1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct user_struct; 40 struct pt_regs; 41 struct folio_batch; 42 43 void mm_core_init(void); 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 80 #ifdef CONFIG_SYSCTL 81 extern int sysctl_legacy_va_layout; 82 #else 83 #define sysctl_legacy_va_layout 0 84 #endif 85 86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 87 extern const int mmap_rnd_bits_min; 88 extern int mmap_rnd_bits_max __ro_after_init; 89 extern int mmap_rnd_bits __read_mostly; 90 #endif 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 92 extern const int mmap_rnd_compat_bits_min; 93 extern const int mmap_rnd_compat_bits_max; 94 extern int mmap_rnd_compat_bits __read_mostly; 95 #endif 96 97 #ifndef DIRECT_MAP_PHYSMEM_END 98 # ifdef MAX_PHYSMEM_BITS 99 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 100 # else 101 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 102 # endif 103 #endif 104 105 #include <asm/page.h> 106 #include <asm/processor.h> 107 108 #ifndef __pa_symbol 109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110 #endif 111 112 #ifndef page_to_virt 113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114 #endif 115 116 #ifndef lm_alias 117 #define lm_alias(x) __va(__pa_symbol(x)) 118 #endif 119 120 /* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127 #ifndef mm_forbids_zeropage 128 #define mm_forbids_zeropage(X) (0) 129 #endif 130 131 /* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137 #if BITS_PER_LONG == 64 138 /* This function must be updated when the size of struct page grows above 96 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statements if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145 static inline void __mm_zero_struct_page(struct page *page) 146 { 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 96); 153 154 switch (sizeof(struct page)) { 155 case 96: 156 _pp[11] = 0; 157 fallthrough; 158 case 88: 159 _pp[10] = 0; 160 fallthrough; 161 case 80: 162 _pp[9] = 0; 163 fallthrough; 164 case 72: 165 _pp[8] = 0; 166 fallthrough; 167 case 64: 168 _pp[7] = 0; 169 fallthrough; 170 case 56: 171 _pp[6] = 0; 172 _pp[5] = 0; 173 _pp[4] = 0; 174 _pp[3] = 0; 175 _pp[2] = 0; 176 _pp[1] = 0; 177 _pp[0] = 0; 178 } 179 } 180 #else 181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 182 #endif 183 184 /* 185 * Default maximum number of active map areas, this limits the number of vmas 186 * per mm struct. Users can overwrite this number by sysctl but there is a 187 * problem. 188 * 189 * When a program's coredump is generated as ELF format, a section is created 190 * per a vma. In ELF, the number of sections is represented in unsigned short. 191 * This means the number of sections should be smaller than 65535 at coredump. 192 * Because the kernel adds some informative sections to a image of program at 193 * generating coredump, we need some margin. The number of extra sections is 194 * 1-3 now and depends on arch. We use "5" as safe margin, here. 195 * 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 197 * not a hard limit any more. Although some userspace tools can be surprised by 198 * that. 199 */ 200 #define MAPCOUNT_ELF_CORE_MARGIN (5) 201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 202 203 extern int sysctl_max_map_count; 204 205 extern unsigned long sysctl_user_reserve_kbytes; 206 extern unsigned long sysctl_admin_reserve_kbytes; 207 208 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 210 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 211 #else 212 #define nth_page(page,n) ((page) + (n)) 213 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 214 #endif 215 216 /* to align the pointer to the (next) page boundary */ 217 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 218 219 /* to align the pointer to the (prev) page boundary */ 220 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 221 222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 223 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 224 225 static inline struct folio *lru_to_folio(struct list_head *head) 226 { 227 return list_entry((head)->prev, struct folio, lru); 228 } 229 230 void setup_initial_init_mm(void *start_code, void *end_code, 231 void *end_data, void *brk); 232 233 /* 234 * Linux kernel virtual memory manager primitives. 235 * The idea being to have a "virtual" mm in the same way 236 * we have a virtual fs - giving a cleaner interface to the 237 * mm details, and allowing different kinds of memory mappings 238 * (from shared memory to executable loading to arbitrary 239 * mmap() functions). 240 */ 241 242 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 243 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 244 void vm_area_free(struct vm_area_struct *); 245 /* Use only if VMA has no other users */ 246 void __vm_area_free(struct vm_area_struct *vma); 247 248 #ifndef CONFIG_MMU 249 extern struct rb_root nommu_region_tree; 250 extern struct rw_semaphore nommu_region_sem; 251 252 extern unsigned int kobjsize(const void *objp); 253 #endif 254 255 /* 256 * vm_flags in vm_area_struct, see mm_types.h. 257 * When changing, update also include/trace/events/mmflags.h 258 */ 259 #define VM_NONE 0x00000000 260 261 #define VM_READ 0x00000001 /* currently active flags */ 262 #define VM_WRITE 0x00000002 263 #define VM_EXEC 0x00000004 264 #define VM_SHARED 0x00000008 265 266 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 267 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 268 #define VM_MAYWRITE 0x00000020 269 #define VM_MAYEXEC 0x00000040 270 #define VM_MAYSHARE 0x00000080 271 272 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 273 #ifdef CONFIG_MMU 274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 275 #else /* CONFIG_MMU */ 276 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 277 #define VM_UFFD_MISSING 0 278 #endif /* CONFIG_MMU */ 279 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 280 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 281 282 #define VM_LOCKED 0x00002000 283 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 284 285 /* Used by sys_madvise() */ 286 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 287 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 288 289 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 290 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 291 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 292 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 293 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 294 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 295 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 296 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 297 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 298 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 299 300 #ifdef CONFIG_MEM_SOFT_DIRTY 301 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 302 #else 303 # define VM_SOFTDIRTY 0 304 #endif 305 306 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 307 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 308 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 309 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 310 311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 312 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 314 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 315 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 316 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 317 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 320 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 321 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 322 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 323 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 324 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 325 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 327 328 #ifdef CONFIG_ARCH_HAS_PKEYS 329 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 330 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 331 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 332 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 333 #if CONFIG_ARCH_PKEY_BITS > 3 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #else 336 # define VM_PKEY_BIT3 0 337 #endif 338 #if CONFIG_ARCH_PKEY_BITS > 4 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #endif 357 358 #if defined(CONFIG_ARM64_GCS) 359 /* 360 * arm64's Guarded Control Stack implements similar functionality and 361 * has similar constraints to shadow stacks. 362 */ 363 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 364 #endif 365 366 #ifndef VM_SHADOW_STACK 367 # define VM_SHADOW_STACK VM_NONE 368 #endif 369 370 #if defined(CONFIG_X86) 371 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 372 #elif defined(CONFIG_PPC64) 373 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 374 #elif defined(CONFIG_PARISC) 375 # define VM_GROWSUP VM_ARCH_1 376 #elif defined(CONFIG_SPARC64) 377 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 378 # define VM_ARCH_CLEAR VM_SPARC_ADI 379 #elif defined(CONFIG_ARM64) 380 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 381 # define VM_ARCH_CLEAR VM_ARM64_BTI 382 #elif !defined(CONFIG_MMU) 383 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 384 #endif 385 386 #if defined(CONFIG_ARM64_MTE) 387 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 388 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 389 #else 390 # define VM_MTE VM_NONE 391 # define VM_MTE_ALLOWED VM_NONE 392 #endif 393 394 #ifndef VM_GROWSUP 395 # define VM_GROWSUP VM_NONE 396 #endif 397 398 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 399 # define VM_UFFD_MINOR_BIT 38 400 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 401 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 402 # define VM_UFFD_MINOR VM_NONE 403 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 404 405 /* 406 * This flag is used to connect VFIO to arch specific KVM code. It 407 * indicates that the memory under this VMA is safe for use with any 408 * non-cachable memory type inside KVM. Some VFIO devices, on some 409 * platforms, are thought to be unsafe and can cause machine crashes 410 * if KVM does not lock down the memory type. 411 */ 412 #ifdef CONFIG_64BIT 413 #define VM_ALLOW_ANY_UNCACHED_BIT 39 414 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 415 #else 416 #define VM_ALLOW_ANY_UNCACHED VM_NONE 417 #endif 418 419 #ifdef CONFIG_64BIT 420 #define VM_DROPPABLE_BIT 40 421 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 422 #elif defined(CONFIG_PPC32) 423 #define VM_DROPPABLE VM_ARCH_1 424 #else 425 #define VM_DROPPABLE VM_NONE 426 #endif 427 428 #ifdef CONFIG_64BIT 429 /* VM is sealed, in vm_flags */ 430 #define VM_SEALED _BITUL(63) 431 #endif 432 433 /* Bits set in the VMA until the stack is in its final location */ 434 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 435 436 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 437 438 /* Common data flag combinations */ 439 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 440 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 441 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 442 VM_MAYWRITE | VM_MAYEXEC) 443 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 444 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 445 446 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 447 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 448 #endif 449 450 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 451 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 452 #endif 453 454 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 455 456 #ifdef CONFIG_STACK_GROWSUP 457 #define VM_STACK VM_GROWSUP 458 #define VM_STACK_EARLY VM_GROWSDOWN 459 #else 460 #define VM_STACK VM_GROWSDOWN 461 #define VM_STACK_EARLY 0 462 #endif 463 464 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 465 466 /* VMA basic access permission flags */ 467 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 468 469 470 /* 471 * Special vmas that are non-mergable, non-mlock()able. 472 */ 473 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 474 475 /* This mask prevents VMA from being scanned with khugepaged */ 476 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 477 478 /* This mask defines which mm->def_flags a process can inherit its parent */ 479 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 480 481 /* This mask represents all the VMA flag bits used by mlock */ 482 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 483 484 /* Arch-specific flags to clear when updating VM flags on protection change */ 485 #ifndef VM_ARCH_CLEAR 486 # define VM_ARCH_CLEAR VM_NONE 487 #endif 488 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 489 490 /* 491 * mapping from the currently active vm_flags protection bits (the 492 * low four bits) to a page protection mask.. 493 */ 494 495 /* 496 * The default fault flags that should be used by most of the 497 * arch-specific page fault handlers. 498 */ 499 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 500 FAULT_FLAG_KILLABLE | \ 501 FAULT_FLAG_INTERRUPTIBLE) 502 503 /** 504 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 505 * @flags: Fault flags. 506 * 507 * This is mostly used for places where we want to try to avoid taking 508 * the mmap_lock for too long a time when waiting for another condition 509 * to change, in which case we can try to be polite to release the 510 * mmap_lock in the first round to avoid potential starvation of other 511 * processes that would also want the mmap_lock. 512 * 513 * Return: true if the page fault allows retry and this is the first 514 * attempt of the fault handling; false otherwise. 515 */ 516 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 517 { 518 return (flags & FAULT_FLAG_ALLOW_RETRY) && 519 (!(flags & FAULT_FLAG_TRIED)); 520 } 521 522 #define FAULT_FLAG_TRACE \ 523 { FAULT_FLAG_WRITE, "WRITE" }, \ 524 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 525 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 526 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 527 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 528 { FAULT_FLAG_TRIED, "TRIED" }, \ 529 { FAULT_FLAG_USER, "USER" }, \ 530 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 531 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 532 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 533 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 534 535 /* 536 * vm_fault is filled by the pagefault handler and passed to the vma's 537 * ->fault function. The vma's ->fault is responsible for returning a bitmask 538 * of VM_FAULT_xxx flags that give details about how the fault was handled. 539 * 540 * MM layer fills up gfp_mask for page allocations but fault handler might 541 * alter it if its implementation requires a different allocation context. 542 * 543 * pgoff should be used in favour of virtual_address, if possible. 544 */ 545 struct vm_fault { 546 const struct { 547 struct vm_area_struct *vma; /* Target VMA */ 548 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 549 pgoff_t pgoff; /* Logical page offset based on vma */ 550 unsigned long address; /* Faulting virtual address - masked */ 551 unsigned long real_address; /* Faulting virtual address - unmasked */ 552 }; 553 enum fault_flag flags; /* FAULT_FLAG_xxx flags 554 * XXX: should really be 'const' */ 555 pmd_t *pmd; /* Pointer to pmd entry matching 556 * the 'address' */ 557 pud_t *pud; /* Pointer to pud entry matching 558 * the 'address' 559 */ 560 union { 561 pte_t orig_pte; /* Value of PTE at the time of fault */ 562 pmd_t orig_pmd; /* Value of PMD at the time of fault, 563 * used by PMD fault only. 564 */ 565 }; 566 567 struct page *cow_page; /* Page handler may use for COW fault */ 568 struct page *page; /* ->fault handlers should return a 569 * page here, unless VM_FAULT_NOPAGE 570 * is set (which is also implied by 571 * VM_FAULT_ERROR). 572 */ 573 /* These three entries are valid only while holding ptl lock */ 574 pte_t *pte; /* Pointer to pte entry matching 575 * the 'address'. NULL if the page 576 * table hasn't been allocated. 577 */ 578 spinlock_t *ptl; /* Page table lock. 579 * Protects pte page table if 'pte' 580 * is not NULL, otherwise pmd. 581 */ 582 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 583 * vm_ops->map_pages() sets up a page 584 * table from atomic context. 585 * do_fault_around() pre-allocates 586 * page table to avoid allocation from 587 * atomic context. 588 */ 589 }; 590 591 /* 592 * These are the virtual MM functions - opening of an area, closing and 593 * unmapping it (needed to keep files on disk up-to-date etc), pointer 594 * to the functions called when a no-page or a wp-page exception occurs. 595 */ 596 struct vm_operations_struct { 597 void (*open)(struct vm_area_struct * area); 598 /** 599 * @close: Called when the VMA is being removed from the MM. 600 * Context: User context. May sleep. Caller holds mmap_lock. 601 */ 602 void (*close)(struct vm_area_struct * area); 603 /* Called any time before splitting to check if it's allowed */ 604 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 605 int (*mremap)(struct vm_area_struct *area); 606 /* 607 * Called by mprotect() to make driver-specific permission 608 * checks before mprotect() is finalised. The VMA must not 609 * be modified. Returns 0 if mprotect() can proceed. 610 */ 611 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 612 unsigned long end, unsigned long newflags); 613 vm_fault_t (*fault)(struct vm_fault *vmf); 614 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 615 vm_fault_t (*map_pages)(struct vm_fault *vmf, 616 pgoff_t start_pgoff, pgoff_t end_pgoff); 617 unsigned long (*pagesize)(struct vm_area_struct * area); 618 619 /* notification that a previously read-only page is about to become 620 * writable, if an error is returned it will cause a SIGBUS */ 621 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 622 623 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 624 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 625 626 /* called by access_process_vm when get_user_pages() fails, typically 627 * for use by special VMAs. See also generic_access_phys() for a generic 628 * implementation useful for any iomem mapping. 629 */ 630 int (*access)(struct vm_area_struct *vma, unsigned long addr, 631 void *buf, int len, int write); 632 633 /* Called by the /proc/PID/maps code to ask the vma whether it 634 * has a special name. Returning non-NULL will also cause this 635 * vma to be dumped unconditionally. */ 636 const char *(*name)(struct vm_area_struct *vma); 637 638 #ifdef CONFIG_NUMA 639 /* 640 * set_policy() op must add a reference to any non-NULL @new mempolicy 641 * to hold the policy upon return. Caller should pass NULL @new to 642 * remove a policy and fall back to surrounding context--i.e. do not 643 * install a MPOL_DEFAULT policy, nor the task or system default 644 * mempolicy. 645 */ 646 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 647 648 /* 649 * get_policy() op must add reference [mpol_get()] to any policy at 650 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 651 * in mm/mempolicy.c will do this automatically. 652 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 653 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 654 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 655 * must return NULL--i.e., do not "fallback" to task or system default 656 * policy. 657 */ 658 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 659 unsigned long addr, pgoff_t *ilx); 660 #endif 661 /* 662 * Called by vm_normal_page() for special PTEs to find the 663 * page for @addr. This is useful if the default behavior 664 * (using pte_page()) would not find the correct page. 665 */ 666 struct page *(*find_special_page)(struct vm_area_struct *vma, 667 unsigned long addr); 668 }; 669 670 #ifdef CONFIG_NUMA_BALANCING 671 static inline void vma_numab_state_init(struct vm_area_struct *vma) 672 { 673 vma->numab_state = NULL; 674 } 675 static inline void vma_numab_state_free(struct vm_area_struct *vma) 676 { 677 kfree(vma->numab_state); 678 } 679 #else 680 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 681 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 682 #endif /* CONFIG_NUMA_BALANCING */ 683 684 #ifdef CONFIG_PER_VMA_LOCK 685 /* 686 * Try to read-lock a vma. The function is allowed to occasionally yield false 687 * locked result to avoid performance overhead, in which case we fall back to 688 * using mmap_lock. The function should never yield false unlocked result. 689 */ 690 static inline bool vma_start_read(struct vm_area_struct *vma) 691 { 692 /* 693 * Check before locking. A race might cause false locked result. 694 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 695 * ACQUIRE semantics, because this is just a lockless check whose result 696 * we don't rely on for anything - the mm_lock_seq read against which we 697 * need ordering is below. 698 */ 699 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence)) 700 return false; 701 702 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 703 return false; 704 705 /* 706 * Overflow might produce false locked result. 707 * False unlocked result is impossible because we modify and check 708 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 709 * modification invalidates all existing locks. 710 * 711 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 712 * racing with vma_end_write_all(), we only start reading from the VMA 713 * after it has been unlocked. 714 * This pairs with RELEASE semantics in vma_end_write_all(). 715 */ 716 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) { 717 up_read(&vma->vm_lock->lock); 718 return false; 719 } 720 return true; 721 } 722 723 static inline void vma_end_read(struct vm_area_struct *vma) 724 { 725 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 726 up_read(&vma->vm_lock->lock); 727 rcu_read_unlock(); 728 } 729 730 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 731 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 732 { 733 mmap_assert_write_locked(vma->vm_mm); 734 735 /* 736 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 737 * mm->mm_lock_seq can't be concurrently modified. 738 */ 739 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 740 return (vma->vm_lock_seq == *mm_lock_seq); 741 } 742 743 /* 744 * Begin writing to a VMA. 745 * Exclude concurrent readers under the per-VMA lock until the currently 746 * write-locked mmap_lock is dropped or downgraded. 747 */ 748 static inline void vma_start_write(struct vm_area_struct *vma) 749 { 750 unsigned int mm_lock_seq; 751 752 if (__is_vma_write_locked(vma, &mm_lock_seq)) 753 return; 754 755 down_write(&vma->vm_lock->lock); 756 /* 757 * We should use WRITE_ONCE() here because we can have concurrent reads 758 * from the early lockless pessimistic check in vma_start_read(). 759 * We don't really care about the correctness of that early check, but 760 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 761 */ 762 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 763 up_write(&vma->vm_lock->lock); 764 } 765 766 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 767 { 768 unsigned int mm_lock_seq; 769 770 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 771 } 772 773 static inline void vma_assert_locked(struct vm_area_struct *vma) 774 { 775 if (!rwsem_is_locked(&vma->vm_lock->lock)) 776 vma_assert_write_locked(vma); 777 } 778 779 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 780 { 781 /* When detaching vma should be write-locked */ 782 if (detached) 783 vma_assert_write_locked(vma); 784 vma->detached = detached; 785 } 786 787 static inline void release_fault_lock(struct vm_fault *vmf) 788 { 789 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 790 vma_end_read(vmf->vma); 791 else 792 mmap_read_unlock(vmf->vma->vm_mm); 793 } 794 795 static inline void assert_fault_locked(struct vm_fault *vmf) 796 { 797 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 798 vma_assert_locked(vmf->vma); 799 else 800 mmap_assert_locked(vmf->vma->vm_mm); 801 } 802 803 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 804 unsigned long address); 805 806 #else /* CONFIG_PER_VMA_LOCK */ 807 808 static inline bool vma_start_read(struct vm_area_struct *vma) 809 { return false; } 810 static inline void vma_end_read(struct vm_area_struct *vma) {} 811 static inline void vma_start_write(struct vm_area_struct *vma) {} 812 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 813 { mmap_assert_write_locked(vma->vm_mm); } 814 static inline void vma_mark_detached(struct vm_area_struct *vma, 815 bool detached) {} 816 817 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 818 unsigned long address) 819 { 820 return NULL; 821 } 822 823 static inline void vma_assert_locked(struct vm_area_struct *vma) 824 { 825 mmap_assert_locked(vma->vm_mm); 826 } 827 828 static inline void release_fault_lock(struct vm_fault *vmf) 829 { 830 mmap_read_unlock(vmf->vma->vm_mm); 831 } 832 833 static inline void assert_fault_locked(struct vm_fault *vmf) 834 { 835 mmap_assert_locked(vmf->vma->vm_mm); 836 } 837 838 #endif /* CONFIG_PER_VMA_LOCK */ 839 840 extern const struct vm_operations_struct vma_dummy_vm_ops; 841 842 /* 843 * WARNING: vma_init does not initialize vma->vm_lock. 844 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 845 */ 846 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 847 { 848 memset(vma, 0, sizeof(*vma)); 849 vma->vm_mm = mm; 850 vma->vm_ops = &vma_dummy_vm_ops; 851 INIT_LIST_HEAD(&vma->anon_vma_chain); 852 vma_mark_detached(vma, false); 853 vma_numab_state_init(vma); 854 } 855 856 /* Use when VMA is not part of the VMA tree and needs no locking */ 857 static inline void vm_flags_init(struct vm_area_struct *vma, 858 vm_flags_t flags) 859 { 860 ACCESS_PRIVATE(vma, __vm_flags) = flags; 861 } 862 863 /* 864 * Use when VMA is part of the VMA tree and modifications need coordination 865 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 866 * it should be locked explicitly beforehand. 867 */ 868 static inline void vm_flags_reset(struct vm_area_struct *vma, 869 vm_flags_t flags) 870 { 871 vma_assert_write_locked(vma); 872 vm_flags_init(vma, flags); 873 } 874 875 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 876 vm_flags_t flags) 877 { 878 vma_assert_write_locked(vma); 879 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 880 } 881 882 static inline void vm_flags_set(struct vm_area_struct *vma, 883 vm_flags_t flags) 884 { 885 vma_start_write(vma); 886 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 887 } 888 889 static inline void vm_flags_clear(struct vm_area_struct *vma, 890 vm_flags_t flags) 891 { 892 vma_start_write(vma); 893 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 894 } 895 896 /* 897 * Use only if VMA is not part of the VMA tree or has no other users and 898 * therefore needs no locking. 899 */ 900 static inline void __vm_flags_mod(struct vm_area_struct *vma, 901 vm_flags_t set, vm_flags_t clear) 902 { 903 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 904 } 905 906 /* 907 * Use only when the order of set/clear operations is unimportant, otherwise 908 * use vm_flags_{set|clear} explicitly. 909 */ 910 static inline void vm_flags_mod(struct vm_area_struct *vma, 911 vm_flags_t set, vm_flags_t clear) 912 { 913 vma_start_write(vma); 914 __vm_flags_mod(vma, set, clear); 915 } 916 917 static inline void vma_set_anonymous(struct vm_area_struct *vma) 918 { 919 vma->vm_ops = NULL; 920 } 921 922 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 923 { 924 return !vma->vm_ops; 925 } 926 927 /* 928 * Indicate if the VMA is a heap for the given task; for 929 * /proc/PID/maps that is the heap of the main task. 930 */ 931 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 932 { 933 return vma->vm_start < vma->vm_mm->brk && 934 vma->vm_end > vma->vm_mm->start_brk; 935 } 936 937 /* 938 * Indicate if the VMA is a stack for the given task; for 939 * /proc/PID/maps that is the stack of the main task. 940 */ 941 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 942 { 943 /* 944 * We make no effort to guess what a given thread considers to be 945 * its "stack". It's not even well-defined for programs written 946 * languages like Go. 947 */ 948 return vma->vm_start <= vma->vm_mm->start_stack && 949 vma->vm_end >= vma->vm_mm->start_stack; 950 } 951 952 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 953 { 954 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 955 956 if (!maybe_stack) 957 return false; 958 959 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 960 VM_STACK_INCOMPLETE_SETUP) 961 return true; 962 963 return false; 964 } 965 966 static inline bool vma_is_foreign(struct vm_area_struct *vma) 967 { 968 if (!current->mm) 969 return true; 970 971 if (current->mm != vma->vm_mm) 972 return true; 973 974 return false; 975 } 976 977 static inline bool vma_is_accessible(struct vm_area_struct *vma) 978 { 979 return vma->vm_flags & VM_ACCESS_FLAGS; 980 } 981 982 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 983 { 984 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 985 (VM_SHARED | VM_MAYWRITE); 986 } 987 988 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 989 { 990 return is_shared_maywrite(vma->vm_flags); 991 } 992 993 static inline 994 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 995 { 996 return mas_find(&vmi->mas, max - 1); 997 } 998 999 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1000 { 1001 /* 1002 * Uses mas_find() to get the first VMA when the iterator starts. 1003 * Calling mas_next() could skip the first entry. 1004 */ 1005 return mas_find(&vmi->mas, ULONG_MAX); 1006 } 1007 1008 static inline 1009 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1010 { 1011 return mas_next_range(&vmi->mas, ULONG_MAX); 1012 } 1013 1014 1015 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1016 { 1017 return mas_prev(&vmi->mas, 0); 1018 } 1019 1020 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1021 unsigned long start, unsigned long end, gfp_t gfp) 1022 { 1023 __mas_set_range(&vmi->mas, start, end - 1); 1024 mas_store_gfp(&vmi->mas, NULL, gfp); 1025 if (unlikely(mas_is_err(&vmi->mas))) 1026 return -ENOMEM; 1027 1028 return 0; 1029 } 1030 1031 /* Free any unused preallocations */ 1032 static inline void vma_iter_free(struct vma_iterator *vmi) 1033 { 1034 mas_destroy(&vmi->mas); 1035 } 1036 1037 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1038 struct vm_area_struct *vma) 1039 { 1040 vmi->mas.index = vma->vm_start; 1041 vmi->mas.last = vma->vm_end - 1; 1042 mas_store(&vmi->mas, vma); 1043 if (unlikely(mas_is_err(&vmi->mas))) 1044 return -ENOMEM; 1045 1046 return 0; 1047 } 1048 1049 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1050 { 1051 mas_pause(&vmi->mas); 1052 } 1053 1054 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1055 { 1056 mas_set(&vmi->mas, addr); 1057 } 1058 1059 #define for_each_vma(__vmi, __vma) \ 1060 while (((__vma) = vma_next(&(__vmi))) != NULL) 1061 1062 /* The MM code likes to work with exclusive end addresses */ 1063 #define for_each_vma_range(__vmi, __vma, __end) \ 1064 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1065 1066 #ifdef CONFIG_SHMEM 1067 /* 1068 * The vma_is_shmem is not inline because it is used only by slow 1069 * paths in userfault. 1070 */ 1071 bool vma_is_shmem(struct vm_area_struct *vma); 1072 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1073 #else 1074 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1075 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1076 #endif 1077 1078 int vma_is_stack_for_current(struct vm_area_struct *vma); 1079 1080 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1081 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1082 1083 struct mmu_gather; 1084 struct inode; 1085 1086 /* 1087 * compound_order() can be called without holding a reference, which means 1088 * that niceties like page_folio() don't work. These callers should be 1089 * prepared to handle wild return values. For example, PG_head may be 1090 * set before the order is initialised, or this may be a tail page. 1091 * See compaction.c for some good examples. 1092 */ 1093 static inline unsigned int compound_order(struct page *page) 1094 { 1095 struct folio *folio = (struct folio *)page; 1096 1097 if (!test_bit(PG_head, &folio->flags)) 1098 return 0; 1099 return folio->_flags_1 & 0xff; 1100 } 1101 1102 /** 1103 * folio_order - The allocation order of a folio. 1104 * @folio: The folio. 1105 * 1106 * A folio is composed of 2^order pages. See get_order() for the definition 1107 * of order. 1108 * 1109 * Return: The order of the folio. 1110 */ 1111 static inline unsigned int folio_order(const struct folio *folio) 1112 { 1113 if (!folio_test_large(folio)) 1114 return 0; 1115 return folio->_flags_1 & 0xff; 1116 } 1117 1118 #include <linux/huge_mm.h> 1119 1120 /* 1121 * Methods to modify the page usage count. 1122 * 1123 * What counts for a page usage: 1124 * - cache mapping (page->mapping) 1125 * - private data (page->private) 1126 * - page mapped in a task's page tables, each mapping 1127 * is counted separately 1128 * 1129 * Also, many kernel routines increase the page count before a critical 1130 * routine so they can be sure the page doesn't go away from under them. 1131 */ 1132 1133 /* 1134 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1135 */ 1136 static inline int put_page_testzero(struct page *page) 1137 { 1138 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1139 return page_ref_dec_and_test(page); 1140 } 1141 1142 static inline int folio_put_testzero(struct folio *folio) 1143 { 1144 return put_page_testzero(&folio->page); 1145 } 1146 1147 /* 1148 * Try to grab a ref unless the page has a refcount of zero, return false if 1149 * that is the case. 1150 * This can be called when MMU is off so it must not access 1151 * any of the virtual mappings. 1152 */ 1153 static inline bool get_page_unless_zero(struct page *page) 1154 { 1155 return page_ref_add_unless(page, 1, 0); 1156 } 1157 1158 static inline struct folio *folio_get_nontail_page(struct page *page) 1159 { 1160 if (unlikely(!get_page_unless_zero(page))) 1161 return NULL; 1162 return (struct folio *)page; 1163 } 1164 1165 extern int page_is_ram(unsigned long pfn); 1166 1167 enum { 1168 REGION_INTERSECTS, 1169 REGION_DISJOINT, 1170 REGION_MIXED, 1171 }; 1172 1173 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1174 unsigned long desc); 1175 1176 /* Support for virtually mapped pages */ 1177 struct page *vmalloc_to_page(const void *addr); 1178 unsigned long vmalloc_to_pfn(const void *addr); 1179 1180 /* 1181 * Determine if an address is within the vmalloc range 1182 * 1183 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1184 * is no special casing required. 1185 */ 1186 #ifdef CONFIG_MMU 1187 extern bool is_vmalloc_addr(const void *x); 1188 extern int is_vmalloc_or_module_addr(const void *x); 1189 #else 1190 static inline bool is_vmalloc_addr(const void *x) 1191 { 1192 return false; 1193 } 1194 static inline int is_vmalloc_or_module_addr(const void *x) 1195 { 1196 return 0; 1197 } 1198 #endif 1199 1200 /* 1201 * How many times the entire folio is mapped as a single unit (eg by a 1202 * PMD or PUD entry). This is probably not what you want, except for 1203 * debugging purposes or implementation of other core folio_*() primitives. 1204 */ 1205 static inline int folio_entire_mapcount(const struct folio *folio) 1206 { 1207 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1208 return atomic_read(&folio->_entire_mapcount) + 1; 1209 } 1210 1211 static inline int folio_large_mapcount(const struct folio *folio) 1212 { 1213 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1214 return atomic_read(&folio->_large_mapcount) + 1; 1215 } 1216 1217 /** 1218 * folio_mapcount() - Number of mappings of this folio. 1219 * @folio: The folio. 1220 * 1221 * The folio mapcount corresponds to the number of present user page table 1222 * entries that reference any part of a folio. Each such present user page 1223 * table entry must be paired with exactly on folio reference. 1224 * 1225 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1226 * exactly once. 1227 * 1228 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1229 * references the entire folio counts exactly once, even when such special 1230 * page table entries are comprised of multiple ordinary page table entries. 1231 * 1232 * Will report 0 for pages which cannot be mapped into userspace, such as 1233 * slab, page tables and similar. 1234 * 1235 * Return: The number of times this folio is mapped. 1236 */ 1237 static inline int folio_mapcount(const struct folio *folio) 1238 { 1239 int mapcount; 1240 1241 if (likely(!folio_test_large(folio))) { 1242 mapcount = atomic_read(&folio->_mapcount) + 1; 1243 if (page_mapcount_is_type(mapcount)) 1244 mapcount = 0; 1245 return mapcount; 1246 } 1247 return folio_large_mapcount(folio); 1248 } 1249 1250 /** 1251 * folio_mapped - Is this folio mapped into userspace? 1252 * @folio: The folio. 1253 * 1254 * Return: True if any page in this folio is referenced by user page tables. 1255 */ 1256 static inline bool folio_mapped(const struct folio *folio) 1257 { 1258 return folio_mapcount(folio) >= 1; 1259 } 1260 1261 /* 1262 * Return true if this page is mapped into pagetables. 1263 * For compound page it returns true if any sub-page of compound page is mapped, 1264 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1265 */ 1266 static inline bool page_mapped(const struct page *page) 1267 { 1268 return folio_mapped(page_folio(page)); 1269 } 1270 1271 static inline struct page *virt_to_head_page(const void *x) 1272 { 1273 struct page *page = virt_to_page(x); 1274 1275 return compound_head(page); 1276 } 1277 1278 static inline struct folio *virt_to_folio(const void *x) 1279 { 1280 struct page *page = virt_to_page(x); 1281 1282 return page_folio(page); 1283 } 1284 1285 void __folio_put(struct folio *folio); 1286 1287 void split_page(struct page *page, unsigned int order); 1288 void folio_copy(struct folio *dst, struct folio *src); 1289 int folio_mc_copy(struct folio *dst, struct folio *src); 1290 1291 unsigned long nr_free_buffer_pages(void); 1292 1293 /* Returns the number of bytes in this potentially compound page. */ 1294 static inline unsigned long page_size(struct page *page) 1295 { 1296 return PAGE_SIZE << compound_order(page); 1297 } 1298 1299 /* Returns the number of bits needed for the number of bytes in a page */ 1300 static inline unsigned int page_shift(struct page *page) 1301 { 1302 return PAGE_SHIFT + compound_order(page); 1303 } 1304 1305 /** 1306 * thp_order - Order of a transparent huge page. 1307 * @page: Head page of a transparent huge page. 1308 */ 1309 static inline unsigned int thp_order(struct page *page) 1310 { 1311 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1312 return compound_order(page); 1313 } 1314 1315 /** 1316 * thp_size - Size of a transparent huge page. 1317 * @page: Head page of a transparent huge page. 1318 * 1319 * Return: Number of bytes in this page. 1320 */ 1321 static inline unsigned long thp_size(struct page *page) 1322 { 1323 return PAGE_SIZE << thp_order(page); 1324 } 1325 1326 #ifdef CONFIG_MMU 1327 /* 1328 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1329 * servicing faults for write access. In the normal case, do always want 1330 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1331 * that do not have writing enabled, when used by access_process_vm. 1332 */ 1333 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1334 { 1335 if (likely(vma->vm_flags & VM_WRITE)) 1336 pte = pte_mkwrite(pte, vma); 1337 return pte; 1338 } 1339 1340 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1341 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1342 struct page *page, unsigned int nr, unsigned long addr); 1343 1344 vm_fault_t finish_fault(struct vm_fault *vmf); 1345 #endif 1346 1347 /* 1348 * Multiple processes may "see" the same page. E.g. for untouched 1349 * mappings of /dev/null, all processes see the same page full of 1350 * zeroes, and text pages of executables and shared libraries have 1351 * only one copy in memory, at most, normally. 1352 * 1353 * For the non-reserved pages, page_count(page) denotes a reference count. 1354 * page_count() == 0 means the page is free. page->lru is then used for 1355 * freelist management in the buddy allocator. 1356 * page_count() > 0 means the page has been allocated. 1357 * 1358 * Pages are allocated by the slab allocator in order to provide memory 1359 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1360 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1361 * unless a particular usage is carefully commented. (the responsibility of 1362 * freeing the kmalloc memory is the caller's, of course). 1363 * 1364 * A page may be used by anyone else who does a __get_free_page(). 1365 * In this case, page_count still tracks the references, and should only 1366 * be used through the normal accessor functions. The top bits of page->flags 1367 * and page->virtual store page management information, but all other fields 1368 * are unused and could be used privately, carefully. The management of this 1369 * page is the responsibility of the one who allocated it, and those who have 1370 * subsequently been given references to it. 1371 * 1372 * The other pages (we may call them "pagecache pages") are completely 1373 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1374 * The following discussion applies only to them. 1375 * 1376 * A pagecache page contains an opaque `private' member, which belongs to the 1377 * page's address_space. Usually, this is the address of a circular list of 1378 * the page's disk buffers. PG_private must be set to tell the VM to call 1379 * into the filesystem to release these pages. 1380 * 1381 * A page may belong to an inode's memory mapping. In this case, page->mapping 1382 * is the pointer to the inode, and page->index is the file offset of the page, 1383 * in units of PAGE_SIZE. 1384 * 1385 * If pagecache pages are not associated with an inode, they are said to be 1386 * anonymous pages. These may become associated with the swapcache, and in that 1387 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1388 * 1389 * In either case (swapcache or inode backed), the pagecache itself holds one 1390 * reference to the page. Setting PG_private should also increment the 1391 * refcount. The each user mapping also has a reference to the page. 1392 * 1393 * The pagecache pages are stored in a per-mapping radix tree, which is 1394 * rooted at mapping->i_pages, and indexed by offset. 1395 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1396 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1397 * 1398 * All pagecache pages may be subject to I/O: 1399 * - inode pages may need to be read from disk, 1400 * - inode pages which have been modified and are MAP_SHARED may need 1401 * to be written back to the inode on disk, 1402 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1403 * modified may need to be swapped out to swap space and (later) to be read 1404 * back into memory. 1405 */ 1406 1407 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1408 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1409 1410 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1411 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1412 { 1413 if (!static_branch_unlikely(&devmap_managed_key)) 1414 return false; 1415 if (!folio_is_zone_device(folio)) 1416 return false; 1417 return __put_devmap_managed_folio_refs(folio, refs); 1418 } 1419 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1420 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1421 { 1422 return false; 1423 } 1424 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1425 1426 /* 127: arbitrary random number, small enough to assemble well */ 1427 #define folio_ref_zero_or_close_to_overflow(folio) \ 1428 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1429 1430 /** 1431 * folio_get - Increment the reference count on a folio. 1432 * @folio: The folio. 1433 * 1434 * Context: May be called in any context, as long as you know that 1435 * you have a refcount on the folio. If you do not already have one, 1436 * folio_try_get() may be the right interface for you to use. 1437 */ 1438 static inline void folio_get(struct folio *folio) 1439 { 1440 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1441 folio_ref_inc(folio); 1442 } 1443 1444 static inline void get_page(struct page *page) 1445 { 1446 folio_get(page_folio(page)); 1447 } 1448 1449 static inline __must_check bool try_get_page(struct page *page) 1450 { 1451 page = compound_head(page); 1452 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1453 return false; 1454 page_ref_inc(page); 1455 return true; 1456 } 1457 1458 /** 1459 * folio_put - Decrement the reference count on a folio. 1460 * @folio: The folio. 1461 * 1462 * If the folio's reference count reaches zero, the memory will be 1463 * released back to the page allocator and may be used by another 1464 * allocation immediately. Do not access the memory or the struct folio 1465 * after calling folio_put() unless you can be sure that it wasn't the 1466 * last reference. 1467 * 1468 * Context: May be called in process or interrupt context, but not in NMI 1469 * context. May be called while holding a spinlock. 1470 */ 1471 static inline void folio_put(struct folio *folio) 1472 { 1473 if (folio_put_testzero(folio)) 1474 __folio_put(folio); 1475 } 1476 1477 /** 1478 * folio_put_refs - Reduce the reference count on a folio. 1479 * @folio: The folio. 1480 * @refs: The amount to subtract from the folio's reference count. 1481 * 1482 * If the folio's reference count reaches zero, the memory will be 1483 * released back to the page allocator and may be used by another 1484 * allocation immediately. Do not access the memory or the struct folio 1485 * after calling folio_put_refs() unless you can be sure that these weren't 1486 * the last references. 1487 * 1488 * Context: May be called in process or interrupt context, but not in NMI 1489 * context. May be called while holding a spinlock. 1490 */ 1491 static inline void folio_put_refs(struct folio *folio, int refs) 1492 { 1493 if (folio_ref_sub_and_test(folio, refs)) 1494 __folio_put(folio); 1495 } 1496 1497 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1498 1499 /* 1500 * union release_pages_arg - an array of pages or folios 1501 * 1502 * release_pages() releases a simple array of multiple pages, and 1503 * accepts various different forms of said page array: either 1504 * a regular old boring array of pages, an array of folios, or 1505 * an array of encoded page pointers. 1506 * 1507 * The transparent union syntax for this kind of "any of these 1508 * argument types" is all kinds of ugly, so look away. 1509 */ 1510 typedef union { 1511 struct page **pages; 1512 struct folio **folios; 1513 struct encoded_page **encoded_pages; 1514 } release_pages_arg __attribute__ ((__transparent_union__)); 1515 1516 void release_pages(release_pages_arg, int nr); 1517 1518 /** 1519 * folios_put - Decrement the reference count on an array of folios. 1520 * @folios: The folios. 1521 * 1522 * Like folio_put(), but for a batch of folios. This is more efficient 1523 * than writing the loop yourself as it will optimise the locks which need 1524 * to be taken if the folios are freed. The folios batch is returned 1525 * empty and ready to be reused for another batch; there is no need to 1526 * reinitialise it. 1527 * 1528 * Context: May be called in process or interrupt context, but not in NMI 1529 * context. May be called while holding a spinlock. 1530 */ 1531 static inline void folios_put(struct folio_batch *folios) 1532 { 1533 folios_put_refs(folios, NULL); 1534 } 1535 1536 static inline void put_page(struct page *page) 1537 { 1538 struct folio *folio = page_folio(page); 1539 1540 /* 1541 * For some devmap managed pages we need to catch refcount transition 1542 * from 2 to 1: 1543 */ 1544 if (put_devmap_managed_folio_refs(folio, 1)) 1545 return; 1546 folio_put(folio); 1547 } 1548 1549 /* 1550 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1551 * the page's refcount so that two separate items are tracked: the original page 1552 * reference count, and also a new count of how many pin_user_pages() calls were 1553 * made against the page. ("gup-pinned" is another term for the latter). 1554 * 1555 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1556 * distinct from normal pages. As such, the unpin_user_page() call (and its 1557 * variants) must be used in order to release gup-pinned pages. 1558 * 1559 * Choice of value: 1560 * 1561 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1562 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1563 * simpler, due to the fact that adding an even power of two to the page 1564 * refcount has the effect of using only the upper N bits, for the code that 1565 * counts up using the bias value. This means that the lower bits are left for 1566 * the exclusive use of the original code that increments and decrements by one 1567 * (or at least, by much smaller values than the bias value). 1568 * 1569 * Of course, once the lower bits overflow into the upper bits (and this is 1570 * OK, because subtraction recovers the original values), then visual inspection 1571 * no longer suffices to directly view the separate counts. However, for normal 1572 * applications that don't have huge page reference counts, this won't be an 1573 * issue. 1574 * 1575 * Locking: the lockless algorithm described in folio_try_get_rcu() 1576 * provides safe operation for get_user_pages(), folio_mkclean() and 1577 * other calls that race to set up page table entries. 1578 */ 1579 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1580 1581 void unpin_user_page(struct page *page); 1582 void unpin_folio(struct folio *folio); 1583 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1584 bool make_dirty); 1585 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1586 bool make_dirty); 1587 void unpin_user_pages(struct page **pages, unsigned long npages); 1588 void unpin_user_folio(struct folio *folio, unsigned long npages); 1589 void unpin_folios(struct folio **folios, unsigned long nfolios); 1590 1591 static inline bool is_cow_mapping(vm_flags_t flags) 1592 { 1593 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1594 } 1595 1596 #ifndef CONFIG_MMU 1597 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1598 { 1599 /* 1600 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1601 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1602 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1603 * underlying memory if ptrace is active, so this is only possible if 1604 * ptrace does not apply. Note that there is no mprotect() to upgrade 1605 * write permissions later. 1606 */ 1607 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1608 } 1609 #endif 1610 1611 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1612 #define SECTION_IN_PAGE_FLAGS 1613 #endif 1614 1615 /* 1616 * The identification function is mainly used by the buddy allocator for 1617 * determining if two pages could be buddies. We are not really identifying 1618 * the zone since we could be using the section number id if we do not have 1619 * node id available in page flags. 1620 * We only guarantee that it will return the same value for two combinable 1621 * pages in a zone. 1622 */ 1623 static inline int page_zone_id(struct page *page) 1624 { 1625 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1626 } 1627 1628 #ifdef NODE_NOT_IN_PAGE_FLAGS 1629 int page_to_nid(const struct page *page); 1630 #else 1631 static inline int page_to_nid(const struct page *page) 1632 { 1633 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1634 } 1635 #endif 1636 1637 static inline int folio_nid(const struct folio *folio) 1638 { 1639 return page_to_nid(&folio->page); 1640 } 1641 1642 #ifdef CONFIG_NUMA_BALANCING 1643 /* page access time bits needs to hold at least 4 seconds */ 1644 #define PAGE_ACCESS_TIME_MIN_BITS 12 1645 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1646 #define PAGE_ACCESS_TIME_BUCKETS \ 1647 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1648 #else 1649 #define PAGE_ACCESS_TIME_BUCKETS 0 1650 #endif 1651 1652 #define PAGE_ACCESS_TIME_MASK \ 1653 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1654 1655 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1656 { 1657 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1658 } 1659 1660 static inline int cpupid_to_pid(int cpupid) 1661 { 1662 return cpupid & LAST__PID_MASK; 1663 } 1664 1665 static inline int cpupid_to_cpu(int cpupid) 1666 { 1667 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1668 } 1669 1670 static inline int cpupid_to_nid(int cpupid) 1671 { 1672 return cpu_to_node(cpupid_to_cpu(cpupid)); 1673 } 1674 1675 static inline bool cpupid_pid_unset(int cpupid) 1676 { 1677 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1678 } 1679 1680 static inline bool cpupid_cpu_unset(int cpupid) 1681 { 1682 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1683 } 1684 1685 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1686 { 1687 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1688 } 1689 1690 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1691 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1692 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1693 { 1694 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1695 } 1696 1697 static inline int folio_last_cpupid(struct folio *folio) 1698 { 1699 return folio->_last_cpupid; 1700 } 1701 static inline void page_cpupid_reset_last(struct page *page) 1702 { 1703 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1704 } 1705 #else 1706 static inline int folio_last_cpupid(struct folio *folio) 1707 { 1708 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1709 } 1710 1711 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1712 1713 static inline void page_cpupid_reset_last(struct page *page) 1714 { 1715 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1716 } 1717 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1718 1719 static inline int folio_xchg_access_time(struct folio *folio, int time) 1720 { 1721 int last_time; 1722 1723 last_time = folio_xchg_last_cpupid(folio, 1724 time >> PAGE_ACCESS_TIME_BUCKETS); 1725 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1726 } 1727 1728 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1729 { 1730 unsigned int pid_bit; 1731 1732 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1733 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1734 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1735 } 1736 } 1737 1738 bool folio_use_access_time(struct folio *folio); 1739 #else /* !CONFIG_NUMA_BALANCING */ 1740 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1741 { 1742 return folio_nid(folio); /* XXX */ 1743 } 1744 1745 static inline int folio_xchg_access_time(struct folio *folio, int time) 1746 { 1747 return 0; 1748 } 1749 1750 static inline int folio_last_cpupid(struct folio *folio) 1751 { 1752 return folio_nid(folio); /* XXX */ 1753 } 1754 1755 static inline int cpupid_to_nid(int cpupid) 1756 { 1757 return -1; 1758 } 1759 1760 static inline int cpupid_to_pid(int cpupid) 1761 { 1762 return -1; 1763 } 1764 1765 static inline int cpupid_to_cpu(int cpupid) 1766 { 1767 return -1; 1768 } 1769 1770 static inline int cpu_pid_to_cpupid(int nid, int pid) 1771 { 1772 return -1; 1773 } 1774 1775 static inline bool cpupid_pid_unset(int cpupid) 1776 { 1777 return true; 1778 } 1779 1780 static inline void page_cpupid_reset_last(struct page *page) 1781 { 1782 } 1783 1784 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1785 { 1786 return false; 1787 } 1788 1789 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1790 { 1791 } 1792 static inline bool folio_use_access_time(struct folio *folio) 1793 { 1794 return false; 1795 } 1796 #endif /* CONFIG_NUMA_BALANCING */ 1797 1798 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1799 1800 /* 1801 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1802 * setting tags for all pages to native kernel tag value 0xff, as the default 1803 * value 0x00 maps to 0xff. 1804 */ 1805 1806 static inline u8 page_kasan_tag(const struct page *page) 1807 { 1808 u8 tag = KASAN_TAG_KERNEL; 1809 1810 if (kasan_enabled()) { 1811 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1812 tag ^= 0xff; 1813 } 1814 1815 return tag; 1816 } 1817 1818 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1819 { 1820 unsigned long old_flags, flags; 1821 1822 if (!kasan_enabled()) 1823 return; 1824 1825 tag ^= 0xff; 1826 old_flags = READ_ONCE(page->flags); 1827 do { 1828 flags = old_flags; 1829 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1830 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1831 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1832 } 1833 1834 static inline void page_kasan_tag_reset(struct page *page) 1835 { 1836 if (kasan_enabled()) 1837 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1838 } 1839 1840 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1841 1842 static inline u8 page_kasan_tag(const struct page *page) 1843 { 1844 return 0xff; 1845 } 1846 1847 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1848 static inline void page_kasan_tag_reset(struct page *page) { } 1849 1850 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1851 1852 static inline struct zone *page_zone(const struct page *page) 1853 { 1854 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1855 } 1856 1857 static inline pg_data_t *page_pgdat(const struct page *page) 1858 { 1859 return NODE_DATA(page_to_nid(page)); 1860 } 1861 1862 static inline struct zone *folio_zone(const struct folio *folio) 1863 { 1864 return page_zone(&folio->page); 1865 } 1866 1867 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1868 { 1869 return page_pgdat(&folio->page); 1870 } 1871 1872 #ifdef SECTION_IN_PAGE_FLAGS 1873 static inline void set_page_section(struct page *page, unsigned long section) 1874 { 1875 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1876 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1877 } 1878 1879 static inline unsigned long page_to_section(const struct page *page) 1880 { 1881 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1882 } 1883 #endif 1884 1885 /** 1886 * folio_pfn - Return the Page Frame Number of a folio. 1887 * @folio: The folio. 1888 * 1889 * A folio may contain multiple pages. The pages have consecutive 1890 * Page Frame Numbers. 1891 * 1892 * Return: The Page Frame Number of the first page in the folio. 1893 */ 1894 static inline unsigned long folio_pfn(const struct folio *folio) 1895 { 1896 return page_to_pfn(&folio->page); 1897 } 1898 1899 static inline struct folio *pfn_folio(unsigned long pfn) 1900 { 1901 return page_folio(pfn_to_page(pfn)); 1902 } 1903 1904 /** 1905 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1906 * @folio: The folio. 1907 * 1908 * This function checks if a folio has been pinned via a call to 1909 * a function in the pin_user_pages() family. 1910 * 1911 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1912 * because it means "definitely not pinned for DMA", but true means "probably 1913 * pinned for DMA, but possibly a false positive due to having at least 1914 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1915 * 1916 * False positives are OK, because: a) it's unlikely for a folio to 1917 * get that many refcounts, and b) all the callers of this routine are 1918 * expected to be able to deal gracefully with a false positive. 1919 * 1920 * For large folios, the result will be exactly correct. That's because 1921 * we have more tracking data available: the _pincount field is used 1922 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1923 * 1924 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1925 * 1926 * Return: True, if it is likely that the folio has been "dma-pinned". 1927 * False, if the folio is definitely not dma-pinned. 1928 */ 1929 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1930 { 1931 if (folio_test_large(folio)) 1932 return atomic_read(&folio->_pincount) > 0; 1933 1934 /* 1935 * folio_ref_count() is signed. If that refcount overflows, then 1936 * folio_ref_count() returns a negative value, and callers will avoid 1937 * further incrementing the refcount. 1938 * 1939 * Here, for that overflow case, use the sign bit to count a little 1940 * bit higher via unsigned math, and thus still get an accurate result. 1941 */ 1942 return ((unsigned int)folio_ref_count(folio)) >= 1943 GUP_PIN_COUNTING_BIAS; 1944 } 1945 1946 /* 1947 * This should most likely only be called during fork() to see whether we 1948 * should break the cow immediately for an anon page on the src mm. 1949 * 1950 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1951 */ 1952 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1953 struct folio *folio) 1954 { 1955 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1956 1957 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1958 return false; 1959 1960 return folio_maybe_dma_pinned(folio); 1961 } 1962 1963 /** 1964 * is_zero_page - Query if a page is a zero page 1965 * @page: The page to query 1966 * 1967 * This returns true if @page is one of the permanent zero pages. 1968 */ 1969 static inline bool is_zero_page(const struct page *page) 1970 { 1971 return is_zero_pfn(page_to_pfn(page)); 1972 } 1973 1974 /** 1975 * is_zero_folio - Query if a folio is a zero page 1976 * @folio: The folio to query 1977 * 1978 * This returns true if @folio is one of the permanent zero pages. 1979 */ 1980 static inline bool is_zero_folio(const struct folio *folio) 1981 { 1982 return is_zero_page(&folio->page); 1983 } 1984 1985 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1986 #ifdef CONFIG_MIGRATION 1987 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1988 { 1989 #ifdef CONFIG_CMA 1990 int mt = folio_migratetype(folio); 1991 1992 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1993 return false; 1994 #endif 1995 /* The zero page can be "pinned" but gets special handling. */ 1996 if (is_zero_folio(folio)) 1997 return true; 1998 1999 /* Coherent device memory must always allow eviction. */ 2000 if (folio_is_device_coherent(folio)) 2001 return false; 2002 2003 /* Otherwise, non-movable zone folios can be pinned. */ 2004 return !folio_is_zone_movable(folio); 2005 2006 } 2007 #else 2008 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2009 { 2010 return true; 2011 } 2012 #endif 2013 2014 static inline void set_page_zone(struct page *page, enum zone_type zone) 2015 { 2016 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2017 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2018 } 2019 2020 static inline void set_page_node(struct page *page, unsigned long node) 2021 { 2022 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2023 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2024 } 2025 2026 static inline void set_page_links(struct page *page, enum zone_type zone, 2027 unsigned long node, unsigned long pfn) 2028 { 2029 set_page_zone(page, zone); 2030 set_page_node(page, node); 2031 #ifdef SECTION_IN_PAGE_FLAGS 2032 set_page_section(page, pfn_to_section_nr(pfn)); 2033 #endif 2034 } 2035 2036 /** 2037 * folio_nr_pages - The number of pages in the folio. 2038 * @folio: The folio. 2039 * 2040 * Return: A positive power of two. 2041 */ 2042 static inline long folio_nr_pages(const struct folio *folio) 2043 { 2044 if (!folio_test_large(folio)) 2045 return 1; 2046 #ifdef CONFIG_64BIT 2047 return folio->_folio_nr_pages; 2048 #else 2049 return 1L << (folio->_flags_1 & 0xff); 2050 #endif 2051 } 2052 2053 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2054 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2055 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2056 #else 2057 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2058 #endif 2059 2060 /* 2061 * compound_nr() returns the number of pages in this potentially compound 2062 * page. compound_nr() can be called on a tail page, and is defined to 2063 * return 1 in that case. 2064 */ 2065 static inline unsigned long compound_nr(struct page *page) 2066 { 2067 struct folio *folio = (struct folio *)page; 2068 2069 if (!test_bit(PG_head, &folio->flags)) 2070 return 1; 2071 #ifdef CONFIG_64BIT 2072 return folio->_folio_nr_pages; 2073 #else 2074 return 1L << (folio->_flags_1 & 0xff); 2075 #endif 2076 } 2077 2078 /** 2079 * thp_nr_pages - The number of regular pages in this huge page. 2080 * @page: The head page of a huge page. 2081 */ 2082 static inline int thp_nr_pages(struct page *page) 2083 { 2084 return folio_nr_pages((struct folio *)page); 2085 } 2086 2087 /** 2088 * folio_next - Move to the next physical folio. 2089 * @folio: The folio we're currently operating on. 2090 * 2091 * If you have physically contiguous memory which may span more than 2092 * one folio (eg a &struct bio_vec), use this function to move from one 2093 * folio to the next. Do not use it if the memory is only virtually 2094 * contiguous as the folios are almost certainly not adjacent to each 2095 * other. This is the folio equivalent to writing ``page++``. 2096 * 2097 * Context: We assume that the folios are refcounted and/or locked at a 2098 * higher level and do not adjust the reference counts. 2099 * Return: The next struct folio. 2100 */ 2101 static inline struct folio *folio_next(struct folio *folio) 2102 { 2103 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2104 } 2105 2106 /** 2107 * folio_shift - The size of the memory described by this folio. 2108 * @folio: The folio. 2109 * 2110 * A folio represents a number of bytes which is a power-of-two in size. 2111 * This function tells you which power-of-two the folio is. See also 2112 * folio_size() and folio_order(). 2113 * 2114 * Context: The caller should have a reference on the folio to prevent 2115 * it from being split. It is not necessary for the folio to be locked. 2116 * Return: The base-2 logarithm of the size of this folio. 2117 */ 2118 static inline unsigned int folio_shift(const struct folio *folio) 2119 { 2120 return PAGE_SHIFT + folio_order(folio); 2121 } 2122 2123 /** 2124 * folio_size - The number of bytes in a folio. 2125 * @folio: The folio. 2126 * 2127 * Context: The caller should have a reference on the folio to prevent 2128 * it from being split. It is not necessary for the folio to be locked. 2129 * Return: The number of bytes in this folio. 2130 */ 2131 static inline size_t folio_size(const struct folio *folio) 2132 { 2133 return PAGE_SIZE << folio_order(folio); 2134 } 2135 2136 /** 2137 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2138 * tables of more than one MM 2139 * @folio: The folio. 2140 * 2141 * This function checks if the folio is currently mapped into more than one 2142 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2143 * ("mapped exclusively"). 2144 * 2145 * For KSM folios, this function also returns "mapped shared" when a folio is 2146 * mapped multiple times into the same MM, because the individual page mappings 2147 * are independent. 2148 * 2149 * As precise information is not easily available for all folios, this function 2150 * estimates the number of MMs ("sharers") that are currently mapping a folio 2151 * using the number of times the first page of the folio is currently mapped 2152 * into page tables. 2153 * 2154 * For small anonymous folios and anonymous hugetlb folios, the return 2155 * value will be exactly correct: non-KSM folios can only be mapped at most once 2156 * into an MM, and they cannot be partially mapped. KSM folios are 2157 * considered shared even if mapped multiple times into the same MM. 2158 * 2159 * For other folios, the result can be fuzzy: 2160 * #. For partially-mappable large folios (THP), the return value can wrongly 2161 * indicate "mapped exclusively" (false negative) when the folio is 2162 * only partially mapped into at least one MM. 2163 * #. For pagecache folios (including hugetlb), the return value can wrongly 2164 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2165 * cover the same file range. 2166 * 2167 * Further, this function only considers current page table mappings that 2168 * are tracked using the folio mapcount(s). 2169 * 2170 * This function does not consider: 2171 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2172 * pagecache, temporary unmapping for migration). 2173 * #. If the folio is mapped differently (VM_PFNMAP). 2174 * #. If hugetlb page table sharing applies. Callers might want to check 2175 * hugetlb_pmd_shared(). 2176 * 2177 * Return: Whether the folio is estimated to be mapped into more than one MM. 2178 */ 2179 static inline bool folio_likely_mapped_shared(struct folio *folio) 2180 { 2181 int mapcount = folio_mapcount(folio); 2182 2183 /* Only partially-mappable folios require more care. */ 2184 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2185 return mapcount > 1; 2186 2187 /* A single mapping implies "mapped exclusively". */ 2188 if (mapcount <= 1) 2189 return false; 2190 2191 /* If any page is mapped more than once we treat it "mapped shared". */ 2192 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2193 return true; 2194 2195 /* Let's guess based on the first subpage. */ 2196 return atomic_read(&folio->_mapcount) > 0; 2197 } 2198 2199 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2200 static inline int arch_make_folio_accessible(struct folio *folio) 2201 { 2202 return 0; 2203 } 2204 #endif 2205 2206 /* 2207 * Some inline functions in vmstat.h depend on page_zone() 2208 */ 2209 #include <linux/vmstat.h> 2210 2211 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2212 #define HASHED_PAGE_VIRTUAL 2213 #endif 2214 2215 #if defined(WANT_PAGE_VIRTUAL) 2216 static inline void *page_address(const struct page *page) 2217 { 2218 return page->virtual; 2219 } 2220 static inline void set_page_address(struct page *page, void *address) 2221 { 2222 page->virtual = address; 2223 } 2224 #define page_address_init() do { } while(0) 2225 #endif 2226 2227 #if defined(HASHED_PAGE_VIRTUAL) 2228 void *page_address(const struct page *page); 2229 void set_page_address(struct page *page, void *virtual); 2230 void page_address_init(void); 2231 #endif 2232 2233 static __always_inline void *lowmem_page_address(const struct page *page) 2234 { 2235 return page_to_virt(page); 2236 } 2237 2238 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2239 #define page_address(page) lowmem_page_address(page) 2240 #define set_page_address(page, address) do { } while(0) 2241 #define page_address_init() do { } while(0) 2242 #endif 2243 2244 static inline void *folio_address(const struct folio *folio) 2245 { 2246 return page_address(&folio->page); 2247 } 2248 2249 /* 2250 * Return true only if the page has been allocated with 2251 * ALLOC_NO_WATERMARKS and the low watermark was not 2252 * met implying that the system is under some pressure. 2253 */ 2254 static inline bool page_is_pfmemalloc(const struct page *page) 2255 { 2256 /* 2257 * lru.next has bit 1 set if the page is allocated from the 2258 * pfmemalloc reserves. Callers may simply overwrite it if 2259 * they do not need to preserve that information. 2260 */ 2261 return (uintptr_t)page->lru.next & BIT(1); 2262 } 2263 2264 /* 2265 * Return true only if the folio has been allocated with 2266 * ALLOC_NO_WATERMARKS and the low watermark was not 2267 * met implying that the system is under some pressure. 2268 */ 2269 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2270 { 2271 /* 2272 * lru.next has bit 1 set if the page is allocated from the 2273 * pfmemalloc reserves. Callers may simply overwrite it if 2274 * they do not need to preserve that information. 2275 */ 2276 return (uintptr_t)folio->lru.next & BIT(1); 2277 } 2278 2279 /* 2280 * Only to be called by the page allocator on a freshly allocated 2281 * page. 2282 */ 2283 static inline void set_page_pfmemalloc(struct page *page) 2284 { 2285 page->lru.next = (void *)BIT(1); 2286 } 2287 2288 static inline void clear_page_pfmemalloc(struct page *page) 2289 { 2290 page->lru.next = NULL; 2291 } 2292 2293 /* 2294 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2295 */ 2296 extern void pagefault_out_of_memory(void); 2297 2298 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2299 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2300 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2301 2302 /* 2303 * Parameter block passed down to zap_pte_range in exceptional cases. 2304 */ 2305 struct zap_details { 2306 struct folio *single_folio; /* Locked folio to be unmapped */ 2307 bool even_cows; /* Zap COWed private pages too? */ 2308 bool reclaim_pt; /* Need reclaim page tables? */ 2309 zap_flags_t zap_flags; /* Extra flags for zapping */ 2310 }; 2311 2312 /* 2313 * Whether to drop the pte markers, for example, the uffd-wp information for 2314 * file-backed memory. This should only be specified when we will completely 2315 * drop the page in the mm, either by truncation or unmapping of the vma. By 2316 * default, the flag is not set. 2317 */ 2318 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2319 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2320 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2321 2322 #ifdef CONFIG_SCHED_MM_CID 2323 void sched_mm_cid_before_execve(struct task_struct *t); 2324 void sched_mm_cid_after_execve(struct task_struct *t); 2325 void sched_mm_cid_fork(struct task_struct *t); 2326 void sched_mm_cid_exit_signals(struct task_struct *t); 2327 static inline int task_mm_cid(struct task_struct *t) 2328 { 2329 return t->mm_cid; 2330 } 2331 #else 2332 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2333 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2334 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2335 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2336 static inline int task_mm_cid(struct task_struct *t) 2337 { 2338 /* 2339 * Use the processor id as a fall-back when the mm cid feature is 2340 * disabled. This provides functional per-cpu data structure accesses 2341 * in user-space, althrough it won't provide the memory usage benefits. 2342 */ 2343 return raw_smp_processor_id(); 2344 } 2345 #endif 2346 2347 #ifdef CONFIG_MMU 2348 extern bool can_do_mlock(void); 2349 #else 2350 static inline bool can_do_mlock(void) { return false; } 2351 #endif 2352 extern int user_shm_lock(size_t, struct ucounts *); 2353 extern void user_shm_unlock(size_t, struct ucounts *); 2354 2355 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2356 pte_t pte); 2357 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2358 pte_t pte); 2359 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2360 unsigned long addr, pmd_t pmd); 2361 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2362 pmd_t pmd); 2363 2364 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2365 unsigned long size); 2366 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2367 unsigned long size, struct zap_details *details); 2368 static inline void zap_vma_pages(struct vm_area_struct *vma) 2369 { 2370 zap_page_range_single(vma, vma->vm_start, 2371 vma->vm_end - vma->vm_start, NULL); 2372 } 2373 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2374 struct vm_area_struct *start_vma, unsigned long start, 2375 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2376 2377 struct mmu_notifier_range; 2378 2379 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2380 unsigned long end, unsigned long floor, unsigned long ceiling); 2381 int 2382 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2383 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2384 void *buf, int len, int write); 2385 2386 struct follow_pfnmap_args { 2387 /** 2388 * Inputs: 2389 * @vma: Pointer to @vm_area_struct struct 2390 * @address: the virtual address to walk 2391 */ 2392 struct vm_area_struct *vma; 2393 unsigned long address; 2394 /** 2395 * Internals: 2396 * 2397 * The caller shouldn't touch any of these. 2398 */ 2399 spinlock_t *lock; 2400 pte_t *ptep; 2401 /** 2402 * Outputs: 2403 * 2404 * @pfn: the PFN of the address 2405 * @pgprot: the pgprot_t of the mapping 2406 * @writable: whether the mapping is writable 2407 * @special: whether the mapping is a special mapping (real PFN maps) 2408 */ 2409 unsigned long pfn; 2410 pgprot_t pgprot; 2411 bool writable; 2412 bool special; 2413 }; 2414 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2415 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2416 2417 extern void truncate_pagecache(struct inode *inode, loff_t new); 2418 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2419 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2420 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2421 int generic_error_remove_folio(struct address_space *mapping, 2422 struct folio *folio); 2423 2424 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2425 unsigned long address, struct pt_regs *regs); 2426 2427 #ifdef CONFIG_MMU 2428 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2429 unsigned long address, unsigned int flags, 2430 struct pt_regs *regs); 2431 extern int fixup_user_fault(struct mm_struct *mm, 2432 unsigned long address, unsigned int fault_flags, 2433 bool *unlocked); 2434 void unmap_mapping_pages(struct address_space *mapping, 2435 pgoff_t start, pgoff_t nr, bool even_cows); 2436 void unmap_mapping_range(struct address_space *mapping, 2437 loff_t const holebegin, loff_t const holelen, int even_cows); 2438 #else 2439 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2440 unsigned long address, unsigned int flags, 2441 struct pt_regs *regs) 2442 { 2443 /* should never happen if there's no MMU */ 2444 BUG(); 2445 return VM_FAULT_SIGBUS; 2446 } 2447 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2448 unsigned int fault_flags, bool *unlocked) 2449 { 2450 /* should never happen if there's no MMU */ 2451 BUG(); 2452 return -EFAULT; 2453 } 2454 static inline void unmap_mapping_pages(struct address_space *mapping, 2455 pgoff_t start, pgoff_t nr, bool even_cows) { } 2456 static inline void unmap_mapping_range(struct address_space *mapping, 2457 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2458 #endif 2459 2460 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2461 loff_t const holebegin, loff_t const holelen) 2462 { 2463 unmap_mapping_range(mapping, holebegin, holelen, 0); 2464 } 2465 2466 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2467 unsigned long addr); 2468 2469 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2470 void *buf, int len, unsigned int gup_flags); 2471 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2472 void *buf, int len, unsigned int gup_flags); 2473 2474 long get_user_pages_remote(struct mm_struct *mm, 2475 unsigned long start, unsigned long nr_pages, 2476 unsigned int gup_flags, struct page **pages, 2477 int *locked); 2478 long pin_user_pages_remote(struct mm_struct *mm, 2479 unsigned long start, unsigned long nr_pages, 2480 unsigned int gup_flags, struct page **pages, 2481 int *locked); 2482 2483 /* 2484 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2485 */ 2486 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2487 unsigned long addr, 2488 int gup_flags, 2489 struct vm_area_struct **vmap) 2490 { 2491 struct page *page; 2492 struct vm_area_struct *vma; 2493 int got; 2494 2495 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2496 return ERR_PTR(-EINVAL); 2497 2498 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2499 2500 if (got < 0) 2501 return ERR_PTR(got); 2502 2503 vma = vma_lookup(mm, addr); 2504 if (WARN_ON_ONCE(!vma)) { 2505 put_page(page); 2506 return ERR_PTR(-EINVAL); 2507 } 2508 2509 *vmap = vma; 2510 return page; 2511 } 2512 2513 long get_user_pages(unsigned long start, unsigned long nr_pages, 2514 unsigned int gup_flags, struct page **pages); 2515 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2516 unsigned int gup_flags, struct page **pages); 2517 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2518 struct page **pages, unsigned int gup_flags); 2519 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2520 struct page **pages, unsigned int gup_flags); 2521 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2522 struct folio **folios, unsigned int max_folios, 2523 pgoff_t *offset); 2524 int folio_add_pins(struct folio *folio, unsigned int pins); 2525 2526 int get_user_pages_fast(unsigned long start, int nr_pages, 2527 unsigned int gup_flags, struct page **pages); 2528 int pin_user_pages_fast(unsigned long start, int nr_pages, 2529 unsigned int gup_flags, struct page **pages); 2530 void folio_add_pin(struct folio *folio); 2531 2532 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2533 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2534 struct task_struct *task, bool bypass_rlim); 2535 2536 struct kvec; 2537 struct page *get_dump_page(unsigned long addr); 2538 2539 bool folio_mark_dirty(struct folio *folio); 2540 bool folio_mark_dirty_lock(struct folio *folio); 2541 bool set_page_dirty(struct page *page); 2542 int set_page_dirty_lock(struct page *page); 2543 2544 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2545 2546 /* 2547 * Flags used by change_protection(). For now we make it a bitmap so 2548 * that we can pass in multiple flags just like parameters. However 2549 * for now all the callers are only use one of the flags at the same 2550 * time. 2551 */ 2552 /* 2553 * Whether we should manually check if we can map individual PTEs writable, 2554 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2555 * PTEs automatically in a writable mapping. 2556 */ 2557 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2558 /* Whether this protection change is for NUMA hints */ 2559 #define MM_CP_PROT_NUMA (1UL << 1) 2560 /* Whether this change is for write protecting */ 2561 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2562 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2563 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2564 MM_CP_UFFD_WP_RESOLVE) 2565 2566 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2567 pte_t pte); 2568 extern long change_protection(struct mmu_gather *tlb, 2569 struct vm_area_struct *vma, unsigned long start, 2570 unsigned long end, unsigned long cp_flags); 2571 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2572 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2573 unsigned long start, unsigned long end, unsigned long newflags); 2574 2575 /* 2576 * doesn't attempt to fault and will return short. 2577 */ 2578 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2579 unsigned int gup_flags, struct page **pages); 2580 2581 static inline bool get_user_page_fast_only(unsigned long addr, 2582 unsigned int gup_flags, struct page **pagep) 2583 { 2584 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2585 } 2586 /* 2587 * per-process(per-mm_struct) statistics. 2588 */ 2589 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2590 { 2591 return percpu_counter_read_positive(&mm->rss_stat[member]); 2592 } 2593 2594 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2595 2596 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2597 { 2598 percpu_counter_add(&mm->rss_stat[member], value); 2599 2600 mm_trace_rss_stat(mm, member); 2601 } 2602 2603 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2604 { 2605 percpu_counter_inc(&mm->rss_stat[member]); 2606 2607 mm_trace_rss_stat(mm, member); 2608 } 2609 2610 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2611 { 2612 percpu_counter_dec(&mm->rss_stat[member]); 2613 2614 mm_trace_rss_stat(mm, member); 2615 } 2616 2617 /* Optimized variant when folio is already known not to be anon */ 2618 static inline int mm_counter_file(struct folio *folio) 2619 { 2620 if (folio_test_swapbacked(folio)) 2621 return MM_SHMEMPAGES; 2622 return MM_FILEPAGES; 2623 } 2624 2625 static inline int mm_counter(struct folio *folio) 2626 { 2627 if (folio_test_anon(folio)) 2628 return MM_ANONPAGES; 2629 return mm_counter_file(folio); 2630 } 2631 2632 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2633 { 2634 return get_mm_counter(mm, MM_FILEPAGES) + 2635 get_mm_counter(mm, MM_ANONPAGES) + 2636 get_mm_counter(mm, MM_SHMEMPAGES); 2637 } 2638 2639 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2640 { 2641 return max(mm->hiwater_rss, get_mm_rss(mm)); 2642 } 2643 2644 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2645 { 2646 return max(mm->hiwater_vm, mm->total_vm); 2647 } 2648 2649 static inline void update_hiwater_rss(struct mm_struct *mm) 2650 { 2651 unsigned long _rss = get_mm_rss(mm); 2652 2653 if ((mm)->hiwater_rss < _rss) 2654 (mm)->hiwater_rss = _rss; 2655 } 2656 2657 static inline void update_hiwater_vm(struct mm_struct *mm) 2658 { 2659 if (mm->hiwater_vm < mm->total_vm) 2660 mm->hiwater_vm = mm->total_vm; 2661 } 2662 2663 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2664 { 2665 mm->hiwater_rss = get_mm_rss(mm); 2666 } 2667 2668 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2669 struct mm_struct *mm) 2670 { 2671 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2672 2673 if (*maxrss < hiwater_rss) 2674 *maxrss = hiwater_rss; 2675 } 2676 2677 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2678 static inline int pte_special(pte_t pte) 2679 { 2680 return 0; 2681 } 2682 2683 static inline pte_t pte_mkspecial(pte_t pte) 2684 { 2685 return pte; 2686 } 2687 #endif 2688 2689 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2690 static inline bool pmd_special(pmd_t pmd) 2691 { 2692 return false; 2693 } 2694 2695 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2696 { 2697 return pmd; 2698 } 2699 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2700 2701 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2702 static inline bool pud_special(pud_t pud) 2703 { 2704 return false; 2705 } 2706 2707 static inline pud_t pud_mkspecial(pud_t pud) 2708 { 2709 return pud; 2710 } 2711 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2712 2713 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2714 static inline int pte_devmap(pte_t pte) 2715 { 2716 return 0; 2717 } 2718 #endif 2719 2720 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2721 spinlock_t **ptl); 2722 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2723 spinlock_t **ptl) 2724 { 2725 pte_t *ptep; 2726 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2727 return ptep; 2728 } 2729 2730 #ifdef __PAGETABLE_P4D_FOLDED 2731 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2732 unsigned long address) 2733 { 2734 return 0; 2735 } 2736 #else 2737 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2738 #endif 2739 2740 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2741 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2742 unsigned long address) 2743 { 2744 return 0; 2745 } 2746 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2747 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2748 2749 #else 2750 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2751 2752 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2753 { 2754 if (mm_pud_folded(mm)) 2755 return; 2756 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2757 } 2758 2759 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2760 { 2761 if (mm_pud_folded(mm)) 2762 return; 2763 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2764 } 2765 #endif 2766 2767 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2768 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2769 unsigned long address) 2770 { 2771 return 0; 2772 } 2773 2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2775 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2776 2777 #else 2778 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2779 2780 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2781 { 2782 if (mm_pmd_folded(mm)) 2783 return; 2784 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2785 } 2786 2787 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2788 { 2789 if (mm_pmd_folded(mm)) 2790 return; 2791 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2792 } 2793 #endif 2794 2795 #ifdef CONFIG_MMU 2796 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2797 { 2798 atomic_long_set(&mm->pgtables_bytes, 0); 2799 } 2800 2801 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2802 { 2803 return atomic_long_read(&mm->pgtables_bytes); 2804 } 2805 2806 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2807 { 2808 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2809 } 2810 2811 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2812 { 2813 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2814 } 2815 #else 2816 2817 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2818 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2819 { 2820 return 0; 2821 } 2822 2823 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2824 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2825 #endif 2826 2827 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2828 int __pte_alloc_kernel(pmd_t *pmd); 2829 2830 #if defined(CONFIG_MMU) 2831 2832 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2833 unsigned long address) 2834 { 2835 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2836 NULL : p4d_offset(pgd, address); 2837 } 2838 2839 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2840 unsigned long address) 2841 { 2842 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2843 NULL : pud_offset(p4d, address); 2844 } 2845 2846 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2847 { 2848 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2849 NULL: pmd_offset(pud, address); 2850 } 2851 #endif /* CONFIG_MMU */ 2852 2853 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2854 { 2855 return page_ptdesc(virt_to_page(x)); 2856 } 2857 2858 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2859 { 2860 return page_to_virt(ptdesc_page(pt)); 2861 } 2862 2863 static inline void *ptdesc_address(const struct ptdesc *pt) 2864 { 2865 return folio_address(ptdesc_folio(pt)); 2866 } 2867 2868 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2869 { 2870 return folio_test_reserved(ptdesc_folio(pt)); 2871 } 2872 2873 /** 2874 * pagetable_alloc - Allocate pagetables 2875 * @gfp: GFP flags 2876 * @order: desired pagetable order 2877 * 2878 * pagetable_alloc allocates memory for page tables as well as a page table 2879 * descriptor to describe that memory. 2880 * 2881 * Return: The ptdesc describing the allocated page tables. 2882 */ 2883 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2884 { 2885 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2886 2887 return page_ptdesc(page); 2888 } 2889 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2890 2891 /** 2892 * pagetable_free - Free pagetables 2893 * @pt: The page table descriptor 2894 * 2895 * pagetable_free frees the memory of all page tables described by a page 2896 * table descriptor and the memory for the descriptor itself. 2897 */ 2898 static inline void pagetable_free(struct ptdesc *pt) 2899 { 2900 struct page *page = ptdesc_page(pt); 2901 2902 __free_pages(page, compound_order(page)); 2903 } 2904 2905 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2906 #if ALLOC_SPLIT_PTLOCKS 2907 void __init ptlock_cache_init(void); 2908 bool ptlock_alloc(struct ptdesc *ptdesc); 2909 void ptlock_free(struct ptdesc *ptdesc); 2910 2911 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2912 { 2913 return ptdesc->ptl; 2914 } 2915 #else /* ALLOC_SPLIT_PTLOCKS */ 2916 static inline void ptlock_cache_init(void) 2917 { 2918 } 2919 2920 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2921 { 2922 return true; 2923 } 2924 2925 static inline void ptlock_free(struct ptdesc *ptdesc) 2926 { 2927 } 2928 2929 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2930 { 2931 return &ptdesc->ptl; 2932 } 2933 #endif /* ALLOC_SPLIT_PTLOCKS */ 2934 2935 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2936 { 2937 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2938 } 2939 2940 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2941 { 2942 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2943 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2944 return ptlock_ptr(virt_to_ptdesc(pte)); 2945 } 2946 2947 static inline bool ptlock_init(struct ptdesc *ptdesc) 2948 { 2949 /* 2950 * prep_new_page() initialize page->private (and therefore page->ptl) 2951 * with 0. Make sure nobody took it in use in between. 2952 * 2953 * It can happen if arch try to use slab for page table allocation: 2954 * slab code uses page->slab_cache, which share storage with page->ptl. 2955 */ 2956 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2957 if (!ptlock_alloc(ptdesc)) 2958 return false; 2959 spin_lock_init(ptlock_ptr(ptdesc)); 2960 return true; 2961 } 2962 2963 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2964 /* 2965 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2966 */ 2967 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2968 { 2969 return &mm->page_table_lock; 2970 } 2971 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2972 { 2973 return &mm->page_table_lock; 2974 } 2975 static inline void ptlock_cache_init(void) {} 2976 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2977 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2978 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2979 2980 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 2981 { 2982 struct folio *folio = ptdesc_folio(ptdesc); 2983 2984 __folio_set_pgtable(folio); 2985 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2986 } 2987 2988 static inline void pagetable_dtor(struct ptdesc *ptdesc) 2989 { 2990 struct folio *folio = ptdesc_folio(ptdesc); 2991 2992 ptlock_free(ptdesc); 2993 __folio_clear_pgtable(folio); 2994 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2995 } 2996 2997 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 2998 { 2999 pagetable_dtor(ptdesc); 3000 pagetable_free(ptdesc); 3001 } 3002 3003 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3004 { 3005 if (!ptlock_init(ptdesc)) 3006 return false; 3007 __pagetable_ctor(ptdesc); 3008 return true; 3009 } 3010 3011 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3012 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3013 pmd_t *pmdvalp) 3014 { 3015 pte_t *pte; 3016 3017 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3018 return pte; 3019 } 3020 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3021 { 3022 return __pte_offset_map(pmd, addr, NULL); 3023 } 3024 3025 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3026 unsigned long addr, spinlock_t **ptlp); 3027 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3028 unsigned long addr, spinlock_t **ptlp) 3029 { 3030 pte_t *pte; 3031 3032 __cond_lock(RCU, __cond_lock(*ptlp, 3033 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3034 return pte; 3035 } 3036 3037 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3038 unsigned long addr, spinlock_t **ptlp); 3039 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3040 unsigned long addr, pmd_t *pmdvalp, 3041 spinlock_t **ptlp); 3042 3043 #define pte_unmap_unlock(pte, ptl) do { \ 3044 spin_unlock(ptl); \ 3045 pte_unmap(pte); \ 3046 } while (0) 3047 3048 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3049 3050 #define pte_alloc_map(mm, pmd, address) \ 3051 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3052 3053 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3054 (pte_alloc(mm, pmd) ? \ 3055 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3056 3057 #define pte_alloc_kernel(pmd, address) \ 3058 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3059 NULL: pte_offset_kernel(pmd, address)) 3060 3061 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3062 3063 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3064 { 3065 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3066 return virt_to_page((void *)((unsigned long) pmd & mask)); 3067 } 3068 3069 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3070 { 3071 return page_ptdesc(pmd_pgtable_page(pmd)); 3072 } 3073 3074 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3075 { 3076 return ptlock_ptr(pmd_ptdesc(pmd)); 3077 } 3078 3079 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3080 { 3081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3082 ptdesc->pmd_huge_pte = NULL; 3083 #endif 3084 return ptlock_init(ptdesc); 3085 } 3086 3087 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3088 3089 #else 3090 3091 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3092 { 3093 return &mm->page_table_lock; 3094 } 3095 3096 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3097 3098 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3099 3100 #endif 3101 3102 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3103 { 3104 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3105 spin_lock(ptl); 3106 return ptl; 3107 } 3108 3109 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3110 { 3111 if (!pmd_ptlock_init(ptdesc)) 3112 return false; 3113 ptdesc_pmd_pts_init(ptdesc); 3114 __pagetable_ctor(ptdesc); 3115 return true; 3116 } 3117 3118 /* 3119 * No scalability reason to split PUD locks yet, but follow the same pattern 3120 * as the PMD locks to make it easier if we decide to. The VM should not be 3121 * considered ready to switch to split PUD locks yet; there may be places 3122 * which need to be converted from page_table_lock. 3123 */ 3124 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3125 { 3126 return &mm->page_table_lock; 3127 } 3128 3129 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3130 { 3131 spinlock_t *ptl = pud_lockptr(mm, pud); 3132 3133 spin_lock(ptl); 3134 return ptl; 3135 } 3136 3137 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3138 { 3139 __pagetable_ctor(ptdesc); 3140 } 3141 3142 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3143 { 3144 __pagetable_ctor(ptdesc); 3145 } 3146 3147 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3148 { 3149 __pagetable_ctor(ptdesc); 3150 } 3151 3152 extern void __init pagecache_init(void); 3153 extern void free_initmem(void); 3154 3155 /* 3156 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3157 * into the buddy system. The freed pages will be poisoned with pattern 3158 * "poison" if it's within range [0, UCHAR_MAX]. 3159 * Return pages freed into the buddy system. 3160 */ 3161 extern unsigned long free_reserved_area(void *start, void *end, 3162 int poison, const char *s); 3163 3164 extern void adjust_managed_page_count(struct page *page, long count); 3165 3166 extern void reserve_bootmem_region(phys_addr_t start, 3167 phys_addr_t end, int nid); 3168 3169 /* Free the reserved page into the buddy system, so it gets managed. */ 3170 void free_reserved_page(struct page *page); 3171 #define free_highmem_page(page) free_reserved_page(page) 3172 3173 static inline void mark_page_reserved(struct page *page) 3174 { 3175 SetPageReserved(page); 3176 adjust_managed_page_count(page, -1); 3177 } 3178 3179 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3180 { 3181 free_reserved_page(ptdesc_page(pt)); 3182 } 3183 3184 /* 3185 * Default method to free all the __init memory into the buddy system. 3186 * The freed pages will be poisoned with pattern "poison" if it's within 3187 * range [0, UCHAR_MAX]. 3188 * Return pages freed into the buddy system. 3189 */ 3190 static inline unsigned long free_initmem_default(int poison) 3191 { 3192 extern char __init_begin[], __init_end[]; 3193 3194 return free_reserved_area(&__init_begin, &__init_end, 3195 poison, "unused kernel image (initmem)"); 3196 } 3197 3198 static inline unsigned long get_num_physpages(void) 3199 { 3200 int nid; 3201 unsigned long phys_pages = 0; 3202 3203 for_each_online_node(nid) 3204 phys_pages += node_present_pages(nid); 3205 3206 return phys_pages; 3207 } 3208 3209 /* 3210 * Using memblock node mappings, an architecture may initialise its 3211 * zones, allocate the backing mem_map and account for memory holes in an 3212 * architecture independent manner. 3213 * 3214 * An architecture is expected to register range of page frames backed by 3215 * physical memory with memblock_add[_node]() before calling 3216 * free_area_init() passing in the PFN each zone ends at. At a basic 3217 * usage, an architecture is expected to do something like 3218 * 3219 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3220 * max_highmem_pfn}; 3221 * for_each_valid_physical_page_range() 3222 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3223 * free_area_init(max_zone_pfns); 3224 */ 3225 void free_area_init(unsigned long *max_zone_pfn); 3226 unsigned long node_map_pfn_alignment(void); 3227 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3228 unsigned long end_pfn); 3229 extern void get_pfn_range_for_nid(unsigned int nid, 3230 unsigned long *start_pfn, unsigned long *end_pfn); 3231 3232 #ifndef CONFIG_NUMA 3233 static inline int early_pfn_to_nid(unsigned long pfn) 3234 { 3235 return 0; 3236 } 3237 #else 3238 /* please see mm/page_alloc.c */ 3239 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3240 #endif 3241 3242 extern void mem_init(void); 3243 extern void __init mmap_init(void); 3244 3245 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3246 static inline void show_mem(void) 3247 { 3248 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3249 } 3250 extern long si_mem_available(void); 3251 extern void si_meminfo(struct sysinfo * val); 3252 extern void si_meminfo_node(struct sysinfo *val, int nid); 3253 3254 extern __printf(3, 4) 3255 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3256 3257 extern void setup_per_cpu_pageset(void); 3258 3259 /* nommu.c */ 3260 extern atomic_long_t mmap_pages_allocated; 3261 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3262 3263 /* interval_tree.c */ 3264 void vma_interval_tree_insert(struct vm_area_struct *node, 3265 struct rb_root_cached *root); 3266 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3267 struct vm_area_struct *prev, 3268 struct rb_root_cached *root); 3269 void vma_interval_tree_remove(struct vm_area_struct *node, 3270 struct rb_root_cached *root); 3271 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3272 unsigned long start, unsigned long last); 3273 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3274 unsigned long start, unsigned long last); 3275 3276 #define vma_interval_tree_foreach(vma, root, start, last) \ 3277 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3278 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3279 3280 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3281 struct rb_root_cached *root); 3282 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3283 struct rb_root_cached *root); 3284 struct anon_vma_chain * 3285 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3286 unsigned long start, unsigned long last); 3287 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3288 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3289 #ifdef CONFIG_DEBUG_VM_RB 3290 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3291 #endif 3292 3293 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3294 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3295 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3296 3297 /* mmap.c */ 3298 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3299 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3300 extern void exit_mmap(struct mm_struct *); 3301 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3302 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3303 unsigned long addr, bool write); 3304 3305 static inline int check_data_rlimit(unsigned long rlim, 3306 unsigned long new, 3307 unsigned long start, 3308 unsigned long end_data, 3309 unsigned long start_data) 3310 { 3311 if (rlim < RLIM_INFINITY) { 3312 if (((new - start) + (end_data - start_data)) > rlim) 3313 return -ENOSPC; 3314 } 3315 3316 return 0; 3317 } 3318 3319 extern int mm_take_all_locks(struct mm_struct *mm); 3320 extern void mm_drop_all_locks(struct mm_struct *mm); 3321 3322 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3323 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3324 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3325 extern struct file *get_task_exe_file(struct task_struct *task); 3326 3327 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3328 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3329 3330 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3331 const struct vm_special_mapping *sm); 3332 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3333 unsigned long addr, unsigned long len, 3334 unsigned long flags, 3335 const struct vm_special_mapping *spec); 3336 3337 unsigned long randomize_stack_top(unsigned long stack_top); 3338 unsigned long randomize_page(unsigned long start, unsigned long range); 3339 3340 unsigned long 3341 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3342 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3343 3344 static inline unsigned long 3345 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3346 unsigned long pgoff, unsigned long flags) 3347 { 3348 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3349 } 3350 3351 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3352 unsigned long len, unsigned long prot, unsigned long flags, 3353 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3354 struct list_head *uf); 3355 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3356 unsigned long start, size_t len, struct list_head *uf, 3357 bool unlock); 3358 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3359 struct mm_struct *mm, unsigned long start, 3360 unsigned long end, struct list_head *uf, bool unlock); 3361 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3362 struct list_head *uf); 3363 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3364 3365 #ifdef CONFIG_MMU 3366 extern int __mm_populate(unsigned long addr, unsigned long len, 3367 int ignore_errors); 3368 static inline void mm_populate(unsigned long addr, unsigned long len) 3369 { 3370 /* Ignore errors */ 3371 (void) __mm_populate(addr, len, 1); 3372 } 3373 #else 3374 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3375 #endif 3376 3377 /* This takes the mm semaphore itself */ 3378 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3379 extern int vm_munmap(unsigned long, size_t); 3380 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3381 unsigned long, unsigned long, 3382 unsigned long, unsigned long); 3383 3384 struct vm_unmapped_area_info { 3385 #define VM_UNMAPPED_AREA_TOPDOWN 1 3386 unsigned long flags; 3387 unsigned long length; 3388 unsigned long low_limit; 3389 unsigned long high_limit; 3390 unsigned long align_mask; 3391 unsigned long align_offset; 3392 unsigned long start_gap; 3393 }; 3394 3395 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3396 3397 /* truncate.c */ 3398 extern void truncate_inode_pages(struct address_space *, loff_t); 3399 extern void truncate_inode_pages_range(struct address_space *, 3400 loff_t lstart, loff_t lend); 3401 extern void truncate_inode_pages_final(struct address_space *); 3402 3403 /* generic vm_area_ops exported for stackable file systems */ 3404 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3405 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3406 pgoff_t start_pgoff, pgoff_t end_pgoff); 3407 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3408 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf); 3409 3410 extern unsigned long stack_guard_gap; 3411 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3412 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3413 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3414 3415 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3416 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3417 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3418 struct vm_area_struct **pprev); 3419 3420 /* 3421 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3422 * NULL if none. Assume start_addr < end_addr. 3423 */ 3424 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3425 unsigned long start_addr, unsigned long end_addr); 3426 3427 /** 3428 * vma_lookup() - Find a VMA at a specific address 3429 * @mm: The process address space. 3430 * @addr: The user address. 3431 * 3432 * Return: The vm_area_struct at the given address, %NULL otherwise. 3433 */ 3434 static inline 3435 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3436 { 3437 return mtree_load(&mm->mm_mt, addr); 3438 } 3439 3440 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3441 { 3442 if (vma->vm_flags & VM_GROWSDOWN) 3443 return stack_guard_gap; 3444 3445 /* See reasoning around the VM_SHADOW_STACK definition */ 3446 if (vma->vm_flags & VM_SHADOW_STACK) 3447 return PAGE_SIZE; 3448 3449 return 0; 3450 } 3451 3452 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3453 { 3454 unsigned long gap = stack_guard_start_gap(vma); 3455 unsigned long vm_start = vma->vm_start; 3456 3457 vm_start -= gap; 3458 if (vm_start > vma->vm_start) 3459 vm_start = 0; 3460 return vm_start; 3461 } 3462 3463 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3464 { 3465 unsigned long vm_end = vma->vm_end; 3466 3467 if (vma->vm_flags & VM_GROWSUP) { 3468 vm_end += stack_guard_gap; 3469 if (vm_end < vma->vm_end) 3470 vm_end = -PAGE_SIZE; 3471 } 3472 return vm_end; 3473 } 3474 3475 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3476 { 3477 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3478 } 3479 3480 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3481 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3482 unsigned long vm_start, unsigned long vm_end) 3483 { 3484 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3485 3486 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3487 vma = NULL; 3488 3489 return vma; 3490 } 3491 3492 static inline bool range_in_vma(struct vm_area_struct *vma, 3493 unsigned long start, unsigned long end) 3494 { 3495 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3496 } 3497 3498 #ifdef CONFIG_MMU 3499 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3500 void vma_set_page_prot(struct vm_area_struct *vma); 3501 #else 3502 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3503 { 3504 return __pgprot(0); 3505 } 3506 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3507 { 3508 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3509 } 3510 #endif 3511 3512 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3513 3514 #ifdef CONFIG_NUMA_BALANCING 3515 unsigned long change_prot_numa(struct vm_area_struct *vma, 3516 unsigned long start, unsigned long end); 3517 #endif 3518 3519 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3520 unsigned long addr); 3521 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3522 unsigned long pfn, unsigned long size, pgprot_t); 3523 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3524 unsigned long pfn, unsigned long size, pgprot_t prot); 3525 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3526 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3527 struct page **pages, unsigned long *num); 3528 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3529 unsigned long num); 3530 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3531 unsigned long num); 3532 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3533 unsigned long pfn); 3534 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3535 unsigned long pfn, pgprot_t pgprot); 3536 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3537 pfn_t pfn); 3538 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3539 unsigned long addr, pfn_t pfn); 3540 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3541 3542 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3543 unsigned long addr, struct page *page) 3544 { 3545 int err = vm_insert_page(vma, addr, page); 3546 3547 if (err == -ENOMEM) 3548 return VM_FAULT_OOM; 3549 if (err < 0 && err != -EBUSY) 3550 return VM_FAULT_SIGBUS; 3551 3552 return VM_FAULT_NOPAGE; 3553 } 3554 3555 #ifndef io_remap_pfn_range 3556 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3557 unsigned long addr, unsigned long pfn, 3558 unsigned long size, pgprot_t prot) 3559 { 3560 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3561 } 3562 #endif 3563 3564 static inline vm_fault_t vmf_error(int err) 3565 { 3566 if (err == -ENOMEM) 3567 return VM_FAULT_OOM; 3568 else if (err == -EHWPOISON) 3569 return VM_FAULT_HWPOISON; 3570 return VM_FAULT_SIGBUS; 3571 } 3572 3573 /* 3574 * Convert errno to return value for ->page_mkwrite() calls. 3575 * 3576 * This should eventually be merged with vmf_error() above, but will need a 3577 * careful audit of all vmf_error() callers. 3578 */ 3579 static inline vm_fault_t vmf_fs_error(int err) 3580 { 3581 if (err == 0) 3582 return VM_FAULT_LOCKED; 3583 if (err == -EFAULT || err == -EAGAIN) 3584 return VM_FAULT_NOPAGE; 3585 if (err == -ENOMEM) 3586 return VM_FAULT_OOM; 3587 /* -ENOSPC, -EDQUOT, -EIO ... */ 3588 return VM_FAULT_SIGBUS; 3589 } 3590 3591 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3592 { 3593 if (vm_fault & VM_FAULT_OOM) 3594 return -ENOMEM; 3595 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3596 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3597 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3598 return -EFAULT; 3599 return 0; 3600 } 3601 3602 /* 3603 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3604 * a (NUMA hinting) fault is required. 3605 */ 3606 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3607 unsigned int flags) 3608 { 3609 /* 3610 * If callers don't want to honor NUMA hinting faults, no need to 3611 * determine if we would actually have to trigger a NUMA hinting fault. 3612 */ 3613 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3614 return true; 3615 3616 /* 3617 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3618 * 3619 * Requiring a fault here even for inaccessible VMAs would mean that 3620 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3621 * refuses to process NUMA hinting faults in inaccessible VMAs. 3622 */ 3623 return !vma_is_accessible(vma); 3624 } 3625 3626 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3627 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3628 unsigned long size, pte_fn_t fn, void *data); 3629 extern int apply_to_existing_page_range(struct mm_struct *mm, 3630 unsigned long address, unsigned long size, 3631 pte_fn_t fn, void *data); 3632 3633 #ifdef CONFIG_PAGE_POISONING 3634 extern void __kernel_poison_pages(struct page *page, int numpages); 3635 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3636 extern bool _page_poisoning_enabled_early; 3637 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3638 static inline bool page_poisoning_enabled(void) 3639 { 3640 return _page_poisoning_enabled_early; 3641 } 3642 /* 3643 * For use in fast paths after init_mem_debugging() has run, or when a 3644 * false negative result is not harmful when called too early. 3645 */ 3646 static inline bool page_poisoning_enabled_static(void) 3647 { 3648 return static_branch_unlikely(&_page_poisoning_enabled); 3649 } 3650 static inline void kernel_poison_pages(struct page *page, int numpages) 3651 { 3652 if (page_poisoning_enabled_static()) 3653 __kernel_poison_pages(page, numpages); 3654 } 3655 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3656 { 3657 if (page_poisoning_enabled_static()) 3658 __kernel_unpoison_pages(page, numpages); 3659 } 3660 #else 3661 static inline bool page_poisoning_enabled(void) { return false; } 3662 static inline bool page_poisoning_enabled_static(void) { return false; } 3663 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3664 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3665 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3666 #endif 3667 3668 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3669 static inline bool want_init_on_alloc(gfp_t flags) 3670 { 3671 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3672 &init_on_alloc)) 3673 return true; 3674 return flags & __GFP_ZERO; 3675 } 3676 3677 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3678 static inline bool want_init_on_free(void) 3679 { 3680 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3681 &init_on_free); 3682 } 3683 3684 extern bool _debug_pagealloc_enabled_early; 3685 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3686 3687 static inline bool debug_pagealloc_enabled(void) 3688 { 3689 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3690 _debug_pagealloc_enabled_early; 3691 } 3692 3693 /* 3694 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3695 * or when a false negative result is not harmful when called too early. 3696 */ 3697 static inline bool debug_pagealloc_enabled_static(void) 3698 { 3699 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3700 return false; 3701 3702 return static_branch_unlikely(&_debug_pagealloc_enabled); 3703 } 3704 3705 /* 3706 * To support DEBUG_PAGEALLOC architecture must ensure that 3707 * __kernel_map_pages() never fails 3708 */ 3709 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3710 #ifdef CONFIG_DEBUG_PAGEALLOC 3711 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3712 { 3713 if (debug_pagealloc_enabled_static()) 3714 __kernel_map_pages(page, numpages, 1); 3715 } 3716 3717 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3718 { 3719 if (debug_pagealloc_enabled_static()) 3720 __kernel_map_pages(page, numpages, 0); 3721 } 3722 3723 extern unsigned int _debug_guardpage_minorder; 3724 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3725 3726 static inline unsigned int debug_guardpage_minorder(void) 3727 { 3728 return _debug_guardpage_minorder; 3729 } 3730 3731 static inline bool debug_guardpage_enabled(void) 3732 { 3733 return static_branch_unlikely(&_debug_guardpage_enabled); 3734 } 3735 3736 static inline bool page_is_guard(struct page *page) 3737 { 3738 if (!debug_guardpage_enabled()) 3739 return false; 3740 3741 return PageGuard(page); 3742 } 3743 3744 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3745 static inline bool set_page_guard(struct zone *zone, struct page *page, 3746 unsigned int order) 3747 { 3748 if (!debug_guardpage_enabled()) 3749 return false; 3750 return __set_page_guard(zone, page, order); 3751 } 3752 3753 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3754 static inline void clear_page_guard(struct zone *zone, struct page *page, 3755 unsigned int order) 3756 { 3757 if (!debug_guardpage_enabled()) 3758 return; 3759 __clear_page_guard(zone, page, order); 3760 } 3761 3762 #else /* CONFIG_DEBUG_PAGEALLOC */ 3763 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3764 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3765 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3766 static inline bool debug_guardpage_enabled(void) { return false; } 3767 static inline bool page_is_guard(struct page *page) { return false; } 3768 static inline bool set_page_guard(struct zone *zone, struct page *page, 3769 unsigned int order) { return false; } 3770 static inline void clear_page_guard(struct zone *zone, struct page *page, 3771 unsigned int order) {} 3772 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3773 3774 #ifdef __HAVE_ARCH_GATE_AREA 3775 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3776 extern int in_gate_area_no_mm(unsigned long addr); 3777 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3778 #else 3779 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3780 { 3781 return NULL; 3782 } 3783 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3784 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3785 { 3786 return 0; 3787 } 3788 #endif /* __HAVE_ARCH_GATE_AREA */ 3789 3790 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3791 3792 void drop_slab(void); 3793 3794 #ifndef CONFIG_MMU 3795 #define randomize_va_space 0 3796 #else 3797 extern int randomize_va_space; 3798 #endif 3799 3800 const char * arch_vma_name(struct vm_area_struct *vma); 3801 #ifdef CONFIG_MMU 3802 void print_vma_addr(char *prefix, unsigned long rip); 3803 #else 3804 static inline void print_vma_addr(char *prefix, unsigned long rip) 3805 { 3806 } 3807 #endif 3808 3809 void *sparse_buffer_alloc(unsigned long size); 3810 struct page * __populate_section_memmap(unsigned long pfn, 3811 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3812 struct dev_pagemap *pgmap); 3813 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3814 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3815 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3816 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3817 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3818 struct vmem_altmap *altmap, struct page *reuse); 3819 void *vmemmap_alloc_block(unsigned long size, int node); 3820 struct vmem_altmap; 3821 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3822 struct vmem_altmap *altmap); 3823 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3824 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3825 unsigned long addr, unsigned long next); 3826 int vmemmap_check_pmd(pmd_t *pmd, int node, 3827 unsigned long addr, unsigned long next); 3828 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3829 int node, struct vmem_altmap *altmap); 3830 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3831 int node, struct vmem_altmap *altmap); 3832 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3833 struct vmem_altmap *altmap); 3834 void vmemmap_populate_print_last(void); 3835 #ifdef CONFIG_MEMORY_HOTPLUG 3836 void vmemmap_free(unsigned long start, unsigned long end, 3837 struct vmem_altmap *altmap); 3838 #endif 3839 3840 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3841 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3842 { 3843 /* number of pfns from base where pfn_to_page() is valid */ 3844 if (altmap) 3845 return altmap->reserve + altmap->free; 3846 return 0; 3847 } 3848 3849 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3850 unsigned long nr_pfns) 3851 { 3852 altmap->alloc -= nr_pfns; 3853 } 3854 #else 3855 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3856 { 3857 return 0; 3858 } 3859 3860 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3861 unsigned long nr_pfns) 3862 { 3863 } 3864 #endif 3865 3866 #define VMEMMAP_RESERVE_NR 2 3867 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3868 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3869 struct dev_pagemap *pgmap) 3870 { 3871 unsigned long nr_pages; 3872 unsigned long nr_vmemmap_pages; 3873 3874 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3875 return false; 3876 3877 nr_pages = pgmap_vmemmap_nr(pgmap); 3878 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3879 /* 3880 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3881 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3882 */ 3883 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3884 } 3885 /* 3886 * If we don't have an architecture override, use the generic rule 3887 */ 3888 #ifndef vmemmap_can_optimize 3889 #define vmemmap_can_optimize __vmemmap_can_optimize 3890 #endif 3891 3892 #else 3893 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3894 struct dev_pagemap *pgmap) 3895 { 3896 return false; 3897 } 3898 #endif 3899 3900 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3901 unsigned long nr_pages); 3902 3903 enum mf_flags { 3904 MF_COUNT_INCREASED = 1 << 0, 3905 MF_ACTION_REQUIRED = 1 << 1, 3906 MF_MUST_KILL = 1 << 2, 3907 MF_SOFT_OFFLINE = 1 << 3, 3908 MF_UNPOISON = 1 << 4, 3909 MF_SW_SIMULATED = 1 << 5, 3910 MF_NO_RETRY = 1 << 6, 3911 MF_MEM_PRE_REMOVE = 1 << 7, 3912 }; 3913 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3914 unsigned long count, int mf_flags); 3915 extern int memory_failure(unsigned long pfn, int flags); 3916 extern void memory_failure_queue_kick(int cpu); 3917 extern int unpoison_memory(unsigned long pfn); 3918 extern atomic_long_t num_poisoned_pages __read_mostly; 3919 extern int soft_offline_page(unsigned long pfn, int flags); 3920 #ifdef CONFIG_MEMORY_FAILURE 3921 /* 3922 * Sysfs entries for memory failure handling statistics. 3923 */ 3924 extern const struct attribute_group memory_failure_attr_group; 3925 extern void memory_failure_queue(unsigned long pfn, int flags); 3926 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3927 bool *migratable_cleared); 3928 void num_poisoned_pages_inc(unsigned long pfn); 3929 void num_poisoned_pages_sub(unsigned long pfn, long i); 3930 #else 3931 static inline void memory_failure_queue(unsigned long pfn, int flags) 3932 { 3933 } 3934 3935 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3936 bool *migratable_cleared) 3937 { 3938 return 0; 3939 } 3940 3941 static inline void num_poisoned_pages_inc(unsigned long pfn) 3942 { 3943 } 3944 3945 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3946 { 3947 } 3948 #endif 3949 3950 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3951 extern void memblk_nr_poison_inc(unsigned long pfn); 3952 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3953 #else 3954 static inline void memblk_nr_poison_inc(unsigned long pfn) 3955 { 3956 } 3957 3958 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3959 { 3960 } 3961 #endif 3962 3963 #ifndef arch_memory_failure 3964 static inline int arch_memory_failure(unsigned long pfn, int flags) 3965 { 3966 return -ENXIO; 3967 } 3968 #endif 3969 3970 #ifndef arch_is_platform_page 3971 static inline bool arch_is_platform_page(u64 paddr) 3972 { 3973 return false; 3974 } 3975 #endif 3976 3977 /* 3978 * Error handlers for various types of pages. 3979 */ 3980 enum mf_result { 3981 MF_IGNORED, /* Error: cannot be handled */ 3982 MF_FAILED, /* Error: handling failed */ 3983 MF_DELAYED, /* Will be handled later */ 3984 MF_RECOVERED, /* Successfully recovered */ 3985 }; 3986 3987 enum mf_action_page_type { 3988 MF_MSG_KERNEL, 3989 MF_MSG_KERNEL_HIGH_ORDER, 3990 MF_MSG_DIFFERENT_COMPOUND, 3991 MF_MSG_HUGE, 3992 MF_MSG_FREE_HUGE, 3993 MF_MSG_GET_HWPOISON, 3994 MF_MSG_UNMAP_FAILED, 3995 MF_MSG_DIRTY_SWAPCACHE, 3996 MF_MSG_CLEAN_SWAPCACHE, 3997 MF_MSG_DIRTY_MLOCKED_LRU, 3998 MF_MSG_CLEAN_MLOCKED_LRU, 3999 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4000 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4001 MF_MSG_DIRTY_LRU, 4002 MF_MSG_CLEAN_LRU, 4003 MF_MSG_TRUNCATED_LRU, 4004 MF_MSG_BUDDY, 4005 MF_MSG_DAX, 4006 MF_MSG_UNSPLIT_THP, 4007 MF_MSG_ALREADY_POISONED, 4008 MF_MSG_UNKNOWN, 4009 }; 4010 4011 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4012 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4013 int copy_user_large_folio(struct folio *dst, struct folio *src, 4014 unsigned long addr_hint, 4015 struct vm_area_struct *vma); 4016 long copy_folio_from_user(struct folio *dst_folio, 4017 const void __user *usr_src, 4018 bool allow_pagefault); 4019 4020 /** 4021 * vma_is_special_huge - Are transhuge page-table entries considered special? 4022 * @vma: Pointer to the struct vm_area_struct to consider 4023 * 4024 * Whether transhuge page-table entries are considered "special" following 4025 * the definition in vm_normal_page(). 4026 * 4027 * Return: true if transhuge page-table entries should be considered special, 4028 * false otherwise. 4029 */ 4030 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4031 { 4032 return vma_is_dax(vma) || (vma->vm_file && 4033 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4034 } 4035 4036 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4037 4038 #if MAX_NUMNODES > 1 4039 void __init setup_nr_node_ids(void); 4040 #else 4041 static inline void setup_nr_node_ids(void) {} 4042 #endif 4043 4044 extern int memcmp_pages(struct page *page1, struct page *page2); 4045 4046 static inline int pages_identical(struct page *page1, struct page *page2) 4047 { 4048 return !memcmp_pages(page1, page2); 4049 } 4050 4051 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4052 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4053 pgoff_t first_index, pgoff_t nr, 4054 pgoff_t bitmap_pgoff, 4055 unsigned long *bitmap, 4056 pgoff_t *start, 4057 pgoff_t *end); 4058 4059 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4060 pgoff_t first_index, pgoff_t nr); 4061 #endif 4062 4063 #ifdef CONFIG_ANON_VMA_NAME 4064 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4065 unsigned long len_in, 4066 struct anon_vma_name *anon_name); 4067 #else 4068 static inline int 4069 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4070 unsigned long len_in, struct anon_vma_name *anon_name) { 4071 return 0; 4072 } 4073 #endif 4074 4075 #ifdef CONFIG_UNACCEPTED_MEMORY 4076 4077 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4078 void accept_memory(phys_addr_t start, unsigned long size); 4079 4080 #else 4081 4082 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4083 unsigned long size) 4084 { 4085 return false; 4086 } 4087 4088 static inline void accept_memory(phys_addr_t start, unsigned long size) 4089 { 4090 } 4091 4092 #endif 4093 4094 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4095 { 4096 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4097 } 4098 4099 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4100 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4101 4102 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4103 4104 #ifdef CONFIG_64BIT 4105 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4106 #else 4107 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4108 { 4109 /* noop on 32 bit */ 4110 return 0; 4111 } 4112 #endif 4113 4114 /* 4115 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4116 * be zeroed or not. 4117 */ 4118 static inline bool user_alloc_needs_zeroing(void) 4119 { 4120 /* 4121 * for user folios, arch with cache aliasing requires cache flush and 4122 * arc changes folio->flags to make icache coherent with dcache, so 4123 * always return false to make caller use 4124 * clear_user_page()/clear_user_highpage(). 4125 */ 4126 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4127 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4128 &init_on_alloc); 4129 } 4130 4131 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4132 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4133 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4134 4135 #endif /* _LINUX_MM_H */ 4136