xref: /linux-6.15/include/linux/mm.h (revision bb66fc67)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28 
29 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31 
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34 	max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39 
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43 
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49 
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53 
54 #ifndef __pa_symbol
55 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57 
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60 
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64 
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 				    size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 				    size_t *, loff_t *);
69 
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71 
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74 
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77 
78 /*
79  * Linux kernel virtual memory manager primitives.
80  * The idea being to have a "virtual" mm in the same way
81  * we have a virtual fs - giving a cleaner interface to the
82  * mm details, and allowing different kinds of memory mappings
83  * (from shared memory to executable loading to arbitrary
84  * mmap() functions).
85  */
86 
87 extern struct kmem_cache *vm_area_cachep;
88 
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92 
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95 
96 /*
97  * vm_flags in vm_area_struct, see mm_types.h.
98  */
99 #define VM_NONE		0x00000000
100 
101 #define VM_READ		0x00000001	/* currently active flags */
102 #define VM_WRITE	0x00000002
103 #define VM_EXEC		0x00000004
104 #define VM_SHARED	0x00000008
105 
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
108 #define VM_MAYWRITE	0x00000020
109 #define VM_MAYEXEC	0x00000040
110 #define VM_MAYSHARE	0x00000080
111 
112 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
113 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
115 
116 #define VM_LOCKED	0x00002000
117 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
118 
119 					/* Used by sys_madvise() */
120 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
121 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
122 
123 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
125 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
126 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
127 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
128 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
130 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
131 
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY	0
136 #endif
137 
138 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
142 
143 #if defined(CONFIG_X86)
144 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP	VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP	VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP	VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
155 #endif
156 
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP	VM_NONE
159 #endif
160 
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
163 
164 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167 
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173 
174 /*
175  * Special vmas that are non-mergable, non-mlock()able.
176  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177  */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179 
180 /* This mask defines which mm->def_flags a process can inherit its parent */
181 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
182 
183 /*
184  * mapping from the currently active vm_flags protection bits (the
185  * low four bits) to a page protection mask..
186  */
187 extern pgprot_t protection_map[16];
188 
189 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
190 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
191 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
192 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
193 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
194 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
195 #define FAULT_FLAG_TRIED	0x40	/* second try */
196 #define FAULT_FLAG_USER		0x80	/* The fault originated in userspace */
197 
198 /*
199  * vm_fault is filled by the the pagefault handler and passed to the vma's
200  * ->fault function. The vma's ->fault is responsible for returning a bitmask
201  * of VM_FAULT_xxx flags that give details about how the fault was handled.
202  *
203  * pgoff should be used in favour of virtual_address, if possible. If pgoff
204  * is used, one may implement ->remap_pages to get nonlinear mapping support.
205  */
206 struct vm_fault {
207 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
208 	pgoff_t pgoff;			/* Logical page offset based on vma */
209 	void __user *virtual_address;	/* Faulting virtual address */
210 
211 	struct page *page;		/* ->fault handlers should return a
212 					 * page here, unless VM_FAULT_NOPAGE
213 					 * is set (which is also implied by
214 					 * VM_FAULT_ERROR).
215 					 */
216 	/* for ->map_pages() only */
217 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
218 					 * max_pgoff inclusive */
219 	pte_t *pte;			/* pte entry associated with ->pgoff */
220 };
221 
222 /*
223  * These are the virtual MM functions - opening of an area, closing and
224  * unmapping it (needed to keep files on disk up-to-date etc), pointer
225  * to the functions called when a no-page or a wp-page exception occurs.
226  */
227 struct vm_operations_struct {
228 	void (*open)(struct vm_area_struct * area);
229 	void (*close)(struct vm_area_struct * area);
230 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232 
233 	/* notification that a previously read-only page is about to become
234 	 * writable, if an error is returned it will cause a SIGBUS */
235 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236 
237 	/* called by access_process_vm when get_user_pages() fails, typically
238 	 * for use by special VMAs that can switch between memory and hardware
239 	 */
240 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 		      void *buf, int len, int write);
242 #ifdef CONFIG_NUMA
243 	/*
244 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 	 * to hold the policy upon return.  Caller should pass NULL @new to
246 	 * remove a policy and fall back to surrounding context--i.e. do not
247 	 * install a MPOL_DEFAULT policy, nor the task or system default
248 	 * mempolicy.
249 	 */
250 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
251 
252 	/*
253 	 * get_policy() op must add reference [mpol_get()] to any policy at
254 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
255 	 * in mm/mempolicy.c will do this automatically.
256 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 	 * must return NULL--i.e., do not "fallback" to task or system default
260 	 * policy.
261 	 */
262 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 					unsigned long addr);
264 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 		const nodemask_t *to, unsigned long flags);
266 #endif
267 	/* called by sys_remap_file_pages() to populate non-linear mapping */
268 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 			   unsigned long size, pgoff_t pgoff);
270 };
271 
272 struct mmu_gather;
273 struct inode;
274 
275 #define page_private(page)		((page)->private)
276 #define set_page_private(page, v)	((page)->private = (v))
277 
278 /* It's valid only if the page is free path or free_list */
279 static inline void set_freepage_migratetype(struct page *page, int migratetype)
280 {
281 	page->index = migratetype;
282 }
283 
284 /* It's valid only if the page is free path or free_list */
285 static inline int get_freepage_migratetype(struct page *page)
286 {
287 	return page->index;
288 }
289 
290 /*
291  * FIXME: take this include out, include page-flags.h in
292  * files which need it (119 of them)
293  */
294 #include <linux/page-flags.h>
295 #include <linux/huge_mm.h>
296 
297 /*
298  * Methods to modify the page usage count.
299  *
300  * What counts for a page usage:
301  * - cache mapping   (page->mapping)
302  * - private data    (page->private)
303  * - page mapped in a task's page tables, each mapping
304  *   is counted separately
305  *
306  * Also, many kernel routines increase the page count before a critical
307  * routine so they can be sure the page doesn't go away from under them.
308  */
309 
310 /*
311  * Drop a ref, return true if the refcount fell to zero (the page has no users)
312  */
313 static inline int put_page_testzero(struct page *page)
314 {
315 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
316 	return atomic_dec_and_test(&page->_count);
317 }
318 
319 /*
320  * Try to grab a ref unless the page has a refcount of zero, return false if
321  * that is the case.
322  * This can be called when MMU is off so it must not access
323  * any of the virtual mappings.
324  */
325 static inline int get_page_unless_zero(struct page *page)
326 {
327 	return atomic_inc_not_zero(&page->_count);
328 }
329 
330 /*
331  * Try to drop a ref unless the page has a refcount of one, return false if
332  * that is the case.
333  * This is to make sure that the refcount won't become zero after this drop.
334  * This can be called when MMU is off so it must not access
335  * any of the virtual mappings.
336  */
337 static inline int put_page_unless_one(struct page *page)
338 {
339 	return atomic_add_unless(&page->_count, -1, 1);
340 }
341 
342 extern int page_is_ram(unsigned long pfn);
343 
344 /* Support for virtually mapped pages */
345 struct page *vmalloc_to_page(const void *addr);
346 unsigned long vmalloc_to_pfn(const void *addr);
347 
348 /*
349  * Determine if an address is within the vmalloc range
350  *
351  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352  * is no special casing required.
353  */
354 static inline int is_vmalloc_addr(const void *x)
355 {
356 #ifdef CONFIG_MMU
357 	unsigned long addr = (unsigned long)x;
358 
359 	return addr >= VMALLOC_START && addr < VMALLOC_END;
360 #else
361 	return 0;
362 #endif
363 }
364 #ifdef CONFIG_MMU
365 extern int is_vmalloc_or_module_addr(const void *x);
366 #else
367 static inline int is_vmalloc_or_module_addr(const void *x)
368 {
369 	return 0;
370 }
371 #endif
372 
373 static inline void compound_lock(struct page *page)
374 {
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 	VM_BUG_ON_PAGE(PageSlab(page), page);
377 	bit_spin_lock(PG_compound_lock, &page->flags);
378 #endif
379 }
380 
381 static inline void compound_unlock(struct page *page)
382 {
383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 	VM_BUG_ON_PAGE(PageSlab(page), page);
385 	bit_spin_unlock(PG_compound_lock, &page->flags);
386 #endif
387 }
388 
389 static inline unsigned long compound_lock_irqsave(struct page *page)
390 {
391 	unsigned long uninitialized_var(flags);
392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
393 	local_irq_save(flags);
394 	compound_lock(page);
395 #endif
396 	return flags;
397 }
398 
399 static inline void compound_unlock_irqrestore(struct page *page,
400 					      unsigned long flags)
401 {
402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 	compound_unlock(page);
404 	local_irq_restore(flags);
405 #endif
406 }
407 
408 static inline struct page *compound_head(struct page *page)
409 {
410 	if (unlikely(PageTail(page))) {
411 		struct page *head = page->first_page;
412 
413 		/*
414 		 * page->first_page may be a dangling pointer to an old
415 		 * compound page, so recheck that it is still a tail
416 		 * page before returning.
417 		 */
418 		smp_rmb();
419 		if (likely(PageTail(page)))
420 			return head;
421 	}
422 	return page;
423 }
424 
425 /*
426  * The atomic page->_mapcount, starts from -1: so that transitions
427  * both from it and to it can be tracked, using atomic_inc_and_test
428  * and atomic_add_negative(-1).
429  */
430 static inline void page_mapcount_reset(struct page *page)
431 {
432 	atomic_set(&(page)->_mapcount, -1);
433 }
434 
435 static inline int page_mapcount(struct page *page)
436 {
437 	return atomic_read(&(page)->_mapcount) + 1;
438 }
439 
440 static inline int page_count(struct page *page)
441 {
442 	return atomic_read(&compound_head(page)->_count);
443 }
444 
445 #ifdef CONFIG_HUGETLB_PAGE
446 extern int PageHeadHuge(struct page *page_head);
447 #else /* CONFIG_HUGETLB_PAGE */
448 static inline int PageHeadHuge(struct page *page_head)
449 {
450 	return 0;
451 }
452 #endif /* CONFIG_HUGETLB_PAGE */
453 
454 static inline bool __compound_tail_refcounted(struct page *page)
455 {
456 	return !PageSlab(page) && !PageHeadHuge(page);
457 }
458 
459 /*
460  * This takes a head page as parameter and tells if the
461  * tail page reference counting can be skipped.
462  *
463  * For this to be safe, PageSlab and PageHeadHuge must remain true on
464  * any given page where they return true here, until all tail pins
465  * have been released.
466  */
467 static inline bool compound_tail_refcounted(struct page *page)
468 {
469 	VM_BUG_ON_PAGE(!PageHead(page), page);
470 	return __compound_tail_refcounted(page);
471 }
472 
473 static inline void get_huge_page_tail(struct page *page)
474 {
475 	/*
476 	 * __split_huge_page_refcount() cannot run from under us.
477 	 */
478 	VM_BUG_ON_PAGE(!PageTail(page), page);
479 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
481 	if (compound_tail_refcounted(page->first_page))
482 		atomic_inc(&page->_mapcount);
483 }
484 
485 extern bool __get_page_tail(struct page *page);
486 
487 static inline void get_page(struct page *page)
488 {
489 	if (unlikely(PageTail(page)))
490 		if (likely(__get_page_tail(page)))
491 			return;
492 	/*
493 	 * Getting a normal page or the head of a compound page
494 	 * requires to already have an elevated page->_count.
495 	 */
496 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
497 	atomic_inc(&page->_count);
498 }
499 
500 static inline struct page *virt_to_head_page(const void *x)
501 {
502 	struct page *page = virt_to_page(x);
503 	return compound_head(page);
504 }
505 
506 /*
507  * Setup the page count before being freed into the page allocator for
508  * the first time (boot or memory hotplug)
509  */
510 static inline void init_page_count(struct page *page)
511 {
512 	atomic_set(&page->_count, 1);
513 }
514 
515 /*
516  * PageBuddy() indicate that the page is free and in the buddy system
517  * (see mm/page_alloc.c).
518  *
519  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
520  * -2 so that an underflow of the page_mapcount() won't be mistaken
521  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
522  * efficiently by most CPU architectures.
523  */
524 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
525 
526 static inline int PageBuddy(struct page *page)
527 {
528 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
529 }
530 
531 static inline void __SetPageBuddy(struct page *page)
532 {
533 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
534 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
535 }
536 
537 static inline void __ClearPageBuddy(struct page *page)
538 {
539 	VM_BUG_ON_PAGE(!PageBuddy(page), page);
540 	atomic_set(&page->_mapcount, -1);
541 }
542 
543 void put_page(struct page *page);
544 void put_pages_list(struct list_head *pages);
545 
546 void split_page(struct page *page, unsigned int order);
547 int split_free_page(struct page *page);
548 
549 /*
550  * Compound pages have a destructor function.  Provide a
551  * prototype for that function and accessor functions.
552  * These are _only_ valid on the head of a PG_compound page.
553  */
554 typedef void compound_page_dtor(struct page *);
555 
556 static inline void set_compound_page_dtor(struct page *page,
557 						compound_page_dtor *dtor)
558 {
559 	page[1].lru.next = (void *)dtor;
560 }
561 
562 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
563 {
564 	return (compound_page_dtor *)page[1].lru.next;
565 }
566 
567 static inline int compound_order(struct page *page)
568 {
569 	if (!PageHead(page))
570 		return 0;
571 	return (unsigned long)page[1].lru.prev;
572 }
573 
574 static inline void set_compound_order(struct page *page, unsigned long order)
575 {
576 	page[1].lru.prev = (void *)order;
577 }
578 
579 #ifdef CONFIG_MMU
580 /*
581  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
582  * servicing faults for write access.  In the normal case, do always want
583  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
584  * that do not have writing enabled, when used by access_process_vm.
585  */
586 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
587 {
588 	if (likely(vma->vm_flags & VM_WRITE))
589 		pte = pte_mkwrite(pte);
590 	return pte;
591 }
592 
593 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
594 		struct page *page, pte_t *pte, bool write, bool anon);
595 #endif
596 
597 /*
598  * Multiple processes may "see" the same page. E.g. for untouched
599  * mappings of /dev/null, all processes see the same page full of
600  * zeroes, and text pages of executables and shared libraries have
601  * only one copy in memory, at most, normally.
602  *
603  * For the non-reserved pages, page_count(page) denotes a reference count.
604  *   page_count() == 0 means the page is free. page->lru is then used for
605  *   freelist management in the buddy allocator.
606  *   page_count() > 0  means the page has been allocated.
607  *
608  * Pages are allocated by the slab allocator in order to provide memory
609  * to kmalloc and kmem_cache_alloc. In this case, the management of the
610  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
611  * unless a particular usage is carefully commented. (the responsibility of
612  * freeing the kmalloc memory is the caller's, of course).
613  *
614  * A page may be used by anyone else who does a __get_free_page().
615  * In this case, page_count still tracks the references, and should only
616  * be used through the normal accessor functions. The top bits of page->flags
617  * and page->virtual store page management information, but all other fields
618  * are unused and could be used privately, carefully. The management of this
619  * page is the responsibility of the one who allocated it, and those who have
620  * subsequently been given references to it.
621  *
622  * The other pages (we may call them "pagecache pages") are completely
623  * managed by the Linux memory manager: I/O, buffers, swapping etc.
624  * The following discussion applies only to them.
625  *
626  * A pagecache page contains an opaque `private' member, which belongs to the
627  * page's address_space. Usually, this is the address of a circular list of
628  * the page's disk buffers. PG_private must be set to tell the VM to call
629  * into the filesystem to release these pages.
630  *
631  * A page may belong to an inode's memory mapping. In this case, page->mapping
632  * is the pointer to the inode, and page->index is the file offset of the page,
633  * in units of PAGE_CACHE_SIZE.
634  *
635  * If pagecache pages are not associated with an inode, they are said to be
636  * anonymous pages. These may become associated with the swapcache, and in that
637  * case PG_swapcache is set, and page->private is an offset into the swapcache.
638  *
639  * In either case (swapcache or inode backed), the pagecache itself holds one
640  * reference to the page. Setting PG_private should also increment the
641  * refcount. The each user mapping also has a reference to the page.
642  *
643  * The pagecache pages are stored in a per-mapping radix tree, which is
644  * rooted at mapping->page_tree, and indexed by offset.
645  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
646  * lists, we instead now tag pages as dirty/writeback in the radix tree.
647  *
648  * All pagecache pages may be subject to I/O:
649  * - inode pages may need to be read from disk,
650  * - inode pages which have been modified and are MAP_SHARED may need
651  *   to be written back to the inode on disk,
652  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
653  *   modified may need to be swapped out to swap space and (later) to be read
654  *   back into memory.
655  */
656 
657 /*
658  * The zone field is never updated after free_area_init_core()
659  * sets it, so none of the operations on it need to be atomic.
660  */
661 
662 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
663 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
664 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
665 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
666 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
667 
668 /*
669  * Define the bit shifts to access each section.  For non-existent
670  * sections we define the shift as 0; that plus a 0 mask ensures
671  * the compiler will optimise away reference to them.
672  */
673 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
674 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
675 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
676 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
677 
678 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
679 #ifdef NODE_NOT_IN_PAGE_FLAGS
680 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
681 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
682 						SECTIONS_PGOFF : ZONES_PGOFF)
683 #else
684 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
685 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
686 						NODES_PGOFF : ZONES_PGOFF)
687 #endif
688 
689 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
690 
691 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
692 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
693 #endif
694 
695 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
696 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
697 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
698 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
699 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
700 
701 static inline enum zone_type page_zonenum(const struct page *page)
702 {
703 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
704 }
705 
706 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
707 #define SECTION_IN_PAGE_FLAGS
708 #endif
709 
710 /*
711  * The identification function is mainly used by the buddy allocator for
712  * determining if two pages could be buddies. We are not really identifying
713  * the zone since we could be using the section number id if we do not have
714  * node id available in page flags.
715  * We only guarantee that it will return the same value for two combinable
716  * pages in a zone.
717  */
718 static inline int page_zone_id(struct page *page)
719 {
720 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
721 }
722 
723 static inline int zone_to_nid(struct zone *zone)
724 {
725 #ifdef CONFIG_NUMA
726 	return zone->node;
727 #else
728 	return 0;
729 #endif
730 }
731 
732 #ifdef NODE_NOT_IN_PAGE_FLAGS
733 extern int page_to_nid(const struct page *page);
734 #else
735 static inline int page_to_nid(const struct page *page)
736 {
737 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
738 }
739 #endif
740 
741 #ifdef CONFIG_NUMA_BALANCING
742 static inline int cpu_pid_to_cpupid(int cpu, int pid)
743 {
744 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
745 }
746 
747 static inline int cpupid_to_pid(int cpupid)
748 {
749 	return cpupid & LAST__PID_MASK;
750 }
751 
752 static inline int cpupid_to_cpu(int cpupid)
753 {
754 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
755 }
756 
757 static inline int cpupid_to_nid(int cpupid)
758 {
759 	return cpu_to_node(cpupid_to_cpu(cpupid));
760 }
761 
762 static inline bool cpupid_pid_unset(int cpupid)
763 {
764 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
765 }
766 
767 static inline bool cpupid_cpu_unset(int cpupid)
768 {
769 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
770 }
771 
772 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
773 {
774 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
775 }
776 
777 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
778 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
779 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
780 {
781 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
782 }
783 
784 static inline int page_cpupid_last(struct page *page)
785 {
786 	return page->_last_cpupid;
787 }
788 static inline void page_cpupid_reset_last(struct page *page)
789 {
790 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
791 }
792 #else
793 static inline int page_cpupid_last(struct page *page)
794 {
795 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
796 }
797 
798 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
799 
800 static inline void page_cpupid_reset_last(struct page *page)
801 {
802 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
803 
804 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
805 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
806 }
807 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
808 #else /* !CONFIG_NUMA_BALANCING */
809 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
810 {
811 	return page_to_nid(page); /* XXX */
812 }
813 
814 static inline int page_cpupid_last(struct page *page)
815 {
816 	return page_to_nid(page); /* XXX */
817 }
818 
819 static inline int cpupid_to_nid(int cpupid)
820 {
821 	return -1;
822 }
823 
824 static inline int cpupid_to_pid(int cpupid)
825 {
826 	return -1;
827 }
828 
829 static inline int cpupid_to_cpu(int cpupid)
830 {
831 	return -1;
832 }
833 
834 static inline int cpu_pid_to_cpupid(int nid, int pid)
835 {
836 	return -1;
837 }
838 
839 static inline bool cpupid_pid_unset(int cpupid)
840 {
841 	return 1;
842 }
843 
844 static inline void page_cpupid_reset_last(struct page *page)
845 {
846 }
847 
848 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
849 {
850 	return false;
851 }
852 #endif /* CONFIG_NUMA_BALANCING */
853 
854 static inline struct zone *page_zone(const struct page *page)
855 {
856 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
857 }
858 
859 #ifdef SECTION_IN_PAGE_FLAGS
860 static inline void set_page_section(struct page *page, unsigned long section)
861 {
862 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
863 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
864 }
865 
866 static inline unsigned long page_to_section(const struct page *page)
867 {
868 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
869 }
870 #endif
871 
872 static inline void set_page_zone(struct page *page, enum zone_type zone)
873 {
874 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
875 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
876 }
877 
878 static inline void set_page_node(struct page *page, unsigned long node)
879 {
880 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
881 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
882 }
883 
884 static inline void set_page_links(struct page *page, enum zone_type zone,
885 	unsigned long node, unsigned long pfn)
886 {
887 	set_page_zone(page, zone);
888 	set_page_node(page, node);
889 #ifdef SECTION_IN_PAGE_FLAGS
890 	set_page_section(page, pfn_to_section_nr(pfn));
891 #endif
892 }
893 
894 /*
895  * Some inline functions in vmstat.h depend on page_zone()
896  */
897 #include <linux/vmstat.h>
898 
899 static __always_inline void *lowmem_page_address(const struct page *page)
900 {
901 	return __va(PFN_PHYS(page_to_pfn(page)));
902 }
903 
904 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
905 #define HASHED_PAGE_VIRTUAL
906 #endif
907 
908 #if defined(WANT_PAGE_VIRTUAL)
909 static inline void *page_address(const struct page *page)
910 {
911 	return page->virtual;
912 }
913 static inline void set_page_address(struct page *page, void *address)
914 {
915 	page->virtual = address;
916 }
917 #define page_address_init()  do { } while(0)
918 #endif
919 
920 #if defined(HASHED_PAGE_VIRTUAL)
921 void *page_address(const struct page *page);
922 void set_page_address(struct page *page, void *virtual);
923 void page_address_init(void);
924 #endif
925 
926 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
927 #define page_address(page) lowmem_page_address(page)
928 #define set_page_address(page, address)  do { } while(0)
929 #define page_address_init()  do { } while(0)
930 #endif
931 
932 /*
933  * On an anonymous page mapped into a user virtual memory area,
934  * page->mapping points to its anon_vma, not to a struct address_space;
935  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
936  *
937  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
938  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
939  * and then page->mapping points, not to an anon_vma, but to a private
940  * structure which KSM associates with that merged page.  See ksm.h.
941  *
942  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
943  *
944  * Please note that, confusingly, "page_mapping" refers to the inode
945  * address_space which maps the page from disk; whereas "page_mapped"
946  * refers to user virtual address space into which the page is mapped.
947  */
948 #define PAGE_MAPPING_ANON	1
949 #define PAGE_MAPPING_KSM	2
950 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
951 
952 extern struct address_space *page_mapping(struct page *page);
953 
954 /* Neutral page->mapping pointer to address_space or anon_vma or other */
955 static inline void *page_rmapping(struct page *page)
956 {
957 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
958 }
959 
960 extern struct address_space *__page_file_mapping(struct page *);
961 
962 static inline
963 struct address_space *page_file_mapping(struct page *page)
964 {
965 	if (unlikely(PageSwapCache(page)))
966 		return __page_file_mapping(page);
967 
968 	return page->mapping;
969 }
970 
971 static inline int PageAnon(struct page *page)
972 {
973 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
974 }
975 
976 /*
977  * Return the pagecache index of the passed page.  Regular pagecache pages
978  * use ->index whereas swapcache pages use ->private
979  */
980 static inline pgoff_t page_index(struct page *page)
981 {
982 	if (unlikely(PageSwapCache(page)))
983 		return page_private(page);
984 	return page->index;
985 }
986 
987 extern pgoff_t __page_file_index(struct page *page);
988 
989 /*
990  * Return the file index of the page. Regular pagecache pages use ->index
991  * whereas swapcache pages use swp_offset(->private)
992  */
993 static inline pgoff_t page_file_index(struct page *page)
994 {
995 	if (unlikely(PageSwapCache(page)))
996 		return __page_file_index(page);
997 
998 	return page->index;
999 }
1000 
1001 /*
1002  * Return true if this page is mapped into pagetables.
1003  */
1004 static inline int page_mapped(struct page *page)
1005 {
1006 	return atomic_read(&(page)->_mapcount) >= 0;
1007 }
1008 
1009 /*
1010  * Different kinds of faults, as returned by handle_mm_fault().
1011  * Used to decide whether a process gets delivered SIGBUS or
1012  * just gets major/minor fault counters bumped up.
1013  */
1014 
1015 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1016 
1017 #define VM_FAULT_OOM	0x0001
1018 #define VM_FAULT_SIGBUS	0x0002
1019 #define VM_FAULT_MAJOR	0x0004
1020 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1021 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1022 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1023 
1024 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1025 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1026 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1027 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1028 
1029 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1030 
1031 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1032 			 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1033 
1034 /* Encode hstate index for a hwpoisoned large page */
1035 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1036 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1037 
1038 /*
1039  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1040  */
1041 extern void pagefault_out_of_memory(void);
1042 
1043 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1044 
1045 /*
1046  * Flags passed to show_mem() and show_free_areas() to suppress output in
1047  * various contexts.
1048  */
1049 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1050 
1051 extern void show_free_areas(unsigned int flags);
1052 extern bool skip_free_areas_node(unsigned int flags, int nid);
1053 
1054 int shmem_zero_setup(struct vm_area_struct *);
1055 #ifdef CONFIG_SHMEM
1056 bool shmem_mapping(struct address_space *mapping);
1057 #else
1058 static inline bool shmem_mapping(struct address_space *mapping)
1059 {
1060 	return false;
1061 }
1062 #endif
1063 
1064 extern int can_do_mlock(void);
1065 extern int user_shm_lock(size_t, struct user_struct *);
1066 extern void user_shm_unlock(size_t, struct user_struct *);
1067 
1068 /*
1069  * Parameter block passed down to zap_pte_range in exceptional cases.
1070  */
1071 struct zap_details {
1072 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
1073 	struct address_space *check_mapping;	/* Check page->mapping if set */
1074 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1075 	pgoff_t last_index;			/* Highest page->index to unmap */
1076 };
1077 
1078 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1079 		pte_t pte);
1080 
1081 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 		unsigned long size);
1083 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084 		unsigned long size, struct zap_details *);
1085 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1086 		unsigned long start, unsigned long end);
1087 
1088 /**
1089  * mm_walk - callbacks for walk_page_range
1090  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1091  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1092  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1093  *	       this handler is required to be able to handle
1094  *	       pmd_trans_huge() pmds.  They may simply choose to
1095  *	       split_huge_page() instead of handling it explicitly.
1096  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1097  * @pte_hole: if set, called for each hole at all levels
1098  * @hugetlb_entry: if set, called for each hugetlb entry
1099  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1100  * 			      is used.
1101  *
1102  * (see walk_page_range for more details)
1103  */
1104 struct mm_walk {
1105 	int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1106 			 unsigned long next, struct mm_walk *walk);
1107 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1108 	                 unsigned long next, struct mm_walk *walk);
1109 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1110 			 unsigned long next, struct mm_walk *walk);
1111 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1112 			 unsigned long next, struct mm_walk *walk);
1113 	int (*pte_hole)(unsigned long addr, unsigned long next,
1114 			struct mm_walk *walk);
1115 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1116 			     unsigned long addr, unsigned long next,
1117 			     struct mm_walk *walk);
1118 	struct mm_struct *mm;
1119 	void *private;
1120 };
1121 
1122 int walk_page_range(unsigned long addr, unsigned long end,
1123 		struct mm_walk *walk);
1124 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1125 		unsigned long end, unsigned long floor, unsigned long ceiling);
1126 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1127 			struct vm_area_struct *vma);
1128 void unmap_mapping_range(struct address_space *mapping,
1129 		loff_t const holebegin, loff_t const holelen, int even_cows);
1130 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1131 	unsigned long *pfn);
1132 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1133 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1134 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1135 			void *buf, int len, int write);
1136 
1137 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1138 		loff_t const holebegin, loff_t const holelen)
1139 {
1140 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1141 }
1142 
1143 extern void truncate_pagecache(struct inode *inode, loff_t new);
1144 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1145 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1146 int truncate_inode_page(struct address_space *mapping, struct page *page);
1147 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1148 int invalidate_inode_page(struct page *page);
1149 
1150 #ifdef CONFIG_MMU
1151 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1152 			unsigned long address, unsigned int flags);
1153 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1154 			    unsigned long address, unsigned int fault_flags);
1155 #else
1156 static inline int handle_mm_fault(struct mm_struct *mm,
1157 			struct vm_area_struct *vma, unsigned long address,
1158 			unsigned int flags)
1159 {
1160 	/* should never happen if there's no MMU */
1161 	BUG();
1162 	return VM_FAULT_SIGBUS;
1163 }
1164 static inline int fixup_user_fault(struct task_struct *tsk,
1165 		struct mm_struct *mm, unsigned long address,
1166 		unsigned int fault_flags)
1167 {
1168 	/* should never happen if there's no MMU */
1169 	BUG();
1170 	return -EFAULT;
1171 }
1172 #endif
1173 
1174 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1175 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1176 		void *buf, int len, int write);
1177 
1178 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1179 		      unsigned long start, unsigned long nr_pages,
1180 		      unsigned int foll_flags, struct page **pages,
1181 		      struct vm_area_struct **vmas, int *nonblocking);
1182 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1183 		    unsigned long start, unsigned long nr_pages,
1184 		    int write, int force, struct page **pages,
1185 		    struct vm_area_struct **vmas);
1186 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1187 			struct page **pages);
1188 struct kvec;
1189 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1190 			struct page **pages);
1191 int get_kernel_page(unsigned long start, int write, struct page **pages);
1192 struct page *get_dump_page(unsigned long addr);
1193 
1194 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1195 extern void do_invalidatepage(struct page *page, unsigned int offset,
1196 			      unsigned int length);
1197 
1198 int __set_page_dirty_nobuffers(struct page *page);
1199 int __set_page_dirty_no_writeback(struct page *page);
1200 int redirty_page_for_writepage(struct writeback_control *wbc,
1201 				struct page *page);
1202 void account_page_dirtied(struct page *page, struct address_space *mapping);
1203 void account_page_writeback(struct page *page);
1204 int set_page_dirty(struct page *page);
1205 int set_page_dirty_lock(struct page *page);
1206 int clear_page_dirty_for_io(struct page *page);
1207 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1208 
1209 /* Is the vma a continuation of the stack vma above it? */
1210 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1211 {
1212 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1213 }
1214 
1215 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1216 					     unsigned long addr)
1217 {
1218 	return (vma->vm_flags & VM_GROWSDOWN) &&
1219 		(vma->vm_start == addr) &&
1220 		!vma_growsdown(vma->vm_prev, addr);
1221 }
1222 
1223 /* Is the vma a continuation of the stack vma below it? */
1224 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1225 {
1226 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1227 }
1228 
1229 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1230 					   unsigned long addr)
1231 {
1232 	return (vma->vm_flags & VM_GROWSUP) &&
1233 		(vma->vm_end == addr) &&
1234 		!vma_growsup(vma->vm_next, addr);
1235 }
1236 
1237 extern pid_t
1238 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1239 
1240 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1241 		unsigned long old_addr, struct vm_area_struct *new_vma,
1242 		unsigned long new_addr, unsigned long len,
1243 		bool need_rmap_locks);
1244 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1245 			      unsigned long end, pgprot_t newprot,
1246 			      int dirty_accountable, int prot_numa);
1247 extern int mprotect_fixup(struct vm_area_struct *vma,
1248 			  struct vm_area_struct **pprev, unsigned long start,
1249 			  unsigned long end, unsigned long newflags);
1250 
1251 /*
1252  * doesn't attempt to fault and will return short.
1253  */
1254 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1255 			  struct page **pages);
1256 /*
1257  * per-process(per-mm_struct) statistics.
1258  */
1259 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1260 {
1261 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1262 
1263 #ifdef SPLIT_RSS_COUNTING
1264 	/*
1265 	 * counter is updated in asynchronous manner and may go to minus.
1266 	 * But it's never be expected number for users.
1267 	 */
1268 	if (val < 0)
1269 		val = 0;
1270 #endif
1271 	return (unsigned long)val;
1272 }
1273 
1274 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1275 {
1276 	atomic_long_add(value, &mm->rss_stat.count[member]);
1277 }
1278 
1279 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1280 {
1281 	atomic_long_inc(&mm->rss_stat.count[member]);
1282 }
1283 
1284 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1285 {
1286 	atomic_long_dec(&mm->rss_stat.count[member]);
1287 }
1288 
1289 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1290 {
1291 	return get_mm_counter(mm, MM_FILEPAGES) +
1292 		get_mm_counter(mm, MM_ANONPAGES);
1293 }
1294 
1295 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1296 {
1297 	return max(mm->hiwater_rss, get_mm_rss(mm));
1298 }
1299 
1300 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1301 {
1302 	return max(mm->hiwater_vm, mm->total_vm);
1303 }
1304 
1305 static inline void update_hiwater_rss(struct mm_struct *mm)
1306 {
1307 	unsigned long _rss = get_mm_rss(mm);
1308 
1309 	if ((mm)->hiwater_rss < _rss)
1310 		(mm)->hiwater_rss = _rss;
1311 }
1312 
1313 static inline void update_hiwater_vm(struct mm_struct *mm)
1314 {
1315 	if (mm->hiwater_vm < mm->total_vm)
1316 		mm->hiwater_vm = mm->total_vm;
1317 }
1318 
1319 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1320 					 struct mm_struct *mm)
1321 {
1322 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1323 
1324 	if (*maxrss < hiwater_rss)
1325 		*maxrss = hiwater_rss;
1326 }
1327 
1328 #if defined(SPLIT_RSS_COUNTING)
1329 void sync_mm_rss(struct mm_struct *mm);
1330 #else
1331 static inline void sync_mm_rss(struct mm_struct *mm)
1332 {
1333 }
1334 #endif
1335 
1336 int vma_wants_writenotify(struct vm_area_struct *vma);
1337 
1338 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1339 			       spinlock_t **ptl);
1340 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1341 				    spinlock_t **ptl)
1342 {
1343 	pte_t *ptep;
1344 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1345 	return ptep;
1346 }
1347 
1348 #ifdef __PAGETABLE_PUD_FOLDED
1349 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1350 						unsigned long address)
1351 {
1352 	return 0;
1353 }
1354 #else
1355 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1356 #endif
1357 
1358 #ifdef __PAGETABLE_PMD_FOLDED
1359 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1360 						unsigned long address)
1361 {
1362 	return 0;
1363 }
1364 #else
1365 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1366 #endif
1367 
1368 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1369 		pmd_t *pmd, unsigned long address);
1370 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1371 
1372 /*
1373  * The following ifdef needed to get the 4level-fixup.h header to work.
1374  * Remove it when 4level-fixup.h has been removed.
1375  */
1376 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1377 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1378 {
1379 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1380 		NULL: pud_offset(pgd, address);
1381 }
1382 
1383 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1384 {
1385 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1386 		NULL: pmd_offset(pud, address);
1387 }
1388 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1389 
1390 #if USE_SPLIT_PTE_PTLOCKS
1391 #if ALLOC_SPLIT_PTLOCKS
1392 void __init ptlock_cache_init(void);
1393 extern bool ptlock_alloc(struct page *page);
1394 extern void ptlock_free(struct page *page);
1395 
1396 static inline spinlock_t *ptlock_ptr(struct page *page)
1397 {
1398 	return page->ptl;
1399 }
1400 #else /* ALLOC_SPLIT_PTLOCKS */
1401 static inline void ptlock_cache_init(void)
1402 {
1403 }
1404 
1405 static inline bool ptlock_alloc(struct page *page)
1406 {
1407 	return true;
1408 }
1409 
1410 static inline void ptlock_free(struct page *page)
1411 {
1412 }
1413 
1414 static inline spinlock_t *ptlock_ptr(struct page *page)
1415 {
1416 	return &page->ptl;
1417 }
1418 #endif /* ALLOC_SPLIT_PTLOCKS */
1419 
1420 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1421 {
1422 	return ptlock_ptr(pmd_page(*pmd));
1423 }
1424 
1425 static inline bool ptlock_init(struct page *page)
1426 {
1427 	/*
1428 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1429 	 * with 0. Make sure nobody took it in use in between.
1430 	 *
1431 	 * It can happen if arch try to use slab for page table allocation:
1432 	 * slab code uses page->slab_cache and page->first_page (for tail
1433 	 * pages), which share storage with page->ptl.
1434 	 */
1435 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1436 	if (!ptlock_alloc(page))
1437 		return false;
1438 	spin_lock_init(ptlock_ptr(page));
1439 	return true;
1440 }
1441 
1442 /* Reset page->mapping so free_pages_check won't complain. */
1443 static inline void pte_lock_deinit(struct page *page)
1444 {
1445 	page->mapping = NULL;
1446 	ptlock_free(page);
1447 }
1448 
1449 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1450 /*
1451  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1452  */
1453 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1454 {
1455 	return &mm->page_table_lock;
1456 }
1457 static inline void ptlock_cache_init(void) {}
1458 static inline bool ptlock_init(struct page *page) { return true; }
1459 static inline void pte_lock_deinit(struct page *page) {}
1460 #endif /* USE_SPLIT_PTE_PTLOCKS */
1461 
1462 static inline void pgtable_init(void)
1463 {
1464 	ptlock_cache_init();
1465 	pgtable_cache_init();
1466 }
1467 
1468 static inline bool pgtable_page_ctor(struct page *page)
1469 {
1470 	inc_zone_page_state(page, NR_PAGETABLE);
1471 	return ptlock_init(page);
1472 }
1473 
1474 static inline void pgtable_page_dtor(struct page *page)
1475 {
1476 	pte_lock_deinit(page);
1477 	dec_zone_page_state(page, NR_PAGETABLE);
1478 }
1479 
1480 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1481 ({							\
1482 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1483 	pte_t *__pte = pte_offset_map(pmd, address);	\
1484 	*(ptlp) = __ptl;				\
1485 	spin_lock(__ptl);				\
1486 	__pte;						\
1487 })
1488 
1489 #define pte_unmap_unlock(pte, ptl)	do {		\
1490 	spin_unlock(ptl);				\
1491 	pte_unmap(pte);					\
1492 } while (0)
1493 
1494 #define pte_alloc_map(mm, vma, pmd, address)				\
1495 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1496 							pmd, address))?	\
1497 	 NULL: pte_offset_map(pmd, address))
1498 
1499 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1500 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1501 							pmd, address))?	\
1502 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1503 
1504 #define pte_alloc_kernel(pmd, address)			\
1505 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1506 		NULL: pte_offset_kernel(pmd, address))
1507 
1508 #if USE_SPLIT_PMD_PTLOCKS
1509 
1510 static struct page *pmd_to_page(pmd_t *pmd)
1511 {
1512 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1513 	return virt_to_page((void *)((unsigned long) pmd & mask));
1514 }
1515 
1516 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1517 {
1518 	return ptlock_ptr(pmd_to_page(pmd));
1519 }
1520 
1521 static inline bool pgtable_pmd_page_ctor(struct page *page)
1522 {
1523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1524 	page->pmd_huge_pte = NULL;
1525 #endif
1526 	return ptlock_init(page);
1527 }
1528 
1529 static inline void pgtable_pmd_page_dtor(struct page *page)
1530 {
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1533 #endif
1534 	ptlock_free(page);
1535 }
1536 
1537 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1538 
1539 #else
1540 
1541 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1542 {
1543 	return &mm->page_table_lock;
1544 }
1545 
1546 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1547 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1548 
1549 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1550 
1551 #endif
1552 
1553 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1554 {
1555 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1556 	spin_lock(ptl);
1557 	return ptl;
1558 }
1559 
1560 extern void free_area_init(unsigned long * zones_size);
1561 extern void free_area_init_node(int nid, unsigned long * zones_size,
1562 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1563 extern void free_initmem(void);
1564 
1565 /*
1566  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1567  * into the buddy system. The freed pages will be poisoned with pattern
1568  * "poison" if it's within range [0, UCHAR_MAX].
1569  * Return pages freed into the buddy system.
1570  */
1571 extern unsigned long free_reserved_area(void *start, void *end,
1572 					int poison, char *s);
1573 
1574 #ifdef	CONFIG_HIGHMEM
1575 /*
1576  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1577  * and totalram_pages.
1578  */
1579 extern void free_highmem_page(struct page *page);
1580 #endif
1581 
1582 extern void adjust_managed_page_count(struct page *page, long count);
1583 extern void mem_init_print_info(const char *str);
1584 
1585 /* Free the reserved page into the buddy system, so it gets managed. */
1586 static inline void __free_reserved_page(struct page *page)
1587 {
1588 	ClearPageReserved(page);
1589 	init_page_count(page);
1590 	__free_page(page);
1591 }
1592 
1593 static inline void free_reserved_page(struct page *page)
1594 {
1595 	__free_reserved_page(page);
1596 	adjust_managed_page_count(page, 1);
1597 }
1598 
1599 static inline void mark_page_reserved(struct page *page)
1600 {
1601 	SetPageReserved(page);
1602 	adjust_managed_page_count(page, -1);
1603 }
1604 
1605 /*
1606  * Default method to free all the __init memory into the buddy system.
1607  * The freed pages will be poisoned with pattern "poison" if it's within
1608  * range [0, UCHAR_MAX].
1609  * Return pages freed into the buddy system.
1610  */
1611 static inline unsigned long free_initmem_default(int poison)
1612 {
1613 	extern char __init_begin[], __init_end[];
1614 
1615 	return free_reserved_area(&__init_begin, &__init_end,
1616 				  poison, "unused kernel");
1617 }
1618 
1619 static inline unsigned long get_num_physpages(void)
1620 {
1621 	int nid;
1622 	unsigned long phys_pages = 0;
1623 
1624 	for_each_online_node(nid)
1625 		phys_pages += node_present_pages(nid);
1626 
1627 	return phys_pages;
1628 }
1629 
1630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1631 /*
1632  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1633  * zones, allocate the backing mem_map and account for memory holes in a more
1634  * architecture independent manner. This is a substitute for creating the
1635  * zone_sizes[] and zholes_size[] arrays and passing them to
1636  * free_area_init_node()
1637  *
1638  * An architecture is expected to register range of page frames backed by
1639  * physical memory with memblock_add[_node]() before calling
1640  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1641  * usage, an architecture is expected to do something like
1642  *
1643  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1644  * 							 max_highmem_pfn};
1645  * for_each_valid_physical_page_range()
1646  * 	memblock_add_node(base, size, nid)
1647  * free_area_init_nodes(max_zone_pfns);
1648  *
1649  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1650  * registered physical page range.  Similarly
1651  * sparse_memory_present_with_active_regions() calls memory_present() for
1652  * each range when SPARSEMEM is enabled.
1653  *
1654  * See mm/page_alloc.c for more information on each function exposed by
1655  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1656  */
1657 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1658 unsigned long node_map_pfn_alignment(void);
1659 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1660 						unsigned long end_pfn);
1661 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1662 						unsigned long end_pfn);
1663 extern void get_pfn_range_for_nid(unsigned int nid,
1664 			unsigned long *start_pfn, unsigned long *end_pfn);
1665 extern unsigned long find_min_pfn_with_active_regions(void);
1666 extern void free_bootmem_with_active_regions(int nid,
1667 						unsigned long max_low_pfn);
1668 extern void sparse_memory_present_with_active_regions(int nid);
1669 
1670 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1671 
1672 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1673     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1674 static inline int __early_pfn_to_nid(unsigned long pfn)
1675 {
1676 	return 0;
1677 }
1678 #else
1679 /* please see mm/page_alloc.c */
1680 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1681 /* there is a per-arch backend function. */
1682 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1683 #endif
1684 
1685 extern void set_dma_reserve(unsigned long new_dma_reserve);
1686 extern void memmap_init_zone(unsigned long, int, unsigned long,
1687 				unsigned long, enum memmap_context);
1688 extern void setup_per_zone_wmarks(void);
1689 extern int __meminit init_per_zone_wmark_min(void);
1690 extern void mem_init(void);
1691 extern void __init mmap_init(void);
1692 extern void show_mem(unsigned int flags);
1693 extern void si_meminfo(struct sysinfo * val);
1694 extern void si_meminfo_node(struct sysinfo *val, int nid);
1695 
1696 extern __printf(3, 4)
1697 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1698 
1699 extern void setup_per_cpu_pageset(void);
1700 
1701 extern void zone_pcp_update(struct zone *zone);
1702 extern void zone_pcp_reset(struct zone *zone);
1703 
1704 /* page_alloc.c */
1705 extern int min_free_kbytes;
1706 
1707 /* nommu.c */
1708 extern atomic_long_t mmap_pages_allocated;
1709 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1710 
1711 /* interval_tree.c */
1712 void vma_interval_tree_insert(struct vm_area_struct *node,
1713 			      struct rb_root *root);
1714 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1715 				    struct vm_area_struct *prev,
1716 				    struct rb_root *root);
1717 void vma_interval_tree_remove(struct vm_area_struct *node,
1718 			      struct rb_root *root);
1719 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1720 				unsigned long start, unsigned long last);
1721 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1722 				unsigned long start, unsigned long last);
1723 
1724 #define vma_interval_tree_foreach(vma, root, start, last)		\
1725 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1726 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1727 
1728 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1729 					struct list_head *list)
1730 {
1731 	list_add_tail(&vma->shared.nonlinear, list);
1732 }
1733 
1734 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1735 				   struct rb_root *root);
1736 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1737 				   struct rb_root *root);
1738 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1739 	struct rb_root *root, unsigned long start, unsigned long last);
1740 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1741 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1742 #ifdef CONFIG_DEBUG_VM_RB
1743 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1744 #endif
1745 
1746 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1747 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1748 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1749 
1750 /* mmap.c */
1751 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1752 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1753 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1754 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1755 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1756 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1757 	struct mempolicy *);
1758 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1759 extern int split_vma(struct mm_struct *,
1760 	struct vm_area_struct *, unsigned long addr, int new_below);
1761 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1762 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1763 	struct rb_node **, struct rb_node *);
1764 extern void unlink_file_vma(struct vm_area_struct *);
1765 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1766 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1767 	bool *need_rmap_locks);
1768 extern void exit_mmap(struct mm_struct *);
1769 
1770 extern int mm_take_all_locks(struct mm_struct *mm);
1771 extern void mm_drop_all_locks(struct mm_struct *mm);
1772 
1773 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1774 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1775 
1776 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1777 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1778 				   unsigned long addr, unsigned long len,
1779 				   unsigned long flags, struct page **pages);
1780 extern int install_special_mapping(struct mm_struct *mm,
1781 				   unsigned long addr, unsigned long len,
1782 				   unsigned long flags, struct page **pages);
1783 
1784 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1785 
1786 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1787 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1788 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1789 	unsigned long len, unsigned long prot, unsigned long flags,
1790 	unsigned long pgoff, unsigned long *populate);
1791 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1792 
1793 #ifdef CONFIG_MMU
1794 extern int __mm_populate(unsigned long addr, unsigned long len,
1795 			 int ignore_errors);
1796 static inline void mm_populate(unsigned long addr, unsigned long len)
1797 {
1798 	/* Ignore errors */
1799 	(void) __mm_populate(addr, len, 1);
1800 }
1801 #else
1802 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1803 #endif
1804 
1805 /* These take the mm semaphore themselves */
1806 extern unsigned long vm_brk(unsigned long, unsigned long);
1807 extern int vm_munmap(unsigned long, size_t);
1808 extern unsigned long vm_mmap(struct file *, unsigned long,
1809         unsigned long, unsigned long,
1810         unsigned long, unsigned long);
1811 
1812 struct vm_unmapped_area_info {
1813 #define VM_UNMAPPED_AREA_TOPDOWN 1
1814 	unsigned long flags;
1815 	unsigned long length;
1816 	unsigned long low_limit;
1817 	unsigned long high_limit;
1818 	unsigned long align_mask;
1819 	unsigned long align_offset;
1820 };
1821 
1822 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1823 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1824 
1825 /*
1826  * Search for an unmapped address range.
1827  *
1828  * We are looking for a range that:
1829  * - does not intersect with any VMA;
1830  * - is contained within the [low_limit, high_limit) interval;
1831  * - is at least the desired size.
1832  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1833  */
1834 static inline unsigned long
1835 vm_unmapped_area(struct vm_unmapped_area_info *info)
1836 {
1837 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1838 		return unmapped_area(info);
1839 	else
1840 		return unmapped_area_topdown(info);
1841 }
1842 
1843 /* truncate.c */
1844 extern void truncate_inode_pages(struct address_space *, loff_t);
1845 extern void truncate_inode_pages_range(struct address_space *,
1846 				       loff_t lstart, loff_t lend);
1847 extern void truncate_inode_pages_final(struct address_space *);
1848 
1849 /* generic vm_area_ops exported for stackable file systems */
1850 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1851 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1852 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1853 
1854 /* mm/page-writeback.c */
1855 int write_one_page(struct page *page, int wait);
1856 void task_dirty_inc(struct task_struct *tsk);
1857 
1858 /* readahead.c */
1859 #define VM_MAX_READAHEAD	128	/* kbytes */
1860 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1861 
1862 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1863 			pgoff_t offset, unsigned long nr_to_read);
1864 
1865 void page_cache_sync_readahead(struct address_space *mapping,
1866 			       struct file_ra_state *ra,
1867 			       struct file *filp,
1868 			       pgoff_t offset,
1869 			       unsigned long size);
1870 
1871 void page_cache_async_readahead(struct address_space *mapping,
1872 				struct file_ra_state *ra,
1873 				struct file *filp,
1874 				struct page *pg,
1875 				pgoff_t offset,
1876 				unsigned long size);
1877 
1878 unsigned long max_sane_readahead(unsigned long nr);
1879 
1880 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1881 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1882 
1883 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1884 extern int expand_downwards(struct vm_area_struct *vma,
1885 		unsigned long address);
1886 #if VM_GROWSUP
1887 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1888 #else
1889   #define expand_upwards(vma, address) do { } while (0)
1890 #endif
1891 
1892 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1893 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1894 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1895 					     struct vm_area_struct **pprev);
1896 
1897 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1898    NULL if none.  Assume start_addr < end_addr. */
1899 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1900 {
1901 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1902 
1903 	if (vma && end_addr <= vma->vm_start)
1904 		vma = NULL;
1905 	return vma;
1906 }
1907 
1908 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1909 {
1910 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1911 }
1912 
1913 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1914 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1915 				unsigned long vm_start, unsigned long vm_end)
1916 {
1917 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1918 
1919 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1920 		vma = NULL;
1921 
1922 	return vma;
1923 }
1924 
1925 #ifdef CONFIG_MMU
1926 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1927 #else
1928 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1929 {
1930 	return __pgprot(0);
1931 }
1932 #endif
1933 
1934 #ifdef CONFIG_NUMA_BALANCING
1935 unsigned long change_prot_numa(struct vm_area_struct *vma,
1936 			unsigned long start, unsigned long end);
1937 #endif
1938 
1939 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1940 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1941 			unsigned long pfn, unsigned long size, pgprot_t);
1942 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1943 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1944 			unsigned long pfn);
1945 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1946 			unsigned long pfn);
1947 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1948 
1949 
1950 struct page *follow_page_mask(struct vm_area_struct *vma,
1951 			      unsigned long address, unsigned int foll_flags,
1952 			      unsigned int *page_mask);
1953 
1954 static inline struct page *follow_page(struct vm_area_struct *vma,
1955 		unsigned long address, unsigned int foll_flags)
1956 {
1957 	unsigned int unused_page_mask;
1958 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1959 }
1960 
1961 #define FOLL_WRITE	0x01	/* check pte is writable */
1962 #define FOLL_TOUCH	0x02	/* mark page accessed */
1963 #define FOLL_GET	0x04	/* do get_page on page */
1964 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1965 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1966 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1967 				 * and return without waiting upon it */
1968 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1969 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1970 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1971 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
1972 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
1973 
1974 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1975 			void *data);
1976 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1977 			       unsigned long size, pte_fn_t fn, void *data);
1978 
1979 #ifdef CONFIG_PROC_FS
1980 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1981 #else
1982 static inline void vm_stat_account(struct mm_struct *mm,
1983 			unsigned long flags, struct file *file, long pages)
1984 {
1985 	mm->total_vm += pages;
1986 }
1987 #endif /* CONFIG_PROC_FS */
1988 
1989 #ifdef CONFIG_DEBUG_PAGEALLOC
1990 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1991 #ifdef CONFIG_HIBERNATION
1992 extern bool kernel_page_present(struct page *page);
1993 #endif /* CONFIG_HIBERNATION */
1994 #else
1995 static inline void
1996 kernel_map_pages(struct page *page, int numpages, int enable) {}
1997 #ifdef CONFIG_HIBERNATION
1998 static inline bool kernel_page_present(struct page *page) { return true; }
1999 #endif /* CONFIG_HIBERNATION */
2000 #endif
2001 
2002 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2003 #ifdef	__HAVE_ARCH_GATE_AREA
2004 int in_gate_area_no_mm(unsigned long addr);
2005 int in_gate_area(struct mm_struct *mm, unsigned long addr);
2006 #else
2007 int in_gate_area_no_mm(unsigned long addr);
2008 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2009 #endif	/* __HAVE_ARCH_GATE_AREA */
2010 
2011 #ifdef CONFIG_SYSCTL
2012 extern int sysctl_drop_caches;
2013 int drop_caches_sysctl_handler(struct ctl_table *, int,
2014 					void __user *, size_t *, loff_t *);
2015 #endif
2016 
2017 unsigned long shrink_slab(struct shrink_control *shrink,
2018 			  unsigned long nr_pages_scanned,
2019 			  unsigned long lru_pages);
2020 
2021 #ifndef CONFIG_MMU
2022 #define randomize_va_space 0
2023 #else
2024 extern int randomize_va_space;
2025 #endif
2026 
2027 const char * arch_vma_name(struct vm_area_struct *vma);
2028 void print_vma_addr(char *prefix, unsigned long rip);
2029 
2030 void sparse_mem_maps_populate_node(struct page **map_map,
2031 				   unsigned long pnum_begin,
2032 				   unsigned long pnum_end,
2033 				   unsigned long map_count,
2034 				   int nodeid);
2035 
2036 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2037 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2038 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2039 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2040 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2041 void *vmemmap_alloc_block(unsigned long size, int node);
2042 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2043 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2044 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2045 			       int node);
2046 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2047 void vmemmap_populate_print_last(void);
2048 #ifdef CONFIG_MEMORY_HOTPLUG
2049 void vmemmap_free(unsigned long start, unsigned long end);
2050 #endif
2051 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2052 				  unsigned long size);
2053 
2054 enum mf_flags {
2055 	MF_COUNT_INCREASED = 1 << 0,
2056 	MF_ACTION_REQUIRED = 1 << 1,
2057 	MF_MUST_KILL = 1 << 2,
2058 	MF_SOFT_OFFLINE = 1 << 3,
2059 };
2060 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2061 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2062 extern int unpoison_memory(unsigned long pfn);
2063 extern int sysctl_memory_failure_early_kill;
2064 extern int sysctl_memory_failure_recovery;
2065 extern void shake_page(struct page *p, int access);
2066 extern atomic_long_t num_poisoned_pages;
2067 extern int soft_offline_page(struct page *page, int flags);
2068 
2069 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2070 extern void clear_huge_page(struct page *page,
2071 			    unsigned long addr,
2072 			    unsigned int pages_per_huge_page);
2073 extern void copy_user_huge_page(struct page *dst, struct page *src,
2074 				unsigned long addr, struct vm_area_struct *vma,
2075 				unsigned int pages_per_huge_page);
2076 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2077 
2078 #ifdef CONFIG_DEBUG_PAGEALLOC
2079 extern unsigned int _debug_guardpage_minorder;
2080 
2081 static inline unsigned int debug_guardpage_minorder(void)
2082 {
2083 	return _debug_guardpage_minorder;
2084 }
2085 
2086 static inline bool page_is_guard(struct page *page)
2087 {
2088 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2089 }
2090 #else
2091 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2092 static inline bool page_is_guard(struct page *page) { return false; }
2093 #endif /* CONFIG_DEBUG_PAGEALLOC */
2094 
2095 #if MAX_NUMNODES > 1
2096 void __init setup_nr_node_ids(void);
2097 #else
2098 static inline void setup_nr_node_ids(void) {}
2099 #endif
2100 
2101 #endif /* __KERNEL__ */
2102 #endif /* _LINUX_MM_H */
2103