1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 31 struct mempolicy; 32 struct anon_vma; 33 struct anon_vma_chain; 34 struct file_ra_state; 35 struct user_struct; 36 struct writeback_control; 37 struct bdi_writeback; 38 39 void init_mm_internals(void); 40 41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42 extern unsigned long max_mapnr; 43 44 static inline void set_max_mapnr(unsigned long limit) 45 { 46 max_mapnr = limit; 47 } 48 #else 49 static inline void set_max_mapnr(unsigned long limit) { } 50 #endif 51 52 extern atomic_long_t _totalram_pages; 53 static inline unsigned long totalram_pages(void) 54 { 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56 } 57 58 static inline void totalram_pages_inc(void) 59 { 60 atomic_long_inc(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_dec(void) 64 { 65 atomic_long_dec(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_add(long count) 69 { 70 atomic_long_add(count, &_totalram_pages); 71 } 72 73 static inline void totalram_pages_set(long val) 74 { 75 atomic_long_set(&_totalram_pages, val); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/pgtable.h> 100 #include <asm/processor.h> 101 102 /* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109 #ifndef untagged_addr 110 #define untagged_addr(addr) (addr) 111 #endif 112 113 #ifndef __pa_symbol 114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115 #endif 116 117 #ifndef page_to_virt 118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119 #endif 120 121 #ifndef lm_alias 122 #define lm_alias(x) __va(__pa_symbol(x)) 123 #endif 124 125 /* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132 #ifndef mm_forbids_zeropage 133 #define mm_forbids_zeropage(X) (0) 134 #endif 135 136 /* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142 #if BITS_PER_LONG == 64 143 /* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150 static inline void __mm_zero_struct_page(struct page *page) 151 { 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175 } 176 #else 177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178 #endif 179 180 /* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196 #define MAPCOUNT_ELF_CORE_MARGIN (5) 197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199 extern int sysctl_max_map_count; 200 201 extern unsigned long sysctl_user_reserve_kbytes; 202 extern unsigned long sysctl_admin_reserve_kbytes; 203 204 extern int sysctl_overcommit_memory; 205 extern int sysctl_overcommit_ratio; 206 extern unsigned long sysctl_overcommit_kbytes; 207 208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215 /* to align the pointer to the (next) page boundary */ 216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223 /* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234 void vm_area_free(struct vm_area_struct *); 235 236 #ifndef CONFIG_MMU 237 extern struct rb_root nommu_region_tree; 238 extern struct rw_semaphore nommu_region_sem; 239 240 extern unsigned int kobjsize(const void *objp); 241 #endif 242 243 /* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247 #define VM_NONE 0x00000000 248 249 #define VM_READ 0x00000001 /* currently active flags */ 250 #define VM_WRITE 0x00000002 251 #define VM_EXEC 0x00000004 252 #define VM_SHARED 0x00000008 253 254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256 #define VM_MAYWRITE 0x00000020 257 #define VM_MAYEXEC 0x00000040 258 #define VM_MAYSHARE 0x00000080 259 260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266 #define VM_LOCKED 0x00002000 267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284 #ifdef CONFIG_MEM_SOFT_DIRTY 285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286 #else 287 # define VM_SOFTDIRTY 0 288 #endif 289 290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308 #ifdef CONFIG_ARCH_HAS_PKEYS 309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314 #ifdef CONFIG_PPC 315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316 #else 317 # define VM_PKEY_BIT4 0 318 #endif 319 #endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321 #if defined(CONFIG_X86) 322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323 #elif defined(CONFIG_PPC) 324 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325 #elif defined(CONFIG_PARISC) 326 # define VM_GROWSUP VM_ARCH_1 327 #elif defined(CONFIG_IA64) 328 # define VM_GROWSUP VM_ARCH_1 329 #elif defined(CONFIG_SPARC64) 330 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331 # define VM_ARCH_CLEAR VM_SPARC_ADI 332 #elif !defined(CONFIG_MMU) 333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334 #endif 335 336 #if defined(CONFIG_X86_INTEL_MPX) 337 /* MPX specific bounds table or bounds directory */ 338 # define VM_MPX VM_HIGH_ARCH_4 339 #else 340 # define VM_MPX VM_NONE 341 #endif 342 343 #ifndef VM_GROWSUP 344 # define VM_GROWSUP VM_NONE 345 #endif 346 347 /* Bits set in the VMA until the stack is in its final location */ 348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352 #endif 353 354 #ifdef CONFIG_STACK_GROWSUP 355 #define VM_STACK VM_GROWSUP 356 #else 357 #define VM_STACK VM_GROWSDOWN 358 #endif 359 360 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362 /* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368 /* This mask defines which mm->def_flags a process can inherit its parent */ 369 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371 /* This mask is used to clear all the VMA flags used by mlock */ 372 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374 /* Arch-specific flags to clear when updating VM flags on protection change */ 375 #ifndef VM_ARCH_CLEAR 376 # define VM_ARCH_CLEAR VM_NONE 377 #endif 378 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380 /* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384 extern pgprot_t protection_map[16]; 385 386 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 392 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396 #define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407 /* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417 struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453 }; 454 455 /* page entry size for vm->huge_fault() */ 456 enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460 }; 461 462 /* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467 struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497 #ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519 #endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527 }; 528 529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530 { 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537 } 538 539 static inline void vma_set_anonymous(struct vm_area_struct *vma) 540 { 541 vma->vm_ops = NULL; 542 } 543 544 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 545 { 546 return !vma->vm_ops; 547 } 548 549 #ifdef CONFIG_SHMEM 550 /* 551 * The vma_is_shmem is not inline because it is used only by slow 552 * paths in userfault. 553 */ 554 bool vma_is_shmem(struct vm_area_struct *vma); 555 #else 556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 557 #endif 558 559 int vma_is_stack_for_current(struct vm_area_struct *vma); 560 561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 563 564 struct mmu_gather; 565 struct inode; 566 567 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 568 static inline int pmd_devmap(pmd_t pmd) 569 { 570 return 0; 571 } 572 static inline int pud_devmap(pud_t pud) 573 { 574 return 0; 575 } 576 static inline int pgd_devmap(pgd_t pgd) 577 { 578 return 0; 579 } 580 #endif 581 582 /* 583 * FIXME: take this include out, include page-flags.h in 584 * files which need it (119 of them) 585 */ 586 #include <linux/page-flags.h> 587 #include <linux/huge_mm.h> 588 589 /* 590 * Methods to modify the page usage count. 591 * 592 * What counts for a page usage: 593 * - cache mapping (page->mapping) 594 * - private data (page->private) 595 * - page mapped in a task's page tables, each mapping 596 * is counted separately 597 * 598 * Also, many kernel routines increase the page count before a critical 599 * routine so they can be sure the page doesn't go away from under them. 600 */ 601 602 /* 603 * Drop a ref, return true if the refcount fell to zero (the page has no users) 604 */ 605 static inline int put_page_testzero(struct page *page) 606 { 607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 608 return page_ref_dec_and_test(page); 609 } 610 611 /* 612 * Try to grab a ref unless the page has a refcount of zero, return false if 613 * that is the case. 614 * This can be called when MMU is off so it must not access 615 * any of the virtual mappings. 616 */ 617 static inline int get_page_unless_zero(struct page *page) 618 { 619 return page_ref_add_unless(page, 1, 0); 620 } 621 622 extern int page_is_ram(unsigned long pfn); 623 624 enum { 625 REGION_INTERSECTS, 626 REGION_DISJOINT, 627 REGION_MIXED, 628 }; 629 630 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 631 unsigned long desc); 632 633 /* Support for virtually mapped pages */ 634 struct page *vmalloc_to_page(const void *addr); 635 unsigned long vmalloc_to_pfn(const void *addr); 636 637 /* 638 * Determine if an address is within the vmalloc range 639 * 640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 641 * is no special casing required. 642 */ 643 static inline bool is_vmalloc_addr(const void *x) 644 { 645 #ifdef CONFIG_MMU 646 unsigned long addr = (unsigned long)x; 647 648 return addr >= VMALLOC_START && addr < VMALLOC_END; 649 #else 650 return false; 651 #endif 652 } 653 654 #ifndef is_ioremap_addr 655 #define is_ioremap_addr(x) is_vmalloc_addr(x) 656 #endif 657 658 #ifdef CONFIG_MMU 659 extern int is_vmalloc_or_module_addr(const void *x); 660 #else 661 static inline int is_vmalloc_or_module_addr(const void *x) 662 { 663 return 0; 664 } 665 #endif 666 667 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 668 static inline void *kvmalloc(size_t size, gfp_t flags) 669 { 670 return kvmalloc_node(size, flags, NUMA_NO_NODE); 671 } 672 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 673 { 674 return kvmalloc_node(size, flags | __GFP_ZERO, node); 675 } 676 static inline void *kvzalloc(size_t size, gfp_t flags) 677 { 678 return kvmalloc(size, flags | __GFP_ZERO); 679 } 680 681 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 682 { 683 size_t bytes; 684 685 if (unlikely(check_mul_overflow(n, size, &bytes))) 686 return NULL; 687 688 return kvmalloc(bytes, flags); 689 } 690 691 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 692 { 693 return kvmalloc_array(n, size, flags | __GFP_ZERO); 694 } 695 696 extern void kvfree(const void *addr); 697 698 static inline atomic_t *compound_mapcount_ptr(struct page *page) 699 { 700 return &page[1].compound_mapcount; 701 } 702 703 static inline int compound_mapcount(struct page *page) 704 { 705 VM_BUG_ON_PAGE(!PageCompound(page), page); 706 page = compound_head(page); 707 return atomic_read(compound_mapcount_ptr(page)) + 1; 708 } 709 710 /* 711 * The atomic page->_mapcount, starts from -1: so that transitions 712 * both from it and to it can be tracked, using atomic_inc_and_test 713 * and atomic_add_negative(-1). 714 */ 715 static inline void page_mapcount_reset(struct page *page) 716 { 717 atomic_set(&(page)->_mapcount, -1); 718 } 719 720 int __page_mapcount(struct page *page); 721 722 static inline int page_mapcount(struct page *page) 723 { 724 VM_BUG_ON_PAGE(PageSlab(page), page); 725 726 if (unlikely(PageCompound(page))) 727 return __page_mapcount(page); 728 return atomic_read(&page->_mapcount) + 1; 729 } 730 731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 732 int total_mapcount(struct page *page); 733 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 734 #else 735 static inline int total_mapcount(struct page *page) 736 { 737 return page_mapcount(page); 738 } 739 static inline int page_trans_huge_mapcount(struct page *page, 740 int *total_mapcount) 741 { 742 int mapcount = page_mapcount(page); 743 if (total_mapcount) 744 *total_mapcount = mapcount; 745 return mapcount; 746 } 747 #endif 748 749 static inline struct page *virt_to_head_page(const void *x) 750 { 751 struct page *page = virt_to_page(x); 752 753 return compound_head(page); 754 } 755 756 void __put_page(struct page *page); 757 758 void put_pages_list(struct list_head *pages); 759 760 void split_page(struct page *page, unsigned int order); 761 762 /* 763 * Compound pages have a destructor function. Provide a 764 * prototype for that function and accessor functions. 765 * These are _only_ valid on the head of a compound page. 766 */ 767 typedef void compound_page_dtor(struct page *); 768 769 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 770 enum compound_dtor_id { 771 NULL_COMPOUND_DTOR, 772 COMPOUND_PAGE_DTOR, 773 #ifdef CONFIG_HUGETLB_PAGE 774 HUGETLB_PAGE_DTOR, 775 #endif 776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 TRANSHUGE_PAGE_DTOR, 778 #endif 779 NR_COMPOUND_DTORS, 780 }; 781 extern compound_page_dtor * const compound_page_dtors[]; 782 783 static inline void set_compound_page_dtor(struct page *page, 784 enum compound_dtor_id compound_dtor) 785 { 786 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 787 page[1].compound_dtor = compound_dtor; 788 } 789 790 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 791 { 792 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 793 return compound_page_dtors[page[1].compound_dtor]; 794 } 795 796 static inline unsigned int compound_order(struct page *page) 797 { 798 if (!PageHead(page)) 799 return 0; 800 return page[1].compound_order; 801 } 802 803 static inline void set_compound_order(struct page *page, unsigned int order) 804 { 805 page[1].compound_order = order; 806 } 807 808 void free_compound_page(struct page *page); 809 810 #ifdef CONFIG_MMU 811 /* 812 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 813 * servicing faults for write access. In the normal case, do always want 814 * pte_mkwrite. But get_user_pages can cause write faults for mappings 815 * that do not have writing enabled, when used by access_process_vm. 816 */ 817 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 818 { 819 if (likely(vma->vm_flags & VM_WRITE)) 820 pte = pte_mkwrite(pte); 821 return pte; 822 } 823 824 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 825 struct page *page); 826 vm_fault_t finish_fault(struct vm_fault *vmf); 827 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 828 #endif 829 830 /* 831 * Multiple processes may "see" the same page. E.g. for untouched 832 * mappings of /dev/null, all processes see the same page full of 833 * zeroes, and text pages of executables and shared libraries have 834 * only one copy in memory, at most, normally. 835 * 836 * For the non-reserved pages, page_count(page) denotes a reference count. 837 * page_count() == 0 means the page is free. page->lru is then used for 838 * freelist management in the buddy allocator. 839 * page_count() > 0 means the page has been allocated. 840 * 841 * Pages are allocated by the slab allocator in order to provide memory 842 * to kmalloc and kmem_cache_alloc. In this case, the management of the 843 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 844 * unless a particular usage is carefully commented. (the responsibility of 845 * freeing the kmalloc memory is the caller's, of course). 846 * 847 * A page may be used by anyone else who does a __get_free_page(). 848 * In this case, page_count still tracks the references, and should only 849 * be used through the normal accessor functions. The top bits of page->flags 850 * and page->virtual store page management information, but all other fields 851 * are unused and could be used privately, carefully. The management of this 852 * page is the responsibility of the one who allocated it, and those who have 853 * subsequently been given references to it. 854 * 855 * The other pages (we may call them "pagecache pages") are completely 856 * managed by the Linux memory manager: I/O, buffers, swapping etc. 857 * The following discussion applies only to them. 858 * 859 * A pagecache page contains an opaque `private' member, which belongs to the 860 * page's address_space. Usually, this is the address of a circular list of 861 * the page's disk buffers. PG_private must be set to tell the VM to call 862 * into the filesystem to release these pages. 863 * 864 * A page may belong to an inode's memory mapping. In this case, page->mapping 865 * is the pointer to the inode, and page->index is the file offset of the page, 866 * in units of PAGE_SIZE. 867 * 868 * If pagecache pages are not associated with an inode, they are said to be 869 * anonymous pages. These may become associated with the swapcache, and in that 870 * case PG_swapcache is set, and page->private is an offset into the swapcache. 871 * 872 * In either case (swapcache or inode backed), the pagecache itself holds one 873 * reference to the page. Setting PG_private should also increment the 874 * refcount. The each user mapping also has a reference to the page. 875 * 876 * The pagecache pages are stored in a per-mapping radix tree, which is 877 * rooted at mapping->i_pages, and indexed by offset. 878 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 879 * lists, we instead now tag pages as dirty/writeback in the radix tree. 880 * 881 * All pagecache pages may be subject to I/O: 882 * - inode pages may need to be read from disk, 883 * - inode pages which have been modified and are MAP_SHARED may need 884 * to be written back to the inode on disk, 885 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 886 * modified may need to be swapped out to swap space and (later) to be read 887 * back into memory. 888 */ 889 890 /* 891 * The zone field is never updated after free_area_init_core() 892 * sets it, so none of the operations on it need to be atomic. 893 */ 894 895 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 896 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 897 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 898 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 899 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 900 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 901 902 /* 903 * Define the bit shifts to access each section. For non-existent 904 * sections we define the shift as 0; that plus a 0 mask ensures 905 * the compiler will optimise away reference to them. 906 */ 907 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 908 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 909 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 910 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 911 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 912 913 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 914 #ifdef NODE_NOT_IN_PAGE_FLAGS 915 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 916 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 917 SECTIONS_PGOFF : ZONES_PGOFF) 918 #else 919 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 920 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 921 NODES_PGOFF : ZONES_PGOFF) 922 #endif 923 924 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 925 926 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 927 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 928 #endif 929 930 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 931 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 932 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 933 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 934 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 935 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 936 937 static inline enum zone_type page_zonenum(const struct page *page) 938 { 939 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 940 } 941 942 #ifdef CONFIG_ZONE_DEVICE 943 static inline bool is_zone_device_page(const struct page *page) 944 { 945 return page_zonenum(page) == ZONE_DEVICE; 946 } 947 extern void memmap_init_zone_device(struct zone *, unsigned long, 948 unsigned long, struct dev_pagemap *); 949 #else 950 static inline bool is_zone_device_page(const struct page *page) 951 { 952 return false; 953 } 954 #endif 955 956 #ifdef CONFIG_DEV_PAGEMAP_OPS 957 void __put_devmap_managed_page(struct page *page); 958 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 959 static inline bool put_devmap_managed_page(struct page *page) 960 { 961 if (!static_branch_unlikely(&devmap_managed_key)) 962 return false; 963 if (!is_zone_device_page(page)) 964 return false; 965 switch (page->pgmap->type) { 966 case MEMORY_DEVICE_PRIVATE: 967 case MEMORY_DEVICE_FS_DAX: 968 __put_devmap_managed_page(page); 969 return true; 970 default: 971 break; 972 } 973 return false; 974 } 975 976 #else /* CONFIG_DEV_PAGEMAP_OPS */ 977 static inline bool put_devmap_managed_page(struct page *page) 978 { 979 return false; 980 } 981 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 982 983 static inline bool is_device_private_page(const struct page *page) 984 { 985 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 986 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 987 is_zone_device_page(page) && 988 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 989 } 990 991 static inline bool is_pci_p2pdma_page(const struct page *page) 992 { 993 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 994 IS_ENABLED(CONFIG_PCI_P2PDMA) && 995 is_zone_device_page(page) && 996 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 997 } 998 999 /* 127: arbitrary random number, small enough to assemble well */ 1000 #define page_ref_zero_or_close_to_overflow(page) \ 1001 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1002 1003 static inline void get_page(struct page *page) 1004 { 1005 page = compound_head(page); 1006 /* 1007 * Getting a normal page or the head of a compound page 1008 * requires to already have an elevated page->_refcount. 1009 */ 1010 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1011 page_ref_inc(page); 1012 } 1013 1014 static inline __must_check bool try_get_page(struct page *page) 1015 { 1016 page = compound_head(page); 1017 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1018 return false; 1019 page_ref_inc(page); 1020 return true; 1021 } 1022 1023 static inline void put_page(struct page *page) 1024 { 1025 page = compound_head(page); 1026 1027 /* 1028 * For devmap managed pages we need to catch refcount transition from 1029 * 2 to 1, when refcount reach one it means the page is free and we 1030 * need to inform the device driver through callback. See 1031 * include/linux/memremap.h and HMM for details. 1032 */ 1033 if (put_devmap_managed_page(page)) 1034 return; 1035 1036 if (put_page_testzero(page)) 1037 __put_page(page); 1038 } 1039 1040 /** 1041 * put_user_page() - release a gup-pinned page 1042 * @page: pointer to page to be released 1043 * 1044 * Pages that were pinned via get_user_pages*() must be released via 1045 * either put_user_page(), or one of the put_user_pages*() routines 1046 * below. This is so that eventually, pages that are pinned via 1047 * get_user_pages*() can be separately tracked and uniquely handled. In 1048 * particular, interactions with RDMA and filesystems need special 1049 * handling. 1050 * 1051 * put_user_page() and put_page() are not interchangeable, despite this early 1052 * implementation that makes them look the same. put_user_page() calls must 1053 * be perfectly matched up with get_user_page() calls. 1054 */ 1055 static inline void put_user_page(struct page *page) 1056 { 1057 put_page(page); 1058 } 1059 1060 void put_user_pages_dirty(struct page **pages, unsigned long npages); 1061 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages); 1062 void put_user_pages(struct page **pages, unsigned long npages); 1063 1064 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1065 #define SECTION_IN_PAGE_FLAGS 1066 #endif 1067 1068 /* 1069 * The identification function is mainly used by the buddy allocator for 1070 * determining if two pages could be buddies. We are not really identifying 1071 * the zone since we could be using the section number id if we do not have 1072 * node id available in page flags. 1073 * We only guarantee that it will return the same value for two combinable 1074 * pages in a zone. 1075 */ 1076 static inline int page_zone_id(struct page *page) 1077 { 1078 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1079 } 1080 1081 #ifdef NODE_NOT_IN_PAGE_FLAGS 1082 extern int page_to_nid(const struct page *page); 1083 #else 1084 static inline int page_to_nid(const struct page *page) 1085 { 1086 struct page *p = (struct page *)page; 1087 1088 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1089 } 1090 #endif 1091 1092 #ifdef CONFIG_NUMA_BALANCING 1093 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1094 { 1095 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1096 } 1097 1098 static inline int cpupid_to_pid(int cpupid) 1099 { 1100 return cpupid & LAST__PID_MASK; 1101 } 1102 1103 static inline int cpupid_to_cpu(int cpupid) 1104 { 1105 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1106 } 1107 1108 static inline int cpupid_to_nid(int cpupid) 1109 { 1110 return cpu_to_node(cpupid_to_cpu(cpupid)); 1111 } 1112 1113 static inline bool cpupid_pid_unset(int cpupid) 1114 { 1115 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1116 } 1117 1118 static inline bool cpupid_cpu_unset(int cpupid) 1119 { 1120 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1121 } 1122 1123 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1124 { 1125 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1126 } 1127 1128 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1129 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1130 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1131 { 1132 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1133 } 1134 1135 static inline int page_cpupid_last(struct page *page) 1136 { 1137 return page->_last_cpupid; 1138 } 1139 static inline void page_cpupid_reset_last(struct page *page) 1140 { 1141 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1142 } 1143 #else 1144 static inline int page_cpupid_last(struct page *page) 1145 { 1146 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1147 } 1148 1149 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1150 1151 static inline void page_cpupid_reset_last(struct page *page) 1152 { 1153 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1154 } 1155 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1156 #else /* !CONFIG_NUMA_BALANCING */ 1157 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1158 { 1159 return page_to_nid(page); /* XXX */ 1160 } 1161 1162 static inline int page_cpupid_last(struct page *page) 1163 { 1164 return page_to_nid(page); /* XXX */ 1165 } 1166 1167 static inline int cpupid_to_nid(int cpupid) 1168 { 1169 return -1; 1170 } 1171 1172 static inline int cpupid_to_pid(int cpupid) 1173 { 1174 return -1; 1175 } 1176 1177 static inline int cpupid_to_cpu(int cpupid) 1178 { 1179 return -1; 1180 } 1181 1182 static inline int cpu_pid_to_cpupid(int nid, int pid) 1183 { 1184 return -1; 1185 } 1186 1187 static inline bool cpupid_pid_unset(int cpupid) 1188 { 1189 return 1; 1190 } 1191 1192 static inline void page_cpupid_reset_last(struct page *page) 1193 { 1194 } 1195 1196 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1197 { 1198 return false; 1199 } 1200 #endif /* CONFIG_NUMA_BALANCING */ 1201 1202 #ifdef CONFIG_KASAN_SW_TAGS 1203 static inline u8 page_kasan_tag(const struct page *page) 1204 { 1205 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1206 } 1207 1208 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1209 { 1210 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1211 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1212 } 1213 1214 static inline void page_kasan_tag_reset(struct page *page) 1215 { 1216 page_kasan_tag_set(page, 0xff); 1217 } 1218 #else 1219 static inline u8 page_kasan_tag(const struct page *page) 1220 { 1221 return 0xff; 1222 } 1223 1224 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1225 static inline void page_kasan_tag_reset(struct page *page) { } 1226 #endif 1227 1228 static inline struct zone *page_zone(const struct page *page) 1229 { 1230 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1231 } 1232 1233 static inline pg_data_t *page_pgdat(const struct page *page) 1234 { 1235 return NODE_DATA(page_to_nid(page)); 1236 } 1237 1238 #ifdef SECTION_IN_PAGE_FLAGS 1239 static inline void set_page_section(struct page *page, unsigned long section) 1240 { 1241 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1242 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1243 } 1244 1245 static inline unsigned long page_to_section(const struct page *page) 1246 { 1247 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1248 } 1249 #endif 1250 1251 static inline void set_page_zone(struct page *page, enum zone_type zone) 1252 { 1253 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1254 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1255 } 1256 1257 static inline void set_page_node(struct page *page, unsigned long node) 1258 { 1259 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1260 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1261 } 1262 1263 static inline void set_page_links(struct page *page, enum zone_type zone, 1264 unsigned long node, unsigned long pfn) 1265 { 1266 set_page_zone(page, zone); 1267 set_page_node(page, node); 1268 #ifdef SECTION_IN_PAGE_FLAGS 1269 set_page_section(page, pfn_to_section_nr(pfn)); 1270 #endif 1271 } 1272 1273 #ifdef CONFIG_MEMCG 1274 static inline struct mem_cgroup *page_memcg(struct page *page) 1275 { 1276 return page->mem_cgroup; 1277 } 1278 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1279 { 1280 WARN_ON_ONCE(!rcu_read_lock_held()); 1281 return READ_ONCE(page->mem_cgroup); 1282 } 1283 #else 1284 static inline struct mem_cgroup *page_memcg(struct page *page) 1285 { 1286 return NULL; 1287 } 1288 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1289 { 1290 WARN_ON_ONCE(!rcu_read_lock_held()); 1291 return NULL; 1292 } 1293 #endif 1294 1295 /* 1296 * Some inline functions in vmstat.h depend on page_zone() 1297 */ 1298 #include <linux/vmstat.h> 1299 1300 static __always_inline void *lowmem_page_address(const struct page *page) 1301 { 1302 return page_to_virt(page); 1303 } 1304 1305 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1306 #define HASHED_PAGE_VIRTUAL 1307 #endif 1308 1309 #if defined(WANT_PAGE_VIRTUAL) 1310 static inline void *page_address(const struct page *page) 1311 { 1312 return page->virtual; 1313 } 1314 static inline void set_page_address(struct page *page, void *address) 1315 { 1316 page->virtual = address; 1317 } 1318 #define page_address_init() do { } while(0) 1319 #endif 1320 1321 #if defined(HASHED_PAGE_VIRTUAL) 1322 void *page_address(const struct page *page); 1323 void set_page_address(struct page *page, void *virtual); 1324 void page_address_init(void); 1325 #endif 1326 1327 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1328 #define page_address(page) lowmem_page_address(page) 1329 #define set_page_address(page, address) do { } while(0) 1330 #define page_address_init() do { } while(0) 1331 #endif 1332 1333 extern void *page_rmapping(struct page *page); 1334 extern struct anon_vma *page_anon_vma(struct page *page); 1335 extern struct address_space *page_mapping(struct page *page); 1336 1337 extern struct address_space *__page_file_mapping(struct page *); 1338 1339 static inline 1340 struct address_space *page_file_mapping(struct page *page) 1341 { 1342 if (unlikely(PageSwapCache(page))) 1343 return __page_file_mapping(page); 1344 1345 return page->mapping; 1346 } 1347 1348 extern pgoff_t __page_file_index(struct page *page); 1349 1350 /* 1351 * Return the pagecache index of the passed page. Regular pagecache pages 1352 * use ->index whereas swapcache pages use swp_offset(->private) 1353 */ 1354 static inline pgoff_t page_index(struct page *page) 1355 { 1356 if (unlikely(PageSwapCache(page))) 1357 return __page_file_index(page); 1358 return page->index; 1359 } 1360 1361 bool page_mapped(struct page *page); 1362 struct address_space *page_mapping(struct page *page); 1363 struct address_space *page_mapping_file(struct page *page); 1364 1365 /* 1366 * Return true only if the page has been allocated with 1367 * ALLOC_NO_WATERMARKS and the low watermark was not 1368 * met implying that the system is under some pressure. 1369 */ 1370 static inline bool page_is_pfmemalloc(struct page *page) 1371 { 1372 /* 1373 * Page index cannot be this large so this must be 1374 * a pfmemalloc page. 1375 */ 1376 return page->index == -1UL; 1377 } 1378 1379 /* 1380 * Only to be called by the page allocator on a freshly allocated 1381 * page. 1382 */ 1383 static inline void set_page_pfmemalloc(struct page *page) 1384 { 1385 page->index = -1UL; 1386 } 1387 1388 static inline void clear_page_pfmemalloc(struct page *page) 1389 { 1390 page->index = 0; 1391 } 1392 1393 /* 1394 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1395 */ 1396 extern void pagefault_out_of_memory(void); 1397 1398 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1399 1400 /* 1401 * Flags passed to show_mem() and show_free_areas() to suppress output in 1402 * various contexts. 1403 */ 1404 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1405 1406 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1407 1408 extern bool can_do_mlock(void); 1409 extern int user_shm_lock(size_t, struct user_struct *); 1410 extern void user_shm_unlock(size_t, struct user_struct *); 1411 1412 /* 1413 * Parameter block passed down to zap_pte_range in exceptional cases. 1414 */ 1415 struct zap_details { 1416 struct address_space *check_mapping; /* Check page->mapping if set */ 1417 pgoff_t first_index; /* Lowest page->index to unmap */ 1418 pgoff_t last_index; /* Highest page->index to unmap */ 1419 }; 1420 1421 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1422 pte_t pte); 1423 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1424 pmd_t pmd); 1425 1426 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1427 unsigned long size); 1428 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1429 unsigned long size); 1430 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1431 unsigned long start, unsigned long end); 1432 1433 /** 1434 * mm_walk - callbacks for walk_page_range 1435 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1436 * this handler should only handle pud_trans_huge() puds. 1437 * the pmd_entry or pte_entry callbacks will be used for 1438 * regular PUDs. 1439 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1440 * this handler is required to be able to handle 1441 * pmd_trans_huge() pmds. They may simply choose to 1442 * split_huge_page() instead of handling it explicitly. 1443 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1444 * @pte_hole: if set, called for each hole at all levels 1445 * @hugetlb_entry: if set, called for each hugetlb entry 1446 * @test_walk: caller specific callback function to determine whether 1447 * we walk over the current vma or not. Returning 0 1448 * value means "do page table walk over the current vma," 1449 * and a negative one means "abort current page table walk 1450 * right now." 1 means "skip the current vma." 1451 * @mm: mm_struct representing the target process of page table walk 1452 * @vma: vma currently walked (NULL if walking outside vmas) 1453 * @private: private data for callbacks' usage 1454 * 1455 * (see the comment on walk_page_range() for more details) 1456 */ 1457 struct mm_walk { 1458 int (*pud_entry)(pud_t *pud, unsigned long addr, 1459 unsigned long next, struct mm_walk *walk); 1460 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1461 unsigned long next, struct mm_walk *walk); 1462 int (*pte_entry)(pte_t *pte, unsigned long addr, 1463 unsigned long next, struct mm_walk *walk); 1464 int (*pte_hole)(unsigned long addr, unsigned long next, 1465 struct mm_walk *walk); 1466 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1467 unsigned long addr, unsigned long next, 1468 struct mm_walk *walk); 1469 int (*test_walk)(unsigned long addr, unsigned long next, 1470 struct mm_walk *walk); 1471 struct mm_struct *mm; 1472 struct vm_area_struct *vma; 1473 void *private; 1474 }; 1475 1476 struct mmu_notifier_range; 1477 1478 int walk_page_range(unsigned long addr, unsigned long end, 1479 struct mm_walk *walk); 1480 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1481 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1482 unsigned long end, unsigned long floor, unsigned long ceiling); 1483 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1484 struct vm_area_struct *vma); 1485 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1486 struct mmu_notifier_range *range, 1487 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1488 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1489 unsigned long *pfn); 1490 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1491 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1492 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1493 void *buf, int len, int write); 1494 1495 extern void truncate_pagecache(struct inode *inode, loff_t new); 1496 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1497 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1498 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1499 int truncate_inode_page(struct address_space *mapping, struct page *page); 1500 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1501 int invalidate_inode_page(struct page *page); 1502 1503 #ifdef CONFIG_MMU 1504 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1505 unsigned long address, unsigned int flags); 1506 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1507 unsigned long address, unsigned int fault_flags, 1508 bool *unlocked); 1509 void unmap_mapping_pages(struct address_space *mapping, 1510 pgoff_t start, pgoff_t nr, bool even_cows); 1511 void unmap_mapping_range(struct address_space *mapping, 1512 loff_t const holebegin, loff_t const holelen, int even_cows); 1513 #else 1514 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1515 unsigned long address, unsigned int flags) 1516 { 1517 /* should never happen if there's no MMU */ 1518 BUG(); 1519 return VM_FAULT_SIGBUS; 1520 } 1521 static inline int fixup_user_fault(struct task_struct *tsk, 1522 struct mm_struct *mm, unsigned long address, 1523 unsigned int fault_flags, bool *unlocked) 1524 { 1525 /* should never happen if there's no MMU */ 1526 BUG(); 1527 return -EFAULT; 1528 } 1529 static inline void unmap_mapping_pages(struct address_space *mapping, 1530 pgoff_t start, pgoff_t nr, bool even_cows) { } 1531 static inline void unmap_mapping_range(struct address_space *mapping, 1532 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1533 #endif 1534 1535 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1536 loff_t const holebegin, loff_t const holelen) 1537 { 1538 unmap_mapping_range(mapping, holebegin, holelen, 0); 1539 } 1540 1541 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1542 void *buf, int len, unsigned int gup_flags); 1543 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1544 void *buf, int len, unsigned int gup_flags); 1545 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1546 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1547 1548 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1549 unsigned long start, unsigned long nr_pages, 1550 unsigned int gup_flags, struct page **pages, 1551 struct vm_area_struct **vmas, int *locked); 1552 long get_user_pages(unsigned long start, unsigned long nr_pages, 1553 unsigned int gup_flags, struct page **pages, 1554 struct vm_area_struct **vmas); 1555 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1556 unsigned int gup_flags, struct page **pages, int *locked); 1557 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1558 struct page **pages, unsigned int gup_flags); 1559 1560 int get_user_pages_fast(unsigned long start, int nr_pages, 1561 unsigned int gup_flags, struct page **pages); 1562 1563 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1564 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1565 struct task_struct *task, bool bypass_rlim); 1566 1567 /* Container for pinned pfns / pages */ 1568 struct frame_vector { 1569 unsigned int nr_allocated; /* Number of frames we have space for */ 1570 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1571 bool got_ref; /* Did we pin pages by getting page ref? */ 1572 bool is_pfns; /* Does array contain pages or pfns? */ 1573 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1574 * pfns_vector_pages() or pfns_vector_pfns() 1575 * for access */ 1576 }; 1577 1578 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1579 void frame_vector_destroy(struct frame_vector *vec); 1580 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1581 unsigned int gup_flags, struct frame_vector *vec); 1582 void put_vaddr_frames(struct frame_vector *vec); 1583 int frame_vector_to_pages(struct frame_vector *vec); 1584 void frame_vector_to_pfns(struct frame_vector *vec); 1585 1586 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1587 { 1588 return vec->nr_frames; 1589 } 1590 1591 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1592 { 1593 if (vec->is_pfns) { 1594 int err = frame_vector_to_pages(vec); 1595 1596 if (err) 1597 return ERR_PTR(err); 1598 } 1599 return (struct page **)(vec->ptrs); 1600 } 1601 1602 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1603 { 1604 if (!vec->is_pfns) 1605 frame_vector_to_pfns(vec); 1606 return (unsigned long *)(vec->ptrs); 1607 } 1608 1609 struct kvec; 1610 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1611 struct page **pages); 1612 int get_kernel_page(unsigned long start, int write, struct page **pages); 1613 struct page *get_dump_page(unsigned long addr); 1614 1615 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1616 extern void do_invalidatepage(struct page *page, unsigned int offset, 1617 unsigned int length); 1618 1619 void __set_page_dirty(struct page *, struct address_space *, int warn); 1620 int __set_page_dirty_nobuffers(struct page *page); 1621 int __set_page_dirty_no_writeback(struct page *page); 1622 int redirty_page_for_writepage(struct writeback_control *wbc, 1623 struct page *page); 1624 void account_page_dirtied(struct page *page, struct address_space *mapping); 1625 void account_page_cleaned(struct page *page, struct address_space *mapping, 1626 struct bdi_writeback *wb); 1627 int set_page_dirty(struct page *page); 1628 int set_page_dirty_lock(struct page *page); 1629 void __cancel_dirty_page(struct page *page); 1630 static inline void cancel_dirty_page(struct page *page) 1631 { 1632 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1633 if (PageDirty(page)) 1634 __cancel_dirty_page(page); 1635 } 1636 int clear_page_dirty_for_io(struct page *page); 1637 1638 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1639 1640 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1641 unsigned long old_addr, struct vm_area_struct *new_vma, 1642 unsigned long new_addr, unsigned long len, 1643 bool need_rmap_locks); 1644 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1645 unsigned long end, pgprot_t newprot, 1646 int dirty_accountable, int prot_numa); 1647 extern int mprotect_fixup(struct vm_area_struct *vma, 1648 struct vm_area_struct **pprev, unsigned long start, 1649 unsigned long end, unsigned long newflags); 1650 1651 /* 1652 * doesn't attempt to fault and will return short. 1653 */ 1654 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1655 struct page **pages); 1656 /* 1657 * per-process(per-mm_struct) statistics. 1658 */ 1659 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1660 { 1661 long val = atomic_long_read(&mm->rss_stat.count[member]); 1662 1663 #ifdef SPLIT_RSS_COUNTING 1664 /* 1665 * counter is updated in asynchronous manner and may go to minus. 1666 * But it's never be expected number for users. 1667 */ 1668 if (val < 0) 1669 val = 0; 1670 #endif 1671 return (unsigned long)val; 1672 } 1673 1674 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1675 { 1676 atomic_long_add(value, &mm->rss_stat.count[member]); 1677 } 1678 1679 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1680 { 1681 atomic_long_inc(&mm->rss_stat.count[member]); 1682 } 1683 1684 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1685 { 1686 atomic_long_dec(&mm->rss_stat.count[member]); 1687 } 1688 1689 /* Optimized variant when page is already known not to be PageAnon */ 1690 static inline int mm_counter_file(struct page *page) 1691 { 1692 if (PageSwapBacked(page)) 1693 return MM_SHMEMPAGES; 1694 return MM_FILEPAGES; 1695 } 1696 1697 static inline int mm_counter(struct page *page) 1698 { 1699 if (PageAnon(page)) 1700 return MM_ANONPAGES; 1701 return mm_counter_file(page); 1702 } 1703 1704 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1705 { 1706 return get_mm_counter(mm, MM_FILEPAGES) + 1707 get_mm_counter(mm, MM_ANONPAGES) + 1708 get_mm_counter(mm, MM_SHMEMPAGES); 1709 } 1710 1711 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1712 { 1713 return max(mm->hiwater_rss, get_mm_rss(mm)); 1714 } 1715 1716 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1717 { 1718 return max(mm->hiwater_vm, mm->total_vm); 1719 } 1720 1721 static inline void update_hiwater_rss(struct mm_struct *mm) 1722 { 1723 unsigned long _rss = get_mm_rss(mm); 1724 1725 if ((mm)->hiwater_rss < _rss) 1726 (mm)->hiwater_rss = _rss; 1727 } 1728 1729 static inline void update_hiwater_vm(struct mm_struct *mm) 1730 { 1731 if (mm->hiwater_vm < mm->total_vm) 1732 mm->hiwater_vm = mm->total_vm; 1733 } 1734 1735 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1736 { 1737 mm->hiwater_rss = get_mm_rss(mm); 1738 } 1739 1740 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1741 struct mm_struct *mm) 1742 { 1743 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1744 1745 if (*maxrss < hiwater_rss) 1746 *maxrss = hiwater_rss; 1747 } 1748 1749 #if defined(SPLIT_RSS_COUNTING) 1750 void sync_mm_rss(struct mm_struct *mm); 1751 #else 1752 static inline void sync_mm_rss(struct mm_struct *mm) 1753 { 1754 } 1755 #endif 1756 1757 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1758 static inline int pte_devmap(pte_t pte) 1759 { 1760 return 0; 1761 } 1762 #endif 1763 1764 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1765 1766 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1767 spinlock_t **ptl); 1768 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1769 spinlock_t **ptl) 1770 { 1771 pte_t *ptep; 1772 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1773 return ptep; 1774 } 1775 1776 #ifdef __PAGETABLE_P4D_FOLDED 1777 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1778 unsigned long address) 1779 { 1780 return 0; 1781 } 1782 #else 1783 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1784 #endif 1785 1786 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1787 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1788 unsigned long address) 1789 { 1790 return 0; 1791 } 1792 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1793 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1794 1795 #else 1796 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1797 1798 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1799 { 1800 if (mm_pud_folded(mm)) 1801 return; 1802 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1803 } 1804 1805 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1806 { 1807 if (mm_pud_folded(mm)) 1808 return; 1809 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1810 } 1811 #endif 1812 1813 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1814 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1815 unsigned long address) 1816 { 1817 return 0; 1818 } 1819 1820 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1821 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1822 1823 #else 1824 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1825 1826 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1827 { 1828 if (mm_pmd_folded(mm)) 1829 return; 1830 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1831 } 1832 1833 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1834 { 1835 if (mm_pmd_folded(mm)) 1836 return; 1837 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1838 } 1839 #endif 1840 1841 #ifdef CONFIG_MMU 1842 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1843 { 1844 atomic_long_set(&mm->pgtables_bytes, 0); 1845 } 1846 1847 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1848 { 1849 return atomic_long_read(&mm->pgtables_bytes); 1850 } 1851 1852 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1853 { 1854 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1855 } 1856 1857 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1858 { 1859 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1860 } 1861 #else 1862 1863 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1864 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1865 { 1866 return 0; 1867 } 1868 1869 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1870 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1871 #endif 1872 1873 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1874 int __pte_alloc_kernel(pmd_t *pmd); 1875 1876 /* 1877 * The following ifdef needed to get the 4level-fixup.h header to work. 1878 * Remove it when 4level-fixup.h has been removed. 1879 */ 1880 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1881 1882 #ifndef __ARCH_HAS_5LEVEL_HACK 1883 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1884 unsigned long address) 1885 { 1886 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1887 NULL : p4d_offset(pgd, address); 1888 } 1889 1890 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1891 unsigned long address) 1892 { 1893 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1894 NULL : pud_offset(p4d, address); 1895 } 1896 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1897 1898 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1899 { 1900 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1901 NULL: pmd_offset(pud, address); 1902 } 1903 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1904 1905 #if USE_SPLIT_PTE_PTLOCKS 1906 #if ALLOC_SPLIT_PTLOCKS 1907 void __init ptlock_cache_init(void); 1908 extern bool ptlock_alloc(struct page *page); 1909 extern void ptlock_free(struct page *page); 1910 1911 static inline spinlock_t *ptlock_ptr(struct page *page) 1912 { 1913 return page->ptl; 1914 } 1915 #else /* ALLOC_SPLIT_PTLOCKS */ 1916 static inline void ptlock_cache_init(void) 1917 { 1918 } 1919 1920 static inline bool ptlock_alloc(struct page *page) 1921 { 1922 return true; 1923 } 1924 1925 static inline void ptlock_free(struct page *page) 1926 { 1927 } 1928 1929 static inline spinlock_t *ptlock_ptr(struct page *page) 1930 { 1931 return &page->ptl; 1932 } 1933 #endif /* ALLOC_SPLIT_PTLOCKS */ 1934 1935 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1936 { 1937 return ptlock_ptr(pmd_page(*pmd)); 1938 } 1939 1940 static inline bool ptlock_init(struct page *page) 1941 { 1942 /* 1943 * prep_new_page() initialize page->private (and therefore page->ptl) 1944 * with 0. Make sure nobody took it in use in between. 1945 * 1946 * It can happen if arch try to use slab for page table allocation: 1947 * slab code uses page->slab_cache, which share storage with page->ptl. 1948 */ 1949 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1950 if (!ptlock_alloc(page)) 1951 return false; 1952 spin_lock_init(ptlock_ptr(page)); 1953 return true; 1954 } 1955 1956 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1957 /* 1958 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1959 */ 1960 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1961 { 1962 return &mm->page_table_lock; 1963 } 1964 static inline void ptlock_cache_init(void) {} 1965 static inline bool ptlock_init(struct page *page) { return true; } 1966 static inline void ptlock_free(struct page *page) {} 1967 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1968 1969 static inline void pgtable_init(void) 1970 { 1971 ptlock_cache_init(); 1972 pgtable_cache_init(); 1973 } 1974 1975 static inline bool pgtable_page_ctor(struct page *page) 1976 { 1977 if (!ptlock_init(page)) 1978 return false; 1979 __SetPageTable(page); 1980 inc_zone_page_state(page, NR_PAGETABLE); 1981 return true; 1982 } 1983 1984 static inline void pgtable_page_dtor(struct page *page) 1985 { 1986 ptlock_free(page); 1987 __ClearPageTable(page); 1988 dec_zone_page_state(page, NR_PAGETABLE); 1989 } 1990 1991 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1992 ({ \ 1993 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1994 pte_t *__pte = pte_offset_map(pmd, address); \ 1995 *(ptlp) = __ptl; \ 1996 spin_lock(__ptl); \ 1997 __pte; \ 1998 }) 1999 2000 #define pte_unmap_unlock(pte, ptl) do { \ 2001 spin_unlock(ptl); \ 2002 pte_unmap(pte); \ 2003 } while (0) 2004 2005 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2006 2007 #define pte_alloc_map(mm, pmd, address) \ 2008 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2009 2010 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2011 (pte_alloc(mm, pmd) ? \ 2012 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2013 2014 #define pte_alloc_kernel(pmd, address) \ 2015 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2016 NULL: pte_offset_kernel(pmd, address)) 2017 2018 #if USE_SPLIT_PMD_PTLOCKS 2019 2020 static struct page *pmd_to_page(pmd_t *pmd) 2021 { 2022 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2023 return virt_to_page((void *)((unsigned long) pmd & mask)); 2024 } 2025 2026 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2027 { 2028 return ptlock_ptr(pmd_to_page(pmd)); 2029 } 2030 2031 static inline bool pgtable_pmd_page_ctor(struct page *page) 2032 { 2033 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2034 page->pmd_huge_pte = NULL; 2035 #endif 2036 return ptlock_init(page); 2037 } 2038 2039 static inline void pgtable_pmd_page_dtor(struct page *page) 2040 { 2041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2042 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2043 #endif 2044 ptlock_free(page); 2045 } 2046 2047 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2048 2049 #else 2050 2051 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2052 { 2053 return &mm->page_table_lock; 2054 } 2055 2056 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2057 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2058 2059 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2060 2061 #endif 2062 2063 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2064 { 2065 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2066 spin_lock(ptl); 2067 return ptl; 2068 } 2069 2070 /* 2071 * No scalability reason to split PUD locks yet, but follow the same pattern 2072 * as the PMD locks to make it easier if we decide to. The VM should not be 2073 * considered ready to switch to split PUD locks yet; there may be places 2074 * which need to be converted from page_table_lock. 2075 */ 2076 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2077 { 2078 return &mm->page_table_lock; 2079 } 2080 2081 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2082 { 2083 spinlock_t *ptl = pud_lockptr(mm, pud); 2084 2085 spin_lock(ptl); 2086 return ptl; 2087 } 2088 2089 extern void __init pagecache_init(void); 2090 extern void free_area_init(unsigned long * zones_size); 2091 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2092 unsigned long zone_start_pfn, unsigned long *zholes_size); 2093 extern void free_initmem(void); 2094 2095 /* 2096 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2097 * into the buddy system. The freed pages will be poisoned with pattern 2098 * "poison" if it's within range [0, UCHAR_MAX]. 2099 * Return pages freed into the buddy system. 2100 */ 2101 extern unsigned long free_reserved_area(void *start, void *end, 2102 int poison, const char *s); 2103 2104 #ifdef CONFIG_HIGHMEM 2105 /* 2106 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2107 * and totalram_pages. 2108 */ 2109 extern void free_highmem_page(struct page *page); 2110 #endif 2111 2112 extern void adjust_managed_page_count(struct page *page, long count); 2113 extern void mem_init_print_info(const char *str); 2114 2115 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2116 2117 /* Free the reserved page into the buddy system, so it gets managed. */ 2118 static inline void __free_reserved_page(struct page *page) 2119 { 2120 ClearPageReserved(page); 2121 init_page_count(page); 2122 __free_page(page); 2123 } 2124 2125 static inline void free_reserved_page(struct page *page) 2126 { 2127 __free_reserved_page(page); 2128 adjust_managed_page_count(page, 1); 2129 } 2130 2131 static inline void mark_page_reserved(struct page *page) 2132 { 2133 SetPageReserved(page); 2134 adjust_managed_page_count(page, -1); 2135 } 2136 2137 /* 2138 * Default method to free all the __init memory into the buddy system. 2139 * The freed pages will be poisoned with pattern "poison" if it's within 2140 * range [0, UCHAR_MAX]. 2141 * Return pages freed into the buddy system. 2142 */ 2143 static inline unsigned long free_initmem_default(int poison) 2144 { 2145 extern char __init_begin[], __init_end[]; 2146 2147 return free_reserved_area(&__init_begin, &__init_end, 2148 poison, "unused kernel"); 2149 } 2150 2151 static inline unsigned long get_num_physpages(void) 2152 { 2153 int nid; 2154 unsigned long phys_pages = 0; 2155 2156 for_each_online_node(nid) 2157 phys_pages += node_present_pages(nid); 2158 2159 return phys_pages; 2160 } 2161 2162 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2163 /* 2164 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2165 * zones, allocate the backing mem_map and account for memory holes in a more 2166 * architecture independent manner. This is a substitute for creating the 2167 * zone_sizes[] and zholes_size[] arrays and passing them to 2168 * free_area_init_node() 2169 * 2170 * An architecture is expected to register range of page frames backed by 2171 * physical memory with memblock_add[_node]() before calling 2172 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2173 * usage, an architecture is expected to do something like 2174 * 2175 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2176 * max_highmem_pfn}; 2177 * for_each_valid_physical_page_range() 2178 * memblock_add_node(base, size, nid) 2179 * free_area_init_nodes(max_zone_pfns); 2180 * 2181 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2182 * registered physical page range. Similarly 2183 * sparse_memory_present_with_active_regions() calls memory_present() for 2184 * each range when SPARSEMEM is enabled. 2185 * 2186 * See mm/page_alloc.c for more information on each function exposed by 2187 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2188 */ 2189 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2190 unsigned long node_map_pfn_alignment(void); 2191 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2192 unsigned long end_pfn); 2193 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2194 unsigned long end_pfn); 2195 extern void get_pfn_range_for_nid(unsigned int nid, 2196 unsigned long *start_pfn, unsigned long *end_pfn); 2197 extern unsigned long find_min_pfn_with_active_regions(void); 2198 extern void free_bootmem_with_active_regions(int nid, 2199 unsigned long max_low_pfn); 2200 extern void sparse_memory_present_with_active_regions(int nid); 2201 2202 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2203 2204 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2205 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2206 static inline int __early_pfn_to_nid(unsigned long pfn, 2207 struct mminit_pfnnid_cache *state) 2208 { 2209 return 0; 2210 } 2211 #else 2212 /* please see mm/page_alloc.c */ 2213 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2214 /* there is a per-arch backend function. */ 2215 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2216 struct mminit_pfnnid_cache *state); 2217 #endif 2218 2219 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2220 void zero_resv_unavail(void); 2221 #else 2222 static inline void zero_resv_unavail(void) {} 2223 #endif 2224 2225 extern void set_dma_reserve(unsigned long new_dma_reserve); 2226 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2227 enum memmap_context, struct vmem_altmap *); 2228 extern void setup_per_zone_wmarks(void); 2229 extern int __meminit init_per_zone_wmark_min(void); 2230 extern void mem_init(void); 2231 extern void __init mmap_init(void); 2232 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2233 extern long si_mem_available(void); 2234 extern void si_meminfo(struct sysinfo * val); 2235 extern void si_meminfo_node(struct sysinfo *val, int nid); 2236 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2237 extern unsigned long arch_reserved_kernel_pages(void); 2238 #endif 2239 2240 extern __printf(3, 4) 2241 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2242 2243 extern void setup_per_cpu_pageset(void); 2244 2245 extern void zone_pcp_update(struct zone *zone); 2246 extern void zone_pcp_reset(struct zone *zone); 2247 2248 /* page_alloc.c */ 2249 extern int min_free_kbytes; 2250 extern int watermark_boost_factor; 2251 extern int watermark_scale_factor; 2252 2253 /* nommu.c */ 2254 extern atomic_long_t mmap_pages_allocated; 2255 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2256 2257 /* interval_tree.c */ 2258 void vma_interval_tree_insert(struct vm_area_struct *node, 2259 struct rb_root_cached *root); 2260 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2261 struct vm_area_struct *prev, 2262 struct rb_root_cached *root); 2263 void vma_interval_tree_remove(struct vm_area_struct *node, 2264 struct rb_root_cached *root); 2265 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2266 unsigned long start, unsigned long last); 2267 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2268 unsigned long start, unsigned long last); 2269 2270 #define vma_interval_tree_foreach(vma, root, start, last) \ 2271 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2272 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2273 2274 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2275 struct rb_root_cached *root); 2276 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2277 struct rb_root_cached *root); 2278 struct anon_vma_chain * 2279 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2280 unsigned long start, unsigned long last); 2281 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2282 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2283 #ifdef CONFIG_DEBUG_VM_RB 2284 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2285 #endif 2286 2287 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2288 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2289 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2290 2291 /* mmap.c */ 2292 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2293 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2294 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2295 struct vm_area_struct *expand); 2296 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2297 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2298 { 2299 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2300 } 2301 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2302 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2303 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2304 struct mempolicy *, struct vm_userfaultfd_ctx); 2305 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2306 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2307 unsigned long addr, int new_below); 2308 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2309 unsigned long addr, int new_below); 2310 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2311 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2312 struct rb_node **, struct rb_node *); 2313 extern void unlink_file_vma(struct vm_area_struct *); 2314 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2315 unsigned long addr, unsigned long len, pgoff_t pgoff, 2316 bool *need_rmap_locks); 2317 extern void exit_mmap(struct mm_struct *); 2318 2319 static inline int check_data_rlimit(unsigned long rlim, 2320 unsigned long new, 2321 unsigned long start, 2322 unsigned long end_data, 2323 unsigned long start_data) 2324 { 2325 if (rlim < RLIM_INFINITY) { 2326 if (((new - start) + (end_data - start_data)) > rlim) 2327 return -ENOSPC; 2328 } 2329 2330 return 0; 2331 } 2332 2333 extern int mm_take_all_locks(struct mm_struct *mm); 2334 extern void mm_drop_all_locks(struct mm_struct *mm); 2335 2336 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2337 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2338 extern struct file *get_task_exe_file(struct task_struct *task); 2339 2340 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2341 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2342 2343 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2344 const struct vm_special_mapping *sm); 2345 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2346 unsigned long addr, unsigned long len, 2347 unsigned long flags, 2348 const struct vm_special_mapping *spec); 2349 /* This is an obsolete alternative to _install_special_mapping. */ 2350 extern int install_special_mapping(struct mm_struct *mm, 2351 unsigned long addr, unsigned long len, 2352 unsigned long flags, struct page **pages); 2353 2354 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2355 2356 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2357 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2358 struct list_head *uf); 2359 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2360 unsigned long len, unsigned long prot, unsigned long flags, 2361 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2362 struct list_head *uf); 2363 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2364 struct list_head *uf, bool downgrade); 2365 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2366 struct list_head *uf); 2367 2368 static inline unsigned long 2369 do_mmap_pgoff(struct file *file, unsigned long addr, 2370 unsigned long len, unsigned long prot, unsigned long flags, 2371 unsigned long pgoff, unsigned long *populate, 2372 struct list_head *uf) 2373 { 2374 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2375 } 2376 2377 #ifdef CONFIG_MMU 2378 extern int __mm_populate(unsigned long addr, unsigned long len, 2379 int ignore_errors); 2380 static inline void mm_populate(unsigned long addr, unsigned long len) 2381 { 2382 /* Ignore errors */ 2383 (void) __mm_populate(addr, len, 1); 2384 } 2385 #else 2386 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2387 #endif 2388 2389 /* These take the mm semaphore themselves */ 2390 extern int __must_check vm_brk(unsigned long, unsigned long); 2391 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2392 extern int vm_munmap(unsigned long, size_t); 2393 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2394 unsigned long, unsigned long, 2395 unsigned long, unsigned long); 2396 2397 struct vm_unmapped_area_info { 2398 #define VM_UNMAPPED_AREA_TOPDOWN 1 2399 unsigned long flags; 2400 unsigned long length; 2401 unsigned long low_limit; 2402 unsigned long high_limit; 2403 unsigned long align_mask; 2404 unsigned long align_offset; 2405 }; 2406 2407 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2408 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2409 2410 /* 2411 * Search for an unmapped address range. 2412 * 2413 * We are looking for a range that: 2414 * - does not intersect with any VMA; 2415 * - is contained within the [low_limit, high_limit) interval; 2416 * - is at least the desired size. 2417 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2418 */ 2419 static inline unsigned long 2420 vm_unmapped_area(struct vm_unmapped_area_info *info) 2421 { 2422 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2423 return unmapped_area_topdown(info); 2424 else 2425 return unmapped_area(info); 2426 } 2427 2428 /* truncate.c */ 2429 extern void truncate_inode_pages(struct address_space *, loff_t); 2430 extern void truncate_inode_pages_range(struct address_space *, 2431 loff_t lstart, loff_t lend); 2432 extern void truncate_inode_pages_final(struct address_space *); 2433 2434 /* generic vm_area_ops exported for stackable file systems */ 2435 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2436 extern void filemap_map_pages(struct vm_fault *vmf, 2437 pgoff_t start_pgoff, pgoff_t end_pgoff); 2438 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2439 2440 /* mm/page-writeback.c */ 2441 int __must_check write_one_page(struct page *page); 2442 void task_dirty_inc(struct task_struct *tsk); 2443 2444 /* readahead.c */ 2445 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2446 2447 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2448 pgoff_t offset, unsigned long nr_to_read); 2449 2450 void page_cache_sync_readahead(struct address_space *mapping, 2451 struct file_ra_state *ra, 2452 struct file *filp, 2453 pgoff_t offset, 2454 unsigned long size); 2455 2456 void page_cache_async_readahead(struct address_space *mapping, 2457 struct file_ra_state *ra, 2458 struct file *filp, 2459 struct page *pg, 2460 pgoff_t offset, 2461 unsigned long size); 2462 2463 extern unsigned long stack_guard_gap; 2464 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2465 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2466 2467 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2468 extern int expand_downwards(struct vm_area_struct *vma, 2469 unsigned long address); 2470 #if VM_GROWSUP 2471 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2472 #else 2473 #define expand_upwards(vma, address) (0) 2474 #endif 2475 2476 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2477 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2478 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2479 struct vm_area_struct **pprev); 2480 2481 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2482 NULL if none. Assume start_addr < end_addr. */ 2483 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2484 { 2485 struct vm_area_struct * vma = find_vma(mm,start_addr); 2486 2487 if (vma && end_addr <= vma->vm_start) 2488 vma = NULL; 2489 return vma; 2490 } 2491 2492 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2493 { 2494 unsigned long vm_start = vma->vm_start; 2495 2496 if (vma->vm_flags & VM_GROWSDOWN) { 2497 vm_start -= stack_guard_gap; 2498 if (vm_start > vma->vm_start) 2499 vm_start = 0; 2500 } 2501 return vm_start; 2502 } 2503 2504 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2505 { 2506 unsigned long vm_end = vma->vm_end; 2507 2508 if (vma->vm_flags & VM_GROWSUP) { 2509 vm_end += stack_guard_gap; 2510 if (vm_end < vma->vm_end) 2511 vm_end = -PAGE_SIZE; 2512 } 2513 return vm_end; 2514 } 2515 2516 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2517 { 2518 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2519 } 2520 2521 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2522 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2523 unsigned long vm_start, unsigned long vm_end) 2524 { 2525 struct vm_area_struct *vma = find_vma(mm, vm_start); 2526 2527 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2528 vma = NULL; 2529 2530 return vma; 2531 } 2532 2533 static inline bool range_in_vma(struct vm_area_struct *vma, 2534 unsigned long start, unsigned long end) 2535 { 2536 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2537 } 2538 2539 #ifdef CONFIG_MMU 2540 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2541 void vma_set_page_prot(struct vm_area_struct *vma); 2542 #else 2543 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2544 { 2545 return __pgprot(0); 2546 } 2547 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2548 { 2549 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2550 } 2551 #endif 2552 2553 #ifdef CONFIG_NUMA_BALANCING 2554 unsigned long change_prot_numa(struct vm_area_struct *vma, 2555 unsigned long start, unsigned long end); 2556 #endif 2557 2558 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2559 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2560 unsigned long pfn, unsigned long size, pgprot_t); 2561 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2562 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2563 unsigned long num); 2564 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2565 unsigned long num); 2566 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2567 unsigned long pfn); 2568 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2569 unsigned long pfn, pgprot_t pgprot); 2570 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2571 pfn_t pfn); 2572 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2573 unsigned long addr, pfn_t pfn); 2574 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2575 2576 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2577 unsigned long addr, struct page *page) 2578 { 2579 int err = vm_insert_page(vma, addr, page); 2580 2581 if (err == -ENOMEM) 2582 return VM_FAULT_OOM; 2583 if (err < 0 && err != -EBUSY) 2584 return VM_FAULT_SIGBUS; 2585 2586 return VM_FAULT_NOPAGE; 2587 } 2588 2589 static inline vm_fault_t vmf_error(int err) 2590 { 2591 if (err == -ENOMEM) 2592 return VM_FAULT_OOM; 2593 return VM_FAULT_SIGBUS; 2594 } 2595 2596 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2597 unsigned int foll_flags); 2598 2599 #define FOLL_WRITE 0x01 /* check pte is writable */ 2600 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2601 #define FOLL_GET 0x04 /* do get_page on page */ 2602 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2603 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2604 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2605 * and return without waiting upon it */ 2606 #define FOLL_POPULATE 0x40 /* fault in page */ 2607 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2608 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2609 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2610 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2611 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2612 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2613 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2614 #define FOLL_COW 0x4000 /* internal GUP flag */ 2615 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2616 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2617 2618 /* 2619 * NOTE on FOLL_LONGTERM: 2620 * 2621 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2622 * period _often_ under userspace control. This is contrasted with 2623 * iov_iter_get_pages() where usages which are transient. 2624 * 2625 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2626 * lifetime enforced by the filesystem and we need guarantees that longterm 2627 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2628 * the filesystem. Ideas for this coordination include revoking the longterm 2629 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2630 * added after the problem with filesystems was found FS DAX VMAs are 2631 * specifically failed. Filesystem pages are still subject to bugs and use of 2632 * FOLL_LONGTERM should be avoided on those pages. 2633 * 2634 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2635 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2636 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2637 * is due to an incompatibility with the FS DAX check and 2638 * FAULT_FLAG_ALLOW_RETRY 2639 * 2640 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2641 * that region. And so CMA attempts to migrate the page before pinning when 2642 * FOLL_LONGTERM is specified. 2643 */ 2644 2645 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2646 { 2647 if (vm_fault & VM_FAULT_OOM) 2648 return -ENOMEM; 2649 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2650 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2651 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2652 return -EFAULT; 2653 return 0; 2654 } 2655 2656 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2657 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2658 unsigned long size, pte_fn_t fn, void *data); 2659 2660 2661 #ifdef CONFIG_PAGE_POISONING 2662 extern bool page_poisoning_enabled(void); 2663 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2664 #else 2665 static inline bool page_poisoning_enabled(void) { return false; } 2666 static inline void kernel_poison_pages(struct page *page, int numpages, 2667 int enable) { } 2668 #endif 2669 2670 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2671 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2672 #else 2673 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2674 #endif 2675 static inline bool want_init_on_alloc(gfp_t flags) 2676 { 2677 if (static_branch_unlikely(&init_on_alloc) && 2678 !page_poisoning_enabled()) 2679 return true; 2680 return flags & __GFP_ZERO; 2681 } 2682 2683 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2684 DECLARE_STATIC_KEY_TRUE(init_on_free); 2685 #else 2686 DECLARE_STATIC_KEY_FALSE(init_on_free); 2687 #endif 2688 static inline bool want_init_on_free(void) 2689 { 2690 return static_branch_unlikely(&init_on_free) && 2691 !page_poisoning_enabled(); 2692 } 2693 2694 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 2695 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 2696 #else 2697 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2698 #endif 2699 2700 static inline bool debug_pagealloc_enabled(void) 2701 { 2702 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2703 return false; 2704 2705 return static_branch_unlikely(&_debug_pagealloc_enabled); 2706 } 2707 2708 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2709 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2710 2711 static inline void 2712 kernel_map_pages(struct page *page, int numpages, int enable) 2713 { 2714 __kernel_map_pages(page, numpages, enable); 2715 } 2716 #ifdef CONFIG_HIBERNATION 2717 extern bool kernel_page_present(struct page *page); 2718 #endif /* CONFIG_HIBERNATION */ 2719 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2720 static inline void 2721 kernel_map_pages(struct page *page, int numpages, int enable) {} 2722 #ifdef CONFIG_HIBERNATION 2723 static inline bool kernel_page_present(struct page *page) { return true; } 2724 #endif /* CONFIG_HIBERNATION */ 2725 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2726 2727 #ifdef __HAVE_ARCH_GATE_AREA 2728 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2729 extern int in_gate_area_no_mm(unsigned long addr); 2730 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2731 #else 2732 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2733 { 2734 return NULL; 2735 } 2736 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2737 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2738 { 2739 return 0; 2740 } 2741 #endif /* __HAVE_ARCH_GATE_AREA */ 2742 2743 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2744 2745 #ifdef CONFIG_SYSCTL 2746 extern int sysctl_drop_caches; 2747 int drop_caches_sysctl_handler(struct ctl_table *, int, 2748 void __user *, size_t *, loff_t *); 2749 #endif 2750 2751 void drop_slab(void); 2752 void drop_slab_node(int nid); 2753 2754 #ifndef CONFIG_MMU 2755 #define randomize_va_space 0 2756 #else 2757 extern int randomize_va_space; 2758 #endif 2759 2760 const char * arch_vma_name(struct vm_area_struct *vma); 2761 #ifdef CONFIG_MMU 2762 void print_vma_addr(char *prefix, unsigned long rip); 2763 #else 2764 static inline void print_vma_addr(char *prefix, unsigned long rip) 2765 { 2766 } 2767 #endif 2768 2769 void *sparse_buffer_alloc(unsigned long size); 2770 struct page * __populate_section_memmap(unsigned long pfn, 2771 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2772 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2773 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2774 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2775 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2776 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2777 void *vmemmap_alloc_block(unsigned long size, int node); 2778 struct vmem_altmap; 2779 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2780 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2781 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2782 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2783 int node); 2784 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2785 struct vmem_altmap *altmap); 2786 void vmemmap_populate_print_last(void); 2787 #ifdef CONFIG_MEMORY_HOTPLUG 2788 void vmemmap_free(unsigned long start, unsigned long end, 2789 struct vmem_altmap *altmap); 2790 #endif 2791 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2792 unsigned long nr_pages); 2793 2794 enum mf_flags { 2795 MF_COUNT_INCREASED = 1 << 0, 2796 MF_ACTION_REQUIRED = 1 << 1, 2797 MF_MUST_KILL = 1 << 2, 2798 MF_SOFT_OFFLINE = 1 << 3, 2799 }; 2800 extern int memory_failure(unsigned long pfn, int flags); 2801 extern void memory_failure_queue(unsigned long pfn, int flags); 2802 extern int unpoison_memory(unsigned long pfn); 2803 extern int get_hwpoison_page(struct page *page); 2804 #define put_hwpoison_page(page) put_page(page) 2805 extern int sysctl_memory_failure_early_kill; 2806 extern int sysctl_memory_failure_recovery; 2807 extern void shake_page(struct page *p, int access); 2808 extern atomic_long_t num_poisoned_pages __read_mostly; 2809 extern int soft_offline_page(struct page *page, int flags); 2810 2811 2812 /* 2813 * Error handlers for various types of pages. 2814 */ 2815 enum mf_result { 2816 MF_IGNORED, /* Error: cannot be handled */ 2817 MF_FAILED, /* Error: handling failed */ 2818 MF_DELAYED, /* Will be handled later */ 2819 MF_RECOVERED, /* Successfully recovered */ 2820 }; 2821 2822 enum mf_action_page_type { 2823 MF_MSG_KERNEL, 2824 MF_MSG_KERNEL_HIGH_ORDER, 2825 MF_MSG_SLAB, 2826 MF_MSG_DIFFERENT_COMPOUND, 2827 MF_MSG_POISONED_HUGE, 2828 MF_MSG_HUGE, 2829 MF_MSG_FREE_HUGE, 2830 MF_MSG_NON_PMD_HUGE, 2831 MF_MSG_UNMAP_FAILED, 2832 MF_MSG_DIRTY_SWAPCACHE, 2833 MF_MSG_CLEAN_SWAPCACHE, 2834 MF_MSG_DIRTY_MLOCKED_LRU, 2835 MF_MSG_CLEAN_MLOCKED_LRU, 2836 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2837 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2838 MF_MSG_DIRTY_LRU, 2839 MF_MSG_CLEAN_LRU, 2840 MF_MSG_TRUNCATED_LRU, 2841 MF_MSG_BUDDY, 2842 MF_MSG_BUDDY_2ND, 2843 MF_MSG_DAX, 2844 MF_MSG_UNKNOWN, 2845 }; 2846 2847 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2848 extern void clear_huge_page(struct page *page, 2849 unsigned long addr_hint, 2850 unsigned int pages_per_huge_page); 2851 extern void copy_user_huge_page(struct page *dst, struct page *src, 2852 unsigned long addr_hint, 2853 struct vm_area_struct *vma, 2854 unsigned int pages_per_huge_page); 2855 extern long copy_huge_page_from_user(struct page *dst_page, 2856 const void __user *usr_src, 2857 unsigned int pages_per_huge_page, 2858 bool allow_pagefault); 2859 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2860 2861 #ifdef CONFIG_DEBUG_PAGEALLOC 2862 extern unsigned int _debug_guardpage_minorder; 2863 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2864 2865 static inline unsigned int debug_guardpage_minorder(void) 2866 { 2867 return _debug_guardpage_minorder; 2868 } 2869 2870 static inline bool debug_guardpage_enabled(void) 2871 { 2872 return static_branch_unlikely(&_debug_guardpage_enabled); 2873 } 2874 2875 static inline bool page_is_guard(struct page *page) 2876 { 2877 if (!debug_guardpage_enabled()) 2878 return false; 2879 2880 return PageGuard(page); 2881 } 2882 #else 2883 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2884 static inline bool debug_guardpage_enabled(void) { return false; } 2885 static inline bool page_is_guard(struct page *page) { return false; } 2886 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2887 2888 #if MAX_NUMNODES > 1 2889 void __init setup_nr_node_ids(void); 2890 #else 2891 static inline void setup_nr_node_ids(void) {} 2892 #endif 2893 2894 #endif /* __KERNEL__ */ 2895 #endif /* _LINUX_MM_H */ 2896