xref: /linux-6.15/include/linux/mm.h (revision aaa3e7fb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page_ref.h>
28 #include <linux/memremap.h>
29 #include <linux/overflow.h>
30 #include <linux/sizes.h>
31 #include <linux/sched.h>
32 #include <linux/pgtable.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct file_ra_state;
38 struct user_struct;
39 struct writeback_control;
40 struct bdi_writeback;
41 
42 void init_mm_internals(void);
43 
44 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
45 extern unsigned long max_mapnr;
46 
47 static inline void set_max_mapnr(unsigned long limit)
48 {
49 	max_mapnr = limit;
50 }
51 #else
52 static inline void set_max_mapnr(unsigned long limit) { }
53 #endif
54 
55 extern atomic_long_t _totalram_pages;
56 static inline unsigned long totalram_pages(void)
57 {
58 	return (unsigned long)atomic_long_read(&_totalram_pages);
59 }
60 
61 static inline void totalram_pages_inc(void)
62 {
63 	atomic_long_inc(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_dec(void)
67 {
68 	atomic_long_dec(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_add(long count)
72 {
73 	atomic_long_add(count, &_totalram_pages);
74 }
75 
76 extern void * high_memory;
77 extern int page_cluster;
78 
79 #ifdef CONFIG_SYSCTL
80 extern int sysctl_legacy_va_layout;
81 #else
82 #define sysctl_legacy_va_layout 0
83 #endif
84 
85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86 extern const int mmap_rnd_bits_min;
87 extern const int mmap_rnd_bits_max;
88 extern int mmap_rnd_bits __read_mostly;
89 #endif
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91 extern const int mmap_rnd_compat_bits_min;
92 extern const int mmap_rnd_compat_bits_max;
93 extern int mmap_rnd_compat_bits __read_mostly;
94 #endif
95 
96 #include <asm/page.h>
97 #include <asm/processor.h>
98 
99 /*
100  * Architectures that support memory tagging (assigning tags to memory regions,
101  * embedding these tags into addresses that point to these memory regions, and
102  * checking that the memory and the pointer tags match on memory accesses)
103  * redefine this macro to strip tags from pointers.
104  * It's defined as noop for arcitectures that don't support memory tagging.
105  */
106 #ifndef untagged_addr
107 #define untagged_addr(addr) (addr)
108 #endif
109 
110 #ifndef __pa_symbol
111 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
112 #endif
113 
114 #ifndef page_to_virt
115 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
116 #endif
117 
118 #ifndef lm_alias
119 #define lm_alias(x)	__va(__pa_symbol(x))
120 #endif
121 
122 /*
123  * To prevent common memory management code establishing
124  * a zero page mapping on a read fault.
125  * This macro should be defined within <asm/pgtable.h>.
126  * s390 does this to prevent multiplexing of hardware bits
127  * related to the physical page in case of virtualization.
128  */
129 #ifndef mm_forbids_zeropage
130 #define mm_forbids_zeropage(X)	(0)
131 #endif
132 
133 /*
134  * On some architectures it is expensive to call memset() for small sizes.
135  * If an architecture decides to implement their own version of
136  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137  * define their own version of this macro in <asm/pgtable.h>
138  */
139 #if BITS_PER_LONG == 64
140 /* This function must be updated when the size of struct page grows above 80
141  * or reduces below 56. The idea that compiler optimizes out switch()
142  * statement, and only leaves move/store instructions. Also the compiler can
143  * combine write statments if they are both assignments and can be reordered,
144  * this can result in several of the writes here being dropped.
145  */
146 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147 static inline void __mm_zero_struct_page(struct page *page)
148 {
149 	unsigned long *_pp = (void *)page;
150 
151 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 	BUILD_BUG_ON(sizeof(struct page) & 7);
153 	BUILD_BUG_ON(sizeof(struct page) < 56);
154 	BUILD_BUG_ON(sizeof(struct page) > 80);
155 
156 	switch (sizeof(struct page)) {
157 	case 80:
158 		_pp[9] = 0;	/* fallthrough */
159 	case 72:
160 		_pp[8] = 0;	/* fallthrough */
161 	case 64:
162 		_pp[7] = 0;	/* fallthrough */
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
213 
214 /* to align the pointer to the (next) page boundary */
215 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
216 
217 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
218 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
219 
220 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
221 
222 /*
223  * Linux kernel virtual memory manager primitives.
224  * The idea being to have a "virtual" mm in the same way
225  * we have a virtual fs - giving a cleaner interface to the
226  * mm details, and allowing different kinds of memory mappings
227  * (from shared memory to executable loading to arbitrary
228  * mmap() functions).
229  */
230 
231 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
232 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
233 void vm_area_free(struct vm_area_struct *);
234 
235 #ifndef CONFIG_MMU
236 extern struct rb_root nommu_region_tree;
237 extern struct rw_semaphore nommu_region_sem;
238 
239 extern unsigned int kobjsize(const void *objp);
240 #endif
241 
242 /*
243  * vm_flags in vm_area_struct, see mm_types.h.
244  * When changing, update also include/trace/events/mmflags.h
245  */
246 #define VM_NONE		0x00000000
247 
248 #define VM_READ		0x00000001	/* currently active flags */
249 #define VM_WRITE	0x00000002
250 #define VM_EXEC		0x00000004
251 #define VM_SHARED	0x00000008
252 
253 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
254 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
255 #define VM_MAYWRITE	0x00000020
256 #define VM_MAYEXEC	0x00000040
257 #define VM_MAYSHARE	0x00000080
258 
259 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
260 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
261 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
262 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
263 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
264 
265 #define VM_LOCKED	0x00002000
266 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
267 
268 					/* Used by sys_madvise() */
269 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
270 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
271 
272 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
273 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
274 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
275 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
276 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
277 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
278 #define VM_SYNC		0x00800000	/* Synchronous page faults */
279 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
280 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
281 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
282 
283 #ifdef CONFIG_MEM_SOFT_DIRTY
284 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
285 #else
286 # define VM_SOFTDIRTY	0
287 #endif
288 
289 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
290 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
291 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
292 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
293 
294 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
295 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
296 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
301 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
302 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
303 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
304 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
305 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
306 
307 #ifdef CONFIG_ARCH_HAS_PKEYS
308 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
309 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
310 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
311 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
312 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
313 #ifdef CONFIG_PPC
314 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
315 #else
316 # define VM_PKEY_BIT4  0
317 #endif
318 #endif /* CONFIG_ARCH_HAS_PKEYS */
319 
320 #if defined(CONFIG_X86)
321 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
322 #elif defined(CONFIG_PARISC)
323 # define VM_GROWSUP	VM_ARCH_1
324 #elif defined(CONFIG_IA64)
325 # define VM_GROWSUP	VM_ARCH_1
326 #elif defined(CONFIG_SPARC64)
327 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
328 # define VM_ARCH_CLEAR	VM_SPARC_ADI
329 #elif defined(CONFIG_ARM64)
330 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
331 # define VM_ARCH_CLEAR	VM_ARM64_BTI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #ifndef VM_GROWSUP
337 # define VM_GROWSUP	VM_NONE
338 #endif
339 
340 /* Bits set in the VMA until the stack is in its final location */
341 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
342 
343 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
344 
345 /* Common data flag combinations */
346 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
347 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
348 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
349 				 VM_MAYWRITE | VM_MAYEXEC)
350 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
351 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
352 
353 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
354 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
355 #endif
356 
357 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
358 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
359 #endif
360 
361 #ifdef CONFIG_STACK_GROWSUP
362 #define VM_STACK	VM_GROWSUP
363 #else
364 #define VM_STACK	VM_GROWSDOWN
365 #endif
366 
367 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
368 
369 /* VMA basic access permission flags */
370 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
371 
372 
373 /*
374  * Special vmas that are non-mergable, non-mlock()able.
375  */
376 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
377 
378 /* This mask prevents VMA from being scanned with khugepaged */
379 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
380 
381 /* This mask defines which mm->def_flags a process can inherit its parent */
382 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
383 
384 /* This mask is used to clear all the VMA flags used by mlock */
385 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
386 
387 /* Arch-specific flags to clear when updating VM flags on protection change */
388 #ifndef VM_ARCH_CLEAR
389 # define VM_ARCH_CLEAR	VM_NONE
390 #endif
391 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
392 
393 /*
394  * mapping from the currently active vm_flags protection bits (the
395  * low four bits) to a page protection mask..
396  */
397 extern pgprot_t protection_map[16];
398 
399 /**
400  * Fault flag definitions.
401  *
402  * @FAULT_FLAG_WRITE: Fault was a write fault.
403  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
404  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
405  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
406  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
407  * @FAULT_FLAG_TRIED: The fault has been tried once.
408  * @FAULT_FLAG_USER: The fault originated in userspace.
409  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
410  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
411  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
412  *
413  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
414  * whether we would allow page faults to retry by specifying these two
415  * fault flags correctly.  Currently there can be three legal combinations:
416  *
417  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
418  *                              this is the first try
419  *
420  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
421  *                              we've already tried at least once
422  *
423  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
424  *
425  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
426  * be used.  Note that page faults can be allowed to retry for multiple times,
427  * in which case we'll have an initial fault with flags (a) then later on
428  * continuous faults with flags (b).  We should always try to detect pending
429  * signals before a retry to make sure the continuous page faults can still be
430  * interrupted if necessary.
431  */
432 #define FAULT_FLAG_WRITE			0x01
433 #define FAULT_FLAG_MKWRITE			0x02
434 #define FAULT_FLAG_ALLOW_RETRY			0x04
435 #define FAULT_FLAG_RETRY_NOWAIT			0x08
436 #define FAULT_FLAG_KILLABLE			0x10
437 #define FAULT_FLAG_TRIED			0x20
438 #define FAULT_FLAG_USER				0x40
439 #define FAULT_FLAG_REMOTE			0x80
440 #define FAULT_FLAG_INSTRUCTION  		0x100
441 #define FAULT_FLAG_INTERRUPTIBLE		0x200
442 
443 /*
444  * The default fault flags that should be used by most of the
445  * arch-specific page fault handlers.
446  */
447 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
448 			     FAULT_FLAG_KILLABLE | \
449 			     FAULT_FLAG_INTERRUPTIBLE)
450 
451 /**
452  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
453  *
454  * This is mostly used for places where we want to try to avoid taking
455  * the mmap_lock for too long a time when waiting for another condition
456  * to change, in which case we can try to be polite to release the
457  * mmap_lock in the first round to avoid potential starvation of other
458  * processes that would also want the mmap_lock.
459  *
460  * Return: true if the page fault allows retry and this is the first
461  * attempt of the fault handling; false otherwise.
462  */
463 static inline bool fault_flag_allow_retry_first(unsigned int flags)
464 {
465 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
466 	    (!(flags & FAULT_FLAG_TRIED));
467 }
468 
469 #define FAULT_FLAG_TRACE \
470 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
471 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
472 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
473 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
474 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
475 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
476 	{ FAULT_FLAG_USER,		"USER" }, \
477 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
478 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
479 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
480 
481 /*
482  * vm_fault is filled by the pagefault handler and passed to the vma's
483  * ->fault function. The vma's ->fault is responsible for returning a bitmask
484  * of VM_FAULT_xxx flags that give details about how the fault was handled.
485  *
486  * MM layer fills up gfp_mask for page allocations but fault handler might
487  * alter it if its implementation requires a different allocation context.
488  *
489  * pgoff should be used in favour of virtual_address, if possible.
490  */
491 struct vm_fault {
492 	struct vm_area_struct *vma;	/* Target VMA */
493 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
494 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
495 	pgoff_t pgoff;			/* Logical page offset based on vma */
496 	unsigned long address;		/* Faulting virtual address */
497 	pmd_t *pmd;			/* Pointer to pmd entry matching
498 					 * the 'address' */
499 	pud_t *pud;			/* Pointer to pud entry matching
500 					 * the 'address'
501 					 */
502 	pte_t orig_pte;			/* Value of PTE at the time of fault */
503 
504 	struct page *cow_page;		/* Page handler may use for COW fault */
505 	struct page *page;		/* ->fault handlers should return a
506 					 * page here, unless VM_FAULT_NOPAGE
507 					 * is set (which is also implied by
508 					 * VM_FAULT_ERROR).
509 					 */
510 	/* These three entries are valid only while holding ptl lock */
511 	pte_t *pte;			/* Pointer to pte entry matching
512 					 * the 'address'. NULL if the page
513 					 * table hasn't been allocated.
514 					 */
515 	spinlock_t *ptl;		/* Page table lock.
516 					 * Protects pte page table if 'pte'
517 					 * is not NULL, otherwise pmd.
518 					 */
519 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
520 					 * vm_ops->map_pages() calls
521 					 * alloc_set_pte() from atomic context.
522 					 * do_fault_around() pre-allocates
523 					 * page table to avoid allocation from
524 					 * atomic context.
525 					 */
526 };
527 
528 /* page entry size for vm->huge_fault() */
529 enum page_entry_size {
530 	PE_SIZE_PTE = 0,
531 	PE_SIZE_PMD,
532 	PE_SIZE_PUD,
533 };
534 
535 /*
536  * These are the virtual MM functions - opening of an area, closing and
537  * unmapping it (needed to keep files on disk up-to-date etc), pointer
538  * to the functions called when a no-page or a wp-page exception occurs.
539  */
540 struct vm_operations_struct {
541 	void (*open)(struct vm_area_struct * area);
542 	void (*close)(struct vm_area_struct * area);
543 	int (*split)(struct vm_area_struct * area, unsigned long addr);
544 	int (*mremap)(struct vm_area_struct * area);
545 	vm_fault_t (*fault)(struct vm_fault *vmf);
546 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
547 			enum page_entry_size pe_size);
548 	void (*map_pages)(struct vm_fault *vmf,
549 			pgoff_t start_pgoff, pgoff_t end_pgoff);
550 	unsigned long (*pagesize)(struct vm_area_struct * area);
551 
552 	/* notification that a previously read-only page is about to become
553 	 * writable, if an error is returned it will cause a SIGBUS */
554 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
555 
556 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
557 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
558 
559 	/* called by access_process_vm when get_user_pages() fails, typically
560 	 * for use by special VMAs that can switch between memory and hardware
561 	 */
562 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
563 		      void *buf, int len, int write);
564 
565 	/* Called by the /proc/PID/maps code to ask the vma whether it
566 	 * has a special name.  Returning non-NULL will also cause this
567 	 * vma to be dumped unconditionally. */
568 	const char *(*name)(struct vm_area_struct *vma);
569 
570 #ifdef CONFIG_NUMA
571 	/*
572 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
573 	 * to hold the policy upon return.  Caller should pass NULL @new to
574 	 * remove a policy and fall back to surrounding context--i.e. do not
575 	 * install a MPOL_DEFAULT policy, nor the task or system default
576 	 * mempolicy.
577 	 */
578 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
579 
580 	/*
581 	 * get_policy() op must add reference [mpol_get()] to any policy at
582 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
583 	 * in mm/mempolicy.c will do this automatically.
584 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
585 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
586 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
587 	 * must return NULL--i.e., do not "fallback" to task or system default
588 	 * policy.
589 	 */
590 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
591 					unsigned long addr);
592 #endif
593 	/*
594 	 * Called by vm_normal_page() for special PTEs to find the
595 	 * page for @addr.  This is useful if the default behavior
596 	 * (using pte_page()) would not find the correct page.
597 	 */
598 	struct page *(*find_special_page)(struct vm_area_struct *vma,
599 					  unsigned long addr);
600 };
601 
602 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
603 {
604 	static const struct vm_operations_struct dummy_vm_ops = {};
605 
606 	memset(vma, 0, sizeof(*vma));
607 	vma->vm_mm = mm;
608 	vma->vm_ops = &dummy_vm_ops;
609 	INIT_LIST_HEAD(&vma->anon_vma_chain);
610 }
611 
612 static inline void vma_set_anonymous(struct vm_area_struct *vma)
613 {
614 	vma->vm_ops = NULL;
615 }
616 
617 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
618 {
619 	return !vma->vm_ops;
620 }
621 
622 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
623 {
624 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
625 
626 	if (!maybe_stack)
627 		return false;
628 
629 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
630 						VM_STACK_INCOMPLETE_SETUP)
631 		return true;
632 
633 	return false;
634 }
635 
636 static inline bool vma_is_foreign(struct vm_area_struct *vma)
637 {
638 	if (!current->mm)
639 		return true;
640 
641 	if (current->mm != vma->vm_mm)
642 		return true;
643 
644 	return false;
645 }
646 
647 static inline bool vma_is_accessible(struct vm_area_struct *vma)
648 {
649 	return vma->vm_flags & VM_ACCESS_FLAGS;
650 }
651 
652 #ifdef CONFIG_SHMEM
653 /*
654  * The vma_is_shmem is not inline because it is used only by slow
655  * paths in userfault.
656  */
657 bool vma_is_shmem(struct vm_area_struct *vma);
658 #else
659 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
660 #endif
661 
662 int vma_is_stack_for_current(struct vm_area_struct *vma);
663 
664 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
665 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
666 
667 struct mmu_gather;
668 struct inode;
669 
670 /*
671  * FIXME: take this include out, include page-flags.h in
672  * files which need it (119 of them)
673  */
674 #include <linux/page-flags.h>
675 #include <linux/huge_mm.h>
676 
677 /*
678  * Methods to modify the page usage count.
679  *
680  * What counts for a page usage:
681  * - cache mapping   (page->mapping)
682  * - private data    (page->private)
683  * - page mapped in a task's page tables, each mapping
684  *   is counted separately
685  *
686  * Also, many kernel routines increase the page count before a critical
687  * routine so they can be sure the page doesn't go away from under them.
688  */
689 
690 /*
691  * Drop a ref, return true if the refcount fell to zero (the page has no users)
692  */
693 static inline int put_page_testzero(struct page *page)
694 {
695 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
696 	return page_ref_dec_and_test(page);
697 }
698 
699 /*
700  * Try to grab a ref unless the page has a refcount of zero, return false if
701  * that is the case.
702  * This can be called when MMU is off so it must not access
703  * any of the virtual mappings.
704  */
705 static inline int get_page_unless_zero(struct page *page)
706 {
707 	return page_ref_add_unless(page, 1, 0);
708 }
709 
710 extern int page_is_ram(unsigned long pfn);
711 
712 enum {
713 	REGION_INTERSECTS,
714 	REGION_DISJOINT,
715 	REGION_MIXED,
716 };
717 
718 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
719 		      unsigned long desc);
720 
721 /* Support for virtually mapped pages */
722 struct page *vmalloc_to_page(const void *addr);
723 unsigned long vmalloc_to_pfn(const void *addr);
724 
725 /*
726  * Determine if an address is within the vmalloc range
727  *
728  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
729  * is no special casing required.
730  */
731 
732 #ifndef is_ioremap_addr
733 #define is_ioremap_addr(x) is_vmalloc_addr(x)
734 #endif
735 
736 #ifdef CONFIG_MMU
737 extern bool is_vmalloc_addr(const void *x);
738 extern int is_vmalloc_or_module_addr(const void *x);
739 #else
740 static inline bool is_vmalloc_addr(const void *x)
741 {
742 	return false;
743 }
744 static inline int is_vmalloc_or_module_addr(const void *x)
745 {
746 	return 0;
747 }
748 #endif
749 
750 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
751 static inline void *kvmalloc(size_t size, gfp_t flags)
752 {
753 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
754 }
755 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
756 {
757 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
758 }
759 static inline void *kvzalloc(size_t size, gfp_t flags)
760 {
761 	return kvmalloc(size, flags | __GFP_ZERO);
762 }
763 
764 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
765 {
766 	size_t bytes;
767 
768 	if (unlikely(check_mul_overflow(n, size, &bytes)))
769 		return NULL;
770 
771 	return kvmalloc(bytes, flags);
772 }
773 
774 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
775 {
776 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
777 }
778 
779 extern void kvfree(const void *addr);
780 extern void kvfree_sensitive(const void *addr, size_t len);
781 
782 static inline int head_mapcount(struct page *head)
783 {
784 	return atomic_read(compound_mapcount_ptr(head)) + 1;
785 }
786 
787 /*
788  * Mapcount of compound page as a whole, does not include mapped sub-pages.
789  *
790  * Must be called only for compound pages or any their tail sub-pages.
791  */
792 static inline int compound_mapcount(struct page *page)
793 {
794 	VM_BUG_ON_PAGE(!PageCompound(page), page);
795 	page = compound_head(page);
796 	return head_mapcount(page);
797 }
798 
799 /*
800  * The atomic page->_mapcount, starts from -1: so that transitions
801  * both from it and to it can be tracked, using atomic_inc_and_test
802  * and atomic_add_negative(-1).
803  */
804 static inline void page_mapcount_reset(struct page *page)
805 {
806 	atomic_set(&(page)->_mapcount, -1);
807 }
808 
809 int __page_mapcount(struct page *page);
810 
811 /*
812  * Mapcount of 0-order page; when compound sub-page, includes
813  * compound_mapcount().
814  *
815  * Result is undefined for pages which cannot be mapped into userspace.
816  * For example SLAB or special types of pages. See function page_has_type().
817  * They use this place in struct page differently.
818  */
819 static inline int page_mapcount(struct page *page)
820 {
821 	if (unlikely(PageCompound(page)))
822 		return __page_mapcount(page);
823 	return atomic_read(&page->_mapcount) + 1;
824 }
825 
826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
827 int total_mapcount(struct page *page);
828 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
829 #else
830 static inline int total_mapcount(struct page *page)
831 {
832 	return page_mapcount(page);
833 }
834 static inline int page_trans_huge_mapcount(struct page *page,
835 					   int *total_mapcount)
836 {
837 	int mapcount = page_mapcount(page);
838 	if (total_mapcount)
839 		*total_mapcount = mapcount;
840 	return mapcount;
841 }
842 #endif
843 
844 static inline struct page *virt_to_head_page(const void *x)
845 {
846 	struct page *page = virt_to_page(x);
847 
848 	return compound_head(page);
849 }
850 
851 void __put_page(struct page *page);
852 
853 void put_pages_list(struct list_head *pages);
854 
855 void split_page(struct page *page, unsigned int order);
856 
857 /*
858  * Compound pages have a destructor function.  Provide a
859  * prototype for that function and accessor functions.
860  * These are _only_ valid on the head of a compound page.
861  */
862 typedef void compound_page_dtor(struct page *);
863 
864 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
865 enum compound_dtor_id {
866 	NULL_COMPOUND_DTOR,
867 	COMPOUND_PAGE_DTOR,
868 #ifdef CONFIG_HUGETLB_PAGE
869 	HUGETLB_PAGE_DTOR,
870 #endif
871 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
872 	TRANSHUGE_PAGE_DTOR,
873 #endif
874 	NR_COMPOUND_DTORS,
875 };
876 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
877 
878 static inline void set_compound_page_dtor(struct page *page,
879 		enum compound_dtor_id compound_dtor)
880 {
881 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
882 	page[1].compound_dtor = compound_dtor;
883 }
884 
885 static inline void destroy_compound_page(struct page *page)
886 {
887 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
888 	compound_page_dtors[page[1].compound_dtor](page);
889 }
890 
891 static inline unsigned int compound_order(struct page *page)
892 {
893 	if (!PageHead(page))
894 		return 0;
895 	return page[1].compound_order;
896 }
897 
898 static inline bool hpage_pincount_available(struct page *page)
899 {
900 	/*
901 	 * Can the page->hpage_pinned_refcount field be used? That field is in
902 	 * the 3rd page of the compound page, so the smallest (2-page) compound
903 	 * pages cannot support it.
904 	 */
905 	page = compound_head(page);
906 	return PageCompound(page) && compound_order(page) > 1;
907 }
908 
909 static inline int head_pincount(struct page *head)
910 {
911 	return atomic_read(compound_pincount_ptr(head));
912 }
913 
914 static inline int compound_pincount(struct page *page)
915 {
916 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
917 	page = compound_head(page);
918 	return head_pincount(page);
919 }
920 
921 static inline void set_compound_order(struct page *page, unsigned int order)
922 {
923 	page[1].compound_order = order;
924 }
925 
926 /* Returns the number of pages in this potentially compound page. */
927 static inline unsigned long compound_nr(struct page *page)
928 {
929 	return 1UL << compound_order(page);
930 }
931 
932 /* Returns the number of bytes in this potentially compound page. */
933 static inline unsigned long page_size(struct page *page)
934 {
935 	return PAGE_SIZE << compound_order(page);
936 }
937 
938 /* Returns the number of bits needed for the number of bytes in a page */
939 static inline unsigned int page_shift(struct page *page)
940 {
941 	return PAGE_SHIFT + compound_order(page);
942 }
943 
944 void free_compound_page(struct page *page);
945 
946 #ifdef CONFIG_MMU
947 /*
948  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
949  * servicing faults for write access.  In the normal case, do always want
950  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
951  * that do not have writing enabled, when used by access_process_vm.
952  */
953 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
954 {
955 	if (likely(vma->vm_flags & VM_WRITE))
956 		pte = pte_mkwrite(pte);
957 	return pte;
958 }
959 
960 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
961 vm_fault_t finish_fault(struct vm_fault *vmf);
962 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
963 #endif
964 
965 /*
966  * Multiple processes may "see" the same page. E.g. for untouched
967  * mappings of /dev/null, all processes see the same page full of
968  * zeroes, and text pages of executables and shared libraries have
969  * only one copy in memory, at most, normally.
970  *
971  * For the non-reserved pages, page_count(page) denotes a reference count.
972  *   page_count() == 0 means the page is free. page->lru is then used for
973  *   freelist management in the buddy allocator.
974  *   page_count() > 0  means the page has been allocated.
975  *
976  * Pages are allocated by the slab allocator in order to provide memory
977  * to kmalloc and kmem_cache_alloc. In this case, the management of the
978  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
979  * unless a particular usage is carefully commented. (the responsibility of
980  * freeing the kmalloc memory is the caller's, of course).
981  *
982  * A page may be used by anyone else who does a __get_free_page().
983  * In this case, page_count still tracks the references, and should only
984  * be used through the normal accessor functions. The top bits of page->flags
985  * and page->virtual store page management information, but all other fields
986  * are unused and could be used privately, carefully. The management of this
987  * page is the responsibility of the one who allocated it, and those who have
988  * subsequently been given references to it.
989  *
990  * The other pages (we may call them "pagecache pages") are completely
991  * managed by the Linux memory manager: I/O, buffers, swapping etc.
992  * The following discussion applies only to them.
993  *
994  * A pagecache page contains an opaque `private' member, which belongs to the
995  * page's address_space. Usually, this is the address of a circular list of
996  * the page's disk buffers. PG_private must be set to tell the VM to call
997  * into the filesystem to release these pages.
998  *
999  * A page may belong to an inode's memory mapping. In this case, page->mapping
1000  * is the pointer to the inode, and page->index is the file offset of the page,
1001  * in units of PAGE_SIZE.
1002  *
1003  * If pagecache pages are not associated with an inode, they are said to be
1004  * anonymous pages. These may become associated with the swapcache, and in that
1005  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1006  *
1007  * In either case (swapcache or inode backed), the pagecache itself holds one
1008  * reference to the page. Setting PG_private should also increment the
1009  * refcount. The each user mapping also has a reference to the page.
1010  *
1011  * The pagecache pages are stored in a per-mapping radix tree, which is
1012  * rooted at mapping->i_pages, and indexed by offset.
1013  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1014  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1015  *
1016  * All pagecache pages may be subject to I/O:
1017  * - inode pages may need to be read from disk,
1018  * - inode pages which have been modified and are MAP_SHARED may need
1019  *   to be written back to the inode on disk,
1020  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1021  *   modified may need to be swapped out to swap space and (later) to be read
1022  *   back into memory.
1023  */
1024 
1025 /*
1026  * The zone field is never updated after free_area_init_core()
1027  * sets it, so none of the operations on it need to be atomic.
1028  */
1029 
1030 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1031 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1032 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1033 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1034 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1035 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1036 
1037 /*
1038  * Define the bit shifts to access each section.  For non-existent
1039  * sections we define the shift as 0; that plus a 0 mask ensures
1040  * the compiler will optimise away reference to them.
1041  */
1042 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1043 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1044 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1045 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1046 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1047 
1048 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1049 #ifdef NODE_NOT_IN_PAGE_FLAGS
1050 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1051 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1052 						SECTIONS_PGOFF : ZONES_PGOFF)
1053 #else
1054 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1055 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1056 						NODES_PGOFF : ZONES_PGOFF)
1057 #endif
1058 
1059 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1060 
1061 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1062 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1063 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1064 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1065 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1066 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1067 
1068 static inline enum zone_type page_zonenum(const struct page *page)
1069 {
1070 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1071 }
1072 
1073 #ifdef CONFIG_ZONE_DEVICE
1074 static inline bool is_zone_device_page(const struct page *page)
1075 {
1076 	return page_zonenum(page) == ZONE_DEVICE;
1077 }
1078 extern void memmap_init_zone_device(struct zone *, unsigned long,
1079 				    unsigned long, struct dev_pagemap *);
1080 #else
1081 static inline bool is_zone_device_page(const struct page *page)
1082 {
1083 	return false;
1084 }
1085 #endif
1086 
1087 #ifdef CONFIG_DEV_PAGEMAP_OPS
1088 void free_devmap_managed_page(struct page *page);
1089 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1090 
1091 static inline bool page_is_devmap_managed(struct page *page)
1092 {
1093 	if (!static_branch_unlikely(&devmap_managed_key))
1094 		return false;
1095 	if (!is_zone_device_page(page))
1096 		return false;
1097 	switch (page->pgmap->type) {
1098 	case MEMORY_DEVICE_PRIVATE:
1099 	case MEMORY_DEVICE_FS_DAX:
1100 		return true;
1101 	default:
1102 		break;
1103 	}
1104 	return false;
1105 }
1106 
1107 void put_devmap_managed_page(struct page *page);
1108 
1109 #else /* CONFIG_DEV_PAGEMAP_OPS */
1110 static inline bool page_is_devmap_managed(struct page *page)
1111 {
1112 	return false;
1113 }
1114 
1115 static inline void put_devmap_managed_page(struct page *page)
1116 {
1117 }
1118 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1119 
1120 static inline bool is_device_private_page(const struct page *page)
1121 {
1122 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1123 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1124 		is_zone_device_page(page) &&
1125 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1126 }
1127 
1128 static inline bool is_pci_p2pdma_page(const struct page *page)
1129 {
1130 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1131 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1132 		is_zone_device_page(page) &&
1133 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1134 }
1135 
1136 /* 127: arbitrary random number, small enough to assemble well */
1137 #define page_ref_zero_or_close_to_overflow(page) \
1138 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1139 
1140 static inline void get_page(struct page *page)
1141 {
1142 	page = compound_head(page);
1143 	/*
1144 	 * Getting a normal page or the head of a compound page
1145 	 * requires to already have an elevated page->_refcount.
1146 	 */
1147 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1148 	page_ref_inc(page);
1149 }
1150 
1151 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1152 
1153 static inline __must_check bool try_get_page(struct page *page)
1154 {
1155 	page = compound_head(page);
1156 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1157 		return false;
1158 	page_ref_inc(page);
1159 	return true;
1160 }
1161 
1162 static inline void put_page(struct page *page)
1163 {
1164 	page = compound_head(page);
1165 
1166 	/*
1167 	 * For devmap managed pages we need to catch refcount transition from
1168 	 * 2 to 1, when refcount reach one it means the page is free and we
1169 	 * need to inform the device driver through callback. See
1170 	 * include/linux/memremap.h and HMM for details.
1171 	 */
1172 	if (page_is_devmap_managed(page)) {
1173 		put_devmap_managed_page(page);
1174 		return;
1175 	}
1176 
1177 	if (put_page_testzero(page))
1178 		__put_page(page);
1179 }
1180 
1181 /*
1182  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1183  * the page's refcount so that two separate items are tracked: the original page
1184  * reference count, and also a new count of how many pin_user_pages() calls were
1185  * made against the page. ("gup-pinned" is another term for the latter).
1186  *
1187  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1188  * distinct from normal pages. As such, the unpin_user_page() call (and its
1189  * variants) must be used in order to release gup-pinned pages.
1190  *
1191  * Choice of value:
1192  *
1193  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1194  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1195  * simpler, due to the fact that adding an even power of two to the page
1196  * refcount has the effect of using only the upper N bits, for the code that
1197  * counts up using the bias value. This means that the lower bits are left for
1198  * the exclusive use of the original code that increments and decrements by one
1199  * (or at least, by much smaller values than the bias value).
1200  *
1201  * Of course, once the lower bits overflow into the upper bits (and this is
1202  * OK, because subtraction recovers the original values), then visual inspection
1203  * no longer suffices to directly view the separate counts. However, for normal
1204  * applications that don't have huge page reference counts, this won't be an
1205  * issue.
1206  *
1207  * Locking: the lockless algorithm described in page_cache_get_speculative()
1208  * and page_cache_gup_pin_speculative() provides safe operation for
1209  * get_user_pages and page_mkclean and other calls that race to set up page
1210  * table entries.
1211  */
1212 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1213 
1214 void unpin_user_page(struct page *page);
1215 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1216 				 bool make_dirty);
1217 void unpin_user_pages(struct page **pages, unsigned long npages);
1218 
1219 /**
1220  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1221  *
1222  * This function checks if a page has been pinned via a call to
1223  * pin_user_pages*().
1224  *
1225  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1226  * because it means "definitely not pinned for DMA", but true means "probably
1227  * pinned for DMA, but possibly a false positive due to having at least
1228  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1229  *
1230  * False positives are OK, because: a) it's unlikely for a page to get that many
1231  * refcounts, and b) all the callers of this routine are expected to be able to
1232  * deal gracefully with a false positive.
1233  *
1234  * For huge pages, the result will be exactly correct. That's because we have
1235  * more tracking data available: the 3rd struct page in the compound page is
1236  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1237  * scheme).
1238  *
1239  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1240  *
1241  * @page:	pointer to page to be queried.
1242  * @Return:	True, if it is likely that the page has been "dma-pinned".
1243  *		False, if the page is definitely not dma-pinned.
1244  */
1245 static inline bool page_maybe_dma_pinned(struct page *page)
1246 {
1247 	if (hpage_pincount_available(page))
1248 		return compound_pincount(page) > 0;
1249 
1250 	/*
1251 	 * page_ref_count() is signed. If that refcount overflows, then
1252 	 * page_ref_count() returns a negative value, and callers will avoid
1253 	 * further incrementing the refcount.
1254 	 *
1255 	 * Here, for that overflow case, use the signed bit to count a little
1256 	 * bit higher via unsigned math, and thus still get an accurate result.
1257 	 */
1258 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1259 		GUP_PIN_COUNTING_BIAS;
1260 }
1261 
1262 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1263 #define SECTION_IN_PAGE_FLAGS
1264 #endif
1265 
1266 /*
1267  * The identification function is mainly used by the buddy allocator for
1268  * determining if two pages could be buddies. We are not really identifying
1269  * the zone since we could be using the section number id if we do not have
1270  * node id available in page flags.
1271  * We only guarantee that it will return the same value for two combinable
1272  * pages in a zone.
1273  */
1274 static inline int page_zone_id(struct page *page)
1275 {
1276 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1277 }
1278 
1279 #ifdef NODE_NOT_IN_PAGE_FLAGS
1280 extern int page_to_nid(const struct page *page);
1281 #else
1282 static inline int page_to_nid(const struct page *page)
1283 {
1284 	struct page *p = (struct page *)page;
1285 
1286 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1287 }
1288 #endif
1289 
1290 #ifdef CONFIG_NUMA_BALANCING
1291 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1292 {
1293 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1294 }
1295 
1296 static inline int cpupid_to_pid(int cpupid)
1297 {
1298 	return cpupid & LAST__PID_MASK;
1299 }
1300 
1301 static inline int cpupid_to_cpu(int cpupid)
1302 {
1303 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1304 }
1305 
1306 static inline int cpupid_to_nid(int cpupid)
1307 {
1308 	return cpu_to_node(cpupid_to_cpu(cpupid));
1309 }
1310 
1311 static inline bool cpupid_pid_unset(int cpupid)
1312 {
1313 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1314 }
1315 
1316 static inline bool cpupid_cpu_unset(int cpupid)
1317 {
1318 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1319 }
1320 
1321 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1322 {
1323 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1324 }
1325 
1326 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1327 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1328 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1329 {
1330 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1331 }
1332 
1333 static inline int page_cpupid_last(struct page *page)
1334 {
1335 	return page->_last_cpupid;
1336 }
1337 static inline void page_cpupid_reset_last(struct page *page)
1338 {
1339 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1340 }
1341 #else
1342 static inline int page_cpupid_last(struct page *page)
1343 {
1344 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1345 }
1346 
1347 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1348 
1349 static inline void page_cpupid_reset_last(struct page *page)
1350 {
1351 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1352 }
1353 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1354 #else /* !CONFIG_NUMA_BALANCING */
1355 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1356 {
1357 	return page_to_nid(page); /* XXX */
1358 }
1359 
1360 static inline int page_cpupid_last(struct page *page)
1361 {
1362 	return page_to_nid(page); /* XXX */
1363 }
1364 
1365 static inline int cpupid_to_nid(int cpupid)
1366 {
1367 	return -1;
1368 }
1369 
1370 static inline int cpupid_to_pid(int cpupid)
1371 {
1372 	return -1;
1373 }
1374 
1375 static inline int cpupid_to_cpu(int cpupid)
1376 {
1377 	return -1;
1378 }
1379 
1380 static inline int cpu_pid_to_cpupid(int nid, int pid)
1381 {
1382 	return -1;
1383 }
1384 
1385 static inline bool cpupid_pid_unset(int cpupid)
1386 {
1387 	return true;
1388 }
1389 
1390 static inline void page_cpupid_reset_last(struct page *page)
1391 {
1392 }
1393 
1394 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1395 {
1396 	return false;
1397 }
1398 #endif /* CONFIG_NUMA_BALANCING */
1399 
1400 #ifdef CONFIG_KASAN_SW_TAGS
1401 static inline u8 page_kasan_tag(const struct page *page)
1402 {
1403 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1404 }
1405 
1406 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1407 {
1408 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1409 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1410 }
1411 
1412 static inline void page_kasan_tag_reset(struct page *page)
1413 {
1414 	page_kasan_tag_set(page, 0xff);
1415 }
1416 #else
1417 static inline u8 page_kasan_tag(const struct page *page)
1418 {
1419 	return 0xff;
1420 }
1421 
1422 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1423 static inline void page_kasan_tag_reset(struct page *page) { }
1424 #endif
1425 
1426 static inline struct zone *page_zone(const struct page *page)
1427 {
1428 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1429 }
1430 
1431 static inline pg_data_t *page_pgdat(const struct page *page)
1432 {
1433 	return NODE_DATA(page_to_nid(page));
1434 }
1435 
1436 #ifdef SECTION_IN_PAGE_FLAGS
1437 static inline void set_page_section(struct page *page, unsigned long section)
1438 {
1439 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1440 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1441 }
1442 
1443 static inline unsigned long page_to_section(const struct page *page)
1444 {
1445 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1446 }
1447 #endif
1448 
1449 static inline void set_page_zone(struct page *page, enum zone_type zone)
1450 {
1451 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1452 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1453 }
1454 
1455 static inline void set_page_node(struct page *page, unsigned long node)
1456 {
1457 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1458 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1459 }
1460 
1461 static inline void set_page_links(struct page *page, enum zone_type zone,
1462 	unsigned long node, unsigned long pfn)
1463 {
1464 	set_page_zone(page, zone);
1465 	set_page_node(page, node);
1466 #ifdef SECTION_IN_PAGE_FLAGS
1467 	set_page_section(page, pfn_to_section_nr(pfn));
1468 #endif
1469 }
1470 
1471 #ifdef CONFIG_MEMCG
1472 static inline struct mem_cgroup *page_memcg(struct page *page)
1473 {
1474 	return page->mem_cgroup;
1475 }
1476 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1477 {
1478 	WARN_ON_ONCE(!rcu_read_lock_held());
1479 	return READ_ONCE(page->mem_cgroup);
1480 }
1481 #else
1482 static inline struct mem_cgroup *page_memcg(struct page *page)
1483 {
1484 	return NULL;
1485 }
1486 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1487 {
1488 	WARN_ON_ONCE(!rcu_read_lock_held());
1489 	return NULL;
1490 }
1491 #endif
1492 
1493 /*
1494  * Some inline functions in vmstat.h depend on page_zone()
1495  */
1496 #include <linux/vmstat.h>
1497 
1498 static __always_inline void *lowmem_page_address(const struct page *page)
1499 {
1500 	return page_to_virt(page);
1501 }
1502 
1503 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1504 #define HASHED_PAGE_VIRTUAL
1505 #endif
1506 
1507 #if defined(WANT_PAGE_VIRTUAL)
1508 static inline void *page_address(const struct page *page)
1509 {
1510 	return page->virtual;
1511 }
1512 static inline void set_page_address(struct page *page, void *address)
1513 {
1514 	page->virtual = address;
1515 }
1516 #define page_address_init()  do { } while(0)
1517 #endif
1518 
1519 #if defined(HASHED_PAGE_VIRTUAL)
1520 void *page_address(const struct page *page);
1521 void set_page_address(struct page *page, void *virtual);
1522 void page_address_init(void);
1523 #endif
1524 
1525 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1526 #define page_address(page) lowmem_page_address(page)
1527 #define set_page_address(page, address)  do { } while(0)
1528 #define page_address_init()  do { } while(0)
1529 #endif
1530 
1531 extern void *page_rmapping(struct page *page);
1532 extern struct anon_vma *page_anon_vma(struct page *page);
1533 extern struct address_space *page_mapping(struct page *page);
1534 
1535 extern struct address_space *__page_file_mapping(struct page *);
1536 
1537 static inline
1538 struct address_space *page_file_mapping(struct page *page)
1539 {
1540 	if (unlikely(PageSwapCache(page)))
1541 		return __page_file_mapping(page);
1542 
1543 	return page->mapping;
1544 }
1545 
1546 extern pgoff_t __page_file_index(struct page *page);
1547 
1548 /*
1549  * Return the pagecache index of the passed page.  Regular pagecache pages
1550  * use ->index whereas swapcache pages use swp_offset(->private)
1551  */
1552 static inline pgoff_t page_index(struct page *page)
1553 {
1554 	if (unlikely(PageSwapCache(page)))
1555 		return __page_file_index(page);
1556 	return page->index;
1557 }
1558 
1559 bool page_mapped(struct page *page);
1560 struct address_space *page_mapping(struct page *page);
1561 struct address_space *page_mapping_file(struct page *page);
1562 
1563 /*
1564  * Return true only if the page has been allocated with
1565  * ALLOC_NO_WATERMARKS and the low watermark was not
1566  * met implying that the system is under some pressure.
1567  */
1568 static inline bool page_is_pfmemalloc(struct page *page)
1569 {
1570 	/*
1571 	 * Page index cannot be this large so this must be
1572 	 * a pfmemalloc page.
1573 	 */
1574 	return page->index == -1UL;
1575 }
1576 
1577 /*
1578  * Only to be called by the page allocator on a freshly allocated
1579  * page.
1580  */
1581 static inline void set_page_pfmemalloc(struct page *page)
1582 {
1583 	page->index = -1UL;
1584 }
1585 
1586 static inline void clear_page_pfmemalloc(struct page *page)
1587 {
1588 	page->index = 0;
1589 }
1590 
1591 /*
1592  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1593  */
1594 extern void pagefault_out_of_memory(void);
1595 
1596 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1597 
1598 /*
1599  * Flags passed to show_mem() and show_free_areas() to suppress output in
1600  * various contexts.
1601  */
1602 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1603 
1604 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1605 
1606 #ifdef CONFIG_MMU
1607 extern bool can_do_mlock(void);
1608 #else
1609 static inline bool can_do_mlock(void) { return false; }
1610 #endif
1611 extern int user_shm_lock(size_t, struct user_struct *);
1612 extern void user_shm_unlock(size_t, struct user_struct *);
1613 
1614 /*
1615  * Parameter block passed down to zap_pte_range in exceptional cases.
1616  */
1617 struct zap_details {
1618 	struct address_space *check_mapping;	/* Check page->mapping if set */
1619 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1620 	pgoff_t last_index;			/* Highest page->index to unmap */
1621 };
1622 
1623 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1624 			     pte_t pte);
1625 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1626 				pmd_t pmd);
1627 
1628 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1629 		  unsigned long size);
1630 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1631 		    unsigned long size);
1632 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1633 		unsigned long start, unsigned long end);
1634 
1635 struct mmu_notifier_range;
1636 
1637 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1638 		unsigned long end, unsigned long floor, unsigned long ceiling);
1639 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1640 			struct vm_area_struct *vma);
1641 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1642 		   struct mmu_notifier_range *range,
1643 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1644 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1645 	unsigned long *pfn);
1646 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1647 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1648 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1649 			void *buf, int len, int write);
1650 
1651 extern void truncate_pagecache(struct inode *inode, loff_t new);
1652 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1653 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1654 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1655 int truncate_inode_page(struct address_space *mapping, struct page *page);
1656 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1657 int invalidate_inode_page(struct page *page);
1658 
1659 #ifdef CONFIG_MMU
1660 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1661 			unsigned long address, unsigned int flags);
1662 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1663 			    unsigned long address, unsigned int fault_flags,
1664 			    bool *unlocked);
1665 void unmap_mapping_pages(struct address_space *mapping,
1666 		pgoff_t start, pgoff_t nr, bool even_cows);
1667 void unmap_mapping_range(struct address_space *mapping,
1668 		loff_t const holebegin, loff_t const holelen, int even_cows);
1669 #else
1670 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1671 		unsigned long address, unsigned int flags)
1672 {
1673 	/* should never happen if there's no MMU */
1674 	BUG();
1675 	return VM_FAULT_SIGBUS;
1676 }
1677 static inline int fixup_user_fault(struct task_struct *tsk,
1678 		struct mm_struct *mm, unsigned long address,
1679 		unsigned int fault_flags, bool *unlocked)
1680 {
1681 	/* should never happen if there's no MMU */
1682 	BUG();
1683 	return -EFAULT;
1684 }
1685 static inline void unmap_mapping_pages(struct address_space *mapping,
1686 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1687 static inline void unmap_mapping_range(struct address_space *mapping,
1688 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1689 #endif
1690 
1691 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1692 		loff_t const holebegin, loff_t const holelen)
1693 {
1694 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1695 }
1696 
1697 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1698 		void *buf, int len, unsigned int gup_flags);
1699 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1700 		void *buf, int len, unsigned int gup_flags);
1701 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1702 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1703 
1704 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1705 			    unsigned long start, unsigned long nr_pages,
1706 			    unsigned int gup_flags, struct page **pages,
1707 			    struct vm_area_struct **vmas, int *locked);
1708 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1709 			   unsigned long start, unsigned long nr_pages,
1710 			   unsigned int gup_flags, struct page **pages,
1711 			   struct vm_area_struct **vmas, int *locked);
1712 long get_user_pages(unsigned long start, unsigned long nr_pages,
1713 			    unsigned int gup_flags, struct page **pages,
1714 			    struct vm_area_struct **vmas);
1715 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1716 		    unsigned int gup_flags, struct page **pages,
1717 		    struct vm_area_struct **vmas);
1718 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1719 		    unsigned int gup_flags, struct page **pages, int *locked);
1720 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1721 		    unsigned int gup_flags, struct page **pages, int *locked);
1722 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1723 		    struct page **pages, unsigned int gup_flags);
1724 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1725 		    struct page **pages, unsigned int gup_flags);
1726 
1727 int get_user_pages_fast(unsigned long start, int nr_pages,
1728 			unsigned int gup_flags, struct page **pages);
1729 int pin_user_pages_fast(unsigned long start, int nr_pages,
1730 			unsigned int gup_flags, struct page **pages);
1731 
1732 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1733 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1734 			struct task_struct *task, bool bypass_rlim);
1735 
1736 /* Container for pinned pfns / pages */
1737 struct frame_vector {
1738 	unsigned int nr_allocated;	/* Number of frames we have space for */
1739 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1740 	bool got_ref;		/* Did we pin pages by getting page ref? */
1741 	bool is_pfns;		/* Does array contain pages or pfns? */
1742 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1743 				 * pfns_vector_pages() or pfns_vector_pfns()
1744 				 * for access */
1745 };
1746 
1747 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1748 void frame_vector_destroy(struct frame_vector *vec);
1749 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1750 		     unsigned int gup_flags, struct frame_vector *vec);
1751 void put_vaddr_frames(struct frame_vector *vec);
1752 int frame_vector_to_pages(struct frame_vector *vec);
1753 void frame_vector_to_pfns(struct frame_vector *vec);
1754 
1755 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1756 {
1757 	return vec->nr_frames;
1758 }
1759 
1760 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1761 {
1762 	if (vec->is_pfns) {
1763 		int err = frame_vector_to_pages(vec);
1764 
1765 		if (err)
1766 			return ERR_PTR(err);
1767 	}
1768 	return (struct page **)(vec->ptrs);
1769 }
1770 
1771 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1772 {
1773 	if (!vec->is_pfns)
1774 		frame_vector_to_pfns(vec);
1775 	return (unsigned long *)(vec->ptrs);
1776 }
1777 
1778 struct kvec;
1779 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1780 			struct page **pages);
1781 int get_kernel_page(unsigned long start, int write, struct page **pages);
1782 struct page *get_dump_page(unsigned long addr);
1783 
1784 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1785 extern void do_invalidatepage(struct page *page, unsigned int offset,
1786 			      unsigned int length);
1787 
1788 void __set_page_dirty(struct page *, struct address_space *, int warn);
1789 int __set_page_dirty_nobuffers(struct page *page);
1790 int __set_page_dirty_no_writeback(struct page *page);
1791 int redirty_page_for_writepage(struct writeback_control *wbc,
1792 				struct page *page);
1793 void account_page_dirtied(struct page *page, struct address_space *mapping);
1794 void account_page_cleaned(struct page *page, struct address_space *mapping,
1795 			  struct bdi_writeback *wb);
1796 int set_page_dirty(struct page *page);
1797 int set_page_dirty_lock(struct page *page);
1798 void __cancel_dirty_page(struct page *page);
1799 static inline void cancel_dirty_page(struct page *page)
1800 {
1801 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1802 	if (PageDirty(page))
1803 		__cancel_dirty_page(page);
1804 }
1805 int clear_page_dirty_for_io(struct page *page);
1806 
1807 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1808 
1809 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1810 		unsigned long old_addr, struct vm_area_struct *new_vma,
1811 		unsigned long new_addr, unsigned long len,
1812 		bool need_rmap_locks);
1813 
1814 /*
1815  * Flags used by change_protection().  For now we make it a bitmap so
1816  * that we can pass in multiple flags just like parameters.  However
1817  * for now all the callers are only use one of the flags at the same
1818  * time.
1819  */
1820 /* Whether we should allow dirty bit accounting */
1821 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1822 /* Whether this protection change is for NUMA hints */
1823 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1824 /* Whether this change is for write protecting */
1825 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1826 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1827 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1828 					    MM_CP_UFFD_WP_RESOLVE)
1829 
1830 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1831 			      unsigned long end, pgprot_t newprot,
1832 			      unsigned long cp_flags);
1833 extern int mprotect_fixup(struct vm_area_struct *vma,
1834 			  struct vm_area_struct **pprev, unsigned long start,
1835 			  unsigned long end, unsigned long newflags);
1836 
1837 /*
1838  * doesn't attempt to fault and will return short.
1839  */
1840 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1841 			     unsigned int gup_flags, struct page **pages);
1842 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1843 			     unsigned int gup_flags, struct page **pages);
1844 
1845 static inline bool get_user_page_fast_only(unsigned long addr,
1846 			unsigned int gup_flags, struct page **pagep)
1847 {
1848 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1849 }
1850 /*
1851  * per-process(per-mm_struct) statistics.
1852  */
1853 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1854 {
1855 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1856 
1857 #ifdef SPLIT_RSS_COUNTING
1858 	/*
1859 	 * counter is updated in asynchronous manner and may go to minus.
1860 	 * But it's never be expected number for users.
1861 	 */
1862 	if (val < 0)
1863 		val = 0;
1864 #endif
1865 	return (unsigned long)val;
1866 }
1867 
1868 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1869 
1870 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1871 {
1872 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1873 
1874 	mm_trace_rss_stat(mm, member, count);
1875 }
1876 
1877 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1878 {
1879 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1880 
1881 	mm_trace_rss_stat(mm, member, count);
1882 }
1883 
1884 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1885 {
1886 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1887 
1888 	mm_trace_rss_stat(mm, member, count);
1889 }
1890 
1891 /* Optimized variant when page is already known not to be PageAnon */
1892 static inline int mm_counter_file(struct page *page)
1893 {
1894 	if (PageSwapBacked(page))
1895 		return MM_SHMEMPAGES;
1896 	return MM_FILEPAGES;
1897 }
1898 
1899 static inline int mm_counter(struct page *page)
1900 {
1901 	if (PageAnon(page))
1902 		return MM_ANONPAGES;
1903 	return mm_counter_file(page);
1904 }
1905 
1906 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1907 {
1908 	return get_mm_counter(mm, MM_FILEPAGES) +
1909 		get_mm_counter(mm, MM_ANONPAGES) +
1910 		get_mm_counter(mm, MM_SHMEMPAGES);
1911 }
1912 
1913 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1914 {
1915 	return max(mm->hiwater_rss, get_mm_rss(mm));
1916 }
1917 
1918 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1919 {
1920 	return max(mm->hiwater_vm, mm->total_vm);
1921 }
1922 
1923 static inline void update_hiwater_rss(struct mm_struct *mm)
1924 {
1925 	unsigned long _rss = get_mm_rss(mm);
1926 
1927 	if ((mm)->hiwater_rss < _rss)
1928 		(mm)->hiwater_rss = _rss;
1929 }
1930 
1931 static inline void update_hiwater_vm(struct mm_struct *mm)
1932 {
1933 	if (mm->hiwater_vm < mm->total_vm)
1934 		mm->hiwater_vm = mm->total_vm;
1935 }
1936 
1937 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1938 {
1939 	mm->hiwater_rss = get_mm_rss(mm);
1940 }
1941 
1942 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1943 					 struct mm_struct *mm)
1944 {
1945 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1946 
1947 	if (*maxrss < hiwater_rss)
1948 		*maxrss = hiwater_rss;
1949 }
1950 
1951 #if defined(SPLIT_RSS_COUNTING)
1952 void sync_mm_rss(struct mm_struct *mm);
1953 #else
1954 static inline void sync_mm_rss(struct mm_struct *mm)
1955 {
1956 }
1957 #endif
1958 
1959 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1960 static inline int pte_special(pte_t pte)
1961 {
1962 	return 0;
1963 }
1964 
1965 static inline pte_t pte_mkspecial(pte_t pte)
1966 {
1967 	return pte;
1968 }
1969 #endif
1970 
1971 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1972 static inline int pte_devmap(pte_t pte)
1973 {
1974 	return 0;
1975 }
1976 #endif
1977 
1978 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1979 
1980 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1981 			       spinlock_t **ptl);
1982 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983 				    spinlock_t **ptl)
1984 {
1985 	pte_t *ptep;
1986 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1987 	return ptep;
1988 }
1989 
1990 #ifdef __PAGETABLE_P4D_FOLDED
1991 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1992 						unsigned long address)
1993 {
1994 	return 0;
1995 }
1996 #else
1997 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1998 #endif
1999 
2000 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2001 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2002 						unsigned long address)
2003 {
2004 	return 0;
2005 }
2006 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2007 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2008 
2009 #else
2010 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2011 
2012 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2013 {
2014 	if (mm_pud_folded(mm))
2015 		return;
2016 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2017 }
2018 
2019 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2020 {
2021 	if (mm_pud_folded(mm))
2022 		return;
2023 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2024 }
2025 #endif
2026 
2027 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2028 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2029 						unsigned long address)
2030 {
2031 	return 0;
2032 }
2033 
2034 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2035 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2036 
2037 #else
2038 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2039 
2040 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2041 {
2042 	if (mm_pmd_folded(mm))
2043 		return;
2044 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2045 }
2046 
2047 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2048 {
2049 	if (mm_pmd_folded(mm))
2050 		return;
2051 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2052 }
2053 #endif
2054 
2055 #ifdef CONFIG_MMU
2056 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2057 {
2058 	atomic_long_set(&mm->pgtables_bytes, 0);
2059 }
2060 
2061 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2062 {
2063 	return atomic_long_read(&mm->pgtables_bytes);
2064 }
2065 
2066 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2067 {
2068 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2069 }
2070 
2071 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2072 {
2073 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2074 }
2075 #else
2076 
2077 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2078 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2079 {
2080 	return 0;
2081 }
2082 
2083 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2084 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2085 #endif
2086 
2087 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2088 int __pte_alloc_kernel(pmd_t *pmd);
2089 
2090 #if defined(CONFIG_MMU)
2091 
2092 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2093 		unsigned long address)
2094 {
2095 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2096 		NULL : p4d_offset(pgd, address);
2097 }
2098 
2099 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2100 		unsigned long address)
2101 {
2102 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2103 		NULL : pud_offset(p4d, address);
2104 }
2105 
2106 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2107 {
2108 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2109 		NULL: pmd_offset(pud, address);
2110 }
2111 #endif /* CONFIG_MMU */
2112 
2113 #if USE_SPLIT_PTE_PTLOCKS
2114 #if ALLOC_SPLIT_PTLOCKS
2115 void __init ptlock_cache_init(void);
2116 extern bool ptlock_alloc(struct page *page);
2117 extern void ptlock_free(struct page *page);
2118 
2119 static inline spinlock_t *ptlock_ptr(struct page *page)
2120 {
2121 	return page->ptl;
2122 }
2123 #else /* ALLOC_SPLIT_PTLOCKS */
2124 static inline void ptlock_cache_init(void)
2125 {
2126 }
2127 
2128 static inline bool ptlock_alloc(struct page *page)
2129 {
2130 	return true;
2131 }
2132 
2133 static inline void ptlock_free(struct page *page)
2134 {
2135 }
2136 
2137 static inline spinlock_t *ptlock_ptr(struct page *page)
2138 {
2139 	return &page->ptl;
2140 }
2141 #endif /* ALLOC_SPLIT_PTLOCKS */
2142 
2143 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2144 {
2145 	return ptlock_ptr(pmd_page(*pmd));
2146 }
2147 
2148 static inline bool ptlock_init(struct page *page)
2149 {
2150 	/*
2151 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2152 	 * with 0. Make sure nobody took it in use in between.
2153 	 *
2154 	 * It can happen if arch try to use slab for page table allocation:
2155 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2156 	 */
2157 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2158 	if (!ptlock_alloc(page))
2159 		return false;
2160 	spin_lock_init(ptlock_ptr(page));
2161 	return true;
2162 }
2163 
2164 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2165 /*
2166  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2167  */
2168 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2169 {
2170 	return &mm->page_table_lock;
2171 }
2172 static inline void ptlock_cache_init(void) {}
2173 static inline bool ptlock_init(struct page *page) { return true; }
2174 static inline void ptlock_free(struct page *page) {}
2175 #endif /* USE_SPLIT_PTE_PTLOCKS */
2176 
2177 static inline void pgtable_init(void)
2178 {
2179 	ptlock_cache_init();
2180 	pgtable_cache_init();
2181 }
2182 
2183 static inline bool pgtable_pte_page_ctor(struct page *page)
2184 {
2185 	if (!ptlock_init(page))
2186 		return false;
2187 	__SetPageTable(page);
2188 	inc_zone_page_state(page, NR_PAGETABLE);
2189 	return true;
2190 }
2191 
2192 static inline void pgtable_pte_page_dtor(struct page *page)
2193 {
2194 	ptlock_free(page);
2195 	__ClearPageTable(page);
2196 	dec_zone_page_state(page, NR_PAGETABLE);
2197 }
2198 
2199 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2200 ({							\
2201 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2202 	pte_t *__pte = pte_offset_map(pmd, address);	\
2203 	*(ptlp) = __ptl;				\
2204 	spin_lock(__ptl);				\
2205 	__pte;						\
2206 })
2207 
2208 #define pte_unmap_unlock(pte, ptl)	do {		\
2209 	spin_unlock(ptl);				\
2210 	pte_unmap(pte);					\
2211 } while (0)
2212 
2213 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2214 
2215 #define pte_alloc_map(mm, pmd, address)			\
2216 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2217 
2218 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2219 	(pte_alloc(mm, pmd) ?			\
2220 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2221 
2222 #define pte_alloc_kernel(pmd, address)			\
2223 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2224 		NULL: pte_offset_kernel(pmd, address))
2225 
2226 #if USE_SPLIT_PMD_PTLOCKS
2227 
2228 static struct page *pmd_to_page(pmd_t *pmd)
2229 {
2230 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2231 	return virt_to_page((void *)((unsigned long) pmd & mask));
2232 }
2233 
2234 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2235 {
2236 	return ptlock_ptr(pmd_to_page(pmd));
2237 }
2238 
2239 static inline bool pgtable_pmd_page_ctor(struct page *page)
2240 {
2241 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2242 	page->pmd_huge_pte = NULL;
2243 #endif
2244 	return ptlock_init(page);
2245 }
2246 
2247 static inline void pgtable_pmd_page_dtor(struct page *page)
2248 {
2249 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2250 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2251 #endif
2252 	ptlock_free(page);
2253 }
2254 
2255 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2256 
2257 #else
2258 
2259 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2260 {
2261 	return &mm->page_table_lock;
2262 }
2263 
2264 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2265 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2266 
2267 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2268 
2269 #endif
2270 
2271 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2272 {
2273 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2274 	spin_lock(ptl);
2275 	return ptl;
2276 }
2277 
2278 /*
2279  * No scalability reason to split PUD locks yet, but follow the same pattern
2280  * as the PMD locks to make it easier if we decide to.  The VM should not be
2281  * considered ready to switch to split PUD locks yet; there may be places
2282  * which need to be converted from page_table_lock.
2283  */
2284 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2285 {
2286 	return &mm->page_table_lock;
2287 }
2288 
2289 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2290 {
2291 	spinlock_t *ptl = pud_lockptr(mm, pud);
2292 
2293 	spin_lock(ptl);
2294 	return ptl;
2295 }
2296 
2297 extern void __init pagecache_init(void);
2298 extern void __init free_area_init_memoryless_node(int nid);
2299 extern void free_initmem(void);
2300 
2301 /*
2302  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2303  * into the buddy system. The freed pages will be poisoned with pattern
2304  * "poison" if it's within range [0, UCHAR_MAX].
2305  * Return pages freed into the buddy system.
2306  */
2307 extern unsigned long free_reserved_area(void *start, void *end,
2308 					int poison, const char *s);
2309 
2310 #ifdef	CONFIG_HIGHMEM
2311 /*
2312  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2313  * and totalram_pages.
2314  */
2315 extern void free_highmem_page(struct page *page);
2316 #endif
2317 
2318 extern void adjust_managed_page_count(struct page *page, long count);
2319 extern void mem_init_print_info(const char *str);
2320 
2321 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2322 
2323 /* Free the reserved page into the buddy system, so it gets managed. */
2324 static inline void __free_reserved_page(struct page *page)
2325 {
2326 	ClearPageReserved(page);
2327 	init_page_count(page);
2328 	__free_page(page);
2329 }
2330 
2331 static inline void free_reserved_page(struct page *page)
2332 {
2333 	__free_reserved_page(page);
2334 	adjust_managed_page_count(page, 1);
2335 }
2336 
2337 static inline void mark_page_reserved(struct page *page)
2338 {
2339 	SetPageReserved(page);
2340 	adjust_managed_page_count(page, -1);
2341 }
2342 
2343 /*
2344  * Default method to free all the __init memory into the buddy system.
2345  * The freed pages will be poisoned with pattern "poison" if it's within
2346  * range [0, UCHAR_MAX].
2347  * Return pages freed into the buddy system.
2348  */
2349 static inline unsigned long free_initmem_default(int poison)
2350 {
2351 	extern char __init_begin[], __init_end[];
2352 
2353 	return free_reserved_area(&__init_begin, &__init_end,
2354 				  poison, "unused kernel");
2355 }
2356 
2357 static inline unsigned long get_num_physpages(void)
2358 {
2359 	int nid;
2360 	unsigned long phys_pages = 0;
2361 
2362 	for_each_online_node(nid)
2363 		phys_pages += node_present_pages(nid);
2364 
2365 	return phys_pages;
2366 }
2367 
2368 /*
2369  * Using memblock node mappings, an architecture may initialise its
2370  * zones, allocate the backing mem_map and account for memory holes in an
2371  * architecture independent manner.
2372  *
2373  * An architecture is expected to register range of page frames backed by
2374  * physical memory with memblock_add[_node]() before calling
2375  * free_area_init() passing in the PFN each zone ends at. At a basic
2376  * usage, an architecture is expected to do something like
2377  *
2378  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2379  * 							 max_highmem_pfn};
2380  * for_each_valid_physical_page_range()
2381  * 	memblock_add_node(base, size, nid)
2382  * free_area_init(max_zone_pfns);
2383  */
2384 void free_area_init(unsigned long *max_zone_pfn);
2385 unsigned long node_map_pfn_alignment(void);
2386 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2387 						unsigned long end_pfn);
2388 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2389 						unsigned long end_pfn);
2390 extern void get_pfn_range_for_nid(unsigned int nid,
2391 			unsigned long *start_pfn, unsigned long *end_pfn);
2392 extern unsigned long find_min_pfn_with_active_regions(void);
2393 
2394 #ifndef CONFIG_NEED_MULTIPLE_NODES
2395 static inline int early_pfn_to_nid(unsigned long pfn)
2396 {
2397 	return 0;
2398 }
2399 #else
2400 /* please see mm/page_alloc.c */
2401 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2402 /* there is a per-arch backend function. */
2403 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2404 					struct mminit_pfnnid_cache *state);
2405 #endif
2406 
2407 extern void set_dma_reserve(unsigned long new_dma_reserve);
2408 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2409 		enum memmap_context, struct vmem_altmap *);
2410 extern void setup_per_zone_wmarks(void);
2411 extern int __meminit init_per_zone_wmark_min(void);
2412 extern void mem_init(void);
2413 extern void __init mmap_init(void);
2414 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2415 extern long si_mem_available(void);
2416 extern void si_meminfo(struct sysinfo * val);
2417 extern void si_meminfo_node(struct sysinfo *val, int nid);
2418 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2419 extern unsigned long arch_reserved_kernel_pages(void);
2420 #endif
2421 
2422 extern __printf(3, 4)
2423 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2424 
2425 extern void setup_per_cpu_pageset(void);
2426 
2427 /* page_alloc.c */
2428 extern int min_free_kbytes;
2429 extern int watermark_boost_factor;
2430 extern int watermark_scale_factor;
2431 extern bool arch_has_descending_max_zone_pfns(void);
2432 
2433 /* nommu.c */
2434 extern atomic_long_t mmap_pages_allocated;
2435 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2436 
2437 /* interval_tree.c */
2438 void vma_interval_tree_insert(struct vm_area_struct *node,
2439 			      struct rb_root_cached *root);
2440 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2441 				    struct vm_area_struct *prev,
2442 				    struct rb_root_cached *root);
2443 void vma_interval_tree_remove(struct vm_area_struct *node,
2444 			      struct rb_root_cached *root);
2445 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2446 				unsigned long start, unsigned long last);
2447 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2448 				unsigned long start, unsigned long last);
2449 
2450 #define vma_interval_tree_foreach(vma, root, start, last)		\
2451 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2452 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2453 
2454 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2455 				   struct rb_root_cached *root);
2456 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2457 				   struct rb_root_cached *root);
2458 struct anon_vma_chain *
2459 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2460 				  unsigned long start, unsigned long last);
2461 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2462 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2463 #ifdef CONFIG_DEBUG_VM_RB
2464 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2465 #endif
2466 
2467 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2468 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2469 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2470 
2471 /* mmap.c */
2472 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2473 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2474 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2475 	struct vm_area_struct *expand);
2476 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2477 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2478 {
2479 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2480 }
2481 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2482 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2483 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2484 	struct mempolicy *, struct vm_userfaultfd_ctx);
2485 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2486 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2487 	unsigned long addr, int new_below);
2488 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2489 	unsigned long addr, int new_below);
2490 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2491 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2492 	struct rb_node **, struct rb_node *);
2493 extern void unlink_file_vma(struct vm_area_struct *);
2494 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2495 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2496 	bool *need_rmap_locks);
2497 extern void exit_mmap(struct mm_struct *);
2498 
2499 static inline int check_data_rlimit(unsigned long rlim,
2500 				    unsigned long new,
2501 				    unsigned long start,
2502 				    unsigned long end_data,
2503 				    unsigned long start_data)
2504 {
2505 	if (rlim < RLIM_INFINITY) {
2506 		if (((new - start) + (end_data - start_data)) > rlim)
2507 			return -ENOSPC;
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 extern int mm_take_all_locks(struct mm_struct *mm);
2514 extern void mm_drop_all_locks(struct mm_struct *mm);
2515 
2516 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2517 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2518 extern struct file *get_task_exe_file(struct task_struct *task);
2519 
2520 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2521 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2522 
2523 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2524 				   const struct vm_special_mapping *sm);
2525 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2526 				   unsigned long addr, unsigned long len,
2527 				   unsigned long flags,
2528 				   const struct vm_special_mapping *spec);
2529 /* This is an obsolete alternative to _install_special_mapping. */
2530 extern int install_special_mapping(struct mm_struct *mm,
2531 				   unsigned long addr, unsigned long len,
2532 				   unsigned long flags, struct page **pages);
2533 
2534 unsigned long randomize_stack_top(unsigned long stack_top);
2535 
2536 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2537 
2538 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2539 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2540 	struct list_head *uf);
2541 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2542 	unsigned long len, unsigned long prot, unsigned long flags,
2543 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2544 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2545 		       struct list_head *uf, bool downgrade);
2546 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2547 		     struct list_head *uf);
2548 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2549 
2550 #ifdef CONFIG_MMU
2551 extern int __mm_populate(unsigned long addr, unsigned long len,
2552 			 int ignore_errors);
2553 static inline void mm_populate(unsigned long addr, unsigned long len)
2554 {
2555 	/* Ignore errors */
2556 	(void) __mm_populate(addr, len, 1);
2557 }
2558 #else
2559 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2560 #endif
2561 
2562 /* These take the mm semaphore themselves */
2563 extern int __must_check vm_brk(unsigned long, unsigned long);
2564 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2565 extern int vm_munmap(unsigned long, size_t);
2566 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2567         unsigned long, unsigned long,
2568         unsigned long, unsigned long);
2569 
2570 struct vm_unmapped_area_info {
2571 #define VM_UNMAPPED_AREA_TOPDOWN 1
2572 	unsigned long flags;
2573 	unsigned long length;
2574 	unsigned long low_limit;
2575 	unsigned long high_limit;
2576 	unsigned long align_mask;
2577 	unsigned long align_offset;
2578 };
2579 
2580 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2581 
2582 /* truncate.c */
2583 extern void truncate_inode_pages(struct address_space *, loff_t);
2584 extern void truncate_inode_pages_range(struct address_space *,
2585 				       loff_t lstart, loff_t lend);
2586 extern void truncate_inode_pages_final(struct address_space *);
2587 
2588 /* generic vm_area_ops exported for stackable file systems */
2589 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2590 extern void filemap_map_pages(struct vm_fault *vmf,
2591 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2592 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2593 
2594 /* mm/page-writeback.c */
2595 int __must_check write_one_page(struct page *page);
2596 void task_dirty_inc(struct task_struct *tsk);
2597 
2598 extern unsigned long stack_guard_gap;
2599 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2600 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2601 
2602 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2603 extern int expand_downwards(struct vm_area_struct *vma,
2604 		unsigned long address);
2605 #if VM_GROWSUP
2606 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2607 #else
2608   #define expand_upwards(vma, address) (0)
2609 #endif
2610 
2611 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2612 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2613 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2614 					     struct vm_area_struct **pprev);
2615 
2616 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2617    NULL if none.  Assume start_addr < end_addr. */
2618 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2619 {
2620 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2621 
2622 	if (vma && end_addr <= vma->vm_start)
2623 		vma = NULL;
2624 	return vma;
2625 }
2626 
2627 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2628 {
2629 	unsigned long vm_start = vma->vm_start;
2630 
2631 	if (vma->vm_flags & VM_GROWSDOWN) {
2632 		vm_start -= stack_guard_gap;
2633 		if (vm_start > vma->vm_start)
2634 			vm_start = 0;
2635 	}
2636 	return vm_start;
2637 }
2638 
2639 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2640 {
2641 	unsigned long vm_end = vma->vm_end;
2642 
2643 	if (vma->vm_flags & VM_GROWSUP) {
2644 		vm_end += stack_guard_gap;
2645 		if (vm_end < vma->vm_end)
2646 			vm_end = -PAGE_SIZE;
2647 	}
2648 	return vm_end;
2649 }
2650 
2651 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2652 {
2653 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2654 }
2655 
2656 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2657 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2658 				unsigned long vm_start, unsigned long vm_end)
2659 {
2660 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2661 
2662 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2663 		vma = NULL;
2664 
2665 	return vma;
2666 }
2667 
2668 static inline bool range_in_vma(struct vm_area_struct *vma,
2669 				unsigned long start, unsigned long end)
2670 {
2671 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2672 }
2673 
2674 #ifdef CONFIG_MMU
2675 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2676 void vma_set_page_prot(struct vm_area_struct *vma);
2677 #else
2678 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2679 {
2680 	return __pgprot(0);
2681 }
2682 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2683 {
2684 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2685 }
2686 #endif
2687 
2688 #ifdef CONFIG_NUMA_BALANCING
2689 unsigned long change_prot_numa(struct vm_area_struct *vma,
2690 			unsigned long start, unsigned long end);
2691 #endif
2692 
2693 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2694 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2695 			unsigned long pfn, unsigned long size, pgprot_t);
2696 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2697 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2698 			struct page **pages, unsigned long *num);
2699 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2700 				unsigned long num);
2701 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2702 				unsigned long num);
2703 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2704 			unsigned long pfn);
2705 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2706 			unsigned long pfn, pgprot_t pgprot);
2707 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2708 			pfn_t pfn);
2709 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2710 			pfn_t pfn, pgprot_t pgprot);
2711 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2712 		unsigned long addr, pfn_t pfn);
2713 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2714 
2715 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2716 				unsigned long addr, struct page *page)
2717 {
2718 	int err = vm_insert_page(vma, addr, page);
2719 
2720 	if (err == -ENOMEM)
2721 		return VM_FAULT_OOM;
2722 	if (err < 0 && err != -EBUSY)
2723 		return VM_FAULT_SIGBUS;
2724 
2725 	return VM_FAULT_NOPAGE;
2726 }
2727 
2728 static inline vm_fault_t vmf_error(int err)
2729 {
2730 	if (err == -ENOMEM)
2731 		return VM_FAULT_OOM;
2732 	return VM_FAULT_SIGBUS;
2733 }
2734 
2735 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2736 			 unsigned int foll_flags);
2737 
2738 #define FOLL_WRITE	0x01	/* check pte is writable */
2739 #define FOLL_TOUCH	0x02	/* mark page accessed */
2740 #define FOLL_GET	0x04	/* do get_page on page */
2741 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2742 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2743 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2744 				 * and return without waiting upon it */
2745 #define FOLL_POPULATE	0x40	/* fault in page */
2746 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2747 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2748 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2749 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2750 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2751 #define FOLL_MLOCK	0x1000	/* lock present pages */
2752 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2753 #define FOLL_COW	0x4000	/* internal GUP flag */
2754 #define FOLL_ANON	0x8000	/* don't do file mappings */
2755 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2756 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2757 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2758 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2759 
2760 /*
2761  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2762  * other. Here is what they mean, and how to use them:
2763  *
2764  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2765  * period _often_ under userspace control.  This is in contrast to
2766  * iov_iter_get_pages(), whose usages are transient.
2767  *
2768  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2769  * lifetime enforced by the filesystem and we need guarantees that longterm
2770  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2771  * the filesystem.  Ideas for this coordination include revoking the longterm
2772  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2773  * added after the problem with filesystems was found FS DAX VMAs are
2774  * specifically failed.  Filesystem pages are still subject to bugs and use of
2775  * FOLL_LONGTERM should be avoided on those pages.
2776  *
2777  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2778  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2779  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2780  * is due to an incompatibility with the FS DAX check and
2781  * FAULT_FLAG_ALLOW_RETRY.
2782  *
2783  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2784  * that region.  And so, CMA attempts to migrate the page before pinning, when
2785  * FOLL_LONGTERM is specified.
2786  *
2787  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2788  * but an additional pin counting system) will be invoked. This is intended for
2789  * anything that gets a page reference and then touches page data (for example,
2790  * Direct IO). This lets the filesystem know that some non-file-system entity is
2791  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2792  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2793  * a call to unpin_user_page().
2794  *
2795  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2796  * and separate refcounting mechanisms, however, and that means that each has
2797  * its own acquire and release mechanisms:
2798  *
2799  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2800  *
2801  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2802  *
2803  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2804  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2805  * calls applied to them, and that's perfectly OK. This is a constraint on the
2806  * callers, not on the pages.)
2807  *
2808  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2809  * directly by the caller. That's in order to help avoid mismatches when
2810  * releasing pages: get_user_pages*() pages must be released via put_page(),
2811  * while pin_user_pages*() pages must be released via unpin_user_page().
2812  *
2813  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2814  */
2815 
2816 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2817 {
2818 	if (vm_fault & VM_FAULT_OOM)
2819 		return -ENOMEM;
2820 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2821 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2822 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2823 		return -EFAULT;
2824 	return 0;
2825 }
2826 
2827 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2828 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2829 			       unsigned long size, pte_fn_t fn, void *data);
2830 extern int apply_to_existing_page_range(struct mm_struct *mm,
2831 				   unsigned long address, unsigned long size,
2832 				   pte_fn_t fn, void *data);
2833 
2834 #ifdef CONFIG_PAGE_POISONING
2835 extern bool page_poisoning_enabled(void);
2836 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2837 #else
2838 static inline bool page_poisoning_enabled(void) { return false; }
2839 static inline void kernel_poison_pages(struct page *page, int numpages,
2840 					int enable) { }
2841 #endif
2842 
2843 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2844 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2845 #else
2846 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2847 #endif
2848 static inline bool want_init_on_alloc(gfp_t flags)
2849 {
2850 	if (static_branch_unlikely(&init_on_alloc) &&
2851 	    !page_poisoning_enabled())
2852 		return true;
2853 	return flags & __GFP_ZERO;
2854 }
2855 
2856 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2857 DECLARE_STATIC_KEY_TRUE(init_on_free);
2858 #else
2859 DECLARE_STATIC_KEY_FALSE(init_on_free);
2860 #endif
2861 static inline bool want_init_on_free(void)
2862 {
2863 	return static_branch_unlikely(&init_on_free) &&
2864 	       !page_poisoning_enabled();
2865 }
2866 
2867 #ifdef CONFIG_DEBUG_PAGEALLOC
2868 extern void init_debug_pagealloc(void);
2869 #else
2870 static inline void init_debug_pagealloc(void) {}
2871 #endif
2872 extern bool _debug_pagealloc_enabled_early;
2873 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2874 
2875 static inline bool debug_pagealloc_enabled(void)
2876 {
2877 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2878 		_debug_pagealloc_enabled_early;
2879 }
2880 
2881 /*
2882  * For use in fast paths after init_debug_pagealloc() has run, or when a
2883  * false negative result is not harmful when called too early.
2884  */
2885 static inline bool debug_pagealloc_enabled_static(void)
2886 {
2887 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2888 		return false;
2889 
2890 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2891 }
2892 
2893 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2894 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2895 
2896 /*
2897  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2898  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2899  */
2900 static inline void
2901 kernel_map_pages(struct page *page, int numpages, int enable)
2902 {
2903 	__kernel_map_pages(page, numpages, enable);
2904 }
2905 #ifdef CONFIG_HIBERNATION
2906 extern bool kernel_page_present(struct page *page);
2907 #endif	/* CONFIG_HIBERNATION */
2908 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2909 static inline void
2910 kernel_map_pages(struct page *page, int numpages, int enable) {}
2911 #ifdef CONFIG_HIBERNATION
2912 static inline bool kernel_page_present(struct page *page) { return true; }
2913 #endif	/* CONFIG_HIBERNATION */
2914 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2915 
2916 #ifdef __HAVE_ARCH_GATE_AREA
2917 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2918 extern int in_gate_area_no_mm(unsigned long addr);
2919 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2920 #else
2921 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2922 {
2923 	return NULL;
2924 }
2925 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2926 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2927 {
2928 	return 0;
2929 }
2930 #endif	/* __HAVE_ARCH_GATE_AREA */
2931 
2932 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2933 
2934 #ifdef CONFIG_SYSCTL
2935 extern int sysctl_drop_caches;
2936 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2937 		loff_t *);
2938 #endif
2939 
2940 void drop_slab(void);
2941 void drop_slab_node(int nid);
2942 
2943 #ifndef CONFIG_MMU
2944 #define randomize_va_space 0
2945 #else
2946 extern int randomize_va_space;
2947 #endif
2948 
2949 const char * arch_vma_name(struct vm_area_struct *vma);
2950 #ifdef CONFIG_MMU
2951 void print_vma_addr(char *prefix, unsigned long rip);
2952 #else
2953 static inline void print_vma_addr(char *prefix, unsigned long rip)
2954 {
2955 }
2956 #endif
2957 
2958 void *sparse_buffer_alloc(unsigned long size);
2959 struct page * __populate_section_memmap(unsigned long pfn,
2960 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2961 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2962 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2963 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2964 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2965 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2966 			    struct vmem_altmap *altmap);
2967 void *vmemmap_alloc_block(unsigned long size, int node);
2968 struct vmem_altmap;
2969 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2970 			      struct vmem_altmap *altmap);
2971 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2972 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2973 			       int node, struct vmem_altmap *altmap);
2974 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2975 		struct vmem_altmap *altmap);
2976 void vmemmap_populate_print_last(void);
2977 #ifdef CONFIG_MEMORY_HOTPLUG
2978 void vmemmap_free(unsigned long start, unsigned long end,
2979 		struct vmem_altmap *altmap);
2980 #endif
2981 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2982 				  unsigned long nr_pages);
2983 
2984 enum mf_flags {
2985 	MF_COUNT_INCREASED = 1 << 0,
2986 	MF_ACTION_REQUIRED = 1 << 1,
2987 	MF_MUST_KILL = 1 << 2,
2988 	MF_SOFT_OFFLINE = 1 << 3,
2989 };
2990 extern int memory_failure(unsigned long pfn, int flags);
2991 extern void memory_failure_queue(unsigned long pfn, int flags);
2992 extern void memory_failure_queue_kick(int cpu);
2993 extern int unpoison_memory(unsigned long pfn);
2994 extern int get_hwpoison_page(struct page *page);
2995 #define put_hwpoison_page(page)	put_page(page)
2996 extern int sysctl_memory_failure_early_kill;
2997 extern int sysctl_memory_failure_recovery;
2998 extern void shake_page(struct page *p, int access);
2999 extern atomic_long_t num_poisoned_pages __read_mostly;
3000 extern int soft_offline_page(unsigned long pfn, int flags);
3001 
3002 
3003 /*
3004  * Error handlers for various types of pages.
3005  */
3006 enum mf_result {
3007 	MF_IGNORED,	/* Error: cannot be handled */
3008 	MF_FAILED,	/* Error: handling failed */
3009 	MF_DELAYED,	/* Will be handled later */
3010 	MF_RECOVERED,	/* Successfully recovered */
3011 };
3012 
3013 enum mf_action_page_type {
3014 	MF_MSG_KERNEL,
3015 	MF_MSG_KERNEL_HIGH_ORDER,
3016 	MF_MSG_SLAB,
3017 	MF_MSG_DIFFERENT_COMPOUND,
3018 	MF_MSG_POISONED_HUGE,
3019 	MF_MSG_HUGE,
3020 	MF_MSG_FREE_HUGE,
3021 	MF_MSG_NON_PMD_HUGE,
3022 	MF_MSG_UNMAP_FAILED,
3023 	MF_MSG_DIRTY_SWAPCACHE,
3024 	MF_MSG_CLEAN_SWAPCACHE,
3025 	MF_MSG_DIRTY_MLOCKED_LRU,
3026 	MF_MSG_CLEAN_MLOCKED_LRU,
3027 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3028 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3029 	MF_MSG_DIRTY_LRU,
3030 	MF_MSG_CLEAN_LRU,
3031 	MF_MSG_TRUNCATED_LRU,
3032 	MF_MSG_BUDDY,
3033 	MF_MSG_BUDDY_2ND,
3034 	MF_MSG_DAX,
3035 	MF_MSG_UNKNOWN,
3036 };
3037 
3038 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3039 extern void clear_huge_page(struct page *page,
3040 			    unsigned long addr_hint,
3041 			    unsigned int pages_per_huge_page);
3042 extern void copy_user_huge_page(struct page *dst, struct page *src,
3043 				unsigned long addr_hint,
3044 				struct vm_area_struct *vma,
3045 				unsigned int pages_per_huge_page);
3046 extern long copy_huge_page_from_user(struct page *dst_page,
3047 				const void __user *usr_src,
3048 				unsigned int pages_per_huge_page,
3049 				bool allow_pagefault);
3050 
3051 /**
3052  * vma_is_special_huge - Are transhuge page-table entries considered special?
3053  * @vma: Pointer to the struct vm_area_struct to consider
3054  *
3055  * Whether transhuge page-table entries are considered "special" following
3056  * the definition in vm_normal_page().
3057  *
3058  * Return: true if transhuge page-table entries should be considered special,
3059  * false otherwise.
3060  */
3061 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3062 {
3063 	return vma_is_dax(vma) || (vma->vm_file &&
3064 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3065 }
3066 
3067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3068 
3069 #ifdef CONFIG_DEBUG_PAGEALLOC
3070 extern unsigned int _debug_guardpage_minorder;
3071 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3072 
3073 static inline unsigned int debug_guardpage_minorder(void)
3074 {
3075 	return _debug_guardpage_minorder;
3076 }
3077 
3078 static inline bool debug_guardpage_enabled(void)
3079 {
3080 	return static_branch_unlikely(&_debug_guardpage_enabled);
3081 }
3082 
3083 static inline bool page_is_guard(struct page *page)
3084 {
3085 	if (!debug_guardpage_enabled())
3086 		return false;
3087 
3088 	return PageGuard(page);
3089 }
3090 #else
3091 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3092 static inline bool debug_guardpage_enabled(void) { return false; }
3093 static inline bool page_is_guard(struct page *page) { return false; }
3094 #endif /* CONFIG_DEBUG_PAGEALLOC */
3095 
3096 #if MAX_NUMNODES > 1
3097 void __init setup_nr_node_ids(void);
3098 #else
3099 static inline void setup_nr_node_ids(void) {}
3100 #endif
3101 
3102 extern int memcmp_pages(struct page *page1, struct page *page2);
3103 
3104 static inline int pages_identical(struct page *page1, struct page *page2)
3105 {
3106 	return !memcmp_pages(page1, page2);
3107 }
3108 
3109 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3110 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3111 						pgoff_t first_index, pgoff_t nr,
3112 						pgoff_t bitmap_pgoff,
3113 						unsigned long *bitmap,
3114 						pgoff_t *start,
3115 						pgoff_t *end);
3116 
3117 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3118 				      pgoff_t first_index, pgoff_t nr);
3119 #endif
3120 
3121 extern int sysctl_nr_trim_pages;
3122 
3123 #endif /* __KERNEL__ */
3124 #endif /* _LINUX_MM_H */
3125