xref: /linux-6.15/include/linux/mm.h (revision ae9ebda1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41 struct folio_batch;
42 
43 void mm_core_init(void);
44 void init_mm_internals(void);
45 
46 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48 
49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 	max_mapnr = limit;
52 }
53 #else
54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56 
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
59 {
60 	return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_inc(void)
64 {
65 	atomic_long_inc(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_dec(void)
69 {
70 	atomic_long_dec(&_totalram_pages);
71 }
72 
73 static inline void totalram_pages_add(long count)
74 {
75 	atomic_long_add(count, &_totalram_pages);
76 }
77 
78 extern void * high_memory;
79 
80 #ifdef CONFIG_SYSCTL
81 extern int sysctl_legacy_va_layout;
82 #else
83 #define sysctl_legacy_va_layout 0
84 #endif
85 
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87 extern const int mmap_rnd_bits_min;
88 extern int mmap_rnd_bits_max __ro_after_init;
89 extern int mmap_rnd_bits __read_mostly;
90 #endif
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92 extern const int mmap_rnd_compat_bits_min;
93 extern const int mmap_rnd_compat_bits_max;
94 extern int mmap_rnd_compat_bits __read_mostly;
95 #endif
96 
97 #ifndef DIRECT_MAP_PHYSMEM_END
98 # ifdef MAX_PHYSMEM_BITS
99 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
100 # else
101 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
102 # endif
103 #endif
104 
105 #include <asm/page.h>
106 #include <asm/processor.h>
107 
108 #ifndef __pa_symbol
109 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
110 #endif
111 
112 #ifndef page_to_virt
113 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
114 #endif
115 
116 #ifndef lm_alias
117 #define lm_alias(x)	__va(__pa_symbol(x))
118 #endif
119 
120 /*
121  * To prevent common memory management code establishing
122  * a zero page mapping on a read fault.
123  * This macro should be defined within <asm/pgtable.h>.
124  * s390 does this to prevent multiplexing of hardware bits
125  * related to the physical page in case of virtualization.
126  */
127 #ifndef mm_forbids_zeropage
128 #define mm_forbids_zeropage(X)	(0)
129 #endif
130 
131 /*
132  * On some architectures it is expensive to call memset() for small sizes.
133  * If an architecture decides to implement their own version of
134  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135  * define their own version of this macro in <asm/pgtable.h>
136  */
137 #if BITS_PER_LONG == 64
138 /* This function must be updated when the size of struct page grows above 96
139  * or reduces below 56. The idea that compiler optimizes out switch()
140  * statement, and only leaves move/store instructions. Also the compiler can
141  * combine write statements if they are both assignments and can be reordered,
142  * this can result in several of the writes here being dropped.
143  */
144 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145 static inline void __mm_zero_struct_page(struct page *page)
146 {
147 	unsigned long *_pp = (void *)page;
148 
149 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
150 	BUILD_BUG_ON(sizeof(struct page) & 7);
151 	BUILD_BUG_ON(sizeof(struct page) < 56);
152 	BUILD_BUG_ON(sizeof(struct page) > 96);
153 
154 	switch (sizeof(struct page)) {
155 	case 96:
156 		_pp[11] = 0;
157 		fallthrough;
158 	case 88:
159 		_pp[10] = 0;
160 		fallthrough;
161 	case 80:
162 		_pp[9] = 0;
163 		fallthrough;
164 	case 72:
165 		_pp[8] = 0;
166 		fallthrough;
167 	case 64:
168 		_pp[7] = 0;
169 		fallthrough;
170 	case 56:
171 		_pp[6] = 0;
172 		_pp[5] = 0;
173 		_pp[4] = 0;
174 		_pp[3] = 0;
175 		_pp[2] = 0;
176 		_pp[1] = 0;
177 		_pp[0] = 0;
178 	}
179 }
180 #else
181 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
182 #endif
183 
184 /*
185  * Default maximum number of active map areas, this limits the number of vmas
186  * per mm struct. Users can overwrite this number by sysctl but there is a
187  * problem.
188  *
189  * When a program's coredump is generated as ELF format, a section is created
190  * per a vma. In ELF, the number of sections is represented in unsigned short.
191  * This means the number of sections should be smaller than 65535 at coredump.
192  * Because the kernel adds some informative sections to a image of program at
193  * generating coredump, we need some margin. The number of extra sections is
194  * 1-3 now and depends on arch. We use "5" as safe margin, here.
195  *
196  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197  * not a hard limit any more. Although some userspace tools can be surprised by
198  * that.
199  */
200 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
201 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202 
203 extern int sysctl_max_map_count;
204 
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
207 
208 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
211 #else
212 #define nth_page(page,n) ((page) + (n))
213 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
214 #endif
215 
216 /* to align the pointer to the (next) page boundary */
217 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
218 
219 /* to align the pointer to the (prev) page boundary */
220 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
221 
222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
223 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
224 
225 static inline struct folio *lru_to_folio(struct list_head *head)
226 {
227 	return list_entry((head)->prev, struct folio, lru);
228 }
229 
230 void setup_initial_init_mm(void *start_code, void *end_code,
231 			   void *end_data, void *brk);
232 
233 /*
234  * Linux kernel virtual memory manager primitives.
235  * The idea being to have a "virtual" mm in the same way
236  * we have a virtual fs - giving a cleaner interface to the
237  * mm details, and allowing different kinds of memory mappings
238  * (from shared memory to executable loading to arbitrary
239  * mmap() functions).
240  */
241 
242 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
243 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
244 void vm_area_free(struct vm_area_struct *);
245 /* Use only if VMA has no other users */
246 void __vm_area_free(struct vm_area_struct *vma);
247 
248 #ifndef CONFIG_MMU
249 extern struct rb_root nommu_region_tree;
250 extern struct rw_semaphore nommu_region_sem;
251 
252 extern unsigned int kobjsize(const void *objp);
253 #endif
254 
255 /*
256  * vm_flags in vm_area_struct, see mm_types.h.
257  * When changing, update also include/trace/events/mmflags.h
258  */
259 #define VM_NONE		0x00000000
260 
261 #define VM_READ		0x00000001	/* currently active flags */
262 #define VM_WRITE	0x00000002
263 #define VM_EXEC		0x00000004
264 #define VM_SHARED	0x00000008
265 
266 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
267 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
268 #define VM_MAYWRITE	0x00000020
269 #define VM_MAYEXEC	0x00000040
270 #define VM_MAYSHARE	0x00000080
271 
272 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
273 #ifdef CONFIG_MMU
274 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
275 #else /* CONFIG_MMU */
276 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
277 #define VM_UFFD_MISSING	0
278 #endif /* CONFIG_MMU */
279 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
280 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
281 
282 #define VM_LOCKED	0x00002000
283 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
284 
285 					/* Used by sys_madvise() */
286 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
287 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
288 
289 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
290 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
291 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
292 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
293 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
294 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
295 #define VM_SYNC		0x00800000	/* Synchronous page faults */
296 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
297 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
298 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
299 
300 #ifdef CONFIG_MEM_SOFT_DIRTY
301 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
302 #else
303 # define VM_SOFTDIRTY	0
304 #endif
305 
306 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
307 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
308 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
309 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
310 
311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
320 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
321 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
322 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
323 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
324 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
325 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327 
328 #ifdef CONFIG_ARCH_HAS_PKEYS
329 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
330 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
331 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
332 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
333 #if CONFIG_ARCH_PKEY_BITS > 3
334 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
335 #else
336 # define VM_PKEY_BIT3  0
337 #endif
338 #if CONFIG_ARCH_PKEY_BITS > 4
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #endif
357 
358 #if defined(CONFIG_ARM64_GCS)
359 /*
360  * arm64's Guarded Control Stack implements similar functionality and
361  * has similar constraints to shadow stacks.
362  */
363 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
364 #endif
365 
366 #ifndef VM_SHADOW_STACK
367 # define VM_SHADOW_STACK	VM_NONE
368 #endif
369 
370 #if defined(CONFIG_X86)
371 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
372 #elif defined(CONFIG_PPC64)
373 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
374 #elif defined(CONFIG_PARISC)
375 # define VM_GROWSUP	VM_ARCH_1
376 #elif defined(CONFIG_SPARC64)
377 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
378 # define VM_ARCH_CLEAR	VM_SPARC_ADI
379 #elif defined(CONFIG_ARM64)
380 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
381 # define VM_ARCH_CLEAR	VM_ARM64_BTI
382 #elif !defined(CONFIG_MMU)
383 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
384 #endif
385 
386 #if defined(CONFIG_ARM64_MTE)
387 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
388 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
389 #else
390 # define VM_MTE		VM_NONE
391 # define VM_MTE_ALLOWED	VM_NONE
392 #endif
393 
394 #ifndef VM_GROWSUP
395 # define VM_GROWSUP	VM_NONE
396 #endif
397 
398 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
399 # define VM_UFFD_MINOR_BIT	38
400 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
401 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
402 # define VM_UFFD_MINOR		VM_NONE
403 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
404 
405 /*
406  * This flag is used to connect VFIO to arch specific KVM code. It
407  * indicates that the memory under this VMA is safe for use with any
408  * non-cachable memory type inside KVM. Some VFIO devices, on some
409  * platforms, are thought to be unsafe and can cause machine crashes
410  * if KVM does not lock down the memory type.
411  */
412 #ifdef CONFIG_64BIT
413 #define VM_ALLOW_ANY_UNCACHED_BIT	39
414 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
415 #else
416 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
417 #endif
418 
419 #ifdef CONFIG_64BIT
420 #define VM_DROPPABLE_BIT	40
421 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
422 #elif defined(CONFIG_PPC32)
423 #define VM_DROPPABLE		VM_ARCH_1
424 #else
425 #define VM_DROPPABLE		VM_NONE
426 #endif
427 
428 #ifdef CONFIG_64BIT
429 /* VM is sealed, in vm_flags */
430 #define VM_SEALED	_BITUL(63)
431 #endif
432 
433 /* Bits set in the VMA until the stack is in its final location */
434 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
435 
436 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
437 
438 /* Common data flag combinations */
439 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
440 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
441 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
442 				 VM_MAYWRITE | VM_MAYEXEC)
443 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
444 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
445 
446 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
447 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
448 #endif
449 
450 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
451 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
452 #endif
453 
454 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
455 
456 #ifdef CONFIG_STACK_GROWSUP
457 #define VM_STACK	VM_GROWSUP
458 #define VM_STACK_EARLY	VM_GROWSDOWN
459 #else
460 #define VM_STACK	VM_GROWSDOWN
461 #define VM_STACK_EARLY	0
462 #endif
463 
464 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
465 
466 /* VMA basic access permission flags */
467 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
468 
469 
470 /*
471  * Special vmas that are non-mergable, non-mlock()able.
472  */
473 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
474 
475 /* This mask prevents VMA from being scanned with khugepaged */
476 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
477 
478 /* This mask defines which mm->def_flags a process can inherit its parent */
479 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
480 
481 /* This mask represents all the VMA flag bits used by mlock */
482 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
483 
484 /* Arch-specific flags to clear when updating VM flags on protection change */
485 #ifndef VM_ARCH_CLEAR
486 # define VM_ARCH_CLEAR	VM_NONE
487 #endif
488 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
489 
490 /*
491  * mapping from the currently active vm_flags protection bits (the
492  * low four bits) to a page protection mask..
493  */
494 
495 /*
496  * The default fault flags that should be used by most of the
497  * arch-specific page fault handlers.
498  */
499 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
500 			     FAULT_FLAG_KILLABLE | \
501 			     FAULT_FLAG_INTERRUPTIBLE)
502 
503 /**
504  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
505  * @flags: Fault flags.
506  *
507  * This is mostly used for places where we want to try to avoid taking
508  * the mmap_lock for too long a time when waiting for another condition
509  * to change, in which case we can try to be polite to release the
510  * mmap_lock in the first round to avoid potential starvation of other
511  * processes that would also want the mmap_lock.
512  *
513  * Return: true if the page fault allows retry and this is the first
514  * attempt of the fault handling; false otherwise.
515  */
516 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
517 {
518 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
519 	    (!(flags & FAULT_FLAG_TRIED));
520 }
521 
522 #define FAULT_FLAG_TRACE \
523 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
524 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
525 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
526 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
527 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
528 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
529 	{ FAULT_FLAG_USER,		"USER" }, \
530 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
531 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
532 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
533 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
534 
535 /*
536  * vm_fault is filled by the pagefault handler and passed to the vma's
537  * ->fault function. The vma's ->fault is responsible for returning a bitmask
538  * of VM_FAULT_xxx flags that give details about how the fault was handled.
539  *
540  * MM layer fills up gfp_mask for page allocations but fault handler might
541  * alter it if its implementation requires a different allocation context.
542  *
543  * pgoff should be used in favour of virtual_address, if possible.
544  */
545 struct vm_fault {
546 	const struct {
547 		struct vm_area_struct *vma;	/* Target VMA */
548 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
549 		pgoff_t pgoff;			/* Logical page offset based on vma */
550 		unsigned long address;		/* Faulting virtual address - masked */
551 		unsigned long real_address;	/* Faulting virtual address - unmasked */
552 	};
553 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
554 					 * XXX: should really be 'const' */
555 	pmd_t *pmd;			/* Pointer to pmd entry matching
556 					 * the 'address' */
557 	pud_t *pud;			/* Pointer to pud entry matching
558 					 * the 'address'
559 					 */
560 	union {
561 		pte_t orig_pte;		/* Value of PTE at the time of fault */
562 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
563 					 * used by PMD fault only.
564 					 */
565 	};
566 
567 	struct page *cow_page;		/* Page handler may use for COW fault */
568 	struct page *page;		/* ->fault handlers should return a
569 					 * page here, unless VM_FAULT_NOPAGE
570 					 * is set (which is also implied by
571 					 * VM_FAULT_ERROR).
572 					 */
573 	/* These three entries are valid only while holding ptl lock */
574 	pte_t *pte;			/* Pointer to pte entry matching
575 					 * the 'address'. NULL if the page
576 					 * table hasn't been allocated.
577 					 */
578 	spinlock_t *ptl;		/* Page table lock.
579 					 * Protects pte page table if 'pte'
580 					 * is not NULL, otherwise pmd.
581 					 */
582 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
583 					 * vm_ops->map_pages() sets up a page
584 					 * table from atomic context.
585 					 * do_fault_around() pre-allocates
586 					 * page table to avoid allocation from
587 					 * atomic context.
588 					 */
589 };
590 
591 /*
592  * These are the virtual MM functions - opening of an area, closing and
593  * unmapping it (needed to keep files on disk up-to-date etc), pointer
594  * to the functions called when a no-page or a wp-page exception occurs.
595  */
596 struct vm_operations_struct {
597 	void (*open)(struct vm_area_struct * area);
598 	/**
599 	 * @close: Called when the VMA is being removed from the MM.
600 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
601 	 */
602 	void (*close)(struct vm_area_struct * area);
603 	/* Called any time before splitting to check if it's allowed */
604 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
605 	int (*mremap)(struct vm_area_struct *area);
606 	/*
607 	 * Called by mprotect() to make driver-specific permission
608 	 * checks before mprotect() is finalised.   The VMA must not
609 	 * be modified.  Returns 0 if mprotect() can proceed.
610 	 */
611 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
612 			unsigned long end, unsigned long newflags);
613 	vm_fault_t (*fault)(struct vm_fault *vmf);
614 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
615 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
616 			pgoff_t start_pgoff, pgoff_t end_pgoff);
617 	unsigned long (*pagesize)(struct vm_area_struct * area);
618 
619 	/* notification that a previously read-only page is about to become
620 	 * writable, if an error is returned it will cause a SIGBUS */
621 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
622 
623 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
624 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
625 
626 	/* called by access_process_vm when get_user_pages() fails, typically
627 	 * for use by special VMAs. See also generic_access_phys() for a generic
628 	 * implementation useful for any iomem mapping.
629 	 */
630 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
631 		      void *buf, int len, int write);
632 
633 	/* Called by the /proc/PID/maps code to ask the vma whether it
634 	 * has a special name.  Returning non-NULL will also cause this
635 	 * vma to be dumped unconditionally. */
636 	const char *(*name)(struct vm_area_struct *vma);
637 
638 #ifdef CONFIG_NUMA
639 	/*
640 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
641 	 * to hold the policy upon return.  Caller should pass NULL @new to
642 	 * remove a policy and fall back to surrounding context--i.e. do not
643 	 * install a MPOL_DEFAULT policy, nor the task or system default
644 	 * mempolicy.
645 	 */
646 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
647 
648 	/*
649 	 * get_policy() op must add reference [mpol_get()] to any policy at
650 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
651 	 * in mm/mempolicy.c will do this automatically.
652 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
653 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
654 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
655 	 * must return NULL--i.e., do not "fallback" to task or system default
656 	 * policy.
657 	 */
658 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
659 					unsigned long addr, pgoff_t *ilx);
660 #endif
661 	/*
662 	 * Called by vm_normal_page() for special PTEs to find the
663 	 * page for @addr.  This is useful if the default behavior
664 	 * (using pte_page()) would not find the correct page.
665 	 */
666 	struct page *(*find_special_page)(struct vm_area_struct *vma,
667 					  unsigned long addr);
668 };
669 
670 #ifdef CONFIG_NUMA_BALANCING
671 static inline void vma_numab_state_init(struct vm_area_struct *vma)
672 {
673 	vma->numab_state = NULL;
674 }
675 static inline void vma_numab_state_free(struct vm_area_struct *vma)
676 {
677 	kfree(vma->numab_state);
678 }
679 #else
680 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
681 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
682 #endif /* CONFIG_NUMA_BALANCING */
683 
684 #ifdef CONFIG_PER_VMA_LOCK
685 /*
686  * Try to read-lock a vma. The function is allowed to occasionally yield false
687  * locked result to avoid performance overhead, in which case we fall back to
688  * using mmap_lock. The function should never yield false unlocked result.
689  */
690 static inline bool vma_start_read(struct vm_area_struct *vma)
691 {
692 	/*
693 	 * Check before locking. A race might cause false locked result.
694 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
695 	 * ACQUIRE semantics, because this is just a lockless check whose result
696 	 * we don't rely on for anything - the mm_lock_seq read against which we
697 	 * need ordering is below.
698 	 */
699 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence))
700 		return false;
701 
702 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
703 		return false;
704 
705 	/*
706 	 * Overflow might produce false locked result.
707 	 * False unlocked result is impossible because we modify and check
708 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
709 	 * modification invalidates all existing locks.
710 	 *
711 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
712 	 * racing with vma_end_write_all(), we only start reading from the VMA
713 	 * after it has been unlocked.
714 	 * This pairs with RELEASE semantics in vma_end_write_all().
715 	 */
716 	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) {
717 		up_read(&vma->vm_lock->lock);
718 		return false;
719 	}
720 	return true;
721 }
722 
723 static inline void vma_end_read(struct vm_area_struct *vma)
724 {
725 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
726 	up_read(&vma->vm_lock->lock);
727 	rcu_read_unlock();
728 }
729 
730 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
731 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
732 {
733 	mmap_assert_write_locked(vma->vm_mm);
734 
735 	/*
736 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
737 	 * mm->mm_lock_seq can't be concurrently modified.
738 	 */
739 	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
740 	return (vma->vm_lock_seq == *mm_lock_seq);
741 }
742 
743 /*
744  * Begin writing to a VMA.
745  * Exclude concurrent readers under the per-VMA lock until the currently
746  * write-locked mmap_lock is dropped or downgraded.
747  */
748 static inline void vma_start_write(struct vm_area_struct *vma)
749 {
750 	unsigned int mm_lock_seq;
751 
752 	if (__is_vma_write_locked(vma, &mm_lock_seq))
753 		return;
754 
755 	down_write(&vma->vm_lock->lock);
756 	/*
757 	 * We should use WRITE_ONCE() here because we can have concurrent reads
758 	 * from the early lockless pessimistic check in vma_start_read().
759 	 * We don't really care about the correctness of that early check, but
760 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
761 	 */
762 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
763 	up_write(&vma->vm_lock->lock);
764 }
765 
766 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
767 {
768 	unsigned int mm_lock_seq;
769 
770 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
771 }
772 
773 static inline void vma_assert_locked(struct vm_area_struct *vma)
774 {
775 	if (!rwsem_is_locked(&vma->vm_lock->lock))
776 		vma_assert_write_locked(vma);
777 }
778 
779 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
780 {
781 	/* When detaching vma should be write-locked */
782 	if (detached)
783 		vma_assert_write_locked(vma);
784 	vma->detached = detached;
785 }
786 
787 static inline void release_fault_lock(struct vm_fault *vmf)
788 {
789 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
790 		vma_end_read(vmf->vma);
791 	else
792 		mmap_read_unlock(vmf->vma->vm_mm);
793 }
794 
795 static inline void assert_fault_locked(struct vm_fault *vmf)
796 {
797 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
798 		vma_assert_locked(vmf->vma);
799 	else
800 		mmap_assert_locked(vmf->vma->vm_mm);
801 }
802 
803 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
804 					  unsigned long address);
805 
806 #else /* CONFIG_PER_VMA_LOCK */
807 
808 static inline bool vma_start_read(struct vm_area_struct *vma)
809 		{ return false; }
810 static inline void vma_end_read(struct vm_area_struct *vma) {}
811 static inline void vma_start_write(struct vm_area_struct *vma) {}
812 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
813 		{ mmap_assert_write_locked(vma->vm_mm); }
814 static inline void vma_mark_detached(struct vm_area_struct *vma,
815 				     bool detached) {}
816 
817 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
818 		unsigned long address)
819 {
820 	return NULL;
821 }
822 
823 static inline void vma_assert_locked(struct vm_area_struct *vma)
824 {
825 	mmap_assert_locked(vma->vm_mm);
826 }
827 
828 static inline void release_fault_lock(struct vm_fault *vmf)
829 {
830 	mmap_read_unlock(vmf->vma->vm_mm);
831 }
832 
833 static inline void assert_fault_locked(struct vm_fault *vmf)
834 {
835 	mmap_assert_locked(vmf->vma->vm_mm);
836 }
837 
838 #endif /* CONFIG_PER_VMA_LOCK */
839 
840 extern const struct vm_operations_struct vma_dummy_vm_ops;
841 
842 /*
843  * WARNING: vma_init does not initialize vma->vm_lock.
844  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
845  */
846 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
847 {
848 	memset(vma, 0, sizeof(*vma));
849 	vma->vm_mm = mm;
850 	vma->vm_ops = &vma_dummy_vm_ops;
851 	INIT_LIST_HEAD(&vma->anon_vma_chain);
852 	vma_mark_detached(vma, false);
853 	vma_numab_state_init(vma);
854 }
855 
856 /* Use when VMA is not part of the VMA tree and needs no locking */
857 static inline void vm_flags_init(struct vm_area_struct *vma,
858 				 vm_flags_t flags)
859 {
860 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
861 }
862 
863 /*
864  * Use when VMA is part of the VMA tree and modifications need coordination
865  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
866  * it should be locked explicitly beforehand.
867  */
868 static inline void vm_flags_reset(struct vm_area_struct *vma,
869 				  vm_flags_t flags)
870 {
871 	vma_assert_write_locked(vma);
872 	vm_flags_init(vma, flags);
873 }
874 
875 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
876 				       vm_flags_t flags)
877 {
878 	vma_assert_write_locked(vma);
879 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
880 }
881 
882 static inline void vm_flags_set(struct vm_area_struct *vma,
883 				vm_flags_t flags)
884 {
885 	vma_start_write(vma);
886 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
887 }
888 
889 static inline void vm_flags_clear(struct vm_area_struct *vma,
890 				  vm_flags_t flags)
891 {
892 	vma_start_write(vma);
893 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
894 }
895 
896 /*
897  * Use only if VMA is not part of the VMA tree or has no other users and
898  * therefore needs no locking.
899  */
900 static inline void __vm_flags_mod(struct vm_area_struct *vma,
901 				  vm_flags_t set, vm_flags_t clear)
902 {
903 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
904 }
905 
906 /*
907  * Use only when the order of set/clear operations is unimportant, otherwise
908  * use vm_flags_{set|clear} explicitly.
909  */
910 static inline void vm_flags_mod(struct vm_area_struct *vma,
911 				vm_flags_t set, vm_flags_t clear)
912 {
913 	vma_start_write(vma);
914 	__vm_flags_mod(vma, set, clear);
915 }
916 
917 static inline void vma_set_anonymous(struct vm_area_struct *vma)
918 {
919 	vma->vm_ops = NULL;
920 }
921 
922 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
923 {
924 	return !vma->vm_ops;
925 }
926 
927 /*
928  * Indicate if the VMA is a heap for the given task; for
929  * /proc/PID/maps that is the heap of the main task.
930  */
931 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
932 {
933 	return vma->vm_start < vma->vm_mm->brk &&
934 		vma->vm_end > vma->vm_mm->start_brk;
935 }
936 
937 /*
938  * Indicate if the VMA is a stack for the given task; for
939  * /proc/PID/maps that is the stack of the main task.
940  */
941 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
942 {
943 	/*
944 	 * We make no effort to guess what a given thread considers to be
945 	 * its "stack".  It's not even well-defined for programs written
946 	 * languages like Go.
947 	 */
948 	return vma->vm_start <= vma->vm_mm->start_stack &&
949 		vma->vm_end >= vma->vm_mm->start_stack;
950 }
951 
952 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
953 {
954 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
955 
956 	if (!maybe_stack)
957 		return false;
958 
959 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
960 						VM_STACK_INCOMPLETE_SETUP)
961 		return true;
962 
963 	return false;
964 }
965 
966 static inline bool vma_is_foreign(struct vm_area_struct *vma)
967 {
968 	if (!current->mm)
969 		return true;
970 
971 	if (current->mm != vma->vm_mm)
972 		return true;
973 
974 	return false;
975 }
976 
977 static inline bool vma_is_accessible(struct vm_area_struct *vma)
978 {
979 	return vma->vm_flags & VM_ACCESS_FLAGS;
980 }
981 
982 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
983 {
984 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
985 		(VM_SHARED | VM_MAYWRITE);
986 }
987 
988 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
989 {
990 	return is_shared_maywrite(vma->vm_flags);
991 }
992 
993 static inline
994 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
995 {
996 	return mas_find(&vmi->mas, max - 1);
997 }
998 
999 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1000 {
1001 	/*
1002 	 * Uses mas_find() to get the first VMA when the iterator starts.
1003 	 * Calling mas_next() could skip the first entry.
1004 	 */
1005 	return mas_find(&vmi->mas, ULONG_MAX);
1006 }
1007 
1008 static inline
1009 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1010 {
1011 	return mas_next_range(&vmi->mas, ULONG_MAX);
1012 }
1013 
1014 
1015 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1016 {
1017 	return mas_prev(&vmi->mas, 0);
1018 }
1019 
1020 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1021 			unsigned long start, unsigned long end, gfp_t gfp)
1022 {
1023 	__mas_set_range(&vmi->mas, start, end - 1);
1024 	mas_store_gfp(&vmi->mas, NULL, gfp);
1025 	if (unlikely(mas_is_err(&vmi->mas)))
1026 		return -ENOMEM;
1027 
1028 	return 0;
1029 }
1030 
1031 /* Free any unused preallocations */
1032 static inline void vma_iter_free(struct vma_iterator *vmi)
1033 {
1034 	mas_destroy(&vmi->mas);
1035 }
1036 
1037 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1038 				      struct vm_area_struct *vma)
1039 {
1040 	vmi->mas.index = vma->vm_start;
1041 	vmi->mas.last = vma->vm_end - 1;
1042 	mas_store(&vmi->mas, vma);
1043 	if (unlikely(mas_is_err(&vmi->mas)))
1044 		return -ENOMEM;
1045 
1046 	return 0;
1047 }
1048 
1049 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1050 {
1051 	mas_pause(&vmi->mas);
1052 }
1053 
1054 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1055 {
1056 	mas_set(&vmi->mas, addr);
1057 }
1058 
1059 #define for_each_vma(__vmi, __vma)					\
1060 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1061 
1062 /* The MM code likes to work with exclusive end addresses */
1063 #define for_each_vma_range(__vmi, __vma, __end)				\
1064 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1065 
1066 #ifdef CONFIG_SHMEM
1067 /*
1068  * The vma_is_shmem is not inline because it is used only by slow
1069  * paths in userfault.
1070  */
1071 bool vma_is_shmem(struct vm_area_struct *vma);
1072 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1073 #else
1074 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1075 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1076 #endif
1077 
1078 int vma_is_stack_for_current(struct vm_area_struct *vma);
1079 
1080 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1081 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1082 
1083 struct mmu_gather;
1084 struct inode;
1085 
1086 /*
1087  * compound_order() can be called without holding a reference, which means
1088  * that niceties like page_folio() don't work.  These callers should be
1089  * prepared to handle wild return values.  For example, PG_head may be
1090  * set before the order is initialised, or this may be a tail page.
1091  * See compaction.c for some good examples.
1092  */
1093 static inline unsigned int compound_order(struct page *page)
1094 {
1095 	struct folio *folio = (struct folio *)page;
1096 
1097 	if (!test_bit(PG_head, &folio->flags))
1098 		return 0;
1099 	return folio->_flags_1 & 0xff;
1100 }
1101 
1102 /**
1103  * folio_order - The allocation order of a folio.
1104  * @folio: The folio.
1105  *
1106  * A folio is composed of 2^order pages.  See get_order() for the definition
1107  * of order.
1108  *
1109  * Return: The order of the folio.
1110  */
1111 static inline unsigned int folio_order(const struct folio *folio)
1112 {
1113 	if (!folio_test_large(folio))
1114 		return 0;
1115 	return folio->_flags_1 & 0xff;
1116 }
1117 
1118 #include <linux/huge_mm.h>
1119 
1120 /*
1121  * Methods to modify the page usage count.
1122  *
1123  * What counts for a page usage:
1124  * - cache mapping   (page->mapping)
1125  * - private data    (page->private)
1126  * - page mapped in a task's page tables, each mapping
1127  *   is counted separately
1128  *
1129  * Also, many kernel routines increase the page count before a critical
1130  * routine so they can be sure the page doesn't go away from under them.
1131  */
1132 
1133 /*
1134  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1135  */
1136 static inline int put_page_testzero(struct page *page)
1137 {
1138 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1139 	return page_ref_dec_and_test(page);
1140 }
1141 
1142 static inline int folio_put_testzero(struct folio *folio)
1143 {
1144 	return put_page_testzero(&folio->page);
1145 }
1146 
1147 /*
1148  * Try to grab a ref unless the page has a refcount of zero, return false if
1149  * that is the case.
1150  * This can be called when MMU is off so it must not access
1151  * any of the virtual mappings.
1152  */
1153 static inline bool get_page_unless_zero(struct page *page)
1154 {
1155 	return page_ref_add_unless(page, 1, 0);
1156 }
1157 
1158 static inline struct folio *folio_get_nontail_page(struct page *page)
1159 {
1160 	if (unlikely(!get_page_unless_zero(page)))
1161 		return NULL;
1162 	return (struct folio *)page;
1163 }
1164 
1165 extern int page_is_ram(unsigned long pfn);
1166 
1167 enum {
1168 	REGION_INTERSECTS,
1169 	REGION_DISJOINT,
1170 	REGION_MIXED,
1171 };
1172 
1173 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1174 		      unsigned long desc);
1175 
1176 /* Support for virtually mapped pages */
1177 struct page *vmalloc_to_page(const void *addr);
1178 unsigned long vmalloc_to_pfn(const void *addr);
1179 
1180 /*
1181  * Determine if an address is within the vmalloc range
1182  *
1183  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1184  * is no special casing required.
1185  */
1186 #ifdef CONFIG_MMU
1187 extern bool is_vmalloc_addr(const void *x);
1188 extern int is_vmalloc_or_module_addr(const void *x);
1189 #else
1190 static inline bool is_vmalloc_addr(const void *x)
1191 {
1192 	return false;
1193 }
1194 static inline int is_vmalloc_or_module_addr(const void *x)
1195 {
1196 	return 0;
1197 }
1198 #endif
1199 
1200 /*
1201  * How many times the entire folio is mapped as a single unit (eg by a
1202  * PMD or PUD entry).  This is probably not what you want, except for
1203  * debugging purposes or implementation of other core folio_*() primitives.
1204  */
1205 static inline int folio_entire_mapcount(const struct folio *folio)
1206 {
1207 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1208 	return atomic_read(&folio->_entire_mapcount) + 1;
1209 }
1210 
1211 static inline int folio_large_mapcount(const struct folio *folio)
1212 {
1213 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1214 	return atomic_read(&folio->_large_mapcount) + 1;
1215 }
1216 
1217 /**
1218  * folio_mapcount() - Number of mappings of this folio.
1219  * @folio: The folio.
1220  *
1221  * The folio mapcount corresponds to the number of present user page table
1222  * entries that reference any part of a folio. Each such present user page
1223  * table entry must be paired with exactly on folio reference.
1224  *
1225  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1226  * exactly once.
1227  *
1228  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1229  * references the entire folio counts exactly once, even when such special
1230  * page table entries are comprised of multiple ordinary page table entries.
1231  *
1232  * Will report 0 for pages which cannot be mapped into userspace, such as
1233  * slab, page tables and similar.
1234  *
1235  * Return: The number of times this folio is mapped.
1236  */
1237 static inline int folio_mapcount(const struct folio *folio)
1238 {
1239 	int mapcount;
1240 
1241 	if (likely(!folio_test_large(folio))) {
1242 		mapcount = atomic_read(&folio->_mapcount) + 1;
1243 		if (page_mapcount_is_type(mapcount))
1244 			mapcount = 0;
1245 		return mapcount;
1246 	}
1247 	return folio_large_mapcount(folio);
1248 }
1249 
1250 /**
1251  * folio_mapped - Is this folio mapped into userspace?
1252  * @folio: The folio.
1253  *
1254  * Return: True if any page in this folio is referenced by user page tables.
1255  */
1256 static inline bool folio_mapped(const struct folio *folio)
1257 {
1258 	return folio_mapcount(folio) >= 1;
1259 }
1260 
1261 /*
1262  * Return true if this page is mapped into pagetables.
1263  * For compound page it returns true if any sub-page of compound page is mapped,
1264  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1265  */
1266 static inline bool page_mapped(const struct page *page)
1267 {
1268 	return folio_mapped(page_folio(page));
1269 }
1270 
1271 static inline struct page *virt_to_head_page(const void *x)
1272 {
1273 	struct page *page = virt_to_page(x);
1274 
1275 	return compound_head(page);
1276 }
1277 
1278 static inline struct folio *virt_to_folio(const void *x)
1279 {
1280 	struct page *page = virt_to_page(x);
1281 
1282 	return page_folio(page);
1283 }
1284 
1285 void __folio_put(struct folio *folio);
1286 
1287 void split_page(struct page *page, unsigned int order);
1288 void folio_copy(struct folio *dst, struct folio *src);
1289 int folio_mc_copy(struct folio *dst, struct folio *src);
1290 
1291 unsigned long nr_free_buffer_pages(void);
1292 
1293 /* Returns the number of bytes in this potentially compound page. */
1294 static inline unsigned long page_size(struct page *page)
1295 {
1296 	return PAGE_SIZE << compound_order(page);
1297 }
1298 
1299 /* Returns the number of bits needed for the number of bytes in a page */
1300 static inline unsigned int page_shift(struct page *page)
1301 {
1302 	return PAGE_SHIFT + compound_order(page);
1303 }
1304 
1305 /**
1306  * thp_order - Order of a transparent huge page.
1307  * @page: Head page of a transparent huge page.
1308  */
1309 static inline unsigned int thp_order(struct page *page)
1310 {
1311 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1312 	return compound_order(page);
1313 }
1314 
1315 /**
1316  * thp_size - Size of a transparent huge page.
1317  * @page: Head page of a transparent huge page.
1318  *
1319  * Return: Number of bytes in this page.
1320  */
1321 static inline unsigned long thp_size(struct page *page)
1322 {
1323 	return PAGE_SIZE << thp_order(page);
1324 }
1325 
1326 #ifdef CONFIG_MMU
1327 /*
1328  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1329  * servicing faults for write access.  In the normal case, do always want
1330  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1331  * that do not have writing enabled, when used by access_process_vm.
1332  */
1333 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1334 {
1335 	if (likely(vma->vm_flags & VM_WRITE))
1336 		pte = pte_mkwrite(pte, vma);
1337 	return pte;
1338 }
1339 
1340 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1341 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1342 		struct page *page, unsigned int nr, unsigned long addr);
1343 
1344 vm_fault_t finish_fault(struct vm_fault *vmf);
1345 #endif
1346 
1347 /*
1348  * Multiple processes may "see" the same page. E.g. for untouched
1349  * mappings of /dev/null, all processes see the same page full of
1350  * zeroes, and text pages of executables and shared libraries have
1351  * only one copy in memory, at most, normally.
1352  *
1353  * For the non-reserved pages, page_count(page) denotes a reference count.
1354  *   page_count() == 0 means the page is free. page->lru is then used for
1355  *   freelist management in the buddy allocator.
1356  *   page_count() > 0  means the page has been allocated.
1357  *
1358  * Pages are allocated by the slab allocator in order to provide memory
1359  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1360  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1361  * unless a particular usage is carefully commented. (the responsibility of
1362  * freeing the kmalloc memory is the caller's, of course).
1363  *
1364  * A page may be used by anyone else who does a __get_free_page().
1365  * In this case, page_count still tracks the references, and should only
1366  * be used through the normal accessor functions. The top bits of page->flags
1367  * and page->virtual store page management information, but all other fields
1368  * are unused and could be used privately, carefully. The management of this
1369  * page is the responsibility of the one who allocated it, and those who have
1370  * subsequently been given references to it.
1371  *
1372  * The other pages (we may call them "pagecache pages") are completely
1373  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1374  * The following discussion applies only to them.
1375  *
1376  * A pagecache page contains an opaque `private' member, which belongs to the
1377  * page's address_space. Usually, this is the address of a circular list of
1378  * the page's disk buffers. PG_private must be set to tell the VM to call
1379  * into the filesystem to release these pages.
1380  *
1381  * A page may belong to an inode's memory mapping. In this case, page->mapping
1382  * is the pointer to the inode, and page->index is the file offset of the page,
1383  * in units of PAGE_SIZE.
1384  *
1385  * If pagecache pages are not associated with an inode, they are said to be
1386  * anonymous pages. These may become associated with the swapcache, and in that
1387  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1388  *
1389  * In either case (swapcache or inode backed), the pagecache itself holds one
1390  * reference to the page. Setting PG_private should also increment the
1391  * refcount. The each user mapping also has a reference to the page.
1392  *
1393  * The pagecache pages are stored in a per-mapping radix tree, which is
1394  * rooted at mapping->i_pages, and indexed by offset.
1395  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1396  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1397  *
1398  * All pagecache pages may be subject to I/O:
1399  * - inode pages may need to be read from disk,
1400  * - inode pages which have been modified and are MAP_SHARED may need
1401  *   to be written back to the inode on disk,
1402  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1403  *   modified may need to be swapped out to swap space and (later) to be read
1404  *   back into memory.
1405  */
1406 
1407 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1408 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1409 
1410 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1411 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1412 {
1413 	if (!static_branch_unlikely(&devmap_managed_key))
1414 		return false;
1415 	if (!folio_is_zone_device(folio))
1416 		return false;
1417 	return __put_devmap_managed_folio_refs(folio, refs);
1418 }
1419 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1420 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1421 {
1422 	return false;
1423 }
1424 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1425 
1426 /* 127: arbitrary random number, small enough to assemble well */
1427 #define folio_ref_zero_or_close_to_overflow(folio) \
1428 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1429 
1430 /**
1431  * folio_get - Increment the reference count on a folio.
1432  * @folio: The folio.
1433  *
1434  * Context: May be called in any context, as long as you know that
1435  * you have a refcount on the folio.  If you do not already have one,
1436  * folio_try_get() may be the right interface for you to use.
1437  */
1438 static inline void folio_get(struct folio *folio)
1439 {
1440 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1441 	folio_ref_inc(folio);
1442 }
1443 
1444 static inline void get_page(struct page *page)
1445 {
1446 	folio_get(page_folio(page));
1447 }
1448 
1449 static inline __must_check bool try_get_page(struct page *page)
1450 {
1451 	page = compound_head(page);
1452 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1453 		return false;
1454 	page_ref_inc(page);
1455 	return true;
1456 }
1457 
1458 /**
1459  * folio_put - Decrement the reference count on a folio.
1460  * @folio: The folio.
1461  *
1462  * If the folio's reference count reaches zero, the memory will be
1463  * released back to the page allocator and may be used by another
1464  * allocation immediately.  Do not access the memory or the struct folio
1465  * after calling folio_put() unless you can be sure that it wasn't the
1466  * last reference.
1467  *
1468  * Context: May be called in process or interrupt context, but not in NMI
1469  * context.  May be called while holding a spinlock.
1470  */
1471 static inline void folio_put(struct folio *folio)
1472 {
1473 	if (folio_put_testzero(folio))
1474 		__folio_put(folio);
1475 }
1476 
1477 /**
1478  * folio_put_refs - Reduce the reference count on a folio.
1479  * @folio: The folio.
1480  * @refs: The amount to subtract from the folio's reference count.
1481  *
1482  * If the folio's reference count reaches zero, the memory will be
1483  * released back to the page allocator and may be used by another
1484  * allocation immediately.  Do not access the memory or the struct folio
1485  * after calling folio_put_refs() unless you can be sure that these weren't
1486  * the last references.
1487  *
1488  * Context: May be called in process or interrupt context, but not in NMI
1489  * context.  May be called while holding a spinlock.
1490  */
1491 static inline void folio_put_refs(struct folio *folio, int refs)
1492 {
1493 	if (folio_ref_sub_and_test(folio, refs))
1494 		__folio_put(folio);
1495 }
1496 
1497 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1498 
1499 /*
1500  * union release_pages_arg - an array of pages or folios
1501  *
1502  * release_pages() releases a simple array of multiple pages, and
1503  * accepts various different forms of said page array: either
1504  * a regular old boring array of pages, an array of folios, or
1505  * an array of encoded page pointers.
1506  *
1507  * The transparent union syntax for this kind of "any of these
1508  * argument types" is all kinds of ugly, so look away.
1509  */
1510 typedef union {
1511 	struct page **pages;
1512 	struct folio **folios;
1513 	struct encoded_page **encoded_pages;
1514 } release_pages_arg __attribute__ ((__transparent_union__));
1515 
1516 void release_pages(release_pages_arg, int nr);
1517 
1518 /**
1519  * folios_put - Decrement the reference count on an array of folios.
1520  * @folios: The folios.
1521  *
1522  * Like folio_put(), but for a batch of folios.  This is more efficient
1523  * than writing the loop yourself as it will optimise the locks which need
1524  * to be taken if the folios are freed.  The folios batch is returned
1525  * empty and ready to be reused for another batch; there is no need to
1526  * reinitialise it.
1527  *
1528  * Context: May be called in process or interrupt context, but not in NMI
1529  * context.  May be called while holding a spinlock.
1530  */
1531 static inline void folios_put(struct folio_batch *folios)
1532 {
1533 	folios_put_refs(folios, NULL);
1534 }
1535 
1536 static inline void put_page(struct page *page)
1537 {
1538 	struct folio *folio = page_folio(page);
1539 
1540 	/*
1541 	 * For some devmap managed pages we need to catch refcount transition
1542 	 * from 2 to 1:
1543 	 */
1544 	if (put_devmap_managed_folio_refs(folio, 1))
1545 		return;
1546 	folio_put(folio);
1547 }
1548 
1549 /*
1550  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1551  * the page's refcount so that two separate items are tracked: the original page
1552  * reference count, and also a new count of how many pin_user_pages() calls were
1553  * made against the page. ("gup-pinned" is another term for the latter).
1554  *
1555  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1556  * distinct from normal pages. As such, the unpin_user_page() call (and its
1557  * variants) must be used in order to release gup-pinned pages.
1558  *
1559  * Choice of value:
1560  *
1561  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1562  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1563  * simpler, due to the fact that adding an even power of two to the page
1564  * refcount has the effect of using only the upper N bits, for the code that
1565  * counts up using the bias value. This means that the lower bits are left for
1566  * the exclusive use of the original code that increments and decrements by one
1567  * (or at least, by much smaller values than the bias value).
1568  *
1569  * Of course, once the lower bits overflow into the upper bits (and this is
1570  * OK, because subtraction recovers the original values), then visual inspection
1571  * no longer suffices to directly view the separate counts. However, for normal
1572  * applications that don't have huge page reference counts, this won't be an
1573  * issue.
1574  *
1575  * Locking: the lockless algorithm described in folio_try_get_rcu()
1576  * provides safe operation for get_user_pages(), folio_mkclean() and
1577  * other calls that race to set up page table entries.
1578  */
1579 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1580 
1581 void unpin_user_page(struct page *page);
1582 void unpin_folio(struct folio *folio);
1583 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1584 				 bool make_dirty);
1585 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1586 				      bool make_dirty);
1587 void unpin_user_pages(struct page **pages, unsigned long npages);
1588 void unpin_user_folio(struct folio *folio, unsigned long npages);
1589 void unpin_folios(struct folio **folios, unsigned long nfolios);
1590 
1591 static inline bool is_cow_mapping(vm_flags_t flags)
1592 {
1593 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1594 }
1595 
1596 #ifndef CONFIG_MMU
1597 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1598 {
1599 	/*
1600 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1601 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1602 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1603 	 * underlying memory if ptrace is active, so this is only possible if
1604 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1605 	 * write permissions later.
1606 	 */
1607 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1608 }
1609 #endif
1610 
1611 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1612 #define SECTION_IN_PAGE_FLAGS
1613 #endif
1614 
1615 /*
1616  * The identification function is mainly used by the buddy allocator for
1617  * determining if two pages could be buddies. We are not really identifying
1618  * the zone since we could be using the section number id if we do not have
1619  * node id available in page flags.
1620  * We only guarantee that it will return the same value for two combinable
1621  * pages in a zone.
1622  */
1623 static inline int page_zone_id(struct page *page)
1624 {
1625 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1626 }
1627 
1628 #ifdef NODE_NOT_IN_PAGE_FLAGS
1629 int page_to_nid(const struct page *page);
1630 #else
1631 static inline int page_to_nid(const struct page *page)
1632 {
1633 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1634 }
1635 #endif
1636 
1637 static inline int folio_nid(const struct folio *folio)
1638 {
1639 	return page_to_nid(&folio->page);
1640 }
1641 
1642 #ifdef CONFIG_NUMA_BALANCING
1643 /* page access time bits needs to hold at least 4 seconds */
1644 #define PAGE_ACCESS_TIME_MIN_BITS	12
1645 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1646 #define PAGE_ACCESS_TIME_BUCKETS				\
1647 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1648 #else
1649 #define PAGE_ACCESS_TIME_BUCKETS	0
1650 #endif
1651 
1652 #define PAGE_ACCESS_TIME_MASK				\
1653 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1654 
1655 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1656 {
1657 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1658 }
1659 
1660 static inline int cpupid_to_pid(int cpupid)
1661 {
1662 	return cpupid & LAST__PID_MASK;
1663 }
1664 
1665 static inline int cpupid_to_cpu(int cpupid)
1666 {
1667 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1668 }
1669 
1670 static inline int cpupid_to_nid(int cpupid)
1671 {
1672 	return cpu_to_node(cpupid_to_cpu(cpupid));
1673 }
1674 
1675 static inline bool cpupid_pid_unset(int cpupid)
1676 {
1677 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1678 }
1679 
1680 static inline bool cpupid_cpu_unset(int cpupid)
1681 {
1682 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1683 }
1684 
1685 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1686 {
1687 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1688 }
1689 
1690 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1691 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1692 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1693 {
1694 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1695 }
1696 
1697 static inline int folio_last_cpupid(struct folio *folio)
1698 {
1699 	return folio->_last_cpupid;
1700 }
1701 static inline void page_cpupid_reset_last(struct page *page)
1702 {
1703 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1704 }
1705 #else
1706 static inline int folio_last_cpupid(struct folio *folio)
1707 {
1708 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1709 }
1710 
1711 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1712 
1713 static inline void page_cpupid_reset_last(struct page *page)
1714 {
1715 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1716 }
1717 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1718 
1719 static inline int folio_xchg_access_time(struct folio *folio, int time)
1720 {
1721 	int last_time;
1722 
1723 	last_time = folio_xchg_last_cpupid(folio,
1724 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1725 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1726 }
1727 
1728 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1729 {
1730 	unsigned int pid_bit;
1731 
1732 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1733 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1734 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1735 	}
1736 }
1737 
1738 bool folio_use_access_time(struct folio *folio);
1739 #else /* !CONFIG_NUMA_BALANCING */
1740 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1741 {
1742 	return folio_nid(folio); /* XXX */
1743 }
1744 
1745 static inline int folio_xchg_access_time(struct folio *folio, int time)
1746 {
1747 	return 0;
1748 }
1749 
1750 static inline int folio_last_cpupid(struct folio *folio)
1751 {
1752 	return folio_nid(folio); /* XXX */
1753 }
1754 
1755 static inline int cpupid_to_nid(int cpupid)
1756 {
1757 	return -1;
1758 }
1759 
1760 static inline int cpupid_to_pid(int cpupid)
1761 {
1762 	return -1;
1763 }
1764 
1765 static inline int cpupid_to_cpu(int cpupid)
1766 {
1767 	return -1;
1768 }
1769 
1770 static inline int cpu_pid_to_cpupid(int nid, int pid)
1771 {
1772 	return -1;
1773 }
1774 
1775 static inline bool cpupid_pid_unset(int cpupid)
1776 {
1777 	return true;
1778 }
1779 
1780 static inline void page_cpupid_reset_last(struct page *page)
1781 {
1782 }
1783 
1784 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1785 {
1786 	return false;
1787 }
1788 
1789 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1790 {
1791 }
1792 static inline bool folio_use_access_time(struct folio *folio)
1793 {
1794 	return false;
1795 }
1796 #endif /* CONFIG_NUMA_BALANCING */
1797 
1798 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1799 
1800 /*
1801  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1802  * setting tags for all pages to native kernel tag value 0xff, as the default
1803  * value 0x00 maps to 0xff.
1804  */
1805 
1806 static inline u8 page_kasan_tag(const struct page *page)
1807 {
1808 	u8 tag = KASAN_TAG_KERNEL;
1809 
1810 	if (kasan_enabled()) {
1811 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1812 		tag ^= 0xff;
1813 	}
1814 
1815 	return tag;
1816 }
1817 
1818 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1819 {
1820 	unsigned long old_flags, flags;
1821 
1822 	if (!kasan_enabled())
1823 		return;
1824 
1825 	tag ^= 0xff;
1826 	old_flags = READ_ONCE(page->flags);
1827 	do {
1828 		flags = old_flags;
1829 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1830 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1831 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1832 }
1833 
1834 static inline void page_kasan_tag_reset(struct page *page)
1835 {
1836 	if (kasan_enabled())
1837 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1838 }
1839 
1840 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1841 
1842 static inline u8 page_kasan_tag(const struct page *page)
1843 {
1844 	return 0xff;
1845 }
1846 
1847 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1848 static inline void page_kasan_tag_reset(struct page *page) { }
1849 
1850 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1851 
1852 static inline struct zone *page_zone(const struct page *page)
1853 {
1854 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1855 }
1856 
1857 static inline pg_data_t *page_pgdat(const struct page *page)
1858 {
1859 	return NODE_DATA(page_to_nid(page));
1860 }
1861 
1862 static inline struct zone *folio_zone(const struct folio *folio)
1863 {
1864 	return page_zone(&folio->page);
1865 }
1866 
1867 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1868 {
1869 	return page_pgdat(&folio->page);
1870 }
1871 
1872 #ifdef SECTION_IN_PAGE_FLAGS
1873 static inline void set_page_section(struct page *page, unsigned long section)
1874 {
1875 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1876 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1877 }
1878 
1879 static inline unsigned long page_to_section(const struct page *page)
1880 {
1881 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1882 }
1883 #endif
1884 
1885 /**
1886  * folio_pfn - Return the Page Frame Number of a folio.
1887  * @folio: The folio.
1888  *
1889  * A folio may contain multiple pages.  The pages have consecutive
1890  * Page Frame Numbers.
1891  *
1892  * Return: The Page Frame Number of the first page in the folio.
1893  */
1894 static inline unsigned long folio_pfn(const struct folio *folio)
1895 {
1896 	return page_to_pfn(&folio->page);
1897 }
1898 
1899 static inline struct folio *pfn_folio(unsigned long pfn)
1900 {
1901 	return page_folio(pfn_to_page(pfn));
1902 }
1903 
1904 /**
1905  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1906  * @folio: The folio.
1907  *
1908  * This function checks if a folio has been pinned via a call to
1909  * a function in the pin_user_pages() family.
1910  *
1911  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1912  * because it means "definitely not pinned for DMA", but true means "probably
1913  * pinned for DMA, but possibly a false positive due to having at least
1914  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1915  *
1916  * False positives are OK, because: a) it's unlikely for a folio to
1917  * get that many refcounts, and b) all the callers of this routine are
1918  * expected to be able to deal gracefully with a false positive.
1919  *
1920  * For large folios, the result will be exactly correct. That's because
1921  * we have more tracking data available: the _pincount field is used
1922  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1923  *
1924  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1925  *
1926  * Return: True, if it is likely that the folio has been "dma-pinned".
1927  * False, if the folio is definitely not dma-pinned.
1928  */
1929 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1930 {
1931 	if (folio_test_large(folio))
1932 		return atomic_read(&folio->_pincount) > 0;
1933 
1934 	/*
1935 	 * folio_ref_count() is signed. If that refcount overflows, then
1936 	 * folio_ref_count() returns a negative value, and callers will avoid
1937 	 * further incrementing the refcount.
1938 	 *
1939 	 * Here, for that overflow case, use the sign bit to count a little
1940 	 * bit higher via unsigned math, and thus still get an accurate result.
1941 	 */
1942 	return ((unsigned int)folio_ref_count(folio)) >=
1943 		GUP_PIN_COUNTING_BIAS;
1944 }
1945 
1946 /*
1947  * This should most likely only be called during fork() to see whether we
1948  * should break the cow immediately for an anon page on the src mm.
1949  *
1950  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1951  */
1952 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1953 					  struct folio *folio)
1954 {
1955 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1956 
1957 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1958 		return false;
1959 
1960 	return folio_maybe_dma_pinned(folio);
1961 }
1962 
1963 /**
1964  * is_zero_page - Query if a page is a zero page
1965  * @page: The page to query
1966  *
1967  * This returns true if @page is one of the permanent zero pages.
1968  */
1969 static inline bool is_zero_page(const struct page *page)
1970 {
1971 	return is_zero_pfn(page_to_pfn(page));
1972 }
1973 
1974 /**
1975  * is_zero_folio - Query if a folio is a zero page
1976  * @folio: The folio to query
1977  *
1978  * This returns true if @folio is one of the permanent zero pages.
1979  */
1980 static inline bool is_zero_folio(const struct folio *folio)
1981 {
1982 	return is_zero_page(&folio->page);
1983 }
1984 
1985 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1986 #ifdef CONFIG_MIGRATION
1987 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1988 {
1989 #ifdef CONFIG_CMA
1990 	int mt = folio_migratetype(folio);
1991 
1992 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1993 		return false;
1994 #endif
1995 	/* The zero page can be "pinned" but gets special handling. */
1996 	if (is_zero_folio(folio))
1997 		return true;
1998 
1999 	/* Coherent device memory must always allow eviction. */
2000 	if (folio_is_device_coherent(folio))
2001 		return false;
2002 
2003 	/* Otherwise, non-movable zone folios can be pinned. */
2004 	return !folio_is_zone_movable(folio);
2005 
2006 }
2007 #else
2008 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2009 {
2010 	return true;
2011 }
2012 #endif
2013 
2014 static inline void set_page_zone(struct page *page, enum zone_type zone)
2015 {
2016 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2017 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2018 }
2019 
2020 static inline void set_page_node(struct page *page, unsigned long node)
2021 {
2022 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2023 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2024 }
2025 
2026 static inline void set_page_links(struct page *page, enum zone_type zone,
2027 	unsigned long node, unsigned long pfn)
2028 {
2029 	set_page_zone(page, zone);
2030 	set_page_node(page, node);
2031 #ifdef SECTION_IN_PAGE_FLAGS
2032 	set_page_section(page, pfn_to_section_nr(pfn));
2033 #endif
2034 }
2035 
2036 /**
2037  * folio_nr_pages - The number of pages in the folio.
2038  * @folio: The folio.
2039  *
2040  * Return: A positive power of two.
2041  */
2042 static inline long folio_nr_pages(const struct folio *folio)
2043 {
2044 	if (!folio_test_large(folio))
2045 		return 1;
2046 #ifdef CONFIG_64BIT
2047 	return folio->_folio_nr_pages;
2048 #else
2049 	return 1L << (folio->_flags_1 & 0xff);
2050 #endif
2051 }
2052 
2053 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2054 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2055 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2056 #else
2057 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2058 #endif
2059 
2060 /*
2061  * compound_nr() returns the number of pages in this potentially compound
2062  * page.  compound_nr() can be called on a tail page, and is defined to
2063  * return 1 in that case.
2064  */
2065 static inline unsigned long compound_nr(struct page *page)
2066 {
2067 	struct folio *folio = (struct folio *)page;
2068 
2069 	if (!test_bit(PG_head, &folio->flags))
2070 		return 1;
2071 #ifdef CONFIG_64BIT
2072 	return folio->_folio_nr_pages;
2073 #else
2074 	return 1L << (folio->_flags_1 & 0xff);
2075 #endif
2076 }
2077 
2078 /**
2079  * thp_nr_pages - The number of regular pages in this huge page.
2080  * @page: The head page of a huge page.
2081  */
2082 static inline int thp_nr_pages(struct page *page)
2083 {
2084 	return folio_nr_pages((struct folio *)page);
2085 }
2086 
2087 /**
2088  * folio_next - Move to the next physical folio.
2089  * @folio: The folio we're currently operating on.
2090  *
2091  * If you have physically contiguous memory which may span more than
2092  * one folio (eg a &struct bio_vec), use this function to move from one
2093  * folio to the next.  Do not use it if the memory is only virtually
2094  * contiguous as the folios are almost certainly not adjacent to each
2095  * other.  This is the folio equivalent to writing ``page++``.
2096  *
2097  * Context: We assume that the folios are refcounted and/or locked at a
2098  * higher level and do not adjust the reference counts.
2099  * Return: The next struct folio.
2100  */
2101 static inline struct folio *folio_next(struct folio *folio)
2102 {
2103 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2104 }
2105 
2106 /**
2107  * folio_shift - The size of the memory described by this folio.
2108  * @folio: The folio.
2109  *
2110  * A folio represents a number of bytes which is a power-of-two in size.
2111  * This function tells you which power-of-two the folio is.  See also
2112  * folio_size() and folio_order().
2113  *
2114  * Context: The caller should have a reference on the folio to prevent
2115  * it from being split.  It is not necessary for the folio to be locked.
2116  * Return: The base-2 logarithm of the size of this folio.
2117  */
2118 static inline unsigned int folio_shift(const struct folio *folio)
2119 {
2120 	return PAGE_SHIFT + folio_order(folio);
2121 }
2122 
2123 /**
2124  * folio_size - The number of bytes in a folio.
2125  * @folio: The folio.
2126  *
2127  * Context: The caller should have a reference on the folio to prevent
2128  * it from being split.  It is not necessary for the folio to be locked.
2129  * Return: The number of bytes in this folio.
2130  */
2131 static inline size_t folio_size(const struct folio *folio)
2132 {
2133 	return PAGE_SIZE << folio_order(folio);
2134 }
2135 
2136 /**
2137  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2138  *				tables of more than one MM
2139  * @folio: The folio.
2140  *
2141  * This function checks if the folio is currently mapped into more than one
2142  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2143  * ("mapped exclusively").
2144  *
2145  * For KSM folios, this function also returns "mapped shared" when a folio is
2146  * mapped multiple times into the same MM, because the individual page mappings
2147  * are independent.
2148  *
2149  * As precise information is not easily available for all folios, this function
2150  * estimates the number of MMs ("sharers") that are currently mapping a folio
2151  * using the number of times the first page of the folio is currently mapped
2152  * into page tables.
2153  *
2154  * For small anonymous folios and anonymous hugetlb folios, the return
2155  * value will be exactly correct: non-KSM folios can only be mapped at most once
2156  * into an MM, and they cannot be partially mapped. KSM folios are
2157  * considered shared even if mapped multiple times into the same MM.
2158  *
2159  * For other folios, the result can be fuzzy:
2160  *    #. For partially-mappable large folios (THP), the return value can wrongly
2161  *       indicate "mapped exclusively" (false negative) when the folio is
2162  *       only partially mapped into at least one MM.
2163  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2164  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2165  *       cover the same file range.
2166  *
2167  * Further, this function only considers current page table mappings that
2168  * are tracked using the folio mapcount(s).
2169  *
2170  * This function does not consider:
2171  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2172  *       pagecache, temporary unmapping for migration).
2173  *    #. If the folio is mapped differently (VM_PFNMAP).
2174  *    #. If hugetlb page table sharing applies. Callers might want to check
2175  *       hugetlb_pmd_shared().
2176  *
2177  * Return: Whether the folio is estimated to be mapped into more than one MM.
2178  */
2179 static inline bool folio_likely_mapped_shared(struct folio *folio)
2180 {
2181 	int mapcount = folio_mapcount(folio);
2182 
2183 	/* Only partially-mappable folios require more care. */
2184 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2185 		return mapcount > 1;
2186 
2187 	/* A single mapping implies "mapped exclusively". */
2188 	if (mapcount <= 1)
2189 		return false;
2190 
2191 	/* If any page is mapped more than once we treat it "mapped shared". */
2192 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2193 		return true;
2194 
2195 	/* Let's guess based on the first subpage. */
2196 	return atomic_read(&folio->_mapcount) > 0;
2197 }
2198 
2199 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2200 static inline int arch_make_folio_accessible(struct folio *folio)
2201 {
2202 	return 0;
2203 }
2204 #endif
2205 
2206 /*
2207  * Some inline functions in vmstat.h depend on page_zone()
2208  */
2209 #include <linux/vmstat.h>
2210 
2211 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2212 #define HASHED_PAGE_VIRTUAL
2213 #endif
2214 
2215 #if defined(WANT_PAGE_VIRTUAL)
2216 static inline void *page_address(const struct page *page)
2217 {
2218 	return page->virtual;
2219 }
2220 static inline void set_page_address(struct page *page, void *address)
2221 {
2222 	page->virtual = address;
2223 }
2224 #define page_address_init()  do { } while(0)
2225 #endif
2226 
2227 #if defined(HASHED_PAGE_VIRTUAL)
2228 void *page_address(const struct page *page);
2229 void set_page_address(struct page *page, void *virtual);
2230 void page_address_init(void);
2231 #endif
2232 
2233 static __always_inline void *lowmem_page_address(const struct page *page)
2234 {
2235 	return page_to_virt(page);
2236 }
2237 
2238 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2239 #define page_address(page) lowmem_page_address(page)
2240 #define set_page_address(page, address)  do { } while(0)
2241 #define page_address_init()  do { } while(0)
2242 #endif
2243 
2244 static inline void *folio_address(const struct folio *folio)
2245 {
2246 	return page_address(&folio->page);
2247 }
2248 
2249 /*
2250  * Return true only if the page has been allocated with
2251  * ALLOC_NO_WATERMARKS and the low watermark was not
2252  * met implying that the system is under some pressure.
2253  */
2254 static inline bool page_is_pfmemalloc(const struct page *page)
2255 {
2256 	/*
2257 	 * lru.next has bit 1 set if the page is allocated from the
2258 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2259 	 * they do not need to preserve that information.
2260 	 */
2261 	return (uintptr_t)page->lru.next & BIT(1);
2262 }
2263 
2264 /*
2265  * Return true only if the folio has been allocated with
2266  * ALLOC_NO_WATERMARKS and the low watermark was not
2267  * met implying that the system is under some pressure.
2268  */
2269 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2270 {
2271 	/*
2272 	 * lru.next has bit 1 set if the page is allocated from the
2273 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2274 	 * they do not need to preserve that information.
2275 	 */
2276 	return (uintptr_t)folio->lru.next & BIT(1);
2277 }
2278 
2279 /*
2280  * Only to be called by the page allocator on a freshly allocated
2281  * page.
2282  */
2283 static inline void set_page_pfmemalloc(struct page *page)
2284 {
2285 	page->lru.next = (void *)BIT(1);
2286 }
2287 
2288 static inline void clear_page_pfmemalloc(struct page *page)
2289 {
2290 	page->lru.next = NULL;
2291 }
2292 
2293 /*
2294  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2295  */
2296 extern void pagefault_out_of_memory(void);
2297 
2298 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2299 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2300 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2301 
2302 /*
2303  * Parameter block passed down to zap_pte_range in exceptional cases.
2304  */
2305 struct zap_details {
2306 	struct folio *single_folio;	/* Locked folio to be unmapped */
2307 	bool even_cows;			/* Zap COWed private pages too? */
2308 	bool reclaim_pt;		/* Need reclaim page tables? */
2309 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2310 };
2311 
2312 /*
2313  * Whether to drop the pte markers, for example, the uffd-wp information for
2314  * file-backed memory.  This should only be specified when we will completely
2315  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2316  * default, the flag is not set.
2317  */
2318 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2319 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2320 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2321 
2322 #ifdef CONFIG_SCHED_MM_CID
2323 void sched_mm_cid_before_execve(struct task_struct *t);
2324 void sched_mm_cid_after_execve(struct task_struct *t);
2325 void sched_mm_cid_fork(struct task_struct *t);
2326 void sched_mm_cid_exit_signals(struct task_struct *t);
2327 static inline int task_mm_cid(struct task_struct *t)
2328 {
2329 	return t->mm_cid;
2330 }
2331 #else
2332 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2333 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2334 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2335 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2336 static inline int task_mm_cid(struct task_struct *t)
2337 {
2338 	/*
2339 	 * Use the processor id as a fall-back when the mm cid feature is
2340 	 * disabled. This provides functional per-cpu data structure accesses
2341 	 * in user-space, althrough it won't provide the memory usage benefits.
2342 	 */
2343 	return raw_smp_processor_id();
2344 }
2345 #endif
2346 
2347 #ifdef CONFIG_MMU
2348 extern bool can_do_mlock(void);
2349 #else
2350 static inline bool can_do_mlock(void) { return false; }
2351 #endif
2352 extern int user_shm_lock(size_t, struct ucounts *);
2353 extern void user_shm_unlock(size_t, struct ucounts *);
2354 
2355 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2356 			     pte_t pte);
2357 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2358 			     pte_t pte);
2359 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2360 				  unsigned long addr, pmd_t pmd);
2361 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2362 				pmd_t pmd);
2363 
2364 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2365 		  unsigned long size);
2366 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2367 			   unsigned long size, struct zap_details *details);
2368 static inline void zap_vma_pages(struct vm_area_struct *vma)
2369 {
2370 	zap_page_range_single(vma, vma->vm_start,
2371 			      vma->vm_end - vma->vm_start, NULL);
2372 }
2373 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2374 		struct vm_area_struct *start_vma, unsigned long start,
2375 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2376 
2377 struct mmu_notifier_range;
2378 
2379 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2380 		unsigned long end, unsigned long floor, unsigned long ceiling);
2381 int
2382 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2383 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2384 			void *buf, int len, int write);
2385 
2386 struct follow_pfnmap_args {
2387 	/**
2388 	 * Inputs:
2389 	 * @vma: Pointer to @vm_area_struct struct
2390 	 * @address: the virtual address to walk
2391 	 */
2392 	struct vm_area_struct *vma;
2393 	unsigned long address;
2394 	/**
2395 	 * Internals:
2396 	 *
2397 	 * The caller shouldn't touch any of these.
2398 	 */
2399 	spinlock_t *lock;
2400 	pte_t *ptep;
2401 	/**
2402 	 * Outputs:
2403 	 *
2404 	 * @pfn: the PFN of the address
2405 	 * @pgprot: the pgprot_t of the mapping
2406 	 * @writable: whether the mapping is writable
2407 	 * @special: whether the mapping is a special mapping (real PFN maps)
2408 	 */
2409 	unsigned long pfn;
2410 	pgprot_t pgprot;
2411 	bool writable;
2412 	bool special;
2413 };
2414 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2415 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2416 
2417 extern void truncate_pagecache(struct inode *inode, loff_t new);
2418 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2419 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2420 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2421 int generic_error_remove_folio(struct address_space *mapping,
2422 		struct folio *folio);
2423 
2424 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2425 		unsigned long address, struct pt_regs *regs);
2426 
2427 #ifdef CONFIG_MMU
2428 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2429 				  unsigned long address, unsigned int flags,
2430 				  struct pt_regs *regs);
2431 extern int fixup_user_fault(struct mm_struct *mm,
2432 			    unsigned long address, unsigned int fault_flags,
2433 			    bool *unlocked);
2434 void unmap_mapping_pages(struct address_space *mapping,
2435 		pgoff_t start, pgoff_t nr, bool even_cows);
2436 void unmap_mapping_range(struct address_space *mapping,
2437 		loff_t const holebegin, loff_t const holelen, int even_cows);
2438 #else
2439 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2440 					 unsigned long address, unsigned int flags,
2441 					 struct pt_regs *regs)
2442 {
2443 	/* should never happen if there's no MMU */
2444 	BUG();
2445 	return VM_FAULT_SIGBUS;
2446 }
2447 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2448 		unsigned int fault_flags, bool *unlocked)
2449 {
2450 	/* should never happen if there's no MMU */
2451 	BUG();
2452 	return -EFAULT;
2453 }
2454 static inline void unmap_mapping_pages(struct address_space *mapping,
2455 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2456 static inline void unmap_mapping_range(struct address_space *mapping,
2457 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2458 #endif
2459 
2460 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2461 		loff_t const holebegin, loff_t const holelen)
2462 {
2463 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2464 }
2465 
2466 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2467 						unsigned long addr);
2468 
2469 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2470 		void *buf, int len, unsigned int gup_flags);
2471 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2472 		void *buf, int len, unsigned int gup_flags);
2473 
2474 long get_user_pages_remote(struct mm_struct *mm,
2475 			   unsigned long start, unsigned long nr_pages,
2476 			   unsigned int gup_flags, struct page **pages,
2477 			   int *locked);
2478 long pin_user_pages_remote(struct mm_struct *mm,
2479 			   unsigned long start, unsigned long nr_pages,
2480 			   unsigned int gup_flags, struct page **pages,
2481 			   int *locked);
2482 
2483 /*
2484  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2485  */
2486 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2487 						    unsigned long addr,
2488 						    int gup_flags,
2489 						    struct vm_area_struct **vmap)
2490 {
2491 	struct page *page;
2492 	struct vm_area_struct *vma;
2493 	int got;
2494 
2495 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2496 		return ERR_PTR(-EINVAL);
2497 
2498 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2499 
2500 	if (got < 0)
2501 		return ERR_PTR(got);
2502 
2503 	vma = vma_lookup(mm, addr);
2504 	if (WARN_ON_ONCE(!vma)) {
2505 		put_page(page);
2506 		return ERR_PTR(-EINVAL);
2507 	}
2508 
2509 	*vmap = vma;
2510 	return page;
2511 }
2512 
2513 long get_user_pages(unsigned long start, unsigned long nr_pages,
2514 		    unsigned int gup_flags, struct page **pages);
2515 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2516 		    unsigned int gup_flags, struct page **pages);
2517 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2518 		    struct page **pages, unsigned int gup_flags);
2519 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2520 		    struct page **pages, unsigned int gup_flags);
2521 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2522 		      struct folio **folios, unsigned int max_folios,
2523 		      pgoff_t *offset);
2524 int folio_add_pins(struct folio *folio, unsigned int pins);
2525 
2526 int get_user_pages_fast(unsigned long start, int nr_pages,
2527 			unsigned int gup_flags, struct page **pages);
2528 int pin_user_pages_fast(unsigned long start, int nr_pages,
2529 			unsigned int gup_flags, struct page **pages);
2530 void folio_add_pin(struct folio *folio);
2531 
2532 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2533 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2534 			struct task_struct *task, bool bypass_rlim);
2535 
2536 struct kvec;
2537 struct page *get_dump_page(unsigned long addr);
2538 
2539 bool folio_mark_dirty(struct folio *folio);
2540 bool folio_mark_dirty_lock(struct folio *folio);
2541 bool set_page_dirty(struct page *page);
2542 int set_page_dirty_lock(struct page *page);
2543 
2544 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2545 
2546 /*
2547  * Flags used by change_protection().  For now we make it a bitmap so
2548  * that we can pass in multiple flags just like parameters.  However
2549  * for now all the callers are only use one of the flags at the same
2550  * time.
2551  */
2552 /*
2553  * Whether we should manually check if we can map individual PTEs writable,
2554  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2555  * PTEs automatically in a writable mapping.
2556  */
2557 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2558 /* Whether this protection change is for NUMA hints */
2559 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2560 /* Whether this change is for write protecting */
2561 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2562 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2563 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2564 					    MM_CP_UFFD_WP_RESOLVE)
2565 
2566 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2567 			     pte_t pte);
2568 extern long change_protection(struct mmu_gather *tlb,
2569 			      struct vm_area_struct *vma, unsigned long start,
2570 			      unsigned long end, unsigned long cp_flags);
2571 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2572 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2573 	  unsigned long start, unsigned long end, unsigned long newflags);
2574 
2575 /*
2576  * doesn't attempt to fault and will return short.
2577  */
2578 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2579 			     unsigned int gup_flags, struct page **pages);
2580 
2581 static inline bool get_user_page_fast_only(unsigned long addr,
2582 			unsigned int gup_flags, struct page **pagep)
2583 {
2584 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2585 }
2586 /*
2587  * per-process(per-mm_struct) statistics.
2588  */
2589 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2590 {
2591 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2592 }
2593 
2594 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2595 
2596 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2597 {
2598 	percpu_counter_add(&mm->rss_stat[member], value);
2599 
2600 	mm_trace_rss_stat(mm, member);
2601 }
2602 
2603 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2604 {
2605 	percpu_counter_inc(&mm->rss_stat[member]);
2606 
2607 	mm_trace_rss_stat(mm, member);
2608 }
2609 
2610 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2611 {
2612 	percpu_counter_dec(&mm->rss_stat[member]);
2613 
2614 	mm_trace_rss_stat(mm, member);
2615 }
2616 
2617 /* Optimized variant when folio is already known not to be anon */
2618 static inline int mm_counter_file(struct folio *folio)
2619 {
2620 	if (folio_test_swapbacked(folio))
2621 		return MM_SHMEMPAGES;
2622 	return MM_FILEPAGES;
2623 }
2624 
2625 static inline int mm_counter(struct folio *folio)
2626 {
2627 	if (folio_test_anon(folio))
2628 		return MM_ANONPAGES;
2629 	return mm_counter_file(folio);
2630 }
2631 
2632 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2633 {
2634 	return get_mm_counter(mm, MM_FILEPAGES) +
2635 		get_mm_counter(mm, MM_ANONPAGES) +
2636 		get_mm_counter(mm, MM_SHMEMPAGES);
2637 }
2638 
2639 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2640 {
2641 	return max(mm->hiwater_rss, get_mm_rss(mm));
2642 }
2643 
2644 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2645 {
2646 	return max(mm->hiwater_vm, mm->total_vm);
2647 }
2648 
2649 static inline void update_hiwater_rss(struct mm_struct *mm)
2650 {
2651 	unsigned long _rss = get_mm_rss(mm);
2652 
2653 	if ((mm)->hiwater_rss < _rss)
2654 		(mm)->hiwater_rss = _rss;
2655 }
2656 
2657 static inline void update_hiwater_vm(struct mm_struct *mm)
2658 {
2659 	if (mm->hiwater_vm < mm->total_vm)
2660 		mm->hiwater_vm = mm->total_vm;
2661 }
2662 
2663 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2664 {
2665 	mm->hiwater_rss = get_mm_rss(mm);
2666 }
2667 
2668 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2669 					 struct mm_struct *mm)
2670 {
2671 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2672 
2673 	if (*maxrss < hiwater_rss)
2674 		*maxrss = hiwater_rss;
2675 }
2676 
2677 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2678 static inline int pte_special(pte_t pte)
2679 {
2680 	return 0;
2681 }
2682 
2683 static inline pte_t pte_mkspecial(pte_t pte)
2684 {
2685 	return pte;
2686 }
2687 #endif
2688 
2689 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2690 static inline bool pmd_special(pmd_t pmd)
2691 {
2692 	return false;
2693 }
2694 
2695 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2696 {
2697 	return pmd;
2698 }
2699 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2700 
2701 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2702 static inline bool pud_special(pud_t pud)
2703 {
2704 	return false;
2705 }
2706 
2707 static inline pud_t pud_mkspecial(pud_t pud)
2708 {
2709 	return pud;
2710 }
2711 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2712 
2713 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2714 static inline int pte_devmap(pte_t pte)
2715 {
2716 	return 0;
2717 }
2718 #endif
2719 
2720 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2721 			       spinlock_t **ptl);
2722 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2723 				    spinlock_t **ptl)
2724 {
2725 	pte_t *ptep;
2726 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2727 	return ptep;
2728 }
2729 
2730 #ifdef __PAGETABLE_P4D_FOLDED
2731 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2732 						unsigned long address)
2733 {
2734 	return 0;
2735 }
2736 #else
2737 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2738 #endif
2739 
2740 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2741 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2742 						unsigned long address)
2743 {
2744 	return 0;
2745 }
2746 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2747 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2748 
2749 #else
2750 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2751 
2752 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2753 {
2754 	if (mm_pud_folded(mm))
2755 		return;
2756 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2757 }
2758 
2759 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2760 {
2761 	if (mm_pud_folded(mm))
2762 		return;
2763 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2764 }
2765 #endif
2766 
2767 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2768 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2769 						unsigned long address)
2770 {
2771 	return 0;
2772 }
2773 
2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2775 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2776 
2777 #else
2778 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2779 
2780 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2781 {
2782 	if (mm_pmd_folded(mm))
2783 		return;
2784 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2785 }
2786 
2787 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2788 {
2789 	if (mm_pmd_folded(mm))
2790 		return;
2791 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2792 }
2793 #endif
2794 
2795 #ifdef CONFIG_MMU
2796 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2797 {
2798 	atomic_long_set(&mm->pgtables_bytes, 0);
2799 }
2800 
2801 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2802 {
2803 	return atomic_long_read(&mm->pgtables_bytes);
2804 }
2805 
2806 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2807 {
2808 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2809 }
2810 
2811 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2812 {
2813 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2814 }
2815 #else
2816 
2817 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2818 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2819 {
2820 	return 0;
2821 }
2822 
2823 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2824 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2825 #endif
2826 
2827 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2828 int __pte_alloc_kernel(pmd_t *pmd);
2829 
2830 #if defined(CONFIG_MMU)
2831 
2832 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2833 		unsigned long address)
2834 {
2835 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2836 		NULL : p4d_offset(pgd, address);
2837 }
2838 
2839 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2840 		unsigned long address)
2841 {
2842 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2843 		NULL : pud_offset(p4d, address);
2844 }
2845 
2846 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2847 {
2848 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2849 		NULL: pmd_offset(pud, address);
2850 }
2851 #endif /* CONFIG_MMU */
2852 
2853 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2854 {
2855 	return page_ptdesc(virt_to_page(x));
2856 }
2857 
2858 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2859 {
2860 	return page_to_virt(ptdesc_page(pt));
2861 }
2862 
2863 static inline void *ptdesc_address(const struct ptdesc *pt)
2864 {
2865 	return folio_address(ptdesc_folio(pt));
2866 }
2867 
2868 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2869 {
2870 	return folio_test_reserved(ptdesc_folio(pt));
2871 }
2872 
2873 /**
2874  * pagetable_alloc - Allocate pagetables
2875  * @gfp:    GFP flags
2876  * @order:  desired pagetable order
2877  *
2878  * pagetable_alloc allocates memory for page tables as well as a page table
2879  * descriptor to describe that memory.
2880  *
2881  * Return: The ptdesc describing the allocated page tables.
2882  */
2883 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2884 {
2885 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2886 
2887 	return page_ptdesc(page);
2888 }
2889 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2890 
2891 /**
2892  * pagetable_free - Free pagetables
2893  * @pt:	The page table descriptor
2894  *
2895  * pagetable_free frees the memory of all page tables described by a page
2896  * table descriptor and the memory for the descriptor itself.
2897  */
2898 static inline void pagetable_free(struct ptdesc *pt)
2899 {
2900 	struct page *page = ptdesc_page(pt);
2901 
2902 	__free_pages(page, compound_order(page));
2903 }
2904 
2905 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2906 #if ALLOC_SPLIT_PTLOCKS
2907 void __init ptlock_cache_init(void);
2908 bool ptlock_alloc(struct ptdesc *ptdesc);
2909 void ptlock_free(struct ptdesc *ptdesc);
2910 
2911 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2912 {
2913 	return ptdesc->ptl;
2914 }
2915 #else /* ALLOC_SPLIT_PTLOCKS */
2916 static inline void ptlock_cache_init(void)
2917 {
2918 }
2919 
2920 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2921 {
2922 	return true;
2923 }
2924 
2925 static inline void ptlock_free(struct ptdesc *ptdesc)
2926 {
2927 }
2928 
2929 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2930 {
2931 	return &ptdesc->ptl;
2932 }
2933 #endif /* ALLOC_SPLIT_PTLOCKS */
2934 
2935 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2936 {
2937 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2938 }
2939 
2940 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2941 {
2942 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2943 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2944 	return ptlock_ptr(virt_to_ptdesc(pte));
2945 }
2946 
2947 static inline bool ptlock_init(struct ptdesc *ptdesc)
2948 {
2949 	/*
2950 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2951 	 * with 0. Make sure nobody took it in use in between.
2952 	 *
2953 	 * It can happen if arch try to use slab for page table allocation:
2954 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2955 	 */
2956 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2957 	if (!ptlock_alloc(ptdesc))
2958 		return false;
2959 	spin_lock_init(ptlock_ptr(ptdesc));
2960 	return true;
2961 }
2962 
2963 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2964 /*
2965  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2966  */
2967 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2968 {
2969 	return &mm->page_table_lock;
2970 }
2971 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2972 {
2973 	return &mm->page_table_lock;
2974 }
2975 static inline void ptlock_cache_init(void) {}
2976 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2977 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2978 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2979 
2980 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2981 {
2982 	struct folio *folio = ptdesc_folio(ptdesc);
2983 
2984 	__folio_set_pgtable(folio);
2985 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2986 }
2987 
2988 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2989 {
2990 	struct folio *folio = ptdesc_folio(ptdesc);
2991 
2992 	ptlock_free(ptdesc);
2993 	__folio_clear_pgtable(folio);
2994 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2995 }
2996 
2997 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2998 {
2999 	pagetable_dtor(ptdesc);
3000 	pagetable_free(ptdesc);
3001 }
3002 
3003 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3004 {
3005 	if (!ptlock_init(ptdesc))
3006 		return false;
3007 	__pagetable_ctor(ptdesc);
3008 	return true;
3009 }
3010 
3011 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3012 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3013 			pmd_t *pmdvalp)
3014 {
3015 	pte_t *pte;
3016 
3017 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3018 	return pte;
3019 }
3020 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3021 {
3022 	return __pte_offset_map(pmd, addr, NULL);
3023 }
3024 
3025 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3026 			unsigned long addr, spinlock_t **ptlp);
3027 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3028 			unsigned long addr, spinlock_t **ptlp)
3029 {
3030 	pte_t *pte;
3031 
3032 	__cond_lock(RCU, __cond_lock(*ptlp,
3033 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3034 	return pte;
3035 }
3036 
3037 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3038 				unsigned long addr, spinlock_t **ptlp);
3039 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3040 				unsigned long addr, pmd_t *pmdvalp,
3041 				spinlock_t **ptlp);
3042 
3043 #define pte_unmap_unlock(pte, ptl)	do {		\
3044 	spin_unlock(ptl);				\
3045 	pte_unmap(pte);					\
3046 } while (0)
3047 
3048 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3049 
3050 #define pte_alloc_map(mm, pmd, address)			\
3051 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3052 
3053 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3054 	(pte_alloc(mm, pmd) ?			\
3055 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3056 
3057 #define pte_alloc_kernel(pmd, address)			\
3058 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3059 		NULL: pte_offset_kernel(pmd, address))
3060 
3061 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3062 
3063 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3064 {
3065 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3066 	return virt_to_page((void *)((unsigned long) pmd & mask));
3067 }
3068 
3069 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3070 {
3071 	return page_ptdesc(pmd_pgtable_page(pmd));
3072 }
3073 
3074 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3075 {
3076 	return ptlock_ptr(pmd_ptdesc(pmd));
3077 }
3078 
3079 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3080 {
3081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3082 	ptdesc->pmd_huge_pte = NULL;
3083 #endif
3084 	return ptlock_init(ptdesc);
3085 }
3086 
3087 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3088 
3089 #else
3090 
3091 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3092 {
3093 	return &mm->page_table_lock;
3094 }
3095 
3096 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3097 
3098 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3099 
3100 #endif
3101 
3102 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3103 {
3104 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3105 	spin_lock(ptl);
3106 	return ptl;
3107 }
3108 
3109 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3110 {
3111 	if (!pmd_ptlock_init(ptdesc))
3112 		return false;
3113 	ptdesc_pmd_pts_init(ptdesc);
3114 	__pagetable_ctor(ptdesc);
3115 	return true;
3116 }
3117 
3118 /*
3119  * No scalability reason to split PUD locks yet, but follow the same pattern
3120  * as the PMD locks to make it easier if we decide to.  The VM should not be
3121  * considered ready to switch to split PUD locks yet; there may be places
3122  * which need to be converted from page_table_lock.
3123  */
3124 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3125 {
3126 	return &mm->page_table_lock;
3127 }
3128 
3129 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3130 {
3131 	spinlock_t *ptl = pud_lockptr(mm, pud);
3132 
3133 	spin_lock(ptl);
3134 	return ptl;
3135 }
3136 
3137 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3138 {
3139 	__pagetable_ctor(ptdesc);
3140 }
3141 
3142 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3143 {
3144 	__pagetable_ctor(ptdesc);
3145 }
3146 
3147 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3148 {
3149 	__pagetable_ctor(ptdesc);
3150 }
3151 
3152 extern void __init pagecache_init(void);
3153 extern void free_initmem(void);
3154 
3155 /*
3156  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3157  * into the buddy system. The freed pages will be poisoned with pattern
3158  * "poison" if it's within range [0, UCHAR_MAX].
3159  * Return pages freed into the buddy system.
3160  */
3161 extern unsigned long free_reserved_area(void *start, void *end,
3162 					int poison, const char *s);
3163 
3164 extern void adjust_managed_page_count(struct page *page, long count);
3165 
3166 extern void reserve_bootmem_region(phys_addr_t start,
3167 				   phys_addr_t end, int nid);
3168 
3169 /* Free the reserved page into the buddy system, so it gets managed. */
3170 void free_reserved_page(struct page *page);
3171 #define free_highmem_page(page) free_reserved_page(page)
3172 
3173 static inline void mark_page_reserved(struct page *page)
3174 {
3175 	SetPageReserved(page);
3176 	adjust_managed_page_count(page, -1);
3177 }
3178 
3179 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3180 {
3181 	free_reserved_page(ptdesc_page(pt));
3182 }
3183 
3184 /*
3185  * Default method to free all the __init memory into the buddy system.
3186  * The freed pages will be poisoned with pattern "poison" if it's within
3187  * range [0, UCHAR_MAX].
3188  * Return pages freed into the buddy system.
3189  */
3190 static inline unsigned long free_initmem_default(int poison)
3191 {
3192 	extern char __init_begin[], __init_end[];
3193 
3194 	return free_reserved_area(&__init_begin, &__init_end,
3195 				  poison, "unused kernel image (initmem)");
3196 }
3197 
3198 static inline unsigned long get_num_physpages(void)
3199 {
3200 	int nid;
3201 	unsigned long phys_pages = 0;
3202 
3203 	for_each_online_node(nid)
3204 		phys_pages += node_present_pages(nid);
3205 
3206 	return phys_pages;
3207 }
3208 
3209 /*
3210  * Using memblock node mappings, an architecture may initialise its
3211  * zones, allocate the backing mem_map and account for memory holes in an
3212  * architecture independent manner.
3213  *
3214  * An architecture is expected to register range of page frames backed by
3215  * physical memory with memblock_add[_node]() before calling
3216  * free_area_init() passing in the PFN each zone ends at. At a basic
3217  * usage, an architecture is expected to do something like
3218  *
3219  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3220  * 							 max_highmem_pfn};
3221  * for_each_valid_physical_page_range()
3222  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3223  * free_area_init(max_zone_pfns);
3224  */
3225 void free_area_init(unsigned long *max_zone_pfn);
3226 unsigned long node_map_pfn_alignment(void);
3227 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3228 						unsigned long end_pfn);
3229 extern void get_pfn_range_for_nid(unsigned int nid,
3230 			unsigned long *start_pfn, unsigned long *end_pfn);
3231 
3232 #ifndef CONFIG_NUMA
3233 static inline int early_pfn_to_nid(unsigned long pfn)
3234 {
3235 	return 0;
3236 }
3237 #else
3238 /* please see mm/page_alloc.c */
3239 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3240 #endif
3241 
3242 extern void mem_init(void);
3243 extern void __init mmap_init(void);
3244 
3245 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3246 static inline void show_mem(void)
3247 {
3248 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3249 }
3250 extern long si_mem_available(void);
3251 extern void si_meminfo(struct sysinfo * val);
3252 extern void si_meminfo_node(struct sysinfo *val, int nid);
3253 
3254 extern __printf(3, 4)
3255 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3256 
3257 extern void setup_per_cpu_pageset(void);
3258 
3259 /* nommu.c */
3260 extern atomic_long_t mmap_pages_allocated;
3261 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3262 
3263 /* interval_tree.c */
3264 void vma_interval_tree_insert(struct vm_area_struct *node,
3265 			      struct rb_root_cached *root);
3266 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3267 				    struct vm_area_struct *prev,
3268 				    struct rb_root_cached *root);
3269 void vma_interval_tree_remove(struct vm_area_struct *node,
3270 			      struct rb_root_cached *root);
3271 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3272 				unsigned long start, unsigned long last);
3273 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3274 				unsigned long start, unsigned long last);
3275 
3276 #define vma_interval_tree_foreach(vma, root, start, last)		\
3277 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3278 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3279 
3280 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3281 				   struct rb_root_cached *root);
3282 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3283 				   struct rb_root_cached *root);
3284 struct anon_vma_chain *
3285 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3286 				  unsigned long start, unsigned long last);
3287 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3288 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3289 #ifdef CONFIG_DEBUG_VM_RB
3290 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3291 #endif
3292 
3293 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3294 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3295 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3296 
3297 /* mmap.c */
3298 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3299 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3300 extern void exit_mmap(struct mm_struct *);
3301 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3302 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3303 				 unsigned long addr, bool write);
3304 
3305 static inline int check_data_rlimit(unsigned long rlim,
3306 				    unsigned long new,
3307 				    unsigned long start,
3308 				    unsigned long end_data,
3309 				    unsigned long start_data)
3310 {
3311 	if (rlim < RLIM_INFINITY) {
3312 		if (((new - start) + (end_data - start_data)) > rlim)
3313 			return -ENOSPC;
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 extern int mm_take_all_locks(struct mm_struct *mm);
3320 extern void mm_drop_all_locks(struct mm_struct *mm);
3321 
3322 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3323 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3324 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3325 extern struct file *get_task_exe_file(struct task_struct *task);
3326 
3327 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3328 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3329 
3330 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3331 				   const struct vm_special_mapping *sm);
3332 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3333 				   unsigned long addr, unsigned long len,
3334 				   unsigned long flags,
3335 				   const struct vm_special_mapping *spec);
3336 
3337 unsigned long randomize_stack_top(unsigned long stack_top);
3338 unsigned long randomize_page(unsigned long start, unsigned long range);
3339 
3340 unsigned long
3341 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3342 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3343 
3344 static inline unsigned long
3345 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3346 		  unsigned long pgoff, unsigned long flags)
3347 {
3348 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3349 }
3350 
3351 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3352 	unsigned long len, unsigned long prot, unsigned long flags,
3353 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3354 	struct list_head *uf);
3355 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3356 			 unsigned long start, size_t len, struct list_head *uf,
3357 			 bool unlock);
3358 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3359 		    struct mm_struct *mm, unsigned long start,
3360 		    unsigned long end, struct list_head *uf, bool unlock);
3361 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3362 		     struct list_head *uf);
3363 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3364 
3365 #ifdef CONFIG_MMU
3366 extern int __mm_populate(unsigned long addr, unsigned long len,
3367 			 int ignore_errors);
3368 static inline void mm_populate(unsigned long addr, unsigned long len)
3369 {
3370 	/* Ignore errors */
3371 	(void) __mm_populate(addr, len, 1);
3372 }
3373 #else
3374 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3375 #endif
3376 
3377 /* This takes the mm semaphore itself */
3378 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3379 extern int vm_munmap(unsigned long, size_t);
3380 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3381         unsigned long, unsigned long,
3382         unsigned long, unsigned long);
3383 
3384 struct vm_unmapped_area_info {
3385 #define VM_UNMAPPED_AREA_TOPDOWN 1
3386 	unsigned long flags;
3387 	unsigned long length;
3388 	unsigned long low_limit;
3389 	unsigned long high_limit;
3390 	unsigned long align_mask;
3391 	unsigned long align_offset;
3392 	unsigned long start_gap;
3393 };
3394 
3395 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3396 
3397 /* truncate.c */
3398 extern void truncate_inode_pages(struct address_space *, loff_t);
3399 extern void truncate_inode_pages_range(struct address_space *,
3400 				       loff_t lstart, loff_t lend);
3401 extern void truncate_inode_pages_final(struct address_space *);
3402 
3403 /* generic vm_area_ops exported for stackable file systems */
3404 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3405 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3406 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3407 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3408 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf);
3409 
3410 extern unsigned long stack_guard_gap;
3411 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3412 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3413 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3414 
3415 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3416 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3417 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3418 					     struct vm_area_struct **pprev);
3419 
3420 /*
3421  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3422  * NULL if none.  Assume start_addr < end_addr.
3423  */
3424 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3425 			unsigned long start_addr, unsigned long end_addr);
3426 
3427 /**
3428  * vma_lookup() - Find a VMA at a specific address
3429  * @mm: The process address space.
3430  * @addr: The user address.
3431  *
3432  * Return: The vm_area_struct at the given address, %NULL otherwise.
3433  */
3434 static inline
3435 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3436 {
3437 	return mtree_load(&mm->mm_mt, addr);
3438 }
3439 
3440 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3441 {
3442 	if (vma->vm_flags & VM_GROWSDOWN)
3443 		return stack_guard_gap;
3444 
3445 	/* See reasoning around the VM_SHADOW_STACK definition */
3446 	if (vma->vm_flags & VM_SHADOW_STACK)
3447 		return PAGE_SIZE;
3448 
3449 	return 0;
3450 }
3451 
3452 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3453 {
3454 	unsigned long gap = stack_guard_start_gap(vma);
3455 	unsigned long vm_start = vma->vm_start;
3456 
3457 	vm_start -= gap;
3458 	if (vm_start > vma->vm_start)
3459 		vm_start = 0;
3460 	return vm_start;
3461 }
3462 
3463 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3464 {
3465 	unsigned long vm_end = vma->vm_end;
3466 
3467 	if (vma->vm_flags & VM_GROWSUP) {
3468 		vm_end += stack_guard_gap;
3469 		if (vm_end < vma->vm_end)
3470 			vm_end = -PAGE_SIZE;
3471 	}
3472 	return vm_end;
3473 }
3474 
3475 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3476 {
3477 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3478 }
3479 
3480 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3481 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3482 				unsigned long vm_start, unsigned long vm_end)
3483 {
3484 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3485 
3486 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3487 		vma = NULL;
3488 
3489 	return vma;
3490 }
3491 
3492 static inline bool range_in_vma(struct vm_area_struct *vma,
3493 				unsigned long start, unsigned long end)
3494 {
3495 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3496 }
3497 
3498 #ifdef CONFIG_MMU
3499 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3500 void vma_set_page_prot(struct vm_area_struct *vma);
3501 #else
3502 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3503 {
3504 	return __pgprot(0);
3505 }
3506 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3507 {
3508 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3509 }
3510 #endif
3511 
3512 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3513 
3514 #ifdef CONFIG_NUMA_BALANCING
3515 unsigned long change_prot_numa(struct vm_area_struct *vma,
3516 			unsigned long start, unsigned long end);
3517 #endif
3518 
3519 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3520 		unsigned long addr);
3521 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3522 			unsigned long pfn, unsigned long size, pgprot_t);
3523 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3524 		unsigned long pfn, unsigned long size, pgprot_t prot);
3525 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3526 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3527 			struct page **pages, unsigned long *num);
3528 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3529 				unsigned long num);
3530 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3531 				unsigned long num);
3532 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3533 			unsigned long pfn);
3534 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3535 			unsigned long pfn, pgprot_t pgprot);
3536 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3537 			pfn_t pfn);
3538 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3539 		unsigned long addr, pfn_t pfn);
3540 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3541 
3542 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3543 				unsigned long addr, struct page *page)
3544 {
3545 	int err = vm_insert_page(vma, addr, page);
3546 
3547 	if (err == -ENOMEM)
3548 		return VM_FAULT_OOM;
3549 	if (err < 0 && err != -EBUSY)
3550 		return VM_FAULT_SIGBUS;
3551 
3552 	return VM_FAULT_NOPAGE;
3553 }
3554 
3555 #ifndef io_remap_pfn_range
3556 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3557 				     unsigned long addr, unsigned long pfn,
3558 				     unsigned long size, pgprot_t prot)
3559 {
3560 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3561 }
3562 #endif
3563 
3564 static inline vm_fault_t vmf_error(int err)
3565 {
3566 	if (err == -ENOMEM)
3567 		return VM_FAULT_OOM;
3568 	else if (err == -EHWPOISON)
3569 		return VM_FAULT_HWPOISON;
3570 	return VM_FAULT_SIGBUS;
3571 }
3572 
3573 /*
3574  * Convert errno to return value for ->page_mkwrite() calls.
3575  *
3576  * This should eventually be merged with vmf_error() above, but will need a
3577  * careful audit of all vmf_error() callers.
3578  */
3579 static inline vm_fault_t vmf_fs_error(int err)
3580 {
3581 	if (err == 0)
3582 		return VM_FAULT_LOCKED;
3583 	if (err == -EFAULT || err == -EAGAIN)
3584 		return VM_FAULT_NOPAGE;
3585 	if (err == -ENOMEM)
3586 		return VM_FAULT_OOM;
3587 	/* -ENOSPC, -EDQUOT, -EIO ... */
3588 	return VM_FAULT_SIGBUS;
3589 }
3590 
3591 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3592 {
3593 	if (vm_fault & VM_FAULT_OOM)
3594 		return -ENOMEM;
3595 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3596 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3597 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3598 		return -EFAULT;
3599 	return 0;
3600 }
3601 
3602 /*
3603  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3604  * a (NUMA hinting) fault is required.
3605  */
3606 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3607 					   unsigned int flags)
3608 {
3609 	/*
3610 	 * If callers don't want to honor NUMA hinting faults, no need to
3611 	 * determine if we would actually have to trigger a NUMA hinting fault.
3612 	 */
3613 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3614 		return true;
3615 
3616 	/*
3617 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3618 	 *
3619 	 * Requiring a fault here even for inaccessible VMAs would mean that
3620 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3621 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3622 	 */
3623 	return !vma_is_accessible(vma);
3624 }
3625 
3626 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3627 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3628 			       unsigned long size, pte_fn_t fn, void *data);
3629 extern int apply_to_existing_page_range(struct mm_struct *mm,
3630 				   unsigned long address, unsigned long size,
3631 				   pte_fn_t fn, void *data);
3632 
3633 #ifdef CONFIG_PAGE_POISONING
3634 extern void __kernel_poison_pages(struct page *page, int numpages);
3635 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3636 extern bool _page_poisoning_enabled_early;
3637 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3638 static inline bool page_poisoning_enabled(void)
3639 {
3640 	return _page_poisoning_enabled_early;
3641 }
3642 /*
3643  * For use in fast paths after init_mem_debugging() has run, or when a
3644  * false negative result is not harmful when called too early.
3645  */
3646 static inline bool page_poisoning_enabled_static(void)
3647 {
3648 	return static_branch_unlikely(&_page_poisoning_enabled);
3649 }
3650 static inline void kernel_poison_pages(struct page *page, int numpages)
3651 {
3652 	if (page_poisoning_enabled_static())
3653 		__kernel_poison_pages(page, numpages);
3654 }
3655 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3656 {
3657 	if (page_poisoning_enabled_static())
3658 		__kernel_unpoison_pages(page, numpages);
3659 }
3660 #else
3661 static inline bool page_poisoning_enabled(void) { return false; }
3662 static inline bool page_poisoning_enabled_static(void) { return false; }
3663 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3664 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3665 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3666 #endif
3667 
3668 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3669 static inline bool want_init_on_alloc(gfp_t flags)
3670 {
3671 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3672 				&init_on_alloc))
3673 		return true;
3674 	return flags & __GFP_ZERO;
3675 }
3676 
3677 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3678 static inline bool want_init_on_free(void)
3679 {
3680 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3681 				   &init_on_free);
3682 }
3683 
3684 extern bool _debug_pagealloc_enabled_early;
3685 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3686 
3687 static inline bool debug_pagealloc_enabled(void)
3688 {
3689 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3690 		_debug_pagealloc_enabled_early;
3691 }
3692 
3693 /*
3694  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3695  * or when a false negative result is not harmful when called too early.
3696  */
3697 static inline bool debug_pagealloc_enabled_static(void)
3698 {
3699 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3700 		return false;
3701 
3702 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3703 }
3704 
3705 /*
3706  * To support DEBUG_PAGEALLOC architecture must ensure that
3707  * __kernel_map_pages() never fails
3708  */
3709 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3710 #ifdef CONFIG_DEBUG_PAGEALLOC
3711 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3712 {
3713 	if (debug_pagealloc_enabled_static())
3714 		__kernel_map_pages(page, numpages, 1);
3715 }
3716 
3717 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3718 {
3719 	if (debug_pagealloc_enabled_static())
3720 		__kernel_map_pages(page, numpages, 0);
3721 }
3722 
3723 extern unsigned int _debug_guardpage_minorder;
3724 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3725 
3726 static inline unsigned int debug_guardpage_minorder(void)
3727 {
3728 	return _debug_guardpage_minorder;
3729 }
3730 
3731 static inline bool debug_guardpage_enabled(void)
3732 {
3733 	return static_branch_unlikely(&_debug_guardpage_enabled);
3734 }
3735 
3736 static inline bool page_is_guard(struct page *page)
3737 {
3738 	if (!debug_guardpage_enabled())
3739 		return false;
3740 
3741 	return PageGuard(page);
3742 }
3743 
3744 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3745 static inline bool set_page_guard(struct zone *zone, struct page *page,
3746 				  unsigned int order)
3747 {
3748 	if (!debug_guardpage_enabled())
3749 		return false;
3750 	return __set_page_guard(zone, page, order);
3751 }
3752 
3753 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3754 static inline void clear_page_guard(struct zone *zone, struct page *page,
3755 				    unsigned int order)
3756 {
3757 	if (!debug_guardpage_enabled())
3758 		return;
3759 	__clear_page_guard(zone, page, order);
3760 }
3761 
3762 #else	/* CONFIG_DEBUG_PAGEALLOC */
3763 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3764 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3765 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3766 static inline bool debug_guardpage_enabled(void) { return false; }
3767 static inline bool page_is_guard(struct page *page) { return false; }
3768 static inline bool set_page_guard(struct zone *zone, struct page *page,
3769 			unsigned int order) { return false; }
3770 static inline void clear_page_guard(struct zone *zone, struct page *page,
3771 				unsigned int order) {}
3772 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3773 
3774 #ifdef __HAVE_ARCH_GATE_AREA
3775 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3776 extern int in_gate_area_no_mm(unsigned long addr);
3777 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3778 #else
3779 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3780 {
3781 	return NULL;
3782 }
3783 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3784 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3785 {
3786 	return 0;
3787 }
3788 #endif	/* __HAVE_ARCH_GATE_AREA */
3789 
3790 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3791 
3792 void drop_slab(void);
3793 
3794 #ifndef CONFIG_MMU
3795 #define randomize_va_space 0
3796 #else
3797 extern int randomize_va_space;
3798 #endif
3799 
3800 const char * arch_vma_name(struct vm_area_struct *vma);
3801 #ifdef CONFIG_MMU
3802 void print_vma_addr(char *prefix, unsigned long rip);
3803 #else
3804 static inline void print_vma_addr(char *prefix, unsigned long rip)
3805 {
3806 }
3807 #endif
3808 
3809 void *sparse_buffer_alloc(unsigned long size);
3810 struct page * __populate_section_memmap(unsigned long pfn,
3811 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3812 		struct dev_pagemap *pgmap);
3813 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3814 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3815 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3816 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3817 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3818 			    struct vmem_altmap *altmap, struct page *reuse);
3819 void *vmemmap_alloc_block(unsigned long size, int node);
3820 struct vmem_altmap;
3821 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3822 			      struct vmem_altmap *altmap);
3823 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3824 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3825 		     unsigned long addr, unsigned long next);
3826 int vmemmap_check_pmd(pmd_t *pmd, int node,
3827 		      unsigned long addr, unsigned long next);
3828 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3829 			       int node, struct vmem_altmap *altmap);
3830 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3831 			       int node, struct vmem_altmap *altmap);
3832 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3833 		struct vmem_altmap *altmap);
3834 void vmemmap_populate_print_last(void);
3835 #ifdef CONFIG_MEMORY_HOTPLUG
3836 void vmemmap_free(unsigned long start, unsigned long end,
3837 		struct vmem_altmap *altmap);
3838 #endif
3839 
3840 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3841 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3842 {
3843 	/* number of pfns from base where pfn_to_page() is valid */
3844 	if (altmap)
3845 		return altmap->reserve + altmap->free;
3846 	return 0;
3847 }
3848 
3849 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3850 				    unsigned long nr_pfns)
3851 {
3852 	altmap->alloc -= nr_pfns;
3853 }
3854 #else
3855 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3856 {
3857 	return 0;
3858 }
3859 
3860 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3861 				    unsigned long nr_pfns)
3862 {
3863 }
3864 #endif
3865 
3866 #define VMEMMAP_RESERVE_NR	2
3867 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3868 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3869 					  struct dev_pagemap *pgmap)
3870 {
3871 	unsigned long nr_pages;
3872 	unsigned long nr_vmemmap_pages;
3873 
3874 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3875 		return false;
3876 
3877 	nr_pages = pgmap_vmemmap_nr(pgmap);
3878 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3879 	/*
3880 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3881 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3882 	 */
3883 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3884 }
3885 /*
3886  * If we don't have an architecture override, use the generic rule
3887  */
3888 #ifndef vmemmap_can_optimize
3889 #define vmemmap_can_optimize __vmemmap_can_optimize
3890 #endif
3891 
3892 #else
3893 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3894 					   struct dev_pagemap *pgmap)
3895 {
3896 	return false;
3897 }
3898 #endif
3899 
3900 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3901 				  unsigned long nr_pages);
3902 
3903 enum mf_flags {
3904 	MF_COUNT_INCREASED = 1 << 0,
3905 	MF_ACTION_REQUIRED = 1 << 1,
3906 	MF_MUST_KILL = 1 << 2,
3907 	MF_SOFT_OFFLINE = 1 << 3,
3908 	MF_UNPOISON = 1 << 4,
3909 	MF_SW_SIMULATED = 1 << 5,
3910 	MF_NO_RETRY = 1 << 6,
3911 	MF_MEM_PRE_REMOVE = 1 << 7,
3912 };
3913 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3914 		      unsigned long count, int mf_flags);
3915 extern int memory_failure(unsigned long pfn, int flags);
3916 extern void memory_failure_queue_kick(int cpu);
3917 extern int unpoison_memory(unsigned long pfn);
3918 extern atomic_long_t num_poisoned_pages __read_mostly;
3919 extern int soft_offline_page(unsigned long pfn, int flags);
3920 #ifdef CONFIG_MEMORY_FAILURE
3921 /*
3922  * Sysfs entries for memory failure handling statistics.
3923  */
3924 extern const struct attribute_group memory_failure_attr_group;
3925 extern void memory_failure_queue(unsigned long pfn, int flags);
3926 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3927 					bool *migratable_cleared);
3928 void num_poisoned_pages_inc(unsigned long pfn);
3929 void num_poisoned_pages_sub(unsigned long pfn, long i);
3930 #else
3931 static inline void memory_failure_queue(unsigned long pfn, int flags)
3932 {
3933 }
3934 
3935 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3936 					bool *migratable_cleared)
3937 {
3938 	return 0;
3939 }
3940 
3941 static inline void num_poisoned_pages_inc(unsigned long pfn)
3942 {
3943 }
3944 
3945 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3946 {
3947 }
3948 #endif
3949 
3950 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3951 extern void memblk_nr_poison_inc(unsigned long pfn);
3952 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3953 #else
3954 static inline void memblk_nr_poison_inc(unsigned long pfn)
3955 {
3956 }
3957 
3958 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3959 {
3960 }
3961 #endif
3962 
3963 #ifndef arch_memory_failure
3964 static inline int arch_memory_failure(unsigned long pfn, int flags)
3965 {
3966 	return -ENXIO;
3967 }
3968 #endif
3969 
3970 #ifndef arch_is_platform_page
3971 static inline bool arch_is_platform_page(u64 paddr)
3972 {
3973 	return false;
3974 }
3975 #endif
3976 
3977 /*
3978  * Error handlers for various types of pages.
3979  */
3980 enum mf_result {
3981 	MF_IGNORED,	/* Error: cannot be handled */
3982 	MF_FAILED,	/* Error: handling failed */
3983 	MF_DELAYED,	/* Will be handled later */
3984 	MF_RECOVERED,	/* Successfully recovered */
3985 };
3986 
3987 enum mf_action_page_type {
3988 	MF_MSG_KERNEL,
3989 	MF_MSG_KERNEL_HIGH_ORDER,
3990 	MF_MSG_DIFFERENT_COMPOUND,
3991 	MF_MSG_HUGE,
3992 	MF_MSG_FREE_HUGE,
3993 	MF_MSG_GET_HWPOISON,
3994 	MF_MSG_UNMAP_FAILED,
3995 	MF_MSG_DIRTY_SWAPCACHE,
3996 	MF_MSG_CLEAN_SWAPCACHE,
3997 	MF_MSG_DIRTY_MLOCKED_LRU,
3998 	MF_MSG_CLEAN_MLOCKED_LRU,
3999 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4000 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4001 	MF_MSG_DIRTY_LRU,
4002 	MF_MSG_CLEAN_LRU,
4003 	MF_MSG_TRUNCATED_LRU,
4004 	MF_MSG_BUDDY,
4005 	MF_MSG_DAX,
4006 	MF_MSG_UNSPLIT_THP,
4007 	MF_MSG_ALREADY_POISONED,
4008 	MF_MSG_UNKNOWN,
4009 };
4010 
4011 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4012 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4013 int copy_user_large_folio(struct folio *dst, struct folio *src,
4014 			  unsigned long addr_hint,
4015 			  struct vm_area_struct *vma);
4016 long copy_folio_from_user(struct folio *dst_folio,
4017 			   const void __user *usr_src,
4018 			   bool allow_pagefault);
4019 
4020 /**
4021  * vma_is_special_huge - Are transhuge page-table entries considered special?
4022  * @vma: Pointer to the struct vm_area_struct to consider
4023  *
4024  * Whether transhuge page-table entries are considered "special" following
4025  * the definition in vm_normal_page().
4026  *
4027  * Return: true if transhuge page-table entries should be considered special,
4028  * false otherwise.
4029  */
4030 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4031 {
4032 	return vma_is_dax(vma) || (vma->vm_file &&
4033 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4034 }
4035 
4036 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4037 
4038 #if MAX_NUMNODES > 1
4039 void __init setup_nr_node_ids(void);
4040 #else
4041 static inline void setup_nr_node_ids(void) {}
4042 #endif
4043 
4044 extern int memcmp_pages(struct page *page1, struct page *page2);
4045 
4046 static inline int pages_identical(struct page *page1, struct page *page2)
4047 {
4048 	return !memcmp_pages(page1, page2);
4049 }
4050 
4051 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4052 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4053 						pgoff_t first_index, pgoff_t nr,
4054 						pgoff_t bitmap_pgoff,
4055 						unsigned long *bitmap,
4056 						pgoff_t *start,
4057 						pgoff_t *end);
4058 
4059 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4060 				      pgoff_t first_index, pgoff_t nr);
4061 #endif
4062 
4063 #ifdef CONFIG_ANON_VMA_NAME
4064 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4065 			  unsigned long len_in,
4066 			  struct anon_vma_name *anon_name);
4067 #else
4068 static inline int
4069 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4070 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4071 	return 0;
4072 }
4073 #endif
4074 
4075 #ifdef CONFIG_UNACCEPTED_MEMORY
4076 
4077 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4078 void accept_memory(phys_addr_t start, unsigned long size);
4079 
4080 #else
4081 
4082 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4083 						    unsigned long size)
4084 {
4085 	return false;
4086 }
4087 
4088 static inline void accept_memory(phys_addr_t start, unsigned long size)
4089 {
4090 }
4091 
4092 #endif
4093 
4094 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4095 {
4096 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4097 }
4098 
4099 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4100 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4101 
4102 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4103 
4104 #ifdef CONFIG_64BIT
4105 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4106 #else
4107 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4108 {
4109 	/* noop on 32 bit */
4110 	return 0;
4111 }
4112 #endif
4113 
4114 /*
4115  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4116  * be zeroed or not.
4117  */
4118 static inline bool user_alloc_needs_zeroing(void)
4119 {
4120 	/*
4121 	 * for user folios, arch with cache aliasing requires cache flush and
4122 	 * arc changes folio->flags to make icache coherent with dcache, so
4123 	 * always return false to make caller use
4124 	 * clear_user_page()/clear_user_highpage().
4125 	 */
4126 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4127 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4128 				   &init_on_alloc);
4129 }
4130 
4131 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4132 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4133 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4134 
4135 #endif /* _LINUX_MM_H */
4136