1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #ifndef PHYSMEM_END 101 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 102 #endif 103 104 #include <asm/page.h> 105 #include <asm/processor.h> 106 107 #ifndef __pa_symbol 108 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 109 #endif 110 111 #ifndef page_to_virt 112 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 113 #endif 114 115 #ifndef lm_alias 116 #define lm_alias(x) __va(__pa_symbol(x)) 117 #endif 118 119 /* 120 * To prevent common memory management code establishing 121 * a zero page mapping on a read fault. 122 * This macro should be defined within <asm/pgtable.h>. 123 * s390 does this to prevent multiplexing of hardware bits 124 * related to the physical page in case of virtualization. 125 */ 126 #ifndef mm_forbids_zeropage 127 #define mm_forbids_zeropage(X) (0) 128 #endif 129 130 /* 131 * On some architectures it is expensive to call memset() for small sizes. 132 * If an architecture decides to implement their own version of 133 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 134 * define their own version of this macro in <asm/pgtable.h> 135 */ 136 #if BITS_PER_LONG == 64 137 /* This function must be updated when the size of struct page grows above 96 138 * or reduces below 56. The idea that compiler optimizes out switch() 139 * statement, and only leaves move/store instructions. Also the compiler can 140 * combine write statements if they are both assignments and can be reordered, 141 * this can result in several of the writes here being dropped. 142 */ 143 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 144 static inline void __mm_zero_struct_page(struct page *page) 145 { 146 unsigned long *_pp = (void *)page; 147 148 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 149 BUILD_BUG_ON(sizeof(struct page) & 7); 150 BUILD_BUG_ON(sizeof(struct page) < 56); 151 BUILD_BUG_ON(sizeof(struct page) > 96); 152 153 switch (sizeof(struct page)) { 154 case 96: 155 _pp[11] = 0; 156 fallthrough; 157 case 88: 158 _pp[10] = 0; 159 fallthrough; 160 case 80: 161 _pp[9] = 0; 162 fallthrough; 163 case 72: 164 _pp[8] = 0; 165 fallthrough; 166 case 64: 167 _pp[7] = 0; 168 fallthrough; 169 case 56: 170 _pp[6] = 0; 171 _pp[5] = 0; 172 _pp[4] = 0; 173 _pp[3] = 0; 174 _pp[2] = 0; 175 _pp[1] = 0; 176 _pp[0] = 0; 177 } 178 } 179 #else 180 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 181 #endif 182 183 /* 184 * Default maximum number of active map areas, this limits the number of vmas 185 * per mm struct. Users can overwrite this number by sysctl but there is a 186 * problem. 187 * 188 * When a program's coredump is generated as ELF format, a section is created 189 * per a vma. In ELF, the number of sections is represented in unsigned short. 190 * This means the number of sections should be smaller than 65535 at coredump. 191 * Because the kernel adds some informative sections to a image of program at 192 * generating coredump, we need some margin. The number of extra sections is 193 * 1-3 now and depends on arch. We use "5" as safe margin, here. 194 * 195 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 196 * not a hard limit any more. Although some userspace tools can be surprised by 197 * that. 198 */ 199 #define MAPCOUNT_ELF_CORE_MARGIN (5) 200 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 201 202 extern int sysctl_max_map_count; 203 204 extern unsigned long sysctl_user_reserve_kbytes; 205 extern unsigned long sysctl_admin_reserve_kbytes; 206 207 extern int sysctl_overcommit_memory; 208 extern int sysctl_overcommit_ratio; 209 extern unsigned long sysctl_overcommit_kbytes; 210 211 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 218 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 220 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 221 #else 222 #define nth_page(page,n) ((page) + (n)) 223 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 224 #endif 225 226 /* to align the pointer to the (next) page boundary */ 227 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 228 229 /* to align the pointer to the (prev) page boundary */ 230 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 231 232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 233 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 234 235 static inline struct folio *lru_to_folio(struct list_head *head) 236 { 237 return list_entry((head)->prev, struct folio, lru); 238 } 239 240 void setup_initial_init_mm(void *start_code, void *end_code, 241 void *end_data, void *brk); 242 243 /* 244 * Linux kernel virtual memory manager primitives. 245 * The idea being to have a "virtual" mm in the same way 246 * we have a virtual fs - giving a cleaner interface to the 247 * mm details, and allowing different kinds of memory mappings 248 * (from shared memory to executable loading to arbitrary 249 * mmap() functions). 250 */ 251 252 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 253 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 254 void vm_area_free(struct vm_area_struct *); 255 /* Use only if VMA has no other users */ 256 void __vm_area_free(struct vm_area_struct *vma); 257 258 #ifndef CONFIG_MMU 259 extern struct rb_root nommu_region_tree; 260 extern struct rw_semaphore nommu_region_sem; 261 262 extern unsigned int kobjsize(const void *objp); 263 #endif 264 265 /* 266 * vm_flags in vm_area_struct, see mm_types.h. 267 * When changing, update also include/trace/events/mmflags.h 268 */ 269 #define VM_NONE 0x00000000 270 271 #define VM_READ 0x00000001 /* currently active flags */ 272 #define VM_WRITE 0x00000002 273 #define VM_EXEC 0x00000004 274 #define VM_SHARED 0x00000008 275 276 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 277 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 278 #define VM_MAYWRITE 0x00000020 279 #define VM_MAYEXEC 0x00000040 280 #define VM_MAYSHARE 0x00000080 281 282 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 283 #ifdef CONFIG_MMU 284 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 285 #else /* CONFIG_MMU */ 286 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 287 #define VM_UFFD_MISSING 0 288 #endif /* CONFIG_MMU */ 289 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 290 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 291 292 #define VM_LOCKED 0x00002000 293 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 294 295 /* Used by sys_madvise() */ 296 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 297 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 298 299 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 300 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 301 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 302 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 303 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 304 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 305 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 306 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 307 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 308 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 309 310 #ifdef CONFIG_MEM_SOFT_DIRTY 311 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 312 #else 313 # define VM_SOFTDIRTY 0 314 #endif 315 316 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 317 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 318 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 319 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 320 321 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 322 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 325 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 326 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 327 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 328 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 329 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 330 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 331 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 332 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 333 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 334 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 335 336 #ifdef CONFIG_ARCH_HAS_PKEYS 337 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 338 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 339 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 340 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 341 #if CONFIG_ARCH_PKEY_BITS > 3 342 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 343 #else 344 # define VM_PKEY_BIT3 0 345 #endif 346 #if CONFIG_ARCH_PKEY_BITS > 4 347 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 348 #else 349 # define VM_PKEY_BIT4 0 350 #endif 351 #endif /* CONFIG_ARCH_HAS_PKEYS */ 352 353 #ifdef CONFIG_X86_USER_SHADOW_STACK 354 /* 355 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 356 * support core mm. 357 * 358 * These VMAs will get a single end guard page. This helps userspace protect 359 * itself from attacks. A single page is enough for current shadow stack archs 360 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 361 * for more details on the guard size. 362 */ 363 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 364 #else 365 # define VM_SHADOW_STACK VM_NONE 366 #endif 367 368 #if defined(CONFIG_X86) 369 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 370 #elif defined(CONFIG_PPC64) 371 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 372 #elif defined(CONFIG_PARISC) 373 # define VM_GROWSUP VM_ARCH_1 374 #elif defined(CONFIG_SPARC64) 375 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 376 # define VM_ARCH_CLEAR VM_SPARC_ADI 377 #elif defined(CONFIG_ARM64) 378 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 379 # define VM_ARCH_CLEAR VM_ARM64_BTI 380 #elif !defined(CONFIG_MMU) 381 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 382 #endif 383 384 #if defined(CONFIG_ARM64_MTE) 385 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 386 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 387 #else 388 # define VM_MTE VM_NONE 389 # define VM_MTE_ALLOWED VM_NONE 390 #endif 391 392 #ifndef VM_GROWSUP 393 # define VM_GROWSUP VM_NONE 394 #endif 395 396 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 397 # define VM_UFFD_MINOR_BIT 38 398 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 399 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 400 # define VM_UFFD_MINOR VM_NONE 401 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 402 403 /* 404 * This flag is used to connect VFIO to arch specific KVM code. It 405 * indicates that the memory under this VMA is safe for use with any 406 * non-cachable memory type inside KVM. Some VFIO devices, on some 407 * platforms, are thought to be unsafe and can cause machine crashes 408 * if KVM does not lock down the memory type. 409 */ 410 #ifdef CONFIG_64BIT 411 #define VM_ALLOW_ANY_UNCACHED_BIT 39 412 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 413 #else 414 #define VM_ALLOW_ANY_UNCACHED VM_NONE 415 #endif 416 417 #ifdef CONFIG_64BIT 418 #define VM_DROPPABLE_BIT 40 419 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 420 #elif defined(CONFIG_PPC32) 421 #define VM_DROPPABLE VM_ARCH_1 422 #else 423 #define VM_DROPPABLE VM_NONE 424 #endif 425 426 #ifdef CONFIG_64BIT 427 /* VM is sealed, in vm_flags */ 428 #define VM_SEALED _BITUL(63) 429 #endif 430 431 /* Bits set in the VMA until the stack is in its final location */ 432 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 433 434 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 435 436 /* Common data flag combinations */ 437 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 438 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 439 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 440 VM_MAYWRITE | VM_MAYEXEC) 441 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 442 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 443 444 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 445 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 446 #endif 447 448 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 449 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 450 #endif 451 452 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 453 454 #ifdef CONFIG_STACK_GROWSUP 455 #define VM_STACK VM_GROWSUP 456 #define VM_STACK_EARLY VM_GROWSDOWN 457 #else 458 #define VM_STACK VM_GROWSDOWN 459 #define VM_STACK_EARLY 0 460 #endif 461 462 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 463 464 /* VMA basic access permission flags */ 465 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 466 467 468 /* 469 * Special vmas that are non-mergable, non-mlock()able. 470 */ 471 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 472 473 /* This mask prevents VMA from being scanned with khugepaged */ 474 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 475 476 /* This mask defines which mm->def_flags a process can inherit its parent */ 477 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 478 479 /* This mask represents all the VMA flag bits used by mlock */ 480 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 481 482 /* Arch-specific flags to clear when updating VM flags on protection change */ 483 #ifndef VM_ARCH_CLEAR 484 # define VM_ARCH_CLEAR VM_NONE 485 #endif 486 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 487 488 /* 489 * mapping from the currently active vm_flags protection bits (the 490 * low four bits) to a page protection mask.. 491 */ 492 493 /* 494 * The default fault flags that should be used by most of the 495 * arch-specific page fault handlers. 496 */ 497 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 498 FAULT_FLAG_KILLABLE | \ 499 FAULT_FLAG_INTERRUPTIBLE) 500 501 /** 502 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 503 * @flags: Fault flags. 504 * 505 * This is mostly used for places where we want to try to avoid taking 506 * the mmap_lock for too long a time when waiting for another condition 507 * to change, in which case we can try to be polite to release the 508 * mmap_lock in the first round to avoid potential starvation of other 509 * processes that would also want the mmap_lock. 510 * 511 * Return: true if the page fault allows retry and this is the first 512 * attempt of the fault handling; false otherwise. 513 */ 514 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 515 { 516 return (flags & FAULT_FLAG_ALLOW_RETRY) && 517 (!(flags & FAULT_FLAG_TRIED)); 518 } 519 520 #define FAULT_FLAG_TRACE \ 521 { FAULT_FLAG_WRITE, "WRITE" }, \ 522 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 523 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 524 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 525 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 526 { FAULT_FLAG_TRIED, "TRIED" }, \ 527 { FAULT_FLAG_USER, "USER" }, \ 528 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 529 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 530 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 531 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 532 533 /* 534 * vm_fault is filled by the pagefault handler and passed to the vma's 535 * ->fault function. The vma's ->fault is responsible for returning a bitmask 536 * of VM_FAULT_xxx flags that give details about how the fault was handled. 537 * 538 * MM layer fills up gfp_mask for page allocations but fault handler might 539 * alter it if its implementation requires a different allocation context. 540 * 541 * pgoff should be used in favour of virtual_address, if possible. 542 */ 543 struct vm_fault { 544 const struct { 545 struct vm_area_struct *vma; /* Target VMA */ 546 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 547 pgoff_t pgoff; /* Logical page offset based on vma */ 548 unsigned long address; /* Faulting virtual address - masked */ 549 unsigned long real_address; /* Faulting virtual address - unmasked */ 550 }; 551 enum fault_flag flags; /* FAULT_FLAG_xxx flags 552 * XXX: should really be 'const' */ 553 pmd_t *pmd; /* Pointer to pmd entry matching 554 * the 'address' */ 555 pud_t *pud; /* Pointer to pud entry matching 556 * the 'address' 557 */ 558 union { 559 pte_t orig_pte; /* Value of PTE at the time of fault */ 560 pmd_t orig_pmd; /* Value of PMD at the time of fault, 561 * used by PMD fault only. 562 */ 563 }; 564 565 struct page *cow_page; /* Page handler may use for COW fault */ 566 struct page *page; /* ->fault handlers should return a 567 * page here, unless VM_FAULT_NOPAGE 568 * is set (which is also implied by 569 * VM_FAULT_ERROR). 570 */ 571 /* These three entries are valid only while holding ptl lock */ 572 pte_t *pte; /* Pointer to pte entry matching 573 * the 'address'. NULL if the page 574 * table hasn't been allocated. 575 */ 576 spinlock_t *ptl; /* Page table lock. 577 * Protects pte page table if 'pte' 578 * is not NULL, otherwise pmd. 579 */ 580 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 581 * vm_ops->map_pages() sets up a page 582 * table from atomic context. 583 * do_fault_around() pre-allocates 584 * page table to avoid allocation from 585 * atomic context. 586 */ 587 }; 588 589 /* 590 * These are the virtual MM functions - opening of an area, closing and 591 * unmapping it (needed to keep files on disk up-to-date etc), pointer 592 * to the functions called when a no-page or a wp-page exception occurs. 593 */ 594 struct vm_operations_struct { 595 void (*open)(struct vm_area_struct * area); 596 /** 597 * @close: Called when the VMA is being removed from the MM. 598 * Context: User context. May sleep. Caller holds mmap_lock. 599 */ 600 void (*close)(struct vm_area_struct * area); 601 /* Called any time before splitting to check if it's allowed */ 602 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 603 int (*mremap)(struct vm_area_struct *area); 604 /* 605 * Called by mprotect() to make driver-specific permission 606 * checks before mprotect() is finalised. The VMA must not 607 * be modified. Returns 0 if mprotect() can proceed. 608 */ 609 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 610 unsigned long end, unsigned long newflags); 611 vm_fault_t (*fault)(struct vm_fault *vmf); 612 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 613 vm_fault_t (*map_pages)(struct vm_fault *vmf, 614 pgoff_t start_pgoff, pgoff_t end_pgoff); 615 unsigned long (*pagesize)(struct vm_area_struct * area); 616 617 /* notification that a previously read-only page is about to become 618 * writable, if an error is returned it will cause a SIGBUS */ 619 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 620 621 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 622 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 623 624 /* called by access_process_vm when get_user_pages() fails, typically 625 * for use by special VMAs. See also generic_access_phys() for a generic 626 * implementation useful for any iomem mapping. 627 */ 628 int (*access)(struct vm_area_struct *vma, unsigned long addr, 629 void *buf, int len, int write); 630 631 /* Called by the /proc/PID/maps code to ask the vma whether it 632 * has a special name. Returning non-NULL will also cause this 633 * vma to be dumped unconditionally. */ 634 const char *(*name)(struct vm_area_struct *vma); 635 636 #ifdef CONFIG_NUMA 637 /* 638 * set_policy() op must add a reference to any non-NULL @new mempolicy 639 * to hold the policy upon return. Caller should pass NULL @new to 640 * remove a policy and fall back to surrounding context--i.e. do not 641 * install a MPOL_DEFAULT policy, nor the task or system default 642 * mempolicy. 643 */ 644 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 645 646 /* 647 * get_policy() op must add reference [mpol_get()] to any policy at 648 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 649 * in mm/mempolicy.c will do this automatically. 650 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 651 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 652 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 653 * must return NULL--i.e., do not "fallback" to task or system default 654 * policy. 655 */ 656 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 657 unsigned long addr, pgoff_t *ilx); 658 #endif 659 /* 660 * Called by vm_normal_page() for special PTEs to find the 661 * page for @addr. This is useful if the default behavior 662 * (using pte_page()) would not find the correct page. 663 */ 664 struct page *(*find_special_page)(struct vm_area_struct *vma, 665 unsigned long addr); 666 }; 667 668 #ifdef CONFIG_NUMA_BALANCING 669 static inline void vma_numab_state_init(struct vm_area_struct *vma) 670 { 671 vma->numab_state = NULL; 672 } 673 static inline void vma_numab_state_free(struct vm_area_struct *vma) 674 { 675 kfree(vma->numab_state); 676 } 677 #else 678 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 679 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 680 #endif /* CONFIG_NUMA_BALANCING */ 681 682 #ifdef CONFIG_PER_VMA_LOCK 683 /* 684 * Try to read-lock a vma. The function is allowed to occasionally yield false 685 * locked result to avoid performance overhead, in which case we fall back to 686 * using mmap_lock. The function should never yield false unlocked result. 687 */ 688 static inline bool vma_start_read(struct vm_area_struct *vma) 689 { 690 /* 691 * Check before locking. A race might cause false locked result. 692 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 693 * ACQUIRE semantics, because this is just a lockless check whose result 694 * we don't rely on for anything - the mm_lock_seq read against which we 695 * need ordering is below. 696 */ 697 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 698 return false; 699 700 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 701 return false; 702 703 /* 704 * Overflow might produce false locked result. 705 * False unlocked result is impossible because we modify and check 706 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 707 * modification invalidates all existing locks. 708 * 709 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 710 * racing with vma_end_write_all(), we only start reading from the VMA 711 * after it has been unlocked. 712 * This pairs with RELEASE semantics in vma_end_write_all(). 713 */ 714 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 715 up_read(&vma->vm_lock->lock); 716 return false; 717 } 718 return true; 719 } 720 721 static inline void vma_end_read(struct vm_area_struct *vma) 722 { 723 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 724 up_read(&vma->vm_lock->lock); 725 rcu_read_unlock(); 726 } 727 728 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 729 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 730 { 731 mmap_assert_write_locked(vma->vm_mm); 732 733 /* 734 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 735 * mm->mm_lock_seq can't be concurrently modified. 736 */ 737 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 738 return (vma->vm_lock_seq == *mm_lock_seq); 739 } 740 741 /* 742 * Begin writing to a VMA. 743 * Exclude concurrent readers under the per-VMA lock until the currently 744 * write-locked mmap_lock is dropped or downgraded. 745 */ 746 static inline void vma_start_write(struct vm_area_struct *vma) 747 { 748 int mm_lock_seq; 749 750 if (__is_vma_write_locked(vma, &mm_lock_seq)) 751 return; 752 753 down_write(&vma->vm_lock->lock); 754 /* 755 * We should use WRITE_ONCE() here because we can have concurrent reads 756 * from the early lockless pessimistic check in vma_start_read(). 757 * We don't really care about the correctness of that early check, but 758 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 759 */ 760 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 761 up_write(&vma->vm_lock->lock); 762 } 763 764 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 765 { 766 int mm_lock_seq; 767 768 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 769 } 770 771 static inline void vma_assert_locked(struct vm_area_struct *vma) 772 { 773 if (!rwsem_is_locked(&vma->vm_lock->lock)) 774 vma_assert_write_locked(vma); 775 } 776 777 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 778 { 779 /* When detaching vma should be write-locked */ 780 if (detached) 781 vma_assert_write_locked(vma); 782 vma->detached = detached; 783 } 784 785 static inline void release_fault_lock(struct vm_fault *vmf) 786 { 787 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 788 vma_end_read(vmf->vma); 789 else 790 mmap_read_unlock(vmf->vma->vm_mm); 791 } 792 793 static inline void assert_fault_locked(struct vm_fault *vmf) 794 { 795 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 796 vma_assert_locked(vmf->vma); 797 else 798 mmap_assert_locked(vmf->vma->vm_mm); 799 } 800 801 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 802 unsigned long address); 803 804 #else /* CONFIG_PER_VMA_LOCK */ 805 806 static inline bool vma_start_read(struct vm_area_struct *vma) 807 { return false; } 808 static inline void vma_end_read(struct vm_area_struct *vma) {} 809 static inline void vma_start_write(struct vm_area_struct *vma) {} 810 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 811 { mmap_assert_write_locked(vma->vm_mm); } 812 static inline void vma_mark_detached(struct vm_area_struct *vma, 813 bool detached) {} 814 815 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 816 unsigned long address) 817 { 818 return NULL; 819 } 820 821 static inline void vma_assert_locked(struct vm_area_struct *vma) 822 { 823 mmap_assert_locked(vma->vm_mm); 824 } 825 826 static inline void release_fault_lock(struct vm_fault *vmf) 827 { 828 mmap_read_unlock(vmf->vma->vm_mm); 829 } 830 831 static inline void assert_fault_locked(struct vm_fault *vmf) 832 { 833 mmap_assert_locked(vmf->vma->vm_mm); 834 } 835 836 #endif /* CONFIG_PER_VMA_LOCK */ 837 838 extern const struct vm_operations_struct vma_dummy_vm_ops; 839 840 /* 841 * WARNING: vma_init does not initialize vma->vm_lock. 842 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 843 */ 844 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 845 { 846 memset(vma, 0, sizeof(*vma)); 847 vma->vm_mm = mm; 848 vma->vm_ops = &vma_dummy_vm_ops; 849 INIT_LIST_HEAD(&vma->anon_vma_chain); 850 vma_mark_detached(vma, false); 851 vma_numab_state_init(vma); 852 } 853 854 /* Use when VMA is not part of the VMA tree and needs no locking */ 855 static inline void vm_flags_init(struct vm_area_struct *vma, 856 vm_flags_t flags) 857 { 858 ACCESS_PRIVATE(vma, __vm_flags) = flags; 859 } 860 861 /* 862 * Use when VMA is part of the VMA tree and modifications need coordination 863 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 864 * it should be locked explicitly beforehand. 865 */ 866 static inline void vm_flags_reset(struct vm_area_struct *vma, 867 vm_flags_t flags) 868 { 869 vma_assert_write_locked(vma); 870 vm_flags_init(vma, flags); 871 } 872 873 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 874 vm_flags_t flags) 875 { 876 vma_assert_write_locked(vma); 877 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 878 } 879 880 static inline void vm_flags_set(struct vm_area_struct *vma, 881 vm_flags_t flags) 882 { 883 vma_start_write(vma); 884 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 885 } 886 887 static inline void vm_flags_clear(struct vm_area_struct *vma, 888 vm_flags_t flags) 889 { 890 vma_start_write(vma); 891 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 892 } 893 894 /* 895 * Use only if VMA is not part of the VMA tree or has no other users and 896 * therefore needs no locking. 897 */ 898 static inline void __vm_flags_mod(struct vm_area_struct *vma, 899 vm_flags_t set, vm_flags_t clear) 900 { 901 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 902 } 903 904 /* 905 * Use only when the order of set/clear operations is unimportant, otherwise 906 * use vm_flags_{set|clear} explicitly. 907 */ 908 static inline void vm_flags_mod(struct vm_area_struct *vma, 909 vm_flags_t set, vm_flags_t clear) 910 { 911 vma_start_write(vma); 912 __vm_flags_mod(vma, set, clear); 913 } 914 915 static inline void vma_set_anonymous(struct vm_area_struct *vma) 916 { 917 vma->vm_ops = NULL; 918 } 919 920 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 921 { 922 return !vma->vm_ops; 923 } 924 925 /* 926 * Indicate if the VMA is a heap for the given task; for 927 * /proc/PID/maps that is the heap of the main task. 928 */ 929 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 930 { 931 return vma->vm_start < vma->vm_mm->brk && 932 vma->vm_end > vma->vm_mm->start_brk; 933 } 934 935 /* 936 * Indicate if the VMA is a stack for the given task; for 937 * /proc/PID/maps that is the stack of the main task. 938 */ 939 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 940 { 941 /* 942 * We make no effort to guess what a given thread considers to be 943 * its "stack". It's not even well-defined for programs written 944 * languages like Go. 945 */ 946 return vma->vm_start <= vma->vm_mm->start_stack && 947 vma->vm_end >= vma->vm_mm->start_stack; 948 } 949 950 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 951 { 952 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 953 954 if (!maybe_stack) 955 return false; 956 957 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 958 VM_STACK_INCOMPLETE_SETUP) 959 return true; 960 961 return false; 962 } 963 964 static inline bool vma_is_foreign(struct vm_area_struct *vma) 965 { 966 if (!current->mm) 967 return true; 968 969 if (current->mm != vma->vm_mm) 970 return true; 971 972 return false; 973 } 974 975 static inline bool vma_is_accessible(struct vm_area_struct *vma) 976 { 977 return vma->vm_flags & VM_ACCESS_FLAGS; 978 } 979 980 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 981 { 982 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 983 (VM_SHARED | VM_MAYWRITE); 984 } 985 986 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 987 { 988 return is_shared_maywrite(vma->vm_flags); 989 } 990 991 static inline 992 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 993 { 994 return mas_find(&vmi->mas, max - 1); 995 } 996 997 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 998 { 999 /* 1000 * Uses mas_find() to get the first VMA when the iterator starts. 1001 * Calling mas_next() could skip the first entry. 1002 */ 1003 return mas_find(&vmi->mas, ULONG_MAX); 1004 } 1005 1006 static inline 1007 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1008 { 1009 return mas_next_range(&vmi->mas, ULONG_MAX); 1010 } 1011 1012 1013 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1014 { 1015 return mas_prev(&vmi->mas, 0); 1016 } 1017 1018 static inline 1019 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 1020 { 1021 return mas_prev_range(&vmi->mas, 0); 1022 } 1023 1024 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1025 { 1026 return vmi->mas.index; 1027 } 1028 1029 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1030 { 1031 return vmi->mas.last + 1; 1032 } 1033 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1034 unsigned long count) 1035 { 1036 return mas_expected_entries(&vmi->mas, count); 1037 } 1038 1039 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1040 unsigned long start, unsigned long end, gfp_t gfp) 1041 { 1042 __mas_set_range(&vmi->mas, start, end - 1); 1043 mas_store_gfp(&vmi->mas, NULL, gfp); 1044 if (unlikely(mas_is_err(&vmi->mas))) 1045 return -ENOMEM; 1046 1047 return 0; 1048 } 1049 1050 /* Free any unused preallocations */ 1051 static inline void vma_iter_free(struct vma_iterator *vmi) 1052 { 1053 mas_destroy(&vmi->mas); 1054 } 1055 1056 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1057 struct vm_area_struct *vma) 1058 { 1059 vmi->mas.index = vma->vm_start; 1060 vmi->mas.last = vma->vm_end - 1; 1061 mas_store(&vmi->mas, vma); 1062 if (unlikely(mas_is_err(&vmi->mas))) 1063 return -ENOMEM; 1064 1065 return 0; 1066 } 1067 1068 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1069 { 1070 mas_pause(&vmi->mas); 1071 } 1072 1073 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1074 { 1075 mas_set(&vmi->mas, addr); 1076 } 1077 1078 #define for_each_vma(__vmi, __vma) \ 1079 while (((__vma) = vma_next(&(__vmi))) != NULL) 1080 1081 /* The MM code likes to work with exclusive end addresses */ 1082 #define for_each_vma_range(__vmi, __vma, __end) \ 1083 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1084 1085 #ifdef CONFIG_SHMEM 1086 /* 1087 * The vma_is_shmem is not inline because it is used only by slow 1088 * paths in userfault. 1089 */ 1090 bool vma_is_shmem(struct vm_area_struct *vma); 1091 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1092 #else 1093 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1094 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1095 #endif 1096 1097 int vma_is_stack_for_current(struct vm_area_struct *vma); 1098 1099 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1100 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1101 1102 struct mmu_gather; 1103 struct inode; 1104 1105 /* 1106 * compound_order() can be called without holding a reference, which means 1107 * that niceties like page_folio() don't work. These callers should be 1108 * prepared to handle wild return values. For example, PG_head may be 1109 * set before the order is initialised, or this may be a tail page. 1110 * See compaction.c for some good examples. 1111 */ 1112 static inline unsigned int compound_order(struct page *page) 1113 { 1114 struct folio *folio = (struct folio *)page; 1115 1116 if (!test_bit(PG_head, &folio->flags)) 1117 return 0; 1118 return folio->_flags_1 & 0xff; 1119 } 1120 1121 /** 1122 * folio_order - The allocation order of a folio. 1123 * @folio: The folio. 1124 * 1125 * A folio is composed of 2^order pages. See get_order() for the definition 1126 * of order. 1127 * 1128 * Return: The order of the folio. 1129 */ 1130 static inline unsigned int folio_order(const struct folio *folio) 1131 { 1132 if (!folio_test_large(folio)) 1133 return 0; 1134 return folio->_flags_1 & 0xff; 1135 } 1136 1137 #include <linux/huge_mm.h> 1138 1139 /* 1140 * Methods to modify the page usage count. 1141 * 1142 * What counts for a page usage: 1143 * - cache mapping (page->mapping) 1144 * - private data (page->private) 1145 * - page mapped in a task's page tables, each mapping 1146 * is counted separately 1147 * 1148 * Also, many kernel routines increase the page count before a critical 1149 * routine so they can be sure the page doesn't go away from under them. 1150 */ 1151 1152 /* 1153 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1154 */ 1155 static inline int put_page_testzero(struct page *page) 1156 { 1157 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1158 return page_ref_dec_and_test(page); 1159 } 1160 1161 static inline int folio_put_testzero(struct folio *folio) 1162 { 1163 return put_page_testzero(&folio->page); 1164 } 1165 1166 /* 1167 * Try to grab a ref unless the page has a refcount of zero, return false if 1168 * that is the case. 1169 * This can be called when MMU is off so it must not access 1170 * any of the virtual mappings. 1171 */ 1172 static inline bool get_page_unless_zero(struct page *page) 1173 { 1174 return page_ref_add_unless(page, 1, 0); 1175 } 1176 1177 static inline struct folio *folio_get_nontail_page(struct page *page) 1178 { 1179 if (unlikely(!get_page_unless_zero(page))) 1180 return NULL; 1181 return (struct folio *)page; 1182 } 1183 1184 extern int page_is_ram(unsigned long pfn); 1185 1186 enum { 1187 REGION_INTERSECTS, 1188 REGION_DISJOINT, 1189 REGION_MIXED, 1190 }; 1191 1192 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1193 unsigned long desc); 1194 1195 /* Support for virtually mapped pages */ 1196 struct page *vmalloc_to_page(const void *addr); 1197 unsigned long vmalloc_to_pfn(const void *addr); 1198 1199 /* 1200 * Determine if an address is within the vmalloc range 1201 * 1202 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1203 * is no special casing required. 1204 */ 1205 #ifdef CONFIG_MMU 1206 extern bool is_vmalloc_addr(const void *x); 1207 extern int is_vmalloc_or_module_addr(const void *x); 1208 #else 1209 static inline bool is_vmalloc_addr(const void *x) 1210 { 1211 return false; 1212 } 1213 static inline int is_vmalloc_or_module_addr(const void *x) 1214 { 1215 return 0; 1216 } 1217 #endif 1218 1219 /* 1220 * How many times the entire folio is mapped as a single unit (eg by a 1221 * PMD or PUD entry). This is probably not what you want, except for 1222 * debugging purposes or implementation of other core folio_*() primitives. 1223 */ 1224 static inline int folio_entire_mapcount(const struct folio *folio) 1225 { 1226 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1227 return atomic_read(&folio->_entire_mapcount) + 1; 1228 } 1229 1230 static inline int folio_large_mapcount(const struct folio *folio) 1231 { 1232 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1233 return atomic_read(&folio->_large_mapcount) + 1; 1234 } 1235 1236 /** 1237 * folio_mapcount() - Number of mappings of this folio. 1238 * @folio: The folio. 1239 * 1240 * The folio mapcount corresponds to the number of present user page table 1241 * entries that reference any part of a folio. Each such present user page 1242 * table entry must be paired with exactly on folio reference. 1243 * 1244 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1245 * exactly once. 1246 * 1247 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1248 * references the entire folio counts exactly once, even when such special 1249 * page table entries are comprised of multiple ordinary page table entries. 1250 * 1251 * Will report 0 for pages which cannot be mapped into userspace, such as 1252 * slab, page tables and similar. 1253 * 1254 * Return: The number of times this folio is mapped. 1255 */ 1256 static inline int folio_mapcount(const struct folio *folio) 1257 { 1258 int mapcount; 1259 1260 if (likely(!folio_test_large(folio))) { 1261 mapcount = atomic_read(&folio->_mapcount) + 1; 1262 /* Handle page_has_type() pages */ 1263 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1264 mapcount = 0; 1265 return mapcount; 1266 } 1267 return folio_large_mapcount(folio); 1268 } 1269 1270 /** 1271 * folio_mapped - Is this folio mapped into userspace? 1272 * @folio: The folio. 1273 * 1274 * Return: True if any page in this folio is referenced by user page tables. 1275 */ 1276 static inline bool folio_mapped(const struct folio *folio) 1277 { 1278 return folio_mapcount(folio) >= 1; 1279 } 1280 1281 /* 1282 * Return true if this page is mapped into pagetables. 1283 * For compound page it returns true if any sub-page of compound page is mapped, 1284 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1285 */ 1286 static inline bool page_mapped(const struct page *page) 1287 { 1288 return folio_mapped(page_folio(page)); 1289 } 1290 1291 static inline struct page *virt_to_head_page(const void *x) 1292 { 1293 struct page *page = virt_to_page(x); 1294 1295 return compound_head(page); 1296 } 1297 1298 static inline struct folio *virt_to_folio(const void *x) 1299 { 1300 struct page *page = virt_to_page(x); 1301 1302 return page_folio(page); 1303 } 1304 1305 void __folio_put(struct folio *folio); 1306 1307 void put_pages_list(struct list_head *pages); 1308 1309 void split_page(struct page *page, unsigned int order); 1310 void folio_copy(struct folio *dst, struct folio *src); 1311 int folio_mc_copy(struct folio *dst, struct folio *src); 1312 1313 unsigned long nr_free_buffer_pages(void); 1314 1315 /* Returns the number of bytes in this potentially compound page. */ 1316 static inline unsigned long page_size(struct page *page) 1317 { 1318 return PAGE_SIZE << compound_order(page); 1319 } 1320 1321 /* Returns the number of bits needed for the number of bytes in a page */ 1322 static inline unsigned int page_shift(struct page *page) 1323 { 1324 return PAGE_SHIFT + compound_order(page); 1325 } 1326 1327 /** 1328 * thp_order - Order of a transparent huge page. 1329 * @page: Head page of a transparent huge page. 1330 */ 1331 static inline unsigned int thp_order(struct page *page) 1332 { 1333 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1334 return compound_order(page); 1335 } 1336 1337 /** 1338 * thp_size - Size of a transparent huge page. 1339 * @page: Head page of a transparent huge page. 1340 * 1341 * Return: Number of bytes in this page. 1342 */ 1343 static inline unsigned long thp_size(struct page *page) 1344 { 1345 return PAGE_SIZE << thp_order(page); 1346 } 1347 1348 #ifdef CONFIG_MMU 1349 /* 1350 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1351 * servicing faults for write access. In the normal case, do always want 1352 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1353 * that do not have writing enabled, when used by access_process_vm. 1354 */ 1355 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1356 { 1357 if (likely(vma->vm_flags & VM_WRITE)) 1358 pte = pte_mkwrite(pte, vma); 1359 return pte; 1360 } 1361 1362 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1363 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1364 struct page *page, unsigned int nr, unsigned long addr); 1365 1366 vm_fault_t finish_fault(struct vm_fault *vmf); 1367 #endif 1368 1369 /* 1370 * Multiple processes may "see" the same page. E.g. for untouched 1371 * mappings of /dev/null, all processes see the same page full of 1372 * zeroes, and text pages of executables and shared libraries have 1373 * only one copy in memory, at most, normally. 1374 * 1375 * For the non-reserved pages, page_count(page) denotes a reference count. 1376 * page_count() == 0 means the page is free. page->lru is then used for 1377 * freelist management in the buddy allocator. 1378 * page_count() > 0 means the page has been allocated. 1379 * 1380 * Pages are allocated by the slab allocator in order to provide memory 1381 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1382 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1383 * unless a particular usage is carefully commented. (the responsibility of 1384 * freeing the kmalloc memory is the caller's, of course). 1385 * 1386 * A page may be used by anyone else who does a __get_free_page(). 1387 * In this case, page_count still tracks the references, and should only 1388 * be used through the normal accessor functions. The top bits of page->flags 1389 * and page->virtual store page management information, but all other fields 1390 * are unused and could be used privately, carefully. The management of this 1391 * page is the responsibility of the one who allocated it, and those who have 1392 * subsequently been given references to it. 1393 * 1394 * The other pages (we may call them "pagecache pages") are completely 1395 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1396 * The following discussion applies only to them. 1397 * 1398 * A pagecache page contains an opaque `private' member, which belongs to the 1399 * page's address_space. Usually, this is the address of a circular list of 1400 * the page's disk buffers. PG_private must be set to tell the VM to call 1401 * into the filesystem to release these pages. 1402 * 1403 * A page may belong to an inode's memory mapping. In this case, page->mapping 1404 * is the pointer to the inode, and page->index is the file offset of the page, 1405 * in units of PAGE_SIZE. 1406 * 1407 * If pagecache pages are not associated with an inode, they are said to be 1408 * anonymous pages. These may become associated with the swapcache, and in that 1409 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1410 * 1411 * In either case (swapcache or inode backed), the pagecache itself holds one 1412 * reference to the page. Setting PG_private should also increment the 1413 * refcount. The each user mapping also has a reference to the page. 1414 * 1415 * The pagecache pages are stored in a per-mapping radix tree, which is 1416 * rooted at mapping->i_pages, and indexed by offset. 1417 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1418 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1419 * 1420 * All pagecache pages may be subject to I/O: 1421 * - inode pages may need to be read from disk, 1422 * - inode pages which have been modified and are MAP_SHARED may need 1423 * to be written back to the inode on disk, 1424 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1425 * modified may need to be swapped out to swap space and (later) to be read 1426 * back into memory. 1427 */ 1428 1429 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1430 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1431 1432 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1433 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1434 { 1435 if (!static_branch_unlikely(&devmap_managed_key)) 1436 return false; 1437 if (!folio_is_zone_device(folio)) 1438 return false; 1439 return __put_devmap_managed_folio_refs(folio, refs); 1440 } 1441 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1442 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1443 { 1444 return false; 1445 } 1446 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1447 1448 /* 127: arbitrary random number, small enough to assemble well */ 1449 #define folio_ref_zero_or_close_to_overflow(folio) \ 1450 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1451 1452 /** 1453 * folio_get - Increment the reference count on a folio. 1454 * @folio: The folio. 1455 * 1456 * Context: May be called in any context, as long as you know that 1457 * you have a refcount on the folio. If you do not already have one, 1458 * folio_try_get() may be the right interface for you to use. 1459 */ 1460 static inline void folio_get(struct folio *folio) 1461 { 1462 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1463 folio_ref_inc(folio); 1464 } 1465 1466 static inline void get_page(struct page *page) 1467 { 1468 folio_get(page_folio(page)); 1469 } 1470 1471 static inline __must_check bool try_get_page(struct page *page) 1472 { 1473 page = compound_head(page); 1474 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1475 return false; 1476 page_ref_inc(page); 1477 return true; 1478 } 1479 1480 /** 1481 * folio_put - Decrement the reference count on a folio. 1482 * @folio: The folio. 1483 * 1484 * If the folio's reference count reaches zero, the memory will be 1485 * released back to the page allocator and may be used by another 1486 * allocation immediately. Do not access the memory or the struct folio 1487 * after calling folio_put() unless you can be sure that it wasn't the 1488 * last reference. 1489 * 1490 * Context: May be called in process or interrupt context, but not in NMI 1491 * context. May be called while holding a spinlock. 1492 */ 1493 static inline void folio_put(struct folio *folio) 1494 { 1495 if (folio_put_testzero(folio)) 1496 __folio_put(folio); 1497 } 1498 1499 /** 1500 * folio_put_refs - Reduce the reference count on a folio. 1501 * @folio: The folio. 1502 * @refs: The amount to subtract from the folio's reference count. 1503 * 1504 * If the folio's reference count reaches zero, the memory will be 1505 * released back to the page allocator and may be used by another 1506 * allocation immediately. Do not access the memory or the struct folio 1507 * after calling folio_put_refs() unless you can be sure that these weren't 1508 * the last references. 1509 * 1510 * Context: May be called in process or interrupt context, but not in NMI 1511 * context. May be called while holding a spinlock. 1512 */ 1513 static inline void folio_put_refs(struct folio *folio, int refs) 1514 { 1515 if (folio_ref_sub_and_test(folio, refs)) 1516 __folio_put(folio); 1517 } 1518 1519 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1520 1521 /* 1522 * union release_pages_arg - an array of pages or folios 1523 * 1524 * release_pages() releases a simple array of multiple pages, and 1525 * accepts various different forms of said page array: either 1526 * a regular old boring array of pages, an array of folios, or 1527 * an array of encoded page pointers. 1528 * 1529 * The transparent union syntax for this kind of "any of these 1530 * argument types" is all kinds of ugly, so look away. 1531 */ 1532 typedef union { 1533 struct page **pages; 1534 struct folio **folios; 1535 struct encoded_page **encoded_pages; 1536 } release_pages_arg __attribute__ ((__transparent_union__)); 1537 1538 void release_pages(release_pages_arg, int nr); 1539 1540 /** 1541 * folios_put - Decrement the reference count on an array of folios. 1542 * @folios: The folios. 1543 * 1544 * Like folio_put(), but for a batch of folios. This is more efficient 1545 * than writing the loop yourself as it will optimise the locks which need 1546 * to be taken if the folios are freed. The folios batch is returned 1547 * empty and ready to be reused for another batch; there is no need to 1548 * reinitialise it. 1549 * 1550 * Context: May be called in process or interrupt context, but not in NMI 1551 * context. May be called while holding a spinlock. 1552 */ 1553 static inline void folios_put(struct folio_batch *folios) 1554 { 1555 folios_put_refs(folios, NULL); 1556 } 1557 1558 static inline void put_page(struct page *page) 1559 { 1560 struct folio *folio = page_folio(page); 1561 1562 /* 1563 * For some devmap managed pages we need to catch refcount transition 1564 * from 2 to 1: 1565 */ 1566 if (put_devmap_managed_folio_refs(folio, 1)) 1567 return; 1568 folio_put(folio); 1569 } 1570 1571 /* 1572 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1573 * the page's refcount so that two separate items are tracked: the original page 1574 * reference count, and also a new count of how many pin_user_pages() calls were 1575 * made against the page. ("gup-pinned" is another term for the latter). 1576 * 1577 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1578 * distinct from normal pages. As such, the unpin_user_page() call (and its 1579 * variants) must be used in order to release gup-pinned pages. 1580 * 1581 * Choice of value: 1582 * 1583 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1584 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1585 * simpler, due to the fact that adding an even power of two to the page 1586 * refcount has the effect of using only the upper N bits, for the code that 1587 * counts up using the bias value. This means that the lower bits are left for 1588 * the exclusive use of the original code that increments and decrements by one 1589 * (or at least, by much smaller values than the bias value). 1590 * 1591 * Of course, once the lower bits overflow into the upper bits (and this is 1592 * OK, because subtraction recovers the original values), then visual inspection 1593 * no longer suffices to directly view the separate counts. However, for normal 1594 * applications that don't have huge page reference counts, this won't be an 1595 * issue. 1596 * 1597 * Locking: the lockless algorithm described in folio_try_get_rcu() 1598 * provides safe operation for get_user_pages(), folio_mkclean() and 1599 * other calls that race to set up page table entries. 1600 */ 1601 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1602 1603 void unpin_user_page(struct page *page); 1604 void unpin_folio(struct folio *folio); 1605 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1606 bool make_dirty); 1607 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1608 bool make_dirty); 1609 void unpin_user_pages(struct page **pages, unsigned long npages); 1610 void unpin_user_folio(struct folio *folio, unsigned long npages); 1611 void unpin_folios(struct folio **folios, unsigned long nfolios); 1612 1613 static inline bool is_cow_mapping(vm_flags_t flags) 1614 { 1615 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1616 } 1617 1618 #ifndef CONFIG_MMU 1619 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1620 { 1621 /* 1622 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1623 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1624 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1625 * underlying memory if ptrace is active, so this is only possible if 1626 * ptrace does not apply. Note that there is no mprotect() to upgrade 1627 * write permissions later. 1628 */ 1629 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1630 } 1631 #endif 1632 1633 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1634 #define SECTION_IN_PAGE_FLAGS 1635 #endif 1636 1637 /* 1638 * The identification function is mainly used by the buddy allocator for 1639 * determining if two pages could be buddies. We are not really identifying 1640 * the zone since we could be using the section number id if we do not have 1641 * node id available in page flags. 1642 * We only guarantee that it will return the same value for two combinable 1643 * pages in a zone. 1644 */ 1645 static inline int page_zone_id(struct page *page) 1646 { 1647 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1648 } 1649 1650 #ifdef NODE_NOT_IN_PAGE_FLAGS 1651 int page_to_nid(const struct page *page); 1652 #else 1653 static inline int page_to_nid(const struct page *page) 1654 { 1655 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1656 } 1657 #endif 1658 1659 static inline int folio_nid(const struct folio *folio) 1660 { 1661 return page_to_nid(&folio->page); 1662 } 1663 1664 #ifdef CONFIG_NUMA_BALANCING 1665 /* page access time bits needs to hold at least 4 seconds */ 1666 #define PAGE_ACCESS_TIME_MIN_BITS 12 1667 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1668 #define PAGE_ACCESS_TIME_BUCKETS \ 1669 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1670 #else 1671 #define PAGE_ACCESS_TIME_BUCKETS 0 1672 #endif 1673 1674 #define PAGE_ACCESS_TIME_MASK \ 1675 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1676 1677 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1678 { 1679 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1680 } 1681 1682 static inline int cpupid_to_pid(int cpupid) 1683 { 1684 return cpupid & LAST__PID_MASK; 1685 } 1686 1687 static inline int cpupid_to_cpu(int cpupid) 1688 { 1689 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1690 } 1691 1692 static inline int cpupid_to_nid(int cpupid) 1693 { 1694 return cpu_to_node(cpupid_to_cpu(cpupid)); 1695 } 1696 1697 static inline bool cpupid_pid_unset(int cpupid) 1698 { 1699 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1700 } 1701 1702 static inline bool cpupid_cpu_unset(int cpupid) 1703 { 1704 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1705 } 1706 1707 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1708 { 1709 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1710 } 1711 1712 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1713 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1714 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1715 { 1716 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1717 } 1718 1719 static inline int folio_last_cpupid(struct folio *folio) 1720 { 1721 return folio->_last_cpupid; 1722 } 1723 static inline void page_cpupid_reset_last(struct page *page) 1724 { 1725 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1726 } 1727 #else 1728 static inline int folio_last_cpupid(struct folio *folio) 1729 { 1730 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1731 } 1732 1733 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1734 1735 static inline void page_cpupid_reset_last(struct page *page) 1736 { 1737 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1738 } 1739 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1740 1741 static inline int folio_xchg_access_time(struct folio *folio, int time) 1742 { 1743 int last_time; 1744 1745 last_time = folio_xchg_last_cpupid(folio, 1746 time >> PAGE_ACCESS_TIME_BUCKETS); 1747 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1748 } 1749 1750 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1751 { 1752 unsigned int pid_bit; 1753 1754 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1755 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1756 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1757 } 1758 } 1759 #else /* !CONFIG_NUMA_BALANCING */ 1760 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1761 { 1762 return folio_nid(folio); /* XXX */ 1763 } 1764 1765 static inline int folio_xchg_access_time(struct folio *folio, int time) 1766 { 1767 return 0; 1768 } 1769 1770 static inline int folio_last_cpupid(struct folio *folio) 1771 { 1772 return folio_nid(folio); /* XXX */ 1773 } 1774 1775 static inline int cpupid_to_nid(int cpupid) 1776 { 1777 return -1; 1778 } 1779 1780 static inline int cpupid_to_pid(int cpupid) 1781 { 1782 return -1; 1783 } 1784 1785 static inline int cpupid_to_cpu(int cpupid) 1786 { 1787 return -1; 1788 } 1789 1790 static inline int cpu_pid_to_cpupid(int nid, int pid) 1791 { 1792 return -1; 1793 } 1794 1795 static inline bool cpupid_pid_unset(int cpupid) 1796 { 1797 return true; 1798 } 1799 1800 static inline void page_cpupid_reset_last(struct page *page) 1801 { 1802 } 1803 1804 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1805 { 1806 return false; 1807 } 1808 1809 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1810 { 1811 } 1812 #endif /* CONFIG_NUMA_BALANCING */ 1813 1814 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1815 1816 /* 1817 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1818 * setting tags for all pages to native kernel tag value 0xff, as the default 1819 * value 0x00 maps to 0xff. 1820 */ 1821 1822 static inline u8 page_kasan_tag(const struct page *page) 1823 { 1824 u8 tag = KASAN_TAG_KERNEL; 1825 1826 if (kasan_enabled()) { 1827 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1828 tag ^= 0xff; 1829 } 1830 1831 return tag; 1832 } 1833 1834 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1835 { 1836 unsigned long old_flags, flags; 1837 1838 if (!kasan_enabled()) 1839 return; 1840 1841 tag ^= 0xff; 1842 old_flags = READ_ONCE(page->flags); 1843 do { 1844 flags = old_flags; 1845 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1846 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1847 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1848 } 1849 1850 static inline void page_kasan_tag_reset(struct page *page) 1851 { 1852 if (kasan_enabled()) 1853 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1854 } 1855 1856 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1857 1858 static inline u8 page_kasan_tag(const struct page *page) 1859 { 1860 return 0xff; 1861 } 1862 1863 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1864 static inline void page_kasan_tag_reset(struct page *page) { } 1865 1866 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1867 1868 static inline struct zone *page_zone(const struct page *page) 1869 { 1870 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1871 } 1872 1873 static inline pg_data_t *page_pgdat(const struct page *page) 1874 { 1875 return NODE_DATA(page_to_nid(page)); 1876 } 1877 1878 static inline struct zone *folio_zone(const struct folio *folio) 1879 { 1880 return page_zone(&folio->page); 1881 } 1882 1883 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1884 { 1885 return page_pgdat(&folio->page); 1886 } 1887 1888 #ifdef SECTION_IN_PAGE_FLAGS 1889 static inline void set_page_section(struct page *page, unsigned long section) 1890 { 1891 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1892 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1893 } 1894 1895 static inline unsigned long page_to_section(const struct page *page) 1896 { 1897 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1898 } 1899 #endif 1900 1901 /** 1902 * folio_pfn - Return the Page Frame Number of a folio. 1903 * @folio: The folio. 1904 * 1905 * A folio may contain multiple pages. The pages have consecutive 1906 * Page Frame Numbers. 1907 * 1908 * Return: The Page Frame Number of the first page in the folio. 1909 */ 1910 static inline unsigned long folio_pfn(struct folio *folio) 1911 { 1912 return page_to_pfn(&folio->page); 1913 } 1914 1915 static inline struct folio *pfn_folio(unsigned long pfn) 1916 { 1917 return page_folio(pfn_to_page(pfn)); 1918 } 1919 1920 /** 1921 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1922 * @folio: The folio. 1923 * 1924 * This function checks if a folio has been pinned via a call to 1925 * a function in the pin_user_pages() family. 1926 * 1927 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1928 * because it means "definitely not pinned for DMA", but true means "probably 1929 * pinned for DMA, but possibly a false positive due to having at least 1930 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1931 * 1932 * False positives are OK, because: a) it's unlikely for a folio to 1933 * get that many refcounts, and b) all the callers of this routine are 1934 * expected to be able to deal gracefully with a false positive. 1935 * 1936 * For large folios, the result will be exactly correct. That's because 1937 * we have more tracking data available: the _pincount field is used 1938 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1939 * 1940 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1941 * 1942 * Return: True, if it is likely that the folio has been "dma-pinned". 1943 * False, if the folio is definitely not dma-pinned. 1944 */ 1945 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1946 { 1947 if (folio_test_large(folio)) 1948 return atomic_read(&folio->_pincount) > 0; 1949 1950 /* 1951 * folio_ref_count() is signed. If that refcount overflows, then 1952 * folio_ref_count() returns a negative value, and callers will avoid 1953 * further incrementing the refcount. 1954 * 1955 * Here, for that overflow case, use the sign bit to count a little 1956 * bit higher via unsigned math, and thus still get an accurate result. 1957 */ 1958 return ((unsigned int)folio_ref_count(folio)) >= 1959 GUP_PIN_COUNTING_BIAS; 1960 } 1961 1962 /* 1963 * This should most likely only be called during fork() to see whether we 1964 * should break the cow immediately for an anon page on the src mm. 1965 * 1966 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1967 */ 1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1969 struct folio *folio) 1970 { 1971 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1972 1973 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1974 return false; 1975 1976 return folio_maybe_dma_pinned(folio); 1977 } 1978 1979 /** 1980 * is_zero_page - Query if a page is a zero page 1981 * @page: The page to query 1982 * 1983 * This returns true if @page is one of the permanent zero pages. 1984 */ 1985 static inline bool is_zero_page(const struct page *page) 1986 { 1987 return is_zero_pfn(page_to_pfn(page)); 1988 } 1989 1990 /** 1991 * is_zero_folio - Query if a folio is a zero page 1992 * @folio: The folio to query 1993 * 1994 * This returns true if @folio is one of the permanent zero pages. 1995 */ 1996 static inline bool is_zero_folio(const struct folio *folio) 1997 { 1998 return is_zero_page(&folio->page); 1999 } 2000 2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2002 #ifdef CONFIG_MIGRATION 2003 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2004 { 2005 #ifdef CONFIG_CMA 2006 int mt = folio_migratetype(folio); 2007 2008 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2009 return false; 2010 #endif 2011 /* The zero page can be "pinned" but gets special handling. */ 2012 if (is_zero_folio(folio)) 2013 return true; 2014 2015 /* Coherent device memory must always allow eviction. */ 2016 if (folio_is_device_coherent(folio)) 2017 return false; 2018 2019 /* Otherwise, non-movable zone folios can be pinned. */ 2020 return !folio_is_zone_movable(folio); 2021 2022 } 2023 #else 2024 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2025 { 2026 return true; 2027 } 2028 #endif 2029 2030 static inline void set_page_zone(struct page *page, enum zone_type zone) 2031 { 2032 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2033 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2034 } 2035 2036 static inline void set_page_node(struct page *page, unsigned long node) 2037 { 2038 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2039 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2040 } 2041 2042 static inline void set_page_links(struct page *page, enum zone_type zone, 2043 unsigned long node, unsigned long pfn) 2044 { 2045 set_page_zone(page, zone); 2046 set_page_node(page, node); 2047 #ifdef SECTION_IN_PAGE_FLAGS 2048 set_page_section(page, pfn_to_section_nr(pfn)); 2049 #endif 2050 } 2051 2052 /** 2053 * folio_nr_pages - The number of pages in the folio. 2054 * @folio: The folio. 2055 * 2056 * Return: A positive power of two. 2057 */ 2058 static inline long folio_nr_pages(const struct folio *folio) 2059 { 2060 if (!folio_test_large(folio)) 2061 return 1; 2062 #ifdef CONFIG_64BIT 2063 return folio->_folio_nr_pages; 2064 #else 2065 return 1L << (folio->_flags_1 & 0xff); 2066 #endif 2067 } 2068 2069 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2071 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2072 #else 2073 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2074 #endif 2075 2076 /* 2077 * compound_nr() returns the number of pages in this potentially compound 2078 * page. compound_nr() can be called on a tail page, and is defined to 2079 * return 1 in that case. 2080 */ 2081 static inline unsigned long compound_nr(struct page *page) 2082 { 2083 struct folio *folio = (struct folio *)page; 2084 2085 if (!test_bit(PG_head, &folio->flags)) 2086 return 1; 2087 #ifdef CONFIG_64BIT 2088 return folio->_folio_nr_pages; 2089 #else 2090 return 1L << (folio->_flags_1 & 0xff); 2091 #endif 2092 } 2093 2094 /** 2095 * thp_nr_pages - The number of regular pages in this huge page. 2096 * @page: The head page of a huge page. 2097 */ 2098 static inline int thp_nr_pages(struct page *page) 2099 { 2100 return folio_nr_pages((struct folio *)page); 2101 } 2102 2103 /** 2104 * folio_next - Move to the next physical folio. 2105 * @folio: The folio we're currently operating on. 2106 * 2107 * If you have physically contiguous memory which may span more than 2108 * one folio (eg a &struct bio_vec), use this function to move from one 2109 * folio to the next. Do not use it if the memory is only virtually 2110 * contiguous as the folios are almost certainly not adjacent to each 2111 * other. This is the folio equivalent to writing ``page++``. 2112 * 2113 * Context: We assume that the folios are refcounted and/or locked at a 2114 * higher level and do not adjust the reference counts. 2115 * Return: The next struct folio. 2116 */ 2117 static inline struct folio *folio_next(struct folio *folio) 2118 { 2119 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2120 } 2121 2122 /** 2123 * folio_shift - The size of the memory described by this folio. 2124 * @folio: The folio. 2125 * 2126 * A folio represents a number of bytes which is a power-of-two in size. 2127 * This function tells you which power-of-two the folio is. See also 2128 * folio_size() and folio_order(). 2129 * 2130 * Context: The caller should have a reference on the folio to prevent 2131 * it from being split. It is not necessary for the folio to be locked. 2132 * Return: The base-2 logarithm of the size of this folio. 2133 */ 2134 static inline unsigned int folio_shift(const struct folio *folio) 2135 { 2136 return PAGE_SHIFT + folio_order(folio); 2137 } 2138 2139 /** 2140 * folio_size - The number of bytes in a folio. 2141 * @folio: The folio. 2142 * 2143 * Context: The caller should have a reference on the folio to prevent 2144 * it from being split. It is not necessary for the folio to be locked. 2145 * Return: The number of bytes in this folio. 2146 */ 2147 static inline size_t folio_size(const struct folio *folio) 2148 { 2149 return PAGE_SIZE << folio_order(folio); 2150 } 2151 2152 /** 2153 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2154 * tables of more than one MM 2155 * @folio: The folio. 2156 * 2157 * This function checks if the folio is currently mapped into more than one 2158 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2159 * ("mapped exclusively"). 2160 * 2161 * As precise information is not easily available for all folios, this function 2162 * estimates the number of MMs ("sharers") that are currently mapping a folio 2163 * using the number of times the first page of the folio is currently mapped 2164 * into page tables. 2165 * 2166 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios, 2167 * the return value will be exactly correct, because they can only be mapped 2168 * at most once into an MM, and they cannot be partially mapped. 2169 * 2170 * For other folios, the result can be fuzzy: 2171 * #. For partially-mappable large folios (THP), the return value can wrongly 2172 * indicate "mapped exclusively" (false negative) when the folio is 2173 * only partially mapped into at least one MM. 2174 * #. For pagecache folios (including hugetlb), the return value can wrongly 2175 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2176 * cover the same file range. 2177 * #. For (small) KSM folios, the return value can wrongly indicate "mapped 2178 * shared" (false positive), when the folio is mapped multiple times into 2179 * the same MM. 2180 * 2181 * Further, this function only considers current page table mappings that 2182 * are tracked using the folio mapcount(s). 2183 * 2184 * This function does not consider: 2185 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2186 * pagecache, temporary unmapping for migration). 2187 * #. If the folio is mapped differently (VM_PFNMAP). 2188 * #. If hugetlb page table sharing applies. Callers might want to check 2189 * hugetlb_pmd_shared(). 2190 * 2191 * Return: Whether the folio is estimated to be mapped into more than one MM. 2192 */ 2193 static inline bool folio_likely_mapped_shared(struct folio *folio) 2194 { 2195 int mapcount = folio_mapcount(folio); 2196 2197 /* Only partially-mappable folios require more care. */ 2198 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2199 return mapcount > 1; 2200 2201 /* A single mapping implies "mapped exclusively". */ 2202 if (mapcount <= 1) 2203 return false; 2204 2205 /* If any page is mapped more than once we treat it "mapped shared". */ 2206 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2207 return true; 2208 2209 /* Let's guess based on the first subpage. */ 2210 return atomic_read(&folio->_mapcount) > 0; 2211 } 2212 2213 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2214 static inline int arch_make_page_accessible(struct page *page) 2215 { 2216 return 0; 2217 } 2218 #endif 2219 2220 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2221 static inline int arch_make_folio_accessible(struct folio *folio) 2222 { 2223 int ret; 2224 long i, nr = folio_nr_pages(folio); 2225 2226 for (i = 0; i < nr; i++) { 2227 ret = arch_make_page_accessible(folio_page(folio, i)); 2228 if (ret) 2229 break; 2230 } 2231 2232 return ret; 2233 } 2234 #endif 2235 2236 /* 2237 * Some inline functions in vmstat.h depend on page_zone() 2238 */ 2239 #include <linux/vmstat.h> 2240 2241 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2242 #define HASHED_PAGE_VIRTUAL 2243 #endif 2244 2245 #if defined(WANT_PAGE_VIRTUAL) 2246 static inline void *page_address(const struct page *page) 2247 { 2248 return page->virtual; 2249 } 2250 static inline void set_page_address(struct page *page, void *address) 2251 { 2252 page->virtual = address; 2253 } 2254 #define page_address_init() do { } while(0) 2255 #endif 2256 2257 #if defined(HASHED_PAGE_VIRTUAL) 2258 void *page_address(const struct page *page); 2259 void set_page_address(struct page *page, void *virtual); 2260 void page_address_init(void); 2261 #endif 2262 2263 static __always_inline void *lowmem_page_address(const struct page *page) 2264 { 2265 return page_to_virt(page); 2266 } 2267 2268 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2269 #define page_address(page) lowmem_page_address(page) 2270 #define set_page_address(page, address) do { } while(0) 2271 #define page_address_init() do { } while(0) 2272 #endif 2273 2274 static inline void *folio_address(const struct folio *folio) 2275 { 2276 return page_address(&folio->page); 2277 } 2278 2279 /* 2280 * Return true only if the page has been allocated with 2281 * ALLOC_NO_WATERMARKS and the low watermark was not 2282 * met implying that the system is under some pressure. 2283 */ 2284 static inline bool page_is_pfmemalloc(const struct page *page) 2285 { 2286 /* 2287 * lru.next has bit 1 set if the page is allocated from the 2288 * pfmemalloc reserves. Callers may simply overwrite it if 2289 * they do not need to preserve that information. 2290 */ 2291 return (uintptr_t)page->lru.next & BIT(1); 2292 } 2293 2294 /* 2295 * Return true only if the folio has been allocated with 2296 * ALLOC_NO_WATERMARKS and the low watermark was not 2297 * met implying that the system is under some pressure. 2298 */ 2299 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2300 { 2301 /* 2302 * lru.next has bit 1 set if the page is allocated from the 2303 * pfmemalloc reserves. Callers may simply overwrite it if 2304 * they do not need to preserve that information. 2305 */ 2306 return (uintptr_t)folio->lru.next & BIT(1); 2307 } 2308 2309 /* 2310 * Only to be called by the page allocator on a freshly allocated 2311 * page. 2312 */ 2313 static inline void set_page_pfmemalloc(struct page *page) 2314 { 2315 page->lru.next = (void *)BIT(1); 2316 } 2317 2318 static inline void clear_page_pfmemalloc(struct page *page) 2319 { 2320 page->lru.next = NULL; 2321 } 2322 2323 /* 2324 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2325 */ 2326 extern void pagefault_out_of_memory(void); 2327 2328 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2329 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2330 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2331 2332 /* 2333 * Parameter block passed down to zap_pte_range in exceptional cases. 2334 */ 2335 struct zap_details { 2336 struct folio *single_folio; /* Locked folio to be unmapped */ 2337 bool even_cows; /* Zap COWed private pages too? */ 2338 zap_flags_t zap_flags; /* Extra flags for zapping */ 2339 }; 2340 2341 /* 2342 * Whether to drop the pte markers, for example, the uffd-wp information for 2343 * file-backed memory. This should only be specified when we will completely 2344 * drop the page in the mm, either by truncation or unmapping of the vma. By 2345 * default, the flag is not set. 2346 */ 2347 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2348 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2349 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2350 2351 #ifdef CONFIG_SCHED_MM_CID 2352 void sched_mm_cid_before_execve(struct task_struct *t); 2353 void sched_mm_cid_after_execve(struct task_struct *t); 2354 void sched_mm_cid_fork(struct task_struct *t); 2355 void sched_mm_cid_exit_signals(struct task_struct *t); 2356 static inline int task_mm_cid(struct task_struct *t) 2357 { 2358 return t->mm_cid; 2359 } 2360 #else 2361 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2362 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2363 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2364 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2365 static inline int task_mm_cid(struct task_struct *t) 2366 { 2367 /* 2368 * Use the processor id as a fall-back when the mm cid feature is 2369 * disabled. This provides functional per-cpu data structure accesses 2370 * in user-space, althrough it won't provide the memory usage benefits. 2371 */ 2372 return raw_smp_processor_id(); 2373 } 2374 #endif 2375 2376 #ifdef CONFIG_MMU 2377 extern bool can_do_mlock(void); 2378 #else 2379 static inline bool can_do_mlock(void) { return false; } 2380 #endif 2381 extern int user_shm_lock(size_t, struct ucounts *); 2382 extern void user_shm_unlock(size_t, struct ucounts *); 2383 2384 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2385 pte_t pte); 2386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2387 pte_t pte); 2388 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2389 unsigned long addr, pmd_t pmd); 2390 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2391 pmd_t pmd); 2392 2393 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2394 unsigned long size); 2395 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2396 unsigned long size, struct zap_details *details); 2397 static inline void zap_vma_pages(struct vm_area_struct *vma) 2398 { 2399 zap_page_range_single(vma, vma->vm_start, 2400 vma->vm_end - vma->vm_start, NULL); 2401 } 2402 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2403 struct vm_area_struct *start_vma, unsigned long start, 2404 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2405 2406 struct mmu_notifier_range; 2407 2408 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2409 unsigned long end, unsigned long floor, unsigned long ceiling); 2410 int 2411 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2412 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2413 pte_t **ptepp, spinlock_t **ptlp); 2414 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2415 void *buf, int len, int write); 2416 2417 extern void truncate_pagecache(struct inode *inode, loff_t new); 2418 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2419 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2420 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2421 int generic_error_remove_folio(struct address_space *mapping, 2422 struct folio *folio); 2423 2424 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2425 unsigned long address, struct pt_regs *regs); 2426 2427 #ifdef CONFIG_MMU 2428 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2429 unsigned long address, unsigned int flags, 2430 struct pt_regs *regs); 2431 extern int fixup_user_fault(struct mm_struct *mm, 2432 unsigned long address, unsigned int fault_flags, 2433 bool *unlocked); 2434 void unmap_mapping_pages(struct address_space *mapping, 2435 pgoff_t start, pgoff_t nr, bool even_cows); 2436 void unmap_mapping_range(struct address_space *mapping, 2437 loff_t const holebegin, loff_t const holelen, int even_cows); 2438 #else 2439 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2440 unsigned long address, unsigned int flags, 2441 struct pt_regs *regs) 2442 { 2443 /* should never happen if there's no MMU */ 2444 BUG(); 2445 return VM_FAULT_SIGBUS; 2446 } 2447 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2448 unsigned int fault_flags, bool *unlocked) 2449 { 2450 /* should never happen if there's no MMU */ 2451 BUG(); 2452 return -EFAULT; 2453 } 2454 static inline void unmap_mapping_pages(struct address_space *mapping, 2455 pgoff_t start, pgoff_t nr, bool even_cows) { } 2456 static inline void unmap_mapping_range(struct address_space *mapping, 2457 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2458 #endif 2459 2460 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2461 loff_t const holebegin, loff_t const holelen) 2462 { 2463 unmap_mapping_range(mapping, holebegin, holelen, 0); 2464 } 2465 2466 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2467 unsigned long addr); 2468 2469 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2470 void *buf, int len, unsigned int gup_flags); 2471 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2472 void *buf, int len, unsigned int gup_flags); 2473 2474 long get_user_pages_remote(struct mm_struct *mm, 2475 unsigned long start, unsigned long nr_pages, 2476 unsigned int gup_flags, struct page **pages, 2477 int *locked); 2478 long pin_user_pages_remote(struct mm_struct *mm, 2479 unsigned long start, unsigned long nr_pages, 2480 unsigned int gup_flags, struct page **pages, 2481 int *locked); 2482 2483 /* 2484 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2485 */ 2486 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2487 unsigned long addr, 2488 int gup_flags, 2489 struct vm_area_struct **vmap) 2490 { 2491 struct page *page; 2492 struct vm_area_struct *vma; 2493 int got; 2494 2495 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2496 return ERR_PTR(-EINVAL); 2497 2498 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2499 2500 if (got < 0) 2501 return ERR_PTR(got); 2502 2503 vma = vma_lookup(mm, addr); 2504 if (WARN_ON_ONCE(!vma)) { 2505 put_page(page); 2506 return ERR_PTR(-EINVAL); 2507 } 2508 2509 *vmap = vma; 2510 return page; 2511 } 2512 2513 long get_user_pages(unsigned long start, unsigned long nr_pages, 2514 unsigned int gup_flags, struct page **pages); 2515 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2516 unsigned int gup_flags, struct page **pages); 2517 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2518 struct page **pages, unsigned int gup_flags); 2519 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2520 struct page **pages, unsigned int gup_flags); 2521 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2522 struct folio **folios, unsigned int max_folios, 2523 pgoff_t *offset); 2524 2525 int get_user_pages_fast(unsigned long start, int nr_pages, 2526 unsigned int gup_flags, struct page **pages); 2527 int pin_user_pages_fast(unsigned long start, int nr_pages, 2528 unsigned int gup_flags, struct page **pages); 2529 void folio_add_pin(struct folio *folio); 2530 2531 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2532 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2533 struct task_struct *task, bool bypass_rlim); 2534 2535 struct kvec; 2536 struct page *get_dump_page(unsigned long addr); 2537 2538 bool folio_mark_dirty(struct folio *folio); 2539 bool set_page_dirty(struct page *page); 2540 int set_page_dirty_lock(struct page *page); 2541 2542 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2543 2544 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2545 unsigned long old_addr, struct vm_area_struct *new_vma, 2546 unsigned long new_addr, unsigned long len, 2547 bool need_rmap_locks, bool for_stack); 2548 2549 /* 2550 * Flags used by change_protection(). For now we make it a bitmap so 2551 * that we can pass in multiple flags just like parameters. However 2552 * for now all the callers are only use one of the flags at the same 2553 * time. 2554 */ 2555 /* 2556 * Whether we should manually check if we can map individual PTEs writable, 2557 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2558 * PTEs automatically in a writable mapping. 2559 */ 2560 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2561 /* Whether this protection change is for NUMA hints */ 2562 #define MM_CP_PROT_NUMA (1UL << 1) 2563 /* Whether this change is for write protecting */ 2564 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2565 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2566 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2567 MM_CP_UFFD_WP_RESOLVE) 2568 2569 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2570 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2571 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2572 { 2573 /* 2574 * We want to check manually if we can change individual PTEs writable 2575 * if we can't do that automatically for all PTEs in a mapping. For 2576 * private mappings, that's always the case when we have write 2577 * permissions as we properly have to handle COW. 2578 */ 2579 if (vma->vm_flags & VM_SHARED) 2580 return vma_wants_writenotify(vma, vma->vm_page_prot); 2581 return !!(vma->vm_flags & VM_WRITE); 2582 2583 } 2584 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2585 pte_t pte); 2586 extern long change_protection(struct mmu_gather *tlb, 2587 struct vm_area_struct *vma, unsigned long start, 2588 unsigned long end, unsigned long cp_flags); 2589 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2590 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2591 unsigned long start, unsigned long end, unsigned long newflags); 2592 2593 /* 2594 * doesn't attempt to fault and will return short. 2595 */ 2596 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2597 unsigned int gup_flags, struct page **pages); 2598 2599 static inline bool get_user_page_fast_only(unsigned long addr, 2600 unsigned int gup_flags, struct page **pagep) 2601 { 2602 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2603 } 2604 /* 2605 * per-process(per-mm_struct) statistics. 2606 */ 2607 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2608 { 2609 return percpu_counter_read_positive(&mm->rss_stat[member]); 2610 } 2611 2612 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2613 2614 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2615 { 2616 percpu_counter_add(&mm->rss_stat[member], value); 2617 2618 mm_trace_rss_stat(mm, member); 2619 } 2620 2621 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2622 { 2623 percpu_counter_inc(&mm->rss_stat[member]); 2624 2625 mm_trace_rss_stat(mm, member); 2626 } 2627 2628 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2629 { 2630 percpu_counter_dec(&mm->rss_stat[member]); 2631 2632 mm_trace_rss_stat(mm, member); 2633 } 2634 2635 /* Optimized variant when folio is already known not to be anon */ 2636 static inline int mm_counter_file(struct folio *folio) 2637 { 2638 if (folio_test_swapbacked(folio)) 2639 return MM_SHMEMPAGES; 2640 return MM_FILEPAGES; 2641 } 2642 2643 static inline int mm_counter(struct folio *folio) 2644 { 2645 if (folio_test_anon(folio)) 2646 return MM_ANONPAGES; 2647 return mm_counter_file(folio); 2648 } 2649 2650 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2651 { 2652 return get_mm_counter(mm, MM_FILEPAGES) + 2653 get_mm_counter(mm, MM_ANONPAGES) + 2654 get_mm_counter(mm, MM_SHMEMPAGES); 2655 } 2656 2657 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2658 { 2659 return max(mm->hiwater_rss, get_mm_rss(mm)); 2660 } 2661 2662 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2663 { 2664 return max(mm->hiwater_vm, mm->total_vm); 2665 } 2666 2667 static inline void update_hiwater_rss(struct mm_struct *mm) 2668 { 2669 unsigned long _rss = get_mm_rss(mm); 2670 2671 if ((mm)->hiwater_rss < _rss) 2672 (mm)->hiwater_rss = _rss; 2673 } 2674 2675 static inline void update_hiwater_vm(struct mm_struct *mm) 2676 { 2677 if (mm->hiwater_vm < mm->total_vm) 2678 mm->hiwater_vm = mm->total_vm; 2679 } 2680 2681 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2682 { 2683 mm->hiwater_rss = get_mm_rss(mm); 2684 } 2685 2686 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2687 struct mm_struct *mm) 2688 { 2689 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2690 2691 if (*maxrss < hiwater_rss) 2692 *maxrss = hiwater_rss; 2693 } 2694 2695 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2696 static inline int pte_special(pte_t pte) 2697 { 2698 return 0; 2699 } 2700 2701 static inline pte_t pte_mkspecial(pte_t pte) 2702 { 2703 return pte; 2704 } 2705 #endif 2706 2707 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2708 static inline int pte_devmap(pte_t pte) 2709 { 2710 return 0; 2711 } 2712 #endif 2713 2714 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2715 spinlock_t **ptl); 2716 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2717 spinlock_t **ptl) 2718 { 2719 pte_t *ptep; 2720 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2721 return ptep; 2722 } 2723 2724 #ifdef __PAGETABLE_P4D_FOLDED 2725 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2726 unsigned long address) 2727 { 2728 return 0; 2729 } 2730 #else 2731 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2732 #endif 2733 2734 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2735 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2736 unsigned long address) 2737 { 2738 return 0; 2739 } 2740 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2741 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2742 2743 #else 2744 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2745 2746 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2747 { 2748 if (mm_pud_folded(mm)) 2749 return; 2750 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2751 } 2752 2753 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2754 { 2755 if (mm_pud_folded(mm)) 2756 return; 2757 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2758 } 2759 #endif 2760 2761 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2762 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2763 unsigned long address) 2764 { 2765 return 0; 2766 } 2767 2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2770 2771 #else 2772 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2773 2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2775 { 2776 if (mm_pmd_folded(mm)) 2777 return; 2778 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2779 } 2780 2781 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2782 { 2783 if (mm_pmd_folded(mm)) 2784 return; 2785 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2786 } 2787 #endif 2788 2789 #ifdef CONFIG_MMU 2790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2791 { 2792 atomic_long_set(&mm->pgtables_bytes, 0); 2793 } 2794 2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2796 { 2797 return atomic_long_read(&mm->pgtables_bytes); 2798 } 2799 2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2801 { 2802 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2803 } 2804 2805 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2806 { 2807 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2808 } 2809 #else 2810 2811 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2813 { 2814 return 0; 2815 } 2816 2817 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2818 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2819 #endif 2820 2821 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2822 int __pte_alloc_kernel(pmd_t *pmd); 2823 2824 #if defined(CONFIG_MMU) 2825 2826 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2827 unsigned long address) 2828 { 2829 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2830 NULL : p4d_offset(pgd, address); 2831 } 2832 2833 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2834 unsigned long address) 2835 { 2836 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2837 NULL : pud_offset(p4d, address); 2838 } 2839 2840 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2841 { 2842 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2843 NULL: pmd_offset(pud, address); 2844 } 2845 #endif /* CONFIG_MMU */ 2846 2847 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2848 { 2849 return page_ptdesc(virt_to_page(x)); 2850 } 2851 2852 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2853 { 2854 return page_to_virt(ptdesc_page(pt)); 2855 } 2856 2857 static inline void *ptdesc_address(const struct ptdesc *pt) 2858 { 2859 return folio_address(ptdesc_folio(pt)); 2860 } 2861 2862 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2863 { 2864 return folio_test_reserved(ptdesc_folio(pt)); 2865 } 2866 2867 /** 2868 * pagetable_alloc - Allocate pagetables 2869 * @gfp: GFP flags 2870 * @order: desired pagetable order 2871 * 2872 * pagetable_alloc allocates memory for page tables as well as a page table 2873 * descriptor to describe that memory. 2874 * 2875 * Return: The ptdesc describing the allocated page tables. 2876 */ 2877 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2878 { 2879 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2880 2881 return page_ptdesc(page); 2882 } 2883 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2884 2885 /** 2886 * pagetable_free - Free pagetables 2887 * @pt: The page table descriptor 2888 * 2889 * pagetable_free frees the memory of all page tables described by a page 2890 * table descriptor and the memory for the descriptor itself. 2891 */ 2892 static inline void pagetable_free(struct ptdesc *pt) 2893 { 2894 struct page *page = ptdesc_page(pt); 2895 2896 __free_pages(page, compound_order(page)); 2897 } 2898 2899 #if USE_SPLIT_PTE_PTLOCKS 2900 #if ALLOC_SPLIT_PTLOCKS 2901 void __init ptlock_cache_init(void); 2902 bool ptlock_alloc(struct ptdesc *ptdesc); 2903 void ptlock_free(struct ptdesc *ptdesc); 2904 2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2906 { 2907 return ptdesc->ptl; 2908 } 2909 #else /* ALLOC_SPLIT_PTLOCKS */ 2910 static inline void ptlock_cache_init(void) 2911 { 2912 } 2913 2914 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2915 { 2916 return true; 2917 } 2918 2919 static inline void ptlock_free(struct ptdesc *ptdesc) 2920 { 2921 } 2922 2923 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2924 { 2925 return &ptdesc->ptl; 2926 } 2927 #endif /* ALLOC_SPLIT_PTLOCKS */ 2928 2929 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2930 { 2931 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2932 } 2933 2934 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2935 { 2936 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2937 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2938 return ptlock_ptr(virt_to_ptdesc(pte)); 2939 } 2940 2941 static inline bool ptlock_init(struct ptdesc *ptdesc) 2942 { 2943 /* 2944 * prep_new_page() initialize page->private (and therefore page->ptl) 2945 * with 0. Make sure nobody took it in use in between. 2946 * 2947 * It can happen if arch try to use slab for page table allocation: 2948 * slab code uses page->slab_cache, which share storage with page->ptl. 2949 */ 2950 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2951 if (!ptlock_alloc(ptdesc)) 2952 return false; 2953 spin_lock_init(ptlock_ptr(ptdesc)); 2954 return true; 2955 } 2956 2957 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2958 /* 2959 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2960 */ 2961 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2962 { 2963 return &mm->page_table_lock; 2964 } 2965 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2966 { 2967 return &mm->page_table_lock; 2968 } 2969 static inline void ptlock_cache_init(void) {} 2970 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2971 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2972 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2973 2974 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2975 { 2976 struct folio *folio = ptdesc_folio(ptdesc); 2977 2978 if (!ptlock_init(ptdesc)) 2979 return false; 2980 __folio_set_pgtable(folio); 2981 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2982 return true; 2983 } 2984 2985 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2986 { 2987 struct folio *folio = ptdesc_folio(ptdesc); 2988 2989 ptlock_free(ptdesc); 2990 __folio_clear_pgtable(folio); 2991 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2992 } 2993 2994 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2995 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2996 { 2997 return __pte_offset_map(pmd, addr, NULL); 2998 } 2999 3000 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3001 unsigned long addr, spinlock_t **ptlp); 3002 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3003 unsigned long addr, spinlock_t **ptlp) 3004 { 3005 pte_t *pte; 3006 3007 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3008 return pte; 3009 } 3010 3011 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3012 unsigned long addr, spinlock_t **ptlp); 3013 3014 #define pte_unmap_unlock(pte, ptl) do { \ 3015 spin_unlock(ptl); \ 3016 pte_unmap(pte); \ 3017 } while (0) 3018 3019 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3020 3021 #define pte_alloc_map(mm, pmd, address) \ 3022 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3023 3024 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3025 (pte_alloc(mm, pmd) ? \ 3026 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3027 3028 #define pte_alloc_kernel(pmd, address) \ 3029 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3030 NULL: pte_offset_kernel(pmd, address)) 3031 3032 #if USE_SPLIT_PMD_PTLOCKS 3033 3034 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3035 { 3036 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3037 return virt_to_page((void *)((unsigned long) pmd & mask)); 3038 } 3039 3040 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3041 { 3042 return page_ptdesc(pmd_pgtable_page(pmd)); 3043 } 3044 3045 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3046 { 3047 return ptlock_ptr(pmd_ptdesc(pmd)); 3048 } 3049 3050 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3051 { 3052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3053 ptdesc->pmd_huge_pte = NULL; 3054 #endif 3055 return ptlock_init(ptdesc); 3056 } 3057 3058 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3059 { 3060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3061 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3062 #endif 3063 ptlock_free(ptdesc); 3064 } 3065 3066 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3067 3068 #else 3069 3070 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3071 { 3072 return &mm->page_table_lock; 3073 } 3074 3075 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3076 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3077 3078 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3079 3080 #endif 3081 3082 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3083 { 3084 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3085 spin_lock(ptl); 3086 return ptl; 3087 } 3088 3089 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3090 { 3091 struct folio *folio = ptdesc_folio(ptdesc); 3092 3093 if (!pmd_ptlock_init(ptdesc)) 3094 return false; 3095 __folio_set_pgtable(folio); 3096 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3097 return true; 3098 } 3099 3100 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3101 { 3102 struct folio *folio = ptdesc_folio(ptdesc); 3103 3104 pmd_ptlock_free(ptdesc); 3105 __folio_clear_pgtable(folio); 3106 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3107 } 3108 3109 /* 3110 * No scalability reason to split PUD locks yet, but follow the same pattern 3111 * as the PMD locks to make it easier if we decide to. The VM should not be 3112 * considered ready to switch to split PUD locks yet; there may be places 3113 * which need to be converted from page_table_lock. 3114 */ 3115 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3116 { 3117 return &mm->page_table_lock; 3118 } 3119 3120 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3121 { 3122 spinlock_t *ptl = pud_lockptr(mm, pud); 3123 3124 spin_lock(ptl); 3125 return ptl; 3126 } 3127 3128 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3129 { 3130 struct folio *folio = ptdesc_folio(ptdesc); 3131 3132 __folio_set_pgtable(folio); 3133 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3134 } 3135 3136 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3137 { 3138 struct folio *folio = ptdesc_folio(ptdesc); 3139 3140 __folio_clear_pgtable(folio); 3141 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3142 } 3143 3144 extern void __init pagecache_init(void); 3145 extern void free_initmem(void); 3146 3147 /* 3148 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3149 * into the buddy system. The freed pages will be poisoned with pattern 3150 * "poison" if it's within range [0, UCHAR_MAX]. 3151 * Return pages freed into the buddy system. 3152 */ 3153 extern unsigned long free_reserved_area(void *start, void *end, 3154 int poison, const char *s); 3155 3156 extern void adjust_managed_page_count(struct page *page, long count); 3157 3158 extern void reserve_bootmem_region(phys_addr_t start, 3159 phys_addr_t end, int nid); 3160 3161 /* Free the reserved page into the buddy system, so it gets managed. */ 3162 void free_reserved_page(struct page *page); 3163 #define free_highmem_page(page) free_reserved_page(page) 3164 3165 static inline void mark_page_reserved(struct page *page) 3166 { 3167 SetPageReserved(page); 3168 adjust_managed_page_count(page, -1); 3169 } 3170 3171 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3172 { 3173 free_reserved_page(ptdesc_page(pt)); 3174 } 3175 3176 /* 3177 * Default method to free all the __init memory into the buddy system. 3178 * The freed pages will be poisoned with pattern "poison" if it's within 3179 * range [0, UCHAR_MAX]. 3180 * Return pages freed into the buddy system. 3181 */ 3182 static inline unsigned long free_initmem_default(int poison) 3183 { 3184 extern char __init_begin[], __init_end[]; 3185 3186 return free_reserved_area(&__init_begin, &__init_end, 3187 poison, "unused kernel image (initmem)"); 3188 } 3189 3190 static inline unsigned long get_num_physpages(void) 3191 { 3192 int nid; 3193 unsigned long phys_pages = 0; 3194 3195 for_each_online_node(nid) 3196 phys_pages += node_present_pages(nid); 3197 3198 return phys_pages; 3199 } 3200 3201 /* 3202 * Using memblock node mappings, an architecture may initialise its 3203 * zones, allocate the backing mem_map and account for memory holes in an 3204 * architecture independent manner. 3205 * 3206 * An architecture is expected to register range of page frames backed by 3207 * physical memory with memblock_add[_node]() before calling 3208 * free_area_init() passing in the PFN each zone ends at. At a basic 3209 * usage, an architecture is expected to do something like 3210 * 3211 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3212 * max_highmem_pfn}; 3213 * for_each_valid_physical_page_range() 3214 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3215 * free_area_init(max_zone_pfns); 3216 */ 3217 void free_area_init(unsigned long *max_zone_pfn); 3218 unsigned long node_map_pfn_alignment(void); 3219 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3220 unsigned long end_pfn); 3221 extern void get_pfn_range_for_nid(unsigned int nid, 3222 unsigned long *start_pfn, unsigned long *end_pfn); 3223 3224 #ifndef CONFIG_NUMA 3225 static inline int early_pfn_to_nid(unsigned long pfn) 3226 { 3227 return 0; 3228 } 3229 #else 3230 /* please see mm/page_alloc.c */ 3231 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3232 #endif 3233 3234 extern void mem_init(void); 3235 extern void __init mmap_init(void); 3236 3237 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3238 static inline void show_mem(void) 3239 { 3240 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3241 } 3242 extern long si_mem_available(void); 3243 extern void si_meminfo(struct sysinfo * val); 3244 extern void si_meminfo_node(struct sysinfo *val, int nid); 3245 3246 extern __printf(3, 4) 3247 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3248 3249 extern void setup_per_cpu_pageset(void); 3250 3251 /* nommu.c */ 3252 extern atomic_long_t mmap_pages_allocated; 3253 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3254 3255 /* interval_tree.c */ 3256 void vma_interval_tree_insert(struct vm_area_struct *node, 3257 struct rb_root_cached *root); 3258 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3259 struct vm_area_struct *prev, 3260 struct rb_root_cached *root); 3261 void vma_interval_tree_remove(struct vm_area_struct *node, 3262 struct rb_root_cached *root); 3263 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3264 unsigned long start, unsigned long last); 3265 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3266 unsigned long start, unsigned long last); 3267 3268 #define vma_interval_tree_foreach(vma, root, start, last) \ 3269 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3270 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3271 3272 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3273 struct rb_root_cached *root); 3274 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3275 struct rb_root_cached *root); 3276 struct anon_vma_chain * 3277 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3278 unsigned long start, unsigned long last); 3279 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3280 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3281 #ifdef CONFIG_DEBUG_VM_RB 3282 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3283 #endif 3284 3285 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3286 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3287 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3288 3289 /* mmap.c */ 3290 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3291 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3292 unsigned long start, unsigned long end, pgoff_t pgoff, 3293 struct vm_area_struct *next); 3294 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3295 unsigned long start, unsigned long end, pgoff_t pgoff); 3296 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3297 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3298 extern void unlink_file_vma(struct vm_area_struct *); 3299 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3300 unsigned long addr, unsigned long len, pgoff_t pgoff, 3301 bool *need_rmap_locks); 3302 extern void exit_mmap(struct mm_struct *); 3303 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3304 struct vm_area_struct *prev, 3305 struct vm_area_struct *vma, 3306 unsigned long start, unsigned long end, 3307 unsigned long vm_flags, 3308 struct mempolicy *policy, 3309 struct vm_userfaultfd_ctx uffd_ctx, 3310 struct anon_vma_name *anon_name); 3311 3312 /* We are about to modify the VMA's flags. */ 3313 static inline struct vm_area_struct 3314 *vma_modify_flags(struct vma_iterator *vmi, 3315 struct vm_area_struct *prev, 3316 struct vm_area_struct *vma, 3317 unsigned long start, unsigned long end, 3318 unsigned long new_flags) 3319 { 3320 return vma_modify(vmi, prev, vma, start, end, new_flags, 3321 vma_policy(vma), vma->vm_userfaultfd_ctx, 3322 anon_vma_name(vma)); 3323 } 3324 3325 /* We are about to modify the VMA's flags and/or anon_name. */ 3326 static inline struct vm_area_struct 3327 *vma_modify_flags_name(struct vma_iterator *vmi, 3328 struct vm_area_struct *prev, 3329 struct vm_area_struct *vma, 3330 unsigned long start, 3331 unsigned long end, 3332 unsigned long new_flags, 3333 struct anon_vma_name *new_name) 3334 { 3335 return vma_modify(vmi, prev, vma, start, end, new_flags, 3336 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3337 } 3338 3339 /* We are about to modify the VMA's memory policy. */ 3340 static inline struct vm_area_struct 3341 *vma_modify_policy(struct vma_iterator *vmi, 3342 struct vm_area_struct *prev, 3343 struct vm_area_struct *vma, 3344 unsigned long start, unsigned long end, 3345 struct mempolicy *new_pol) 3346 { 3347 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3348 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3349 } 3350 3351 /* We are about to modify the VMA's flags and/or uffd context. */ 3352 static inline struct vm_area_struct 3353 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3354 struct vm_area_struct *prev, 3355 struct vm_area_struct *vma, 3356 unsigned long start, unsigned long end, 3357 unsigned long new_flags, 3358 struct vm_userfaultfd_ctx new_ctx) 3359 { 3360 return vma_modify(vmi, prev, vma, start, end, new_flags, 3361 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3362 } 3363 3364 static inline int check_data_rlimit(unsigned long rlim, 3365 unsigned long new, 3366 unsigned long start, 3367 unsigned long end_data, 3368 unsigned long start_data) 3369 { 3370 if (rlim < RLIM_INFINITY) { 3371 if (((new - start) + (end_data - start_data)) > rlim) 3372 return -ENOSPC; 3373 } 3374 3375 return 0; 3376 } 3377 3378 extern int mm_take_all_locks(struct mm_struct *mm); 3379 extern void mm_drop_all_locks(struct mm_struct *mm); 3380 3381 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3382 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3383 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3384 extern struct file *get_task_exe_file(struct task_struct *task); 3385 3386 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3387 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3388 3389 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3390 const struct vm_special_mapping *sm); 3391 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3392 unsigned long addr, unsigned long len, 3393 unsigned long flags, 3394 const struct vm_special_mapping *spec); 3395 /* This is an obsolete alternative to _install_special_mapping. */ 3396 extern int install_special_mapping(struct mm_struct *mm, 3397 unsigned long addr, unsigned long len, 3398 unsigned long flags, struct page **pages); 3399 3400 unsigned long randomize_stack_top(unsigned long stack_top); 3401 unsigned long randomize_page(unsigned long start, unsigned long range); 3402 3403 unsigned long 3404 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3405 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3406 3407 static inline unsigned long 3408 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3409 unsigned long pgoff, unsigned long flags) 3410 { 3411 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3412 } 3413 3414 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3415 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3416 struct list_head *uf); 3417 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3418 unsigned long len, unsigned long prot, unsigned long flags, 3419 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3420 struct list_head *uf); 3421 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3422 unsigned long start, size_t len, struct list_head *uf, 3423 bool unlock); 3424 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3425 struct list_head *uf); 3426 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3427 3428 #ifdef CONFIG_MMU 3429 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3430 unsigned long start, unsigned long end, 3431 struct list_head *uf, bool unlock); 3432 extern int __mm_populate(unsigned long addr, unsigned long len, 3433 int ignore_errors); 3434 static inline void mm_populate(unsigned long addr, unsigned long len) 3435 { 3436 /* Ignore errors */ 3437 (void) __mm_populate(addr, len, 1); 3438 } 3439 #else 3440 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3441 #endif 3442 3443 /* This takes the mm semaphore itself */ 3444 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3445 extern int vm_munmap(unsigned long, size_t); 3446 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3447 unsigned long, unsigned long, 3448 unsigned long, unsigned long); 3449 3450 struct vm_unmapped_area_info { 3451 #define VM_UNMAPPED_AREA_TOPDOWN 1 3452 unsigned long flags; 3453 unsigned long length; 3454 unsigned long low_limit; 3455 unsigned long high_limit; 3456 unsigned long align_mask; 3457 unsigned long align_offset; 3458 unsigned long start_gap; 3459 }; 3460 3461 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3462 3463 /* truncate.c */ 3464 extern void truncate_inode_pages(struct address_space *, loff_t); 3465 extern void truncate_inode_pages_range(struct address_space *, 3466 loff_t lstart, loff_t lend); 3467 extern void truncate_inode_pages_final(struct address_space *); 3468 3469 /* generic vm_area_ops exported for stackable file systems */ 3470 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3471 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3472 pgoff_t start_pgoff, pgoff_t end_pgoff); 3473 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3474 3475 extern unsigned long stack_guard_gap; 3476 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3477 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3478 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3479 3480 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3481 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3482 3483 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3484 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3485 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3486 struct vm_area_struct **pprev); 3487 3488 /* 3489 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3490 * NULL if none. Assume start_addr < end_addr. 3491 */ 3492 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3493 unsigned long start_addr, unsigned long end_addr); 3494 3495 /** 3496 * vma_lookup() - Find a VMA at a specific address 3497 * @mm: The process address space. 3498 * @addr: The user address. 3499 * 3500 * Return: The vm_area_struct at the given address, %NULL otherwise. 3501 */ 3502 static inline 3503 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3504 { 3505 return mtree_load(&mm->mm_mt, addr); 3506 } 3507 3508 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3509 { 3510 if (vma->vm_flags & VM_GROWSDOWN) 3511 return stack_guard_gap; 3512 3513 /* See reasoning around the VM_SHADOW_STACK definition */ 3514 if (vma->vm_flags & VM_SHADOW_STACK) 3515 return PAGE_SIZE; 3516 3517 return 0; 3518 } 3519 3520 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3521 { 3522 unsigned long gap = stack_guard_start_gap(vma); 3523 unsigned long vm_start = vma->vm_start; 3524 3525 vm_start -= gap; 3526 if (vm_start > vma->vm_start) 3527 vm_start = 0; 3528 return vm_start; 3529 } 3530 3531 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3532 { 3533 unsigned long vm_end = vma->vm_end; 3534 3535 if (vma->vm_flags & VM_GROWSUP) { 3536 vm_end += stack_guard_gap; 3537 if (vm_end < vma->vm_end) 3538 vm_end = -PAGE_SIZE; 3539 } 3540 return vm_end; 3541 } 3542 3543 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3544 { 3545 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3546 } 3547 3548 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3549 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3550 unsigned long vm_start, unsigned long vm_end) 3551 { 3552 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3553 3554 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3555 vma = NULL; 3556 3557 return vma; 3558 } 3559 3560 static inline bool range_in_vma(struct vm_area_struct *vma, 3561 unsigned long start, unsigned long end) 3562 { 3563 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3564 } 3565 3566 #ifdef CONFIG_MMU 3567 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3568 void vma_set_page_prot(struct vm_area_struct *vma); 3569 #else 3570 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3571 { 3572 return __pgprot(0); 3573 } 3574 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3575 { 3576 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3577 } 3578 #endif 3579 3580 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3581 3582 #ifdef CONFIG_NUMA_BALANCING 3583 unsigned long change_prot_numa(struct vm_area_struct *vma, 3584 unsigned long start, unsigned long end); 3585 #endif 3586 3587 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3588 unsigned long addr); 3589 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3590 unsigned long pfn, unsigned long size, pgprot_t); 3591 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3592 unsigned long pfn, unsigned long size, pgprot_t prot); 3593 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3594 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3595 struct page **pages, unsigned long *num); 3596 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3597 unsigned long num); 3598 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3599 unsigned long num); 3600 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3601 unsigned long pfn); 3602 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3603 unsigned long pfn, pgprot_t pgprot); 3604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3605 pfn_t pfn); 3606 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3607 unsigned long addr, pfn_t pfn); 3608 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3609 3610 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3611 unsigned long addr, struct page *page) 3612 { 3613 int err = vm_insert_page(vma, addr, page); 3614 3615 if (err == -ENOMEM) 3616 return VM_FAULT_OOM; 3617 if (err < 0 && err != -EBUSY) 3618 return VM_FAULT_SIGBUS; 3619 3620 return VM_FAULT_NOPAGE; 3621 } 3622 3623 #ifndef io_remap_pfn_range 3624 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3625 unsigned long addr, unsigned long pfn, 3626 unsigned long size, pgprot_t prot) 3627 { 3628 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3629 } 3630 #endif 3631 3632 static inline vm_fault_t vmf_error(int err) 3633 { 3634 if (err == -ENOMEM) 3635 return VM_FAULT_OOM; 3636 else if (err == -EHWPOISON) 3637 return VM_FAULT_HWPOISON; 3638 return VM_FAULT_SIGBUS; 3639 } 3640 3641 /* 3642 * Convert errno to return value for ->page_mkwrite() calls. 3643 * 3644 * This should eventually be merged with vmf_error() above, but will need a 3645 * careful audit of all vmf_error() callers. 3646 */ 3647 static inline vm_fault_t vmf_fs_error(int err) 3648 { 3649 if (err == 0) 3650 return VM_FAULT_LOCKED; 3651 if (err == -EFAULT || err == -EAGAIN) 3652 return VM_FAULT_NOPAGE; 3653 if (err == -ENOMEM) 3654 return VM_FAULT_OOM; 3655 /* -ENOSPC, -EDQUOT, -EIO ... */ 3656 return VM_FAULT_SIGBUS; 3657 } 3658 3659 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3660 unsigned int foll_flags); 3661 3662 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3663 { 3664 if (vm_fault & VM_FAULT_OOM) 3665 return -ENOMEM; 3666 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3667 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3668 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3669 return -EFAULT; 3670 return 0; 3671 } 3672 3673 /* 3674 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3675 * a (NUMA hinting) fault is required. 3676 */ 3677 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3678 unsigned int flags) 3679 { 3680 /* 3681 * If callers don't want to honor NUMA hinting faults, no need to 3682 * determine if we would actually have to trigger a NUMA hinting fault. 3683 */ 3684 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3685 return true; 3686 3687 /* 3688 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3689 * 3690 * Requiring a fault here even for inaccessible VMAs would mean that 3691 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3692 * refuses to process NUMA hinting faults in inaccessible VMAs. 3693 */ 3694 return !vma_is_accessible(vma); 3695 } 3696 3697 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3698 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3699 unsigned long size, pte_fn_t fn, void *data); 3700 extern int apply_to_existing_page_range(struct mm_struct *mm, 3701 unsigned long address, unsigned long size, 3702 pte_fn_t fn, void *data); 3703 3704 #ifdef CONFIG_PAGE_POISONING 3705 extern void __kernel_poison_pages(struct page *page, int numpages); 3706 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3707 extern bool _page_poisoning_enabled_early; 3708 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3709 static inline bool page_poisoning_enabled(void) 3710 { 3711 return _page_poisoning_enabled_early; 3712 } 3713 /* 3714 * For use in fast paths after init_mem_debugging() has run, or when a 3715 * false negative result is not harmful when called too early. 3716 */ 3717 static inline bool page_poisoning_enabled_static(void) 3718 { 3719 return static_branch_unlikely(&_page_poisoning_enabled); 3720 } 3721 static inline void kernel_poison_pages(struct page *page, int numpages) 3722 { 3723 if (page_poisoning_enabled_static()) 3724 __kernel_poison_pages(page, numpages); 3725 } 3726 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3727 { 3728 if (page_poisoning_enabled_static()) 3729 __kernel_unpoison_pages(page, numpages); 3730 } 3731 #else 3732 static inline bool page_poisoning_enabled(void) { return false; } 3733 static inline bool page_poisoning_enabled_static(void) { return false; } 3734 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3735 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3736 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3737 #endif 3738 3739 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3740 static inline bool want_init_on_alloc(gfp_t flags) 3741 { 3742 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3743 &init_on_alloc)) 3744 return true; 3745 return flags & __GFP_ZERO; 3746 } 3747 3748 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3749 static inline bool want_init_on_free(void) 3750 { 3751 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3752 &init_on_free); 3753 } 3754 3755 extern bool _debug_pagealloc_enabled_early; 3756 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3757 3758 static inline bool debug_pagealloc_enabled(void) 3759 { 3760 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3761 _debug_pagealloc_enabled_early; 3762 } 3763 3764 /* 3765 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3766 * or when a false negative result is not harmful when called too early. 3767 */ 3768 static inline bool debug_pagealloc_enabled_static(void) 3769 { 3770 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3771 return false; 3772 3773 return static_branch_unlikely(&_debug_pagealloc_enabled); 3774 } 3775 3776 /* 3777 * To support DEBUG_PAGEALLOC architecture must ensure that 3778 * __kernel_map_pages() never fails 3779 */ 3780 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3781 #ifdef CONFIG_DEBUG_PAGEALLOC 3782 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3783 { 3784 if (debug_pagealloc_enabled_static()) 3785 __kernel_map_pages(page, numpages, 1); 3786 } 3787 3788 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3789 { 3790 if (debug_pagealloc_enabled_static()) 3791 __kernel_map_pages(page, numpages, 0); 3792 } 3793 3794 extern unsigned int _debug_guardpage_minorder; 3795 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3796 3797 static inline unsigned int debug_guardpage_minorder(void) 3798 { 3799 return _debug_guardpage_minorder; 3800 } 3801 3802 static inline bool debug_guardpage_enabled(void) 3803 { 3804 return static_branch_unlikely(&_debug_guardpage_enabled); 3805 } 3806 3807 static inline bool page_is_guard(struct page *page) 3808 { 3809 if (!debug_guardpage_enabled()) 3810 return false; 3811 3812 return PageGuard(page); 3813 } 3814 3815 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3816 static inline bool set_page_guard(struct zone *zone, struct page *page, 3817 unsigned int order) 3818 { 3819 if (!debug_guardpage_enabled()) 3820 return false; 3821 return __set_page_guard(zone, page, order); 3822 } 3823 3824 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3825 static inline void clear_page_guard(struct zone *zone, struct page *page, 3826 unsigned int order) 3827 { 3828 if (!debug_guardpage_enabled()) 3829 return; 3830 __clear_page_guard(zone, page, order); 3831 } 3832 3833 #else /* CONFIG_DEBUG_PAGEALLOC */ 3834 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3835 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3836 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3837 static inline bool debug_guardpage_enabled(void) { return false; } 3838 static inline bool page_is_guard(struct page *page) { return false; } 3839 static inline bool set_page_guard(struct zone *zone, struct page *page, 3840 unsigned int order) { return false; } 3841 static inline void clear_page_guard(struct zone *zone, struct page *page, 3842 unsigned int order) {} 3843 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3844 3845 #ifdef __HAVE_ARCH_GATE_AREA 3846 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3847 extern int in_gate_area_no_mm(unsigned long addr); 3848 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3849 #else 3850 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3851 { 3852 return NULL; 3853 } 3854 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3855 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3856 { 3857 return 0; 3858 } 3859 #endif /* __HAVE_ARCH_GATE_AREA */ 3860 3861 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3862 3863 #ifdef CONFIG_SYSCTL 3864 extern int sysctl_drop_caches; 3865 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3866 loff_t *); 3867 #endif 3868 3869 void drop_slab(void); 3870 3871 #ifndef CONFIG_MMU 3872 #define randomize_va_space 0 3873 #else 3874 extern int randomize_va_space; 3875 #endif 3876 3877 const char * arch_vma_name(struct vm_area_struct *vma); 3878 #ifdef CONFIG_MMU 3879 void print_vma_addr(char *prefix, unsigned long rip); 3880 #else 3881 static inline void print_vma_addr(char *prefix, unsigned long rip) 3882 { 3883 } 3884 #endif 3885 3886 void *sparse_buffer_alloc(unsigned long size); 3887 struct page * __populate_section_memmap(unsigned long pfn, 3888 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3889 struct dev_pagemap *pgmap); 3890 void pmd_init(void *addr); 3891 void pud_init(void *addr); 3892 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3893 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3894 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3895 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3896 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3897 struct vmem_altmap *altmap, struct page *reuse); 3898 void *vmemmap_alloc_block(unsigned long size, int node); 3899 struct vmem_altmap; 3900 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3901 struct vmem_altmap *altmap); 3902 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3903 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3904 unsigned long addr, unsigned long next); 3905 int vmemmap_check_pmd(pmd_t *pmd, int node, 3906 unsigned long addr, unsigned long next); 3907 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3908 int node, struct vmem_altmap *altmap); 3909 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3910 int node, struct vmem_altmap *altmap); 3911 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3912 struct vmem_altmap *altmap); 3913 void vmemmap_populate_print_last(void); 3914 #ifdef CONFIG_MEMORY_HOTPLUG 3915 void vmemmap_free(unsigned long start, unsigned long end, 3916 struct vmem_altmap *altmap); 3917 #endif 3918 3919 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3920 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3921 { 3922 /* number of pfns from base where pfn_to_page() is valid */ 3923 if (altmap) 3924 return altmap->reserve + altmap->free; 3925 return 0; 3926 } 3927 3928 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3929 unsigned long nr_pfns) 3930 { 3931 altmap->alloc -= nr_pfns; 3932 } 3933 #else 3934 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3935 { 3936 return 0; 3937 } 3938 3939 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3940 unsigned long nr_pfns) 3941 { 3942 } 3943 #endif 3944 3945 #define VMEMMAP_RESERVE_NR 2 3946 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3947 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3948 struct dev_pagemap *pgmap) 3949 { 3950 unsigned long nr_pages; 3951 unsigned long nr_vmemmap_pages; 3952 3953 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3954 return false; 3955 3956 nr_pages = pgmap_vmemmap_nr(pgmap); 3957 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3958 /* 3959 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3960 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3961 */ 3962 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3963 } 3964 /* 3965 * If we don't have an architecture override, use the generic rule 3966 */ 3967 #ifndef vmemmap_can_optimize 3968 #define vmemmap_can_optimize __vmemmap_can_optimize 3969 #endif 3970 3971 #else 3972 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3973 struct dev_pagemap *pgmap) 3974 { 3975 return false; 3976 } 3977 #endif 3978 3979 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3980 unsigned long nr_pages); 3981 3982 enum mf_flags { 3983 MF_COUNT_INCREASED = 1 << 0, 3984 MF_ACTION_REQUIRED = 1 << 1, 3985 MF_MUST_KILL = 1 << 2, 3986 MF_SOFT_OFFLINE = 1 << 3, 3987 MF_UNPOISON = 1 << 4, 3988 MF_SW_SIMULATED = 1 << 5, 3989 MF_NO_RETRY = 1 << 6, 3990 MF_MEM_PRE_REMOVE = 1 << 7, 3991 }; 3992 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3993 unsigned long count, int mf_flags); 3994 extern int memory_failure(unsigned long pfn, int flags); 3995 extern void memory_failure_queue_kick(int cpu); 3996 extern int unpoison_memory(unsigned long pfn); 3997 extern atomic_long_t num_poisoned_pages __read_mostly; 3998 extern int soft_offline_page(unsigned long pfn, int flags); 3999 #ifdef CONFIG_MEMORY_FAILURE 4000 /* 4001 * Sysfs entries for memory failure handling statistics. 4002 */ 4003 extern const struct attribute_group memory_failure_attr_group; 4004 extern void memory_failure_queue(unsigned long pfn, int flags); 4005 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4006 bool *migratable_cleared); 4007 void num_poisoned_pages_inc(unsigned long pfn); 4008 void num_poisoned_pages_sub(unsigned long pfn, long i); 4009 #else 4010 static inline void memory_failure_queue(unsigned long pfn, int flags) 4011 { 4012 } 4013 4014 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4015 bool *migratable_cleared) 4016 { 4017 return 0; 4018 } 4019 4020 static inline void num_poisoned_pages_inc(unsigned long pfn) 4021 { 4022 } 4023 4024 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4025 { 4026 } 4027 #endif 4028 4029 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4030 extern void memblk_nr_poison_inc(unsigned long pfn); 4031 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4032 #else 4033 static inline void memblk_nr_poison_inc(unsigned long pfn) 4034 { 4035 } 4036 4037 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4038 { 4039 } 4040 #endif 4041 4042 #ifndef arch_memory_failure 4043 static inline int arch_memory_failure(unsigned long pfn, int flags) 4044 { 4045 return -ENXIO; 4046 } 4047 #endif 4048 4049 #ifndef arch_is_platform_page 4050 static inline bool arch_is_platform_page(u64 paddr) 4051 { 4052 return false; 4053 } 4054 #endif 4055 4056 /* 4057 * Error handlers for various types of pages. 4058 */ 4059 enum mf_result { 4060 MF_IGNORED, /* Error: cannot be handled */ 4061 MF_FAILED, /* Error: handling failed */ 4062 MF_DELAYED, /* Will be handled later */ 4063 MF_RECOVERED, /* Successfully recovered */ 4064 }; 4065 4066 enum mf_action_page_type { 4067 MF_MSG_KERNEL, 4068 MF_MSG_KERNEL_HIGH_ORDER, 4069 MF_MSG_DIFFERENT_COMPOUND, 4070 MF_MSG_HUGE, 4071 MF_MSG_FREE_HUGE, 4072 MF_MSG_GET_HWPOISON, 4073 MF_MSG_UNMAP_FAILED, 4074 MF_MSG_DIRTY_SWAPCACHE, 4075 MF_MSG_CLEAN_SWAPCACHE, 4076 MF_MSG_DIRTY_MLOCKED_LRU, 4077 MF_MSG_CLEAN_MLOCKED_LRU, 4078 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4079 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4080 MF_MSG_DIRTY_LRU, 4081 MF_MSG_CLEAN_LRU, 4082 MF_MSG_TRUNCATED_LRU, 4083 MF_MSG_BUDDY, 4084 MF_MSG_DAX, 4085 MF_MSG_UNSPLIT_THP, 4086 MF_MSG_ALREADY_POISONED, 4087 MF_MSG_UNKNOWN, 4088 }; 4089 4090 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4091 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4092 int copy_user_large_folio(struct folio *dst, struct folio *src, 4093 unsigned long addr_hint, 4094 struct vm_area_struct *vma); 4095 long copy_folio_from_user(struct folio *dst_folio, 4096 const void __user *usr_src, 4097 bool allow_pagefault); 4098 4099 /** 4100 * vma_is_special_huge - Are transhuge page-table entries considered special? 4101 * @vma: Pointer to the struct vm_area_struct to consider 4102 * 4103 * Whether transhuge page-table entries are considered "special" following 4104 * the definition in vm_normal_page(). 4105 * 4106 * Return: true if transhuge page-table entries should be considered special, 4107 * false otherwise. 4108 */ 4109 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4110 { 4111 return vma_is_dax(vma) || (vma->vm_file && 4112 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4113 } 4114 4115 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4116 4117 #if MAX_NUMNODES > 1 4118 void __init setup_nr_node_ids(void); 4119 #else 4120 static inline void setup_nr_node_ids(void) {} 4121 #endif 4122 4123 extern int memcmp_pages(struct page *page1, struct page *page2); 4124 4125 static inline int pages_identical(struct page *page1, struct page *page2) 4126 { 4127 return !memcmp_pages(page1, page2); 4128 } 4129 4130 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4131 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4132 pgoff_t first_index, pgoff_t nr, 4133 pgoff_t bitmap_pgoff, 4134 unsigned long *bitmap, 4135 pgoff_t *start, 4136 pgoff_t *end); 4137 4138 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4139 pgoff_t first_index, pgoff_t nr); 4140 #endif 4141 4142 extern int sysctl_nr_trim_pages; 4143 4144 #ifdef CONFIG_PRINTK 4145 void mem_dump_obj(void *object); 4146 #else 4147 static inline void mem_dump_obj(void *object) {} 4148 #endif 4149 4150 /** 4151 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4152 * handle them. 4153 * @seals: the seals to check 4154 * @vma: the vma to operate on 4155 * 4156 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4157 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4158 */ 4159 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4160 { 4161 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4162 /* 4163 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4164 * write seals are active. 4165 */ 4166 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4167 return -EPERM; 4168 4169 /* 4170 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4171 * MAP_SHARED and read-only, take care to not allow mprotect to 4172 * revert protections on such mappings. Do this only for shared 4173 * mappings. For private mappings, don't need to mask 4174 * VM_MAYWRITE as we still want them to be COW-writable. 4175 */ 4176 if (vma->vm_flags & VM_SHARED) 4177 vm_flags_clear(vma, VM_MAYWRITE); 4178 } 4179 4180 return 0; 4181 } 4182 4183 #ifdef CONFIG_ANON_VMA_NAME 4184 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4185 unsigned long len_in, 4186 struct anon_vma_name *anon_name); 4187 #else 4188 static inline int 4189 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4190 unsigned long len_in, struct anon_vma_name *anon_name) { 4191 return 0; 4192 } 4193 #endif 4194 4195 #ifdef CONFIG_UNACCEPTED_MEMORY 4196 4197 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4198 void accept_memory(phys_addr_t start, phys_addr_t end); 4199 4200 #else 4201 4202 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4203 phys_addr_t end) 4204 { 4205 return false; 4206 } 4207 4208 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4209 { 4210 } 4211 4212 #endif 4213 4214 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4215 { 4216 phys_addr_t paddr = pfn << PAGE_SHIFT; 4217 4218 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4219 } 4220 4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4222 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4223 4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4225 4226 #ifdef CONFIG_64BIT 4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4228 #else 4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4230 { 4231 /* noop on 32 bit */ 4232 return 0; 4233 } 4234 #endif 4235 4236 #endif /* _LINUX_MM_H */ 4237