xref: /linux-6.15/include/linux/mm.h (revision a58f3dcf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 #include <linux/rcuwait.h>
36 
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct user_struct;
41 struct pt_regs;
42 struct folio_batch;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void mm_core_init(void);
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 extern const int page_cluster_max;
84 
85 #ifdef CONFIG_SYSCTL
86 extern int sysctl_legacy_va_layout;
87 #else
88 #define sysctl_legacy_va_layout 0
89 #endif
90 
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
92 extern const int mmap_rnd_bits_min;
93 extern int mmap_rnd_bits_max __ro_after_init;
94 extern int mmap_rnd_bits __read_mostly;
95 #endif
96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
97 extern const int mmap_rnd_compat_bits_min;
98 extern const int mmap_rnd_compat_bits_max;
99 extern int mmap_rnd_compat_bits __read_mostly;
100 #endif
101 
102 #ifndef DIRECT_MAP_PHYSMEM_END
103 # ifdef MAX_PHYSMEM_BITS
104 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
105 # else
106 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
107 # endif
108 #endif
109 
110 #include <asm/page.h>
111 #include <asm/processor.h>
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 96
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statements if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 96);
158 
159 	switch (sizeof(struct page)) {
160 	case 96:
161 		_pp[11] = 0;
162 		fallthrough;
163 	case 88:
164 		_pp[10] = 0;
165 		fallthrough;
166 	case 80:
167 		_pp[9] = 0;
168 		fallthrough;
169 	case 72:
170 		_pp[8] = 0;
171 		fallthrough;
172 	case 64:
173 		_pp[7] = 0;
174 		fallthrough;
175 	case 56:
176 		_pp[6] = 0;
177 		_pp[5] = 0;
178 		_pp[4] = 0;
179 		_pp[3] = 0;
180 		_pp[2] = 0;
181 		_pp[1] = 0;
182 		_pp[0] = 0;
183 	}
184 }
185 #else
186 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
187 #endif
188 
189 /*
190  * Default maximum number of active map areas, this limits the number of vmas
191  * per mm struct. Users can overwrite this number by sysctl but there is a
192  * problem.
193  *
194  * When a program's coredump is generated as ELF format, a section is created
195  * per a vma. In ELF, the number of sections is represented in unsigned short.
196  * This means the number of sections should be smaller than 65535 at coredump.
197  * Because the kernel adds some informative sections to a image of program at
198  * generating coredump, we need some margin. The number of extra sections is
199  * 1-3 now and depends on arch. We use "5" as safe margin, here.
200  *
201  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
202  * not a hard limit any more. Although some userspace tools can be surprised by
203  * that.
204  */
205 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
206 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
207 
208 extern int sysctl_max_map_count;
209 
210 extern unsigned long sysctl_user_reserve_kbytes;
211 extern unsigned long sysctl_admin_reserve_kbytes;
212 
213 extern int sysctl_overcommit_memory;
214 extern int sysctl_overcommit_ratio;
215 extern unsigned long sysctl_overcommit_kbytes;
216 
217 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
220 		loff_t *);
221 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
222 		loff_t *);
223 
224 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
225 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
226 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
227 #else
228 #define nth_page(page,n) ((page) + (n))
229 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
230 #endif
231 
232 /* to align the pointer to the (next) page boundary */
233 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
234 
235 /* to align the pointer to the (prev) page boundary */
236 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
237 
238 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
239 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
240 
241 static inline struct folio *lru_to_folio(struct list_head *head)
242 {
243 	return list_entry((head)->prev, struct folio, lru);
244 }
245 
246 void setup_initial_init_mm(void *start_code, void *end_code,
247 			   void *end_data, void *brk);
248 
249 /*
250  * Linux kernel virtual memory manager primitives.
251  * The idea being to have a "virtual" mm in the same way
252  * we have a virtual fs - giving a cleaner interface to the
253  * mm details, and allowing different kinds of memory mappings
254  * (from shared memory to executable loading to arbitrary
255  * mmap() functions).
256  */
257 
258 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
259 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
260 void vm_area_free(struct vm_area_struct *);
261 
262 #ifndef CONFIG_MMU
263 extern struct rb_root nommu_region_tree;
264 extern struct rw_semaphore nommu_region_sem;
265 
266 extern unsigned int kobjsize(const void *objp);
267 #endif
268 
269 /*
270  * vm_flags in vm_area_struct, see mm_types.h.
271  * When changing, update also include/trace/events/mmflags.h
272  */
273 #define VM_NONE		0x00000000
274 
275 #define VM_READ		0x00000001	/* currently active flags */
276 #define VM_WRITE	0x00000002
277 #define VM_EXEC		0x00000004
278 #define VM_SHARED	0x00000008
279 
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
282 #define VM_MAYWRITE	0x00000020
283 #define VM_MAYEXEC	0x00000040
284 #define VM_MAYSHARE	0x00000080
285 
286 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
287 #ifdef CONFIG_MMU
288 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING	0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
295 
296 #define VM_LOCKED	0x00002000
297 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
298 
299 					/* Used by sys_madvise() */
300 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
301 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
302 
303 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
307 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
308 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
309 #define VM_SYNC		0x00800000	/* Synchronous page faults */
310 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
311 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
312 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
313 
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
316 #else
317 # define VM_SOFTDIRTY	0
318 #endif
319 
320 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
324 
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
341 
342 #ifdef CONFIG_ARCH_HAS_PKEYS
343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
344 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
345 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
346 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
347 #if CONFIG_ARCH_PKEY_BITS > 3
348 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
349 #else
350 # define VM_PKEY_BIT3  0
351 #endif
352 #if CONFIG_ARCH_PKEY_BITS > 4
353 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
354 #else
355 # define VM_PKEY_BIT4  0
356 #endif
357 #endif /* CONFIG_ARCH_HAS_PKEYS */
358 
359 #ifdef CONFIG_X86_USER_SHADOW_STACK
360 /*
361  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
362  * support core mm.
363  *
364  * These VMAs will get a single end guard page. This helps userspace protect
365  * itself from attacks. A single page is enough for current shadow stack archs
366  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
367  * for more details on the guard size.
368  */
369 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
370 #endif
371 
372 #if defined(CONFIG_ARM64_GCS)
373 /*
374  * arm64's Guarded Control Stack implements similar functionality and
375  * has similar constraints to shadow stacks.
376  */
377 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
378 #endif
379 
380 #ifndef VM_SHADOW_STACK
381 # define VM_SHADOW_STACK	VM_NONE
382 #endif
383 
384 #if defined(CONFIG_X86)
385 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
386 #elif defined(CONFIG_PPC64)
387 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
388 #elif defined(CONFIG_PARISC)
389 # define VM_GROWSUP	VM_ARCH_1
390 #elif defined(CONFIG_SPARC64)
391 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
392 # define VM_ARCH_CLEAR	VM_SPARC_ADI
393 #elif defined(CONFIG_ARM64)
394 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
395 # define VM_ARCH_CLEAR	VM_ARM64_BTI
396 #elif !defined(CONFIG_MMU)
397 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
398 #endif
399 
400 #if defined(CONFIG_ARM64_MTE)
401 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
402 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
403 #else
404 # define VM_MTE		VM_NONE
405 # define VM_MTE_ALLOWED	VM_NONE
406 #endif
407 
408 #ifndef VM_GROWSUP
409 # define VM_GROWSUP	VM_NONE
410 #endif
411 
412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
413 # define VM_UFFD_MINOR_BIT	38
414 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
416 # define VM_UFFD_MINOR		VM_NONE
417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
418 
419 /*
420  * This flag is used to connect VFIO to arch specific KVM code. It
421  * indicates that the memory under this VMA is safe for use with any
422  * non-cachable memory type inside KVM. Some VFIO devices, on some
423  * platforms, are thought to be unsafe and can cause machine crashes
424  * if KVM does not lock down the memory type.
425  */
426 #ifdef CONFIG_64BIT
427 #define VM_ALLOW_ANY_UNCACHED_BIT	39
428 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
429 #else
430 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
431 #endif
432 
433 #ifdef CONFIG_64BIT
434 #define VM_DROPPABLE_BIT	40
435 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
436 #elif defined(CONFIG_PPC32)
437 #define VM_DROPPABLE		VM_ARCH_1
438 #else
439 #define VM_DROPPABLE		VM_NONE
440 #endif
441 
442 #ifdef CONFIG_64BIT
443 /* VM is sealed, in vm_flags */
444 #define VM_SEALED	_BITUL(63)
445 #endif
446 
447 /* Bits set in the VMA until the stack is in its final location */
448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
449 
450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
451 
452 /* Common data flag combinations */
453 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
454 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
455 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
456 				 VM_MAYWRITE | VM_MAYEXEC)
457 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
458 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
459 
460 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
461 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
462 #endif
463 
464 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
466 #endif
467 
468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
469 
470 #ifdef CONFIG_STACK_GROWSUP
471 #define VM_STACK	VM_GROWSUP
472 #define VM_STACK_EARLY	VM_GROWSDOWN
473 #else
474 #define VM_STACK	VM_GROWSDOWN
475 #define VM_STACK_EARLY	0
476 #endif
477 
478 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
479 
480 /* VMA basic access permission flags */
481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
482 
483 
484 /*
485  * Special vmas that are non-mergable, non-mlock()able.
486  */
487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
488 
489 /* This mask prevents VMA from being scanned with khugepaged */
490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
491 
492 /* This mask defines which mm->def_flags a process can inherit its parent */
493 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
494 
495 /* This mask represents all the VMA flag bits used by mlock */
496 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
497 
498 /* Arch-specific flags to clear when updating VM flags on protection change */
499 #ifndef VM_ARCH_CLEAR
500 # define VM_ARCH_CLEAR	VM_NONE
501 #endif
502 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
503 
504 /*
505  * mapping from the currently active vm_flags protection bits (the
506  * low four bits) to a page protection mask..
507  */
508 
509 /*
510  * The default fault flags that should be used by most of the
511  * arch-specific page fault handlers.
512  */
513 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
514 			     FAULT_FLAG_KILLABLE | \
515 			     FAULT_FLAG_INTERRUPTIBLE)
516 
517 /**
518  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
519  * @flags: Fault flags.
520  *
521  * This is mostly used for places where we want to try to avoid taking
522  * the mmap_lock for too long a time when waiting for another condition
523  * to change, in which case we can try to be polite to release the
524  * mmap_lock in the first round to avoid potential starvation of other
525  * processes that would also want the mmap_lock.
526  *
527  * Return: true if the page fault allows retry and this is the first
528  * attempt of the fault handling; false otherwise.
529  */
530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
531 {
532 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
533 	    (!(flags & FAULT_FLAG_TRIED));
534 }
535 
536 #define FAULT_FLAG_TRACE \
537 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
538 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
539 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
540 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
541 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
542 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
543 	{ FAULT_FLAG_USER,		"USER" }, \
544 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
545 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
546 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
547 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
548 
549 /*
550  * vm_fault is filled by the pagefault handler and passed to the vma's
551  * ->fault function. The vma's ->fault is responsible for returning a bitmask
552  * of VM_FAULT_xxx flags that give details about how the fault was handled.
553  *
554  * MM layer fills up gfp_mask for page allocations but fault handler might
555  * alter it if its implementation requires a different allocation context.
556  *
557  * pgoff should be used in favour of virtual_address, if possible.
558  */
559 struct vm_fault {
560 	const struct {
561 		struct vm_area_struct *vma;	/* Target VMA */
562 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
563 		pgoff_t pgoff;			/* Logical page offset based on vma */
564 		unsigned long address;		/* Faulting virtual address - masked */
565 		unsigned long real_address;	/* Faulting virtual address - unmasked */
566 	};
567 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
568 					 * XXX: should really be 'const' */
569 	pmd_t *pmd;			/* Pointer to pmd entry matching
570 					 * the 'address' */
571 	pud_t *pud;			/* Pointer to pud entry matching
572 					 * the 'address'
573 					 */
574 	union {
575 		pte_t orig_pte;		/* Value of PTE at the time of fault */
576 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
577 					 * used by PMD fault only.
578 					 */
579 	};
580 
581 	struct page *cow_page;		/* Page handler may use for COW fault */
582 	struct page *page;		/* ->fault handlers should return a
583 					 * page here, unless VM_FAULT_NOPAGE
584 					 * is set (which is also implied by
585 					 * VM_FAULT_ERROR).
586 					 */
587 	/* These three entries are valid only while holding ptl lock */
588 	pte_t *pte;			/* Pointer to pte entry matching
589 					 * the 'address'. NULL if the page
590 					 * table hasn't been allocated.
591 					 */
592 	spinlock_t *ptl;		/* Page table lock.
593 					 * Protects pte page table if 'pte'
594 					 * is not NULL, otherwise pmd.
595 					 */
596 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
597 					 * vm_ops->map_pages() sets up a page
598 					 * table from atomic context.
599 					 * do_fault_around() pre-allocates
600 					 * page table to avoid allocation from
601 					 * atomic context.
602 					 */
603 };
604 
605 /*
606  * These are the virtual MM functions - opening of an area, closing and
607  * unmapping it (needed to keep files on disk up-to-date etc), pointer
608  * to the functions called when a no-page or a wp-page exception occurs.
609  */
610 struct vm_operations_struct {
611 	void (*open)(struct vm_area_struct * area);
612 	/**
613 	 * @close: Called when the VMA is being removed from the MM.
614 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
615 	 */
616 	void (*close)(struct vm_area_struct * area);
617 	/* Called any time before splitting to check if it's allowed */
618 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
619 	int (*mremap)(struct vm_area_struct *area);
620 	/*
621 	 * Called by mprotect() to make driver-specific permission
622 	 * checks before mprotect() is finalised.   The VMA must not
623 	 * be modified.  Returns 0 if mprotect() can proceed.
624 	 */
625 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
626 			unsigned long end, unsigned long newflags);
627 	vm_fault_t (*fault)(struct vm_fault *vmf);
628 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
629 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
630 			pgoff_t start_pgoff, pgoff_t end_pgoff);
631 	unsigned long (*pagesize)(struct vm_area_struct * area);
632 
633 	/* notification that a previously read-only page is about to become
634 	 * writable, if an error is returned it will cause a SIGBUS */
635 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
636 
637 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
638 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
639 
640 	/* called by access_process_vm when get_user_pages() fails, typically
641 	 * for use by special VMAs. See also generic_access_phys() for a generic
642 	 * implementation useful for any iomem mapping.
643 	 */
644 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
645 		      void *buf, int len, int write);
646 
647 	/* Called by the /proc/PID/maps code to ask the vma whether it
648 	 * has a special name.  Returning non-NULL will also cause this
649 	 * vma to be dumped unconditionally. */
650 	const char *(*name)(struct vm_area_struct *vma);
651 
652 #ifdef CONFIG_NUMA
653 	/*
654 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
655 	 * to hold the policy upon return.  Caller should pass NULL @new to
656 	 * remove a policy and fall back to surrounding context--i.e. do not
657 	 * install a MPOL_DEFAULT policy, nor the task or system default
658 	 * mempolicy.
659 	 */
660 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
661 
662 	/*
663 	 * get_policy() op must add reference [mpol_get()] to any policy at
664 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
665 	 * in mm/mempolicy.c will do this automatically.
666 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
667 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
668 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
669 	 * must return NULL--i.e., do not "fallback" to task or system default
670 	 * policy.
671 	 */
672 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
673 					unsigned long addr, pgoff_t *ilx);
674 #endif
675 	/*
676 	 * Called by vm_normal_page() for special PTEs to find the
677 	 * page for @addr.  This is useful if the default behavior
678 	 * (using pte_page()) would not find the correct page.
679 	 */
680 	struct page *(*find_special_page)(struct vm_area_struct *vma,
681 					  unsigned long addr);
682 };
683 
684 #ifdef CONFIG_NUMA_BALANCING
685 static inline void vma_numab_state_init(struct vm_area_struct *vma)
686 {
687 	vma->numab_state = NULL;
688 }
689 static inline void vma_numab_state_free(struct vm_area_struct *vma)
690 {
691 	kfree(vma->numab_state);
692 }
693 #else
694 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
695 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
696 #endif /* CONFIG_NUMA_BALANCING */
697 
698 #ifdef CONFIG_PER_VMA_LOCK
699 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
700 {
701 #ifdef CONFIG_DEBUG_LOCK_ALLOC
702 	static struct lock_class_key lockdep_key;
703 
704 	lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0);
705 #endif
706 	if (reset_refcnt)
707 		refcount_set(&vma->vm_refcnt, 0);
708 	vma->vm_lock_seq = UINT_MAX;
709 }
710 
711 static inline bool is_vma_writer_only(int refcnt)
712 {
713 	/*
714 	 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma
715 	 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on
716 	 * a detached vma happens only in vma_mark_detached() and is a rare
717 	 * case, therefore most of the time there will be no unnecessary wakeup.
718 	 */
719 	return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1;
720 }
721 
722 static inline void vma_refcount_put(struct vm_area_struct *vma)
723 {
724 	/* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */
725 	struct mm_struct *mm = vma->vm_mm;
726 	int oldcnt;
727 
728 	rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
729 	if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) {
730 
731 		if (is_vma_writer_only(oldcnt - 1))
732 			rcuwait_wake_up(&mm->vma_writer_wait);
733 	}
734 }
735 
736 /*
737  * Try to read-lock a vma. The function is allowed to occasionally yield false
738  * locked result to avoid performance overhead, in which case we fall back to
739  * using mmap_lock. The function should never yield false unlocked result.
740  * False locked result is possible if mm_lock_seq overflows or if vma gets
741  * reused and attached to a different mm before we lock it.
742  * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got
743  * detached.
744  */
745 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
746 						    struct vm_area_struct *vma)
747 {
748 	int oldcnt;
749 
750 	/*
751 	 * Check before locking. A race might cause false locked result.
752 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
753 	 * ACQUIRE semantics, because this is just a lockless check whose result
754 	 * we don't rely on for anything - the mm_lock_seq read against which we
755 	 * need ordering is below.
756 	 */
757 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence))
758 		return NULL;
759 
760 	/*
761 	 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire()
762 	 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET.
763 	 * Acquire fence is required here to avoid reordering against later
764 	 * vm_lock_seq check and checks inside lock_vma_under_rcu().
765 	 */
766 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
767 							      VMA_REF_LIMIT))) {
768 		/* return EAGAIN if vma got detached from under us */
769 		return oldcnt ? NULL : ERR_PTR(-EAGAIN);
770 	}
771 
772 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
773 	/*
774 	 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result.
775 	 * False unlocked result is impossible because we modify and check
776 	 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq
777 	 * modification invalidates all existing locks.
778 	 *
779 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
780 	 * racing with vma_end_write_all(), we only start reading from the VMA
781 	 * after it has been unlocked.
782 	 * This pairs with RELEASE semantics in vma_end_write_all().
783 	 */
784 	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) {
785 		vma_refcount_put(vma);
786 		return NULL;
787 	}
788 
789 	return vma;
790 }
791 
792 /*
793  * Use only while holding mmap read lock which guarantees that locking will not
794  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
795  * not be used in such cases because it might fail due to mm_lock_seq overflow.
796  * This functionality is used to obtain vma read lock and drop the mmap read lock.
797  */
798 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass)
799 {
800 	int oldcnt;
801 
802 	mmap_assert_locked(vma->vm_mm);
803 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
804 							      VMA_REF_LIMIT)))
805 		return false;
806 
807 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
808 	return true;
809 }
810 
811 /*
812  * Use only while holding mmap read lock which guarantees that locking will not
813  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
814  * not be used in such cases because it might fail due to mm_lock_seq overflow.
815  * This functionality is used to obtain vma read lock and drop the mmap read lock.
816  */
817 static inline bool vma_start_read_locked(struct vm_area_struct *vma)
818 {
819 	return vma_start_read_locked_nested(vma, 0);
820 }
821 
822 static inline void vma_end_read(struct vm_area_struct *vma)
823 {
824 	vma_refcount_put(vma);
825 }
826 
827 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
828 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
829 {
830 	mmap_assert_write_locked(vma->vm_mm);
831 
832 	/*
833 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
834 	 * mm->mm_lock_seq can't be concurrently modified.
835 	 */
836 	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
837 	return (vma->vm_lock_seq == *mm_lock_seq);
838 }
839 
840 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq);
841 
842 /*
843  * Begin writing to a VMA.
844  * Exclude concurrent readers under the per-VMA lock until the currently
845  * write-locked mmap_lock is dropped or downgraded.
846  */
847 static inline void vma_start_write(struct vm_area_struct *vma)
848 {
849 	unsigned int mm_lock_seq;
850 
851 	if (__is_vma_write_locked(vma, &mm_lock_seq))
852 		return;
853 
854 	__vma_start_write(vma, mm_lock_seq);
855 }
856 
857 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
858 {
859 	unsigned int mm_lock_seq;
860 
861 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
862 }
863 
864 static inline void vma_assert_locked(struct vm_area_struct *vma)
865 {
866 	unsigned int mm_lock_seq;
867 
868 	VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 &&
869 		      !__is_vma_write_locked(vma, &mm_lock_seq), vma);
870 }
871 
872 /*
873  * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
874  * assertions should be made either under mmap_write_lock or when the object
875  * has been isolated under mmap_write_lock, ensuring no competing writers.
876  */
877 static inline void vma_assert_attached(struct vm_area_struct *vma)
878 {
879 	WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
880 }
881 
882 static inline void vma_assert_detached(struct vm_area_struct *vma)
883 {
884 	WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
885 }
886 
887 static inline void vma_mark_attached(struct vm_area_struct *vma)
888 {
889 	vma_assert_write_locked(vma);
890 	vma_assert_detached(vma);
891 	refcount_set_release(&vma->vm_refcnt, 1);
892 }
893 
894 void vma_mark_detached(struct vm_area_struct *vma);
895 
896 static inline void release_fault_lock(struct vm_fault *vmf)
897 {
898 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
899 		vma_end_read(vmf->vma);
900 	else
901 		mmap_read_unlock(vmf->vma->vm_mm);
902 }
903 
904 static inline void assert_fault_locked(struct vm_fault *vmf)
905 {
906 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
907 		vma_assert_locked(vmf->vma);
908 	else
909 		mmap_assert_locked(vmf->vma->vm_mm);
910 }
911 
912 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
913 					  unsigned long address);
914 
915 #else /* CONFIG_PER_VMA_LOCK */
916 
917 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {}
918 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
919 						    struct vm_area_struct *vma)
920 		{ return NULL; }
921 static inline void vma_end_read(struct vm_area_struct *vma) {}
922 static inline void vma_start_write(struct vm_area_struct *vma) {}
923 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
924 		{ mmap_assert_write_locked(vma->vm_mm); }
925 static inline void vma_assert_attached(struct vm_area_struct *vma) {}
926 static inline void vma_assert_detached(struct vm_area_struct *vma) {}
927 static inline void vma_mark_attached(struct vm_area_struct *vma) {}
928 static inline void vma_mark_detached(struct vm_area_struct *vma) {}
929 
930 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
931 		unsigned long address)
932 {
933 	return NULL;
934 }
935 
936 static inline void vma_assert_locked(struct vm_area_struct *vma)
937 {
938 	mmap_assert_locked(vma->vm_mm);
939 }
940 
941 static inline void release_fault_lock(struct vm_fault *vmf)
942 {
943 	mmap_read_unlock(vmf->vma->vm_mm);
944 }
945 
946 static inline void assert_fault_locked(struct vm_fault *vmf)
947 {
948 	mmap_assert_locked(vmf->vma->vm_mm);
949 }
950 
951 #endif /* CONFIG_PER_VMA_LOCK */
952 
953 extern const struct vm_operations_struct vma_dummy_vm_ops;
954 
955 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
956 {
957 	memset(vma, 0, sizeof(*vma));
958 	vma->vm_mm = mm;
959 	vma->vm_ops = &vma_dummy_vm_ops;
960 	INIT_LIST_HEAD(&vma->anon_vma_chain);
961 	vma_lock_init(vma, false);
962 }
963 
964 /* Use when VMA is not part of the VMA tree and needs no locking */
965 static inline void vm_flags_init(struct vm_area_struct *vma,
966 				 vm_flags_t flags)
967 {
968 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
969 }
970 
971 /*
972  * Use when VMA is part of the VMA tree and modifications need coordination
973  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
974  * it should be locked explicitly beforehand.
975  */
976 static inline void vm_flags_reset(struct vm_area_struct *vma,
977 				  vm_flags_t flags)
978 {
979 	vma_assert_write_locked(vma);
980 	vm_flags_init(vma, flags);
981 }
982 
983 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
984 				       vm_flags_t flags)
985 {
986 	vma_assert_write_locked(vma);
987 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
988 }
989 
990 static inline void vm_flags_set(struct vm_area_struct *vma,
991 				vm_flags_t flags)
992 {
993 	vma_start_write(vma);
994 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
995 }
996 
997 static inline void vm_flags_clear(struct vm_area_struct *vma,
998 				  vm_flags_t flags)
999 {
1000 	vma_start_write(vma);
1001 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
1002 }
1003 
1004 /*
1005  * Use only if VMA is not part of the VMA tree or has no other users and
1006  * therefore needs no locking.
1007  */
1008 static inline void __vm_flags_mod(struct vm_area_struct *vma,
1009 				  vm_flags_t set, vm_flags_t clear)
1010 {
1011 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
1012 }
1013 
1014 /*
1015  * Use only when the order of set/clear operations is unimportant, otherwise
1016  * use vm_flags_{set|clear} explicitly.
1017  */
1018 static inline void vm_flags_mod(struct vm_area_struct *vma,
1019 				vm_flags_t set, vm_flags_t clear)
1020 {
1021 	vma_start_write(vma);
1022 	__vm_flags_mod(vma, set, clear);
1023 }
1024 
1025 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1026 {
1027 	vma->vm_ops = NULL;
1028 }
1029 
1030 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1031 {
1032 	return !vma->vm_ops;
1033 }
1034 
1035 /*
1036  * Indicate if the VMA is a heap for the given task; for
1037  * /proc/PID/maps that is the heap of the main task.
1038  */
1039 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1040 {
1041 	return vma->vm_start < vma->vm_mm->brk &&
1042 		vma->vm_end > vma->vm_mm->start_brk;
1043 }
1044 
1045 /*
1046  * Indicate if the VMA is a stack for the given task; for
1047  * /proc/PID/maps that is the stack of the main task.
1048  */
1049 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1050 {
1051 	/*
1052 	 * We make no effort to guess what a given thread considers to be
1053 	 * its "stack".  It's not even well-defined for programs written
1054 	 * languages like Go.
1055 	 */
1056 	return vma->vm_start <= vma->vm_mm->start_stack &&
1057 		vma->vm_end >= vma->vm_mm->start_stack;
1058 }
1059 
1060 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
1061 {
1062 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1063 
1064 	if (!maybe_stack)
1065 		return false;
1066 
1067 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1068 						VM_STACK_INCOMPLETE_SETUP)
1069 		return true;
1070 
1071 	return false;
1072 }
1073 
1074 static inline bool vma_is_foreign(struct vm_area_struct *vma)
1075 {
1076 	if (!current->mm)
1077 		return true;
1078 
1079 	if (current->mm != vma->vm_mm)
1080 		return true;
1081 
1082 	return false;
1083 }
1084 
1085 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1086 {
1087 	return vma->vm_flags & VM_ACCESS_FLAGS;
1088 }
1089 
1090 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1091 {
1092 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1093 		(VM_SHARED | VM_MAYWRITE);
1094 }
1095 
1096 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1097 {
1098 	return is_shared_maywrite(vma->vm_flags);
1099 }
1100 
1101 static inline
1102 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1103 {
1104 	return mas_find(&vmi->mas, max - 1);
1105 }
1106 
1107 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1108 {
1109 	/*
1110 	 * Uses mas_find() to get the first VMA when the iterator starts.
1111 	 * Calling mas_next() could skip the first entry.
1112 	 */
1113 	return mas_find(&vmi->mas, ULONG_MAX);
1114 }
1115 
1116 static inline
1117 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1118 {
1119 	return mas_next_range(&vmi->mas, ULONG_MAX);
1120 }
1121 
1122 
1123 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1124 {
1125 	return mas_prev(&vmi->mas, 0);
1126 }
1127 
1128 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1129 			unsigned long start, unsigned long end, gfp_t gfp)
1130 {
1131 	__mas_set_range(&vmi->mas, start, end - 1);
1132 	mas_store_gfp(&vmi->mas, NULL, gfp);
1133 	if (unlikely(mas_is_err(&vmi->mas)))
1134 		return -ENOMEM;
1135 
1136 	return 0;
1137 }
1138 
1139 /* Free any unused preallocations */
1140 static inline void vma_iter_free(struct vma_iterator *vmi)
1141 {
1142 	mas_destroy(&vmi->mas);
1143 }
1144 
1145 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1146 				      struct vm_area_struct *vma)
1147 {
1148 	vmi->mas.index = vma->vm_start;
1149 	vmi->mas.last = vma->vm_end - 1;
1150 	mas_store(&vmi->mas, vma);
1151 	if (unlikely(mas_is_err(&vmi->mas)))
1152 		return -ENOMEM;
1153 
1154 	vma_mark_attached(vma);
1155 	return 0;
1156 }
1157 
1158 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1159 {
1160 	mas_pause(&vmi->mas);
1161 }
1162 
1163 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1164 {
1165 	mas_set(&vmi->mas, addr);
1166 }
1167 
1168 #define for_each_vma(__vmi, __vma)					\
1169 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1170 
1171 /* The MM code likes to work with exclusive end addresses */
1172 #define for_each_vma_range(__vmi, __vma, __end)				\
1173 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1174 
1175 #ifdef CONFIG_SHMEM
1176 /*
1177  * The vma_is_shmem is not inline because it is used only by slow
1178  * paths in userfault.
1179  */
1180 bool vma_is_shmem(struct vm_area_struct *vma);
1181 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1182 #else
1183 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1184 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1185 #endif
1186 
1187 int vma_is_stack_for_current(struct vm_area_struct *vma);
1188 
1189 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1190 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1191 
1192 struct mmu_gather;
1193 struct inode;
1194 
1195 /*
1196  * compound_order() can be called without holding a reference, which means
1197  * that niceties like page_folio() don't work.  These callers should be
1198  * prepared to handle wild return values.  For example, PG_head may be
1199  * set before the order is initialised, or this may be a tail page.
1200  * See compaction.c for some good examples.
1201  */
1202 static inline unsigned int compound_order(struct page *page)
1203 {
1204 	struct folio *folio = (struct folio *)page;
1205 
1206 	if (!test_bit(PG_head, &folio->flags))
1207 		return 0;
1208 	return folio->_flags_1 & 0xff;
1209 }
1210 
1211 /**
1212  * folio_order - The allocation order of a folio.
1213  * @folio: The folio.
1214  *
1215  * A folio is composed of 2^order pages.  See get_order() for the definition
1216  * of order.
1217  *
1218  * Return: The order of the folio.
1219  */
1220 static inline unsigned int folio_order(const struct folio *folio)
1221 {
1222 	if (!folio_test_large(folio))
1223 		return 0;
1224 	return folio->_flags_1 & 0xff;
1225 }
1226 
1227 #include <linux/huge_mm.h>
1228 
1229 /*
1230  * Methods to modify the page usage count.
1231  *
1232  * What counts for a page usage:
1233  * - cache mapping   (page->mapping)
1234  * - private data    (page->private)
1235  * - page mapped in a task's page tables, each mapping
1236  *   is counted separately
1237  *
1238  * Also, many kernel routines increase the page count before a critical
1239  * routine so they can be sure the page doesn't go away from under them.
1240  */
1241 
1242 /*
1243  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1244  */
1245 static inline int put_page_testzero(struct page *page)
1246 {
1247 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1248 	return page_ref_dec_and_test(page);
1249 }
1250 
1251 static inline int folio_put_testzero(struct folio *folio)
1252 {
1253 	return put_page_testzero(&folio->page);
1254 }
1255 
1256 /*
1257  * Try to grab a ref unless the page has a refcount of zero, return false if
1258  * that is the case.
1259  * This can be called when MMU is off so it must not access
1260  * any of the virtual mappings.
1261  */
1262 static inline bool get_page_unless_zero(struct page *page)
1263 {
1264 	return page_ref_add_unless(page, 1, 0);
1265 }
1266 
1267 static inline struct folio *folio_get_nontail_page(struct page *page)
1268 {
1269 	if (unlikely(!get_page_unless_zero(page)))
1270 		return NULL;
1271 	return (struct folio *)page;
1272 }
1273 
1274 extern int page_is_ram(unsigned long pfn);
1275 
1276 enum {
1277 	REGION_INTERSECTS,
1278 	REGION_DISJOINT,
1279 	REGION_MIXED,
1280 };
1281 
1282 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1283 		      unsigned long desc);
1284 
1285 /* Support for virtually mapped pages */
1286 struct page *vmalloc_to_page(const void *addr);
1287 unsigned long vmalloc_to_pfn(const void *addr);
1288 
1289 /*
1290  * Determine if an address is within the vmalloc range
1291  *
1292  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1293  * is no special casing required.
1294  */
1295 #ifdef CONFIG_MMU
1296 extern bool is_vmalloc_addr(const void *x);
1297 extern int is_vmalloc_or_module_addr(const void *x);
1298 #else
1299 static inline bool is_vmalloc_addr(const void *x)
1300 {
1301 	return false;
1302 }
1303 static inline int is_vmalloc_or_module_addr(const void *x)
1304 {
1305 	return 0;
1306 }
1307 #endif
1308 
1309 /*
1310  * How many times the entire folio is mapped as a single unit (eg by a
1311  * PMD or PUD entry).  This is probably not what you want, except for
1312  * debugging purposes or implementation of other core folio_*() primitives.
1313  */
1314 static inline int folio_entire_mapcount(const struct folio *folio)
1315 {
1316 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1317 	return atomic_read(&folio->_entire_mapcount) + 1;
1318 }
1319 
1320 static inline int folio_large_mapcount(const struct folio *folio)
1321 {
1322 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1323 	return atomic_read(&folio->_large_mapcount) + 1;
1324 }
1325 
1326 /**
1327  * folio_mapcount() - Number of mappings of this folio.
1328  * @folio: The folio.
1329  *
1330  * The folio mapcount corresponds to the number of present user page table
1331  * entries that reference any part of a folio. Each such present user page
1332  * table entry must be paired with exactly on folio reference.
1333  *
1334  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1335  * exactly once.
1336  *
1337  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1338  * references the entire folio counts exactly once, even when such special
1339  * page table entries are comprised of multiple ordinary page table entries.
1340  *
1341  * Will report 0 for pages which cannot be mapped into userspace, such as
1342  * slab, page tables and similar.
1343  *
1344  * Return: The number of times this folio is mapped.
1345  */
1346 static inline int folio_mapcount(const struct folio *folio)
1347 {
1348 	int mapcount;
1349 
1350 	if (likely(!folio_test_large(folio))) {
1351 		mapcount = atomic_read(&folio->_mapcount) + 1;
1352 		if (page_mapcount_is_type(mapcount))
1353 			mapcount = 0;
1354 		return mapcount;
1355 	}
1356 	return folio_large_mapcount(folio);
1357 }
1358 
1359 /**
1360  * folio_mapped - Is this folio mapped into userspace?
1361  * @folio: The folio.
1362  *
1363  * Return: True if any page in this folio is referenced by user page tables.
1364  */
1365 static inline bool folio_mapped(const struct folio *folio)
1366 {
1367 	return folio_mapcount(folio) >= 1;
1368 }
1369 
1370 /*
1371  * Return true if this page is mapped into pagetables.
1372  * For compound page it returns true if any sub-page of compound page is mapped,
1373  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1374  */
1375 static inline bool page_mapped(const struct page *page)
1376 {
1377 	return folio_mapped(page_folio(page));
1378 }
1379 
1380 static inline struct page *virt_to_head_page(const void *x)
1381 {
1382 	struct page *page = virt_to_page(x);
1383 
1384 	return compound_head(page);
1385 }
1386 
1387 static inline struct folio *virt_to_folio(const void *x)
1388 {
1389 	struct page *page = virt_to_page(x);
1390 
1391 	return page_folio(page);
1392 }
1393 
1394 void __folio_put(struct folio *folio);
1395 
1396 void split_page(struct page *page, unsigned int order);
1397 void folio_copy(struct folio *dst, struct folio *src);
1398 int folio_mc_copy(struct folio *dst, struct folio *src);
1399 
1400 unsigned long nr_free_buffer_pages(void);
1401 
1402 /* Returns the number of bytes in this potentially compound page. */
1403 static inline unsigned long page_size(struct page *page)
1404 {
1405 	return PAGE_SIZE << compound_order(page);
1406 }
1407 
1408 /* Returns the number of bits needed for the number of bytes in a page */
1409 static inline unsigned int page_shift(struct page *page)
1410 {
1411 	return PAGE_SHIFT + compound_order(page);
1412 }
1413 
1414 /**
1415  * thp_order - Order of a transparent huge page.
1416  * @page: Head page of a transparent huge page.
1417  */
1418 static inline unsigned int thp_order(struct page *page)
1419 {
1420 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1421 	return compound_order(page);
1422 }
1423 
1424 /**
1425  * thp_size - Size of a transparent huge page.
1426  * @page: Head page of a transparent huge page.
1427  *
1428  * Return: Number of bytes in this page.
1429  */
1430 static inline unsigned long thp_size(struct page *page)
1431 {
1432 	return PAGE_SIZE << thp_order(page);
1433 }
1434 
1435 #ifdef CONFIG_MMU
1436 /*
1437  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1438  * servicing faults for write access.  In the normal case, do always want
1439  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1440  * that do not have writing enabled, when used by access_process_vm.
1441  */
1442 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1443 {
1444 	if (likely(vma->vm_flags & VM_WRITE))
1445 		pte = pte_mkwrite(pte, vma);
1446 	return pte;
1447 }
1448 
1449 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1450 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1451 		struct page *page, unsigned int nr, unsigned long addr);
1452 
1453 vm_fault_t finish_fault(struct vm_fault *vmf);
1454 #endif
1455 
1456 /*
1457  * Multiple processes may "see" the same page. E.g. for untouched
1458  * mappings of /dev/null, all processes see the same page full of
1459  * zeroes, and text pages of executables and shared libraries have
1460  * only one copy in memory, at most, normally.
1461  *
1462  * For the non-reserved pages, page_count(page) denotes a reference count.
1463  *   page_count() == 0 means the page is free. page->lru is then used for
1464  *   freelist management in the buddy allocator.
1465  *   page_count() > 0  means the page has been allocated.
1466  *
1467  * Pages are allocated by the slab allocator in order to provide memory
1468  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1469  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1470  * unless a particular usage is carefully commented. (the responsibility of
1471  * freeing the kmalloc memory is the caller's, of course).
1472  *
1473  * A page may be used by anyone else who does a __get_free_page().
1474  * In this case, page_count still tracks the references, and should only
1475  * be used through the normal accessor functions. The top bits of page->flags
1476  * and page->virtual store page management information, but all other fields
1477  * are unused and could be used privately, carefully. The management of this
1478  * page is the responsibility of the one who allocated it, and those who have
1479  * subsequently been given references to it.
1480  *
1481  * The other pages (we may call them "pagecache pages") are completely
1482  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1483  * The following discussion applies only to them.
1484  *
1485  * A pagecache page contains an opaque `private' member, which belongs to the
1486  * page's address_space. Usually, this is the address of a circular list of
1487  * the page's disk buffers. PG_private must be set to tell the VM to call
1488  * into the filesystem to release these pages.
1489  *
1490  * A page may belong to an inode's memory mapping. In this case, page->mapping
1491  * is the pointer to the inode, and page->index is the file offset of the page,
1492  * in units of PAGE_SIZE.
1493  *
1494  * If pagecache pages are not associated with an inode, they are said to be
1495  * anonymous pages. These may become associated with the swapcache, and in that
1496  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1497  *
1498  * In either case (swapcache or inode backed), the pagecache itself holds one
1499  * reference to the page. Setting PG_private should also increment the
1500  * refcount. The each user mapping also has a reference to the page.
1501  *
1502  * The pagecache pages are stored in a per-mapping radix tree, which is
1503  * rooted at mapping->i_pages, and indexed by offset.
1504  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1505  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1506  *
1507  * All pagecache pages may be subject to I/O:
1508  * - inode pages may need to be read from disk,
1509  * - inode pages which have been modified and are MAP_SHARED may need
1510  *   to be written back to the inode on disk,
1511  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1512  *   modified may need to be swapped out to swap space and (later) to be read
1513  *   back into memory.
1514  */
1515 
1516 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1517 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1518 
1519 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1520 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1521 {
1522 	if (!static_branch_unlikely(&devmap_managed_key))
1523 		return false;
1524 	if (!folio_is_zone_device(folio))
1525 		return false;
1526 	return __put_devmap_managed_folio_refs(folio, refs);
1527 }
1528 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1529 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1530 {
1531 	return false;
1532 }
1533 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1534 
1535 /* 127: arbitrary random number, small enough to assemble well */
1536 #define folio_ref_zero_or_close_to_overflow(folio) \
1537 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1538 
1539 /**
1540  * folio_get - Increment the reference count on a folio.
1541  * @folio: The folio.
1542  *
1543  * Context: May be called in any context, as long as you know that
1544  * you have a refcount on the folio.  If you do not already have one,
1545  * folio_try_get() may be the right interface for you to use.
1546  */
1547 static inline void folio_get(struct folio *folio)
1548 {
1549 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1550 	folio_ref_inc(folio);
1551 }
1552 
1553 static inline void get_page(struct page *page)
1554 {
1555 	struct folio *folio = page_folio(page);
1556 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1557 		return;
1558 	folio_get(folio);
1559 }
1560 
1561 static inline __must_check bool try_get_page(struct page *page)
1562 {
1563 	page = compound_head(page);
1564 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1565 		return false;
1566 	page_ref_inc(page);
1567 	return true;
1568 }
1569 
1570 /**
1571  * folio_put - Decrement the reference count on a folio.
1572  * @folio: The folio.
1573  *
1574  * If the folio's reference count reaches zero, the memory will be
1575  * released back to the page allocator and may be used by another
1576  * allocation immediately.  Do not access the memory or the struct folio
1577  * after calling folio_put() unless you can be sure that it wasn't the
1578  * last reference.
1579  *
1580  * Context: May be called in process or interrupt context, but not in NMI
1581  * context.  May be called while holding a spinlock.
1582  */
1583 static inline void folio_put(struct folio *folio)
1584 {
1585 	if (folio_put_testzero(folio))
1586 		__folio_put(folio);
1587 }
1588 
1589 /**
1590  * folio_put_refs - Reduce the reference count on a folio.
1591  * @folio: The folio.
1592  * @refs: The amount to subtract from the folio's reference count.
1593  *
1594  * If the folio's reference count reaches zero, the memory will be
1595  * released back to the page allocator and may be used by another
1596  * allocation immediately.  Do not access the memory or the struct folio
1597  * after calling folio_put_refs() unless you can be sure that these weren't
1598  * the last references.
1599  *
1600  * Context: May be called in process or interrupt context, but not in NMI
1601  * context.  May be called while holding a spinlock.
1602  */
1603 static inline void folio_put_refs(struct folio *folio, int refs)
1604 {
1605 	if (folio_ref_sub_and_test(folio, refs))
1606 		__folio_put(folio);
1607 }
1608 
1609 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1610 
1611 /*
1612  * union release_pages_arg - an array of pages or folios
1613  *
1614  * release_pages() releases a simple array of multiple pages, and
1615  * accepts various different forms of said page array: either
1616  * a regular old boring array of pages, an array of folios, or
1617  * an array of encoded page pointers.
1618  *
1619  * The transparent union syntax for this kind of "any of these
1620  * argument types" is all kinds of ugly, so look away.
1621  */
1622 typedef union {
1623 	struct page **pages;
1624 	struct folio **folios;
1625 	struct encoded_page **encoded_pages;
1626 } release_pages_arg __attribute__ ((__transparent_union__));
1627 
1628 void release_pages(release_pages_arg, int nr);
1629 
1630 /**
1631  * folios_put - Decrement the reference count on an array of folios.
1632  * @folios: The folios.
1633  *
1634  * Like folio_put(), but for a batch of folios.  This is more efficient
1635  * than writing the loop yourself as it will optimise the locks which need
1636  * to be taken if the folios are freed.  The folios batch is returned
1637  * empty and ready to be reused for another batch; there is no need to
1638  * reinitialise it.
1639  *
1640  * Context: May be called in process or interrupt context, but not in NMI
1641  * context.  May be called while holding a spinlock.
1642  */
1643 static inline void folios_put(struct folio_batch *folios)
1644 {
1645 	folios_put_refs(folios, NULL);
1646 }
1647 
1648 static inline void put_page(struct page *page)
1649 {
1650 	struct folio *folio = page_folio(page);
1651 
1652 	if (folio_test_slab(folio))
1653 		return;
1654 
1655 	/*
1656 	 * For some devmap managed pages we need to catch refcount transition
1657 	 * from 2 to 1:
1658 	 */
1659 	if (put_devmap_managed_folio_refs(folio, 1))
1660 		return;
1661 	folio_put(folio);
1662 }
1663 
1664 /*
1665  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1666  * the page's refcount so that two separate items are tracked: the original page
1667  * reference count, and also a new count of how many pin_user_pages() calls were
1668  * made against the page. ("gup-pinned" is another term for the latter).
1669  *
1670  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1671  * distinct from normal pages. As such, the unpin_user_page() call (and its
1672  * variants) must be used in order to release gup-pinned pages.
1673  *
1674  * Choice of value:
1675  *
1676  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1677  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1678  * simpler, due to the fact that adding an even power of two to the page
1679  * refcount has the effect of using only the upper N bits, for the code that
1680  * counts up using the bias value. This means that the lower bits are left for
1681  * the exclusive use of the original code that increments and decrements by one
1682  * (or at least, by much smaller values than the bias value).
1683  *
1684  * Of course, once the lower bits overflow into the upper bits (and this is
1685  * OK, because subtraction recovers the original values), then visual inspection
1686  * no longer suffices to directly view the separate counts. However, for normal
1687  * applications that don't have huge page reference counts, this won't be an
1688  * issue.
1689  *
1690  * Locking: the lockless algorithm described in folio_try_get_rcu()
1691  * provides safe operation for get_user_pages(), folio_mkclean() and
1692  * other calls that race to set up page table entries.
1693  */
1694 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1695 
1696 void unpin_user_page(struct page *page);
1697 void unpin_folio(struct folio *folio);
1698 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1699 				 bool make_dirty);
1700 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1701 				      bool make_dirty);
1702 void unpin_user_pages(struct page **pages, unsigned long npages);
1703 void unpin_user_folio(struct folio *folio, unsigned long npages);
1704 void unpin_folios(struct folio **folios, unsigned long nfolios);
1705 
1706 static inline bool is_cow_mapping(vm_flags_t flags)
1707 {
1708 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1709 }
1710 
1711 #ifndef CONFIG_MMU
1712 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1713 {
1714 	/*
1715 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1716 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1717 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1718 	 * underlying memory if ptrace is active, so this is only possible if
1719 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1720 	 * write permissions later.
1721 	 */
1722 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1723 }
1724 #endif
1725 
1726 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1727 #define SECTION_IN_PAGE_FLAGS
1728 #endif
1729 
1730 /*
1731  * The identification function is mainly used by the buddy allocator for
1732  * determining if two pages could be buddies. We are not really identifying
1733  * the zone since we could be using the section number id if we do not have
1734  * node id available in page flags.
1735  * We only guarantee that it will return the same value for two combinable
1736  * pages in a zone.
1737  */
1738 static inline int page_zone_id(struct page *page)
1739 {
1740 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1741 }
1742 
1743 #ifdef NODE_NOT_IN_PAGE_FLAGS
1744 int page_to_nid(const struct page *page);
1745 #else
1746 static inline int page_to_nid(const struct page *page)
1747 {
1748 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1749 }
1750 #endif
1751 
1752 static inline int folio_nid(const struct folio *folio)
1753 {
1754 	return page_to_nid(&folio->page);
1755 }
1756 
1757 #ifdef CONFIG_NUMA_BALANCING
1758 /* page access time bits needs to hold at least 4 seconds */
1759 #define PAGE_ACCESS_TIME_MIN_BITS	12
1760 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1761 #define PAGE_ACCESS_TIME_BUCKETS				\
1762 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1763 #else
1764 #define PAGE_ACCESS_TIME_BUCKETS	0
1765 #endif
1766 
1767 #define PAGE_ACCESS_TIME_MASK				\
1768 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1769 
1770 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1771 {
1772 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1773 }
1774 
1775 static inline int cpupid_to_pid(int cpupid)
1776 {
1777 	return cpupid & LAST__PID_MASK;
1778 }
1779 
1780 static inline int cpupid_to_cpu(int cpupid)
1781 {
1782 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1783 }
1784 
1785 static inline int cpupid_to_nid(int cpupid)
1786 {
1787 	return cpu_to_node(cpupid_to_cpu(cpupid));
1788 }
1789 
1790 static inline bool cpupid_pid_unset(int cpupid)
1791 {
1792 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1793 }
1794 
1795 static inline bool cpupid_cpu_unset(int cpupid)
1796 {
1797 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1798 }
1799 
1800 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1801 {
1802 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1803 }
1804 
1805 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1806 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1807 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1808 {
1809 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1810 }
1811 
1812 static inline int folio_last_cpupid(struct folio *folio)
1813 {
1814 	return folio->_last_cpupid;
1815 }
1816 static inline void page_cpupid_reset_last(struct page *page)
1817 {
1818 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1819 }
1820 #else
1821 static inline int folio_last_cpupid(struct folio *folio)
1822 {
1823 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1824 }
1825 
1826 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1827 
1828 static inline void page_cpupid_reset_last(struct page *page)
1829 {
1830 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1831 }
1832 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1833 
1834 static inline int folio_xchg_access_time(struct folio *folio, int time)
1835 {
1836 	int last_time;
1837 
1838 	last_time = folio_xchg_last_cpupid(folio,
1839 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1840 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1841 }
1842 
1843 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1844 {
1845 	unsigned int pid_bit;
1846 
1847 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1848 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1849 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1850 	}
1851 }
1852 
1853 bool folio_use_access_time(struct folio *folio);
1854 #else /* !CONFIG_NUMA_BALANCING */
1855 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1856 {
1857 	return folio_nid(folio); /* XXX */
1858 }
1859 
1860 static inline int folio_xchg_access_time(struct folio *folio, int time)
1861 {
1862 	return 0;
1863 }
1864 
1865 static inline int folio_last_cpupid(struct folio *folio)
1866 {
1867 	return folio_nid(folio); /* XXX */
1868 }
1869 
1870 static inline int cpupid_to_nid(int cpupid)
1871 {
1872 	return -1;
1873 }
1874 
1875 static inline int cpupid_to_pid(int cpupid)
1876 {
1877 	return -1;
1878 }
1879 
1880 static inline int cpupid_to_cpu(int cpupid)
1881 {
1882 	return -1;
1883 }
1884 
1885 static inline int cpu_pid_to_cpupid(int nid, int pid)
1886 {
1887 	return -1;
1888 }
1889 
1890 static inline bool cpupid_pid_unset(int cpupid)
1891 {
1892 	return true;
1893 }
1894 
1895 static inline void page_cpupid_reset_last(struct page *page)
1896 {
1897 }
1898 
1899 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1900 {
1901 	return false;
1902 }
1903 
1904 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1905 {
1906 }
1907 static inline bool folio_use_access_time(struct folio *folio)
1908 {
1909 	return false;
1910 }
1911 #endif /* CONFIG_NUMA_BALANCING */
1912 
1913 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1914 
1915 /*
1916  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1917  * setting tags for all pages to native kernel tag value 0xff, as the default
1918  * value 0x00 maps to 0xff.
1919  */
1920 
1921 static inline u8 page_kasan_tag(const struct page *page)
1922 {
1923 	u8 tag = KASAN_TAG_KERNEL;
1924 
1925 	if (kasan_enabled()) {
1926 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1927 		tag ^= 0xff;
1928 	}
1929 
1930 	return tag;
1931 }
1932 
1933 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1934 {
1935 	unsigned long old_flags, flags;
1936 
1937 	if (!kasan_enabled())
1938 		return;
1939 
1940 	tag ^= 0xff;
1941 	old_flags = READ_ONCE(page->flags);
1942 	do {
1943 		flags = old_flags;
1944 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1945 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1946 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1947 }
1948 
1949 static inline void page_kasan_tag_reset(struct page *page)
1950 {
1951 	if (kasan_enabled())
1952 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1953 }
1954 
1955 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1956 
1957 static inline u8 page_kasan_tag(const struct page *page)
1958 {
1959 	return 0xff;
1960 }
1961 
1962 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1963 static inline void page_kasan_tag_reset(struct page *page) { }
1964 
1965 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1966 
1967 static inline struct zone *page_zone(const struct page *page)
1968 {
1969 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1970 }
1971 
1972 static inline pg_data_t *page_pgdat(const struct page *page)
1973 {
1974 	return NODE_DATA(page_to_nid(page));
1975 }
1976 
1977 static inline struct zone *folio_zone(const struct folio *folio)
1978 {
1979 	return page_zone(&folio->page);
1980 }
1981 
1982 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1983 {
1984 	return page_pgdat(&folio->page);
1985 }
1986 
1987 #ifdef SECTION_IN_PAGE_FLAGS
1988 static inline void set_page_section(struct page *page, unsigned long section)
1989 {
1990 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1991 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1992 }
1993 
1994 static inline unsigned long page_to_section(const struct page *page)
1995 {
1996 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1997 }
1998 #endif
1999 
2000 /**
2001  * folio_pfn - Return the Page Frame Number of a folio.
2002  * @folio: The folio.
2003  *
2004  * A folio may contain multiple pages.  The pages have consecutive
2005  * Page Frame Numbers.
2006  *
2007  * Return: The Page Frame Number of the first page in the folio.
2008  */
2009 static inline unsigned long folio_pfn(const struct folio *folio)
2010 {
2011 	return page_to_pfn(&folio->page);
2012 }
2013 
2014 static inline struct folio *pfn_folio(unsigned long pfn)
2015 {
2016 	return page_folio(pfn_to_page(pfn));
2017 }
2018 
2019 /**
2020  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2021  * @folio: The folio.
2022  *
2023  * This function checks if a folio has been pinned via a call to
2024  * a function in the pin_user_pages() family.
2025  *
2026  * For small folios, the return value is partially fuzzy: false is not fuzzy,
2027  * because it means "definitely not pinned for DMA", but true means "probably
2028  * pinned for DMA, but possibly a false positive due to having at least
2029  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2030  *
2031  * False positives are OK, because: a) it's unlikely for a folio to
2032  * get that many refcounts, and b) all the callers of this routine are
2033  * expected to be able to deal gracefully with a false positive.
2034  *
2035  * For large folios, the result will be exactly correct. That's because
2036  * we have more tracking data available: the _pincount field is used
2037  * instead of the GUP_PIN_COUNTING_BIAS scheme.
2038  *
2039  * For more information, please see Documentation/core-api/pin_user_pages.rst.
2040  *
2041  * Return: True, if it is likely that the folio has been "dma-pinned".
2042  * False, if the folio is definitely not dma-pinned.
2043  */
2044 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2045 {
2046 	if (folio_test_large(folio))
2047 		return atomic_read(&folio->_pincount) > 0;
2048 
2049 	/*
2050 	 * folio_ref_count() is signed. If that refcount overflows, then
2051 	 * folio_ref_count() returns a negative value, and callers will avoid
2052 	 * further incrementing the refcount.
2053 	 *
2054 	 * Here, for that overflow case, use the sign bit to count a little
2055 	 * bit higher via unsigned math, and thus still get an accurate result.
2056 	 */
2057 	return ((unsigned int)folio_ref_count(folio)) >=
2058 		GUP_PIN_COUNTING_BIAS;
2059 }
2060 
2061 /*
2062  * This should most likely only be called during fork() to see whether we
2063  * should break the cow immediately for an anon page on the src mm.
2064  *
2065  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2066  */
2067 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2068 					  struct folio *folio)
2069 {
2070 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2071 
2072 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
2073 		return false;
2074 
2075 	return folio_maybe_dma_pinned(folio);
2076 }
2077 
2078 /**
2079  * is_zero_page - Query if a page is a zero page
2080  * @page: The page to query
2081  *
2082  * This returns true if @page is one of the permanent zero pages.
2083  */
2084 static inline bool is_zero_page(const struct page *page)
2085 {
2086 	return is_zero_pfn(page_to_pfn(page));
2087 }
2088 
2089 /**
2090  * is_zero_folio - Query if a folio is a zero page
2091  * @folio: The folio to query
2092  *
2093  * This returns true if @folio is one of the permanent zero pages.
2094  */
2095 static inline bool is_zero_folio(const struct folio *folio)
2096 {
2097 	return is_zero_page(&folio->page);
2098 }
2099 
2100 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2101 #ifdef CONFIG_MIGRATION
2102 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2103 {
2104 #ifdef CONFIG_CMA
2105 	int mt = folio_migratetype(folio);
2106 
2107 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2108 		return false;
2109 #endif
2110 	/* The zero page can be "pinned" but gets special handling. */
2111 	if (is_zero_folio(folio))
2112 		return true;
2113 
2114 	/* Coherent device memory must always allow eviction. */
2115 	if (folio_is_device_coherent(folio))
2116 		return false;
2117 
2118 	/* Otherwise, non-movable zone folios can be pinned. */
2119 	return !folio_is_zone_movable(folio);
2120 
2121 }
2122 #else
2123 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2124 {
2125 	return true;
2126 }
2127 #endif
2128 
2129 static inline void set_page_zone(struct page *page, enum zone_type zone)
2130 {
2131 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2132 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2133 }
2134 
2135 static inline void set_page_node(struct page *page, unsigned long node)
2136 {
2137 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2138 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2139 }
2140 
2141 static inline void set_page_links(struct page *page, enum zone_type zone,
2142 	unsigned long node, unsigned long pfn)
2143 {
2144 	set_page_zone(page, zone);
2145 	set_page_node(page, node);
2146 #ifdef SECTION_IN_PAGE_FLAGS
2147 	set_page_section(page, pfn_to_section_nr(pfn));
2148 #endif
2149 }
2150 
2151 /**
2152  * folio_nr_pages - The number of pages in the folio.
2153  * @folio: The folio.
2154  *
2155  * Return: A positive power of two.
2156  */
2157 static inline long folio_nr_pages(const struct folio *folio)
2158 {
2159 	if (!folio_test_large(folio))
2160 		return 1;
2161 #ifdef CONFIG_64BIT
2162 	return folio->_folio_nr_pages;
2163 #else
2164 	return 1L << (folio->_flags_1 & 0xff);
2165 #endif
2166 }
2167 
2168 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2169 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2170 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2171 #else
2172 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2173 #endif
2174 
2175 /*
2176  * compound_nr() returns the number of pages in this potentially compound
2177  * page.  compound_nr() can be called on a tail page, and is defined to
2178  * return 1 in that case.
2179  */
2180 static inline unsigned long compound_nr(struct page *page)
2181 {
2182 	struct folio *folio = (struct folio *)page;
2183 
2184 	if (!test_bit(PG_head, &folio->flags))
2185 		return 1;
2186 #ifdef CONFIG_64BIT
2187 	return folio->_folio_nr_pages;
2188 #else
2189 	return 1L << (folio->_flags_1 & 0xff);
2190 #endif
2191 }
2192 
2193 /**
2194  * thp_nr_pages - The number of regular pages in this huge page.
2195  * @page: The head page of a huge page.
2196  */
2197 static inline int thp_nr_pages(struct page *page)
2198 {
2199 	return folio_nr_pages((struct folio *)page);
2200 }
2201 
2202 /**
2203  * folio_next - Move to the next physical folio.
2204  * @folio: The folio we're currently operating on.
2205  *
2206  * If you have physically contiguous memory which may span more than
2207  * one folio (eg a &struct bio_vec), use this function to move from one
2208  * folio to the next.  Do not use it if the memory is only virtually
2209  * contiguous as the folios are almost certainly not adjacent to each
2210  * other.  This is the folio equivalent to writing ``page++``.
2211  *
2212  * Context: We assume that the folios are refcounted and/or locked at a
2213  * higher level and do not adjust the reference counts.
2214  * Return: The next struct folio.
2215  */
2216 static inline struct folio *folio_next(struct folio *folio)
2217 {
2218 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2219 }
2220 
2221 /**
2222  * folio_shift - The size of the memory described by this folio.
2223  * @folio: The folio.
2224  *
2225  * A folio represents a number of bytes which is a power-of-two in size.
2226  * This function tells you which power-of-two the folio is.  See also
2227  * folio_size() and folio_order().
2228  *
2229  * Context: The caller should have a reference on the folio to prevent
2230  * it from being split.  It is not necessary for the folio to be locked.
2231  * Return: The base-2 logarithm of the size of this folio.
2232  */
2233 static inline unsigned int folio_shift(const struct folio *folio)
2234 {
2235 	return PAGE_SHIFT + folio_order(folio);
2236 }
2237 
2238 /**
2239  * folio_size - The number of bytes in a folio.
2240  * @folio: The folio.
2241  *
2242  * Context: The caller should have a reference on the folio to prevent
2243  * it from being split.  It is not necessary for the folio to be locked.
2244  * Return: The number of bytes in this folio.
2245  */
2246 static inline size_t folio_size(const struct folio *folio)
2247 {
2248 	return PAGE_SIZE << folio_order(folio);
2249 }
2250 
2251 /**
2252  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2253  *				tables of more than one MM
2254  * @folio: The folio.
2255  *
2256  * This function checks if the folio is currently mapped into more than one
2257  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2258  * ("mapped exclusively").
2259  *
2260  * For KSM folios, this function also returns "mapped shared" when a folio is
2261  * mapped multiple times into the same MM, because the individual page mappings
2262  * are independent.
2263  *
2264  * As precise information is not easily available for all folios, this function
2265  * estimates the number of MMs ("sharers") that are currently mapping a folio
2266  * using the number of times the first page of the folio is currently mapped
2267  * into page tables.
2268  *
2269  * For small anonymous folios and anonymous hugetlb folios, the return
2270  * value will be exactly correct: non-KSM folios can only be mapped at most once
2271  * into an MM, and they cannot be partially mapped. KSM folios are
2272  * considered shared even if mapped multiple times into the same MM.
2273  *
2274  * For other folios, the result can be fuzzy:
2275  *    #. For partially-mappable large folios (THP), the return value can wrongly
2276  *       indicate "mapped exclusively" (false negative) when the folio is
2277  *       only partially mapped into at least one MM.
2278  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2279  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2280  *       cover the same file range.
2281  *
2282  * Further, this function only considers current page table mappings that
2283  * are tracked using the folio mapcount(s).
2284  *
2285  * This function does not consider:
2286  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2287  *       pagecache, temporary unmapping for migration).
2288  *    #. If the folio is mapped differently (VM_PFNMAP).
2289  *    #. If hugetlb page table sharing applies. Callers might want to check
2290  *       hugetlb_pmd_shared().
2291  *
2292  * Return: Whether the folio is estimated to be mapped into more than one MM.
2293  */
2294 static inline bool folio_likely_mapped_shared(struct folio *folio)
2295 {
2296 	int mapcount = folio_mapcount(folio);
2297 
2298 	/* Only partially-mappable folios require more care. */
2299 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2300 		return mapcount > 1;
2301 
2302 	/* A single mapping implies "mapped exclusively". */
2303 	if (mapcount <= 1)
2304 		return false;
2305 
2306 	/* If any page is mapped more than once we treat it "mapped shared". */
2307 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2308 		return true;
2309 
2310 	/* Let's guess based on the first subpage. */
2311 	return atomic_read(&folio->_mapcount) > 0;
2312 }
2313 
2314 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2315 static inline int arch_make_folio_accessible(struct folio *folio)
2316 {
2317 	return 0;
2318 }
2319 #endif
2320 
2321 /*
2322  * Some inline functions in vmstat.h depend on page_zone()
2323  */
2324 #include <linux/vmstat.h>
2325 
2326 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2327 #define HASHED_PAGE_VIRTUAL
2328 #endif
2329 
2330 #if defined(WANT_PAGE_VIRTUAL)
2331 static inline void *page_address(const struct page *page)
2332 {
2333 	return page->virtual;
2334 }
2335 static inline void set_page_address(struct page *page, void *address)
2336 {
2337 	page->virtual = address;
2338 }
2339 #define page_address_init()  do { } while(0)
2340 #endif
2341 
2342 #if defined(HASHED_PAGE_VIRTUAL)
2343 void *page_address(const struct page *page);
2344 void set_page_address(struct page *page, void *virtual);
2345 void page_address_init(void);
2346 #endif
2347 
2348 static __always_inline void *lowmem_page_address(const struct page *page)
2349 {
2350 	return page_to_virt(page);
2351 }
2352 
2353 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2354 #define page_address(page) lowmem_page_address(page)
2355 #define set_page_address(page, address)  do { } while(0)
2356 #define page_address_init()  do { } while(0)
2357 #endif
2358 
2359 static inline void *folio_address(const struct folio *folio)
2360 {
2361 	return page_address(&folio->page);
2362 }
2363 
2364 /*
2365  * Return true only if the page has been allocated with
2366  * ALLOC_NO_WATERMARKS and the low watermark was not
2367  * met implying that the system is under some pressure.
2368  */
2369 static inline bool page_is_pfmemalloc(const struct page *page)
2370 {
2371 	/*
2372 	 * lru.next has bit 1 set if the page is allocated from the
2373 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2374 	 * they do not need to preserve that information.
2375 	 */
2376 	return (uintptr_t)page->lru.next & BIT(1);
2377 }
2378 
2379 /*
2380  * Return true only if the folio has been allocated with
2381  * ALLOC_NO_WATERMARKS and the low watermark was not
2382  * met implying that the system is under some pressure.
2383  */
2384 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2385 {
2386 	/*
2387 	 * lru.next has bit 1 set if the page is allocated from the
2388 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2389 	 * they do not need to preserve that information.
2390 	 */
2391 	return (uintptr_t)folio->lru.next & BIT(1);
2392 }
2393 
2394 /*
2395  * Only to be called by the page allocator on a freshly allocated
2396  * page.
2397  */
2398 static inline void set_page_pfmemalloc(struct page *page)
2399 {
2400 	page->lru.next = (void *)BIT(1);
2401 }
2402 
2403 static inline void clear_page_pfmemalloc(struct page *page)
2404 {
2405 	page->lru.next = NULL;
2406 }
2407 
2408 /*
2409  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2410  */
2411 extern void pagefault_out_of_memory(void);
2412 
2413 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2414 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2415 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2416 
2417 /*
2418  * Parameter block passed down to zap_pte_range in exceptional cases.
2419  */
2420 struct zap_details {
2421 	struct folio *single_folio;	/* Locked folio to be unmapped */
2422 	bool even_cows;			/* Zap COWed private pages too? */
2423 	bool reclaim_pt;		/* Need reclaim page tables? */
2424 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2425 };
2426 
2427 /*
2428  * Whether to drop the pte markers, for example, the uffd-wp information for
2429  * file-backed memory.  This should only be specified when we will completely
2430  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2431  * default, the flag is not set.
2432  */
2433 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2434 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2435 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2436 
2437 #ifdef CONFIG_SCHED_MM_CID
2438 void sched_mm_cid_before_execve(struct task_struct *t);
2439 void sched_mm_cid_after_execve(struct task_struct *t);
2440 void sched_mm_cid_fork(struct task_struct *t);
2441 void sched_mm_cid_exit_signals(struct task_struct *t);
2442 static inline int task_mm_cid(struct task_struct *t)
2443 {
2444 	return t->mm_cid;
2445 }
2446 #else
2447 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2448 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2449 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2450 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2451 static inline int task_mm_cid(struct task_struct *t)
2452 {
2453 	/*
2454 	 * Use the processor id as a fall-back when the mm cid feature is
2455 	 * disabled. This provides functional per-cpu data structure accesses
2456 	 * in user-space, althrough it won't provide the memory usage benefits.
2457 	 */
2458 	return raw_smp_processor_id();
2459 }
2460 #endif
2461 
2462 #ifdef CONFIG_MMU
2463 extern bool can_do_mlock(void);
2464 #else
2465 static inline bool can_do_mlock(void) { return false; }
2466 #endif
2467 extern int user_shm_lock(size_t, struct ucounts *);
2468 extern void user_shm_unlock(size_t, struct ucounts *);
2469 
2470 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2471 			     pte_t pte);
2472 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2473 			     pte_t pte);
2474 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2475 				  unsigned long addr, pmd_t pmd);
2476 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2477 				pmd_t pmd);
2478 
2479 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2480 		  unsigned long size);
2481 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2482 			   unsigned long size, struct zap_details *details);
2483 static inline void zap_vma_pages(struct vm_area_struct *vma)
2484 {
2485 	zap_page_range_single(vma, vma->vm_start,
2486 			      vma->vm_end - vma->vm_start, NULL);
2487 }
2488 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2489 		struct vm_area_struct *start_vma, unsigned long start,
2490 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2491 
2492 struct mmu_notifier_range;
2493 
2494 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2495 		unsigned long end, unsigned long floor, unsigned long ceiling);
2496 int
2497 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2498 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2499 			void *buf, int len, int write);
2500 
2501 struct follow_pfnmap_args {
2502 	/**
2503 	 * Inputs:
2504 	 * @vma: Pointer to @vm_area_struct struct
2505 	 * @address: the virtual address to walk
2506 	 */
2507 	struct vm_area_struct *vma;
2508 	unsigned long address;
2509 	/**
2510 	 * Internals:
2511 	 *
2512 	 * The caller shouldn't touch any of these.
2513 	 */
2514 	spinlock_t *lock;
2515 	pte_t *ptep;
2516 	/**
2517 	 * Outputs:
2518 	 *
2519 	 * @pfn: the PFN of the address
2520 	 * @pgprot: the pgprot_t of the mapping
2521 	 * @writable: whether the mapping is writable
2522 	 * @special: whether the mapping is a special mapping (real PFN maps)
2523 	 */
2524 	unsigned long pfn;
2525 	pgprot_t pgprot;
2526 	bool writable;
2527 	bool special;
2528 };
2529 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2530 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2531 
2532 extern void truncate_pagecache(struct inode *inode, loff_t new);
2533 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2534 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2535 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2536 int generic_error_remove_folio(struct address_space *mapping,
2537 		struct folio *folio);
2538 
2539 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2540 		unsigned long address, struct pt_regs *regs);
2541 
2542 #ifdef CONFIG_MMU
2543 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2544 				  unsigned long address, unsigned int flags,
2545 				  struct pt_regs *regs);
2546 extern int fixup_user_fault(struct mm_struct *mm,
2547 			    unsigned long address, unsigned int fault_flags,
2548 			    bool *unlocked);
2549 void unmap_mapping_pages(struct address_space *mapping,
2550 		pgoff_t start, pgoff_t nr, bool even_cows);
2551 void unmap_mapping_range(struct address_space *mapping,
2552 		loff_t const holebegin, loff_t const holelen, int even_cows);
2553 #else
2554 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2555 					 unsigned long address, unsigned int flags,
2556 					 struct pt_regs *regs)
2557 {
2558 	/* should never happen if there's no MMU */
2559 	BUG();
2560 	return VM_FAULT_SIGBUS;
2561 }
2562 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2563 		unsigned int fault_flags, bool *unlocked)
2564 {
2565 	/* should never happen if there's no MMU */
2566 	BUG();
2567 	return -EFAULT;
2568 }
2569 static inline void unmap_mapping_pages(struct address_space *mapping,
2570 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2571 static inline void unmap_mapping_range(struct address_space *mapping,
2572 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2573 #endif
2574 
2575 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2576 		loff_t const holebegin, loff_t const holelen)
2577 {
2578 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2579 }
2580 
2581 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2582 						unsigned long addr);
2583 
2584 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2585 		void *buf, int len, unsigned int gup_flags);
2586 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2587 		void *buf, int len, unsigned int gup_flags);
2588 
2589 long get_user_pages_remote(struct mm_struct *mm,
2590 			   unsigned long start, unsigned long nr_pages,
2591 			   unsigned int gup_flags, struct page **pages,
2592 			   int *locked);
2593 long pin_user_pages_remote(struct mm_struct *mm,
2594 			   unsigned long start, unsigned long nr_pages,
2595 			   unsigned int gup_flags, struct page **pages,
2596 			   int *locked);
2597 
2598 /*
2599  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2600  */
2601 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2602 						    unsigned long addr,
2603 						    int gup_flags,
2604 						    struct vm_area_struct **vmap)
2605 {
2606 	struct page *page;
2607 	struct vm_area_struct *vma;
2608 	int got;
2609 
2610 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2611 		return ERR_PTR(-EINVAL);
2612 
2613 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2614 
2615 	if (got < 0)
2616 		return ERR_PTR(got);
2617 
2618 	vma = vma_lookup(mm, addr);
2619 	if (WARN_ON_ONCE(!vma)) {
2620 		put_page(page);
2621 		return ERR_PTR(-EINVAL);
2622 	}
2623 
2624 	*vmap = vma;
2625 	return page;
2626 }
2627 
2628 long get_user_pages(unsigned long start, unsigned long nr_pages,
2629 		    unsigned int gup_flags, struct page **pages);
2630 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2631 		    unsigned int gup_flags, struct page **pages);
2632 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2633 		    struct page **pages, unsigned int gup_flags);
2634 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2635 		    struct page **pages, unsigned int gup_flags);
2636 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2637 		      struct folio **folios, unsigned int max_folios,
2638 		      pgoff_t *offset);
2639 int folio_add_pins(struct folio *folio, unsigned int pins);
2640 
2641 int get_user_pages_fast(unsigned long start, int nr_pages,
2642 			unsigned int gup_flags, struct page **pages);
2643 int pin_user_pages_fast(unsigned long start, int nr_pages,
2644 			unsigned int gup_flags, struct page **pages);
2645 void folio_add_pin(struct folio *folio);
2646 
2647 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2648 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2649 			struct task_struct *task, bool bypass_rlim);
2650 
2651 struct kvec;
2652 struct page *get_dump_page(unsigned long addr);
2653 
2654 bool folio_mark_dirty(struct folio *folio);
2655 bool folio_mark_dirty_lock(struct folio *folio);
2656 bool set_page_dirty(struct page *page);
2657 int set_page_dirty_lock(struct page *page);
2658 
2659 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2660 
2661 /*
2662  * Flags used by change_protection().  For now we make it a bitmap so
2663  * that we can pass in multiple flags just like parameters.  However
2664  * for now all the callers are only use one of the flags at the same
2665  * time.
2666  */
2667 /*
2668  * Whether we should manually check if we can map individual PTEs writable,
2669  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2670  * PTEs automatically in a writable mapping.
2671  */
2672 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2673 /* Whether this protection change is for NUMA hints */
2674 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2675 /* Whether this change is for write protecting */
2676 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2677 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2678 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2679 					    MM_CP_UFFD_WP_RESOLVE)
2680 
2681 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2682 			     pte_t pte);
2683 extern long change_protection(struct mmu_gather *tlb,
2684 			      struct vm_area_struct *vma, unsigned long start,
2685 			      unsigned long end, unsigned long cp_flags);
2686 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2687 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2688 	  unsigned long start, unsigned long end, unsigned long newflags);
2689 
2690 /*
2691  * doesn't attempt to fault and will return short.
2692  */
2693 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2694 			     unsigned int gup_flags, struct page **pages);
2695 
2696 static inline bool get_user_page_fast_only(unsigned long addr,
2697 			unsigned int gup_flags, struct page **pagep)
2698 {
2699 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2700 }
2701 /*
2702  * per-process(per-mm_struct) statistics.
2703  */
2704 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2705 {
2706 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2707 }
2708 
2709 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2710 
2711 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2712 {
2713 	percpu_counter_add(&mm->rss_stat[member], value);
2714 
2715 	mm_trace_rss_stat(mm, member);
2716 }
2717 
2718 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2719 {
2720 	percpu_counter_inc(&mm->rss_stat[member]);
2721 
2722 	mm_trace_rss_stat(mm, member);
2723 }
2724 
2725 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2726 {
2727 	percpu_counter_dec(&mm->rss_stat[member]);
2728 
2729 	mm_trace_rss_stat(mm, member);
2730 }
2731 
2732 /* Optimized variant when folio is already known not to be anon */
2733 static inline int mm_counter_file(struct folio *folio)
2734 {
2735 	if (folio_test_swapbacked(folio))
2736 		return MM_SHMEMPAGES;
2737 	return MM_FILEPAGES;
2738 }
2739 
2740 static inline int mm_counter(struct folio *folio)
2741 {
2742 	if (folio_test_anon(folio))
2743 		return MM_ANONPAGES;
2744 	return mm_counter_file(folio);
2745 }
2746 
2747 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2748 {
2749 	return get_mm_counter(mm, MM_FILEPAGES) +
2750 		get_mm_counter(mm, MM_ANONPAGES) +
2751 		get_mm_counter(mm, MM_SHMEMPAGES);
2752 }
2753 
2754 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2755 {
2756 	return max(mm->hiwater_rss, get_mm_rss(mm));
2757 }
2758 
2759 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2760 {
2761 	return max(mm->hiwater_vm, mm->total_vm);
2762 }
2763 
2764 static inline void update_hiwater_rss(struct mm_struct *mm)
2765 {
2766 	unsigned long _rss = get_mm_rss(mm);
2767 
2768 	if ((mm)->hiwater_rss < _rss)
2769 		(mm)->hiwater_rss = _rss;
2770 }
2771 
2772 static inline void update_hiwater_vm(struct mm_struct *mm)
2773 {
2774 	if (mm->hiwater_vm < mm->total_vm)
2775 		mm->hiwater_vm = mm->total_vm;
2776 }
2777 
2778 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2779 {
2780 	mm->hiwater_rss = get_mm_rss(mm);
2781 }
2782 
2783 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2784 					 struct mm_struct *mm)
2785 {
2786 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2787 
2788 	if (*maxrss < hiwater_rss)
2789 		*maxrss = hiwater_rss;
2790 }
2791 
2792 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2793 static inline int pte_special(pte_t pte)
2794 {
2795 	return 0;
2796 }
2797 
2798 static inline pte_t pte_mkspecial(pte_t pte)
2799 {
2800 	return pte;
2801 }
2802 #endif
2803 
2804 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2805 static inline bool pmd_special(pmd_t pmd)
2806 {
2807 	return false;
2808 }
2809 
2810 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2811 {
2812 	return pmd;
2813 }
2814 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2815 
2816 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2817 static inline bool pud_special(pud_t pud)
2818 {
2819 	return false;
2820 }
2821 
2822 static inline pud_t pud_mkspecial(pud_t pud)
2823 {
2824 	return pud;
2825 }
2826 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2827 
2828 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2829 static inline int pte_devmap(pte_t pte)
2830 {
2831 	return 0;
2832 }
2833 #endif
2834 
2835 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2836 			       spinlock_t **ptl);
2837 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2838 				    spinlock_t **ptl)
2839 {
2840 	pte_t *ptep;
2841 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2842 	return ptep;
2843 }
2844 
2845 #ifdef __PAGETABLE_P4D_FOLDED
2846 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2847 						unsigned long address)
2848 {
2849 	return 0;
2850 }
2851 #else
2852 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2853 #endif
2854 
2855 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2856 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2857 						unsigned long address)
2858 {
2859 	return 0;
2860 }
2861 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2862 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2863 
2864 #else
2865 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2866 
2867 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2868 {
2869 	if (mm_pud_folded(mm))
2870 		return;
2871 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2872 }
2873 
2874 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2875 {
2876 	if (mm_pud_folded(mm))
2877 		return;
2878 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2879 }
2880 #endif
2881 
2882 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2883 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2884 						unsigned long address)
2885 {
2886 	return 0;
2887 }
2888 
2889 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2890 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2891 
2892 #else
2893 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2894 
2895 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2896 {
2897 	if (mm_pmd_folded(mm))
2898 		return;
2899 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2900 }
2901 
2902 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2903 {
2904 	if (mm_pmd_folded(mm))
2905 		return;
2906 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2907 }
2908 #endif
2909 
2910 #ifdef CONFIG_MMU
2911 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2912 {
2913 	atomic_long_set(&mm->pgtables_bytes, 0);
2914 }
2915 
2916 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2917 {
2918 	return atomic_long_read(&mm->pgtables_bytes);
2919 }
2920 
2921 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2922 {
2923 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2924 }
2925 
2926 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2927 {
2928 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2929 }
2930 #else
2931 
2932 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2933 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2934 {
2935 	return 0;
2936 }
2937 
2938 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2939 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2940 #endif
2941 
2942 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2943 int __pte_alloc_kernel(pmd_t *pmd);
2944 
2945 #if defined(CONFIG_MMU)
2946 
2947 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2948 		unsigned long address)
2949 {
2950 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2951 		NULL : p4d_offset(pgd, address);
2952 }
2953 
2954 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2955 		unsigned long address)
2956 {
2957 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2958 		NULL : pud_offset(p4d, address);
2959 }
2960 
2961 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2962 {
2963 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2964 		NULL: pmd_offset(pud, address);
2965 }
2966 #endif /* CONFIG_MMU */
2967 
2968 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2969 {
2970 	return page_ptdesc(virt_to_page(x));
2971 }
2972 
2973 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2974 {
2975 	return page_to_virt(ptdesc_page(pt));
2976 }
2977 
2978 static inline void *ptdesc_address(const struct ptdesc *pt)
2979 {
2980 	return folio_address(ptdesc_folio(pt));
2981 }
2982 
2983 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2984 {
2985 	return folio_test_reserved(ptdesc_folio(pt));
2986 }
2987 
2988 /**
2989  * pagetable_alloc - Allocate pagetables
2990  * @gfp:    GFP flags
2991  * @order:  desired pagetable order
2992  *
2993  * pagetable_alloc allocates memory for page tables as well as a page table
2994  * descriptor to describe that memory.
2995  *
2996  * Return: The ptdesc describing the allocated page tables.
2997  */
2998 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2999 {
3000 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
3001 
3002 	return page_ptdesc(page);
3003 }
3004 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
3005 
3006 /**
3007  * pagetable_free - Free pagetables
3008  * @pt:	The page table descriptor
3009  *
3010  * pagetable_free frees the memory of all page tables described by a page
3011  * table descriptor and the memory for the descriptor itself.
3012  */
3013 static inline void pagetable_free(struct ptdesc *pt)
3014 {
3015 	struct page *page = ptdesc_page(pt);
3016 
3017 	__free_pages(page, compound_order(page));
3018 }
3019 
3020 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3021 #if ALLOC_SPLIT_PTLOCKS
3022 void __init ptlock_cache_init(void);
3023 bool ptlock_alloc(struct ptdesc *ptdesc);
3024 void ptlock_free(struct ptdesc *ptdesc);
3025 
3026 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3027 {
3028 	return ptdesc->ptl;
3029 }
3030 #else /* ALLOC_SPLIT_PTLOCKS */
3031 static inline void ptlock_cache_init(void)
3032 {
3033 }
3034 
3035 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3036 {
3037 	return true;
3038 }
3039 
3040 static inline void ptlock_free(struct ptdesc *ptdesc)
3041 {
3042 }
3043 
3044 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3045 {
3046 	return &ptdesc->ptl;
3047 }
3048 #endif /* ALLOC_SPLIT_PTLOCKS */
3049 
3050 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3051 {
3052 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3053 }
3054 
3055 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3056 {
3057 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3058 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3059 	return ptlock_ptr(virt_to_ptdesc(pte));
3060 }
3061 
3062 static inline bool ptlock_init(struct ptdesc *ptdesc)
3063 {
3064 	/*
3065 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3066 	 * with 0. Make sure nobody took it in use in between.
3067 	 *
3068 	 * It can happen if arch try to use slab for page table allocation:
3069 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3070 	 */
3071 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3072 	if (!ptlock_alloc(ptdesc))
3073 		return false;
3074 	spin_lock_init(ptlock_ptr(ptdesc));
3075 	return true;
3076 }
3077 
3078 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3079 /*
3080  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3081  */
3082 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3083 {
3084 	return &mm->page_table_lock;
3085 }
3086 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3087 {
3088 	return &mm->page_table_lock;
3089 }
3090 static inline void ptlock_cache_init(void) {}
3091 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
3092 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3093 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3094 
3095 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3096 {
3097 	struct folio *folio = ptdesc_folio(ptdesc);
3098 
3099 	__folio_set_pgtable(folio);
3100 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3101 }
3102 
3103 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3104 {
3105 	struct folio *folio = ptdesc_folio(ptdesc);
3106 
3107 	ptlock_free(ptdesc);
3108 	__folio_clear_pgtable(folio);
3109 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3110 }
3111 
3112 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3113 {
3114 	pagetable_dtor(ptdesc);
3115 	pagetable_free(ptdesc);
3116 }
3117 
3118 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3119 {
3120 	if (!ptlock_init(ptdesc))
3121 		return false;
3122 	__pagetable_ctor(ptdesc);
3123 	return true;
3124 }
3125 
3126 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3127 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3128 			pmd_t *pmdvalp)
3129 {
3130 	pte_t *pte;
3131 
3132 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3133 	return pte;
3134 }
3135 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3136 {
3137 	return __pte_offset_map(pmd, addr, NULL);
3138 }
3139 
3140 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3141 			unsigned long addr, spinlock_t **ptlp);
3142 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3143 			unsigned long addr, spinlock_t **ptlp)
3144 {
3145 	pte_t *pte;
3146 
3147 	__cond_lock(RCU, __cond_lock(*ptlp,
3148 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3149 	return pte;
3150 }
3151 
3152 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3153 				unsigned long addr, spinlock_t **ptlp);
3154 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3155 				unsigned long addr, pmd_t *pmdvalp,
3156 				spinlock_t **ptlp);
3157 
3158 #define pte_unmap_unlock(pte, ptl)	do {		\
3159 	spin_unlock(ptl);				\
3160 	pte_unmap(pte);					\
3161 } while (0)
3162 
3163 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3164 
3165 #define pte_alloc_map(mm, pmd, address)			\
3166 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3167 
3168 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3169 	(pte_alloc(mm, pmd) ?			\
3170 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3171 
3172 #define pte_alloc_kernel(pmd, address)			\
3173 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3174 		NULL: pte_offset_kernel(pmd, address))
3175 
3176 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3177 
3178 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3179 {
3180 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3181 	return virt_to_page((void *)((unsigned long) pmd & mask));
3182 }
3183 
3184 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3185 {
3186 	return page_ptdesc(pmd_pgtable_page(pmd));
3187 }
3188 
3189 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3190 {
3191 	return ptlock_ptr(pmd_ptdesc(pmd));
3192 }
3193 
3194 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3195 {
3196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3197 	ptdesc->pmd_huge_pte = NULL;
3198 #endif
3199 	return ptlock_init(ptdesc);
3200 }
3201 
3202 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3203 
3204 #else
3205 
3206 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3207 {
3208 	return &mm->page_table_lock;
3209 }
3210 
3211 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3212 
3213 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3214 
3215 #endif
3216 
3217 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3218 {
3219 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3220 	spin_lock(ptl);
3221 	return ptl;
3222 }
3223 
3224 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3225 {
3226 	if (!pmd_ptlock_init(ptdesc))
3227 		return false;
3228 	ptdesc_pmd_pts_init(ptdesc);
3229 	__pagetable_ctor(ptdesc);
3230 	return true;
3231 }
3232 
3233 /*
3234  * No scalability reason to split PUD locks yet, but follow the same pattern
3235  * as the PMD locks to make it easier if we decide to.  The VM should not be
3236  * considered ready to switch to split PUD locks yet; there may be places
3237  * which need to be converted from page_table_lock.
3238  */
3239 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3240 {
3241 	return &mm->page_table_lock;
3242 }
3243 
3244 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3245 {
3246 	spinlock_t *ptl = pud_lockptr(mm, pud);
3247 
3248 	spin_lock(ptl);
3249 	return ptl;
3250 }
3251 
3252 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3253 {
3254 	__pagetable_ctor(ptdesc);
3255 }
3256 
3257 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3258 {
3259 	__pagetable_ctor(ptdesc);
3260 }
3261 
3262 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3263 {
3264 	__pagetable_ctor(ptdesc);
3265 }
3266 
3267 extern void __init pagecache_init(void);
3268 extern void free_initmem(void);
3269 
3270 /*
3271  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3272  * into the buddy system. The freed pages will be poisoned with pattern
3273  * "poison" if it's within range [0, UCHAR_MAX].
3274  * Return pages freed into the buddy system.
3275  */
3276 extern unsigned long free_reserved_area(void *start, void *end,
3277 					int poison, const char *s);
3278 
3279 extern void adjust_managed_page_count(struct page *page, long count);
3280 
3281 extern void reserve_bootmem_region(phys_addr_t start,
3282 				   phys_addr_t end, int nid);
3283 
3284 /* Free the reserved page into the buddy system, so it gets managed. */
3285 void free_reserved_page(struct page *page);
3286 #define free_highmem_page(page) free_reserved_page(page)
3287 
3288 static inline void mark_page_reserved(struct page *page)
3289 {
3290 	SetPageReserved(page);
3291 	adjust_managed_page_count(page, -1);
3292 }
3293 
3294 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3295 {
3296 	free_reserved_page(ptdesc_page(pt));
3297 }
3298 
3299 /*
3300  * Default method to free all the __init memory into the buddy system.
3301  * The freed pages will be poisoned with pattern "poison" if it's within
3302  * range [0, UCHAR_MAX].
3303  * Return pages freed into the buddy system.
3304  */
3305 static inline unsigned long free_initmem_default(int poison)
3306 {
3307 	extern char __init_begin[], __init_end[];
3308 
3309 	return free_reserved_area(&__init_begin, &__init_end,
3310 				  poison, "unused kernel image (initmem)");
3311 }
3312 
3313 static inline unsigned long get_num_physpages(void)
3314 {
3315 	int nid;
3316 	unsigned long phys_pages = 0;
3317 
3318 	for_each_online_node(nid)
3319 		phys_pages += node_present_pages(nid);
3320 
3321 	return phys_pages;
3322 }
3323 
3324 /*
3325  * Using memblock node mappings, an architecture may initialise its
3326  * zones, allocate the backing mem_map and account for memory holes in an
3327  * architecture independent manner.
3328  *
3329  * An architecture is expected to register range of page frames backed by
3330  * physical memory with memblock_add[_node]() before calling
3331  * free_area_init() passing in the PFN each zone ends at. At a basic
3332  * usage, an architecture is expected to do something like
3333  *
3334  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3335  * 							 max_highmem_pfn};
3336  * for_each_valid_physical_page_range()
3337  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3338  * free_area_init(max_zone_pfns);
3339  */
3340 void free_area_init(unsigned long *max_zone_pfn);
3341 unsigned long node_map_pfn_alignment(void);
3342 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3343 						unsigned long end_pfn);
3344 extern void get_pfn_range_for_nid(unsigned int nid,
3345 			unsigned long *start_pfn, unsigned long *end_pfn);
3346 
3347 #ifndef CONFIG_NUMA
3348 static inline int early_pfn_to_nid(unsigned long pfn)
3349 {
3350 	return 0;
3351 }
3352 #else
3353 /* please see mm/page_alloc.c */
3354 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3355 #endif
3356 
3357 extern void mem_init(void);
3358 extern void __init mmap_init(void);
3359 
3360 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3361 static inline void show_mem(void)
3362 {
3363 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3364 }
3365 extern long si_mem_available(void);
3366 extern void si_meminfo(struct sysinfo * val);
3367 extern void si_meminfo_node(struct sysinfo *val, int nid);
3368 
3369 extern __printf(3, 4)
3370 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3371 
3372 extern void setup_per_cpu_pageset(void);
3373 
3374 /* nommu.c */
3375 extern atomic_long_t mmap_pages_allocated;
3376 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3377 
3378 /* interval_tree.c */
3379 void vma_interval_tree_insert(struct vm_area_struct *node,
3380 			      struct rb_root_cached *root);
3381 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3382 				    struct vm_area_struct *prev,
3383 				    struct rb_root_cached *root);
3384 void vma_interval_tree_remove(struct vm_area_struct *node,
3385 			      struct rb_root_cached *root);
3386 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3387 				unsigned long start, unsigned long last);
3388 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3389 				unsigned long start, unsigned long last);
3390 
3391 #define vma_interval_tree_foreach(vma, root, start, last)		\
3392 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3393 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3394 
3395 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3396 				   struct rb_root_cached *root);
3397 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3398 				   struct rb_root_cached *root);
3399 struct anon_vma_chain *
3400 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3401 				  unsigned long start, unsigned long last);
3402 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3403 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3404 #ifdef CONFIG_DEBUG_VM_RB
3405 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3406 #endif
3407 
3408 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3409 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3410 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3411 
3412 /* mmap.c */
3413 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3414 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3415 extern void exit_mmap(struct mm_struct *);
3416 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3417 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3418 				 unsigned long addr, bool write);
3419 
3420 static inline int check_data_rlimit(unsigned long rlim,
3421 				    unsigned long new,
3422 				    unsigned long start,
3423 				    unsigned long end_data,
3424 				    unsigned long start_data)
3425 {
3426 	if (rlim < RLIM_INFINITY) {
3427 		if (((new - start) + (end_data - start_data)) > rlim)
3428 			return -ENOSPC;
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 extern int mm_take_all_locks(struct mm_struct *mm);
3435 extern void mm_drop_all_locks(struct mm_struct *mm);
3436 
3437 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3438 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3439 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3440 extern struct file *get_task_exe_file(struct task_struct *task);
3441 
3442 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3443 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3444 
3445 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3446 				   const struct vm_special_mapping *sm);
3447 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3448 				   unsigned long addr, unsigned long len,
3449 				   unsigned long flags,
3450 				   const struct vm_special_mapping *spec);
3451 
3452 unsigned long randomize_stack_top(unsigned long stack_top);
3453 unsigned long randomize_page(unsigned long start, unsigned long range);
3454 
3455 unsigned long
3456 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3457 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3458 
3459 static inline unsigned long
3460 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3461 		  unsigned long pgoff, unsigned long flags)
3462 {
3463 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3464 }
3465 
3466 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3467 	unsigned long len, unsigned long prot, unsigned long flags,
3468 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3469 	struct list_head *uf);
3470 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3471 			 unsigned long start, size_t len, struct list_head *uf,
3472 			 bool unlock);
3473 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3474 		    struct mm_struct *mm, unsigned long start,
3475 		    unsigned long end, struct list_head *uf, bool unlock);
3476 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3477 		     struct list_head *uf);
3478 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3479 
3480 #ifdef CONFIG_MMU
3481 extern int __mm_populate(unsigned long addr, unsigned long len,
3482 			 int ignore_errors);
3483 static inline void mm_populate(unsigned long addr, unsigned long len)
3484 {
3485 	/* Ignore errors */
3486 	(void) __mm_populate(addr, len, 1);
3487 }
3488 #else
3489 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3490 #endif
3491 
3492 /* This takes the mm semaphore itself */
3493 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3494 extern int vm_munmap(unsigned long, size_t);
3495 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3496         unsigned long, unsigned long,
3497         unsigned long, unsigned long);
3498 
3499 struct vm_unmapped_area_info {
3500 #define VM_UNMAPPED_AREA_TOPDOWN 1
3501 	unsigned long flags;
3502 	unsigned long length;
3503 	unsigned long low_limit;
3504 	unsigned long high_limit;
3505 	unsigned long align_mask;
3506 	unsigned long align_offset;
3507 	unsigned long start_gap;
3508 };
3509 
3510 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3511 
3512 /* truncate.c */
3513 extern void truncate_inode_pages(struct address_space *, loff_t);
3514 extern void truncate_inode_pages_range(struct address_space *,
3515 				       loff_t lstart, loff_t lend);
3516 extern void truncate_inode_pages_final(struct address_space *);
3517 
3518 /* generic vm_area_ops exported for stackable file systems */
3519 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3520 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3521 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3522 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3523 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf);
3524 
3525 extern unsigned long stack_guard_gap;
3526 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3527 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3528 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3529 
3530 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3531 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3532 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3533 					     struct vm_area_struct **pprev);
3534 
3535 /*
3536  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3537  * NULL if none.  Assume start_addr < end_addr.
3538  */
3539 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3540 			unsigned long start_addr, unsigned long end_addr);
3541 
3542 /**
3543  * vma_lookup() - Find a VMA at a specific address
3544  * @mm: The process address space.
3545  * @addr: The user address.
3546  *
3547  * Return: The vm_area_struct at the given address, %NULL otherwise.
3548  */
3549 static inline
3550 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3551 {
3552 	return mtree_load(&mm->mm_mt, addr);
3553 }
3554 
3555 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3556 {
3557 	if (vma->vm_flags & VM_GROWSDOWN)
3558 		return stack_guard_gap;
3559 
3560 	/* See reasoning around the VM_SHADOW_STACK definition */
3561 	if (vma->vm_flags & VM_SHADOW_STACK)
3562 		return PAGE_SIZE;
3563 
3564 	return 0;
3565 }
3566 
3567 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3568 {
3569 	unsigned long gap = stack_guard_start_gap(vma);
3570 	unsigned long vm_start = vma->vm_start;
3571 
3572 	vm_start -= gap;
3573 	if (vm_start > vma->vm_start)
3574 		vm_start = 0;
3575 	return vm_start;
3576 }
3577 
3578 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3579 {
3580 	unsigned long vm_end = vma->vm_end;
3581 
3582 	if (vma->vm_flags & VM_GROWSUP) {
3583 		vm_end += stack_guard_gap;
3584 		if (vm_end < vma->vm_end)
3585 			vm_end = -PAGE_SIZE;
3586 	}
3587 	return vm_end;
3588 }
3589 
3590 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3591 {
3592 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3593 }
3594 
3595 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3596 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3597 				unsigned long vm_start, unsigned long vm_end)
3598 {
3599 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3600 
3601 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3602 		vma = NULL;
3603 
3604 	return vma;
3605 }
3606 
3607 static inline bool range_in_vma(struct vm_area_struct *vma,
3608 				unsigned long start, unsigned long end)
3609 {
3610 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3611 }
3612 
3613 #ifdef CONFIG_MMU
3614 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3615 void vma_set_page_prot(struct vm_area_struct *vma);
3616 #else
3617 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3618 {
3619 	return __pgprot(0);
3620 }
3621 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3622 {
3623 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3624 }
3625 #endif
3626 
3627 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3628 
3629 #ifdef CONFIG_NUMA_BALANCING
3630 unsigned long change_prot_numa(struct vm_area_struct *vma,
3631 			unsigned long start, unsigned long end);
3632 #endif
3633 
3634 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3635 		unsigned long addr);
3636 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3637 			unsigned long pfn, unsigned long size, pgprot_t);
3638 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3639 		unsigned long pfn, unsigned long size, pgprot_t prot);
3640 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3641 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3642 			struct page **pages, unsigned long *num);
3643 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3644 				unsigned long num);
3645 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3646 				unsigned long num);
3647 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3648 			unsigned long pfn);
3649 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3650 			unsigned long pfn, pgprot_t pgprot);
3651 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3652 			pfn_t pfn);
3653 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3654 		unsigned long addr, pfn_t pfn);
3655 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3656 
3657 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3658 				unsigned long addr, struct page *page)
3659 {
3660 	int err = vm_insert_page(vma, addr, page);
3661 
3662 	if (err == -ENOMEM)
3663 		return VM_FAULT_OOM;
3664 	if (err < 0 && err != -EBUSY)
3665 		return VM_FAULT_SIGBUS;
3666 
3667 	return VM_FAULT_NOPAGE;
3668 }
3669 
3670 #ifndef io_remap_pfn_range
3671 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3672 				     unsigned long addr, unsigned long pfn,
3673 				     unsigned long size, pgprot_t prot)
3674 {
3675 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3676 }
3677 #endif
3678 
3679 static inline vm_fault_t vmf_error(int err)
3680 {
3681 	if (err == -ENOMEM)
3682 		return VM_FAULT_OOM;
3683 	else if (err == -EHWPOISON)
3684 		return VM_FAULT_HWPOISON;
3685 	return VM_FAULT_SIGBUS;
3686 }
3687 
3688 /*
3689  * Convert errno to return value for ->page_mkwrite() calls.
3690  *
3691  * This should eventually be merged with vmf_error() above, but will need a
3692  * careful audit of all vmf_error() callers.
3693  */
3694 static inline vm_fault_t vmf_fs_error(int err)
3695 {
3696 	if (err == 0)
3697 		return VM_FAULT_LOCKED;
3698 	if (err == -EFAULT || err == -EAGAIN)
3699 		return VM_FAULT_NOPAGE;
3700 	if (err == -ENOMEM)
3701 		return VM_FAULT_OOM;
3702 	/* -ENOSPC, -EDQUOT, -EIO ... */
3703 	return VM_FAULT_SIGBUS;
3704 }
3705 
3706 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3707 {
3708 	if (vm_fault & VM_FAULT_OOM)
3709 		return -ENOMEM;
3710 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3711 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3712 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3713 		return -EFAULT;
3714 	return 0;
3715 }
3716 
3717 /*
3718  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3719  * a (NUMA hinting) fault is required.
3720  */
3721 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3722 					   unsigned int flags)
3723 {
3724 	/*
3725 	 * If callers don't want to honor NUMA hinting faults, no need to
3726 	 * determine if we would actually have to trigger a NUMA hinting fault.
3727 	 */
3728 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3729 		return true;
3730 
3731 	/*
3732 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3733 	 *
3734 	 * Requiring a fault here even for inaccessible VMAs would mean that
3735 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3736 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3737 	 */
3738 	return !vma_is_accessible(vma);
3739 }
3740 
3741 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3742 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3743 			       unsigned long size, pte_fn_t fn, void *data);
3744 extern int apply_to_existing_page_range(struct mm_struct *mm,
3745 				   unsigned long address, unsigned long size,
3746 				   pte_fn_t fn, void *data);
3747 
3748 #ifdef CONFIG_PAGE_POISONING
3749 extern void __kernel_poison_pages(struct page *page, int numpages);
3750 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3751 extern bool _page_poisoning_enabled_early;
3752 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3753 static inline bool page_poisoning_enabled(void)
3754 {
3755 	return _page_poisoning_enabled_early;
3756 }
3757 /*
3758  * For use in fast paths after init_mem_debugging() has run, or when a
3759  * false negative result is not harmful when called too early.
3760  */
3761 static inline bool page_poisoning_enabled_static(void)
3762 {
3763 	return static_branch_unlikely(&_page_poisoning_enabled);
3764 }
3765 static inline void kernel_poison_pages(struct page *page, int numpages)
3766 {
3767 	if (page_poisoning_enabled_static())
3768 		__kernel_poison_pages(page, numpages);
3769 }
3770 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3771 {
3772 	if (page_poisoning_enabled_static())
3773 		__kernel_unpoison_pages(page, numpages);
3774 }
3775 #else
3776 static inline bool page_poisoning_enabled(void) { return false; }
3777 static inline bool page_poisoning_enabled_static(void) { return false; }
3778 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3779 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3780 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3781 #endif
3782 
3783 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3784 static inline bool want_init_on_alloc(gfp_t flags)
3785 {
3786 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3787 				&init_on_alloc))
3788 		return true;
3789 	return flags & __GFP_ZERO;
3790 }
3791 
3792 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3793 static inline bool want_init_on_free(void)
3794 {
3795 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3796 				   &init_on_free);
3797 }
3798 
3799 extern bool _debug_pagealloc_enabled_early;
3800 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3801 
3802 static inline bool debug_pagealloc_enabled(void)
3803 {
3804 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3805 		_debug_pagealloc_enabled_early;
3806 }
3807 
3808 /*
3809  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3810  * or when a false negative result is not harmful when called too early.
3811  */
3812 static inline bool debug_pagealloc_enabled_static(void)
3813 {
3814 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3815 		return false;
3816 
3817 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3818 }
3819 
3820 /*
3821  * To support DEBUG_PAGEALLOC architecture must ensure that
3822  * __kernel_map_pages() never fails
3823  */
3824 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3825 #ifdef CONFIG_DEBUG_PAGEALLOC
3826 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3827 {
3828 	if (debug_pagealloc_enabled_static())
3829 		__kernel_map_pages(page, numpages, 1);
3830 }
3831 
3832 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3833 {
3834 	if (debug_pagealloc_enabled_static())
3835 		__kernel_map_pages(page, numpages, 0);
3836 }
3837 
3838 extern unsigned int _debug_guardpage_minorder;
3839 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3840 
3841 static inline unsigned int debug_guardpage_minorder(void)
3842 {
3843 	return _debug_guardpage_minorder;
3844 }
3845 
3846 static inline bool debug_guardpage_enabled(void)
3847 {
3848 	return static_branch_unlikely(&_debug_guardpage_enabled);
3849 }
3850 
3851 static inline bool page_is_guard(struct page *page)
3852 {
3853 	if (!debug_guardpage_enabled())
3854 		return false;
3855 
3856 	return PageGuard(page);
3857 }
3858 
3859 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3860 static inline bool set_page_guard(struct zone *zone, struct page *page,
3861 				  unsigned int order)
3862 {
3863 	if (!debug_guardpage_enabled())
3864 		return false;
3865 	return __set_page_guard(zone, page, order);
3866 }
3867 
3868 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3869 static inline void clear_page_guard(struct zone *zone, struct page *page,
3870 				    unsigned int order)
3871 {
3872 	if (!debug_guardpage_enabled())
3873 		return;
3874 	__clear_page_guard(zone, page, order);
3875 }
3876 
3877 #else	/* CONFIG_DEBUG_PAGEALLOC */
3878 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3879 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3880 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3881 static inline bool debug_guardpage_enabled(void) { return false; }
3882 static inline bool page_is_guard(struct page *page) { return false; }
3883 static inline bool set_page_guard(struct zone *zone, struct page *page,
3884 			unsigned int order) { return false; }
3885 static inline void clear_page_guard(struct zone *zone, struct page *page,
3886 				unsigned int order) {}
3887 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3888 
3889 #ifdef __HAVE_ARCH_GATE_AREA
3890 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3891 extern int in_gate_area_no_mm(unsigned long addr);
3892 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3893 #else
3894 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3895 {
3896 	return NULL;
3897 }
3898 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3899 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3900 {
3901 	return 0;
3902 }
3903 #endif	/* __HAVE_ARCH_GATE_AREA */
3904 
3905 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3906 
3907 #ifdef CONFIG_SYSCTL
3908 extern int sysctl_drop_caches;
3909 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3910 		loff_t *);
3911 #endif
3912 
3913 void drop_slab(void);
3914 
3915 #ifndef CONFIG_MMU
3916 #define randomize_va_space 0
3917 #else
3918 extern int randomize_va_space;
3919 #endif
3920 
3921 const char * arch_vma_name(struct vm_area_struct *vma);
3922 #ifdef CONFIG_MMU
3923 void print_vma_addr(char *prefix, unsigned long rip);
3924 #else
3925 static inline void print_vma_addr(char *prefix, unsigned long rip)
3926 {
3927 }
3928 #endif
3929 
3930 void *sparse_buffer_alloc(unsigned long size);
3931 unsigned long section_map_size(void);
3932 struct page * __populate_section_memmap(unsigned long pfn,
3933 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3934 		struct dev_pagemap *pgmap);
3935 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3936 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3937 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3938 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3939 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3940 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3941 			    unsigned long flags);
3942 void *vmemmap_alloc_block(unsigned long size, int node);
3943 struct vmem_altmap;
3944 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3945 			      struct vmem_altmap *altmap);
3946 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3947 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3948 		     unsigned long addr, unsigned long next);
3949 int vmemmap_check_pmd(pmd_t *pmd, int node,
3950 		      unsigned long addr, unsigned long next);
3951 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3952 			       int node, struct vmem_altmap *altmap);
3953 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3954 			       int node, struct vmem_altmap *altmap);
3955 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3956 		struct vmem_altmap *altmap);
3957 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3958 			 unsigned long headsize);
3959 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3960 		     unsigned long headsize);
3961 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3962 			  unsigned long headsize);
3963 void vmemmap_populate_print_last(void);
3964 #ifdef CONFIG_MEMORY_HOTPLUG
3965 void vmemmap_free(unsigned long start, unsigned long end,
3966 		struct vmem_altmap *altmap);
3967 #endif
3968 
3969 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3970 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3971 {
3972 	/* number of pfns from base where pfn_to_page() is valid */
3973 	if (altmap)
3974 		return altmap->reserve + altmap->free;
3975 	return 0;
3976 }
3977 
3978 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3979 				    unsigned long nr_pfns)
3980 {
3981 	altmap->alloc -= nr_pfns;
3982 }
3983 #else
3984 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3985 {
3986 	return 0;
3987 }
3988 
3989 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3990 				    unsigned long nr_pfns)
3991 {
3992 }
3993 #endif
3994 
3995 #define VMEMMAP_RESERVE_NR	2
3996 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3997 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3998 					  struct dev_pagemap *pgmap)
3999 {
4000 	unsigned long nr_pages;
4001 	unsigned long nr_vmemmap_pages;
4002 
4003 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
4004 		return false;
4005 
4006 	nr_pages = pgmap_vmemmap_nr(pgmap);
4007 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4008 	/*
4009 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4010 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4011 	 */
4012 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4013 }
4014 /*
4015  * If we don't have an architecture override, use the generic rule
4016  */
4017 #ifndef vmemmap_can_optimize
4018 #define vmemmap_can_optimize __vmemmap_can_optimize
4019 #endif
4020 
4021 #else
4022 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4023 					   struct dev_pagemap *pgmap)
4024 {
4025 	return false;
4026 }
4027 #endif
4028 
4029 enum mf_flags {
4030 	MF_COUNT_INCREASED = 1 << 0,
4031 	MF_ACTION_REQUIRED = 1 << 1,
4032 	MF_MUST_KILL = 1 << 2,
4033 	MF_SOFT_OFFLINE = 1 << 3,
4034 	MF_UNPOISON = 1 << 4,
4035 	MF_SW_SIMULATED = 1 << 5,
4036 	MF_NO_RETRY = 1 << 6,
4037 	MF_MEM_PRE_REMOVE = 1 << 7,
4038 };
4039 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4040 		      unsigned long count, int mf_flags);
4041 extern int memory_failure(unsigned long pfn, int flags);
4042 extern void memory_failure_queue_kick(int cpu);
4043 extern int unpoison_memory(unsigned long pfn);
4044 extern atomic_long_t num_poisoned_pages __read_mostly;
4045 extern int soft_offline_page(unsigned long pfn, int flags);
4046 #ifdef CONFIG_MEMORY_FAILURE
4047 /*
4048  * Sysfs entries for memory failure handling statistics.
4049  */
4050 extern const struct attribute_group memory_failure_attr_group;
4051 extern void memory_failure_queue(unsigned long pfn, int flags);
4052 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4053 					bool *migratable_cleared);
4054 void num_poisoned_pages_inc(unsigned long pfn);
4055 void num_poisoned_pages_sub(unsigned long pfn, long i);
4056 #else
4057 static inline void memory_failure_queue(unsigned long pfn, int flags)
4058 {
4059 }
4060 
4061 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4062 					bool *migratable_cleared)
4063 {
4064 	return 0;
4065 }
4066 
4067 static inline void num_poisoned_pages_inc(unsigned long pfn)
4068 {
4069 }
4070 
4071 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4072 {
4073 }
4074 #endif
4075 
4076 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4077 extern void memblk_nr_poison_inc(unsigned long pfn);
4078 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4079 #else
4080 static inline void memblk_nr_poison_inc(unsigned long pfn)
4081 {
4082 }
4083 
4084 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4085 {
4086 }
4087 #endif
4088 
4089 #ifndef arch_memory_failure
4090 static inline int arch_memory_failure(unsigned long pfn, int flags)
4091 {
4092 	return -ENXIO;
4093 }
4094 #endif
4095 
4096 #ifndef arch_is_platform_page
4097 static inline bool arch_is_platform_page(u64 paddr)
4098 {
4099 	return false;
4100 }
4101 #endif
4102 
4103 /*
4104  * Error handlers for various types of pages.
4105  */
4106 enum mf_result {
4107 	MF_IGNORED,	/* Error: cannot be handled */
4108 	MF_FAILED,	/* Error: handling failed */
4109 	MF_DELAYED,	/* Will be handled later */
4110 	MF_RECOVERED,	/* Successfully recovered */
4111 };
4112 
4113 enum mf_action_page_type {
4114 	MF_MSG_KERNEL,
4115 	MF_MSG_KERNEL_HIGH_ORDER,
4116 	MF_MSG_DIFFERENT_COMPOUND,
4117 	MF_MSG_HUGE,
4118 	MF_MSG_FREE_HUGE,
4119 	MF_MSG_GET_HWPOISON,
4120 	MF_MSG_UNMAP_FAILED,
4121 	MF_MSG_DIRTY_SWAPCACHE,
4122 	MF_MSG_CLEAN_SWAPCACHE,
4123 	MF_MSG_DIRTY_MLOCKED_LRU,
4124 	MF_MSG_CLEAN_MLOCKED_LRU,
4125 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4126 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4127 	MF_MSG_DIRTY_LRU,
4128 	MF_MSG_CLEAN_LRU,
4129 	MF_MSG_TRUNCATED_LRU,
4130 	MF_MSG_BUDDY,
4131 	MF_MSG_DAX,
4132 	MF_MSG_UNSPLIT_THP,
4133 	MF_MSG_ALREADY_POISONED,
4134 	MF_MSG_UNKNOWN,
4135 };
4136 
4137 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4138 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4139 int copy_user_large_folio(struct folio *dst, struct folio *src,
4140 			  unsigned long addr_hint,
4141 			  struct vm_area_struct *vma);
4142 long copy_folio_from_user(struct folio *dst_folio,
4143 			   const void __user *usr_src,
4144 			   bool allow_pagefault);
4145 
4146 /**
4147  * vma_is_special_huge - Are transhuge page-table entries considered special?
4148  * @vma: Pointer to the struct vm_area_struct to consider
4149  *
4150  * Whether transhuge page-table entries are considered "special" following
4151  * the definition in vm_normal_page().
4152  *
4153  * Return: true if transhuge page-table entries should be considered special,
4154  * false otherwise.
4155  */
4156 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4157 {
4158 	return vma_is_dax(vma) || (vma->vm_file &&
4159 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4160 }
4161 
4162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4163 
4164 #if MAX_NUMNODES > 1
4165 void __init setup_nr_node_ids(void);
4166 #else
4167 static inline void setup_nr_node_ids(void) {}
4168 #endif
4169 
4170 extern int memcmp_pages(struct page *page1, struct page *page2);
4171 
4172 static inline int pages_identical(struct page *page1, struct page *page2)
4173 {
4174 	return !memcmp_pages(page1, page2);
4175 }
4176 
4177 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4178 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4179 						pgoff_t first_index, pgoff_t nr,
4180 						pgoff_t bitmap_pgoff,
4181 						unsigned long *bitmap,
4182 						pgoff_t *start,
4183 						pgoff_t *end);
4184 
4185 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4186 				      pgoff_t first_index, pgoff_t nr);
4187 #endif
4188 
4189 extern int sysctl_nr_trim_pages;
4190 
4191 #ifdef CONFIG_ANON_VMA_NAME
4192 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4193 			  unsigned long len_in,
4194 			  struct anon_vma_name *anon_name);
4195 #else
4196 static inline int
4197 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4198 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4199 	return 0;
4200 }
4201 #endif
4202 
4203 #ifdef CONFIG_UNACCEPTED_MEMORY
4204 
4205 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4206 void accept_memory(phys_addr_t start, unsigned long size);
4207 
4208 #else
4209 
4210 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4211 						    unsigned long size)
4212 {
4213 	return false;
4214 }
4215 
4216 static inline void accept_memory(phys_addr_t start, unsigned long size)
4217 {
4218 }
4219 
4220 #endif
4221 
4222 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4223 {
4224 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4225 }
4226 
4227 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4228 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4229 
4230 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4231 
4232 #ifdef CONFIG_64BIT
4233 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4234 #else
4235 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4236 {
4237 	/* noop on 32 bit */
4238 	return 0;
4239 }
4240 #endif
4241 
4242 /*
4243  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4244  * be zeroed or not.
4245  */
4246 static inline bool user_alloc_needs_zeroing(void)
4247 {
4248 	/*
4249 	 * for user folios, arch with cache aliasing requires cache flush and
4250 	 * arc changes folio->flags to make icache coherent with dcache, so
4251 	 * always return false to make caller use
4252 	 * clear_user_page()/clear_user_highpage().
4253 	 */
4254 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4255 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4256 				   &init_on_alloc);
4257 }
4258 
4259 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4260 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4261 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4262 
4263 #endif /* _LINUX_MM_H */
4264