1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/sched.h> 5 #include <linux/errno.h> 6 #include <linux/capability.h> 7 8 #ifdef __KERNEL__ 9 10 #include <linux/gfp.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/prio_tree.h> 15 #include <linux/fs.h> 16 #include <linux/mutex.h> 17 #include <linux/debug_locks.h> 18 #include <linux/backing-dev.h> 19 #include <linux/mm_types.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25 extern unsigned long max_mapnr; 26 #endif 27 28 extern unsigned long num_physpages; 29 extern void * high_memory; 30 extern unsigned long vmalloc_earlyreserve; 31 extern int page_cluster; 32 33 #ifdef CONFIG_SYSCTL 34 extern int sysctl_legacy_va_layout; 35 #else 36 #define sysctl_legacy_va_layout 0 37 #endif 38 39 #include <asm/page.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45 /* 46 * Linux kernel virtual memory manager primitives. 47 * The idea being to have a "virtual" mm in the same way 48 * we have a virtual fs - giving a cleaner interface to the 49 * mm details, and allowing different kinds of memory mappings 50 * (from shared memory to executable loading to arbitrary 51 * mmap() functions). 52 */ 53 54 /* 55 * This struct defines a memory VMM memory area. There is one of these 56 * per VM-area/task. A VM area is any part of the process virtual memory 57 * space that has a special rule for the page-fault handlers (ie a shared 58 * library, the executable area etc). 59 */ 60 struct vm_area_struct { 61 struct mm_struct * vm_mm; /* The address space we belong to. */ 62 unsigned long vm_start; /* Our start address within vm_mm. */ 63 unsigned long vm_end; /* The first byte after our end address 64 within vm_mm. */ 65 66 /* linked list of VM areas per task, sorted by address */ 67 struct vm_area_struct *vm_next; 68 69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 70 unsigned long vm_flags; /* Flags, listed below. */ 71 72 struct rb_node vm_rb; 73 74 /* 75 * For areas with an address space and backing store, 76 * linkage into the address_space->i_mmap prio tree, or 77 * linkage to the list of like vmas hanging off its node, or 78 * linkage of vma in the address_space->i_mmap_nonlinear list. 79 */ 80 union { 81 struct { 82 struct list_head list; 83 void *parent; /* aligns with prio_tree_node parent */ 84 struct vm_area_struct *head; 85 } vm_set; 86 87 struct raw_prio_tree_node prio_tree_node; 88 } shared; 89 90 /* 91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 92 * list, after a COW of one of the file pages. A MAP_SHARED vma 93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 94 * or brk vma (with NULL file) can only be in an anon_vma list. 95 */ 96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 98 99 /* Function pointers to deal with this struct. */ 100 struct vm_operations_struct * vm_ops; 101 102 /* Information about our backing store: */ 103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 104 units, *not* PAGE_CACHE_SIZE */ 105 struct file * vm_file; /* File we map to (can be NULL). */ 106 void * vm_private_data; /* was vm_pte (shared mem) */ 107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 108 109 #ifndef CONFIG_MMU 110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 111 #endif 112 #ifdef CONFIG_NUMA 113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 114 #endif 115 }; 116 117 extern struct kmem_cache *vm_area_cachep; 118 119 /* 120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 121 * disabled, then there's a single shared list of VMAs maintained by the 122 * system, and mm's subscribe to these individually 123 */ 124 struct vm_list_struct { 125 struct vm_list_struct *next; 126 struct vm_area_struct *vma; 127 }; 128 129 #ifndef CONFIG_MMU 130 extern struct rb_root nommu_vma_tree; 131 extern struct rw_semaphore nommu_vma_sem; 132 133 extern unsigned int kobjsize(const void *objp); 134 #endif 135 136 /* 137 * vm_flags.. 138 */ 139 #define VM_READ 0x00000001 /* currently active flags */ 140 #define VM_WRITE 0x00000002 141 #define VM_EXEC 0x00000004 142 #define VM_SHARED 0x00000008 143 144 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 145 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 146 #define VM_MAYWRITE 0x00000020 147 #define VM_MAYEXEC 0x00000040 148 #define VM_MAYSHARE 0x00000080 149 150 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 151 #define VM_GROWSUP 0x00000200 152 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 153 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 154 155 #define VM_EXECUTABLE 0x00001000 156 #define VM_LOCKED 0x00002000 157 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 158 159 /* Used by sys_madvise() */ 160 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 161 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 162 163 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 164 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 165 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 166 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 167 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 168 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 169 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 170 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 171 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 172 173 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 174 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 175 #endif 176 177 #ifdef CONFIG_STACK_GROWSUP 178 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 179 #else 180 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 181 #endif 182 183 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 184 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 185 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 186 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 187 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 188 189 /* 190 * mapping from the currently active vm_flags protection bits (the 191 * low four bits) to a page protection mask.. 192 */ 193 extern pgprot_t protection_map[16]; 194 195 196 /* 197 * These are the virtual MM functions - opening of an area, closing and 198 * unmapping it (needed to keep files on disk up-to-date etc), pointer 199 * to the functions called when a no-page or a wp-page exception occurs. 200 */ 201 struct vm_operations_struct { 202 void (*open)(struct vm_area_struct * area); 203 void (*close)(struct vm_area_struct * area); 204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address); 206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 207 208 /* notification that a previously read-only page is about to become 209 * writable, if an error is returned it will cause a SIGBUS */ 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 211 #ifdef CONFIG_NUMA 212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 214 unsigned long addr); 215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 216 const nodemask_t *to, unsigned long flags); 217 #endif 218 }; 219 220 struct mmu_gather; 221 struct inode; 222 223 #define page_private(page) ((page)->private) 224 #define set_page_private(page, v) ((page)->private = (v)) 225 226 /* 227 * FIXME: take this include out, include page-flags.h in 228 * files which need it (119 of them) 229 */ 230 #include <linux/page-flags.h> 231 232 #ifdef CONFIG_DEBUG_VM 233 #define VM_BUG_ON(cond) BUG_ON(cond) 234 #else 235 #define VM_BUG_ON(condition) do { } while(0) 236 #endif 237 238 /* 239 * Methods to modify the page usage count. 240 * 241 * What counts for a page usage: 242 * - cache mapping (page->mapping) 243 * - private data (page->private) 244 * - page mapped in a task's page tables, each mapping 245 * is counted separately 246 * 247 * Also, many kernel routines increase the page count before a critical 248 * routine so they can be sure the page doesn't go away from under them. 249 */ 250 251 /* 252 * Drop a ref, return true if the refcount fell to zero (the page has no users) 253 */ 254 static inline int put_page_testzero(struct page *page) 255 { 256 VM_BUG_ON(atomic_read(&page->_count) == 0); 257 return atomic_dec_and_test(&page->_count); 258 } 259 260 /* 261 * Try to grab a ref unless the page has a refcount of zero, return false if 262 * that is the case. 263 */ 264 static inline int get_page_unless_zero(struct page *page) 265 { 266 VM_BUG_ON(PageCompound(page)); 267 return atomic_inc_not_zero(&page->_count); 268 } 269 270 static inline int page_count(struct page *page) 271 { 272 if (unlikely(PageCompound(page))) 273 page = (struct page *)page_private(page); 274 return atomic_read(&page->_count); 275 } 276 277 static inline void get_page(struct page *page) 278 { 279 if (unlikely(PageCompound(page))) 280 page = (struct page *)page_private(page); 281 VM_BUG_ON(atomic_read(&page->_count) == 0); 282 atomic_inc(&page->_count); 283 } 284 285 /* 286 * Setup the page count before being freed into the page allocator for 287 * the first time (boot or memory hotplug) 288 */ 289 static inline void init_page_count(struct page *page) 290 { 291 atomic_set(&page->_count, 1); 292 } 293 294 void put_page(struct page *page); 295 void put_pages_list(struct list_head *pages); 296 297 void split_page(struct page *page, unsigned int order); 298 299 /* 300 * Compound pages have a destructor function. Provide a 301 * prototype for that function and accessor functions. 302 * These are _only_ valid on the head of a PG_compound page. 303 */ 304 typedef void compound_page_dtor(struct page *); 305 306 static inline void set_compound_page_dtor(struct page *page, 307 compound_page_dtor *dtor) 308 { 309 page[1].lru.next = (void *)dtor; 310 } 311 312 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 313 { 314 return (compound_page_dtor *)page[1].lru.next; 315 } 316 317 /* 318 * Multiple processes may "see" the same page. E.g. for untouched 319 * mappings of /dev/null, all processes see the same page full of 320 * zeroes, and text pages of executables and shared libraries have 321 * only one copy in memory, at most, normally. 322 * 323 * For the non-reserved pages, page_count(page) denotes a reference count. 324 * page_count() == 0 means the page is free. page->lru is then used for 325 * freelist management in the buddy allocator. 326 * page_count() > 0 means the page has been allocated. 327 * 328 * Pages are allocated by the slab allocator in order to provide memory 329 * to kmalloc and kmem_cache_alloc. In this case, the management of the 330 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 331 * unless a particular usage is carefully commented. (the responsibility of 332 * freeing the kmalloc memory is the caller's, of course). 333 * 334 * A page may be used by anyone else who does a __get_free_page(). 335 * In this case, page_count still tracks the references, and should only 336 * be used through the normal accessor functions. The top bits of page->flags 337 * and page->virtual store page management information, but all other fields 338 * are unused and could be used privately, carefully. The management of this 339 * page is the responsibility of the one who allocated it, and those who have 340 * subsequently been given references to it. 341 * 342 * The other pages (we may call them "pagecache pages") are completely 343 * managed by the Linux memory manager: I/O, buffers, swapping etc. 344 * The following discussion applies only to them. 345 * 346 * A pagecache page contains an opaque `private' member, which belongs to the 347 * page's address_space. Usually, this is the address of a circular list of 348 * the page's disk buffers. PG_private must be set to tell the VM to call 349 * into the filesystem to release these pages. 350 * 351 * A page may belong to an inode's memory mapping. In this case, page->mapping 352 * is the pointer to the inode, and page->index is the file offset of the page, 353 * in units of PAGE_CACHE_SIZE. 354 * 355 * If pagecache pages are not associated with an inode, they are said to be 356 * anonymous pages. These may become associated with the swapcache, and in that 357 * case PG_swapcache is set, and page->private is an offset into the swapcache. 358 * 359 * In either case (swapcache or inode backed), the pagecache itself holds one 360 * reference to the page. Setting PG_private should also increment the 361 * refcount. The each user mapping also has a reference to the page. 362 * 363 * The pagecache pages are stored in a per-mapping radix tree, which is 364 * rooted at mapping->page_tree, and indexed by offset. 365 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 366 * lists, we instead now tag pages as dirty/writeback in the radix tree. 367 * 368 * All pagecache pages may be subject to I/O: 369 * - inode pages may need to be read from disk, 370 * - inode pages which have been modified and are MAP_SHARED may need 371 * to be written back to the inode on disk, 372 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 373 * modified may need to be swapped out to swap space and (later) to be read 374 * back into memory. 375 */ 376 377 /* 378 * The zone field is never updated after free_area_init_core() 379 * sets it, so none of the operations on it need to be atomic. 380 */ 381 382 383 /* 384 * page->flags layout: 385 * 386 * There are three possibilities for how page->flags get 387 * laid out. The first is for the normal case, without 388 * sparsemem. The second is for sparsemem when there is 389 * plenty of space for node and section. The last is when 390 * we have run out of space and have to fall back to an 391 * alternate (slower) way of determining the node. 392 * 393 * No sparsemem: | NODE | ZONE | ... | FLAGS | 394 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 395 * no space for node: | SECTION | ZONE | ... | FLAGS | 396 */ 397 #ifdef CONFIG_SPARSEMEM 398 #define SECTIONS_WIDTH SECTIONS_SHIFT 399 #else 400 #define SECTIONS_WIDTH 0 401 #endif 402 403 #define ZONES_WIDTH ZONES_SHIFT 404 405 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 406 #define NODES_WIDTH NODES_SHIFT 407 #else 408 #define NODES_WIDTH 0 409 #endif 410 411 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 412 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 413 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 414 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 415 416 /* 417 * We are going to use the flags for the page to node mapping if its in 418 * there. This includes the case where there is no node, so it is implicit. 419 */ 420 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 421 #define NODE_NOT_IN_PAGE_FLAGS 422 #endif 423 424 #ifndef PFN_SECTION_SHIFT 425 #define PFN_SECTION_SHIFT 0 426 #endif 427 428 /* 429 * Define the bit shifts to access each section. For non-existant 430 * sections we define the shift as 0; that plus a 0 mask ensures 431 * the compiler will optimise away reference to them. 432 */ 433 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 434 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 435 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 436 437 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 438 #ifdef NODE_NOT_IN_PAGEFLAGS 439 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 440 #else 441 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 442 #endif 443 444 #if ZONES_WIDTH > 0 445 #define ZONEID_PGSHIFT ZONES_PGSHIFT 446 #else 447 #define ZONEID_PGSHIFT NODES_PGOFF 448 #endif 449 450 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 451 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 452 #endif 453 454 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 455 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 456 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 457 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 458 459 static inline enum zone_type page_zonenum(struct page *page) 460 { 461 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 462 } 463 464 /* 465 * The identification function is only used by the buddy allocator for 466 * determining if two pages could be buddies. We are not really 467 * identifying a zone since we could be using a the section number 468 * id if we have not node id available in page flags. 469 * We guarantee only that it will return the same value for two 470 * combinable pages in a zone. 471 */ 472 static inline int page_zone_id(struct page *page) 473 { 474 BUILD_BUG_ON(ZONEID_PGSHIFT == 0 && ZONEID_MASK); 475 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 476 } 477 478 static inline int zone_to_nid(struct zone *zone) 479 { 480 #ifdef CONFIG_NUMA 481 return zone->node; 482 #else 483 return 0; 484 #endif 485 } 486 487 #ifdef NODE_NOT_IN_PAGE_FLAGS 488 extern int page_to_nid(struct page *page); 489 #else 490 static inline int page_to_nid(struct page *page) 491 { 492 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 493 } 494 #endif 495 496 static inline struct zone *page_zone(struct page *page) 497 { 498 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 499 } 500 501 static inline unsigned long page_to_section(struct page *page) 502 { 503 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 504 } 505 506 static inline void set_page_zone(struct page *page, enum zone_type zone) 507 { 508 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 509 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 510 } 511 512 static inline void set_page_node(struct page *page, unsigned long node) 513 { 514 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 515 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 516 } 517 518 static inline void set_page_section(struct page *page, unsigned long section) 519 { 520 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 521 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 522 } 523 524 static inline void set_page_links(struct page *page, enum zone_type zone, 525 unsigned long node, unsigned long pfn) 526 { 527 set_page_zone(page, zone); 528 set_page_node(page, node); 529 set_page_section(page, pfn_to_section_nr(pfn)); 530 } 531 532 /* 533 * Some inline functions in vmstat.h depend on page_zone() 534 */ 535 #include <linux/vmstat.h> 536 537 static __always_inline void *lowmem_page_address(struct page *page) 538 { 539 return __va(page_to_pfn(page) << PAGE_SHIFT); 540 } 541 542 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 543 #define HASHED_PAGE_VIRTUAL 544 #endif 545 546 #if defined(WANT_PAGE_VIRTUAL) 547 #define page_address(page) ((page)->virtual) 548 #define set_page_address(page, address) \ 549 do { \ 550 (page)->virtual = (address); \ 551 } while(0) 552 #define page_address_init() do { } while(0) 553 #endif 554 555 #if defined(HASHED_PAGE_VIRTUAL) 556 void *page_address(struct page *page); 557 void set_page_address(struct page *page, void *virtual); 558 void page_address_init(void); 559 #endif 560 561 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 562 #define page_address(page) lowmem_page_address(page) 563 #define set_page_address(page, address) do { } while(0) 564 #define page_address_init() do { } while(0) 565 #endif 566 567 /* 568 * On an anonymous page mapped into a user virtual memory area, 569 * page->mapping points to its anon_vma, not to a struct address_space; 570 * with the PAGE_MAPPING_ANON bit set to distinguish it. 571 * 572 * Please note that, confusingly, "page_mapping" refers to the inode 573 * address_space which maps the page from disk; whereas "page_mapped" 574 * refers to user virtual address space into which the page is mapped. 575 */ 576 #define PAGE_MAPPING_ANON 1 577 578 extern struct address_space swapper_space; 579 static inline struct address_space *page_mapping(struct page *page) 580 { 581 struct address_space *mapping = page->mapping; 582 583 if (unlikely(PageSwapCache(page))) 584 mapping = &swapper_space; 585 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 586 mapping = NULL; 587 return mapping; 588 } 589 590 static inline int PageAnon(struct page *page) 591 { 592 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 593 } 594 595 /* 596 * Return the pagecache index of the passed page. Regular pagecache pages 597 * use ->index whereas swapcache pages use ->private 598 */ 599 static inline pgoff_t page_index(struct page *page) 600 { 601 if (unlikely(PageSwapCache(page))) 602 return page_private(page); 603 return page->index; 604 } 605 606 /* 607 * The atomic page->_mapcount, like _count, starts from -1: 608 * so that transitions both from it and to it can be tracked, 609 * using atomic_inc_and_test and atomic_add_negative(-1). 610 */ 611 static inline void reset_page_mapcount(struct page *page) 612 { 613 atomic_set(&(page)->_mapcount, -1); 614 } 615 616 static inline int page_mapcount(struct page *page) 617 { 618 return atomic_read(&(page)->_mapcount) + 1; 619 } 620 621 /* 622 * Return true if this page is mapped into pagetables. 623 */ 624 static inline int page_mapped(struct page *page) 625 { 626 return atomic_read(&(page)->_mapcount) >= 0; 627 } 628 629 /* 630 * Error return values for the *_nopage functions 631 */ 632 #define NOPAGE_SIGBUS (NULL) 633 #define NOPAGE_OOM ((struct page *) (-1)) 634 #define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */ 635 636 /* 637 * Error return values for the *_nopfn functions 638 */ 639 #define NOPFN_SIGBUS ((unsigned long) -1) 640 #define NOPFN_OOM ((unsigned long) -2) 641 642 /* 643 * Different kinds of faults, as returned by handle_mm_fault(). 644 * Used to decide whether a process gets delivered SIGBUS or 645 * just gets major/minor fault counters bumped up. 646 */ 647 #define VM_FAULT_OOM 0x00 648 #define VM_FAULT_SIGBUS 0x01 649 #define VM_FAULT_MINOR 0x02 650 #define VM_FAULT_MAJOR 0x03 651 652 /* 653 * Special case for get_user_pages. 654 * Must be in a distinct bit from the above VM_FAULT_ flags. 655 */ 656 #define VM_FAULT_WRITE 0x10 657 658 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 659 660 extern void show_free_areas(void); 661 662 #ifdef CONFIG_SHMEM 663 struct page *shmem_nopage(struct vm_area_struct *vma, 664 unsigned long address, int *type); 665 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 666 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 667 unsigned long addr); 668 int shmem_lock(struct file *file, int lock, struct user_struct *user); 669 #else 670 #define shmem_nopage filemap_nopage 671 672 static inline int shmem_lock(struct file *file, int lock, 673 struct user_struct *user) 674 { 675 return 0; 676 } 677 678 static inline int shmem_set_policy(struct vm_area_struct *vma, 679 struct mempolicy *new) 680 { 681 return 0; 682 } 683 684 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 685 unsigned long addr) 686 { 687 return NULL; 688 } 689 #endif 690 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 691 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); 692 693 int shmem_zero_setup(struct vm_area_struct *); 694 695 #ifndef CONFIG_MMU 696 extern unsigned long shmem_get_unmapped_area(struct file *file, 697 unsigned long addr, 698 unsigned long len, 699 unsigned long pgoff, 700 unsigned long flags); 701 #endif 702 703 static inline int can_do_mlock(void) 704 { 705 if (capable(CAP_IPC_LOCK)) 706 return 1; 707 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 708 return 1; 709 return 0; 710 } 711 extern int user_shm_lock(size_t, struct user_struct *); 712 extern void user_shm_unlock(size_t, struct user_struct *); 713 714 /* 715 * Parameter block passed down to zap_pte_range in exceptional cases. 716 */ 717 struct zap_details { 718 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 719 struct address_space *check_mapping; /* Check page->mapping if set */ 720 pgoff_t first_index; /* Lowest page->index to unmap */ 721 pgoff_t last_index; /* Highest page->index to unmap */ 722 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 723 unsigned long truncate_count; /* Compare vm_truncate_count */ 724 }; 725 726 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 727 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 728 unsigned long size, struct zap_details *); 729 unsigned long unmap_vmas(struct mmu_gather **tlb, 730 struct vm_area_struct *start_vma, unsigned long start_addr, 731 unsigned long end_addr, unsigned long *nr_accounted, 732 struct zap_details *); 733 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 734 unsigned long end, unsigned long floor, unsigned long ceiling); 735 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 736 unsigned long floor, unsigned long ceiling); 737 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 738 struct vm_area_struct *vma); 739 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 740 unsigned long size, pgprot_t prot); 741 void unmap_mapping_range(struct address_space *mapping, 742 loff_t const holebegin, loff_t const holelen, int even_cows); 743 744 static inline void unmap_shared_mapping_range(struct address_space *mapping, 745 loff_t const holebegin, loff_t const holelen) 746 { 747 unmap_mapping_range(mapping, holebegin, holelen, 0); 748 } 749 750 extern int vmtruncate(struct inode * inode, loff_t offset); 751 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 752 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 753 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 754 755 #ifdef CONFIG_MMU 756 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 757 unsigned long address, int write_access); 758 759 static inline int handle_mm_fault(struct mm_struct *mm, 760 struct vm_area_struct *vma, unsigned long address, 761 int write_access) 762 { 763 return __handle_mm_fault(mm, vma, address, write_access) & 764 (~VM_FAULT_WRITE); 765 } 766 #else 767 static inline int handle_mm_fault(struct mm_struct *mm, 768 struct vm_area_struct *vma, unsigned long address, 769 int write_access) 770 { 771 /* should never happen if there's no MMU */ 772 BUG(); 773 return VM_FAULT_SIGBUS; 774 } 775 #endif 776 777 extern int make_pages_present(unsigned long addr, unsigned long end); 778 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 779 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 780 781 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 782 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 783 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 784 785 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 786 extern void do_invalidatepage(struct page *page, unsigned long offset); 787 788 int __set_page_dirty_nobuffers(struct page *page); 789 int redirty_page_for_writepage(struct writeback_control *wbc, 790 struct page *page); 791 int FASTCALL(set_page_dirty(struct page *page)); 792 int set_page_dirty_lock(struct page *page); 793 int clear_page_dirty_for_io(struct page *page); 794 795 extern unsigned long do_mremap(unsigned long addr, 796 unsigned long old_len, unsigned long new_len, 797 unsigned long flags, unsigned long new_addr); 798 799 /* 800 * Prototype to add a shrinker callback for ageable caches. 801 * 802 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 803 * scan `nr_to_scan' objects, attempting to free them. 804 * 805 * The callback must return the number of objects which remain in the cache. 806 * 807 * The callback will be passed nr_to_scan == 0 when the VM is querying the 808 * cache size, so a fastpath for that case is appropriate. 809 */ 810 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 811 812 /* 813 * Add an aging callback. The int is the number of 'seeks' it takes 814 * to recreate one of the objects that these functions age. 815 */ 816 817 #define DEFAULT_SEEKS 2 818 struct shrinker; 819 extern struct shrinker *set_shrinker(int, shrinker_t); 820 extern void remove_shrinker(struct shrinker *shrinker); 821 822 /* 823 * Some shared mappigns will want the pages marked read-only 824 * to track write events. If so, we'll downgrade vm_page_prot 825 * to the private version (using protection_map[] without the 826 * VM_SHARED bit). 827 */ 828 static inline int vma_wants_writenotify(struct vm_area_struct *vma) 829 { 830 unsigned int vm_flags = vma->vm_flags; 831 832 /* If it was private or non-writable, the write bit is already clear */ 833 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 834 return 0; 835 836 /* The backer wishes to know when pages are first written to? */ 837 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 838 return 1; 839 840 /* The open routine did something to the protections already? */ 841 if (pgprot_val(vma->vm_page_prot) != 842 pgprot_val(protection_map[vm_flags & 843 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)])) 844 return 0; 845 846 /* Specialty mapping? */ 847 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 848 return 0; 849 850 /* Can the mapping track the dirty pages? */ 851 return vma->vm_file && vma->vm_file->f_mapping && 852 mapping_cap_account_dirty(vma->vm_file->f_mapping); 853 } 854 855 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 856 857 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 858 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 859 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 860 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 861 862 /* 863 * The following ifdef needed to get the 4level-fixup.h header to work. 864 * Remove it when 4level-fixup.h has been removed. 865 */ 866 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 867 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 868 { 869 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 870 NULL: pud_offset(pgd, address); 871 } 872 873 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 874 { 875 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 876 NULL: pmd_offset(pud, address); 877 } 878 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 879 880 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 881 /* 882 * We tuck a spinlock to guard each pagetable page into its struct page, 883 * at page->private, with BUILD_BUG_ON to make sure that this will not 884 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 885 * When freeing, reset page->mapping so free_pages_check won't complain. 886 */ 887 #define __pte_lockptr(page) &((page)->ptl) 888 #define pte_lock_init(_page) do { \ 889 spin_lock_init(__pte_lockptr(_page)); \ 890 } while (0) 891 #define pte_lock_deinit(page) ((page)->mapping = NULL) 892 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 893 #else 894 /* 895 * We use mm->page_table_lock to guard all pagetable pages of the mm. 896 */ 897 #define pte_lock_init(page) do {} while (0) 898 #define pte_lock_deinit(page) do {} while (0) 899 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 900 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 901 902 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 903 ({ \ 904 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 905 pte_t *__pte = pte_offset_map(pmd, address); \ 906 *(ptlp) = __ptl; \ 907 spin_lock(__ptl); \ 908 __pte; \ 909 }) 910 911 #define pte_unmap_unlock(pte, ptl) do { \ 912 spin_unlock(ptl); \ 913 pte_unmap(pte); \ 914 } while (0) 915 916 #define pte_alloc_map(mm, pmd, address) \ 917 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 918 NULL: pte_offset_map(pmd, address)) 919 920 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 921 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 922 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 923 924 #define pte_alloc_kernel(pmd, address) \ 925 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 926 NULL: pte_offset_kernel(pmd, address)) 927 928 extern void free_area_init(unsigned long * zones_size); 929 extern void free_area_init_node(int nid, pg_data_t *pgdat, 930 unsigned long * zones_size, unsigned long zone_start_pfn, 931 unsigned long *zholes_size); 932 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 933 /* 934 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 935 * zones, allocate the backing mem_map and account for memory holes in a more 936 * architecture independent manner. This is a substitute for creating the 937 * zone_sizes[] and zholes_size[] arrays and passing them to 938 * free_area_init_node() 939 * 940 * An architecture is expected to register range of page frames backed by 941 * physical memory with add_active_range() before calling 942 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 943 * usage, an architecture is expected to do something like 944 * 945 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 946 * max_highmem_pfn}; 947 * for_each_valid_physical_page_range() 948 * add_active_range(node_id, start_pfn, end_pfn) 949 * free_area_init_nodes(max_zone_pfns); 950 * 951 * If the architecture guarantees that there are no holes in the ranges 952 * registered with add_active_range(), free_bootmem_active_regions() 953 * will call free_bootmem_node() for each registered physical page range. 954 * Similarly sparse_memory_present_with_active_regions() calls 955 * memory_present() for each range when SPARSEMEM is enabled. 956 * 957 * See mm/page_alloc.c for more information on each function exposed by 958 * CONFIG_ARCH_POPULATES_NODE_MAP 959 */ 960 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 961 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 962 unsigned long end_pfn); 963 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 964 unsigned long new_end_pfn); 965 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 966 unsigned long end_pfn); 967 extern void remove_all_active_ranges(void); 968 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 969 unsigned long end_pfn); 970 extern void get_pfn_range_for_nid(unsigned int nid, 971 unsigned long *start_pfn, unsigned long *end_pfn); 972 extern unsigned long find_min_pfn_with_active_regions(void); 973 extern unsigned long find_max_pfn_with_active_regions(void); 974 extern void free_bootmem_with_active_regions(int nid, 975 unsigned long max_low_pfn); 976 extern void sparse_memory_present_with_active_regions(int nid); 977 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 978 extern int early_pfn_to_nid(unsigned long pfn); 979 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 980 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 981 extern void set_dma_reserve(unsigned long new_dma_reserve); 982 extern void memmap_init_zone(unsigned long, int, unsigned long, 983 unsigned long, enum memmap_context); 984 extern void setup_per_zone_pages_min(void); 985 extern void mem_init(void); 986 extern void show_mem(void); 987 extern void si_meminfo(struct sysinfo * val); 988 extern void si_meminfo_node(struct sysinfo *val, int nid); 989 990 #ifdef CONFIG_NUMA 991 extern void setup_per_cpu_pageset(void); 992 #else 993 static inline void setup_per_cpu_pageset(void) {} 994 #endif 995 996 /* prio_tree.c */ 997 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 998 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 999 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1000 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1001 struct prio_tree_iter *iter); 1002 1003 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1004 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1005 (vma = vma_prio_tree_next(vma, iter)); ) 1006 1007 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1008 struct list_head *list) 1009 { 1010 vma->shared.vm_set.parent = NULL; 1011 list_add_tail(&vma->shared.vm_set.list, list); 1012 } 1013 1014 /* mmap.c */ 1015 extern int __vm_enough_memory(long pages, int cap_sys_admin); 1016 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1017 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1018 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1019 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1020 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1021 struct mempolicy *); 1022 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1023 extern int split_vma(struct mm_struct *, 1024 struct vm_area_struct *, unsigned long addr, int new_below); 1025 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1026 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1027 struct rb_node **, struct rb_node *); 1028 extern void unlink_file_vma(struct vm_area_struct *); 1029 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1030 unsigned long addr, unsigned long len, pgoff_t pgoff); 1031 extern void exit_mmap(struct mm_struct *); 1032 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1033 1034 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1035 1036 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1037 unsigned long len, unsigned long prot, 1038 unsigned long flag, unsigned long pgoff); 1039 1040 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1041 unsigned long len, unsigned long prot, 1042 unsigned long flag, unsigned long offset) 1043 { 1044 unsigned long ret = -EINVAL; 1045 if ((offset + PAGE_ALIGN(len)) < offset) 1046 goto out; 1047 if (!(offset & ~PAGE_MASK)) 1048 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1049 out: 1050 return ret; 1051 } 1052 1053 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1054 1055 extern unsigned long do_brk(unsigned long, unsigned long); 1056 1057 /* filemap.c */ 1058 extern unsigned long page_unuse(struct page *); 1059 extern void truncate_inode_pages(struct address_space *, loff_t); 1060 extern void truncate_inode_pages_range(struct address_space *, 1061 loff_t lstart, loff_t lend); 1062 1063 /* generic vm_area_ops exported for stackable file systems */ 1064 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 1065 extern int filemap_populate(struct vm_area_struct *, unsigned long, 1066 unsigned long, pgprot_t, unsigned long, int); 1067 1068 /* mm/page-writeback.c */ 1069 int write_one_page(struct page *page, int wait); 1070 1071 /* readahead.c */ 1072 #define VM_MAX_READAHEAD 128 /* kbytes */ 1073 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1074 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 1075 * turning readahead off */ 1076 1077 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1078 pgoff_t offset, unsigned long nr_to_read); 1079 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1080 pgoff_t offset, unsigned long nr_to_read); 1081 unsigned long page_cache_readahead(struct address_space *mapping, 1082 struct file_ra_state *ra, 1083 struct file *filp, 1084 pgoff_t offset, 1085 unsigned long size); 1086 void handle_ra_miss(struct address_space *mapping, 1087 struct file_ra_state *ra, pgoff_t offset); 1088 unsigned long max_sane_readahead(unsigned long nr); 1089 1090 /* Do stack extension */ 1091 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1092 #ifdef CONFIG_IA64 1093 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1094 #endif 1095 1096 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1097 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1098 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1099 struct vm_area_struct **pprev); 1100 1101 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1102 NULL if none. Assume start_addr < end_addr. */ 1103 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1104 { 1105 struct vm_area_struct * vma = find_vma(mm,start_addr); 1106 1107 if (vma && end_addr <= vma->vm_start) 1108 vma = NULL; 1109 return vma; 1110 } 1111 1112 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1113 { 1114 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1115 } 1116 1117 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1118 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1119 struct page *vmalloc_to_page(void *addr); 1120 unsigned long vmalloc_to_pfn(void *addr); 1121 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1122 unsigned long pfn, unsigned long size, pgprot_t); 1123 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1124 1125 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1126 unsigned int foll_flags); 1127 #define FOLL_WRITE 0x01 /* check pte is writable */ 1128 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1129 #define FOLL_GET 0x04 /* do get_page on page */ 1130 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1131 1132 #ifdef CONFIG_PROC_FS 1133 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1134 #else 1135 static inline void vm_stat_account(struct mm_struct *mm, 1136 unsigned long flags, struct file *file, long pages) 1137 { 1138 } 1139 #endif /* CONFIG_PROC_FS */ 1140 1141 #ifndef CONFIG_DEBUG_PAGEALLOC 1142 static inline void 1143 kernel_map_pages(struct page *page, int numpages, int enable) {} 1144 #endif 1145 1146 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1147 #ifdef __HAVE_ARCH_GATE_AREA 1148 int in_gate_area_no_task(unsigned long addr); 1149 int in_gate_area(struct task_struct *task, unsigned long addr); 1150 #else 1151 int in_gate_area_no_task(unsigned long addr); 1152 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1153 #endif /* __HAVE_ARCH_GATE_AREA */ 1154 1155 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1156 void __user *, size_t *, loff_t *); 1157 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1158 unsigned long lru_pages); 1159 void drop_pagecache(void); 1160 void drop_slab(void); 1161 1162 #ifndef CONFIG_MMU 1163 #define randomize_va_space 0 1164 #else 1165 extern int randomize_va_space; 1166 #endif 1167 1168 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma); 1169 1170 #endif /* __KERNEL__ */ 1171 #endif /* _LINUX_MM_H */ 1172