forbids_zeropage 94 #define mm_forbids_zeropage(X) (0) 95 #endif 96 97 /* 98 * Default maximum number of active map areas, this limits the number of vmas 99 * per mm struct. Users can overwrite this number by sysctl but there is a 100 * problem. 101 * 102 * When a program's coredump is generated as ELF format, a section is created 103 * per a vma. In ELF, the number of sections is represented in unsigned short. 104 * This means the number of sections should be smaller than 65535 at coredump. 105 * Because the kernel adds some informative sections to a image of program at 106 * generating coredump, we need some margin. The number of extra sections is 107 * 1-3 now and depends on arch. We use "5" as safe margin, here. 108 * 109 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 110 * not a hard limit any more. Although some userspace tools can be surprised by 111 * that. 112 */ 113 #define MAPCOUNT_ELF_CORE_MARGIN (5) 114 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 115 116 extern int sysctl_max_map_count; 117 118 extern unsigned long sysctl_user_reserve_kbytes; 119 extern unsigned long sysctl_admin_reserve_kbytes; 120 121 extern int sysctl_overcommit_memory; 122 extern int sysctl_overcommit_ratio; 123 extern unsigned long sysctl_overcommit_kbytes; 124 125 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 126 size_t *, loff_t *); 127 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 128 size_t *, loff_t *); 129 130 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 131 132 /* to align the pointer to the (next) page boundary */ 133 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 134 135 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 136 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 137 138 /* 139 * Linux kernel virtual memory manager primitives. 140 * The idea being to have a "virtual" mm in the same way 141 * we have a virtual fs - giving a cleaner interface to the 142 * mm details, and allowing different kinds of memory mappings 143 * (from shared memory to executable loading to arbitrary 144 * mmap() functions). 145 */ 146 147 extern struct kmem_cache *vm_area_cachep; 148 149 #ifndef CONFIG_MMU 150 extern struct rb_root nommu_region_tree; 151 extern struct rw_semaphore nommu_region_sem; 152 153 extern unsigned int kobjsize(const void *objp); 154 #endif 155 156 /* 157 * vm_flags in vm_area_struct, see mm_types.h. 158 * When changing, update also include/trace/events/mmflags.h 159 */ 160 #define VM_NONE 0x00000000 161 162 #define VM_READ 0x00000001 /* currently active flags */ 163 #define VM_WRITE 0x00000002 164 #define VM_EXEC 0x00000004 165 #define VM_SHARED 0x00000008 166 167 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 168 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 169 #define VM_MAYWRITE 0x00000020 170 #define VM_MAYEXEC 0x00000040 171 #define VM_MAYSHARE 0x00000080 172 173 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 174 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 175 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 176 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 177 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 178 179 #define VM_LOCKED 0x00002000 180 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 181 182 /* Used by sys_madvise() */ 183 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 184 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 185 186 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 187 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 188 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 189 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 190 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 191 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 192 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 193 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 194 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 195 196 #ifdef CONFIG_MEM_SOFT_DIRTY 197 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 198 #else 199 # define VM_SOFTDIRTY 0 200 #endif 201 202 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 203 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 204 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 205 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 206 207 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 208 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 209 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 210 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 211 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 212 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 213 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 214 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 215 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 216 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 217 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 218 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 219 220 #if defined(CONFIG_X86) 221 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 222 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 223 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 224 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 225 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 226 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 227 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 228 #endif 229 #elif defined(CONFIG_PPC) 230 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 231 #elif defined(CONFIG_PARISC) 232 # define VM_GROWSUP VM_ARCH_1 233 #elif defined(CONFIG_METAG) 234 # define VM_GROWSUP VM_ARCH_1 235 #elif defined(CONFIG_IA64) 236 # define VM_GROWSUP VM_ARCH_1 237 #elif !defined(CONFIG_MMU) 238 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 239 #endif 240 241 #if defined(CONFIG_X86_INTEL_MPX) 242 /* MPX specific bounds table or bounds directory */ 243 # define VM_MPX VM_HIGH_ARCH_4 244 #else 245 # define VM_MPX VM_NONE 246 #endif 247 248 #ifndef VM_GROWSUP 249 # define VM_GROWSUP VM_NONE 250 #endif 251 252 /* Bits set in the VMA until the stack is in its final location */ 253 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 254 255 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 256 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 257 #endif 258 259 #ifdef CONFIG_STACK_GROWSUP 260 #define VM_STACK VM_GROWSUP 261 #else 262 #define VM_STACK VM_GROWSDOWN 263 #endif 264 265 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 266 267 /* 268 * Special vmas that are non-mergable, non-mlock()able. 269 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 270 */ 271 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 272 273 /* This mask defines which mm->def_flags a process can inherit its parent */ 274 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 275 276 /* This mask is used to clear all the VMA flags used by mlock */ 277 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 278 279 /* 280 * mapping from the currently active vm_flags protection bits (the 281 * low four bits) to a page protection mask.. 282 */ 283 extern pgprot_t protection_map[16]; 284 285 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 286 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 287 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 288 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 289 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 290 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 291 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 292 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 293 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 294 295 #define FAULT_FLAG_TRACE \ 296 { FAULT_FLAG_WRITE, "WRITE" }, \ 297 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 298 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 299 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 300 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 301 { FAULT_FLAG_TRIED, "TRIED" }, \ 302 { FAULT_FLAG_USER, "USER" }, \ 303 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 304 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 305 306 /* 307 * vm_fault is filled by the the pagefault handler and passed to the vma's 308 * ->fault function. The vma's ->fault is responsible for returning a bitmask 309 * of VM_FAULT_xxx flags that give details about how the fault was handled. 310 * 311 * MM layer fills up gfp_mask for page allocations but fault handler might 312 * alter it if its implementation requires a different allocation context. 313 * 314 * pgoff should be used in favour of virtual_address, if possible. 315 */ 316 struct vm_fault { 317 struct vm_area_struct *vma; /* Target VMA */ 318 unsigned int flags; /* FAULT_FLAG_xxx flags */ 319 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 320 pgoff_t pgoff; /* Logical page offset based on vma */ 321 unsigned long address; /* Faulting virtual address */ 322 pmd_t *pmd; /* Pointer to pmd entry matching 323 * the 'address' */ 324 pud_t *pud; /* Pointer to pud entry matching 325 * the 'address' 326 */ 327 pte_t orig_pte; /* Value of PTE at the time of fault */ 328 329 struct page *cow_page; /* Page handler may use for COW fault */ 330 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 331 struct page *page; /* ->fault handlers should return a 332 * page here, unless VM_FAULT_NOPAGE 333 * is set (which is also implied by 334 * VM_FAULT_ERROR). 335 */ 336 /* These three entries are valid only while holding ptl lock */ 337 pte_t *pte; /* Pointer to pte entry matching 338 * the 'address'. NULL if the page 339 * table hasn't been allocated. 340 */ 341 spinlock_t *ptl; /* Page table lock. 342 * Protects pte page table if 'pte' 343 * is not NULL, otherwise pmd. 344 */ 345 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 346 * vm_ops->map_pages() calls 347 * alloc_set_pte() from atomic context. 348 * do_fault_around() pre-allocates 349 * page table to avoid allocation from 350 * atomic context. 351 */ 352 }; 353 354 /* page entry size for vm->huge_fault() */ 355 enum page_entry_size { 356 PE_SIZE_PTE = 0, 357 PE_SIZE_PMD, 358 PE_SIZE_PUD, 359 }; 360 361 /* 362 * These are the virtual MM functions - opening of an area, closing and 363 * unmapping it (needed to keep files on disk up-to-date etc), pointer 364 * to the functions called when a no-page or a wp-page exception occurs. 365 */ 366 struct vm_operations_struct { 367 void (*open)(struct vm_area_struct * area); 368 void (*close)(struct vm_area_struct * area); 369 int (*mremap)(struct vm_area_struct * area); 370 int (*fault)(struct vm_fault *vmf); 371 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 372 void (*map_pages)(struct vm_fault *vmf, 373 pgoff_t start_pgoff, pgoff_t end_pgoff); 374 375 /* notification that a previously read-only page is about to become 376 * writable, if an error is returned it will cause a SIGBUS */ 377 int (*page_mkwrite)(struct vm_fault *vmf); 378 379 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 380 int (*pfn_mkwrite)(struct vm_fault *vmf); 381 382 /* called by access_process_vm when get_user_pages() fails, typically 383 * for use by special VMAs that can switch between memory and hardware 384 */ 385 int (*access)(struct vm_area_struct *vma, unsigned long addr, 386 void *buf, int len, int write); 387 388 /* Called by the /proc/PID/maps code to ask the vma whether it 389 * has a special name. Returning non-NULL will also cause this 390 * vma to be dumped unconditionally. */ 391 const char *(*name)(struct vm_area_struct *vma); 392 393 #ifdef CONFIG_NUMA 394 /* 395 * set_policy() op must add a reference to any non-NULL @new mempolicy 396 * to hold the policy upon return. Caller should pass NULL @new to 397 * remove a policy and fall back to surrounding context--i.e. do not 398 * install a MPOL_DEFAULT policy, nor the task or system default 399 * mempolicy. 400 */ 401 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 402 403 /* 404 * get_policy() op must add reference [mpol_get()] to any policy at 405 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 406 * in mm/mempolicy.c will do this automatically. 407 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 408 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 409 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 410 * must return NULL--i.e., do not "fallback" to task or system default 411 * policy. 412 */ 413 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 414 unsigned long addr); 415 #endif 416 /* 417 * Called by vm_normal_page() for special PTEs to find the 418 * page for @addr. This is useful if the default behavior 419 * (using pte_page()) would not find the correct page. 420 */ 421 struct page *(*find_special_page)(struct vm_area_struct *vma, 422 unsigned long addr); 423 }; 424 425 struct mmu_gather; 426 struct inode; 427 428 #define page_private(page) ((page)->private) 429 #define set_page_private(page, v) ((page)->private = (v)) 430 431 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 432 static inline int pmd_devmap(pmd_t pmd) 433 { 434 return 0; 435 } 436 static inline int pud_devmap(pud_t pud) 437 { 438 return 0; 439 } 440 static inline int pgd_devmap(pgd_t pgd) 441 { 442 return 0; 443 } 444 #endif 445 446 /* 447 * FIXME: take this include out, include page-flags.h in 448 * files which need it (119 of them) 449 */ 450 #include <linux/page-flags.h> 451 #include <linux/huge_mm.h> 452 453 /* 454 * Methods to modify the page usage count. 455 * 456 * What counts for a page usage: 457 * - cache mapping (page->mapping) 458 * - private data (page->private) 459 * - page mapped in a task's page tables, each mapping 460 * is counted separately 461 * 462 * Also, many kernel routines increase the page count before a critical 463 * routine so they can be sure the page doesn't go away from under them. 464 */ 465 466 /* 467 * Drop a ref, return true if the refcount fell to zero (the page has no users) 468 */ 469 static inline int put_page_testzero(struct page *page) 470 { 471 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 472 return page_ref_dec_and_test(page); 473 } 474 475 /* 476 * Try to grab a ref unless the page has a refcount of zero, return false if 477 * that is the case. 478 * This can be called when MMU is off so it must not access 479 * any of the virtual mappings. 480 */ 481 static inline int get_page_unless_zero(struct page *page) 482 { 483 return page_ref_add_unless(page, 1, 0); 484 } 485 486 extern int page_is_ram(unsigned long pfn); 487 488 enum { 489 REGION_INTERSECTS, 490 REGION_DISJOINT, 491 REGION_MIXED, 492 }; 493 494 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 495 unsigned long desc); 496 497 /* Support for virtually mapped pages */ 498 struct page *vmalloc_to_page(const void *addr); 499 unsigned long vmalloc_to_pfn(const void *addr); 500 501 /* 502 * Determine if an address is within the vmalloc range 503 * 504 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 505 * is no special casing required. 506 */ 507 static inline bool is_vmalloc_addr(const void *x) 508 { 509 #ifdef CONFIG_MMU 510 unsigned long addr = (unsigned long)x; 511 512 return addr >= VMALLOC_START && addr < VMALLOC_END; 513 #else 514 return false; 515 #endif 516 } 517 #ifdef CONFIG_MMU 518 extern int is_vmalloc_or_module_addr(const void *x); 519 #else 520 static inline int is_vmalloc_or_module_addr(const void *x) 521 { 522 return 0; 523 } 524 #endif 525 526 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 527 static inline void *kvmalloc(size_t size, gfp_t flags) 528 { 529 return kvmalloc_node(size, flags, NUMA_NO_NODE); 530 } 531 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 532 { 533 return kvmalloc_node(size, flags | __GFP_ZERO, node); 534 } 535 static inline void *kvzalloc(size_t size, gfp_t flags) 536 { 537 return kvmalloc(size, flags | __GFP_ZERO); 538 } 539 540 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 541 { 542 if (size != 0 && n > SIZE_MAX / size) 543 return NULL; 544 545 return kvmalloc(n * size, flags); 546 } 547 548 extern void kvfree(const void *addr); 549 550 static inline atomic_t *compound_mapcount_ptr(struct page *page) 551 { 552 return &page[1].compound_mapcount; 553 } 554 555 static inline int compound_mapcount(struct page *page) 556 { 557 VM_BUG_ON_PAGE(!PageCompound(page), page); 558 page = compound_head(page); 559 return atomic_read(compound_mapcount_ptr(page)) + 1; 560 } 561 562 /* 563 * The atomic page->_mapcount, starts from -1: so that transitions 564 * both from it and to it can be tracked, using atomic_inc_and_test 565 * and atomic_add_negative(-1). 566 */ 567 static inline void page_mapcount_reset(struct page *page) 568 { 569 atomic_set(&(page)->_mapcount, -1); 570 } 571 572 int __page_mapcount(struct page *page); 573 574 static inline int page_mapcount(struct page *page) 575 { 576 VM_BUG_ON_PAGE(PageSlab(page), page); 577 578 if (unlikely(PageCompound(page))) 579 return __page_mapcount(page); 580 return atomic_read(&page->_mapcount) + 1; 581 } 582 583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 584 int total_mapcount(struct page *page); 585 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 586 #else 587 static inline int total_mapcount(struct page *page) 588 { 589 return page_mapcount(page); 590 } 591 static inline int page_trans_huge_mapcount(struct page *page, 592 int *total_mapcount) 593 { 594 int mapcount = page_mapcount(page); 595 if (total_mapcount) 596 *total_mapcount = mapcount; 597 return mapcount; 598 } 599 #endif 600 601 static inline struct page *virt_to_head_page(const void *x) 602 { 603 struct page *page = virt_to_page(x); 604 605 return compound_head(page); 606 } 607 608 void __put_page(struct page *page); 609 610 void put_pages_list(struct list_head *pages); 611 612 void split_page(struct page *page, unsigned int order); 613 614 /* 615 * Compound pages have a destructor function. Provide a 616 * prototype for that function and accessor functions. 617 * These are _only_ valid on the head of a compound page. 618 */ 619 typedef void compound_page_dtor(struct page *); 620 621 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 622 enum compound_dtor_id { 623 NULL_COMPOUND_DTOR, 624 COMPOUND_PAGE_DTOR, 625 #ifdef CONFIG_HUGETLB_PAGE 626 HUGETLB_PAGE_DTOR, 627 #endif 628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 629 TRANSHUGE_PAGE_DTOR, 630 #endif 631 NR_COMPOUND_DTORS, 632 }; 633 extern compound_page_dtor * const compound_page_dtors[]; 634 635 static inline void set_compound_page_dtor(struct page *page, 636 enum compound_dtor_id compound_dtor) 637 { 638 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 639 page[1].compound_dtor = compound_dtor; 640 } 641 642 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 643 { 644 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 645 return compound_page_dtors[page[1].compound_dtor]; 646 } 647 648 static inline unsigned int compound_order(struct page *page) 649 { 650 if (!PageHead(page)) 651 return 0; 652 return page[1].compound_order; 653 } 654 655 static inline void set_compound_order(struct page *page, unsigned int order) 656 { 657 page[1].compound_order = order; 658 } 659 660 void free_compound_page(struct page *page); 661 662 #ifdef CONFIG_MMU 663 /* 664 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 665 * servicing faults for write access. In the normal case, do always want 666 * pte_mkwrite. But get_user_pages can cause write faults for mappings 667 * that do not have writing enabled, when used by access_process_vm. 668 */ 669 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 670 { 671 if (likely(vma->vm_flags & VM_WRITE)) 672 pte = pte_mkwrite(pte); 673 return pte; 674 } 675 676 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 677 struct page *page); 678 int finish_fault(struct vm_fault *vmf); 679 int finish_mkwrite_fault(struct vm_fault *vmf); 680 #endif 681 682 /* 683 * Multiple processes may "see" the same page. E.g. for untouched 684 * mappings of /dev/null, all processes see the same page full of 685 * zeroes, and text pages of executables and shared libraries have 686 * only one copy in memory, at most, normally. 687 * 688 * For the non-reserved pages, page_count(page) denotes a reference count. 689 * page_count() == 0 means the page is free. page->lru is then used for 690 * freelist management in the buddy allocator. 691 * page_count() > 0 means the page has been allocated. 692 * 693 * Pages are allocated by the slab allocator in order to provide memory 694 * to kmalloc and kmem_cache_alloc. In this case, the management of the 695 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 696 * unless a particular usage is carefully commented. (the responsibility of 697 * freeing the kmalloc memory is the caller's, of course). 698 * 699 * A page may be used by anyone else who does a __get_free_page(). 700 * In this case, page_count still tracks the references, and should only 701 * be used through the normal accessor functions. The top bits of page->flags 702 * and page->virtual store page management information, but all other fields 703 * are unused and could be used privately, carefully. The management of this 704 * page is the responsibility of the one who allocated it, and those who have 705 * subsequently been given references to it. 706 * 707 * The other pages (we may call them "pagecache pages") are completely 708 * managed by the Linux memory manager: I/O, buffers, swapping etc. 709 * The following discussion applies only to them. 710 * 711 * A pagecache page contains an opaque `private' member, which belongs to the 712 * page's address_space. Usually, this is the address of a circular list of 713 * the page's disk buffers. PG_private must be set to tell the VM to call 714 * into the filesystem to release these pages. 715 * 716 * A page may belong to an inode's memory mapping. In this case, page->mapping 717 * is the pointer to the inode, and page->index is the file offset of the page, 718 * in units of PAGE_SIZE. 719 * 720 * If pagecache pages are not associated with an inode, they are said to be 721 * anonymous pages. These may become associated with the swapcache, and in that 722 * case PG_swapcache is set, and page->private is an offset into the swapcache. 723 * 724 * In either case (swapcache or inode backed), the pagecache itself holds one 725 * reference to the page. Setting PG_private should also increment the 726 * refcount. The each user mapping also has a reference to the page. 727 * 728 * The pagecache pages are stored in a per-mapping radix tree, which is 729 * rooted at mapping->page_tree, and indexed by offset. 730 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 731 * lists, we instead now tag pages as dirty/writeback in the radix tree. 732 * 733 * All pagecache pages may be subject to I/O: 734 * - inode pages may need to be read from disk, 735 * - inode pages which have been modified and are MAP_SHARED may need 736 * to be written back to the inode on disk, 737 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 738 * modified may need to be swapped out to swap space and (later) to be read 739 * back into memory. 740 */ 741 742 /* 743 * The zone field is never updated after free_area_init_core() 744 * sets it, so none of the operations on it need to be atomic. 745 */ 746 747 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 748 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 749 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 750 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 751 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 752 753 /* 754 * Define the bit shifts to access each section. For non-existent 755 * sections we define the shift as 0; that plus a 0 mask ensures 756 * the compiler will optimise away reference to them. 757 */ 758 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 759 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 760 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 761 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 762 763 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 764 #ifdef NODE_NOT_IN_PAGE_FLAGS 765 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 766 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 767 SECTIONS_PGOFF : ZONES_PGOFF) 768 #else 769 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 770 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 771 NODES_PGOFF : ZONES_PGOFF) 772 #endif 773 774 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 775 776 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 777 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 778 #endif 779 780 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 781 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 782 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 783 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 784 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 785 786 static inline enum zone_type page_zonenum(const struct page *page) 787 { 788 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 789 } 790 791 #ifdef CONFIG_ZONE_DEVICE 792 static inline bool is_zone_device_page(const struct page *page) 793 { 794 return page_zonenum(page) == ZONE_DEVICE; 795 } 796 #else 797 static inline bool is_zone_device_page(const struct page *page) 798 { 799 return false; 800 } 801 #endif 802 803 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) 804 void put_zone_device_private_or_public_page(struct page *page); 805 DECLARE_STATIC_KEY_FALSE(device_private_key); 806 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key) 807 static inline bool is_device_private_page(const struct page *page); 808 static inline bool is_device_public_page(const struct page *page); 809 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 810 static inline void put_zone_device_private_or_public_page(struct page *page) 811 { 812 } 813 #define IS_HMM_ENABLED 0 814 static inline bool is_device_private_page(const struct page *page) 815 { 816 return false; 817 } 818 static inline bool is_device_public_page(const struct page *page) 819 { 820 return false; 821 } 822 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 823 824 825 static inline void get_page(struct page *page) 826 { 827 page = compound_head(page); 828 /* 829 * Getting a normal page or the head of a compound page 830 * requires to already have an elevated page->_refcount. 831 */ 832 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 833 page_ref_inc(page); 834 } 835 836 static inline void put_page(struct page *page) 837 { 838 page = compound_head(page); 839 840 /* 841 * For private device pages we need to catch refcount transition from 842 * 2 to 1, when refcount reach one it means the private device page is 843 * free and we need to inform the device driver through callback. See 844 * include/linux/memremap.h and HMM for details. 845 */ 846 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) || 847 unlikely(is_device_public_page(page)))) { 848 put_zone_device_private_or_public_page(page); 849 return; 850 } 851 852 if (put_page_testzero(page)) 853 __put_page(page); 854 } 855 856 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 857 #define SECTION_IN_PAGE_FLAGS 858 #endif 859 860 /* 861 * The identification function is mainly used by the buddy allocator for 862 * determining if two pages could be buddies. We are not really identifying 863 * the zone since we could be using the section number id if we do not have 864 * node id available in page flags. 865 * We only guarantee that it will return the same value for two combinable 866 * pages in a zone. 867 */ 868 static inline int page_zone_id(struct page *page) 869 { 870 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 871 } 872 873 static inline int zone_to_nid(struct zone *zone) 874 { 875 #ifdef CONFIG_NUMA 876 return zone->node; 877 #else 878 return 0; 879 #endif 880 } 881 882 #ifdef NODE_NOT_IN_PAGE_FLAGS 883 extern int page_to_nid(const struct page *page); 884 #else 885 static inline int page_to_nid(const struct page *page) 886 { 887 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 888 } 889 #endif 890 891 #ifdef CONFIG_NUMA_BALANCING 892 static inline int cpu_pid_to_cpupid(int cpu, int pid) 893 { 894 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 895 } 896 897 static inline int cpupid_to_pid(int cpupid) 898 { 899 return cpupid & LAST__PID_MASK; 900 } 901 902 static inline int cpupid_to_cpu(int cpupid) 903 { 904 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 905 } 906 907 static inline int cpupid_to_nid(int cpupid) 908 { 909 return cpu_to_node(cpupid_to_cpu(cpupid)); 910 } 911 912 static inline bool cpupid_pid_unset(int cpupid) 913 { 914 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 915 } 916 917 static inline bool cpupid_cpu_unset(int cpupid) 918 { 919 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 920 } 921 922 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 923 { 924 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 925 } 926 927 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 928 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 929 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 930 { 931 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 932 } 933 934 static inline int page_cpupid_last(struct page *page) 935 { 936 return page->_last_cpupid; 937 } 938 static inline void page_cpupid_reset_last(struct page *page) 939 { 940 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 941 } 942 #else 943 static inline int page_cpupid_last(struct page *page) 944 { 945 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 946 } 947 948 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 949 950 static inline void page_cpupid_reset_last(struct page *page) 951 { 952 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 953 } 954 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 955 #else /* !CONFIG_NUMA_BALANCING */ 956 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 957 { 958 return page_to_nid(page); /* XXX */ 959 } 960 961 static inline int page_cpupid_last(struct page *page) 962 { 963 return page_to_nid(page); /* XXX */ 964 } 965 966 static inline int cpupid_to_nid(int cpupid) 967 { 968 return -1; 969 } 970 971 static inline int cpupid_to_pid(int cpupid) 972 { 973 return -1; 974 } 975 976 static inline int cpupid_to_cpu(int cpupid) 977 { 978 return -1; 979 } 980 981 static inline int cpu_pid_to_cpupid(int nid, int pid) 982 { 983 return -1; 984 } 985 986 static inline bool cpupid_pid_unset(int cpupid) 987 { 988 return 1; 989 } 990 991 static inline void page_cpupid_reset_last(struct page *page) 992 { 993 } 994 995 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 996 { 997 return false; 998 } 999 #endif /* CONFIG_NUMA_BALANCING */ 1000 1001 static inline struct zone *page_zone(const struct page *page) 1002 { 1003 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1004 } 1005 1006 static inline pg_data_t *page_pgdat(const struct page *page) 1007 { 1008 return NODE_DATA(page_to_nid(page)); 1009 } 1010 1011 #ifdef SECTION_IN_PAGE_FLAGS 1012 static inline void set_page_section(struct page *page, unsigned long section) 1013 { 1014 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1015 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1016 } 1017 1018 static inline unsigned long page_to_section(const struct page *page) 1019 { 1020 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1021 } 1022 #endif 1023 1024 static inline void set_page_zone(struct page *page, enum zone_type zone) 1025 { 1026 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1027 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1028 } 1029 1030 static inline void set_page_node(struct page *page, unsigned long node) 1031 { 1032 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1033 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1034 } 1035 1036 static inline void set_page_links(struct page *page, enum zone_type zone, 1037 unsigned long node, unsigned long pfn) 1038 { 1039 set_page_zone(page, zone); 1040 set_page_node(page, node); 1041 #ifdef SECTION_IN_PAGE_FLAGS 1042 set_page_section(page, pfn_to_section_nr(pfn)); 1043 #endif 1044 } 1045 1046 #ifdef CONFIG_MEMCG 1047 static inline struct mem_cgroup *page_memcg(struct page *page) 1048 { 1049 return page->mem_cgroup; 1050 } 1051 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1052 { 1053 WARN_ON_ONCE(!rcu_read_lock_held()); 1054 return READ_ONCE(page->mem_cgroup); 1055 } 1056 #else 1057 static inline struct mem_cgroup *page_memcg(struct page *page) 1058 { 1059 return NULL; 1060 } 1061 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1062 { 1063 WARN_ON_ONCE(!rcu_read_lock_held()); 1064 return NULL; 1065 } 1066 #endif 1067 1068 /* 1069 * Some inline functions in vmstat.h depend on page_zone() 1070 */ 1071 #include <linux/vmstat.h> 1072 1073 static __always_inline void *lowmem_page_address(const struct page *page) 1074 { 1075 return page_to_virt(page); 1076 } 1077 1078 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1079 #define HASHED_PAGE_VIRTUAL 1080 #endif 1081 1082 #if defined(WANT_PAGE_VIRTUAL) 1083 static inline void *page_address(const struct page *page) 1084 { 1085 return page->virtual; 1086 } 1087 static inline void set_page_address(struct page *page, void *address) 1088 { 1089 page->virtual = address; 1090 } 1091 #define page_address_init() do { } while(0) 1092 #endif 1093 1094 #if defined(HASHED_PAGE_VIRTUAL) 1095 void *page_address(const struct page *page); 1096 void set_page_address(struct page *page, void *virtual); 1097 void page_address_init(void); 1098 #endif 1099 1100 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1101 #define page_address(page) lowmem_page_address(page) 1102 #define set_page_address(page, address) do { } while(0) 1103 #define page_address_init() do { } while(0) 1104 #endif 1105 1106 extern void *page_rmapping(struct page *page); 1107 extern struct anon_vma *page_anon_vma(struct page *page); 1108 extern struct address_space *page_mapping(struct page *page); 1109 1110 extern struct address_space *__page_file_mapping(struct page *); 1111 1112 static inline 1113 struct address_space *page_file_mapping(struct page *page) 1114 { 1115 if (unlikely(PageSwapCache(page))) 1116 return __page_file_mapping(page); 1117 1118 return page->mapping; 1119 } 1120 1121 extern pgoff_t __page_file_index(struct page *page); 1122 1123 /* 1124 * Return the pagecache index of the passed page. Regular pagecache pages 1125 * use ->index whereas swapcache pages use swp_offset(->private) 1126 */ 1127 static inline pgoff_t page_index(struct page *page) 1128 { 1129 if (unlikely(PageSwapCache(page))) 1130 return __page_file_index(page); 1131 return page->index; 1132 } 1133 1134 bool page_mapped(struct page *page); 1135 struct address_space *page_mapping(struct page *page); 1136 1137 /* 1138 * Return true only if the page has been allocated with 1139 * ALLOC_NO_WATERMARKS and the low watermark was not 1140 * met implying that the system is under some pressure. 1141 */ 1142 static inline bool page_is_pfmemalloc(struct page *page) 1143 { 1144 /* 1145 * Page index cannot be this large so this must be 1146 * a pfmemalloc page. 1147 */ 1148 return page->index == -1UL; 1149 } 1150 1151 /* 1152 * Only to be called by the page allocator on a freshly allocated 1153 * page. 1154 */ 1155 static inline void set_page_pfmemalloc(struct page *page) 1156 { 1157 page->index = -1UL; 1158 } 1159 1160 static inline void clear_page_pfmemalloc(struct page *page) 1161 { 1162 page->index = 0; 1163 } 1164 1165 /* 1166 * Different kinds of faults, as returned by handle_mm_fault(). 1167 * Used to decide whether a process gets delivered SIGBUS or 1168 * just gets major/minor fault counters bumped up. 1169 */ 1170 1171 #define VM_FAULT_OOM 0x0001 1172 #define VM_FAULT_SIGBUS 0x0002 1173 #define VM_FAULT_MAJOR 0x0004 1174 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1175 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1176 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1177 #define VM_FAULT_SIGSEGV 0x0040 1178 1179 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1180 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1181 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1182 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1183 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1184 1185 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1186 1187 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1188 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1189 VM_FAULT_FALLBACK) 1190 1191 #define VM_FAULT_RESULT_TRACE \ 1192 { VM_FAULT_OOM, "OOM" }, \ 1193 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1194 { VM_FAULT_MAJOR, "MAJOR" }, \ 1195 { VM_FAULT_WRITE, "WRITE" }, \ 1196 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1197 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1198 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1199 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1200 { VM_FAULT_LOCKED, "LOCKED" }, \ 1201 { VM_FAULT_RETRY, "RETRY" }, \ 1202 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1203 { VM_FAULT_DONE_COW, "DONE_COW" } 1204 1205 /* Encode hstate index for a hwpoisoned large page */ 1206 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1207 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1208 1209 /* 1210 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1211 */ 1212 extern void pagefault_out_of_memory(void); 1213 1214 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1215 1216 /* 1217 * Flags passed to show_mem() and show_free_areas() to suppress output in 1218 * various contexts. 1219 */ 1220 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1221 1222 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1223 1224 extern bool can_do_mlock(void); 1225 extern int user_shm_lock(size_t, struct user_struct *); 1226 extern void user_shm_unlock(size_t, struct user_struct *); 1227 1228 /* 1229 * Parameter block passed down to zap_pte_range in exceptional cases. 1230 */ 1231 struct zap_details { 1232 struct address_space *check_mapping; /* Check page->mapping if set */ 1233 pgoff_t first_index; /* Lowest page->index to unmap */ 1234 pgoff_t last_index; /* Highest page->index to unmap */ 1235 }; 1236 1237 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1238 pte_t pte, bool with_public_device); 1239 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1240 1241 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1242 pmd_t pmd); 1243 1244 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1245 unsigned long size); 1246 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1247 unsigned long size); 1248 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1249 unsigned long start, unsigned long end); 1250 1251 /** 1252 * mm_walk - callbacks for walk_page_range 1253 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1254 * this handler should only handle pud_trans_huge() puds. 1255 * the pmd_entry or pte_entry callbacks will be used for 1256 * regular PUDs. 1257 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1258 * this handler is required to be able to handle 1259 * pmd_trans_huge() pmds. They may simply choose to 1260 * split_huge_page() instead of handling it explicitly. 1261 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1262 * @pte_hole: if set, called for each hole at all levels 1263 * @hugetlb_entry: if set, called for each hugetlb entry 1264 * @test_walk: caller specific callback function to determine whether 1265 * we walk over the current vma or not. Returning 0 1266 * value means "do page table walk over the current vma," 1267 * and a negative one means "abort current page table walk 1268 * right now." 1 means "skip the current vma." 1269 * @mm: mm_struct representing the target process of page table walk 1270 * @vma: vma currently walked (NULL if walking outside vmas) 1271 * @private: private data for callbacks' usage 1272 * 1273 * (see the comment on walk_page_range() for more details) 1274 */ 1275 struct mm_walk { 1276 int (*pud_entry)(pud_t *pud, unsigned long addr, 1277 unsigned long next, struct mm_walk *walk); 1278 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1279 unsigned long next, struct mm_walk *walk); 1280 int (*pte_entry)(pte_t *pte, unsigned long addr, 1281 unsigned long next, struct mm_walk *walk); 1282 int (*pte_hole)(unsigned long addr, unsigned long next, 1283 struct mm_walk *walk); 1284 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1285 unsigned long addr, unsigned long next, 1286 struct mm_walk *walk); 1287 int (*test_walk)(unsigned long addr, unsigned long next, 1288 struct mm_walk *walk); 1289 struct mm_struct *mm; 1290 struct vm_area_struct *vma; 1291 void *private; 1292 }; 1293 1294 int walk_page_range(unsigned long addr, unsigned long end, 1295 struct mm_walk *walk); 1296 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1297 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1298 unsigned long end, unsigned long floor, unsigned long ceiling); 1299 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1300 struct vm_area_struct *vma); 1301 void unmap_mapping_range(struct address_space *mapping, 1302 loff_t const holebegin, loff_t const holelen, int even_cows); 1303 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1304 unsigned long *start, unsigned long *end, 1305 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1306 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1307 unsigned long *pfn); 1308 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1309 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1310 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1311 void *buf, int len, int write); 1312 1313 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1314 loff_t const holebegin, loff_t const holelen) 1315 { 1316 unmap_mapping_range(mapping, holebegin, holelen, 0); 1317 } 1318 1319 extern void truncate_pagecache(struct inode *inode, loff_t new); 1320 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1321 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1322 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1323 int truncate_inode_page(struct address_space *mapping, struct page *page); 1324 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1325 int invalidate_inode_page(struct page *page); 1326 1327 #ifdef CONFIG_MMU 1328 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1329 unsigned int flags); 1330 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1331 unsigned long address, unsigned int fault_flags, 1332 bool *unlocked); 1333 #else 1334 static inline int handle_mm_fault(struct vm_area_struct *vma, 1335 unsigned long address, unsigned int flags) 1336 { 1337 /* should never happen if there's no MMU */ 1338 BUG(); 1339 return VM_FAULT_SIGBUS; 1340 } 1341 static inline int fixup_user_fault(struct task_struct *tsk, 1342 struct mm_struct *mm, unsigned long address, 1343 unsigned int fault_flags, bool *unlocked) 1344 { 1345 /* should never happen if there's no MMU */ 1346 BUG(); 1347 return -EFAULT; 1348 } 1349 #endif 1350 1351 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1352 unsigned int gup_flags); 1353 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1354 void *buf, int len, unsigned int gup_flags); 1355 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1356 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1357 1358 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1359 unsigned long start, unsigned long nr_pages, 1360 unsigned int gup_flags, struct page **pages, 1361 struct vm_area_struct **vmas, int *locked); 1362 long get_user_pages(unsigned long start, unsigned long nr_pages, 1363 unsigned int gup_flags, struct page **pages, 1364 struct vm_area_struct **vmas); 1365 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1366 unsigned int gup_flags, struct page **pages, int *locked); 1367 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1368 struct page **pages, unsigned int gup_flags); 1369 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1370 struct page **pages); 1371 1372 /* Container for pinned pfns / pages */ 1373 struct frame_vector { 1374 unsigned int nr_allocated; /* Number of frames we have space for */ 1375 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1376 bool got_ref; /* Did we pin pages by getting page ref? */ 1377 bool is_pfns; /* Does array contain pages or pfns? */ 1378 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1379 * pfns_vector_pages() or pfns_vector_pfns() 1380 * for access */ 1381 }; 1382 1383 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1384 void frame_vector_destroy(struct frame_vector *vec); 1385 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1386 unsigned int gup_flags, struct frame_vector *vec); 1387 void put_vaddr_frames(struct frame_vector *vec); 1388 int frame_vector_to_pages(struct frame_vector *vec); 1389 void frame_vector_to_pfns(struct frame_vector *vec); 1390 1391 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1392 { 1393 return vec->nr_frames; 1394 } 1395 1396 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1397 { 1398 if (vec->is_pfns) { 1399 int err = frame_vector_to_pages(vec); 1400 1401 if (err) 1402 return ERR_PTR(err); 1403 } 1404 return (struct page **)(vec->ptrs); 1405 } 1406 1407 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1408 { 1409 if (!vec->is_pfns) 1410 frame_vector_to_pfns(vec); 1411 return (unsigned long *)(vec->ptrs); 1412 } 1413 1414 struct kvec; 1415 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1416 struct page **pages); 1417 int get_kernel_page(unsigned long start, int write, struct page **pages); 1418 struct page *get_dump_page(unsigned long addr); 1419 1420 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1421 extern void do_invalidatepage(struct page *page, unsigned int offset, 1422 unsigned int length); 1423 1424 int __set_page_dirty_nobuffers(struct page *page); 1425 int __set_page_dirty_no_writeback(struct page *page); 1426 int redirty_page_for_writepage(struct writeback_control *wbc, 1427 struct page *page); 1428 void account_page_dirtied(struct page *page, struct address_space *mapping); 1429 void account_page_cleaned(struct page *page, struct address_space *mapping, 1430 struct bdi_writeback *wb); 1431 int set_page_dirty(struct page *page); 1432 int set_page_dirty_lock(struct page *page); 1433 void cancel_dirty_page(struct page *page); 1434 int clear_page_dirty_for_io(struct page *page); 1435 1436 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1437 1438 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1439 { 1440 return !vma->vm_ops; 1441 } 1442 1443 #ifdef CONFIG_SHMEM 1444 /* 1445 * The vma_is_shmem is not inline because it is used only by slow 1446 * paths in userfault. 1447 */ 1448 bool vma_is_shmem(struct vm_area_struct *vma); 1449 #else 1450 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1451 #endif 1452 1453 int vma_is_stack_for_current(struct vm_area_struct *vma); 1454 1455 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1456 unsigned long old_addr, struct vm_area_struct *new_vma, 1457 unsigned long new_addr, unsigned long len, 1458 bool need_rmap_locks); 1459 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1460 unsigned long end, pgprot_t newprot, 1461 int dirty_accountable, int prot_numa); 1462 extern int mprotect_fixup(struct vm_area_struct *vma, 1463 struct vm_area_struct **pprev, unsigned long start, 1464 unsigned long end, unsigned long newflags); 1465 1466 /* 1467 * doesn't attempt to fault and will return short. 1468 */ 1469 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1470 struct page **pages); 1471 /* 1472 * per-process(per-mm_struct) statistics. 1473 */ 1474 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1475 { 1476 long val = atomic_long_read(&mm->rss_stat.count[member]); 1477 1478 #ifdef SPLIT_RSS_COUNTING 1479 /* 1480 * counter is updated in asynchronous manner and may go to minus. 1481 * But it's never be expected number for users. 1482 */ 1483 if (val < 0) 1484 val = 0; 1485 #endif 1486 return (unsigned long)val; 1487 } 1488 1489 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1490 { 1491 atomic_long_add(value, &mm->rss_stat.count[member]); 1492 } 1493 1494 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1495 { 1496 atomic_long_inc(&mm->rss_stat.count[member]); 1497 } 1498 1499 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1500 { 1501 atomic_long_dec(&mm->rss_stat.count[member]); 1502 } 1503 1504 /* Optimized variant when page is already known not to be PageAnon */ 1505 static inline int mm_counter_file(struct page *page) 1506 { 1507 if (PageSwapBacked(page)) 1508 return MM_SHMEMPAGES; 1509 return MM_FILEPAGES; 1510 } 1511 1512 static inline int mm_counter(struct page *page) 1513 { 1514 if (PageAnon(page)) 1515 return MM_ANONPAGES; 1516 return mm_counter_file(page); 1517 } 1518 1519 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1520 { 1521 return get_mm_counter(mm, MM_FILEPAGES) + 1522 get_mm_counter(mm, MM_ANONPAGES) + 1523 get_mm_counter(mm, MM_SHMEMPAGES); 1524 } 1525 1526 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1527 { 1528 return max(mm->hiwater_rss, get_mm_rss(mm)); 1529 } 1530 1531 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1532 { 1533 return max(mm->hiwater_vm, mm->total_vm); 1534 } 1535 1536 static inline void update_hiwater_rss(struct mm_struct *mm) 1537 { 1538 unsigned long _rss = get_mm_rss(mm); 1539 1540 if ((mm)->hiwater_rss < _rss) 1541 (mm)->hiwater_rss = _rss; 1542 } 1543 1544 static inline void update_hiwater_vm(struct mm_struct *mm) 1545 { 1546 if (mm->hiwater_vm < mm->total_vm) 1547 mm->hiwater_vm = mm->total_vm; 1548 } 1549 1550 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1551 { 1552 mm->hiwater_rss = get_mm_rss(mm); 1553 } 1554 1555 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1556 struct mm_struct *mm) 1557 { 1558 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1559 1560 if (*maxrss < hiwater_rss) 1561 *maxrss = hiwater_rss; 1562 } 1563 1564 #if defined(SPLIT_RSS_COUNTING) 1565 void sync_mm_rss(struct mm_struct *mm); 1566 #else 1567 static inline void sync_mm_rss(struct mm_struct *mm) 1568 { 1569 } 1570 #endif 1571 1572 #ifndef __HAVE_ARCH_PTE_DEVMAP 1573 static inline int pte_devmap(pte_t pte) 1574 { 1575 return 0; 1576 } 1577 #endif 1578 1579 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1580 1581 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1582 spinlock_t **ptl); 1583 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1584 spinlock_t **ptl) 1585 { 1586 pte_t *ptep; 1587 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1588 return ptep; 1589 } 1590 1591 #ifdef __PAGETABLE_P4D_FOLDED 1592 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1593 unsigned long address) 1594 { 1595 return 0; 1596 } 1597 #else 1598 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1599 #endif 1600 1601 #ifdef __PAGETABLE_PUD_FOLDED 1602 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1603 unsigned long address) 1604 { 1605 return 0; 1606 } 1607 #else 1608 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1609 #endif 1610 1611 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1612 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1613 unsigned long address) 1614 { 1615 return 0; 1616 } 1617 1618 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1619 1620 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1621 { 1622 return 0; 1623 } 1624 1625 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1626 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1627 1628 #else 1629 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1630 1631 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1632 { 1633 atomic_long_set(&mm->nr_pmds, 0); 1634 } 1635 1636 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1637 { 1638 return atomic_long_read(&mm->nr_pmds); 1639 } 1640 1641 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1642 { 1643 atomic_long_inc(&mm->nr_pmds); 1644 } 1645 1646 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1647 { 1648 atomic_long_dec(&mm->nr_pmds); 1649 } 1650 #endif 1651 1652 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1653 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1654 1655 /* 1656 * The following ifdef needed to get the 4level-fixup.h header to work. 1657 * Remove it when 4level-fixup.h has been removed. 1658 */ 1659 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1660 1661 #ifndef __ARCH_HAS_5LEVEL_HACK 1662 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1663 unsigned long address) 1664 { 1665 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1666 NULL : p4d_offset(pgd, address); 1667 } 1668 1669 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1670 unsigned long address) 1671 { 1672 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1673 NULL : pud_offset(p4d, address); 1674 } 1675 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1676 1677 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1678 { 1679 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1680 NULL: pmd_offset(pud, address); 1681 } 1682 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1683 1684 #if USE_SPLIT_PTE_PTLOCKS 1685 #if ALLOC_SPLIT_PTLOCKS 1686 void __init ptlock_cache_init(void); 1687 extern bool ptlock_alloc(struct page *page); 1688 extern void ptlock_free(struct page *page); 1689 1690 static inline spinlock_t *ptlock_ptr(struct page *page) 1691 { 1692 return page->ptl; 1693 } 1694 #else /* ALLOC_SPLIT_PTLOCKS */ 1695 static inline void ptlock_cache_init(void) 1696 { 1697 } 1698 1699 static inline bool ptlock_alloc(struct page *page) 1700 { 1701 return true; 1702 } 1703 1704 static inline void ptlock_free(struct page *page) 1705 { 1706 } 1707 1708 static inline spinlock_t *ptlock_ptr(struct page *page) 1709 { 1710 return &page->ptl; 1711 } 1712 #endif /* ALLOC_SPLIT_PTLOCKS */ 1713 1714 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1715 { 1716 return ptlock_ptr(pmd_page(*pmd)); 1717 } 1718 1719 static inline bool ptlock_init(struct page *page) 1720 { 1721 /* 1722 * prep_new_page() initialize page->private (and therefore page->ptl) 1723 * with 0. Make sure nobody took it in use in between. 1724 * 1725 * It can happen if arch try to use slab for page table allocation: 1726 * slab code uses page->slab_cache, which share storage with page->ptl. 1727 */ 1728 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1729 if (!ptlock_alloc(page)) 1730 return false; 1731 spin_lock_init(ptlock_ptr(page)); 1732 return true; 1733 } 1734 1735 /* Reset page->mapping so free_pages_check won't complain. */ 1736 static inline void pte_lock_deinit(struct page *page) 1737 { 1738 page->mapping = NULL; 1739 ptlock_free(page); 1740 } 1741 1742 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1743 /* 1744 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1745 */ 1746 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1747 { 1748 return &mm->page_table_lock; 1749 } 1750 static inline void ptlock_cache_init(void) {} 1751 static inline bool ptlock_init(struct page *page) { return true; } 1752 static inline void pte_lock_deinit(struct page *page) {} 1753 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1754 1755 static inline void pgtable_init(void) 1756 { 1757 ptlock_cache_init(); 1758 pgtable_cache_init(); 1759 } 1760 1761 static inline bool pgtable_page_ctor(struct page *page) 1762 { 1763 if (!ptlock_init(page)) 1764 return false; 1765 inc_zone_page_state(page, NR_PAGETABLE); 1766 return true; 1767 } 1768 1769 static inline void pgtable_page_dtor(struct page *page) 1770 { 1771 pte_lock_deinit(page); 1772 dec_zone_page_state(page, NR_PAGETABLE); 1773 } 1774 1775 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1776 ({ \ 1777 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1778 pte_t *__pte = pte_offset_map(pmd, address); \ 1779 *(ptlp) = __ptl; \ 1780 spin_lock(__ptl); \ 1781 __pte; \ 1782 }) 1783 1784 #define pte_unmap_unlock(pte, ptl) do { \ 1785 spin_unlock(ptl); \ 1786 pte_unmap(pte); \ 1787 } while (0) 1788 1789 #define pte_alloc(mm, pmd, address) \ 1790 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1791 1792 #define pte_alloc_map(mm, pmd, address) \ 1793 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1794 1795 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1796 (pte_alloc(mm, pmd, address) ? \ 1797 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1798 1799 #define pte_alloc_kernel(pmd, address) \ 1800 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1801 NULL: pte_offset_kernel(pmd, address)) 1802 1803 #if USE_SPLIT_PMD_PTLOCKS 1804 1805 static struct page *pmd_to_page(pmd_t *pmd) 1806 { 1807 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1808 return virt_to_page((void *)((unsigned long) pmd & mask)); 1809 } 1810 1811 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1812 { 1813 return ptlock_ptr(pmd_to_page(pmd)); 1814 } 1815 1816 static inline bool pgtable_pmd_page_ctor(struct page *page) 1817 { 1818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1819 page->pmd_huge_pte = NULL; 1820 #endif 1821 return ptlock_init(page); 1822 } 1823 1824 static inline void pgtable_pmd_page_dtor(struct page *page) 1825 { 1826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1827 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1828 #endif 1829 ptlock_free(page); 1830 } 1831 1832 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1833 1834 #else 1835 1836 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1837 { 1838 return &mm->page_table_lock; 1839 } 1840 1841 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1842 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1843 1844 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1845 1846 #endif 1847 1848 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1849 { 1850 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1851 spin_lock(ptl); 1852 return ptl; 1853 } 1854 1855 /* 1856 * No scalability reason to split PUD locks yet, but follow the same pattern 1857 * as the PMD locks to make it easier if we decide to. The VM should not be 1858 * considered ready to switch to split PUD locks yet; there may be places 1859 * which need to be converted from page_table_lock. 1860 */ 1861 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1862 { 1863 return &mm->page_table_lock; 1864 } 1865 1866 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1867 { 1868 spinlock_t *ptl = pud_lockptr(mm, pud); 1869 1870 spin_lock(ptl); 1871 return ptl; 1872 } 1873 1874 extern void __init pagecache_init(void); 1875 extern void free_area_init(unsigned long * zones_size); 1876 extern void free_area_init_node(int nid, unsigned long * zones_size, 1877 unsigned long zone_start_pfn, unsigned long *zholes_size); 1878 extern void free_initmem(void); 1879 1880 /* 1881 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1882 * into the buddy system. The freed pages will be poisoned with pattern 1883 * "poison" if it's within range [0, UCHAR_MAX]. 1884 * Return pages freed into the buddy system. 1885 */ 1886 extern unsigned long free_reserved_area(void *start, void *end, 1887 int poison, char *s); 1888 1889 #ifdef CONFIG_HIGHMEM 1890 /* 1891 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1892 * and totalram_pages. 1893 */ 1894 extern void free_highmem_page(struct page *page); 1895 #endif 1896 1897 extern void adjust_managed_page_count(struct page *page, long count); 1898 extern void mem_init_print_info(const char *str); 1899 1900 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1901 1902 /* Free the reserved page into the buddy system, so it gets managed. */ 1903 static inline void __free_reserved_page(struct page *page) 1904 { 1905 ClearPageReserved(page); 1906 init_page_count(page); 1907 __free_page(page); 1908 } 1909 1910 static inline void free_reserved_page(struct page *page) 1911 { 1912 __free_reserved_page(page); 1913 adjust_managed_page_count(page, 1); 1914 } 1915 1916 static inline void mark_page_reserved(struct page *page) 1917 { 1918 SetPageReserved(page); 1919 adjust_managed_page_count(page, -1); 1920 } 1921 1922 /* 1923 * Default method to free all the __init memory into the buddy system. 1924 * The freed pages will be poisoned with pattern "poison" if it's within 1925 * range [0, UCHAR_MAX]. 1926 * Return pages freed into the buddy system. 1927 */ 1928 static inline unsigned long free_initmem_default(int poison) 1929 { 1930 extern char __init_begin[], __init_end[]; 1931 1932 return free_reserved_area(&__init_begin, &__init_end, 1933 poison, "unused kernel"); 1934 } 1935 1936 static inline unsigned long get_num_physpages(void) 1937 { 1938 int nid; 1939 unsigned long phys_pages = 0; 1940 1941 for_each_online_node(nid) 1942 phys_pages += node_present_pages(nid); 1943 1944 return phys_pages; 1945 } 1946 1947 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1948 /* 1949 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1950 * zones, allocate the backing mem_map and account for memory holes in a more 1951 * architecture independent manner. This is a substitute for creating the 1952 * zone_sizes[] and zholes_size[] arrays and passing them to 1953 * free_area_init_node() 1954 * 1955 * An architecture is expected to register range of page frames backed by 1956 * physical memory with memblock_add[_node]() before calling 1957 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1958 * usage, an architecture is expected to do something like 1959 * 1960 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1961 * max_highmem_pfn}; 1962 * for_each_valid_physical_page_range() 1963 * memblock_add_node(base, size, nid) 1964 * free_area_init_nodes(max_zone_pfns); 1965 * 1966 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1967 * registered physical page range. Similarly 1968 * sparse_memory_present_with_active_regions() calls memory_present() for 1969 * each range when SPARSEMEM is enabled. 1970 * 1971 * See mm/page_alloc.c for more information on each function exposed by 1972 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1973 */ 1974 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1975 unsigned long node_map_pfn_alignment(void); 1976 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1977 unsigned long end_pfn); 1978 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1979 unsigned long end_pfn); 1980 extern void get_pfn_range_for_nid(unsigned int nid, 1981 unsigned long *start_pfn, unsigned long *end_pfn); 1982 extern unsigned long find_min_pfn_with_active_regions(void); 1983 extern void free_bootmem_with_active_regions(int nid, 1984 unsigned long max_low_pfn); 1985 extern void sparse_memory_present_with_active_regions(int nid); 1986 1987 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1988 1989 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1990 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1991 static inline int __early_pfn_to_nid(unsigned long pfn, 1992 struct mminit_pfnnid_cache *state) 1993 { 1994 return 0; 1995 } 1996 #else 1997 /* please see mm/page_alloc.c */ 1998 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1999 /* there is a per-arch backend function. */ 2000 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2001 struct mminit_pfnnid_cache *state); 2002 #endif 2003 2004 extern void set_dma_reserve(unsigned long new_dma_reserve); 2005 extern void memmap_init_zone(unsigned long, int, unsigned long, 2006 unsigned long, enum memmap_context); 2007 extern void setup_per_zone_wmarks(void); 2008 extern int __meminit init_per_zone_wmark_min(void); 2009 extern void mem_init(void); 2010 extern void __init mmap_init(void); 2011 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2012 extern long si_mem_available(void); 2013 extern void si_meminfo(struct sysinfo * val); 2014 extern void si_meminfo_node(struct sysinfo *val, int nid); 2015 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2016 extern unsigned long arch_reserved_kernel_pages(void); 2017 #endif 2018 2019 extern __printf(3, 4) 2020 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2021 2022 extern void setup_per_cpu_pageset(void); 2023 2024 extern void zone_pcp_update(struct zone *zone); 2025 extern void zone_pcp_reset(struct zone *zone); 2026 2027 /* page_alloc.c */ 2028 extern int min_free_kbytes; 2029 extern int watermark_scale_factor; 2030 2031 /* nommu.c */ 2032 extern atomic_long_t mmap_pages_allocated; 2033 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2034 2035 /* interval_tree.c */ 2036 void vma_interval_tree_insert(struct vm_area_struct *node, 2037 struct rb_root_cached *root); 2038 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2039 struct vm_area_struct *prev, 2040 struct rb_root_cached *root); 2041 void vma_interval_tree_remove(struct vm_area_struct *node, 2042 struct rb_root_cached *root); 2043 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2044 unsigned long start, unsigned long last); 2045 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2046 unsigned long start, unsigned long last); 2047 2048 #define vma_interval_tree_foreach(vma, root, start, last) \ 2049 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2050 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2051 2052 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2053 struct rb_root_cached *root); 2054 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2055 struct rb_root_cached *root); 2056 struct anon_vma_chain * 2057 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2058 unsigned long start, unsigned long last); 2059 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2060 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2061 #ifdef CONFIG_DEBUG_VM_RB 2062 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2063 #endif 2064 2065 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2066 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2067 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2068 2069 /* mmap.c */ 2070 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2071 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2072 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2073 struct vm_area_struct *expand); 2074 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2075 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2076 { 2077 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2078 } 2079 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2080 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2081 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2082 struct mempolicy *, struct vm_userfaultfd_ctx); 2083 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2084 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2085 unsigned long addr, int new_below); 2086 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2087 unsigned long addr, int new_below); 2088 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2089 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2090 struct rb_node **, struct rb_node *); 2091 extern void unlink_file_vma(struct vm_area_struct *); 2092 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2093 unsigned long addr, unsigned long len, pgoff_t pgoff, 2094 bool *need_rmap_locks); 2095 extern void exit_mmap(struct mm_struct *); 2096 2097 static inline int check_data_rlimit(unsigned long rlim, 2098 unsigned long new, 2099 unsigned long start, 2100 unsigned long end_data, 2101 unsigned long start_data) 2102 { 2103 if (rlim < RLIM_INFINITY) { 2104 if (((new - start) + (end_data - start_data)) > rlim) 2105 return -ENOSPC; 2106 } 2107 2108 return 0; 2109 } 2110 2111 extern int mm_take_all_locks(struct mm_struct *mm); 2112 extern void mm_drop_all_locks(struct mm_struct *mm); 2113 2114 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2115 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2116 extern struct file *get_task_exe_file(struct task_struct *task); 2117 2118 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2119 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2120 2121 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2122 const struct vm_special_mapping *sm); 2123 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2124 unsigned long addr, unsigned long len, 2125 unsigned long flags, 2126 const struct vm_special_mapping *spec); 2127 /* This is an obsolete alternative to _install_special_mapping. */ 2128 extern int install_special_mapping(struct mm_struct *mm, 2129 unsigned long addr, unsigned long len, 2130 unsigned long flags, struct page **pages); 2131 2132 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2133 2134 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2135 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2136 struct list_head *uf); 2137 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2138 unsigned long len, unsigned long prot, unsigned long flags, 2139 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2140 struct list_head *uf); 2141 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2142 struct list_head *uf); 2143 2144 static inline unsigned long 2145 do_mmap_pgoff(struct file *file, unsigned long addr, 2146 unsigned long len, unsigned long prot, unsigned long flags, 2147 unsigned long pgoff, unsigned long *populate, 2148 struct list_head *uf) 2149 { 2150 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2151 } 2152 2153 #ifdef CONFIG_MMU 2154 extern int __mm_populate(unsigned long addr, unsigned long len, 2155 int ignore_errors); 2156 static inline void mm_populate(unsigned long addr, unsigned long len) 2157 { 2158 /* Ignore errors */ 2159 (void) __mm_populate(addr, len, 1); 2160 } 2161 #else 2162 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2163 #endif 2164 2165 /* These take the mm semaphore themselves */ 2166 extern int __must_check vm_brk(unsigned long, unsigned long); 2167 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2168 extern int vm_munmap(unsigned long, size_t); 2169 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2170 unsigned long, unsigned long, 2171 unsigned long, unsigned long); 2172 2173 struct vm_unmapped_area_info { 2174 #define VM_UNMAPPED_AREA_TOPDOWN 1 2175 unsigned long flags; 2176 unsigned long length; 2177 unsigned long low_limit; 2178 unsigned long high_limit; 2179 unsigned long align_mask; 2180 unsigned long align_offset; 2181 }; 2182 2183 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2184 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2185 2186 /* 2187 * Search for an unmapped address range. 2188 * 2189 * We are looking for a range that: 2190 * - does not intersect with any VMA; 2191 * - is contained within the [low_limit, high_limit) interval; 2192 * - is at least the desired size. 2193 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2194 */ 2195 static inline unsigned long 2196 vm_unmapped_area(struct vm_unmapped_area_info *info) 2197 { 2198 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2199 return unmapped_area_topdown(info); 2200 else 2201 return unmapped_area(info); 2202 } 2203 2204 /* truncate.c */ 2205 extern void truncate_inode_pages(struct address_space *, loff_t); 2206 extern void truncate_inode_pages_range(struct address_space *, 2207 loff_t lstart, loff_t lend); 2208 extern void truncate_inode_pages_final(struct address_space *); 2209 2210 /* generic vm_area_ops exported for stackable file systems */ 2211 extern int filemap_fault(struct vm_fault *vmf); 2212 extern void filemap_map_pages(struct vm_fault *vmf, 2213 pgoff_t start_pgoff, pgoff_t end_pgoff); 2214 extern int filemap_page_mkwrite(struct vm_fault *vmf); 2215 2216 /* mm/page-writeback.c */ 2217 int __must_check write_one_page(struct page *page); 2218 void task_dirty_inc(struct task_struct *tsk); 2219 2220 /* readahead.c */ 2221 #define VM_MAX_READAHEAD 128 /* kbytes */ 2222 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2223 2224 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2225 pgoff_t offset, unsigned long nr_to_read); 2226 2227 void page_cache_sync_readahead(struct address_space *mapping, 2228 struct file_ra_state *ra, 2229 struct file *filp, 2230 pgoff_t offset, 2231 unsigned long size); 2232 2233 void page_cache_async_readahead(struct address_space *mapping, 2234 struct file_ra_state *ra, 2235 struct file *filp, 2236 struct page *pg, 2237 pgoff_t offset, 2238 unsigned long size); 2239 2240 extern unsigned long stack_guard_gap; 2241 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2242 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2243 2244 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2245 extern int expand_downwards(struct vm_area_struct *vma, 2246 unsigned long address); 2247 #if VM_GROWSUP 2248 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2249 #else 2250 #define expand_upwards(vma, address) (0) 2251 #endif 2252 2253 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2254 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2255 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2256 struct vm_area_struct **pprev); 2257 2258 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2259 NULL if none. Assume start_addr < end_addr. */ 2260 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2261 { 2262 struct vm_area_struct * vma = find_vma(mm,start_addr); 2263 2264 if (vma && end_addr <= vma->vm_start) 2265 vma = NULL; 2266 return vma; 2267 } 2268 2269 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2270 { 2271 unsigned long vm_start = vma->vm_start; 2272 2273 if (vma->vm_flags & VM_GROWSDOWN) { 2274 vm_start -= stack_guard_gap; 2275 if (vm_start > vma->vm_start) 2276 vm_start = 0; 2277 } 2278 return vm_start; 2279 } 2280 2281 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2282 { 2283 unsigned long vm_end = vma->vm_end; 2284 2285 if (vma->vm_flags & VM_GROWSUP) { 2286 vm_end += stack_guard_gap; 2287 if (vm_end < vma->vm_end) 2288 vm_end = -PAGE_SIZE; 2289 } 2290 return vm_end; 2291 } 2292 2293 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2294 { 2295 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2296 } 2297 2298 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2299 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2300 unsigned long vm_start, unsigned long vm_end) 2301 { 2302 struct vm_area_struct *vma = find_vma(mm, vm_start); 2303 2304 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2305 vma = NULL; 2306 2307 return vma; 2308 } 2309 2310 #ifdef CONFIG_MMU 2311 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2312 void vma_set_page_prot(struct vm_area_struct *vma); 2313 #else 2314 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2315 { 2316 return __pgprot(0); 2317 } 2318 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2319 { 2320 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2321 } 2322 #endif 2323 2324 #ifdef CONFIG_NUMA_BALANCING 2325 unsigned long change_prot_numa(struct vm_area_struct *vma, 2326 unsigned long start, unsigned long end); 2327 #endif 2328 2329 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2330 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2331 unsigned long pfn, unsigned long size, pgprot_t); 2332 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2333 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2334 unsigned long pfn); 2335 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2336 unsigned long pfn, pgprot_t pgprot); 2337 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2338 pfn_t pfn); 2339 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 2340 pfn_t pfn); 2341 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2342 2343 2344 struct page *follow_page_mask(struct vm_area_struct *vma, 2345 unsigned long address, unsigned int foll_flags, 2346 unsigned int *page_mask); 2347 2348 static inline struct page *follow_page(struct vm_area_struct *vma, 2349 unsigned long address, unsigned int foll_flags) 2350 { 2351 unsigned int unused_page_mask; 2352 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2353 } 2354 2355 #define FOLL_WRITE 0x01 /* check pte is writable */ 2356 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2357 #define FOLL_GET 0x04 /* do get_page on page */ 2358 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2359 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2360 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2361 * and return without waiting upon it */ 2362 #define FOLL_POPULATE 0x40 /* fault in page */ 2363 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2364 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2365 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2366 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2367 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2368 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2369 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2370 #define FOLL_COW 0x4000 /* internal GUP flag */ 2371 2372 static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2373 { 2374 if (vm_fault & VM_FAULT_OOM) 2375 return -ENOMEM; 2376 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2377 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2378 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2379 return -EFAULT; 2380 return 0; 2381 } 2382 2383 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2384 void *data); 2385 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2386 unsigned long size, pte_fn_t fn, void *data); 2387 2388 2389 #ifdef CONFIG_PAGE_POISONING 2390 extern bool page_poisoning_enabled(void); 2391 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2392 extern bool page_is_poisoned(struct page *page); 2393 #else 2394 static inline bool page_poisoning_enabled(void) { return false; } 2395 static inline void kernel_poison_pages(struct page *page, int numpages, 2396 int enable) { } 2397 static inline bool page_is_poisoned(struct page *page) { return false; } 2398 #endif 2399 2400 #ifdef CONFIG_DEBUG_PAGEALLOC 2401 extern bool _debug_pagealloc_enabled; 2402 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2403 2404 static inline bool debug_pagealloc_enabled(void) 2405 { 2406 return _debug_pagealloc_enabled; 2407 } 2408 2409 static inline void 2410 kernel_map_pages(struct page *page, int numpages, int enable) 2411 { 2412 if (!debug_pagealloc_enabled()) 2413 return; 2414 2415 __kernel_map_pages(page, numpages, enable); 2416 } 2417 #ifdef CONFIG_HIBERNATION 2418 extern bool kernel_page_present(struct page *page); 2419 #endif /* CONFIG_HIBERNATION */ 2420 #else /* CONFIG_DEBUG_PAGEALLOC */ 2421 static inline void 2422 kernel_map_pages(struct page *page, int numpages, int enable) {} 2423 #ifdef CONFIG_HIBERNATION 2424 static inline bool kernel_page_present(struct page *page) { return true; } 2425 #endif /* CONFIG_HIBERNATION */ 2426 static inline bool debug_pagealloc_enabled(void) 2427 { 2428 return false; 2429 } 2430 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2431 2432 #ifdef __HAVE_ARCH_GATE_AREA 2433 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2434 extern int in_gate_area_no_mm(unsigned long addr); 2435 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2436 #else 2437 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2438 { 2439 return NULL; 2440 } 2441 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2442 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2443 { 2444 return 0; 2445 } 2446 #endif /* __HAVE_ARCH_GATE_AREA */ 2447 2448 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2449 2450 #ifdef CONFIG_SYSCTL 2451 extern int sysctl_drop_caches; 2452 int drop_caches_sysctl_handler(struct ctl_table *, int, 2453 void __user *, size_t *, loff_t *); 2454 #endif 2455 2456 void drop_slab(void); 2457 void drop_slab_node(int nid); 2458 2459 #ifndef CONFIG_MMU 2460 #define randomize_va_space 0 2461 #else 2462 extern int randomize_va_space; 2463 #endif 2464 2465 const char * arch_vma_name(struct vm_area_struct *vma); 2466 void print_vma_addr(char *prefix, unsigned long rip); 2467 2468 void sparse_mem_maps_populate_node(struct page **map_map, 2469 unsigned long pnum_begin, 2470 unsigned long pnum_end, 2471 unsigned long map_count, 2472 int nodeid); 2473 2474 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2475 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2476 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2477 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2478 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2479 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2480 void *vmemmap_alloc_block(unsigned long size, int node); 2481 struct vmem_altmap; 2482 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2483 struct vmem_altmap *altmap); 2484 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2485 { 2486 return __vmemmap_alloc_block_buf(size, node, NULL); 2487 } 2488 2489 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2490 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2491 int node); 2492 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2493 void vmemmap_populate_print_last(void); 2494 #ifdef CONFIG_MEMORY_HOTPLUG 2495 void vmemmap_free(unsigned long start, unsigned long end); 2496 #endif 2497 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2498 unsigned long size); 2499 2500 enum mf_flags { 2501 MF_COUNT_INCREASED = 1 << 0, 2502 MF_ACTION_REQUIRED = 1 << 1, 2503 MF_MUST_KILL = 1 << 2, 2504 MF_SOFT_OFFLINE = 1 << 3, 2505 }; 2506 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2507 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2508 extern int unpoison_memory(unsigned long pfn); 2509 extern int get_hwpoison_page(struct page *page); 2510 #define put_hwpoison_page(page) put_page(page) 2511 extern int sysctl_memory_failure_early_kill; 2512 extern int sysctl_memory_failure_recovery; 2513 extern void shake_page(struct page *p, int access); 2514 extern atomic_long_t num_poisoned_pages; 2515 extern int soft_offline_page(struct page *page, int flags); 2516 2517 2518 /* 2519 * Error handlers for various types of pages. 2520 */ 2521 enum mf_result { 2522 MF_IGNORED, /* Error: cannot be handled */ 2523 MF_FAILED, /* Error: handling failed */ 2524 MF_DELAYED, /* Will be handled later */ 2525 MF_RECOVERED, /* Successfully recovered */ 2526 }; 2527 2528 enum mf_action_page_type { 2529 MF_MSG_KERNEL, 2530 MF_MSG_KERNEL_HIGH_ORDER, 2531 MF_MSG_SLAB, 2532 MF_MSG_DIFFERENT_COMPOUND, 2533 MF_MSG_POISONED_HUGE, 2534 MF_MSG_HUGE, 2535 MF_MSG_FREE_HUGE, 2536 MF_MSG_UNMAP_FAILED, 2537 MF_MSG_DIRTY_SWAPCACHE, 2538 MF_MSG_CLEAN_SWAPCACHE, 2539 MF_MSG_DIRTY_MLOCKED_LRU, 2540 MF_MSG_CLEAN_MLOCKED_LRU, 2541 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2542 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2543 MF_MSG_DIRTY_LRU, 2544 MF_MSG_CLEAN_LRU, 2545 MF_MSG_TRUNCATED_LRU, 2546 MF_MSG_BUDDY, 2547 MF_MSG_BUDDY_2ND, 2548 MF_MSG_UNKNOWN, 2549 }; 2550 2551 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2552 extern void clear_huge_page(struct page *page, 2553 unsigned long addr_hint, 2554 unsigned int pages_per_huge_page); 2555 extern void copy_user_huge_page(struct page *dst, struct page *src, 2556 unsigned long addr, struct vm_area_struct *vma, 2557 unsigned int pages_per_huge_page); 2558 extern long copy_huge_page_from_user(struct page *dst_page, 2559 const void __user *usr_src, 2560 unsigned int pages_per_huge_page, 2561 bool allow_pagefault); 2562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2563 2564 extern struct page_ext_operations debug_guardpage_ops; 2565 2566 #ifdef CONFIG_DEBUG_PAGEALLOC 2567 extern unsigned int _debug_guardpage_minorder; 2568 extern bool _debug_guardpage_enabled; 2569 2570 static inline unsigned int debug_guardpage_minorder(void) 2571 { 2572 return _debug_guardpage_minorder; 2573 } 2574 2575 static inline bool debug_guardpage_enabled(void) 2576 { 2577 return _debug_guardpage_enabled; 2578 } 2579 2580 static inline bool page_is_guard(struct page *page) 2581 { 2582 struct page_ext *page_ext; 2583 2584 if (!debug_guardpage_enabled()) 2585 return false; 2586 2587 page_ext = lookup_page_ext(page); 2588 if (unlikely(!page_ext)) 2589 return false; 2590 2591 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2592 } 2593 #else 2594 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2595 static inline bool debug_guardpage_enabled(void) { return false; } 2596 static inline bool page_is_guard(struct page *page) { return false; } 2597 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2598 2599 #if MAX_NUMNODES > 1 2600 void __init setup_nr_node_ids(void); 2601 #else 2602 static inline void setup_nr_node_ids(void) {} 2603 #endif 2604 2605 #endif /* __KERNEL__ */ 2606 #endif /* _LINUX_MM_H */ 2607