xref: /linux-6.15/include/linux/mm.h (revision acd5f76f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef PHYSMEM_END
101 # define PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
102 #endif
103 
104 #include <asm/page.h>
105 #include <asm/processor.h>
106 
107 #ifndef __pa_symbol
108 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
109 #endif
110 
111 #ifndef page_to_virt
112 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
113 #endif
114 
115 #ifndef lm_alias
116 #define lm_alias(x)	__va(__pa_symbol(x))
117 #endif
118 
119 /*
120  * To prevent common memory management code establishing
121  * a zero page mapping on a read fault.
122  * This macro should be defined within <asm/pgtable.h>.
123  * s390 does this to prevent multiplexing of hardware bits
124  * related to the physical page in case of virtualization.
125  */
126 #ifndef mm_forbids_zeropage
127 #define mm_forbids_zeropage(X)	(0)
128 #endif
129 
130 /*
131  * On some architectures it is expensive to call memset() for small sizes.
132  * If an architecture decides to implement their own version of
133  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
134  * define their own version of this macro in <asm/pgtable.h>
135  */
136 #if BITS_PER_LONG == 64
137 /* This function must be updated when the size of struct page grows above 96
138  * or reduces below 56. The idea that compiler optimizes out switch()
139  * statement, and only leaves move/store instructions. Also the compiler can
140  * combine write statements if they are both assignments and can be reordered,
141  * this can result in several of the writes here being dropped.
142  */
143 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
144 static inline void __mm_zero_struct_page(struct page *page)
145 {
146 	unsigned long *_pp = (void *)page;
147 
148 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
149 	BUILD_BUG_ON(sizeof(struct page) & 7);
150 	BUILD_BUG_ON(sizeof(struct page) < 56);
151 	BUILD_BUG_ON(sizeof(struct page) > 96);
152 
153 	switch (sizeof(struct page)) {
154 	case 96:
155 		_pp[11] = 0;
156 		fallthrough;
157 	case 88:
158 		_pp[10] = 0;
159 		fallthrough;
160 	case 80:
161 		_pp[9] = 0;
162 		fallthrough;
163 	case 72:
164 		_pp[8] = 0;
165 		fallthrough;
166 	case 64:
167 		_pp[7] = 0;
168 		fallthrough;
169 	case 56:
170 		_pp[6] = 0;
171 		_pp[5] = 0;
172 		_pp[4] = 0;
173 		_pp[3] = 0;
174 		_pp[2] = 0;
175 		_pp[1] = 0;
176 		_pp[0] = 0;
177 	}
178 }
179 #else
180 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
181 #endif
182 
183 /*
184  * Default maximum number of active map areas, this limits the number of vmas
185  * per mm struct. Users can overwrite this number by sysctl but there is a
186  * problem.
187  *
188  * When a program's coredump is generated as ELF format, a section is created
189  * per a vma. In ELF, the number of sections is represented in unsigned short.
190  * This means the number of sections should be smaller than 65535 at coredump.
191  * Because the kernel adds some informative sections to a image of program at
192  * generating coredump, we need some margin. The number of extra sections is
193  * 1-3 now and depends on arch. We use "5" as safe margin, here.
194  *
195  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
196  * not a hard limit any more. Although some userspace tools can be surprised by
197  * that.
198  */
199 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
200 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
201 
202 extern int sysctl_max_map_count;
203 
204 extern unsigned long sysctl_user_reserve_kbytes;
205 extern unsigned long sysctl_admin_reserve_kbytes;
206 
207 extern int sysctl_overcommit_memory;
208 extern int sysctl_overcommit_ratio;
209 extern unsigned long sysctl_overcommit_kbytes;
210 
211 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 
218 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
221 #else
222 #define nth_page(page,n) ((page) + (n))
223 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
224 #endif
225 
226 /* to align the pointer to the (next) page boundary */
227 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
228 
229 /* to align the pointer to the (prev) page boundary */
230 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
231 
232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234 
235 static inline struct folio *lru_to_folio(struct list_head *head)
236 {
237 	return list_entry((head)->prev, struct folio, lru);
238 }
239 
240 void setup_initial_init_mm(void *start_code, void *end_code,
241 			   void *end_data, void *brk);
242 
243 /*
244  * Linux kernel virtual memory manager primitives.
245  * The idea being to have a "virtual" mm in the same way
246  * we have a virtual fs - giving a cleaner interface to the
247  * mm details, and allowing different kinds of memory mappings
248  * (from shared memory to executable loading to arbitrary
249  * mmap() functions).
250  */
251 
252 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
253 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
254 void vm_area_free(struct vm_area_struct *);
255 /* Use only if VMA has no other users */
256 void __vm_area_free(struct vm_area_struct *vma);
257 
258 #ifndef CONFIG_MMU
259 extern struct rb_root nommu_region_tree;
260 extern struct rw_semaphore nommu_region_sem;
261 
262 extern unsigned int kobjsize(const void *objp);
263 #endif
264 
265 /*
266  * vm_flags in vm_area_struct, see mm_types.h.
267  * When changing, update also include/trace/events/mmflags.h
268  */
269 #define VM_NONE		0x00000000
270 
271 #define VM_READ		0x00000001	/* currently active flags */
272 #define VM_WRITE	0x00000002
273 #define VM_EXEC		0x00000004
274 #define VM_SHARED	0x00000008
275 
276 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
277 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
278 #define VM_MAYWRITE	0x00000020
279 #define VM_MAYEXEC	0x00000040
280 #define VM_MAYSHARE	0x00000080
281 
282 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
283 #ifdef CONFIG_MMU
284 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
285 #else /* CONFIG_MMU */
286 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
287 #define VM_UFFD_MISSING	0
288 #endif /* CONFIG_MMU */
289 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
290 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
291 
292 #define VM_LOCKED	0x00002000
293 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
294 
295 					/* Used by sys_madvise() */
296 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
297 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
298 
299 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
300 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
301 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
302 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
303 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
304 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
305 #define VM_SYNC		0x00800000	/* Synchronous page faults */
306 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
307 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
308 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
309 
310 #ifdef CONFIG_MEM_SOFT_DIRTY
311 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
312 #else
313 # define VM_SOFTDIRTY	0
314 #endif
315 
316 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
317 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
318 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
319 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
320 
321 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
322 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
329 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
330 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
331 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
332 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
333 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
334 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
335 
336 #ifdef CONFIG_ARCH_HAS_PKEYS
337 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
338 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
339 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
340 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
341 #if CONFIG_ARCH_PKEY_BITS > 3
342 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
343 #else
344 # define VM_PKEY_BIT3  0
345 #endif
346 #if CONFIG_ARCH_PKEY_BITS > 4
347 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
348 #else
349 # define VM_PKEY_BIT4  0
350 #endif
351 #endif /* CONFIG_ARCH_HAS_PKEYS */
352 
353 #ifdef CONFIG_X86_USER_SHADOW_STACK
354 /*
355  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
356  * support core mm.
357  *
358  * These VMAs will get a single end guard page. This helps userspace protect
359  * itself from attacks. A single page is enough for current shadow stack archs
360  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
361  * for more details on the guard size.
362  */
363 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
364 #else
365 # define VM_SHADOW_STACK	VM_NONE
366 #endif
367 
368 #if defined(CONFIG_X86)
369 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
370 #elif defined(CONFIG_PPC64)
371 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
372 #elif defined(CONFIG_PARISC)
373 # define VM_GROWSUP	VM_ARCH_1
374 #elif defined(CONFIG_SPARC64)
375 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
376 # define VM_ARCH_CLEAR	VM_SPARC_ADI
377 #elif defined(CONFIG_ARM64)
378 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
379 # define VM_ARCH_CLEAR	VM_ARM64_BTI
380 #elif !defined(CONFIG_MMU)
381 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
382 #endif
383 
384 #if defined(CONFIG_ARM64_MTE)
385 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
386 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
387 #else
388 # define VM_MTE		VM_NONE
389 # define VM_MTE_ALLOWED	VM_NONE
390 #endif
391 
392 #ifndef VM_GROWSUP
393 # define VM_GROWSUP	VM_NONE
394 #endif
395 
396 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
397 # define VM_UFFD_MINOR_BIT	38
398 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
399 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
400 # define VM_UFFD_MINOR		VM_NONE
401 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
402 
403 /*
404  * This flag is used to connect VFIO to arch specific KVM code. It
405  * indicates that the memory under this VMA is safe for use with any
406  * non-cachable memory type inside KVM. Some VFIO devices, on some
407  * platforms, are thought to be unsafe and can cause machine crashes
408  * if KVM does not lock down the memory type.
409  */
410 #ifdef CONFIG_64BIT
411 #define VM_ALLOW_ANY_UNCACHED_BIT	39
412 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
413 #else
414 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
415 #endif
416 
417 #ifdef CONFIG_64BIT
418 #define VM_DROPPABLE_BIT	40
419 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
420 #elif defined(CONFIG_PPC32)
421 #define VM_DROPPABLE		VM_ARCH_1
422 #else
423 #define VM_DROPPABLE		VM_NONE
424 #endif
425 
426 #ifdef CONFIG_64BIT
427 /* VM is sealed, in vm_flags */
428 #define VM_SEALED	_BITUL(63)
429 #endif
430 
431 /* Bits set in the VMA until the stack is in its final location */
432 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
433 
434 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
435 
436 /* Common data flag combinations */
437 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
438 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
439 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
440 				 VM_MAYWRITE | VM_MAYEXEC)
441 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
442 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
443 
444 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
445 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
446 #endif
447 
448 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
449 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
450 #endif
451 
452 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
453 
454 #ifdef CONFIG_STACK_GROWSUP
455 #define VM_STACK	VM_GROWSUP
456 #define VM_STACK_EARLY	VM_GROWSDOWN
457 #else
458 #define VM_STACK	VM_GROWSDOWN
459 #define VM_STACK_EARLY	0
460 #endif
461 
462 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
463 
464 /* VMA basic access permission flags */
465 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
466 
467 
468 /*
469  * Special vmas that are non-mergable, non-mlock()able.
470  */
471 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
472 
473 /* This mask prevents VMA from being scanned with khugepaged */
474 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
475 
476 /* This mask defines which mm->def_flags a process can inherit its parent */
477 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
478 
479 /* This mask represents all the VMA flag bits used by mlock */
480 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
481 
482 /* Arch-specific flags to clear when updating VM flags on protection change */
483 #ifndef VM_ARCH_CLEAR
484 # define VM_ARCH_CLEAR	VM_NONE
485 #endif
486 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
487 
488 /*
489  * mapping from the currently active vm_flags protection bits (the
490  * low four bits) to a page protection mask..
491  */
492 
493 /*
494  * The default fault flags that should be used by most of the
495  * arch-specific page fault handlers.
496  */
497 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
498 			     FAULT_FLAG_KILLABLE | \
499 			     FAULT_FLAG_INTERRUPTIBLE)
500 
501 /**
502  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
503  * @flags: Fault flags.
504  *
505  * This is mostly used for places where we want to try to avoid taking
506  * the mmap_lock for too long a time when waiting for another condition
507  * to change, in which case we can try to be polite to release the
508  * mmap_lock in the first round to avoid potential starvation of other
509  * processes that would also want the mmap_lock.
510  *
511  * Return: true if the page fault allows retry and this is the first
512  * attempt of the fault handling; false otherwise.
513  */
514 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
515 {
516 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
517 	    (!(flags & FAULT_FLAG_TRIED));
518 }
519 
520 #define FAULT_FLAG_TRACE \
521 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
522 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
523 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
524 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
525 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
526 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
527 	{ FAULT_FLAG_USER,		"USER" }, \
528 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
529 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
530 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
531 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
532 
533 /*
534  * vm_fault is filled by the pagefault handler and passed to the vma's
535  * ->fault function. The vma's ->fault is responsible for returning a bitmask
536  * of VM_FAULT_xxx flags that give details about how the fault was handled.
537  *
538  * MM layer fills up gfp_mask for page allocations but fault handler might
539  * alter it if its implementation requires a different allocation context.
540  *
541  * pgoff should be used in favour of virtual_address, if possible.
542  */
543 struct vm_fault {
544 	const struct {
545 		struct vm_area_struct *vma;	/* Target VMA */
546 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
547 		pgoff_t pgoff;			/* Logical page offset based on vma */
548 		unsigned long address;		/* Faulting virtual address - masked */
549 		unsigned long real_address;	/* Faulting virtual address - unmasked */
550 	};
551 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
552 					 * XXX: should really be 'const' */
553 	pmd_t *pmd;			/* Pointer to pmd entry matching
554 					 * the 'address' */
555 	pud_t *pud;			/* Pointer to pud entry matching
556 					 * the 'address'
557 					 */
558 	union {
559 		pte_t orig_pte;		/* Value of PTE at the time of fault */
560 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
561 					 * used by PMD fault only.
562 					 */
563 	};
564 
565 	struct page *cow_page;		/* Page handler may use for COW fault */
566 	struct page *page;		/* ->fault handlers should return a
567 					 * page here, unless VM_FAULT_NOPAGE
568 					 * is set (which is also implied by
569 					 * VM_FAULT_ERROR).
570 					 */
571 	/* These three entries are valid only while holding ptl lock */
572 	pte_t *pte;			/* Pointer to pte entry matching
573 					 * the 'address'. NULL if the page
574 					 * table hasn't been allocated.
575 					 */
576 	spinlock_t *ptl;		/* Page table lock.
577 					 * Protects pte page table if 'pte'
578 					 * is not NULL, otherwise pmd.
579 					 */
580 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
581 					 * vm_ops->map_pages() sets up a page
582 					 * table from atomic context.
583 					 * do_fault_around() pre-allocates
584 					 * page table to avoid allocation from
585 					 * atomic context.
586 					 */
587 };
588 
589 /*
590  * These are the virtual MM functions - opening of an area, closing and
591  * unmapping it (needed to keep files on disk up-to-date etc), pointer
592  * to the functions called when a no-page or a wp-page exception occurs.
593  */
594 struct vm_operations_struct {
595 	void (*open)(struct vm_area_struct * area);
596 	/**
597 	 * @close: Called when the VMA is being removed from the MM.
598 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
599 	 */
600 	void (*close)(struct vm_area_struct * area);
601 	/* Called any time before splitting to check if it's allowed */
602 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
603 	int (*mremap)(struct vm_area_struct *area);
604 	/*
605 	 * Called by mprotect() to make driver-specific permission
606 	 * checks before mprotect() is finalised.   The VMA must not
607 	 * be modified.  Returns 0 if mprotect() can proceed.
608 	 */
609 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
610 			unsigned long end, unsigned long newflags);
611 	vm_fault_t (*fault)(struct vm_fault *vmf);
612 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
613 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
614 			pgoff_t start_pgoff, pgoff_t end_pgoff);
615 	unsigned long (*pagesize)(struct vm_area_struct * area);
616 
617 	/* notification that a previously read-only page is about to become
618 	 * writable, if an error is returned it will cause a SIGBUS */
619 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
620 
621 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
622 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
623 
624 	/* called by access_process_vm when get_user_pages() fails, typically
625 	 * for use by special VMAs. See also generic_access_phys() for a generic
626 	 * implementation useful for any iomem mapping.
627 	 */
628 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
629 		      void *buf, int len, int write);
630 
631 	/* Called by the /proc/PID/maps code to ask the vma whether it
632 	 * has a special name.  Returning non-NULL will also cause this
633 	 * vma to be dumped unconditionally. */
634 	const char *(*name)(struct vm_area_struct *vma);
635 
636 #ifdef CONFIG_NUMA
637 	/*
638 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
639 	 * to hold the policy upon return.  Caller should pass NULL @new to
640 	 * remove a policy and fall back to surrounding context--i.e. do not
641 	 * install a MPOL_DEFAULT policy, nor the task or system default
642 	 * mempolicy.
643 	 */
644 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
645 
646 	/*
647 	 * get_policy() op must add reference [mpol_get()] to any policy at
648 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
649 	 * in mm/mempolicy.c will do this automatically.
650 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
651 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
652 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
653 	 * must return NULL--i.e., do not "fallback" to task or system default
654 	 * policy.
655 	 */
656 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
657 					unsigned long addr, pgoff_t *ilx);
658 #endif
659 	/*
660 	 * Called by vm_normal_page() for special PTEs to find the
661 	 * page for @addr.  This is useful if the default behavior
662 	 * (using pte_page()) would not find the correct page.
663 	 */
664 	struct page *(*find_special_page)(struct vm_area_struct *vma,
665 					  unsigned long addr);
666 };
667 
668 #ifdef CONFIG_NUMA_BALANCING
669 static inline void vma_numab_state_init(struct vm_area_struct *vma)
670 {
671 	vma->numab_state = NULL;
672 }
673 static inline void vma_numab_state_free(struct vm_area_struct *vma)
674 {
675 	kfree(vma->numab_state);
676 }
677 #else
678 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
679 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
680 #endif /* CONFIG_NUMA_BALANCING */
681 
682 #ifdef CONFIG_PER_VMA_LOCK
683 /*
684  * Try to read-lock a vma. The function is allowed to occasionally yield false
685  * locked result to avoid performance overhead, in which case we fall back to
686  * using mmap_lock. The function should never yield false unlocked result.
687  */
688 static inline bool vma_start_read(struct vm_area_struct *vma)
689 {
690 	/*
691 	 * Check before locking. A race might cause false locked result.
692 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
693 	 * ACQUIRE semantics, because this is just a lockless check whose result
694 	 * we don't rely on for anything - the mm_lock_seq read against which we
695 	 * need ordering is below.
696 	 */
697 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
698 		return false;
699 
700 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
701 		return false;
702 
703 	/*
704 	 * Overflow might produce false locked result.
705 	 * False unlocked result is impossible because we modify and check
706 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
707 	 * modification invalidates all existing locks.
708 	 *
709 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
710 	 * racing with vma_end_write_all(), we only start reading from the VMA
711 	 * after it has been unlocked.
712 	 * This pairs with RELEASE semantics in vma_end_write_all().
713 	 */
714 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
715 		up_read(&vma->vm_lock->lock);
716 		return false;
717 	}
718 	return true;
719 }
720 
721 static inline void vma_end_read(struct vm_area_struct *vma)
722 {
723 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
724 	up_read(&vma->vm_lock->lock);
725 	rcu_read_unlock();
726 }
727 
728 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
729 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
730 {
731 	mmap_assert_write_locked(vma->vm_mm);
732 
733 	/*
734 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
735 	 * mm->mm_lock_seq can't be concurrently modified.
736 	 */
737 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
738 	return (vma->vm_lock_seq == *mm_lock_seq);
739 }
740 
741 /*
742  * Begin writing to a VMA.
743  * Exclude concurrent readers under the per-VMA lock until the currently
744  * write-locked mmap_lock is dropped or downgraded.
745  */
746 static inline void vma_start_write(struct vm_area_struct *vma)
747 {
748 	int mm_lock_seq;
749 
750 	if (__is_vma_write_locked(vma, &mm_lock_seq))
751 		return;
752 
753 	down_write(&vma->vm_lock->lock);
754 	/*
755 	 * We should use WRITE_ONCE() here because we can have concurrent reads
756 	 * from the early lockless pessimistic check in vma_start_read().
757 	 * We don't really care about the correctness of that early check, but
758 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
759 	 */
760 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
761 	up_write(&vma->vm_lock->lock);
762 }
763 
764 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
765 {
766 	int mm_lock_seq;
767 
768 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
769 }
770 
771 static inline void vma_assert_locked(struct vm_area_struct *vma)
772 {
773 	if (!rwsem_is_locked(&vma->vm_lock->lock))
774 		vma_assert_write_locked(vma);
775 }
776 
777 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
778 {
779 	/* When detaching vma should be write-locked */
780 	if (detached)
781 		vma_assert_write_locked(vma);
782 	vma->detached = detached;
783 }
784 
785 static inline void release_fault_lock(struct vm_fault *vmf)
786 {
787 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
788 		vma_end_read(vmf->vma);
789 	else
790 		mmap_read_unlock(vmf->vma->vm_mm);
791 }
792 
793 static inline void assert_fault_locked(struct vm_fault *vmf)
794 {
795 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
796 		vma_assert_locked(vmf->vma);
797 	else
798 		mmap_assert_locked(vmf->vma->vm_mm);
799 }
800 
801 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
802 					  unsigned long address);
803 
804 #else /* CONFIG_PER_VMA_LOCK */
805 
806 static inline bool vma_start_read(struct vm_area_struct *vma)
807 		{ return false; }
808 static inline void vma_end_read(struct vm_area_struct *vma) {}
809 static inline void vma_start_write(struct vm_area_struct *vma) {}
810 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
811 		{ mmap_assert_write_locked(vma->vm_mm); }
812 static inline void vma_mark_detached(struct vm_area_struct *vma,
813 				     bool detached) {}
814 
815 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
816 		unsigned long address)
817 {
818 	return NULL;
819 }
820 
821 static inline void vma_assert_locked(struct vm_area_struct *vma)
822 {
823 	mmap_assert_locked(vma->vm_mm);
824 }
825 
826 static inline void release_fault_lock(struct vm_fault *vmf)
827 {
828 	mmap_read_unlock(vmf->vma->vm_mm);
829 }
830 
831 static inline void assert_fault_locked(struct vm_fault *vmf)
832 {
833 	mmap_assert_locked(vmf->vma->vm_mm);
834 }
835 
836 #endif /* CONFIG_PER_VMA_LOCK */
837 
838 extern const struct vm_operations_struct vma_dummy_vm_ops;
839 
840 /*
841  * WARNING: vma_init does not initialize vma->vm_lock.
842  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
843  */
844 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
845 {
846 	memset(vma, 0, sizeof(*vma));
847 	vma->vm_mm = mm;
848 	vma->vm_ops = &vma_dummy_vm_ops;
849 	INIT_LIST_HEAD(&vma->anon_vma_chain);
850 	vma_mark_detached(vma, false);
851 	vma_numab_state_init(vma);
852 }
853 
854 /* Use when VMA is not part of the VMA tree and needs no locking */
855 static inline void vm_flags_init(struct vm_area_struct *vma,
856 				 vm_flags_t flags)
857 {
858 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
859 }
860 
861 /*
862  * Use when VMA is part of the VMA tree and modifications need coordination
863  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
864  * it should be locked explicitly beforehand.
865  */
866 static inline void vm_flags_reset(struct vm_area_struct *vma,
867 				  vm_flags_t flags)
868 {
869 	vma_assert_write_locked(vma);
870 	vm_flags_init(vma, flags);
871 }
872 
873 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
874 				       vm_flags_t flags)
875 {
876 	vma_assert_write_locked(vma);
877 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
878 }
879 
880 static inline void vm_flags_set(struct vm_area_struct *vma,
881 				vm_flags_t flags)
882 {
883 	vma_start_write(vma);
884 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
885 }
886 
887 static inline void vm_flags_clear(struct vm_area_struct *vma,
888 				  vm_flags_t flags)
889 {
890 	vma_start_write(vma);
891 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
892 }
893 
894 /*
895  * Use only if VMA is not part of the VMA tree or has no other users and
896  * therefore needs no locking.
897  */
898 static inline void __vm_flags_mod(struct vm_area_struct *vma,
899 				  vm_flags_t set, vm_flags_t clear)
900 {
901 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
902 }
903 
904 /*
905  * Use only when the order of set/clear operations is unimportant, otherwise
906  * use vm_flags_{set|clear} explicitly.
907  */
908 static inline void vm_flags_mod(struct vm_area_struct *vma,
909 				vm_flags_t set, vm_flags_t clear)
910 {
911 	vma_start_write(vma);
912 	__vm_flags_mod(vma, set, clear);
913 }
914 
915 static inline void vma_set_anonymous(struct vm_area_struct *vma)
916 {
917 	vma->vm_ops = NULL;
918 }
919 
920 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
921 {
922 	return !vma->vm_ops;
923 }
924 
925 /*
926  * Indicate if the VMA is a heap for the given task; for
927  * /proc/PID/maps that is the heap of the main task.
928  */
929 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
930 {
931 	return vma->vm_start < vma->vm_mm->brk &&
932 		vma->vm_end > vma->vm_mm->start_brk;
933 }
934 
935 /*
936  * Indicate if the VMA is a stack for the given task; for
937  * /proc/PID/maps that is the stack of the main task.
938  */
939 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
940 {
941 	/*
942 	 * We make no effort to guess what a given thread considers to be
943 	 * its "stack".  It's not even well-defined for programs written
944 	 * languages like Go.
945 	 */
946 	return vma->vm_start <= vma->vm_mm->start_stack &&
947 		vma->vm_end >= vma->vm_mm->start_stack;
948 }
949 
950 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
951 {
952 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
953 
954 	if (!maybe_stack)
955 		return false;
956 
957 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
958 						VM_STACK_INCOMPLETE_SETUP)
959 		return true;
960 
961 	return false;
962 }
963 
964 static inline bool vma_is_foreign(struct vm_area_struct *vma)
965 {
966 	if (!current->mm)
967 		return true;
968 
969 	if (current->mm != vma->vm_mm)
970 		return true;
971 
972 	return false;
973 }
974 
975 static inline bool vma_is_accessible(struct vm_area_struct *vma)
976 {
977 	return vma->vm_flags & VM_ACCESS_FLAGS;
978 }
979 
980 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
981 {
982 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
983 		(VM_SHARED | VM_MAYWRITE);
984 }
985 
986 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
987 {
988 	return is_shared_maywrite(vma->vm_flags);
989 }
990 
991 static inline
992 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
993 {
994 	return mas_find(&vmi->mas, max - 1);
995 }
996 
997 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
998 {
999 	/*
1000 	 * Uses mas_find() to get the first VMA when the iterator starts.
1001 	 * Calling mas_next() could skip the first entry.
1002 	 */
1003 	return mas_find(&vmi->mas, ULONG_MAX);
1004 }
1005 
1006 static inline
1007 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1008 {
1009 	return mas_next_range(&vmi->mas, ULONG_MAX);
1010 }
1011 
1012 
1013 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1014 {
1015 	return mas_prev(&vmi->mas, 0);
1016 }
1017 
1018 static inline
1019 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1020 {
1021 	return mas_prev_range(&vmi->mas, 0);
1022 }
1023 
1024 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1025 {
1026 	return vmi->mas.index;
1027 }
1028 
1029 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1030 {
1031 	return vmi->mas.last + 1;
1032 }
1033 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1034 				      unsigned long count)
1035 {
1036 	return mas_expected_entries(&vmi->mas, count);
1037 }
1038 
1039 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1040 			unsigned long start, unsigned long end, gfp_t gfp)
1041 {
1042 	__mas_set_range(&vmi->mas, start, end - 1);
1043 	mas_store_gfp(&vmi->mas, NULL, gfp);
1044 	if (unlikely(mas_is_err(&vmi->mas)))
1045 		return -ENOMEM;
1046 
1047 	return 0;
1048 }
1049 
1050 /* Free any unused preallocations */
1051 static inline void vma_iter_free(struct vma_iterator *vmi)
1052 {
1053 	mas_destroy(&vmi->mas);
1054 }
1055 
1056 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1057 				      struct vm_area_struct *vma)
1058 {
1059 	vmi->mas.index = vma->vm_start;
1060 	vmi->mas.last = vma->vm_end - 1;
1061 	mas_store(&vmi->mas, vma);
1062 	if (unlikely(mas_is_err(&vmi->mas)))
1063 		return -ENOMEM;
1064 
1065 	return 0;
1066 }
1067 
1068 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1069 {
1070 	mas_pause(&vmi->mas);
1071 }
1072 
1073 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1074 {
1075 	mas_set(&vmi->mas, addr);
1076 }
1077 
1078 #define for_each_vma(__vmi, __vma)					\
1079 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1080 
1081 /* The MM code likes to work with exclusive end addresses */
1082 #define for_each_vma_range(__vmi, __vma, __end)				\
1083 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1084 
1085 #ifdef CONFIG_SHMEM
1086 /*
1087  * The vma_is_shmem is not inline because it is used only by slow
1088  * paths in userfault.
1089  */
1090 bool vma_is_shmem(struct vm_area_struct *vma);
1091 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1092 #else
1093 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1094 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1095 #endif
1096 
1097 int vma_is_stack_for_current(struct vm_area_struct *vma);
1098 
1099 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1100 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1101 
1102 struct mmu_gather;
1103 struct inode;
1104 
1105 /*
1106  * compound_order() can be called without holding a reference, which means
1107  * that niceties like page_folio() don't work.  These callers should be
1108  * prepared to handle wild return values.  For example, PG_head may be
1109  * set before the order is initialised, or this may be a tail page.
1110  * See compaction.c for some good examples.
1111  */
1112 static inline unsigned int compound_order(struct page *page)
1113 {
1114 	struct folio *folio = (struct folio *)page;
1115 
1116 	if (!test_bit(PG_head, &folio->flags))
1117 		return 0;
1118 	return folio->_flags_1 & 0xff;
1119 }
1120 
1121 /**
1122  * folio_order - The allocation order of a folio.
1123  * @folio: The folio.
1124  *
1125  * A folio is composed of 2^order pages.  See get_order() for the definition
1126  * of order.
1127  *
1128  * Return: The order of the folio.
1129  */
1130 static inline unsigned int folio_order(const struct folio *folio)
1131 {
1132 	if (!folio_test_large(folio))
1133 		return 0;
1134 	return folio->_flags_1 & 0xff;
1135 }
1136 
1137 #include <linux/huge_mm.h>
1138 
1139 /*
1140  * Methods to modify the page usage count.
1141  *
1142  * What counts for a page usage:
1143  * - cache mapping   (page->mapping)
1144  * - private data    (page->private)
1145  * - page mapped in a task's page tables, each mapping
1146  *   is counted separately
1147  *
1148  * Also, many kernel routines increase the page count before a critical
1149  * routine so they can be sure the page doesn't go away from under them.
1150  */
1151 
1152 /*
1153  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1154  */
1155 static inline int put_page_testzero(struct page *page)
1156 {
1157 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1158 	return page_ref_dec_and_test(page);
1159 }
1160 
1161 static inline int folio_put_testzero(struct folio *folio)
1162 {
1163 	return put_page_testzero(&folio->page);
1164 }
1165 
1166 /*
1167  * Try to grab a ref unless the page has a refcount of zero, return false if
1168  * that is the case.
1169  * This can be called when MMU is off so it must not access
1170  * any of the virtual mappings.
1171  */
1172 static inline bool get_page_unless_zero(struct page *page)
1173 {
1174 	return page_ref_add_unless(page, 1, 0);
1175 }
1176 
1177 static inline struct folio *folio_get_nontail_page(struct page *page)
1178 {
1179 	if (unlikely(!get_page_unless_zero(page)))
1180 		return NULL;
1181 	return (struct folio *)page;
1182 }
1183 
1184 extern int page_is_ram(unsigned long pfn);
1185 
1186 enum {
1187 	REGION_INTERSECTS,
1188 	REGION_DISJOINT,
1189 	REGION_MIXED,
1190 };
1191 
1192 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1193 		      unsigned long desc);
1194 
1195 /* Support for virtually mapped pages */
1196 struct page *vmalloc_to_page(const void *addr);
1197 unsigned long vmalloc_to_pfn(const void *addr);
1198 
1199 /*
1200  * Determine if an address is within the vmalloc range
1201  *
1202  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1203  * is no special casing required.
1204  */
1205 #ifdef CONFIG_MMU
1206 extern bool is_vmalloc_addr(const void *x);
1207 extern int is_vmalloc_or_module_addr(const void *x);
1208 #else
1209 static inline bool is_vmalloc_addr(const void *x)
1210 {
1211 	return false;
1212 }
1213 static inline int is_vmalloc_or_module_addr(const void *x)
1214 {
1215 	return 0;
1216 }
1217 #endif
1218 
1219 /*
1220  * How many times the entire folio is mapped as a single unit (eg by a
1221  * PMD or PUD entry).  This is probably not what you want, except for
1222  * debugging purposes or implementation of other core folio_*() primitives.
1223  */
1224 static inline int folio_entire_mapcount(const struct folio *folio)
1225 {
1226 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1227 	return atomic_read(&folio->_entire_mapcount) + 1;
1228 }
1229 
1230 static inline int folio_large_mapcount(const struct folio *folio)
1231 {
1232 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1233 	return atomic_read(&folio->_large_mapcount) + 1;
1234 }
1235 
1236 /**
1237  * folio_mapcount() - Number of mappings of this folio.
1238  * @folio: The folio.
1239  *
1240  * The folio mapcount corresponds to the number of present user page table
1241  * entries that reference any part of a folio. Each such present user page
1242  * table entry must be paired with exactly on folio reference.
1243  *
1244  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1245  * exactly once.
1246  *
1247  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1248  * references the entire folio counts exactly once, even when such special
1249  * page table entries are comprised of multiple ordinary page table entries.
1250  *
1251  * Will report 0 for pages which cannot be mapped into userspace, such as
1252  * slab, page tables and similar.
1253  *
1254  * Return: The number of times this folio is mapped.
1255  */
1256 static inline int folio_mapcount(const struct folio *folio)
1257 {
1258 	int mapcount;
1259 
1260 	if (likely(!folio_test_large(folio))) {
1261 		mapcount = atomic_read(&folio->_mapcount) + 1;
1262 		/* Handle page_has_type() pages */
1263 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1264 			mapcount = 0;
1265 		return mapcount;
1266 	}
1267 	return folio_large_mapcount(folio);
1268 }
1269 
1270 /**
1271  * folio_mapped - Is this folio mapped into userspace?
1272  * @folio: The folio.
1273  *
1274  * Return: True if any page in this folio is referenced by user page tables.
1275  */
1276 static inline bool folio_mapped(const struct folio *folio)
1277 {
1278 	return folio_mapcount(folio) >= 1;
1279 }
1280 
1281 /*
1282  * Return true if this page is mapped into pagetables.
1283  * For compound page it returns true if any sub-page of compound page is mapped,
1284  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1285  */
1286 static inline bool page_mapped(const struct page *page)
1287 {
1288 	return folio_mapped(page_folio(page));
1289 }
1290 
1291 static inline struct page *virt_to_head_page(const void *x)
1292 {
1293 	struct page *page = virt_to_page(x);
1294 
1295 	return compound_head(page);
1296 }
1297 
1298 static inline struct folio *virt_to_folio(const void *x)
1299 {
1300 	struct page *page = virt_to_page(x);
1301 
1302 	return page_folio(page);
1303 }
1304 
1305 void __folio_put(struct folio *folio);
1306 
1307 void put_pages_list(struct list_head *pages);
1308 
1309 void split_page(struct page *page, unsigned int order);
1310 void folio_copy(struct folio *dst, struct folio *src);
1311 int folio_mc_copy(struct folio *dst, struct folio *src);
1312 
1313 unsigned long nr_free_buffer_pages(void);
1314 
1315 /* Returns the number of bytes in this potentially compound page. */
1316 static inline unsigned long page_size(struct page *page)
1317 {
1318 	return PAGE_SIZE << compound_order(page);
1319 }
1320 
1321 /* Returns the number of bits needed for the number of bytes in a page */
1322 static inline unsigned int page_shift(struct page *page)
1323 {
1324 	return PAGE_SHIFT + compound_order(page);
1325 }
1326 
1327 /**
1328  * thp_order - Order of a transparent huge page.
1329  * @page: Head page of a transparent huge page.
1330  */
1331 static inline unsigned int thp_order(struct page *page)
1332 {
1333 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1334 	return compound_order(page);
1335 }
1336 
1337 /**
1338  * thp_size - Size of a transparent huge page.
1339  * @page: Head page of a transparent huge page.
1340  *
1341  * Return: Number of bytes in this page.
1342  */
1343 static inline unsigned long thp_size(struct page *page)
1344 {
1345 	return PAGE_SIZE << thp_order(page);
1346 }
1347 
1348 #ifdef CONFIG_MMU
1349 /*
1350  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1351  * servicing faults for write access.  In the normal case, do always want
1352  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1353  * that do not have writing enabled, when used by access_process_vm.
1354  */
1355 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1356 {
1357 	if (likely(vma->vm_flags & VM_WRITE))
1358 		pte = pte_mkwrite(pte, vma);
1359 	return pte;
1360 }
1361 
1362 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1363 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1364 		struct page *page, unsigned int nr, unsigned long addr);
1365 
1366 vm_fault_t finish_fault(struct vm_fault *vmf);
1367 #endif
1368 
1369 /*
1370  * Multiple processes may "see" the same page. E.g. for untouched
1371  * mappings of /dev/null, all processes see the same page full of
1372  * zeroes, and text pages of executables and shared libraries have
1373  * only one copy in memory, at most, normally.
1374  *
1375  * For the non-reserved pages, page_count(page) denotes a reference count.
1376  *   page_count() == 0 means the page is free. page->lru is then used for
1377  *   freelist management in the buddy allocator.
1378  *   page_count() > 0  means the page has been allocated.
1379  *
1380  * Pages are allocated by the slab allocator in order to provide memory
1381  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1382  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1383  * unless a particular usage is carefully commented. (the responsibility of
1384  * freeing the kmalloc memory is the caller's, of course).
1385  *
1386  * A page may be used by anyone else who does a __get_free_page().
1387  * In this case, page_count still tracks the references, and should only
1388  * be used through the normal accessor functions. The top bits of page->flags
1389  * and page->virtual store page management information, but all other fields
1390  * are unused and could be used privately, carefully. The management of this
1391  * page is the responsibility of the one who allocated it, and those who have
1392  * subsequently been given references to it.
1393  *
1394  * The other pages (we may call them "pagecache pages") are completely
1395  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1396  * The following discussion applies only to them.
1397  *
1398  * A pagecache page contains an opaque `private' member, which belongs to the
1399  * page's address_space. Usually, this is the address of a circular list of
1400  * the page's disk buffers. PG_private must be set to tell the VM to call
1401  * into the filesystem to release these pages.
1402  *
1403  * A page may belong to an inode's memory mapping. In this case, page->mapping
1404  * is the pointer to the inode, and page->index is the file offset of the page,
1405  * in units of PAGE_SIZE.
1406  *
1407  * If pagecache pages are not associated with an inode, they are said to be
1408  * anonymous pages. These may become associated with the swapcache, and in that
1409  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1410  *
1411  * In either case (swapcache or inode backed), the pagecache itself holds one
1412  * reference to the page. Setting PG_private should also increment the
1413  * refcount. The each user mapping also has a reference to the page.
1414  *
1415  * The pagecache pages are stored in a per-mapping radix tree, which is
1416  * rooted at mapping->i_pages, and indexed by offset.
1417  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1418  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1419  *
1420  * All pagecache pages may be subject to I/O:
1421  * - inode pages may need to be read from disk,
1422  * - inode pages which have been modified and are MAP_SHARED may need
1423  *   to be written back to the inode on disk,
1424  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1425  *   modified may need to be swapped out to swap space and (later) to be read
1426  *   back into memory.
1427  */
1428 
1429 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1430 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1431 
1432 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1433 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1434 {
1435 	if (!static_branch_unlikely(&devmap_managed_key))
1436 		return false;
1437 	if (!folio_is_zone_device(folio))
1438 		return false;
1439 	return __put_devmap_managed_folio_refs(folio, refs);
1440 }
1441 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1442 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1443 {
1444 	return false;
1445 }
1446 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1447 
1448 /* 127: arbitrary random number, small enough to assemble well */
1449 #define folio_ref_zero_or_close_to_overflow(folio) \
1450 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1451 
1452 /**
1453  * folio_get - Increment the reference count on a folio.
1454  * @folio: The folio.
1455  *
1456  * Context: May be called in any context, as long as you know that
1457  * you have a refcount on the folio.  If you do not already have one,
1458  * folio_try_get() may be the right interface for you to use.
1459  */
1460 static inline void folio_get(struct folio *folio)
1461 {
1462 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1463 	folio_ref_inc(folio);
1464 }
1465 
1466 static inline void get_page(struct page *page)
1467 {
1468 	folio_get(page_folio(page));
1469 }
1470 
1471 static inline __must_check bool try_get_page(struct page *page)
1472 {
1473 	page = compound_head(page);
1474 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1475 		return false;
1476 	page_ref_inc(page);
1477 	return true;
1478 }
1479 
1480 /**
1481  * folio_put - Decrement the reference count on a folio.
1482  * @folio: The folio.
1483  *
1484  * If the folio's reference count reaches zero, the memory will be
1485  * released back to the page allocator and may be used by another
1486  * allocation immediately.  Do not access the memory or the struct folio
1487  * after calling folio_put() unless you can be sure that it wasn't the
1488  * last reference.
1489  *
1490  * Context: May be called in process or interrupt context, but not in NMI
1491  * context.  May be called while holding a spinlock.
1492  */
1493 static inline void folio_put(struct folio *folio)
1494 {
1495 	if (folio_put_testzero(folio))
1496 		__folio_put(folio);
1497 }
1498 
1499 /**
1500  * folio_put_refs - Reduce the reference count on a folio.
1501  * @folio: The folio.
1502  * @refs: The amount to subtract from the folio's reference count.
1503  *
1504  * If the folio's reference count reaches zero, the memory will be
1505  * released back to the page allocator and may be used by another
1506  * allocation immediately.  Do not access the memory or the struct folio
1507  * after calling folio_put_refs() unless you can be sure that these weren't
1508  * the last references.
1509  *
1510  * Context: May be called in process or interrupt context, but not in NMI
1511  * context.  May be called while holding a spinlock.
1512  */
1513 static inline void folio_put_refs(struct folio *folio, int refs)
1514 {
1515 	if (folio_ref_sub_and_test(folio, refs))
1516 		__folio_put(folio);
1517 }
1518 
1519 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1520 
1521 /*
1522  * union release_pages_arg - an array of pages or folios
1523  *
1524  * release_pages() releases a simple array of multiple pages, and
1525  * accepts various different forms of said page array: either
1526  * a regular old boring array of pages, an array of folios, or
1527  * an array of encoded page pointers.
1528  *
1529  * The transparent union syntax for this kind of "any of these
1530  * argument types" is all kinds of ugly, so look away.
1531  */
1532 typedef union {
1533 	struct page **pages;
1534 	struct folio **folios;
1535 	struct encoded_page **encoded_pages;
1536 } release_pages_arg __attribute__ ((__transparent_union__));
1537 
1538 void release_pages(release_pages_arg, int nr);
1539 
1540 /**
1541  * folios_put - Decrement the reference count on an array of folios.
1542  * @folios: The folios.
1543  *
1544  * Like folio_put(), but for a batch of folios.  This is more efficient
1545  * than writing the loop yourself as it will optimise the locks which need
1546  * to be taken if the folios are freed.  The folios batch is returned
1547  * empty and ready to be reused for another batch; there is no need to
1548  * reinitialise it.
1549  *
1550  * Context: May be called in process or interrupt context, but not in NMI
1551  * context.  May be called while holding a spinlock.
1552  */
1553 static inline void folios_put(struct folio_batch *folios)
1554 {
1555 	folios_put_refs(folios, NULL);
1556 }
1557 
1558 static inline void put_page(struct page *page)
1559 {
1560 	struct folio *folio = page_folio(page);
1561 
1562 	/*
1563 	 * For some devmap managed pages we need to catch refcount transition
1564 	 * from 2 to 1:
1565 	 */
1566 	if (put_devmap_managed_folio_refs(folio, 1))
1567 		return;
1568 	folio_put(folio);
1569 }
1570 
1571 /*
1572  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1573  * the page's refcount so that two separate items are tracked: the original page
1574  * reference count, and also a new count of how many pin_user_pages() calls were
1575  * made against the page. ("gup-pinned" is another term for the latter).
1576  *
1577  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1578  * distinct from normal pages. As such, the unpin_user_page() call (and its
1579  * variants) must be used in order to release gup-pinned pages.
1580  *
1581  * Choice of value:
1582  *
1583  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1584  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1585  * simpler, due to the fact that adding an even power of two to the page
1586  * refcount has the effect of using only the upper N bits, for the code that
1587  * counts up using the bias value. This means that the lower bits are left for
1588  * the exclusive use of the original code that increments and decrements by one
1589  * (or at least, by much smaller values than the bias value).
1590  *
1591  * Of course, once the lower bits overflow into the upper bits (and this is
1592  * OK, because subtraction recovers the original values), then visual inspection
1593  * no longer suffices to directly view the separate counts. However, for normal
1594  * applications that don't have huge page reference counts, this won't be an
1595  * issue.
1596  *
1597  * Locking: the lockless algorithm described in folio_try_get_rcu()
1598  * provides safe operation for get_user_pages(), folio_mkclean() and
1599  * other calls that race to set up page table entries.
1600  */
1601 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1602 
1603 void unpin_user_page(struct page *page);
1604 void unpin_folio(struct folio *folio);
1605 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1606 				 bool make_dirty);
1607 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1608 				      bool make_dirty);
1609 void unpin_user_pages(struct page **pages, unsigned long npages);
1610 void unpin_user_folio(struct folio *folio, unsigned long npages);
1611 void unpin_folios(struct folio **folios, unsigned long nfolios);
1612 
1613 static inline bool is_cow_mapping(vm_flags_t flags)
1614 {
1615 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1616 }
1617 
1618 #ifndef CONFIG_MMU
1619 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1620 {
1621 	/*
1622 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1623 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1624 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1625 	 * underlying memory if ptrace is active, so this is only possible if
1626 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1627 	 * write permissions later.
1628 	 */
1629 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1630 }
1631 #endif
1632 
1633 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1634 #define SECTION_IN_PAGE_FLAGS
1635 #endif
1636 
1637 /*
1638  * The identification function is mainly used by the buddy allocator for
1639  * determining if two pages could be buddies. We are not really identifying
1640  * the zone since we could be using the section number id if we do not have
1641  * node id available in page flags.
1642  * We only guarantee that it will return the same value for two combinable
1643  * pages in a zone.
1644  */
1645 static inline int page_zone_id(struct page *page)
1646 {
1647 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1648 }
1649 
1650 #ifdef NODE_NOT_IN_PAGE_FLAGS
1651 int page_to_nid(const struct page *page);
1652 #else
1653 static inline int page_to_nid(const struct page *page)
1654 {
1655 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1656 }
1657 #endif
1658 
1659 static inline int folio_nid(const struct folio *folio)
1660 {
1661 	return page_to_nid(&folio->page);
1662 }
1663 
1664 #ifdef CONFIG_NUMA_BALANCING
1665 /* page access time bits needs to hold at least 4 seconds */
1666 #define PAGE_ACCESS_TIME_MIN_BITS	12
1667 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1668 #define PAGE_ACCESS_TIME_BUCKETS				\
1669 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1670 #else
1671 #define PAGE_ACCESS_TIME_BUCKETS	0
1672 #endif
1673 
1674 #define PAGE_ACCESS_TIME_MASK				\
1675 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1676 
1677 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1678 {
1679 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1680 }
1681 
1682 static inline int cpupid_to_pid(int cpupid)
1683 {
1684 	return cpupid & LAST__PID_MASK;
1685 }
1686 
1687 static inline int cpupid_to_cpu(int cpupid)
1688 {
1689 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1690 }
1691 
1692 static inline int cpupid_to_nid(int cpupid)
1693 {
1694 	return cpu_to_node(cpupid_to_cpu(cpupid));
1695 }
1696 
1697 static inline bool cpupid_pid_unset(int cpupid)
1698 {
1699 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1700 }
1701 
1702 static inline bool cpupid_cpu_unset(int cpupid)
1703 {
1704 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1705 }
1706 
1707 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1708 {
1709 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1710 }
1711 
1712 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1713 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1714 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1715 {
1716 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1717 }
1718 
1719 static inline int folio_last_cpupid(struct folio *folio)
1720 {
1721 	return folio->_last_cpupid;
1722 }
1723 static inline void page_cpupid_reset_last(struct page *page)
1724 {
1725 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1726 }
1727 #else
1728 static inline int folio_last_cpupid(struct folio *folio)
1729 {
1730 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1731 }
1732 
1733 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1734 
1735 static inline void page_cpupid_reset_last(struct page *page)
1736 {
1737 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1738 }
1739 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1740 
1741 static inline int folio_xchg_access_time(struct folio *folio, int time)
1742 {
1743 	int last_time;
1744 
1745 	last_time = folio_xchg_last_cpupid(folio,
1746 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1747 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1748 }
1749 
1750 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1751 {
1752 	unsigned int pid_bit;
1753 
1754 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1755 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1756 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1757 	}
1758 }
1759 #else /* !CONFIG_NUMA_BALANCING */
1760 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1761 {
1762 	return folio_nid(folio); /* XXX */
1763 }
1764 
1765 static inline int folio_xchg_access_time(struct folio *folio, int time)
1766 {
1767 	return 0;
1768 }
1769 
1770 static inline int folio_last_cpupid(struct folio *folio)
1771 {
1772 	return folio_nid(folio); /* XXX */
1773 }
1774 
1775 static inline int cpupid_to_nid(int cpupid)
1776 {
1777 	return -1;
1778 }
1779 
1780 static inline int cpupid_to_pid(int cpupid)
1781 {
1782 	return -1;
1783 }
1784 
1785 static inline int cpupid_to_cpu(int cpupid)
1786 {
1787 	return -1;
1788 }
1789 
1790 static inline int cpu_pid_to_cpupid(int nid, int pid)
1791 {
1792 	return -1;
1793 }
1794 
1795 static inline bool cpupid_pid_unset(int cpupid)
1796 {
1797 	return true;
1798 }
1799 
1800 static inline void page_cpupid_reset_last(struct page *page)
1801 {
1802 }
1803 
1804 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1805 {
1806 	return false;
1807 }
1808 
1809 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1810 {
1811 }
1812 #endif /* CONFIG_NUMA_BALANCING */
1813 
1814 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1815 
1816 /*
1817  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1818  * setting tags for all pages to native kernel tag value 0xff, as the default
1819  * value 0x00 maps to 0xff.
1820  */
1821 
1822 static inline u8 page_kasan_tag(const struct page *page)
1823 {
1824 	u8 tag = KASAN_TAG_KERNEL;
1825 
1826 	if (kasan_enabled()) {
1827 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1828 		tag ^= 0xff;
1829 	}
1830 
1831 	return tag;
1832 }
1833 
1834 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1835 {
1836 	unsigned long old_flags, flags;
1837 
1838 	if (!kasan_enabled())
1839 		return;
1840 
1841 	tag ^= 0xff;
1842 	old_flags = READ_ONCE(page->flags);
1843 	do {
1844 		flags = old_flags;
1845 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1846 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1847 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1848 }
1849 
1850 static inline void page_kasan_tag_reset(struct page *page)
1851 {
1852 	if (kasan_enabled())
1853 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1854 }
1855 
1856 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1857 
1858 static inline u8 page_kasan_tag(const struct page *page)
1859 {
1860 	return 0xff;
1861 }
1862 
1863 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1864 static inline void page_kasan_tag_reset(struct page *page) { }
1865 
1866 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1867 
1868 static inline struct zone *page_zone(const struct page *page)
1869 {
1870 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1871 }
1872 
1873 static inline pg_data_t *page_pgdat(const struct page *page)
1874 {
1875 	return NODE_DATA(page_to_nid(page));
1876 }
1877 
1878 static inline struct zone *folio_zone(const struct folio *folio)
1879 {
1880 	return page_zone(&folio->page);
1881 }
1882 
1883 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1884 {
1885 	return page_pgdat(&folio->page);
1886 }
1887 
1888 #ifdef SECTION_IN_PAGE_FLAGS
1889 static inline void set_page_section(struct page *page, unsigned long section)
1890 {
1891 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1892 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1893 }
1894 
1895 static inline unsigned long page_to_section(const struct page *page)
1896 {
1897 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1898 }
1899 #endif
1900 
1901 /**
1902  * folio_pfn - Return the Page Frame Number of a folio.
1903  * @folio: The folio.
1904  *
1905  * A folio may contain multiple pages.  The pages have consecutive
1906  * Page Frame Numbers.
1907  *
1908  * Return: The Page Frame Number of the first page in the folio.
1909  */
1910 static inline unsigned long folio_pfn(struct folio *folio)
1911 {
1912 	return page_to_pfn(&folio->page);
1913 }
1914 
1915 static inline struct folio *pfn_folio(unsigned long pfn)
1916 {
1917 	return page_folio(pfn_to_page(pfn));
1918 }
1919 
1920 /**
1921  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1922  * @folio: The folio.
1923  *
1924  * This function checks if a folio has been pinned via a call to
1925  * a function in the pin_user_pages() family.
1926  *
1927  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1928  * because it means "definitely not pinned for DMA", but true means "probably
1929  * pinned for DMA, but possibly a false positive due to having at least
1930  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1931  *
1932  * False positives are OK, because: a) it's unlikely for a folio to
1933  * get that many refcounts, and b) all the callers of this routine are
1934  * expected to be able to deal gracefully with a false positive.
1935  *
1936  * For large folios, the result will be exactly correct. That's because
1937  * we have more tracking data available: the _pincount field is used
1938  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1939  *
1940  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1941  *
1942  * Return: True, if it is likely that the folio has been "dma-pinned".
1943  * False, if the folio is definitely not dma-pinned.
1944  */
1945 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1946 {
1947 	if (folio_test_large(folio))
1948 		return atomic_read(&folio->_pincount) > 0;
1949 
1950 	/*
1951 	 * folio_ref_count() is signed. If that refcount overflows, then
1952 	 * folio_ref_count() returns a negative value, and callers will avoid
1953 	 * further incrementing the refcount.
1954 	 *
1955 	 * Here, for that overflow case, use the sign bit to count a little
1956 	 * bit higher via unsigned math, and thus still get an accurate result.
1957 	 */
1958 	return ((unsigned int)folio_ref_count(folio)) >=
1959 		GUP_PIN_COUNTING_BIAS;
1960 }
1961 
1962 /*
1963  * This should most likely only be called during fork() to see whether we
1964  * should break the cow immediately for an anon page on the src mm.
1965  *
1966  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1967  */
1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1969 					  struct folio *folio)
1970 {
1971 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1972 
1973 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1974 		return false;
1975 
1976 	return folio_maybe_dma_pinned(folio);
1977 }
1978 
1979 /**
1980  * is_zero_page - Query if a page is a zero page
1981  * @page: The page to query
1982  *
1983  * This returns true if @page is one of the permanent zero pages.
1984  */
1985 static inline bool is_zero_page(const struct page *page)
1986 {
1987 	return is_zero_pfn(page_to_pfn(page));
1988 }
1989 
1990 /**
1991  * is_zero_folio - Query if a folio is a zero page
1992  * @folio: The folio to query
1993  *
1994  * This returns true if @folio is one of the permanent zero pages.
1995  */
1996 static inline bool is_zero_folio(const struct folio *folio)
1997 {
1998 	return is_zero_page(&folio->page);
1999 }
2000 
2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2002 #ifdef CONFIG_MIGRATION
2003 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2004 {
2005 #ifdef CONFIG_CMA
2006 	int mt = folio_migratetype(folio);
2007 
2008 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2009 		return false;
2010 #endif
2011 	/* The zero page can be "pinned" but gets special handling. */
2012 	if (is_zero_folio(folio))
2013 		return true;
2014 
2015 	/* Coherent device memory must always allow eviction. */
2016 	if (folio_is_device_coherent(folio))
2017 		return false;
2018 
2019 	/* Otherwise, non-movable zone folios can be pinned. */
2020 	return !folio_is_zone_movable(folio);
2021 
2022 }
2023 #else
2024 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2025 {
2026 	return true;
2027 }
2028 #endif
2029 
2030 static inline void set_page_zone(struct page *page, enum zone_type zone)
2031 {
2032 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2033 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2034 }
2035 
2036 static inline void set_page_node(struct page *page, unsigned long node)
2037 {
2038 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2039 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2040 }
2041 
2042 static inline void set_page_links(struct page *page, enum zone_type zone,
2043 	unsigned long node, unsigned long pfn)
2044 {
2045 	set_page_zone(page, zone);
2046 	set_page_node(page, node);
2047 #ifdef SECTION_IN_PAGE_FLAGS
2048 	set_page_section(page, pfn_to_section_nr(pfn));
2049 #endif
2050 }
2051 
2052 /**
2053  * folio_nr_pages - The number of pages in the folio.
2054  * @folio: The folio.
2055  *
2056  * Return: A positive power of two.
2057  */
2058 static inline long folio_nr_pages(const struct folio *folio)
2059 {
2060 	if (!folio_test_large(folio))
2061 		return 1;
2062 #ifdef CONFIG_64BIT
2063 	return folio->_folio_nr_pages;
2064 #else
2065 	return 1L << (folio->_flags_1 & 0xff);
2066 #endif
2067 }
2068 
2069 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2071 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2072 #else
2073 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2074 #endif
2075 
2076 /*
2077  * compound_nr() returns the number of pages in this potentially compound
2078  * page.  compound_nr() can be called on a tail page, and is defined to
2079  * return 1 in that case.
2080  */
2081 static inline unsigned long compound_nr(struct page *page)
2082 {
2083 	struct folio *folio = (struct folio *)page;
2084 
2085 	if (!test_bit(PG_head, &folio->flags))
2086 		return 1;
2087 #ifdef CONFIG_64BIT
2088 	return folio->_folio_nr_pages;
2089 #else
2090 	return 1L << (folio->_flags_1 & 0xff);
2091 #endif
2092 }
2093 
2094 /**
2095  * thp_nr_pages - The number of regular pages in this huge page.
2096  * @page: The head page of a huge page.
2097  */
2098 static inline int thp_nr_pages(struct page *page)
2099 {
2100 	return folio_nr_pages((struct folio *)page);
2101 }
2102 
2103 /**
2104  * folio_next - Move to the next physical folio.
2105  * @folio: The folio we're currently operating on.
2106  *
2107  * If you have physically contiguous memory which may span more than
2108  * one folio (eg a &struct bio_vec), use this function to move from one
2109  * folio to the next.  Do not use it if the memory is only virtually
2110  * contiguous as the folios are almost certainly not adjacent to each
2111  * other.  This is the folio equivalent to writing ``page++``.
2112  *
2113  * Context: We assume that the folios are refcounted and/or locked at a
2114  * higher level and do not adjust the reference counts.
2115  * Return: The next struct folio.
2116  */
2117 static inline struct folio *folio_next(struct folio *folio)
2118 {
2119 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2120 }
2121 
2122 /**
2123  * folio_shift - The size of the memory described by this folio.
2124  * @folio: The folio.
2125  *
2126  * A folio represents a number of bytes which is a power-of-two in size.
2127  * This function tells you which power-of-two the folio is.  See also
2128  * folio_size() and folio_order().
2129  *
2130  * Context: The caller should have a reference on the folio to prevent
2131  * it from being split.  It is not necessary for the folio to be locked.
2132  * Return: The base-2 logarithm of the size of this folio.
2133  */
2134 static inline unsigned int folio_shift(const struct folio *folio)
2135 {
2136 	return PAGE_SHIFT + folio_order(folio);
2137 }
2138 
2139 /**
2140  * folio_size - The number of bytes in a folio.
2141  * @folio: The folio.
2142  *
2143  * Context: The caller should have a reference on the folio to prevent
2144  * it from being split.  It is not necessary for the folio to be locked.
2145  * Return: The number of bytes in this folio.
2146  */
2147 static inline size_t folio_size(const struct folio *folio)
2148 {
2149 	return PAGE_SIZE << folio_order(folio);
2150 }
2151 
2152 /**
2153  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2154  *				tables of more than one MM
2155  * @folio: The folio.
2156  *
2157  * This function checks if the folio is currently mapped into more than one
2158  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2159  * ("mapped exclusively").
2160  *
2161  * As precise information is not easily available for all folios, this function
2162  * estimates the number of MMs ("sharers") that are currently mapping a folio
2163  * using the number of times the first page of the folio is currently mapped
2164  * into page tables.
2165  *
2166  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2167  * the return value will be exactly correct, because they can only be mapped
2168  * at most once into an MM, and they cannot be partially mapped.
2169  *
2170  * For other folios, the result can be fuzzy:
2171  *    #. For partially-mappable large folios (THP), the return value can wrongly
2172  *       indicate "mapped exclusively" (false negative) when the folio is
2173  *       only partially mapped into at least one MM.
2174  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2175  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2176  *       cover the same file range.
2177  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2178  *       shared" (false positive), when the folio is mapped multiple times into
2179  *       the same MM.
2180  *
2181  * Further, this function only considers current page table mappings that
2182  * are tracked using the folio mapcount(s).
2183  *
2184  * This function does not consider:
2185  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2186  *       pagecache, temporary unmapping for migration).
2187  *    #. If the folio is mapped differently (VM_PFNMAP).
2188  *    #. If hugetlb page table sharing applies. Callers might want to check
2189  *       hugetlb_pmd_shared().
2190  *
2191  * Return: Whether the folio is estimated to be mapped into more than one MM.
2192  */
2193 static inline bool folio_likely_mapped_shared(struct folio *folio)
2194 {
2195 	int mapcount = folio_mapcount(folio);
2196 
2197 	/* Only partially-mappable folios require more care. */
2198 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2199 		return mapcount > 1;
2200 
2201 	/* A single mapping implies "mapped exclusively". */
2202 	if (mapcount <= 1)
2203 		return false;
2204 
2205 	/* If any page is mapped more than once we treat it "mapped shared". */
2206 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2207 		return true;
2208 
2209 	/* Let's guess based on the first subpage. */
2210 	return atomic_read(&folio->_mapcount) > 0;
2211 }
2212 
2213 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2214 static inline int arch_make_page_accessible(struct page *page)
2215 {
2216 	return 0;
2217 }
2218 #endif
2219 
2220 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2221 static inline int arch_make_folio_accessible(struct folio *folio)
2222 {
2223 	int ret;
2224 	long i, nr = folio_nr_pages(folio);
2225 
2226 	for (i = 0; i < nr; i++) {
2227 		ret = arch_make_page_accessible(folio_page(folio, i));
2228 		if (ret)
2229 			break;
2230 	}
2231 
2232 	return ret;
2233 }
2234 #endif
2235 
2236 /*
2237  * Some inline functions in vmstat.h depend on page_zone()
2238  */
2239 #include <linux/vmstat.h>
2240 
2241 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2242 #define HASHED_PAGE_VIRTUAL
2243 #endif
2244 
2245 #if defined(WANT_PAGE_VIRTUAL)
2246 static inline void *page_address(const struct page *page)
2247 {
2248 	return page->virtual;
2249 }
2250 static inline void set_page_address(struct page *page, void *address)
2251 {
2252 	page->virtual = address;
2253 }
2254 #define page_address_init()  do { } while(0)
2255 #endif
2256 
2257 #if defined(HASHED_PAGE_VIRTUAL)
2258 void *page_address(const struct page *page);
2259 void set_page_address(struct page *page, void *virtual);
2260 void page_address_init(void);
2261 #endif
2262 
2263 static __always_inline void *lowmem_page_address(const struct page *page)
2264 {
2265 	return page_to_virt(page);
2266 }
2267 
2268 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2269 #define page_address(page) lowmem_page_address(page)
2270 #define set_page_address(page, address)  do { } while(0)
2271 #define page_address_init()  do { } while(0)
2272 #endif
2273 
2274 static inline void *folio_address(const struct folio *folio)
2275 {
2276 	return page_address(&folio->page);
2277 }
2278 
2279 /*
2280  * Return true only if the page has been allocated with
2281  * ALLOC_NO_WATERMARKS and the low watermark was not
2282  * met implying that the system is under some pressure.
2283  */
2284 static inline bool page_is_pfmemalloc(const struct page *page)
2285 {
2286 	/*
2287 	 * lru.next has bit 1 set if the page is allocated from the
2288 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2289 	 * they do not need to preserve that information.
2290 	 */
2291 	return (uintptr_t)page->lru.next & BIT(1);
2292 }
2293 
2294 /*
2295  * Return true only if the folio has been allocated with
2296  * ALLOC_NO_WATERMARKS and the low watermark was not
2297  * met implying that the system is under some pressure.
2298  */
2299 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2300 {
2301 	/*
2302 	 * lru.next has bit 1 set if the page is allocated from the
2303 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2304 	 * they do not need to preserve that information.
2305 	 */
2306 	return (uintptr_t)folio->lru.next & BIT(1);
2307 }
2308 
2309 /*
2310  * Only to be called by the page allocator on a freshly allocated
2311  * page.
2312  */
2313 static inline void set_page_pfmemalloc(struct page *page)
2314 {
2315 	page->lru.next = (void *)BIT(1);
2316 }
2317 
2318 static inline void clear_page_pfmemalloc(struct page *page)
2319 {
2320 	page->lru.next = NULL;
2321 }
2322 
2323 /*
2324  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2325  */
2326 extern void pagefault_out_of_memory(void);
2327 
2328 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2329 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2330 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2331 
2332 /*
2333  * Parameter block passed down to zap_pte_range in exceptional cases.
2334  */
2335 struct zap_details {
2336 	struct folio *single_folio;	/* Locked folio to be unmapped */
2337 	bool even_cows;			/* Zap COWed private pages too? */
2338 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2339 };
2340 
2341 /*
2342  * Whether to drop the pte markers, for example, the uffd-wp information for
2343  * file-backed memory.  This should only be specified when we will completely
2344  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2345  * default, the flag is not set.
2346  */
2347 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2348 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2349 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2350 
2351 #ifdef CONFIG_SCHED_MM_CID
2352 void sched_mm_cid_before_execve(struct task_struct *t);
2353 void sched_mm_cid_after_execve(struct task_struct *t);
2354 void sched_mm_cid_fork(struct task_struct *t);
2355 void sched_mm_cid_exit_signals(struct task_struct *t);
2356 static inline int task_mm_cid(struct task_struct *t)
2357 {
2358 	return t->mm_cid;
2359 }
2360 #else
2361 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2362 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2363 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2364 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2365 static inline int task_mm_cid(struct task_struct *t)
2366 {
2367 	/*
2368 	 * Use the processor id as a fall-back when the mm cid feature is
2369 	 * disabled. This provides functional per-cpu data structure accesses
2370 	 * in user-space, althrough it won't provide the memory usage benefits.
2371 	 */
2372 	return raw_smp_processor_id();
2373 }
2374 #endif
2375 
2376 #ifdef CONFIG_MMU
2377 extern bool can_do_mlock(void);
2378 #else
2379 static inline bool can_do_mlock(void) { return false; }
2380 #endif
2381 extern int user_shm_lock(size_t, struct ucounts *);
2382 extern void user_shm_unlock(size_t, struct ucounts *);
2383 
2384 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2385 			     pte_t pte);
2386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2387 			     pte_t pte);
2388 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2389 				  unsigned long addr, pmd_t pmd);
2390 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2391 				pmd_t pmd);
2392 
2393 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2394 		  unsigned long size);
2395 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2396 			   unsigned long size, struct zap_details *details);
2397 static inline void zap_vma_pages(struct vm_area_struct *vma)
2398 {
2399 	zap_page_range_single(vma, vma->vm_start,
2400 			      vma->vm_end - vma->vm_start, NULL);
2401 }
2402 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2403 		struct vm_area_struct *start_vma, unsigned long start,
2404 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2405 
2406 struct mmu_notifier_range;
2407 
2408 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2409 		unsigned long end, unsigned long floor, unsigned long ceiling);
2410 int
2411 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2412 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2413 	       pte_t **ptepp, spinlock_t **ptlp);
2414 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2415 			void *buf, int len, int write);
2416 
2417 extern void truncate_pagecache(struct inode *inode, loff_t new);
2418 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2419 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2420 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2421 int generic_error_remove_folio(struct address_space *mapping,
2422 		struct folio *folio);
2423 
2424 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2425 		unsigned long address, struct pt_regs *regs);
2426 
2427 #ifdef CONFIG_MMU
2428 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2429 				  unsigned long address, unsigned int flags,
2430 				  struct pt_regs *regs);
2431 extern int fixup_user_fault(struct mm_struct *mm,
2432 			    unsigned long address, unsigned int fault_flags,
2433 			    bool *unlocked);
2434 void unmap_mapping_pages(struct address_space *mapping,
2435 		pgoff_t start, pgoff_t nr, bool even_cows);
2436 void unmap_mapping_range(struct address_space *mapping,
2437 		loff_t const holebegin, loff_t const holelen, int even_cows);
2438 #else
2439 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2440 					 unsigned long address, unsigned int flags,
2441 					 struct pt_regs *regs)
2442 {
2443 	/* should never happen if there's no MMU */
2444 	BUG();
2445 	return VM_FAULT_SIGBUS;
2446 }
2447 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2448 		unsigned int fault_flags, bool *unlocked)
2449 {
2450 	/* should never happen if there's no MMU */
2451 	BUG();
2452 	return -EFAULT;
2453 }
2454 static inline void unmap_mapping_pages(struct address_space *mapping,
2455 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2456 static inline void unmap_mapping_range(struct address_space *mapping,
2457 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2458 #endif
2459 
2460 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2461 		loff_t const holebegin, loff_t const holelen)
2462 {
2463 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2464 }
2465 
2466 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2467 						unsigned long addr);
2468 
2469 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2470 		void *buf, int len, unsigned int gup_flags);
2471 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2472 		void *buf, int len, unsigned int gup_flags);
2473 
2474 long get_user_pages_remote(struct mm_struct *mm,
2475 			   unsigned long start, unsigned long nr_pages,
2476 			   unsigned int gup_flags, struct page **pages,
2477 			   int *locked);
2478 long pin_user_pages_remote(struct mm_struct *mm,
2479 			   unsigned long start, unsigned long nr_pages,
2480 			   unsigned int gup_flags, struct page **pages,
2481 			   int *locked);
2482 
2483 /*
2484  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2485  */
2486 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2487 						    unsigned long addr,
2488 						    int gup_flags,
2489 						    struct vm_area_struct **vmap)
2490 {
2491 	struct page *page;
2492 	struct vm_area_struct *vma;
2493 	int got;
2494 
2495 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2496 		return ERR_PTR(-EINVAL);
2497 
2498 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2499 
2500 	if (got < 0)
2501 		return ERR_PTR(got);
2502 
2503 	vma = vma_lookup(mm, addr);
2504 	if (WARN_ON_ONCE(!vma)) {
2505 		put_page(page);
2506 		return ERR_PTR(-EINVAL);
2507 	}
2508 
2509 	*vmap = vma;
2510 	return page;
2511 }
2512 
2513 long get_user_pages(unsigned long start, unsigned long nr_pages,
2514 		    unsigned int gup_flags, struct page **pages);
2515 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2516 		    unsigned int gup_flags, struct page **pages);
2517 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2518 		    struct page **pages, unsigned int gup_flags);
2519 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2520 		    struct page **pages, unsigned int gup_flags);
2521 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2522 		      struct folio **folios, unsigned int max_folios,
2523 		      pgoff_t *offset);
2524 
2525 int get_user_pages_fast(unsigned long start, int nr_pages,
2526 			unsigned int gup_flags, struct page **pages);
2527 int pin_user_pages_fast(unsigned long start, int nr_pages,
2528 			unsigned int gup_flags, struct page **pages);
2529 void folio_add_pin(struct folio *folio);
2530 
2531 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2532 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2533 			struct task_struct *task, bool bypass_rlim);
2534 
2535 struct kvec;
2536 struct page *get_dump_page(unsigned long addr);
2537 
2538 bool folio_mark_dirty(struct folio *folio);
2539 bool set_page_dirty(struct page *page);
2540 int set_page_dirty_lock(struct page *page);
2541 
2542 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2543 
2544 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2545 		unsigned long old_addr, struct vm_area_struct *new_vma,
2546 		unsigned long new_addr, unsigned long len,
2547 		bool need_rmap_locks, bool for_stack);
2548 
2549 /*
2550  * Flags used by change_protection().  For now we make it a bitmap so
2551  * that we can pass in multiple flags just like parameters.  However
2552  * for now all the callers are only use one of the flags at the same
2553  * time.
2554  */
2555 /*
2556  * Whether we should manually check if we can map individual PTEs writable,
2557  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2558  * PTEs automatically in a writable mapping.
2559  */
2560 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2561 /* Whether this protection change is for NUMA hints */
2562 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2563 /* Whether this change is for write protecting */
2564 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2565 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2566 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2567 					    MM_CP_UFFD_WP_RESOLVE)
2568 
2569 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2570 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2571 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2572 {
2573 	/*
2574 	 * We want to check manually if we can change individual PTEs writable
2575 	 * if we can't do that automatically for all PTEs in a mapping. For
2576 	 * private mappings, that's always the case when we have write
2577 	 * permissions as we properly have to handle COW.
2578 	 */
2579 	if (vma->vm_flags & VM_SHARED)
2580 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2581 	return !!(vma->vm_flags & VM_WRITE);
2582 
2583 }
2584 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2585 			     pte_t pte);
2586 extern long change_protection(struct mmu_gather *tlb,
2587 			      struct vm_area_struct *vma, unsigned long start,
2588 			      unsigned long end, unsigned long cp_flags);
2589 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2590 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2591 	  unsigned long start, unsigned long end, unsigned long newflags);
2592 
2593 /*
2594  * doesn't attempt to fault and will return short.
2595  */
2596 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2597 			     unsigned int gup_flags, struct page **pages);
2598 
2599 static inline bool get_user_page_fast_only(unsigned long addr,
2600 			unsigned int gup_flags, struct page **pagep)
2601 {
2602 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2603 }
2604 /*
2605  * per-process(per-mm_struct) statistics.
2606  */
2607 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2608 {
2609 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2610 }
2611 
2612 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2613 
2614 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2615 {
2616 	percpu_counter_add(&mm->rss_stat[member], value);
2617 
2618 	mm_trace_rss_stat(mm, member);
2619 }
2620 
2621 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2622 {
2623 	percpu_counter_inc(&mm->rss_stat[member]);
2624 
2625 	mm_trace_rss_stat(mm, member);
2626 }
2627 
2628 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2629 {
2630 	percpu_counter_dec(&mm->rss_stat[member]);
2631 
2632 	mm_trace_rss_stat(mm, member);
2633 }
2634 
2635 /* Optimized variant when folio is already known not to be anon */
2636 static inline int mm_counter_file(struct folio *folio)
2637 {
2638 	if (folio_test_swapbacked(folio))
2639 		return MM_SHMEMPAGES;
2640 	return MM_FILEPAGES;
2641 }
2642 
2643 static inline int mm_counter(struct folio *folio)
2644 {
2645 	if (folio_test_anon(folio))
2646 		return MM_ANONPAGES;
2647 	return mm_counter_file(folio);
2648 }
2649 
2650 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2651 {
2652 	return get_mm_counter(mm, MM_FILEPAGES) +
2653 		get_mm_counter(mm, MM_ANONPAGES) +
2654 		get_mm_counter(mm, MM_SHMEMPAGES);
2655 }
2656 
2657 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2658 {
2659 	return max(mm->hiwater_rss, get_mm_rss(mm));
2660 }
2661 
2662 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2663 {
2664 	return max(mm->hiwater_vm, mm->total_vm);
2665 }
2666 
2667 static inline void update_hiwater_rss(struct mm_struct *mm)
2668 {
2669 	unsigned long _rss = get_mm_rss(mm);
2670 
2671 	if ((mm)->hiwater_rss < _rss)
2672 		(mm)->hiwater_rss = _rss;
2673 }
2674 
2675 static inline void update_hiwater_vm(struct mm_struct *mm)
2676 {
2677 	if (mm->hiwater_vm < mm->total_vm)
2678 		mm->hiwater_vm = mm->total_vm;
2679 }
2680 
2681 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2682 {
2683 	mm->hiwater_rss = get_mm_rss(mm);
2684 }
2685 
2686 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2687 					 struct mm_struct *mm)
2688 {
2689 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2690 
2691 	if (*maxrss < hiwater_rss)
2692 		*maxrss = hiwater_rss;
2693 }
2694 
2695 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2696 static inline int pte_special(pte_t pte)
2697 {
2698 	return 0;
2699 }
2700 
2701 static inline pte_t pte_mkspecial(pte_t pte)
2702 {
2703 	return pte;
2704 }
2705 #endif
2706 
2707 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2708 static inline int pte_devmap(pte_t pte)
2709 {
2710 	return 0;
2711 }
2712 #endif
2713 
2714 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2715 			       spinlock_t **ptl);
2716 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2717 				    spinlock_t **ptl)
2718 {
2719 	pte_t *ptep;
2720 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2721 	return ptep;
2722 }
2723 
2724 #ifdef __PAGETABLE_P4D_FOLDED
2725 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2726 						unsigned long address)
2727 {
2728 	return 0;
2729 }
2730 #else
2731 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2732 #endif
2733 
2734 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2735 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2736 						unsigned long address)
2737 {
2738 	return 0;
2739 }
2740 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2741 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2742 
2743 #else
2744 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2745 
2746 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2747 {
2748 	if (mm_pud_folded(mm))
2749 		return;
2750 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2751 }
2752 
2753 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2754 {
2755 	if (mm_pud_folded(mm))
2756 		return;
2757 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2758 }
2759 #endif
2760 
2761 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2762 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2763 						unsigned long address)
2764 {
2765 	return 0;
2766 }
2767 
2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2770 
2771 #else
2772 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2773 
2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2775 {
2776 	if (mm_pmd_folded(mm))
2777 		return;
2778 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2779 }
2780 
2781 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2782 {
2783 	if (mm_pmd_folded(mm))
2784 		return;
2785 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2786 }
2787 #endif
2788 
2789 #ifdef CONFIG_MMU
2790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2791 {
2792 	atomic_long_set(&mm->pgtables_bytes, 0);
2793 }
2794 
2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2796 {
2797 	return atomic_long_read(&mm->pgtables_bytes);
2798 }
2799 
2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2801 {
2802 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2803 }
2804 
2805 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2806 {
2807 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2808 }
2809 #else
2810 
2811 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2813 {
2814 	return 0;
2815 }
2816 
2817 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2818 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2819 #endif
2820 
2821 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2822 int __pte_alloc_kernel(pmd_t *pmd);
2823 
2824 #if defined(CONFIG_MMU)
2825 
2826 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2827 		unsigned long address)
2828 {
2829 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2830 		NULL : p4d_offset(pgd, address);
2831 }
2832 
2833 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2834 		unsigned long address)
2835 {
2836 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2837 		NULL : pud_offset(p4d, address);
2838 }
2839 
2840 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2841 {
2842 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2843 		NULL: pmd_offset(pud, address);
2844 }
2845 #endif /* CONFIG_MMU */
2846 
2847 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2848 {
2849 	return page_ptdesc(virt_to_page(x));
2850 }
2851 
2852 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2853 {
2854 	return page_to_virt(ptdesc_page(pt));
2855 }
2856 
2857 static inline void *ptdesc_address(const struct ptdesc *pt)
2858 {
2859 	return folio_address(ptdesc_folio(pt));
2860 }
2861 
2862 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2863 {
2864 	return folio_test_reserved(ptdesc_folio(pt));
2865 }
2866 
2867 /**
2868  * pagetable_alloc - Allocate pagetables
2869  * @gfp:    GFP flags
2870  * @order:  desired pagetable order
2871  *
2872  * pagetable_alloc allocates memory for page tables as well as a page table
2873  * descriptor to describe that memory.
2874  *
2875  * Return: The ptdesc describing the allocated page tables.
2876  */
2877 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2878 {
2879 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2880 
2881 	return page_ptdesc(page);
2882 }
2883 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2884 
2885 /**
2886  * pagetable_free - Free pagetables
2887  * @pt:	The page table descriptor
2888  *
2889  * pagetable_free frees the memory of all page tables described by a page
2890  * table descriptor and the memory for the descriptor itself.
2891  */
2892 static inline void pagetable_free(struct ptdesc *pt)
2893 {
2894 	struct page *page = ptdesc_page(pt);
2895 
2896 	__free_pages(page, compound_order(page));
2897 }
2898 
2899 #if USE_SPLIT_PTE_PTLOCKS
2900 #if ALLOC_SPLIT_PTLOCKS
2901 void __init ptlock_cache_init(void);
2902 bool ptlock_alloc(struct ptdesc *ptdesc);
2903 void ptlock_free(struct ptdesc *ptdesc);
2904 
2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2906 {
2907 	return ptdesc->ptl;
2908 }
2909 #else /* ALLOC_SPLIT_PTLOCKS */
2910 static inline void ptlock_cache_init(void)
2911 {
2912 }
2913 
2914 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2915 {
2916 	return true;
2917 }
2918 
2919 static inline void ptlock_free(struct ptdesc *ptdesc)
2920 {
2921 }
2922 
2923 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2924 {
2925 	return &ptdesc->ptl;
2926 }
2927 #endif /* ALLOC_SPLIT_PTLOCKS */
2928 
2929 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2930 {
2931 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2932 }
2933 
2934 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2935 {
2936 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2937 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2938 	return ptlock_ptr(virt_to_ptdesc(pte));
2939 }
2940 
2941 static inline bool ptlock_init(struct ptdesc *ptdesc)
2942 {
2943 	/*
2944 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2945 	 * with 0. Make sure nobody took it in use in between.
2946 	 *
2947 	 * It can happen if arch try to use slab for page table allocation:
2948 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2949 	 */
2950 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2951 	if (!ptlock_alloc(ptdesc))
2952 		return false;
2953 	spin_lock_init(ptlock_ptr(ptdesc));
2954 	return true;
2955 }
2956 
2957 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2958 /*
2959  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2960  */
2961 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2962 {
2963 	return &mm->page_table_lock;
2964 }
2965 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2966 {
2967 	return &mm->page_table_lock;
2968 }
2969 static inline void ptlock_cache_init(void) {}
2970 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2971 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2972 #endif /* USE_SPLIT_PTE_PTLOCKS */
2973 
2974 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2975 {
2976 	struct folio *folio = ptdesc_folio(ptdesc);
2977 
2978 	if (!ptlock_init(ptdesc))
2979 		return false;
2980 	__folio_set_pgtable(folio);
2981 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2982 	return true;
2983 }
2984 
2985 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2986 {
2987 	struct folio *folio = ptdesc_folio(ptdesc);
2988 
2989 	ptlock_free(ptdesc);
2990 	__folio_clear_pgtable(folio);
2991 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2992 }
2993 
2994 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2995 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2996 {
2997 	return __pte_offset_map(pmd, addr, NULL);
2998 }
2999 
3000 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3001 			unsigned long addr, spinlock_t **ptlp);
3002 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3003 			unsigned long addr, spinlock_t **ptlp)
3004 {
3005 	pte_t *pte;
3006 
3007 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3008 	return pte;
3009 }
3010 
3011 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3012 			unsigned long addr, spinlock_t **ptlp);
3013 
3014 #define pte_unmap_unlock(pte, ptl)	do {		\
3015 	spin_unlock(ptl);				\
3016 	pte_unmap(pte);					\
3017 } while (0)
3018 
3019 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3020 
3021 #define pte_alloc_map(mm, pmd, address)			\
3022 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3023 
3024 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3025 	(pte_alloc(mm, pmd) ?			\
3026 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3027 
3028 #define pte_alloc_kernel(pmd, address)			\
3029 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3030 		NULL: pte_offset_kernel(pmd, address))
3031 
3032 #if USE_SPLIT_PMD_PTLOCKS
3033 
3034 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3035 {
3036 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3037 	return virt_to_page((void *)((unsigned long) pmd & mask));
3038 }
3039 
3040 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3041 {
3042 	return page_ptdesc(pmd_pgtable_page(pmd));
3043 }
3044 
3045 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3046 {
3047 	return ptlock_ptr(pmd_ptdesc(pmd));
3048 }
3049 
3050 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3051 {
3052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3053 	ptdesc->pmd_huge_pte = NULL;
3054 #endif
3055 	return ptlock_init(ptdesc);
3056 }
3057 
3058 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3059 {
3060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3061 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3062 #endif
3063 	ptlock_free(ptdesc);
3064 }
3065 
3066 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3067 
3068 #else
3069 
3070 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3071 {
3072 	return &mm->page_table_lock;
3073 }
3074 
3075 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3076 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3077 
3078 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3079 
3080 #endif
3081 
3082 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3083 {
3084 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3085 	spin_lock(ptl);
3086 	return ptl;
3087 }
3088 
3089 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3090 {
3091 	struct folio *folio = ptdesc_folio(ptdesc);
3092 
3093 	if (!pmd_ptlock_init(ptdesc))
3094 		return false;
3095 	__folio_set_pgtable(folio);
3096 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3097 	return true;
3098 }
3099 
3100 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3101 {
3102 	struct folio *folio = ptdesc_folio(ptdesc);
3103 
3104 	pmd_ptlock_free(ptdesc);
3105 	__folio_clear_pgtable(folio);
3106 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3107 }
3108 
3109 /*
3110  * No scalability reason to split PUD locks yet, but follow the same pattern
3111  * as the PMD locks to make it easier if we decide to.  The VM should not be
3112  * considered ready to switch to split PUD locks yet; there may be places
3113  * which need to be converted from page_table_lock.
3114  */
3115 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3116 {
3117 	return &mm->page_table_lock;
3118 }
3119 
3120 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3121 {
3122 	spinlock_t *ptl = pud_lockptr(mm, pud);
3123 
3124 	spin_lock(ptl);
3125 	return ptl;
3126 }
3127 
3128 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3129 {
3130 	struct folio *folio = ptdesc_folio(ptdesc);
3131 
3132 	__folio_set_pgtable(folio);
3133 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3134 }
3135 
3136 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3137 {
3138 	struct folio *folio = ptdesc_folio(ptdesc);
3139 
3140 	__folio_clear_pgtable(folio);
3141 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3142 }
3143 
3144 extern void __init pagecache_init(void);
3145 extern void free_initmem(void);
3146 
3147 /*
3148  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3149  * into the buddy system. The freed pages will be poisoned with pattern
3150  * "poison" if it's within range [0, UCHAR_MAX].
3151  * Return pages freed into the buddy system.
3152  */
3153 extern unsigned long free_reserved_area(void *start, void *end,
3154 					int poison, const char *s);
3155 
3156 extern void adjust_managed_page_count(struct page *page, long count);
3157 
3158 extern void reserve_bootmem_region(phys_addr_t start,
3159 				   phys_addr_t end, int nid);
3160 
3161 /* Free the reserved page into the buddy system, so it gets managed. */
3162 void free_reserved_page(struct page *page);
3163 #define free_highmem_page(page) free_reserved_page(page)
3164 
3165 static inline void mark_page_reserved(struct page *page)
3166 {
3167 	SetPageReserved(page);
3168 	adjust_managed_page_count(page, -1);
3169 }
3170 
3171 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3172 {
3173 	free_reserved_page(ptdesc_page(pt));
3174 }
3175 
3176 /*
3177  * Default method to free all the __init memory into the buddy system.
3178  * The freed pages will be poisoned with pattern "poison" if it's within
3179  * range [0, UCHAR_MAX].
3180  * Return pages freed into the buddy system.
3181  */
3182 static inline unsigned long free_initmem_default(int poison)
3183 {
3184 	extern char __init_begin[], __init_end[];
3185 
3186 	return free_reserved_area(&__init_begin, &__init_end,
3187 				  poison, "unused kernel image (initmem)");
3188 }
3189 
3190 static inline unsigned long get_num_physpages(void)
3191 {
3192 	int nid;
3193 	unsigned long phys_pages = 0;
3194 
3195 	for_each_online_node(nid)
3196 		phys_pages += node_present_pages(nid);
3197 
3198 	return phys_pages;
3199 }
3200 
3201 /*
3202  * Using memblock node mappings, an architecture may initialise its
3203  * zones, allocate the backing mem_map and account for memory holes in an
3204  * architecture independent manner.
3205  *
3206  * An architecture is expected to register range of page frames backed by
3207  * physical memory with memblock_add[_node]() before calling
3208  * free_area_init() passing in the PFN each zone ends at. At a basic
3209  * usage, an architecture is expected to do something like
3210  *
3211  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3212  * 							 max_highmem_pfn};
3213  * for_each_valid_physical_page_range()
3214  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3215  * free_area_init(max_zone_pfns);
3216  */
3217 void free_area_init(unsigned long *max_zone_pfn);
3218 unsigned long node_map_pfn_alignment(void);
3219 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3220 						unsigned long end_pfn);
3221 extern void get_pfn_range_for_nid(unsigned int nid,
3222 			unsigned long *start_pfn, unsigned long *end_pfn);
3223 
3224 #ifndef CONFIG_NUMA
3225 static inline int early_pfn_to_nid(unsigned long pfn)
3226 {
3227 	return 0;
3228 }
3229 #else
3230 /* please see mm/page_alloc.c */
3231 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3232 #endif
3233 
3234 extern void mem_init(void);
3235 extern void __init mmap_init(void);
3236 
3237 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3238 static inline void show_mem(void)
3239 {
3240 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3241 }
3242 extern long si_mem_available(void);
3243 extern void si_meminfo(struct sysinfo * val);
3244 extern void si_meminfo_node(struct sysinfo *val, int nid);
3245 
3246 extern __printf(3, 4)
3247 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3248 
3249 extern void setup_per_cpu_pageset(void);
3250 
3251 /* nommu.c */
3252 extern atomic_long_t mmap_pages_allocated;
3253 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3254 
3255 /* interval_tree.c */
3256 void vma_interval_tree_insert(struct vm_area_struct *node,
3257 			      struct rb_root_cached *root);
3258 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3259 				    struct vm_area_struct *prev,
3260 				    struct rb_root_cached *root);
3261 void vma_interval_tree_remove(struct vm_area_struct *node,
3262 			      struct rb_root_cached *root);
3263 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3264 				unsigned long start, unsigned long last);
3265 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3266 				unsigned long start, unsigned long last);
3267 
3268 #define vma_interval_tree_foreach(vma, root, start, last)		\
3269 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3270 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3271 
3272 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3273 				   struct rb_root_cached *root);
3274 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3275 				   struct rb_root_cached *root);
3276 struct anon_vma_chain *
3277 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3278 				  unsigned long start, unsigned long last);
3279 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3280 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3281 #ifdef CONFIG_DEBUG_VM_RB
3282 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3283 #endif
3284 
3285 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3286 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3287 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3288 
3289 /* mmap.c */
3290 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3291 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3292 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3293 		      struct vm_area_struct *next);
3294 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3295 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3296 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3297 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3298 extern void unlink_file_vma(struct vm_area_struct *);
3299 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3300 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3301 	bool *need_rmap_locks);
3302 extern void exit_mmap(struct mm_struct *);
3303 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3304 				  struct vm_area_struct *prev,
3305 				  struct vm_area_struct *vma,
3306 				  unsigned long start, unsigned long end,
3307 				  unsigned long vm_flags,
3308 				  struct mempolicy *policy,
3309 				  struct vm_userfaultfd_ctx uffd_ctx,
3310 				  struct anon_vma_name *anon_name);
3311 
3312 /* We are about to modify the VMA's flags. */
3313 static inline struct vm_area_struct
3314 *vma_modify_flags(struct vma_iterator *vmi,
3315 		  struct vm_area_struct *prev,
3316 		  struct vm_area_struct *vma,
3317 		  unsigned long start, unsigned long end,
3318 		  unsigned long new_flags)
3319 {
3320 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3321 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3322 			  anon_vma_name(vma));
3323 }
3324 
3325 /* We are about to modify the VMA's flags and/or anon_name. */
3326 static inline struct vm_area_struct
3327 *vma_modify_flags_name(struct vma_iterator *vmi,
3328 		       struct vm_area_struct *prev,
3329 		       struct vm_area_struct *vma,
3330 		       unsigned long start,
3331 		       unsigned long end,
3332 		       unsigned long new_flags,
3333 		       struct anon_vma_name *new_name)
3334 {
3335 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3336 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3337 }
3338 
3339 /* We are about to modify the VMA's memory policy. */
3340 static inline struct vm_area_struct
3341 *vma_modify_policy(struct vma_iterator *vmi,
3342 		   struct vm_area_struct *prev,
3343 		   struct vm_area_struct *vma,
3344 		   unsigned long start, unsigned long end,
3345 		   struct mempolicy *new_pol)
3346 {
3347 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3348 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3349 }
3350 
3351 /* We are about to modify the VMA's flags and/or uffd context. */
3352 static inline struct vm_area_struct
3353 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3354 		       struct vm_area_struct *prev,
3355 		       struct vm_area_struct *vma,
3356 		       unsigned long start, unsigned long end,
3357 		       unsigned long new_flags,
3358 		       struct vm_userfaultfd_ctx new_ctx)
3359 {
3360 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3361 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3362 }
3363 
3364 static inline int check_data_rlimit(unsigned long rlim,
3365 				    unsigned long new,
3366 				    unsigned long start,
3367 				    unsigned long end_data,
3368 				    unsigned long start_data)
3369 {
3370 	if (rlim < RLIM_INFINITY) {
3371 		if (((new - start) + (end_data - start_data)) > rlim)
3372 			return -ENOSPC;
3373 	}
3374 
3375 	return 0;
3376 }
3377 
3378 extern int mm_take_all_locks(struct mm_struct *mm);
3379 extern void mm_drop_all_locks(struct mm_struct *mm);
3380 
3381 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3382 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3383 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3384 extern struct file *get_task_exe_file(struct task_struct *task);
3385 
3386 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3387 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3388 
3389 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3390 				   const struct vm_special_mapping *sm);
3391 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3392 				   unsigned long addr, unsigned long len,
3393 				   unsigned long flags,
3394 				   const struct vm_special_mapping *spec);
3395 /* This is an obsolete alternative to _install_special_mapping. */
3396 extern int install_special_mapping(struct mm_struct *mm,
3397 				   unsigned long addr, unsigned long len,
3398 				   unsigned long flags, struct page **pages);
3399 
3400 unsigned long randomize_stack_top(unsigned long stack_top);
3401 unsigned long randomize_page(unsigned long start, unsigned long range);
3402 
3403 unsigned long
3404 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3405 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3406 
3407 static inline unsigned long
3408 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3409 		  unsigned long pgoff, unsigned long flags)
3410 {
3411 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3412 }
3413 
3414 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3415 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3416 	struct list_head *uf);
3417 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3418 	unsigned long len, unsigned long prot, unsigned long flags,
3419 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3420 	struct list_head *uf);
3421 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3422 			 unsigned long start, size_t len, struct list_head *uf,
3423 			 bool unlock);
3424 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3425 		     struct list_head *uf);
3426 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3427 
3428 #ifdef CONFIG_MMU
3429 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3430 			 unsigned long start, unsigned long end,
3431 			 struct list_head *uf, bool unlock);
3432 extern int __mm_populate(unsigned long addr, unsigned long len,
3433 			 int ignore_errors);
3434 static inline void mm_populate(unsigned long addr, unsigned long len)
3435 {
3436 	/* Ignore errors */
3437 	(void) __mm_populate(addr, len, 1);
3438 }
3439 #else
3440 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3441 #endif
3442 
3443 /* This takes the mm semaphore itself */
3444 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3445 extern int vm_munmap(unsigned long, size_t);
3446 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3447         unsigned long, unsigned long,
3448         unsigned long, unsigned long);
3449 
3450 struct vm_unmapped_area_info {
3451 #define VM_UNMAPPED_AREA_TOPDOWN 1
3452 	unsigned long flags;
3453 	unsigned long length;
3454 	unsigned long low_limit;
3455 	unsigned long high_limit;
3456 	unsigned long align_mask;
3457 	unsigned long align_offset;
3458 	unsigned long start_gap;
3459 };
3460 
3461 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3462 
3463 /* truncate.c */
3464 extern void truncate_inode_pages(struct address_space *, loff_t);
3465 extern void truncate_inode_pages_range(struct address_space *,
3466 				       loff_t lstart, loff_t lend);
3467 extern void truncate_inode_pages_final(struct address_space *);
3468 
3469 /* generic vm_area_ops exported for stackable file systems */
3470 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3471 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3472 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3473 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3474 
3475 extern unsigned long stack_guard_gap;
3476 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3477 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3478 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3479 
3480 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3481 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3482 
3483 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3484 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3485 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3486 					     struct vm_area_struct **pprev);
3487 
3488 /*
3489  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3490  * NULL if none.  Assume start_addr < end_addr.
3491  */
3492 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3493 			unsigned long start_addr, unsigned long end_addr);
3494 
3495 /**
3496  * vma_lookup() - Find a VMA at a specific address
3497  * @mm: The process address space.
3498  * @addr: The user address.
3499  *
3500  * Return: The vm_area_struct at the given address, %NULL otherwise.
3501  */
3502 static inline
3503 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3504 {
3505 	return mtree_load(&mm->mm_mt, addr);
3506 }
3507 
3508 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3509 {
3510 	if (vma->vm_flags & VM_GROWSDOWN)
3511 		return stack_guard_gap;
3512 
3513 	/* See reasoning around the VM_SHADOW_STACK definition */
3514 	if (vma->vm_flags & VM_SHADOW_STACK)
3515 		return PAGE_SIZE;
3516 
3517 	return 0;
3518 }
3519 
3520 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3521 {
3522 	unsigned long gap = stack_guard_start_gap(vma);
3523 	unsigned long vm_start = vma->vm_start;
3524 
3525 	vm_start -= gap;
3526 	if (vm_start > vma->vm_start)
3527 		vm_start = 0;
3528 	return vm_start;
3529 }
3530 
3531 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3532 {
3533 	unsigned long vm_end = vma->vm_end;
3534 
3535 	if (vma->vm_flags & VM_GROWSUP) {
3536 		vm_end += stack_guard_gap;
3537 		if (vm_end < vma->vm_end)
3538 			vm_end = -PAGE_SIZE;
3539 	}
3540 	return vm_end;
3541 }
3542 
3543 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3544 {
3545 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3546 }
3547 
3548 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3549 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3550 				unsigned long vm_start, unsigned long vm_end)
3551 {
3552 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3553 
3554 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3555 		vma = NULL;
3556 
3557 	return vma;
3558 }
3559 
3560 static inline bool range_in_vma(struct vm_area_struct *vma,
3561 				unsigned long start, unsigned long end)
3562 {
3563 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3564 }
3565 
3566 #ifdef CONFIG_MMU
3567 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3568 void vma_set_page_prot(struct vm_area_struct *vma);
3569 #else
3570 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3571 {
3572 	return __pgprot(0);
3573 }
3574 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3575 {
3576 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3577 }
3578 #endif
3579 
3580 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3581 
3582 #ifdef CONFIG_NUMA_BALANCING
3583 unsigned long change_prot_numa(struct vm_area_struct *vma,
3584 			unsigned long start, unsigned long end);
3585 #endif
3586 
3587 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3588 		unsigned long addr);
3589 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3590 			unsigned long pfn, unsigned long size, pgprot_t);
3591 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3592 		unsigned long pfn, unsigned long size, pgprot_t prot);
3593 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3594 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3595 			struct page **pages, unsigned long *num);
3596 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3597 				unsigned long num);
3598 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3599 				unsigned long num);
3600 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3601 			unsigned long pfn);
3602 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3603 			unsigned long pfn, pgprot_t pgprot);
3604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3605 			pfn_t pfn);
3606 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3607 		unsigned long addr, pfn_t pfn);
3608 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3609 
3610 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3611 				unsigned long addr, struct page *page)
3612 {
3613 	int err = vm_insert_page(vma, addr, page);
3614 
3615 	if (err == -ENOMEM)
3616 		return VM_FAULT_OOM;
3617 	if (err < 0 && err != -EBUSY)
3618 		return VM_FAULT_SIGBUS;
3619 
3620 	return VM_FAULT_NOPAGE;
3621 }
3622 
3623 #ifndef io_remap_pfn_range
3624 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3625 				     unsigned long addr, unsigned long pfn,
3626 				     unsigned long size, pgprot_t prot)
3627 {
3628 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3629 }
3630 #endif
3631 
3632 static inline vm_fault_t vmf_error(int err)
3633 {
3634 	if (err == -ENOMEM)
3635 		return VM_FAULT_OOM;
3636 	else if (err == -EHWPOISON)
3637 		return VM_FAULT_HWPOISON;
3638 	return VM_FAULT_SIGBUS;
3639 }
3640 
3641 /*
3642  * Convert errno to return value for ->page_mkwrite() calls.
3643  *
3644  * This should eventually be merged with vmf_error() above, but will need a
3645  * careful audit of all vmf_error() callers.
3646  */
3647 static inline vm_fault_t vmf_fs_error(int err)
3648 {
3649 	if (err == 0)
3650 		return VM_FAULT_LOCKED;
3651 	if (err == -EFAULT || err == -EAGAIN)
3652 		return VM_FAULT_NOPAGE;
3653 	if (err == -ENOMEM)
3654 		return VM_FAULT_OOM;
3655 	/* -ENOSPC, -EDQUOT, -EIO ... */
3656 	return VM_FAULT_SIGBUS;
3657 }
3658 
3659 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3660 			 unsigned int foll_flags);
3661 
3662 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3663 {
3664 	if (vm_fault & VM_FAULT_OOM)
3665 		return -ENOMEM;
3666 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3667 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3668 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3669 		return -EFAULT;
3670 	return 0;
3671 }
3672 
3673 /*
3674  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3675  * a (NUMA hinting) fault is required.
3676  */
3677 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3678 					   unsigned int flags)
3679 {
3680 	/*
3681 	 * If callers don't want to honor NUMA hinting faults, no need to
3682 	 * determine if we would actually have to trigger a NUMA hinting fault.
3683 	 */
3684 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3685 		return true;
3686 
3687 	/*
3688 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3689 	 *
3690 	 * Requiring a fault here even for inaccessible VMAs would mean that
3691 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3692 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3693 	 */
3694 	return !vma_is_accessible(vma);
3695 }
3696 
3697 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3698 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3699 			       unsigned long size, pte_fn_t fn, void *data);
3700 extern int apply_to_existing_page_range(struct mm_struct *mm,
3701 				   unsigned long address, unsigned long size,
3702 				   pte_fn_t fn, void *data);
3703 
3704 #ifdef CONFIG_PAGE_POISONING
3705 extern void __kernel_poison_pages(struct page *page, int numpages);
3706 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3707 extern bool _page_poisoning_enabled_early;
3708 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3709 static inline bool page_poisoning_enabled(void)
3710 {
3711 	return _page_poisoning_enabled_early;
3712 }
3713 /*
3714  * For use in fast paths after init_mem_debugging() has run, or when a
3715  * false negative result is not harmful when called too early.
3716  */
3717 static inline bool page_poisoning_enabled_static(void)
3718 {
3719 	return static_branch_unlikely(&_page_poisoning_enabled);
3720 }
3721 static inline void kernel_poison_pages(struct page *page, int numpages)
3722 {
3723 	if (page_poisoning_enabled_static())
3724 		__kernel_poison_pages(page, numpages);
3725 }
3726 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3727 {
3728 	if (page_poisoning_enabled_static())
3729 		__kernel_unpoison_pages(page, numpages);
3730 }
3731 #else
3732 static inline bool page_poisoning_enabled(void) { return false; }
3733 static inline bool page_poisoning_enabled_static(void) { return false; }
3734 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3735 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3736 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3737 #endif
3738 
3739 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3740 static inline bool want_init_on_alloc(gfp_t flags)
3741 {
3742 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3743 				&init_on_alloc))
3744 		return true;
3745 	return flags & __GFP_ZERO;
3746 }
3747 
3748 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3749 static inline bool want_init_on_free(void)
3750 {
3751 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3752 				   &init_on_free);
3753 }
3754 
3755 extern bool _debug_pagealloc_enabled_early;
3756 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3757 
3758 static inline bool debug_pagealloc_enabled(void)
3759 {
3760 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3761 		_debug_pagealloc_enabled_early;
3762 }
3763 
3764 /*
3765  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3766  * or when a false negative result is not harmful when called too early.
3767  */
3768 static inline bool debug_pagealloc_enabled_static(void)
3769 {
3770 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3771 		return false;
3772 
3773 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3774 }
3775 
3776 /*
3777  * To support DEBUG_PAGEALLOC architecture must ensure that
3778  * __kernel_map_pages() never fails
3779  */
3780 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3781 #ifdef CONFIG_DEBUG_PAGEALLOC
3782 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3783 {
3784 	if (debug_pagealloc_enabled_static())
3785 		__kernel_map_pages(page, numpages, 1);
3786 }
3787 
3788 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3789 {
3790 	if (debug_pagealloc_enabled_static())
3791 		__kernel_map_pages(page, numpages, 0);
3792 }
3793 
3794 extern unsigned int _debug_guardpage_minorder;
3795 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3796 
3797 static inline unsigned int debug_guardpage_minorder(void)
3798 {
3799 	return _debug_guardpage_minorder;
3800 }
3801 
3802 static inline bool debug_guardpage_enabled(void)
3803 {
3804 	return static_branch_unlikely(&_debug_guardpage_enabled);
3805 }
3806 
3807 static inline bool page_is_guard(struct page *page)
3808 {
3809 	if (!debug_guardpage_enabled())
3810 		return false;
3811 
3812 	return PageGuard(page);
3813 }
3814 
3815 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3816 static inline bool set_page_guard(struct zone *zone, struct page *page,
3817 				  unsigned int order)
3818 {
3819 	if (!debug_guardpage_enabled())
3820 		return false;
3821 	return __set_page_guard(zone, page, order);
3822 }
3823 
3824 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3825 static inline void clear_page_guard(struct zone *zone, struct page *page,
3826 				    unsigned int order)
3827 {
3828 	if (!debug_guardpage_enabled())
3829 		return;
3830 	__clear_page_guard(zone, page, order);
3831 }
3832 
3833 #else	/* CONFIG_DEBUG_PAGEALLOC */
3834 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3835 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3836 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3837 static inline bool debug_guardpage_enabled(void) { return false; }
3838 static inline bool page_is_guard(struct page *page) { return false; }
3839 static inline bool set_page_guard(struct zone *zone, struct page *page,
3840 			unsigned int order) { return false; }
3841 static inline void clear_page_guard(struct zone *zone, struct page *page,
3842 				unsigned int order) {}
3843 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3844 
3845 #ifdef __HAVE_ARCH_GATE_AREA
3846 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3847 extern int in_gate_area_no_mm(unsigned long addr);
3848 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3849 #else
3850 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3851 {
3852 	return NULL;
3853 }
3854 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3855 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3856 {
3857 	return 0;
3858 }
3859 #endif	/* __HAVE_ARCH_GATE_AREA */
3860 
3861 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3862 
3863 #ifdef CONFIG_SYSCTL
3864 extern int sysctl_drop_caches;
3865 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3866 		loff_t *);
3867 #endif
3868 
3869 void drop_slab(void);
3870 
3871 #ifndef CONFIG_MMU
3872 #define randomize_va_space 0
3873 #else
3874 extern int randomize_va_space;
3875 #endif
3876 
3877 const char * arch_vma_name(struct vm_area_struct *vma);
3878 #ifdef CONFIG_MMU
3879 void print_vma_addr(char *prefix, unsigned long rip);
3880 #else
3881 static inline void print_vma_addr(char *prefix, unsigned long rip)
3882 {
3883 }
3884 #endif
3885 
3886 void *sparse_buffer_alloc(unsigned long size);
3887 struct page * __populate_section_memmap(unsigned long pfn,
3888 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3889 		struct dev_pagemap *pgmap);
3890 void pmd_init(void *addr);
3891 void pud_init(void *addr);
3892 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3893 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3894 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3895 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3896 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3897 			    struct vmem_altmap *altmap, struct page *reuse);
3898 void *vmemmap_alloc_block(unsigned long size, int node);
3899 struct vmem_altmap;
3900 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3901 			      struct vmem_altmap *altmap);
3902 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3903 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3904 		     unsigned long addr, unsigned long next);
3905 int vmemmap_check_pmd(pmd_t *pmd, int node,
3906 		      unsigned long addr, unsigned long next);
3907 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3908 			       int node, struct vmem_altmap *altmap);
3909 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3910 			       int node, struct vmem_altmap *altmap);
3911 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3912 		struct vmem_altmap *altmap);
3913 void vmemmap_populate_print_last(void);
3914 #ifdef CONFIG_MEMORY_HOTPLUG
3915 void vmemmap_free(unsigned long start, unsigned long end,
3916 		struct vmem_altmap *altmap);
3917 #endif
3918 
3919 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3920 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3921 {
3922 	/* number of pfns from base where pfn_to_page() is valid */
3923 	if (altmap)
3924 		return altmap->reserve + altmap->free;
3925 	return 0;
3926 }
3927 
3928 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3929 				    unsigned long nr_pfns)
3930 {
3931 	altmap->alloc -= nr_pfns;
3932 }
3933 #else
3934 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3935 {
3936 	return 0;
3937 }
3938 
3939 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3940 				    unsigned long nr_pfns)
3941 {
3942 }
3943 #endif
3944 
3945 #define VMEMMAP_RESERVE_NR	2
3946 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3947 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3948 					  struct dev_pagemap *pgmap)
3949 {
3950 	unsigned long nr_pages;
3951 	unsigned long nr_vmemmap_pages;
3952 
3953 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3954 		return false;
3955 
3956 	nr_pages = pgmap_vmemmap_nr(pgmap);
3957 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3958 	/*
3959 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3960 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3961 	 */
3962 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3963 }
3964 /*
3965  * If we don't have an architecture override, use the generic rule
3966  */
3967 #ifndef vmemmap_can_optimize
3968 #define vmemmap_can_optimize __vmemmap_can_optimize
3969 #endif
3970 
3971 #else
3972 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3973 					   struct dev_pagemap *pgmap)
3974 {
3975 	return false;
3976 }
3977 #endif
3978 
3979 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3980 				  unsigned long nr_pages);
3981 
3982 enum mf_flags {
3983 	MF_COUNT_INCREASED = 1 << 0,
3984 	MF_ACTION_REQUIRED = 1 << 1,
3985 	MF_MUST_KILL = 1 << 2,
3986 	MF_SOFT_OFFLINE = 1 << 3,
3987 	MF_UNPOISON = 1 << 4,
3988 	MF_SW_SIMULATED = 1 << 5,
3989 	MF_NO_RETRY = 1 << 6,
3990 	MF_MEM_PRE_REMOVE = 1 << 7,
3991 };
3992 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3993 		      unsigned long count, int mf_flags);
3994 extern int memory_failure(unsigned long pfn, int flags);
3995 extern void memory_failure_queue_kick(int cpu);
3996 extern int unpoison_memory(unsigned long pfn);
3997 extern atomic_long_t num_poisoned_pages __read_mostly;
3998 extern int soft_offline_page(unsigned long pfn, int flags);
3999 #ifdef CONFIG_MEMORY_FAILURE
4000 /*
4001  * Sysfs entries for memory failure handling statistics.
4002  */
4003 extern const struct attribute_group memory_failure_attr_group;
4004 extern void memory_failure_queue(unsigned long pfn, int flags);
4005 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4006 					bool *migratable_cleared);
4007 void num_poisoned_pages_inc(unsigned long pfn);
4008 void num_poisoned_pages_sub(unsigned long pfn, long i);
4009 #else
4010 static inline void memory_failure_queue(unsigned long pfn, int flags)
4011 {
4012 }
4013 
4014 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4015 					bool *migratable_cleared)
4016 {
4017 	return 0;
4018 }
4019 
4020 static inline void num_poisoned_pages_inc(unsigned long pfn)
4021 {
4022 }
4023 
4024 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4025 {
4026 }
4027 #endif
4028 
4029 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4030 extern void memblk_nr_poison_inc(unsigned long pfn);
4031 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4032 #else
4033 static inline void memblk_nr_poison_inc(unsigned long pfn)
4034 {
4035 }
4036 
4037 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4038 {
4039 }
4040 #endif
4041 
4042 #ifndef arch_memory_failure
4043 static inline int arch_memory_failure(unsigned long pfn, int flags)
4044 {
4045 	return -ENXIO;
4046 }
4047 #endif
4048 
4049 #ifndef arch_is_platform_page
4050 static inline bool arch_is_platform_page(u64 paddr)
4051 {
4052 	return false;
4053 }
4054 #endif
4055 
4056 /*
4057  * Error handlers for various types of pages.
4058  */
4059 enum mf_result {
4060 	MF_IGNORED,	/* Error: cannot be handled */
4061 	MF_FAILED,	/* Error: handling failed */
4062 	MF_DELAYED,	/* Will be handled later */
4063 	MF_RECOVERED,	/* Successfully recovered */
4064 };
4065 
4066 enum mf_action_page_type {
4067 	MF_MSG_KERNEL,
4068 	MF_MSG_KERNEL_HIGH_ORDER,
4069 	MF_MSG_DIFFERENT_COMPOUND,
4070 	MF_MSG_HUGE,
4071 	MF_MSG_FREE_HUGE,
4072 	MF_MSG_GET_HWPOISON,
4073 	MF_MSG_UNMAP_FAILED,
4074 	MF_MSG_DIRTY_SWAPCACHE,
4075 	MF_MSG_CLEAN_SWAPCACHE,
4076 	MF_MSG_DIRTY_MLOCKED_LRU,
4077 	MF_MSG_CLEAN_MLOCKED_LRU,
4078 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4079 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4080 	MF_MSG_DIRTY_LRU,
4081 	MF_MSG_CLEAN_LRU,
4082 	MF_MSG_TRUNCATED_LRU,
4083 	MF_MSG_BUDDY,
4084 	MF_MSG_DAX,
4085 	MF_MSG_UNSPLIT_THP,
4086 	MF_MSG_ALREADY_POISONED,
4087 	MF_MSG_UNKNOWN,
4088 };
4089 
4090 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4091 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4092 int copy_user_large_folio(struct folio *dst, struct folio *src,
4093 			  unsigned long addr_hint,
4094 			  struct vm_area_struct *vma);
4095 long copy_folio_from_user(struct folio *dst_folio,
4096 			   const void __user *usr_src,
4097 			   bool allow_pagefault);
4098 
4099 /**
4100  * vma_is_special_huge - Are transhuge page-table entries considered special?
4101  * @vma: Pointer to the struct vm_area_struct to consider
4102  *
4103  * Whether transhuge page-table entries are considered "special" following
4104  * the definition in vm_normal_page().
4105  *
4106  * Return: true if transhuge page-table entries should be considered special,
4107  * false otherwise.
4108  */
4109 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4110 {
4111 	return vma_is_dax(vma) || (vma->vm_file &&
4112 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4113 }
4114 
4115 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4116 
4117 #if MAX_NUMNODES > 1
4118 void __init setup_nr_node_ids(void);
4119 #else
4120 static inline void setup_nr_node_ids(void) {}
4121 #endif
4122 
4123 extern int memcmp_pages(struct page *page1, struct page *page2);
4124 
4125 static inline int pages_identical(struct page *page1, struct page *page2)
4126 {
4127 	return !memcmp_pages(page1, page2);
4128 }
4129 
4130 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4131 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4132 						pgoff_t first_index, pgoff_t nr,
4133 						pgoff_t bitmap_pgoff,
4134 						unsigned long *bitmap,
4135 						pgoff_t *start,
4136 						pgoff_t *end);
4137 
4138 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4139 				      pgoff_t first_index, pgoff_t nr);
4140 #endif
4141 
4142 extern int sysctl_nr_trim_pages;
4143 
4144 #ifdef CONFIG_PRINTK
4145 void mem_dump_obj(void *object);
4146 #else
4147 static inline void mem_dump_obj(void *object) {}
4148 #endif
4149 
4150 /**
4151  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4152  *                    handle them.
4153  * @seals: the seals to check
4154  * @vma: the vma to operate on
4155  *
4156  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4157  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4158  */
4159 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4160 {
4161 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4162 		/*
4163 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4164 		 * write seals are active.
4165 		 */
4166 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4167 			return -EPERM;
4168 
4169 		/*
4170 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4171 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4172 		 * revert protections on such mappings. Do this only for shared
4173 		 * mappings. For private mappings, don't need to mask
4174 		 * VM_MAYWRITE as we still want them to be COW-writable.
4175 		 */
4176 		if (vma->vm_flags & VM_SHARED)
4177 			vm_flags_clear(vma, VM_MAYWRITE);
4178 	}
4179 
4180 	return 0;
4181 }
4182 
4183 #ifdef CONFIG_ANON_VMA_NAME
4184 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4185 			  unsigned long len_in,
4186 			  struct anon_vma_name *anon_name);
4187 #else
4188 static inline int
4189 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4190 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4191 	return 0;
4192 }
4193 #endif
4194 
4195 #ifdef CONFIG_UNACCEPTED_MEMORY
4196 
4197 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4198 void accept_memory(phys_addr_t start, phys_addr_t end);
4199 
4200 #else
4201 
4202 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4203 						    phys_addr_t end)
4204 {
4205 	return false;
4206 }
4207 
4208 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4209 {
4210 }
4211 
4212 #endif
4213 
4214 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4215 {
4216 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4217 
4218 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4219 }
4220 
4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4222 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4223 
4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4225 
4226 #ifdef CONFIG_64BIT
4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4228 #else
4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4230 {
4231 	/* noop on 32 bit */
4232 	return 0;
4233 }
4234 #endif
4235 
4236 #endif /* _LINUX_MM_H */
4237