1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 #include <linux/rcuwait.h> 36 37 struct mempolicy; 38 struct anon_vma; 39 struct anon_vma_chain; 40 struct user_struct; 41 struct pt_regs; 42 struct folio_batch; 43 44 extern int sysctl_page_lock_unfairness; 45 46 void mm_core_init(void); 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 extern const int page_cluster_max; 84 85 #ifdef CONFIG_SYSCTL 86 extern int sysctl_legacy_va_layout; 87 #else 88 #define sysctl_legacy_va_layout 0 89 #endif 90 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 92 extern const int mmap_rnd_bits_min; 93 extern int mmap_rnd_bits_max __ro_after_init; 94 extern int mmap_rnd_bits __read_mostly; 95 #endif 96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 97 extern const int mmap_rnd_compat_bits_min; 98 extern const int mmap_rnd_compat_bits_max; 99 extern int mmap_rnd_compat_bits __read_mostly; 100 #endif 101 102 #ifndef DIRECT_MAP_PHYSMEM_END 103 # ifdef MAX_PHYSMEM_BITS 104 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 105 # else 106 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 107 # endif 108 #endif 109 110 #include <asm/page.h> 111 #include <asm/processor.h> 112 113 #ifndef __pa_symbol 114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115 #endif 116 117 #ifndef page_to_virt 118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119 #endif 120 121 #ifndef lm_alias 122 #define lm_alias(x) __va(__pa_symbol(x)) 123 #endif 124 125 /* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132 #ifndef mm_forbids_zeropage 133 #define mm_forbids_zeropage(X) (0) 134 #endif 135 136 /* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142 #if BITS_PER_LONG == 64 143 /* This function must be updated when the size of struct page grows above 96 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statements if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150 static inline void __mm_zero_struct_page(struct page *page) 151 { 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 96); 158 159 switch (sizeof(struct page)) { 160 case 96: 161 _pp[11] = 0; 162 fallthrough; 163 case 88: 164 _pp[10] = 0; 165 fallthrough; 166 case 80: 167 _pp[9] = 0; 168 fallthrough; 169 case 72: 170 _pp[8] = 0; 171 fallthrough; 172 case 64: 173 _pp[7] = 0; 174 fallthrough; 175 case 56: 176 _pp[6] = 0; 177 _pp[5] = 0; 178 _pp[4] = 0; 179 _pp[3] = 0; 180 _pp[2] = 0; 181 _pp[1] = 0; 182 _pp[0] = 0; 183 } 184 } 185 #else 186 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 187 #endif 188 189 /* 190 * Default maximum number of active map areas, this limits the number of vmas 191 * per mm struct. Users can overwrite this number by sysctl but there is a 192 * problem. 193 * 194 * When a program's coredump is generated as ELF format, a section is created 195 * per a vma. In ELF, the number of sections is represented in unsigned short. 196 * This means the number of sections should be smaller than 65535 at coredump. 197 * Because the kernel adds some informative sections to a image of program at 198 * generating coredump, we need some margin. The number of extra sections is 199 * 1-3 now and depends on arch. We use "5" as safe margin, here. 200 * 201 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 202 * not a hard limit any more. Although some userspace tools can be surprised by 203 * that. 204 */ 205 #define MAPCOUNT_ELF_CORE_MARGIN (5) 206 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 207 208 extern int sysctl_max_map_count; 209 210 extern unsigned long sysctl_user_reserve_kbytes; 211 extern unsigned long sysctl_admin_reserve_kbytes; 212 213 extern int sysctl_overcommit_memory; 214 extern int sysctl_overcommit_ratio; 215 extern unsigned long sysctl_overcommit_kbytes; 216 217 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 220 loff_t *); 221 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 222 loff_t *); 223 224 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 225 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 226 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 227 #else 228 #define nth_page(page,n) ((page) + (n)) 229 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 230 #endif 231 232 /* to align the pointer to the (next) page boundary */ 233 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 234 235 /* to align the pointer to the (prev) page boundary */ 236 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 237 238 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 239 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 240 241 static inline struct folio *lru_to_folio(struct list_head *head) 242 { 243 return list_entry((head)->prev, struct folio, lru); 244 } 245 246 void setup_initial_init_mm(void *start_code, void *end_code, 247 void *end_data, void *brk); 248 249 /* 250 * Linux kernel virtual memory manager primitives. 251 * The idea being to have a "virtual" mm in the same way 252 * we have a virtual fs - giving a cleaner interface to the 253 * mm details, and allowing different kinds of memory mappings 254 * (from shared memory to executable loading to arbitrary 255 * mmap() functions). 256 */ 257 258 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 259 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 260 void vm_area_free(struct vm_area_struct *); 261 262 #ifndef CONFIG_MMU 263 extern struct rb_root nommu_region_tree; 264 extern struct rw_semaphore nommu_region_sem; 265 266 extern unsigned int kobjsize(const void *objp); 267 #endif 268 269 /* 270 * vm_flags in vm_area_struct, see mm_types.h. 271 * When changing, update also include/trace/events/mmflags.h 272 */ 273 #define VM_NONE 0x00000000 274 275 #define VM_READ 0x00000001 /* currently active flags */ 276 #define VM_WRITE 0x00000002 277 #define VM_EXEC 0x00000004 278 #define VM_SHARED 0x00000008 279 280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 281 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 282 #define VM_MAYWRITE 0x00000020 283 #define VM_MAYEXEC 0x00000040 284 #define VM_MAYSHARE 0x00000080 285 286 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 287 #ifdef CONFIG_MMU 288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 289 #else /* CONFIG_MMU */ 290 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 291 #define VM_UFFD_MISSING 0 292 #endif /* CONFIG_MMU */ 293 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 295 296 #define VM_LOCKED 0x00002000 297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 298 299 /* Used by sys_madvise() */ 300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 302 303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 309 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 313 314 #ifdef CONFIG_MEM_SOFT_DIRTY 315 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 316 #else 317 # define VM_SOFTDIRTY 0 318 #endif 319 320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 324 325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 332 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 333 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 334 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 335 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 336 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 337 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 338 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 339 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 341 342 #ifdef CONFIG_ARCH_HAS_PKEYS 343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 344 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 345 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 346 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 347 #if CONFIG_ARCH_PKEY_BITS > 3 348 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 349 #else 350 # define VM_PKEY_BIT3 0 351 #endif 352 #if CONFIG_ARCH_PKEY_BITS > 4 353 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 354 #else 355 # define VM_PKEY_BIT4 0 356 #endif 357 #endif /* CONFIG_ARCH_HAS_PKEYS */ 358 359 #ifdef CONFIG_X86_USER_SHADOW_STACK 360 /* 361 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 362 * support core mm. 363 * 364 * These VMAs will get a single end guard page. This helps userspace protect 365 * itself from attacks. A single page is enough for current shadow stack archs 366 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 367 * for more details on the guard size. 368 */ 369 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 370 #endif 371 372 #if defined(CONFIG_ARM64_GCS) 373 /* 374 * arm64's Guarded Control Stack implements similar functionality and 375 * has similar constraints to shadow stacks. 376 */ 377 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 378 #endif 379 380 #ifndef VM_SHADOW_STACK 381 # define VM_SHADOW_STACK VM_NONE 382 #endif 383 384 #if defined(CONFIG_X86) 385 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 386 #elif defined(CONFIG_PPC64) 387 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 388 #elif defined(CONFIG_PARISC) 389 # define VM_GROWSUP VM_ARCH_1 390 #elif defined(CONFIG_SPARC64) 391 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 392 # define VM_ARCH_CLEAR VM_SPARC_ADI 393 #elif defined(CONFIG_ARM64) 394 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 395 # define VM_ARCH_CLEAR VM_ARM64_BTI 396 #elif !defined(CONFIG_MMU) 397 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 398 #endif 399 400 #if defined(CONFIG_ARM64_MTE) 401 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 402 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 403 #else 404 # define VM_MTE VM_NONE 405 # define VM_MTE_ALLOWED VM_NONE 406 #endif 407 408 #ifndef VM_GROWSUP 409 # define VM_GROWSUP VM_NONE 410 #endif 411 412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 413 # define VM_UFFD_MINOR_BIT 38 414 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 416 # define VM_UFFD_MINOR VM_NONE 417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 418 419 /* 420 * This flag is used to connect VFIO to arch specific KVM code. It 421 * indicates that the memory under this VMA is safe for use with any 422 * non-cachable memory type inside KVM. Some VFIO devices, on some 423 * platforms, are thought to be unsafe and can cause machine crashes 424 * if KVM does not lock down the memory type. 425 */ 426 #ifdef CONFIG_64BIT 427 #define VM_ALLOW_ANY_UNCACHED_BIT 39 428 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 429 #else 430 #define VM_ALLOW_ANY_UNCACHED VM_NONE 431 #endif 432 433 #ifdef CONFIG_64BIT 434 #define VM_DROPPABLE_BIT 40 435 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 436 #elif defined(CONFIG_PPC32) 437 #define VM_DROPPABLE VM_ARCH_1 438 #else 439 #define VM_DROPPABLE VM_NONE 440 #endif 441 442 #ifdef CONFIG_64BIT 443 /* VM is sealed, in vm_flags */ 444 #define VM_SEALED _BITUL(63) 445 #endif 446 447 /* Bits set in the VMA until the stack is in its final location */ 448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 449 450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 451 452 /* Common data flag combinations */ 453 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 454 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 455 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 456 VM_MAYWRITE | VM_MAYEXEC) 457 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 458 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 459 460 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 461 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 462 #endif 463 464 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 466 #endif 467 468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 469 470 #ifdef CONFIG_STACK_GROWSUP 471 #define VM_STACK VM_GROWSUP 472 #define VM_STACK_EARLY VM_GROWSDOWN 473 #else 474 #define VM_STACK VM_GROWSDOWN 475 #define VM_STACK_EARLY 0 476 #endif 477 478 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 479 480 /* VMA basic access permission flags */ 481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 482 483 484 /* 485 * Special vmas that are non-mergable, non-mlock()able. 486 */ 487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 488 489 /* This mask prevents VMA from being scanned with khugepaged */ 490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 491 492 /* This mask defines which mm->def_flags a process can inherit its parent */ 493 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 494 495 /* This mask represents all the VMA flag bits used by mlock */ 496 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 497 498 /* Arch-specific flags to clear when updating VM flags on protection change */ 499 #ifndef VM_ARCH_CLEAR 500 # define VM_ARCH_CLEAR VM_NONE 501 #endif 502 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 503 504 /* 505 * mapping from the currently active vm_flags protection bits (the 506 * low four bits) to a page protection mask.. 507 */ 508 509 /* 510 * The default fault flags that should be used by most of the 511 * arch-specific page fault handlers. 512 */ 513 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 514 FAULT_FLAG_KILLABLE | \ 515 FAULT_FLAG_INTERRUPTIBLE) 516 517 /** 518 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 519 * @flags: Fault flags. 520 * 521 * This is mostly used for places where we want to try to avoid taking 522 * the mmap_lock for too long a time when waiting for another condition 523 * to change, in which case we can try to be polite to release the 524 * mmap_lock in the first round to avoid potential starvation of other 525 * processes that would also want the mmap_lock. 526 * 527 * Return: true if the page fault allows retry and this is the first 528 * attempt of the fault handling; false otherwise. 529 */ 530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 531 { 532 return (flags & FAULT_FLAG_ALLOW_RETRY) && 533 (!(flags & FAULT_FLAG_TRIED)); 534 } 535 536 #define FAULT_FLAG_TRACE \ 537 { FAULT_FLAG_WRITE, "WRITE" }, \ 538 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 539 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 540 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 541 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 542 { FAULT_FLAG_TRIED, "TRIED" }, \ 543 { FAULT_FLAG_USER, "USER" }, \ 544 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 545 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 546 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 547 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 548 549 /* 550 * vm_fault is filled by the pagefault handler and passed to the vma's 551 * ->fault function. The vma's ->fault is responsible for returning a bitmask 552 * of VM_FAULT_xxx flags that give details about how the fault was handled. 553 * 554 * MM layer fills up gfp_mask for page allocations but fault handler might 555 * alter it if its implementation requires a different allocation context. 556 * 557 * pgoff should be used in favour of virtual_address, if possible. 558 */ 559 struct vm_fault { 560 const struct { 561 struct vm_area_struct *vma; /* Target VMA */ 562 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 563 pgoff_t pgoff; /* Logical page offset based on vma */ 564 unsigned long address; /* Faulting virtual address - masked */ 565 unsigned long real_address; /* Faulting virtual address - unmasked */ 566 }; 567 enum fault_flag flags; /* FAULT_FLAG_xxx flags 568 * XXX: should really be 'const' */ 569 pmd_t *pmd; /* Pointer to pmd entry matching 570 * the 'address' */ 571 pud_t *pud; /* Pointer to pud entry matching 572 * the 'address' 573 */ 574 union { 575 pte_t orig_pte; /* Value of PTE at the time of fault */ 576 pmd_t orig_pmd; /* Value of PMD at the time of fault, 577 * used by PMD fault only. 578 */ 579 }; 580 581 struct page *cow_page; /* Page handler may use for COW fault */ 582 struct page *page; /* ->fault handlers should return a 583 * page here, unless VM_FAULT_NOPAGE 584 * is set (which is also implied by 585 * VM_FAULT_ERROR). 586 */ 587 /* These three entries are valid only while holding ptl lock */ 588 pte_t *pte; /* Pointer to pte entry matching 589 * the 'address'. NULL if the page 590 * table hasn't been allocated. 591 */ 592 spinlock_t *ptl; /* Page table lock. 593 * Protects pte page table if 'pte' 594 * is not NULL, otherwise pmd. 595 */ 596 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 597 * vm_ops->map_pages() sets up a page 598 * table from atomic context. 599 * do_fault_around() pre-allocates 600 * page table to avoid allocation from 601 * atomic context. 602 */ 603 }; 604 605 /* 606 * These are the virtual MM functions - opening of an area, closing and 607 * unmapping it (needed to keep files on disk up-to-date etc), pointer 608 * to the functions called when a no-page or a wp-page exception occurs. 609 */ 610 struct vm_operations_struct { 611 void (*open)(struct vm_area_struct * area); 612 /** 613 * @close: Called when the VMA is being removed from the MM. 614 * Context: User context. May sleep. Caller holds mmap_lock. 615 */ 616 void (*close)(struct vm_area_struct * area); 617 /* Called any time before splitting to check if it's allowed */ 618 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 619 int (*mremap)(struct vm_area_struct *area); 620 /* 621 * Called by mprotect() to make driver-specific permission 622 * checks before mprotect() is finalised. The VMA must not 623 * be modified. Returns 0 if mprotect() can proceed. 624 */ 625 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 626 unsigned long end, unsigned long newflags); 627 vm_fault_t (*fault)(struct vm_fault *vmf); 628 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 629 vm_fault_t (*map_pages)(struct vm_fault *vmf, 630 pgoff_t start_pgoff, pgoff_t end_pgoff); 631 unsigned long (*pagesize)(struct vm_area_struct * area); 632 633 /* notification that a previously read-only page is about to become 634 * writable, if an error is returned it will cause a SIGBUS */ 635 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 636 637 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 638 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 639 640 /* called by access_process_vm when get_user_pages() fails, typically 641 * for use by special VMAs. See also generic_access_phys() for a generic 642 * implementation useful for any iomem mapping. 643 */ 644 int (*access)(struct vm_area_struct *vma, unsigned long addr, 645 void *buf, int len, int write); 646 647 /* Called by the /proc/PID/maps code to ask the vma whether it 648 * has a special name. Returning non-NULL will also cause this 649 * vma to be dumped unconditionally. */ 650 const char *(*name)(struct vm_area_struct *vma); 651 652 #ifdef CONFIG_NUMA 653 /* 654 * set_policy() op must add a reference to any non-NULL @new mempolicy 655 * to hold the policy upon return. Caller should pass NULL @new to 656 * remove a policy and fall back to surrounding context--i.e. do not 657 * install a MPOL_DEFAULT policy, nor the task or system default 658 * mempolicy. 659 */ 660 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 661 662 /* 663 * get_policy() op must add reference [mpol_get()] to any policy at 664 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 665 * in mm/mempolicy.c will do this automatically. 666 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 667 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 668 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 669 * must return NULL--i.e., do not "fallback" to task or system default 670 * policy. 671 */ 672 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 673 unsigned long addr, pgoff_t *ilx); 674 #endif 675 /* 676 * Called by vm_normal_page() for special PTEs to find the 677 * page for @addr. This is useful if the default behavior 678 * (using pte_page()) would not find the correct page. 679 */ 680 struct page *(*find_special_page)(struct vm_area_struct *vma, 681 unsigned long addr); 682 }; 683 684 #ifdef CONFIG_NUMA_BALANCING 685 static inline void vma_numab_state_init(struct vm_area_struct *vma) 686 { 687 vma->numab_state = NULL; 688 } 689 static inline void vma_numab_state_free(struct vm_area_struct *vma) 690 { 691 kfree(vma->numab_state); 692 } 693 #else 694 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 695 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 696 #endif /* CONFIG_NUMA_BALANCING */ 697 698 #ifdef CONFIG_PER_VMA_LOCK 699 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 700 { 701 #ifdef CONFIG_DEBUG_LOCK_ALLOC 702 static struct lock_class_key lockdep_key; 703 704 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); 705 #endif 706 if (reset_refcnt) 707 refcount_set(&vma->vm_refcnt, 0); 708 vma->vm_lock_seq = UINT_MAX; 709 } 710 711 static inline bool is_vma_writer_only(int refcnt) 712 { 713 /* 714 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma 715 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on 716 * a detached vma happens only in vma_mark_detached() and is a rare 717 * case, therefore most of the time there will be no unnecessary wakeup. 718 */ 719 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; 720 } 721 722 static inline void vma_refcount_put(struct vm_area_struct *vma) 723 { 724 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ 725 struct mm_struct *mm = vma->vm_mm; 726 int oldcnt; 727 728 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 729 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { 730 731 if (is_vma_writer_only(oldcnt - 1)) 732 rcuwait_wake_up(&mm->vma_writer_wait); 733 } 734 } 735 736 /* 737 * Try to read-lock a vma. The function is allowed to occasionally yield false 738 * locked result to avoid performance overhead, in which case we fall back to 739 * using mmap_lock. The function should never yield false unlocked result. 740 * False locked result is possible if mm_lock_seq overflows or if vma gets 741 * reused and attached to a different mm before we lock it. 742 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got 743 * detached. 744 */ 745 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 746 struct vm_area_struct *vma) 747 { 748 int oldcnt; 749 750 /* 751 * Check before locking. A race might cause false locked result. 752 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 753 * ACQUIRE semantics, because this is just a lockless check whose result 754 * we don't rely on for anything - the mm_lock_seq read against which we 755 * need ordering is below. 756 */ 757 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) 758 return NULL; 759 760 /* 761 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() 762 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. 763 * Acquire fence is required here to avoid reordering against later 764 * vm_lock_seq check and checks inside lock_vma_under_rcu(). 765 */ 766 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 767 VMA_REF_LIMIT))) { 768 /* return EAGAIN if vma got detached from under us */ 769 return oldcnt ? NULL : ERR_PTR(-EAGAIN); 770 } 771 772 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 773 /* 774 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. 775 * False unlocked result is impossible because we modify and check 776 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq 777 * modification invalidates all existing locks. 778 * 779 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 780 * racing with vma_end_write_all(), we only start reading from the VMA 781 * after it has been unlocked. 782 * This pairs with RELEASE semantics in vma_end_write_all(). 783 */ 784 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { 785 vma_refcount_put(vma); 786 return NULL; 787 } 788 789 return vma; 790 } 791 792 /* 793 * Use only while holding mmap read lock which guarantees that locking will not 794 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 795 * not be used in such cases because it might fail due to mm_lock_seq overflow. 796 * This functionality is used to obtain vma read lock and drop the mmap read lock. 797 */ 798 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) 799 { 800 int oldcnt; 801 802 mmap_assert_locked(vma->vm_mm); 803 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 804 VMA_REF_LIMIT))) 805 return false; 806 807 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 808 return true; 809 } 810 811 /* 812 * Use only while holding mmap read lock which guarantees that locking will not 813 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 814 * not be used in such cases because it might fail due to mm_lock_seq overflow. 815 * This functionality is used to obtain vma read lock and drop the mmap read lock. 816 */ 817 static inline bool vma_start_read_locked(struct vm_area_struct *vma) 818 { 819 return vma_start_read_locked_nested(vma, 0); 820 } 821 822 static inline void vma_end_read(struct vm_area_struct *vma) 823 { 824 vma_refcount_put(vma); 825 } 826 827 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 828 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 829 { 830 mmap_assert_write_locked(vma->vm_mm); 831 832 /* 833 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 834 * mm->mm_lock_seq can't be concurrently modified. 835 */ 836 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 837 return (vma->vm_lock_seq == *mm_lock_seq); 838 } 839 840 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); 841 842 /* 843 * Begin writing to a VMA. 844 * Exclude concurrent readers under the per-VMA lock until the currently 845 * write-locked mmap_lock is dropped or downgraded. 846 */ 847 static inline void vma_start_write(struct vm_area_struct *vma) 848 { 849 unsigned int mm_lock_seq; 850 851 if (__is_vma_write_locked(vma, &mm_lock_seq)) 852 return; 853 854 __vma_start_write(vma, mm_lock_seq); 855 } 856 857 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 858 { 859 unsigned int mm_lock_seq; 860 861 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 862 } 863 864 static inline void vma_assert_locked(struct vm_area_struct *vma) 865 { 866 unsigned int mm_lock_seq; 867 868 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && 869 !__is_vma_write_locked(vma, &mm_lock_seq), vma); 870 } 871 872 /* 873 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 874 * assertions should be made either under mmap_write_lock or when the object 875 * has been isolated under mmap_write_lock, ensuring no competing writers. 876 */ 877 static inline void vma_assert_attached(struct vm_area_struct *vma) 878 { 879 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 880 } 881 882 static inline void vma_assert_detached(struct vm_area_struct *vma) 883 { 884 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 885 } 886 887 static inline void vma_mark_attached(struct vm_area_struct *vma) 888 { 889 vma_assert_write_locked(vma); 890 vma_assert_detached(vma); 891 refcount_set_release(&vma->vm_refcnt, 1); 892 } 893 894 void vma_mark_detached(struct vm_area_struct *vma); 895 896 static inline void release_fault_lock(struct vm_fault *vmf) 897 { 898 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 899 vma_end_read(vmf->vma); 900 else 901 mmap_read_unlock(vmf->vma->vm_mm); 902 } 903 904 static inline void assert_fault_locked(struct vm_fault *vmf) 905 { 906 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 907 vma_assert_locked(vmf->vma); 908 else 909 mmap_assert_locked(vmf->vma->vm_mm); 910 } 911 912 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 913 unsigned long address); 914 915 #else /* CONFIG_PER_VMA_LOCK */ 916 917 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} 918 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 919 struct vm_area_struct *vma) 920 { return NULL; } 921 static inline void vma_end_read(struct vm_area_struct *vma) {} 922 static inline void vma_start_write(struct vm_area_struct *vma) {} 923 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 924 { mmap_assert_write_locked(vma->vm_mm); } 925 static inline void vma_assert_attached(struct vm_area_struct *vma) {} 926 static inline void vma_assert_detached(struct vm_area_struct *vma) {} 927 static inline void vma_mark_attached(struct vm_area_struct *vma) {} 928 static inline void vma_mark_detached(struct vm_area_struct *vma) {} 929 930 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 931 unsigned long address) 932 { 933 return NULL; 934 } 935 936 static inline void vma_assert_locked(struct vm_area_struct *vma) 937 { 938 mmap_assert_locked(vma->vm_mm); 939 } 940 941 static inline void release_fault_lock(struct vm_fault *vmf) 942 { 943 mmap_read_unlock(vmf->vma->vm_mm); 944 } 945 946 static inline void assert_fault_locked(struct vm_fault *vmf) 947 { 948 mmap_assert_locked(vmf->vma->vm_mm); 949 } 950 951 #endif /* CONFIG_PER_VMA_LOCK */ 952 953 extern const struct vm_operations_struct vma_dummy_vm_ops; 954 955 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 956 { 957 memset(vma, 0, sizeof(*vma)); 958 vma->vm_mm = mm; 959 vma->vm_ops = &vma_dummy_vm_ops; 960 INIT_LIST_HEAD(&vma->anon_vma_chain); 961 vma_lock_init(vma, false); 962 } 963 964 /* Use when VMA is not part of the VMA tree and needs no locking */ 965 static inline void vm_flags_init(struct vm_area_struct *vma, 966 vm_flags_t flags) 967 { 968 ACCESS_PRIVATE(vma, __vm_flags) = flags; 969 } 970 971 /* 972 * Use when VMA is part of the VMA tree and modifications need coordination 973 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 974 * it should be locked explicitly beforehand. 975 */ 976 static inline void vm_flags_reset(struct vm_area_struct *vma, 977 vm_flags_t flags) 978 { 979 vma_assert_write_locked(vma); 980 vm_flags_init(vma, flags); 981 } 982 983 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 984 vm_flags_t flags) 985 { 986 vma_assert_write_locked(vma); 987 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 988 } 989 990 static inline void vm_flags_set(struct vm_area_struct *vma, 991 vm_flags_t flags) 992 { 993 vma_start_write(vma); 994 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 995 } 996 997 static inline void vm_flags_clear(struct vm_area_struct *vma, 998 vm_flags_t flags) 999 { 1000 vma_start_write(vma); 1001 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 1002 } 1003 1004 /* 1005 * Use only if VMA is not part of the VMA tree or has no other users and 1006 * therefore needs no locking. 1007 */ 1008 static inline void __vm_flags_mod(struct vm_area_struct *vma, 1009 vm_flags_t set, vm_flags_t clear) 1010 { 1011 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 1012 } 1013 1014 /* 1015 * Use only when the order of set/clear operations is unimportant, otherwise 1016 * use vm_flags_{set|clear} explicitly. 1017 */ 1018 static inline void vm_flags_mod(struct vm_area_struct *vma, 1019 vm_flags_t set, vm_flags_t clear) 1020 { 1021 vma_start_write(vma); 1022 __vm_flags_mod(vma, set, clear); 1023 } 1024 1025 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1026 { 1027 vma->vm_ops = NULL; 1028 } 1029 1030 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1031 { 1032 return !vma->vm_ops; 1033 } 1034 1035 /* 1036 * Indicate if the VMA is a heap for the given task; for 1037 * /proc/PID/maps that is the heap of the main task. 1038 */ 1039 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1040 { 1041 return vma->vm_start < vma->vm_mm->brk && 1042 vma->vm_end > vma->vm_mm->start_brk; 1043 } 1044 1045 /* 1046 * Indicate if the VMA is a stack for the given task; for 1047 * /proc/PID/maps that is the stack of the main task. 1048 */ 1049 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1050 { 1051 /* 1052 * We make no effort to guess what a given thread considers to be 1053 * its "stack". It's not even well-defined for programs written 1054 * languages like Go. 1055 */ 1056 return vma->vm_start <= vma->vm_mm->start_stack && 1057 vma->vm_end >= vma->vm_mm->start_stack; 1058 } 1059 1060 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 1061 { 1062 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1063 1064 if (!maybe_stack) 1065 return false; 1066 1067 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1068 VM_STACK_INCOMPLETE_SETUP) 1069 return true; 1070 1071 return false; 1072 } 1073 1074 static inline bool vma_is_foreign(struct vm_area_struct *vma) 1075 { 1076 if (!current->mm) 1077 return true; 1078 1079 if (current->mm != vma->vm_mm) 1080 return true; 1081 1082 return false; 1083 } 1084 1085 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1086 { 1087 return vma->vm_flags & VM_ACCESS_FLAGS; 1088 } 1089 1090 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1091 { 1092 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1093 (VM_SHARED | VM_MAYWRITE); 1094 } 1095 1096 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1097 { 1098 return is_shared_maywrite(vma->vm_flags); 1099 } 1100 1101 static inline 1102 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1103 { 1104 return mas_find(&vmi->mas, max - 1); 1105 } 1106 1107 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1108 { 1109 /* 1110 * Uses mas_find() to get the first VMA when the iterator starts. 1111 * Calling mas_next() could skip the first entry. 1112 */ 1113 return mas_find(&vmi->mas, ULONG_MAX); 1114 } 1115 1116 static inline 1117 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1118 { 1119 return mas_next_range(&vmi->mas, ULONG_MAX); 1120 } 1121 1122 1123 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1124 { 1125 return mas_prev(&vmi->mas, 0); 1126 } 1127 1128 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1129 unsigned long start, unsigned long end, gfp_t gfp) 1130 { 1131 __mas_set_range(&vmi->mas, start, end - 1); 1132 mas_store_gfp(&vmi->mas, NULL, gfp); 1133 if (unlikely(mas_is_err(&vmi->mas))) 1134 return -ENOMEM; 1135 1136 return 0; 1137 } 1138 1139 /* Free any unused preallocations */ 1140 static inline void vma_iter_free(struct vma_iterator *vmi) 1141 { 1142 mas_destroy(&vmi->mas); 1143 } 1144 1145 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1146 struct vm_area_struct *vma) 1147 { 1148 vmi->mas.index = vma->vm_start; 1149 vmi->mas.last = vma->vm_end - 1; 1150 mas_store(&vmi->mas, vma); 1151 if (unlikely(mas_is_err(&vmi->mas))) 1152 return -ENOMEM; 1153 1154 vma_mark_attached(vma); 1155 return 0; 1156 } 1157 1158 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1159 { 1160 mas_pause(&vmi->mas); 1161 } 1162 1163 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1164 { 1165 mas_set(&vmi->mas, addr); 1166 } 1167 1168 #define for_each_vma(__vmi, __vma) \ 1169 while (((__vma) = vma_next(&(__vmi))) != NULL) 1170 1171 /* The MM code likes to work with exclusive end addresses */ 1172 #define for_each_vma_range(__vmi, __vma, __end) \ 1173 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1174 1175 #ifdef CONFIG_SHMEM 1176 /* 1177 * The vma_is_shmem is not inline because it is used only by slow 1178 * paths in userfault. 1179 */ 1180 bool vma_is_shmem(struct vm_area_struct *vma); 1181 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1182 #else 1183 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1184 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1185 #endif 1186 1187 int vma_is_stack_for_current(struct vm_area_struct *vma); 1188 1189 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1190 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1191 1192 struct mmu_gather; 1193 struct inode; 1194 1195 /* 1196 * compound_order() can be called without holding a reference, which means 1197 * that niceties like page_folio() don't work. These callers should be 1198 * prepared to handle wild return values. For example, PG_head may be 1199 * set before the order is initialised, or this may be a tail page. 1200 * See compaction.c for some good examples. 1201 */ 1202 static inline unsigned int compound_order(struct page *page) 1203 { 1204 struct folio *folio = (struct folio *)page; 1205 1206 if (!test_bit(PG_head, &folio->flags)) 1207 return 0; 1208 return folio->_flags_1 & 0xff; 1209 } 1210 1211 /** 1212 * folio_order - The allocation order of a folio. 1213 * @folio: The folio. 1214 * 1215 * A folio is composed of 2^order pages. See get_order() for the definition 1216 * of order. 1217 * 1218 * Return: The order of the folio. 1219 */ 1220 static inline unsigned int folio_order(const struct folio *folio) 1221 { 1222 if (!folio_test_large(folio)) 1223 return 0; 1224 return folio->_flags_1 & 0xff; 1225 } 1226 1227 #include <linux/huge_mm.h> 1228 1229 /* 1230 * Methods to modify the page usage count. 1231 * 1232 * What counts for a page usage: 1233 * - cache mapping (page->mapping) 1234 * - private data (page->private) 1235 * - page mapped in a task's page tables, each mapping 1236 * is counted separately 1237 * 1238 * Also, many kernel routines increase the page count before a critical 1239 * routine so they can be sure the page doesn't go away from under them. 1240 */ 1241 1242 /* 1243 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1244 */ 1245 static inline int put_page_testzero(struct page *page) 1246 { 1247 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1248 return page_ref_dec_and_test(page); 1249 } 1250 1251 static inline int folio_put_testzero(struct folio *folio) 1252 { 1253 return put_page_testzero(&folio->page); 1254 } 1255 1256 /* 1257 * Try to grab a ref unless the page has a refcount of zero, return false if 1258 * that is the case. 1259 * This can be called when MMU is off so it must not access 1260 * any of the virtual mappings. 1261 */ 1262 static inline bool get_page_unless_zero(struct page *page) 1263 { 1264 return page_ref_add_unless(page, 1, 0); 1265 } 1266 1267 static inline struct folio *folio_get_nontail_page(struct page *page) 1268 { 1269 if (unlikely(!get_page_unless_zero(page))) 1270 return NULL; 1271 return (struct folio *)page; 1272 } 1273 1274 extern int page_is_ram(unsigned long pfn); 1275 1276 enum { 1277 REGION_INTERSECTS, 1278 REGION_DISJOINT, 1279 REGION_MIXED, 1280 }; 1281 1282 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1283 unsigned long desc); 1284 1285 /* Support for virtually mapped pages */ 1286 struct page *vmalloc_to_page(const void *addr); 1287 unsigned long vmalloc_to_pfn(const void *addr); 1288 1289 /* 1290 * Determine if an address is within the vmalloc range 1291 * 1292 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1293 * is no special casing required. 1294 */ 1295 #ifdef CONFIG_MMU 1296 extern bool is_vmalloc_addr(const void *x); 1297 extern int is_vmalloc_or_module_addr(const void *x); 1298 #else 1299 static inline bool is_vmalloc_addr(const void *x) 1300 { 1301 return false; 1302 } 1303 static inline int is_vmalloc_or_module_addr(const void *x) 1304 { 1305 return 0; 1306 } 1307 #endif 1308 1309 /* 1310 * How many times the entire folio is mapped as a single unit (eg by a 1311 * PMD or PUD entry). This is probably not what you want, except for 1312 * debugging purposes or implementation of other core folio_*() primitives. 1313 */ 1314 static inline int folio_entire_mapcount(const struct folio *folio) 1315 { 1316 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1317 return atomic_read(&folio->_entire_mapcount) + 1; 1318 } 1319 1320 static inline int folio_large_mapcount(const struct folio *folio) 1321 { 1322 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1323 return atomic_read(&folio->_large_mapcount) + 1; 1324 } 1325 1326 /** 1327 * folio_mapcount() - Number of mappings of this folio. 1328 * @folio: The folio. 1329 * 1330 * The folio mapcount corresponds to the number of present user page table 1331 * entries that reference any part of a folio. Each such present user page 1332 * table entry must be paired with exactly on folio reference. 1333 * 1334 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1335 * exactly once. 1336 * 1337 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1338 * references the entire folio counts exactly once, even when such special 1339 * page table entries are comprised of multiple ordinary page table entries. 1340 * 1341 * Will report 0 for pages which cannot be mapped into userspace, such as 1342 * slab, page tables and similar. 1343 * 1344 * Return: The number of times this folio is mapped. 1345 */ 1346 static inline int folio_mapcount(const struct folio *folio) 1347 { 1348 int mapcount; 1349 1350 if (likely(!folio_test_large(folio))) { 1351 mapcount = atomic_read(&folio->_mapcount) + 1; 1352 if (page_mapcount_is_type(mapcount)) 1353 mapcount = 0; 1354 return mapcount; 1355 } 1356 return folio_large_mapcount(folio); 1357 } 1358 1359 /** 1360 * folio_mapped - Is this folio mapped into userspace? 1361 * @folio: The folio. 1362 * 1363 * Return: True if any page in this folio is referenced by user page tables. 1364 */ 1365 static inline bool folio_mapped(const struct folio *folio) 1366 { 1367 return folio_mapcount(folio) >= 1; 1368 } 1369 1370 /* 1371 * Return true if this page is mapped into pagetables. 1372 * For compound page it returns true if any sub-page of compound page is mapped, 1373 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1374 */ 1375 static inline bool page_mapped(const struct page *page) 1376 { 1377 return folio_mapped(page_folio(page)); 1378 } 1379 1380 static inline struct page *virt_to_head_page(const void *x) 1381 { 1382 struct page *page = virt_to_page(x); 1383 1384 return compound_head(page); 1385 } 1386 1387 static inline struct folio *virt_to_folio(const void *x) 1388 { 1389 struct page *page = virt_to_page(x); 1390 1391 return page_folio(page); 1392 } 1393 1394 void __folio_put(struct folio *folio); 1395 1396 void split_page(struct page *page, unsigned int order); 1397 void folio_copy(struct folio *dst, struct folio *src); 1398 int folio_mc_copy(struct folio *dst, struct folio *src); 1399 1400 unsigned long nr_free_buffer_pages(void); 1401 1402 /* Returns the number of bytes in this potentially compound page. */ 1403 static inline unsigned long page_size(struct page *page) 1404 { 1405 return PAGE_SIZE << compound_order(page); 1406 } 1407 1408 /* Returns the number of bits needed for the number of bytes in a page */ 1409 static inline unsigned int page_shift(struct page *page) 1410 { 1411 return PAGE_SHIFT + compound_order(page); 1412 } 1413 1414 /** 1415 * thp_order - Order of a transparent huge page. 1416 * @page: Head page of a transparent huge page. 1417 */ 1418 static inline unsigned int thp_order(struct page *page) 1419 { 1420 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1421 return compound_order(page); 1422 } 1423 1424 /** 1425 * thp_size - Size of a transparent huge page. 1426 * @page: Head page of a transparent huge page. 1427 * 1428 * Return: Number of bytes in this page. 1429 */ 1430 static inline unsigned long thp_size(struct page *page) 1431 { 1432 return PAGE_SIZE << thp_order(page); 1433 } 1434 1435 #ifdef CONFIG_MMU 1436 /* 1437 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1438 * servicing faults for write access. In the normal case, do always want 1439 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1440 * that do not have writing enabled, when used by access_process_vm. 1441 */ 1442 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1443 { 1444 if (likely(vma->vm_flags & VM_WRITE)) 1445 pte = pte_mkwrite(pte, vma); 1446 return pte; 1447 } 1448 1449 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1450 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1451 struct page *page, unsigned int nr, unsigned long addr); 1452 1453 vm_fault_t finish_fault(struct vm_fault *vmf); 1454 #endif 1455 1456 /* 1457 * Multiple processes may "see" the same page. E.g. for untouched 1458 * mappings of /dev/null, all processes see the same page full of 1459 * zeroes, and text pages of executables and shared libraries have 1460 * only one copy in memory, at most, normally. 1461 * 1462 * For the non-reserved pages, page_count(page) denotes a reference count. 1463 * page_count() == 0 means the page is free. page->lru is then used for 1464 * freelist management in the buddy allocator. 1465 * page_count() > 0 means the page has been allocated. 1466 * 1467 * Pages are allocated by the slab allocator in order to provide memory 1468 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1469 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1470 * unless a particular usage is carefully commented. (the responsibility of 1471 * freeing the kmalloc memory is the caller's, of course). 1472 * 1473 * A page may be used by anyone else who does a __get_free_page(). 1474 * In this case, page_count still tracks the references, and should only 1475 * be used through the normal accessor functions. The top bits of page->flags 1476 * and page->virtual store page management information, but all other fields 1477 * are unused and could be used privately, carefully. The management of this 1478 * page is the responsibility of the one who allocated it, and those who have 1479 * subsequently been given references to it. 1480 * 1481 * The other pages (we may call them "pagecache pages") are completely 1482 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1483 * The following discussion applies only to them. 1484 * 1485 * A pagecache page contains an opaque `private' member, which belongs to the 1486 * page's address_space. Usually, this is the address of a circular list of 1487 * the page's disk buffers. PG_private must be set to tell the VM to call 1488 * into the filesystem to release these pages. 1489 * 1490 * A page may belong to an inode's memory mapping. In this case, page->mapping 1491 * is the pointer to the inode, and page->index is the file offset of the page, 1492 * in units of PAGE_SIZE. 1493 * 1494 * If pagecache pages are not associated with an inode, they are said to be 1495 * anonymous pages. These may become associated with the swapcache, and in that 1496 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1497 * 1498 * In either case (swapcache or inode backed), the pagecache itself holds one 1499 * reference to the page. Setting PG_private should also increment the 1500 * refcount. The each user mapping also has a reference to the page. 1501 * 1502 * The pagecache pages are stored in a per-mapping radix tree, which is 1503 * rooted at mapping->i_pages, and indexed by offset. 1504 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1505 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1506 * 1507 * All pagecache pages may be subject to I/O: 1508 * - inode pages may need to be read from disk, 1509 * - inode pages which have been modified and are MAP_SHARED may need 1510 * to be written back to the inode on disk, 1511 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1512 * modified may need to be swapped out to swap space and (later) to be read 1513 * back into memory. 1514 */ 1515 1516 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1517 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1518 1519 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1520 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1521 { 1522 if (!static_branch_unlikely(&devmap_managed_key)) 1523 return false; 1524 if (!folio_is_zone_device(folio)) 1525 return false; 1526 return __put_devmap_managed_folio_refs(folio, refs); 1527 } 1528 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1529 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1530 { 1531 return false; 1532 } 1533 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1534 1535 /* 127: arbitrary random number, small enough to assemble well */ 1536 #define folio_ref_zero_or_close_to_overflow(folio) \ 1537 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1538 1539 /** 1540 * folio_get - Increment the reference count on a folio. 1541 * @folio: The folio. 1542 * 1543 * Context: May be called in any context, as long as you know that 1544 * you have a refcount on the folio. If you do not already have one, 1545 * folio_try_get() may be the right interface for you to use. 1546 */ 1547 static inline void folio_get(struct folio *folio) 1548 { 1549 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1550 folio_ref_inc(folio); 1551 } 1552 1553 static inline void get_page(struct page *page) 1554 { 1555 struct folio *folio = page_folio(page); 1556 if (WARN_ON_ONCE(folio_test_slab(folio))) 1557 return; 1558 folio_get(folio); 1559 } 1560 1561 static inline __must_check bool try_get_page(struct page *page) 1562 { 1563 page = compound_head(page); 1564 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1565 return false; 1566 page_ref_inc(page); 1567 return true; 1568 } 1569 1570 /** 1571 * folio_put - Decrement the reference count on a folio. 1572 * @folio: The folio. 1573 * 1574 * If the folio's reference count reaches zero, the memory will be 1575 * released back to the page allocator and may be used by another 1576 * allocation immediately. Do not access the memory or the struct folio 1577 * after calling folio_put() unless you can be sure that it wasn't the 1578 * last reference. 1579 * 1580 * Context: May be called in process or interrupt context, but not in NMI 1581 * context. May be called while holding a spinlock. 1582 */ 1583 static inline void folio_put(struct folio *folio) 1584 { 1585 if (folio_put_testzero(folio)) 1586 __folio_put(folio); 1587 } 1588 1589 /** 1590 * folio_put_refs - Reduce the reference count on a folio. 1591 * @folio: The folio. 1592 * @refs: The amount to subtract from the folio's reference count. 1593 * 1594 * If the folio's reference count reaches zero, the memory will be 1595 * released back to the page allocator and may be used by another 1596 * allocation immediately. Do not access the memory or the struct folio 1597 * after calling folio_put_refs() unless you can be sure that these weren't 1598 * the last references. 1599 * 1600 * Context: May be called in process or interrupt context, but not in NMI 1601 * context. May be called while holding a spinlock. 1602 */ 1603 static inline void folio_put_refs(struct folio *folio, int refs) 1604 { 1605 if (folio_ref_sub_and_test(folio, refs)) 1606 __folio_put(folio); 1607 } 1608 1609 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1610 1611 /* 1612 * union release_pages_arg - an array of pages or folios 1613 * 1614 * release_pages() releases a simple array of multiple pages, and 1615 * accepts various different forms of said page array: either 1616 * a regular old boring array of pages, an array of folios, or 1617 * an array of encoded page pointers. 1618 * 1619 * The transparent union syntax for this kind of "any of these 1620 * argument types" is all kinds of ugly, so look away. 1621 */ 1622 typedef union { 1623 struct page **pages; 1624 struct folio **folios; 1625 struct encoded_page **encoded_pages; 1626 } release_pages_arg __attribute__ ((__transparent_union__)); 1627 1628 void release_pages(release_pages_arg, int nr); 1629 1630 /** 1631 * folios_put - Decrement the reference count on an array of folios. 1632 * @folios: The folios. 1633 * 1634 * Like folio_put(), but for a batch of folios. This is more efficient 1635 * than writing the loop yourself as it will optimise the locks which need 1636 * to be taken if the folios are freed. The folios batch is returned 1637 * empty and ready to be reused for another batch; there is no need to 1638 * reinitialise it. 1639 * 1640 * Context: May be called in process or interrupt context, but not in NMI 1641 * context. May be called while holding a spinlock. 1642 */ 1643 static inline void folios_put(struct folio_batch *folios) 1644 { 1645 folios_put_refs(folios, NULL); 1646 } 1647 1648 static inline void put_page(struct page *page) 1649 { 1650 struct folio *folio = page_folio(page); 1651 1652 if (folio_test_slab(folio)) 1653 return; 1654 1655 /* 1656 * For some devmap managed pages we need to catch refcount transition 1657 * from 2 to 1: 1658 */ 1659 if (put_devmap_managed_folio_refs(folio, 1)) 1660 return; 1661 folio_put(folio); 1662 } 1663 1664 /* 1665 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1666 * the page's refcount so that two separate items are tracked: the original page 1667 * reference count, and also a new count of how many pin_user_pages() calls were 1668 * made against the page. ("gup-pinned" is another term for the latter). 1669 * 1670 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1671 * distinct from normal pages. As such, the unpin_user_page() call (and its 1672 * variants) must be used in order to release gup-pinned pages. 1673 * 1674 * Choice of value: 1675 * 1676 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1677 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1678 * simpler, due to the fact that adding an even power of two to the page 1679 * refcount has the effect of using only the upper N bits, for the code that 1680 * counts up using the bias value. This means that the lower bits are left for 1681 * the exclusive use of the original code that increments and decrements by one 1682 * (or at least, by much smaller values than the bias value). 1683 * 1684 * Of course, once the lower bits overflow into the upper bits (and this is 1685 * OK, because subtraction recovers the original values), then visual inspection 1686 * no longer suffices to directly view the separate counts. However, for normal 1687 * applications that don't have huge page reference counts, this won't be an 1688 * issue. 1689 * 1690 * Locking: the lockless algorithm described in folio_try_get_rcu() 1691 * provides safe operation for get_user_pages(), folio_mkclean() and 1692 * other calls that race to set up page table entries. 1693 */ 1694 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1695 1696 void unpin_user_page(struct page *page); 1697 void unpin_folio(struct folio *folio); 1698 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1699 bool make_dirty); 1700 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1701 bool make_dirty); 1702 void unpin_user_pages(struct page **pages, unsigned long npages); 1703 void unpin_user_folio(struct folio *folio, unsigned long npages); 1704 void unpin_folios(struct folio **folios, unsigned long nfolios); 1705 1706 static inline bool is_cow_mapping(vm_flags_t flags) 1707 { 1708 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1709 } 1710 1711 #ifndef CONFIG_MMU 1712 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1713 { 1714 /* 1715 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1716 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1717 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1718 * underlying memory if ptrace is active, so this is only possible if 1719 * ptrace does not apply. Note that there is no mprotect() to upgrade 1720 * write permissions later. 1721 */ 1722 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1723 } 1724 #endif 1725 1726 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1727 #define SECTION_IN_PAGE_FLAGS 1728 #endif 1729 1730 /* 1731 * The identification function is mainly used by the buddy allocator for 1732 * determining if two pages could be buddies. We are not really identifying 1733 * the zone since we could be using the section number id if we do not have 1734 * node id available in page flags. 1735 * We only guarantee that it will return the same value for two combinable 1736 * pages in a zone. 1737 */ 1738 static inline int page_zone_id(struct page *page) 1739 { 1740 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1741 } 1742 1743 #ifdef NODE_NOT_IN_PAGE_FLAGS 1744 int page_to_nid(const struct page *page); 1745 #else 1746 static inline int page_to_nid(const struct page *page) 1747 { 1748 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1749 } 1750 #endif 1751 1752 static inline int folio_nid(const struct folio *folio) 1753 { 1754 return page_to_nid(&folio->page); 1755 } 1756 1757 #ifdef CONFIG_NUMA_BALANCING 1758 /* page access time bits needs to hold at least 4 seconds */ 1759 #define PAGE_ACCESS_TIME_MIN_BITS 12 1760 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1761 #define PAGE_ACCESS_TIME_BUCKETS \ 1762 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1763 #else 1764 #define PAGE_ACCESS_TIME_BUCKETS 0 1765 #endif 1766 1767 #define PAGE_ACCESS_TIME_MASK \ 1768 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1769 1770 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1771 { 1772 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1773 } 1774 1775 static inline int cpupid_to_pid(int cpupid) 1776 { 1777 return cpupid & LAST__PID_MASK; 1778 } 1779 1780 static inline int cpupid_to_cpu(int cpupid) 1781 { 1782 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1783 } 1784 1785 static inline int cpupid_to_nid(int cpupid) 1786 { 1787 return cpu_to_node(cpupid_to_cpu(cpupid)); 1788 } 1789 1790 static inline bool cpupid_pid_unset(int cpupid) 1791 { 1792 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1793 } 1794 1795 static inline bool cpupid_cpu_unset(int cpupid) 1796 { 1797 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1798 } 1799 1800 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1801 { 1802 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1803 } 1804 1805 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1806 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1807 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1808 { 1809 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1810 } 1811 1812 static inline int folio_last_cpupid(struct folio *folio) 1813 { 1814 return folio->_last_cpupid; 1815 } 1816 static inline void page_cpupid_reset_last(struct page *page) 1817 { 1818 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1819 } 1820 #else 1821 static inline int folio_last_cpupid(struct folio *folio) 1822 { 1823 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1824 } 1825 1826 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1827 1828 static inline void page_cpupid_reset_last(struct page *page) 1829 { 1830 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1831 } 1832 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1833 1834 static inline int folio_xchg_access_time(struct folio *folio, int time) 1835 { 1836 int last_time; 1837 1838 last_time = folio_xchg_last_cpupid(folio, 1839 time >> PAGE_ACCESS_TIME_BUCKETS); 1840 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1841 } 1842 1843 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1844 { 1845 unsigned int pid_bit; 1846 1847 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1848 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1849 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1850 } 1851 } 1852 1853 bool folio_use_access_time(struct folio *folio); 1854 #else /* !CONFIG_NUMA_BALANCING */ 1855 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1856 { 1857 return folio_nid(folio); /* XXX */ 1858 } 1859 1860 static inline int folio_xchg_access_time(struct folio *folio, int time) 1861 { 1862 return 0; 1863 } 1864 1865 static inline int folio_last_cpupid(struct folio *folio) 1866 { 1867 return folio_nid(folio); /* XXX */ 1868 } 1869 1870 static inline int cpupid_to_nid(int cpupid) 1871 { 1872 return -1; 1873 } 1874 1875 static inline int cpupid_to_pid(int cpupid) 1876 { 1877 return -1; 1878 } 1879 1880 static inline int cpupid_to_cpu(int cpupid) 1881 { 1882 return -1; 1883 } 1884 1885 static inline int cpu_pid_to_cpupid(int nid, int pid) 1886 { 1887 return -1; 1888 } 1889 1890 static inline bool cpupid_pid_unset(int cpupid) 1891 { 1892 return true; 1893 } 1894 1895 static inline void page_cpupid_reset_last(struct page *page) 1896 { 1897 } 1898 1899 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1900 { 1901 return false; 1902 } 1903 1904 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1905 { 1906 } 1907 static inline bool folio_use_access_time(struct folio *folio) 1908 { 1909 return false; 1910 } 1911 #endif /* CONFIG_NUMA_BALANCING */ 1912 1913 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1914 1915 /* 1916 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1917 * setting tags for all pages to native kernel tag value 0xff, as the default 1918 * value 0x00 maps to 0xff. 1919 */ 1920 1921 static inline u8 page_kasan_tag(const struct page *page) 1922 { 1923 u8 tag = KASAN_TAG_KERNEL; 1924 1925 if (kasan_enabled()) { 1926 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1927 tag ^= 0xff; 1928 } 1929 1930 return tag; 1931 } 1932 1933 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1934 { 1935 unsigned long old_flags, flags; 1936 1937 if (!kasan_enabled()) 1938 return; 1939 1940 tag ^= 0xff; 1941 old_flags = READ_ONCE(page->flags); 1942 do { 1943 flags = old_flags; 1944 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1945 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1946 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1947 } 1948 1949 static inline void page_kasan_tag_reset(struct page *page) 1950 { 1951 if (kasan_enabled()) 1952 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1953 } 1954 1955 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1956 1957 static inline u8 page_kasan_tag(const struct page *page) 1958 { 1959 return 0xff; 1960 } 1961 1962 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1963 static inline void page_kasan_tag_reset(struct page *page) { } 1964 1965 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1966 1967 static inline struct zone *page_zone(const struct page *page) 1968 { 1969 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1970 } 1971 1972 static inline pg_data_t *page_pgdat(const struct page *page) 1973 { 1974 return NODE_DATA(page_to_nid(page)); 1975 } 1976 1977 static inline struct zone *folio_zone(const struct folio *folio) 1978 { 1979 return page_zone(&folio->page); 1980 } 1981 1982 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1983 { 1984 return page_pgdat(&folio->page); 1985 } 1986 1987 #ifdef SECTION_IN_PAGE_FLAGS 1988 static inline void set_page_section(struct page *page, unsigned long section) 1989 { 1990 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1991 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1992 } 1993 1994 static inline unsigned long page_to_section(const struct page *page) 1995 { 1996 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1997 } 1998 #endif 1999 2000 /** 2001 * folio_pfn - Return the Page Frame Number of a folio. 2002 * @folio: The folio. 2003 * 2004 * A folio may contain multiple pages. The pages have consecutive 2005 * Page Frame Numbers. 2006 * 2007 * Return: The Page Frame Number of the first page in the folio. 2008 */ 2009 static inline unsigned long folio_pfn(const struct folio *folio) 2010 { 2011 return page_to_pfn(&folio->page); 2012 } 2013 2014 static inline struct folio *pfn_folio(unsigned long pfn) 2015 { 2016 return page_folio(pfn_to_page(pfn)); 2017 } 2018 2019 /** 2020 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2021 * @folio: The folio. 2022 * 2023 * This function checks if a folio has been pinned via a call to 2024 * a function in the pin_user_pages() family. 2025 * 2026 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2027 * because it means "definitely not pinned for DMA", but true means "probably 2028 * pinned for DMA, but possibly a false positive due to having at least 2029 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2030 * 2031 * False positives are OK, because: a) it's unlikely for a folio to 2032 * get that many refcounts, and b) all the callers of this routine are 2033 * expected to be able to deal gracefully with a false positive. 2034 * 2035 * For large folios, the result will be exactly correct. That's because 2036 * we have more tracking data available: the _pincount field is used 2037 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2038 * 2039 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2040 * 2041 * Return: True, if it is likely that the folio has been "dma-pinned". 2042 * False, if the folio is definitely not dma-pinned. 2043 */ 2044 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2045 { 2046 if (folio_test_large(folio)) 2047 return atomic_read(&folio->_pincount) > 0; 2048 2049 /* 2050 * folio_ref_count() is signed. If that refcount overflows, then 2051 * folio_ref_count() returns a negative value, and callers will avoid 2052 * further incrementing the refcount. 2053 * 2054 * Here, for that overflow case, use the sign bit to count a little 2055 * bit higher via unsigned math, and thus still get an accurate result. 2056 */ 2057 return ((unsigned int)folio_ref_count(folio)) >= 2058 GUP_PIN_COUNTING_BIAS; 2059 } 2060 2061 /* 2062 * This should most likely only be called during fork() to see whether we 2063 * should break the cow immediately for an anon page on the src mm. 2064 * 2065 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2066 */ 2067 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2068 struct folio *folio) 2069 { 2070 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2071 2072 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 2073 return false; 2074 2075 return folio_maybe_dma_pinned(folio); 2076 } 2077 2078 /** 2079 * is_zero_page - Query if a page is a zero page 2080 * @page: The page to query 2081 * 2082 * This returns true if @page is one of the permanent zero pages. 2083 */ 2084 static inline bool is_zero_page(const struct page *page) 2085 { 2086 return is_zero_pfn(page_to_pfn(page)); 2087 } 2088 2089 /** 2090 * is_zero_folio - Query if a folio is a zero page 2091 * @folio: The folio to query 2092 * 2093 * This returns true if @folio is one of the permanent zero pages. 2094 */ 2095 static inline bool is_zero_folio(const struct folio *folio) 2096 { 2097 return is_zero_page(&folio->page); 2098 } 2099 2100 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2101 #ifdef CONFIG_MIGRATION 2102 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2103 { 2104 #ifdef CONFIG_CMA 2105 int mt = folio_migratetype(folio); 2106 2107 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2108 return false; 2109 #endif 2110 /* The zero page can be "pinned" but gets special handling. */ 2111 if (is_zero_folio(folio)) 2112 return true; 2113 2114 /* Coherent device memory must always allow eviction. */ 2115 if (folio_is_device_coherent(folio)) 2116 return false; 2117 2118 /* Otherwise, non-movable zone folios can be pinned. */ 2119 return !folio_is_zone_movable(folio); 2120 2121 } 2122 #else 2123 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2124 { 2125 return true; 2126 } 2127 #endif 2128 2129 static inline void set_page_zone(struct page *page, enum zone_type zone) 2130 { 2131 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2132 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2133 } 2134 2135 static inline void set_page_node(struct page *page, unsigned long node) 2136 { 2137 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2138 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2139 } 2140 2141 static inline void set_page_links(struct page *page, enum zone_type zone, 2142 unsigned long node, unsigned long pfn) 2143 { 2144 set_page_zone(page, zone); 2145 set_page_node(page, node); 2146 #ifdef SECTION_IN_PAGE_FLAGS 2147 set_page_section(page, pfn_to_section_nr(pfn)); 2148 #endif 2149 } 2150 2151 /** 2152 * folio_nr_pages - The number of pages in the folio. 2153 * @folio: The folio. 2154 * 2155 * Return: A positive power of two. 2156 */ 2157 static inline long folio_nr_pages(const struct folio *folio) 2158 { 2159 if (!folio_test_large(folio)) 2160 return 1; 2161 #ifdef CONFIG_64BIT 2162 return folio->_folio_nr_pages; 2163 #else 2164 return 1L << (folio->_flags_1 & 0xff); 2165 #endif 2166 } 2167 2168 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2169 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2170 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2171 #else 2172 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2173 #endif 2174 2175 /* 2176 * compound_nr() returns the number of pages in this potentially compound 2177 * page. compound_nr() can be called on a tail page, and is defined to 2178 * return 1 in that case. 2179 */ 2180 static inline unsigned long compound_nr(struct page *page) 2181 { 2182 struct folio *folio = (struct folio *)page; 2183 2184 if (!test_bit(PG_head, &folio->flags)) 2185 return 1; 2186 #ifdef CONFIG_64BIT 2187 return folio->_folio_nr_pages; 2188 #else 2189 return 1L << (folio->_flags_1 & 0xff); 2190 #endif 2191 } 2192 2193 /** 2194 * thp_nr_pages - The number of regular pages in this huge page. 2195 * @page: The head page of a huge page. 2196 */ 2197 static inline int thp_nr_pages(struct page *page) 2198 { 2199 return folio_nr_pages((struct folio *)page); 2200 } 2201 2202 /** 2203 * folio_next - Move to the next physical folio. 2204 * @folio: The folio we're currently operating on. 2205 * 2206 * If you have physically contiguous memory which may span more than 2207 * one folio (eg a &struct bio_vec), use this function to move from one 2208 * folio to the next. Do not use it if the memory is only virtually 2209 * contiguous as the folios are almost certainly not adjacent to each 2210 * other. This is the folio equivalent to writing ``page++``. 2211 * 2212 * Context: We assume that the folios are refcounted and/or locked at a 2213 * higher level and do not adjust the reference counts. 2214 * Return: The next struct folio. 2215 */ 2216 static inline struct folio *folio_next(struct folio *folio) 2217 { 2218 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2219 } 2220 2221 /** 2222 * folio_shift - The size of the memory described by this folio. 2223 * @folio: The folio. 2224 * 2225 * A folio represents a number of bytes which is a power-of-two in size. 2226 * This function tells you which power-of-two the folio is. See also 2227 * folio_size() and folio_order(). 2228 * 2229 * Context: The caller should have a reference on the folio to prevent 2230 * it from being split. It is not necessary for the folio to be locked. 2231 * Return: The base-2 logarithm of the size of this folio. 2232 */ 2233 static inline unsigned int folio_shift(const struct folio *folio) 2234 { 2235 return PAGE_SHIFT + folio_order(folio); 2236 } 2237 2238 /** 2239 * folio_size - The number of bytes in a folio. 2240 * @folio: The folio. 2241 * 2242 * Context: The caller should have a reference on the folio to prevent 2243 * it from being split. It is not necessary for the folio to be locked. 2244 * Return: The number of bytes in this folio. 2245 */ 2246 static inline size_t folio_size(const struct folio *folio) 2247 { 2248 return PAGE_SIZE << folio_order(folio); 2249 } 2250 2251 /** 2252 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2253 * tables of more than one MM 2254 * @folio: The folio. 2255 * 2256 * This function checks if the folio is currently mapped into more than one 2257 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2258 * ("mapped exclusively"). 2259 * 2260 * For KSM folios, this function also returns "mapped shared" when a folio is 2261 * mapped multiple times into the same MM, because the individual page mappings 2262 * are independent. 2263 * 2264 * As precise information is not easily available for all folios, this function 2265 * estimates the number of MMs ("sharers") that are currently mapping a folio 2266 * using the number of times the first page of the folio is currently mapped 2267 * into page tables. 2268 * 2269 * For small anonymous folios and anonymous hugetlb folios, the return 2270 * value will be exactly correct: non-KSM folios can only be mapped at most once 2271 * into an MM, and they cannot be partially mapped. KSM folios are 2272 * considered shared even if mapped multiple times into the same MM. 2273 * 2274 * For other folios, the result can be fuzzy: 2275 * #. For partially-mappable large folios (THP), the return value can wrongly 2276 * indicate "mapped exclusively" (false negative) when the folio is 2277 * only partially mapped into at least one MM. 2278 * #. For pagecache folios (including hugetlb), the return value can wrongly 2279 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2280 * cover the same file range. 2281 * 2282 * Further, this function only considers current page table mappings that 2283 * are tracked using the folio mapcount(s). 2284 * 2285 * This function does not consider: 2286 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2287 * pagecache, temporary unmapping for migration). 2288 * #. If the folio is mapped differently (VM_PFNMAP). 2289 * #. If hugetlb page table sharing applies. Callers might want to check 2290 * hugetlb_pmd_shared(). 2291 * 2292 * Return: Whether the folio is estimated to be mapped into more than one MM. 2293 */ 2294 static inline bool folio_likely_mapped_shared(struct folio *folio) 2295 { 2296 int mapcount = folio_mapcount(folio); 2297 2298 /* Only partially-mappable folios require more care. */ 2299 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2300 return mapcount > 1; 2301 2302 /* A single mapping implies "mapped exclusively". */ 2303 if (mapcount <= 1) 2304 return false; 2305 2306 /* If any page is mapped more than once we treat it "mapped shared". */ 2307 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2308 return true; 2309 2310 /* Let's guess based on the first subpage. */ 2311 return atomic_read(&folio->_mapcount) > 0; 2312 } 2313 2314 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2315 static inline int arch_make_folio_accessible(struct folio *folio) 2316 { 2317 return 0; 2318 } 2319 #endif 2320 2321 /* 2322 * Some inline functions in vmstat.h depend on page_zone() 2323 */ 2324 #include <linux/vmstat.h> 2325 2326 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2327 #define HASHED_PAGE_VIRTUAL 2328 #endif 2329 2330 #if defined(WANT_PAGE_VIRTUAL) 2331 static inline void *page_address(const struct page *page) 2332 { 2333 return page->virtual; 2334 } 2335 static inline void set_page_address(struct page *page, void *address) 2336 { 2337 page->virtual = address; 2338 } 2339 #define page_address_init() do { } while(0) 2340 #endif 2341 2342 #if defined(HASHED_PAGE_VIRTUAL) 2343 void *page_address(const struct page *page); 2344 void set_page_address(struct page *page, void *virtual); 2345 void page_address_init(void); 2346 #endif 2347 2348 static __always_inline void *lowmem_page_address(const struct page *page) 2349 { 2350 return page_to_virt(page); 2351 } 2352 2353 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2354 #define page_address(page) lowmem_page_address(page) 2355 #define set_page_address(page, address) do { } while(0) 2356 #define page_address_init() do { } while(0) 2357 #endif 2358 2359 static inline void *folio_address(const struct folio *folio) 2360 { 2361 return page_address(&folio->page); 2362 } 2363 2364 /* 2365 * Return true only if the page has been allocated with 2366 * ALLOC_NO_WATERMARKS and the low watermark was not 2367 * met implying that the system is under some pressure. 2368 */ 2369 static inline bool page_is_pfmemalloc(const struct page *page) 2370 { 2371 /* 2372 * lru.next has bit 1 set if the page is allocated from the 2373 * pfmemalloc reserves. Callers may simply overwrite it if 2374 * they do not need to preserve that information. 2375 */ 2376 return (uintptr_t)page->lru.next & BIT(1); 2377 } 2378 2379 /* 2380 * Return true only if the folio has been allocated with 2381 * ALLOC_NO_WATERMARKS and the low watermark was not 2382 * met implying that the system is under some pressure. 2383 */ 2384 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2385 { 2386 /* 2387 * lru.next has bit 1 set if the page is allocated from the 2388 * pfmemalloc reserves. Callers may simply overwrite it if 2389 * they do not need to preserve that information. 2390 */ 2391 return (uintptr_t)folio->lru.next & BIT(1); 2392 } 2393 2394 /* 2395 * Only to be called by the page allocator on a freshly allocated 2396 * page. 2397 */ 2398 static inline void set_page_pfmemalloc(struct page *page) 2399 { 2400 page->lru.next = (void *)BIT(1); 2401 } 2402 2403 static inline void clear_page_pfmemalloc(struct page *page) 2404 { 2405 page->lru.next = NULL; 2406 } 2407 2408 /* 2409 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2410 */ 2411 extern void pagefault_out_of_memory(void); 2412 2413 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2414 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2415 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2416 2417 /* 2418 * Parameter block passed down to zap_pte_range in exceptional cases. 2419 */ 2420 struct zap_details { 2421 struct folio *single_folio; /* Locked folio to be unmapped */ 2422 bool even_cows; /* Zap COWed private pages too? */ 2423 bool reclaim_pt; /* Need reclaim page tables? */ 2424 zap_flags_t zap_flags; /* Extra flags for zapping */ 2425 }; 2426 2427 /* 2428 * Whether to drop the pte markers, for example, the uffd-wp information for 2429 * file-backed memory. This should only be specified when we will completely 2430 * drop the page in the mm, either by truncation or unmapping of the vma. By 2431 * default, the flag is not set. 2432 */ 2433 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2434 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2435 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2436 2437 #ifdef CONFIG_SCHED_MM_CID 2438 void sched_mm_cid_before_execve(struct task_struct *t); 2439 void sched_mm_cid_after_execve(struct task_struct *t); 2440 void sched_mm_cid_fork(struct task_struct *t); 2441 void sched_mm_cid_exit_signals(struct task_struct *t); 2442 static inline int task_mm_cid(struct task_struct *t) 2443 { 2444 return t->mm_cid; 2445 } 2446 #else 2447 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2448 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2449 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2450 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2451 static inline int task_mm_cid(struct task_struct *t) 2452 { 2453 /* 2454 * Use the processor id as a fall-back when the mm cid feature is 2455 * disabled. This provides functional per-cpu data structure accesses 2456 * in user-space, althrough it won't provide the memory usage benefits. 2457 */ 2458 return raw_smp_processor_id(); 2459 } 2460 #endif 2461 2462 #ifdef CONFIG_MMU 2463 extern bool can_do_mlock(void); 2464 #else 2465 static inline bool can_do_mlock(void) { return false; } 2466 #endif 2467 extern int user_shm_lock(size_t, struct ucounts *); 2468 extern void user_shm_unlock(size_t, struct ucounts *); 2469 2470 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2471 pte_t pte); 2472 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2473 pte_t pte); 2474 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2475 unsigned long addr, pmd_t pmd); 2476 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2477 pmd_t pmd); 2478 2479 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2480 unsigned long size); 2481 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2482 unsigned long size, struct zap_details *details); 2483 static inline void zap_vma_pages(struct vm_area_struct *vma) 2484 { 2485 zap_page_range_single(vma, vma->vm_start, 2486 vma->vm_end - vma->vm_start, NULL); 2487 } 2488 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2489 struct vm_area_struct *start_vma, unsigned long start, 2490 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2491 2492 struct mmu_notifier_range; 2493 2494 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2495 unsigned long end, unsigned long floor, unsigned long ceiling); 2496 int 2497 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2498 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2499 void *buf, int len, int write); 2500 2501 struct follow_pfnmap_args { 2502 /** 2503 * Inputs: 2504 * @vma: Pointer to @vm_area_struct struct 2505 * @address: the virtual address to walk 2506 */ 2507 struct vm_area_struct *vma; 2508 unsigned long address; 2509 /** 2510 * Internals: 2511 * 2512 * The caller shouldn't touch any of these. 2513 */ 2514 spinlock_t *lock; 2515 pte_t *ptep; 2516 /** 2517 * Outputs: 2518 * 2519 * @pfn: the PFN of the address 2520 * @pgprot: the pgprot_t of the mapping 2521 * @writable: whether the mapping is writable 2522 * @special: whether the mapping is a special mapping (real PFN maps) 2523 */ 2524 unsigned long pfn; 2525 pgprot_t pgprot; 2526 bool writable; 2527 bool special; 2528 }; 2529 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2530 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2531 2532 extern void truncate_pagecache(struct inode *inode, loff_t new); 2533 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2534 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2535 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2536 int generic_error_remove_folio(struct address_space *mapping, 2537 struct folio *folio); 2538 2539 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2540 unsigned long address, struct pt_regs *regs); 2541 2542 #ifdef CONFIG_MMU 2543 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2544 unsigned long address, unsigned int flags, 2545 struct pt_regs *regs); 2546 extern int fixup_user_fault(struct mm_struct *mm, 2547 unsigned long address, unsigned int fault_flags, 2548 bool *unlocked); 2549 void unmap_mapping_pages(struct address_space *mapping, 2550 pgoff_t start, pgoff_t nr, bool even_cows); 2551 void unmap_mapping_range(struct address_space *mapping, 2552 loff_t const holebegin, loff_t const holelen, int even_cows); 2553 #else 2554 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2555 unsigned long address, unsigned int flags, 2556 struct pt_regs *regs) 2557 { 2558 /* should never happen if there's no MMU */ 2559 BUG(); 2560 return VM_FAULT_SIGBUS; 2561 } 2562 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2563 unsigned int fault_flags, bool *unlocked) 2564 { 2565 /* should never happen if there's no MMU */ 2566 BUG(); 2567 return -EFAULT; 2568 } 2569 static inline void unmap_mapping_pages(struct address_space *mapping, 2570 pgoff_t start, pgoff_t nr, bool even_cows) { } 2571 static inline void unmap_mapping_range(struct address_space *mapping, 2572 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2573 #endif 2574 2575 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2576 loff_t const holebegin, loff_t const holelen) 2577 { 2578 unmap_mapping_range(mapping, holebegin, holelen, 0); 2579 } 2580 2581 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2582 unsigned long addr); 2583 2584 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2585 void *buf, int len, unsigned int gup_flags); 2586 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2587 void *buf, int len, unsigned int gup_flags); 2588 2589 long get_user_pages_remote(struct mm_struct *mm, 2590 unsigned long start, unsigned long nr_pages, 2591 unsigned int gup_flags, struct page **pages, 2592 int *locked); 2593 long pin_user_pages_remote(struct mm_struct *mm, 2594 unsigned long start, unsigned long nr_pages, 2595 unsigned int gup_flags, struct page **pages, 2596 int *locked); 2597 2598 /* 2599 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2600 */ 2601 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2602 unsigned long addr, 2603 int gup_flags, 2604 struct vm_area_struct **vmap) 2605 { 2606 struct page *page; 2607 struct vm_area_struct *vma; 2608 int got; 2609 2610 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2611 return ERR_PTR(-EINVAL); 2612 2613 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2614 2615 if (got < 0) 2616 return ERR_PTR(got); 2617 2618 vma = vma_lookup(mm, addr); 2619 if (WARN_ON_ONCE(!vma)) { 2620 put_page(page); 2621 return ERR_PTR(-EINVAL); 2622 } 2623 2624 *vmap = vma; 2625 return page; 2626 } 2627 2628 long get_user_pages(unsigned long start, unsigned long nr_pages, 2629 unsigned int gup_flags, struct page **pages); 2630 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2631 unsigned int gup_flags, struct page **pages); 2632 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2633 struct page **pages, unsigned int gup_flags); 2634 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2635 struct page **pages, unsigned int gup_flags); 2636 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2637 struct folio **folios, unsigned int max_folios, 2638 pgoff_t *offset); 2639 int folio_add_pins(struct folio *folio, unsigned int pins); 2640 2641 int get_user_pages_fast(unsigned long start, int nr_pages, 2642 unsigned int gup_flags, struct page **pages); 2643 int pin_user_pages_fast(unsigned long start, int nr_pages, 2644 unsigned int gup_flags, struct page **pages); 2645 void folio_add_pin(struct folio *folio); 2646 2647 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2648 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2649 struct task_struct *task, bool bypass_rlim); 2650 2651 struct kvec; 2652 struct page *get_dump_page(unsigned long addr); 2653 2654 bool folio_mark_dirty(struct folio *folio); 2655 bool folio_mark_dirty_lock(struct folio *folio); 2656 bool set_page_dirty(struct page *page); 2657 int set_page_dirty_lock(struct page *page); 2658 2659 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2660 2661 /* 2662 * Flags used by change_protection(). For now we make it a bitmap so 2663 * that we can pass in multiple flags just like parameters. However 2664 * for now all the callers are only use one of the flags at the same 2665 * time. 2666 */ 2667 /* 2668 * Whether we should manually check if we can map individual PTEs writable, 2669 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2670 * PTEs automatically in a writable mapping. 2671 */ 2672 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2673 /* Whether this protection change is for NUMA hints */ 2674 #define MM_CP_PROT_NUMA (1UL << 1) 2675 /* Whether this change is for write protecting */ 2676 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2677 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2678 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2679 MM_CP_UFFD_WP_RESOLVE) 2680 2681 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2682 pte_t pte); 2683 extern long change_protection(struct mmu_gather *tlb, 2684 struct vm_area_struct *vma, unsigned long start, 2685 unsigned long end, unsigned long cp_flags); 2686 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2687 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2688 unsigned long start, unsigned long end, unsigned long newflags); 2689 2690 /* 2691 * doesn't attempt to fault and will return short. 2692 */ 2693 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2694 unsigned int gup_flags, struct page **pages); 2695 2696 static inline bool get_user_page_fast_only(unsigned long addr, 2697 unsigned int gup_flags, struct page **pagep) 2698 { 2699 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2700 } 2701 /* 2702 * per-process(per-mm_struct) statistics. 2703 */ 2704 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2705 { 2706 return percpu_counter_read_positive(&mm->rss_stat[member]); 2707 } 2708 2709 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2710 2711 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2712 { 2713 percpu_counter_add(&mm->rss_stat[member], value); 2714 2715 mm_trace_rss_stat(mm, member); 2716 } 2717 2718 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2719 { 2720 percpu_counter_inc(&mm->rss_stat[member]); 2721 2722 mm_trace_rss_stat(mm, member); 2723 } 2724 2725 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2726 { 2727 percpu_counter_dec(&mm->rss_stat[member]); 2728 2729 mm_trace_rss_stat(mm, member); 2730 } 2731 2732 /* Optimized variant when folio is already known not to be anon */ 2733 static inline int mm_counter_file(struct folio *folio) 2734 { 2735 if (folio_test_swapbacked(folio)) 2736 return MM_SHMEMPAGES; 2737 return MM_FILEPAGES; 2738 } 2739 2740 static inline int mm_counter(struct folio *folio) 2741 { 2742 if (folio_test_anon(folio)) 2743 return MM_ANONPAGES; 2744 return mm_counter_file(folio); 2745 } 2746 2747 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2748 { 2749 return get_mm_counter(mm, MM_FILEPAGES) + 2750 get_mm_counter(mm, MM_ANONPAGES) + 2751 get_mm_counter(mm, MM_SHMEMPAGES); 2752 } 2753 2754 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2755 { 2756 return max(mm->hiwater_rss, get_mm_rss(mm)); 2757 } 2758 2759 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2760 { 2761 return max(mm->hiwater_vm, mm->total_vm); 2762 } 2763 2764 static inline void update_hiwater_rss(struct mm_struct *mm) 2765 { 2766 unsigned long _rss = get_mm_rss(mm); 2767 2768 if ((mm)->hiwater_rss < _rss) 2769 (mm)->hiwater_rss = _rss; 2770 } 2771 2772 static inline void update_hiwater_vm(struct mm_struct *mm) 2773 { 2774 if (mm->hiwater_vm < mm->total_vm) 2775 mm->hiwater_vm = mm->total_vm; 2776 } 2777 2778 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2779 { 2780 mm->hiwater_rss = get_mm_rss(mm); 2781 } 2782 2783 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2784 struct mm_struct *mm) 2785 { 2786 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2787 2788 if (*maxrss < hiwater_rss) 2789 *maxrss = hiwater_rss; 2790 } 2791 2792 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2793 static inline int pte_special(pte_t pte) 2794 { 2795 return 0; 2796 } 2797 2798 static inline pte_t pte_mkspecial(pte_t pte) 2799 { 2800 return pte; 2801 } 2802 #endif 2803 2804 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2805 static inline bool pmd_special(pmd_t pmd) 2806 { 2807 return false; 2808 } 2809 2810 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2811 { 2812 return pmd; 2813 } 2814 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2815 2816 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2817 static inline bool pud_special(pud_t pud) 2818 { 2819 return false; 2820 } 2821 2822 static inline pud_t pud_mkspecial(pud_t pud) 2823 { 2824 return pud; 2825 } 2826 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2827 2828 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2829 static inline int pte_devmap(pte_t pte) 2830 { 2831 return 0; 2832 } 2833 #endif 2834 2835 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2836 spinlock_t **ptl); 2837 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2838 spinlock_t **ptl) 2839 { 2840 pte_t *ptep; 2841 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2842 return ptep; 2843 } 2844 2845 #ifdef __PAGETABLE_P4D_FOLDED 2846 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2847 unsigned long address) 2848 { 2849 return 0; 2850 } 2851 #else 2852 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2853 #endif 2854 2855 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2856 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2857 unsigned long address) 2858 { 2859 return 0; 2860 } 2861 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2862 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2863 2864 #else 2865 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2866 2867 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2868 { 2869 if (mm_pud_folded(mm)) 2870 return; 2871 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2872 } 2873 2874 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2875 { 2876 if (mm_pud_folded(mm)) 2877 return; 2878 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2879 } 2880 #endif 2881 2882 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2883 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2884 unsigned long address) 2885 { 2886 return 0; 2887 } 2888 2889 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2890 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2891 2892 #else 2893 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2894 2895 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2896 { 2897 if (mm_pmd_folded(mm)) 2898 return; 2899 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2900 } 2901 2902 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2903 { 2904 if (mm_pmd_folded(mm)) 2905 return; 2906 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2907 } 2908 #endif 2909 2910 #ifdef CONFIG_MMU 2911 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2912 { 2913 atomic_long_set(&mm->pgtables_bytes, 0); 2914 } 2915 2916 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2917 { 2918 return atomic_long_read(&mm->pgtables_bytes); 2919 } 2920 2921 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2922 { 2923 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2924 } 2925 2926 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2927 { 2928 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2929 } 2930 #else 2931 2932 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2933 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2934 { 2935 return 0; 2936 } 2937 2938 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2939 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2940 #endif 2941 2942 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2943 int __pte_alloc_kernel(pmd_t *pmd); 2944 2945 #if defined(CONFIG_MMU) 2946 2947 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2948 unsigned long address) 2949 { 2950 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2951 NULL : p4d_offset(pgd, address); 2952 } 2953 2954 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2955 unsigned long address) 2956 { 2957 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2958 NULL : pud_offset(p4d, address); 2959 } 2960 2961 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2962 { 2963 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2964 NULL: pmd_offset(pud, address); 2965 } 2966 #endif /* CONFIG_MMU */ 2967 2968 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2969 { 2970 return page_ptdesc(virt_to_page(x)); 2971 } 2972 2973 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2974 { 2975 return page_to_virt(ptdesc_page(pt)); 2976 } 2977 2978 static inline void *ptdesc_address(const struct ptdesc *pt) 2979 { 2980 return folio_address(ptdesc_folio(pt)); 2981 } 2982 2983 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2984 { 2985 return folio_test_reserved(ptdesc_folio(pt)); 2986 } 2987 2988 /** 2989 * pagetable_alloc - Allocate pagetables 2990 * @gfp: GFP flags 2991 * @order: desired pagetable order 2992 * 2993 * pagetable_alloc allocates memory for page tables as well as a page table 2994 * descriptor to describe that memory. 2995 * 2996 * Return: The ptdesc describing the allocated page tables. 2997 */ 2998 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2999 { 3000 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 3001 3002 return page_ptdesc(page); 3003 } 3004 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 3005 3006 /** 3007 * pagetable_free - Free pagetables 3008 * @pt: The page table descriptor 3009 * 3010 * pagetable_free frees the memory of all page tables described by a page 3011 * table descriptor and the memory for the descriptor itself. 3012 */ 3013 static inline void pagetable_free(struct ptdesc *pt) 3014 { 3015 struct page *page = ptdesc_page(pt); 3016 3017 __free_pages(page, compound_order(page)); 3018 } 3019 3020 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3021 #if ALLOC_SPLIT_PTLOCKS 3022 void __init ptlock_cache_init(void); 3023 bool ptlock_alloc(struct ptdesc *ptdesc); 3024 void ptlock_free(struct ptdesc *ptdesc); 3025 3026 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3027 { 3028 return ptdesc->ptl; 3029 } 3030 #else /* ALLOC_SPLIT_PTLOCKS */ 3031 static inline void ptlock_cache_init(void) 3032 { 3033 } 3034 3035 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3036 { 3037 return true; 3038 } 3039 3040 static inline void ptlock_free(struct ptdesc *ptdesc) 3041 { 3042 } 3043 3044 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3045 { 3046 return &ptdesc->ptl; 3047 } 3048 #endif /* ALLOC_SPLIT_PTLOCKS */ 3049 3050 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3051 { 3052 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3053 } 3054 3055 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3056 { 3057 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3058 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3059 return ptlock_ptr(virt_to_ptdesc(pte)); 3060 } 3061 3062 static inline bool ptlock_init(struct ptdesc *ptdesc) 3063 { 3064 /* 3065 * prep_new_page() initialize page->private (and therefore page->ptl) 3066 * with 0. Make sure nobody took it in use in between. 3067 * 3068 * It can happen if arch try to use slab for page table allocation: 3069 * slab code uses page->slab_cache, which share storage with page->ptl. 3070 */ 3071 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3072 if (!ptlock_alloc(ptdesc)) 3073 return false; 3074 spin_lock_init(ptlock_ptr(ptdesc)); 3075 return true; 3076 } 3077 3078 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3079 /* 3080 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3081 */ 3082 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3083 { 3084 return &mm->page_table_lock; 3085 } 3086 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3087 { 3088 return &mm->page_table_lock; 3089 } 3090 static inline void ptlock_cache_init(void) {} 3091 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3092 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3093 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3094 3095 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3096 { 3097 struct folio *folio = ptdesc_folio(ptdesc); 3098 3099 __folio_set_pgtable(folio); 3100 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3101 } 3102 3103 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3104 { 3105 struct folio *folio = ptdesc_folio(ptdesc); 3106 3107 ptlock_free(ptdesc); 3108 __folio_clear_pgtable(folio); 3109 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3110 } 3111 3112 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3113 { 3114 pagetable_dtor(ptdesc); 3115 pagetable_free(ptdesc); 3116 } 3117 3118 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3119 { 3120 if (!ptlock_init(ptdesc)) 3121 return false; 3122 __pagetable_ctor(ptdesc); 3123 return true; 3124 } 3125 3126 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3127 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3128 pmd_t *pmdvalp) 3129 { 3130 pte_t *pte; 3131 3132 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3133 return pte; 3134 } 3135 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3136 { 3137 return __pte_offset_map(pmd, addr, NULL); 3138 } 3139 3140 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3141 unsigned long addr, spinlock_t **ptlp); 3142 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3143 unsigned long addr, spinlock_t **ptlp) 3144 { 3145 pte_t *pte; 3146 3147 __cond_lock(RCU, __cond_lock(*ptlp, 3148 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3149 return pte; 3150 } 3151 3152 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3153 unsigned long addr, spinlock_t **ptlp); 3154 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3155 unsigned long addr, pmd_t *pmdvalp, 3156 spinlock_t **ptlp); 3157 3158 #define pte_unmap_unlock(pte, ptl) do { \ 3159 spin_unlock(ptl); \ 3160 pte_unmap(pte); \ 3161 } while (0) 3162 3163 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3164 3165 #define pte_alloc_map(mm, pmd, address) \ 3166 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3167 3168 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3169 (pte_alloc(mm, pmd) ? \ 3170 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3171 3172 #define pte_alloc_kernel(pmd, address) \ 3173 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3174 NULL: pte_offset_kernel(pmd, address)) 3175 3176 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3177 3178 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3179 { 3180 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3181 return virt_to_page((void *)((unsigned long) pmd & mask)); 3182 } 3183 3184 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3185 { 3186 return page_ptdesc(pmd_pgtable_page(pmd)); 3187 } 3188 3189 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3190 { 3191 return ptlock_ptr(pmd_ptdesc(pmd)); 3192 } 3193 3194 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3195 { 3196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3197 ptdesc->pmd_huge_pte = NULL; 3198 #endif 3199 return ptlock_init(ptdesc); 3200 } 3201 3202 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3203 3204 #else 3205 3206 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3207 { 3208 return &mm->page_table_lock; 3209 } 3210 3211 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3212 3213 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3214 3215 #endif 3216 3217 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3218 { 3219 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3220 spin_lock(ptl); 3221 return ptl; 3222 } 3223 3224 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3225 { 3226 if (!pmd_ptlock_init(ptdesc)) 3227 return false; 3228 ptdesc_pmd_pts_init(ptdesc); 3229 __pagetable_ctor(ptdesc); 3230 return true; 3231 } 3232 3233 /* 3234 * No scalability reason to split PUD locks yet, but follow the same pattern 3235 * as the PMD locks to make it easier if we decide to. The VM should not be 3236 * considered ready to switch to split PUD locks yet; there may be places 3237 * which need to be converted from page_table_lock. 3238 */ 3239 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3240 { 3241 return &mm->page_table_lock; 3242 } 3243 3244 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3245 { 3246 spinlock_t *ptl = pud_lockptr(mm, pud); 3247 3248 spin_lock(ptl); 3249 return ptl; 3250 } 3251 3252 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3253 { 3254 __pagetable_ctor(ptdesc); 3255 } 3256 3257 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3258 { 3259 __pagetable_ctor(ptdesc); 3260 } 3261 3262 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3263 { 3264 __pagetable_ctor(ptdesc); 3265 } 3266 3267 extern void __init pagecache_init(void); 3268 extern void free_initmem(void); 3269 3270 /* 3271 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3272 * into the buddy system. The freed pages will be poisoned with pattern 3273 * "poison" if it's within range [0, UCHAR_MAX]. 3274 * Return pages freed into the buddy system. 3275 */ 3276 extern unsigned long free_reserved_area(void *start, void *end, 3277 int poison, const char *s); 3278 3279 extern void adjust_managed_page_count(struct page *page, long count); 3280 3281 extern void reserve_bootmem_region(phys_addr_t start, 3282 phys_addr_t end, int nid); 3283 3284 /* Free the reserved page into the buddy system, so it gets managed. */ 3285 void free_reserved_page(struct page *page); 3286 #define free_highmem_page(page) free_reserved_page(page) 3287 3288 static inline void mark_page_reserved(struct page *page) 3289 { 3290 SetPageReserved(page); 3291 adjust_managed_page_count(page, -1); 3292 } 3293 3294 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3295 { 3296 free_reserved_page(ptdesc_page(pt)); 3297 } 3298 3299 /* 3300 * Default method to free all the __init memory into the buddy system. 3301 * The freed pages will be poisoned with pattern "poison" if it's within 3302 * range [0, UCHAR_MAX]. 3303 * Return pages freed into the buddy system. 3304 */ 3305 static inline unsigned long free_initmem_default(int poison) 3306 { 3307 extern char __init_begin[], __init_end[]; 3308 3309 return free_reserved_area(&__init_begin, &__init_end, 3310 poison, "unused kernel image (initmem)"); 3311 } 3312 3313 static inline unsigned long get_num_physpages(void) 3314 { 3315 int nid; 3316 unsigned long phys_pages = 0; 3317 3318 for_each_online_node(nid) 3319 phys_pages += node_present_pages(nid); 3320 3321 return phys_pages; 3322 } 3323 3324 /* 3325 * Using memblock node mappings, an architecture may initialise its 3326 * zones, allocate the backing mem_map and account for memory holes in an 3327 * architecture independent manner. 3328 * 3329 * An architecture is expected to register range of page frames backed by 3330 * physical memory with memblock_add[_node]() before calling 3331 * free_area_init() passing in the PFN each zone ends at. At a basic 3332 * usage, an architecture is expected to do something like 3333 * 3334 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3335 * max_highmem_pfn}; 3336 * for_each_valid_physical_page_range() 3337 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3338 * free_area_init(max_zone_pfns); 3339 */ 3340 void free_area_init(unsigned long *max_zone_pfn); 3341 unsigned long node_map_pfn_alignment(void); 3342 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3343 unsigned long end_pfn); 3344 extern void get_pfn_range_for_nid(unsigned int nid, 3345 unsigned long *start_pfn, unsigned long *end_pfn); 3346 3347 #ifndef CONFIG_NUMA 3348 static inline int early_pfn_to_nid(unsigned long pfn) 3349 { 3350 return 0; 3351 } 3352 #else 3353 /* please see mm/page_alloc.c */ 3354 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3355 #endif 3356 3357 extern void mem_init(void); 3358 extern void __init mmap_init(void); 3359 3360 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3361 static inline void show_mem(void) 3362 { 3363 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3364 } 3365 extern long si_mem_available(void); 3366 extern void si_meminfo(struct sysinfo * val); 3367 extern void si_meminfo_node(struct sysinfo *val, int nid); 3368 3369 extern __printf(3, 4) 3370 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3371 3372 extern void setup_per_cpu_pageset(void); 3373 3374 /* nommu.c */ 3375 extern atomic_long_t mmap_pages_allocated; 3376 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3377 3378 /* interval_tree.c */ 3379 void vma_interval_tree_insert(struct vm_area_struct *node, 3380 struct rb_root_cached *root); 3381 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3382 struct vm_area_struct *prev, 3383 struct rb_root_cached *root); 3384 void vma_interval_tree_remove(struct vm_area_struct *node, 3385 struct rb_root_cached *root); 3386 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3387 unsigned long start, unsigned long last); 3388 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3389 unsigned long start, unsigned long last); 3390 3391 #define vma_interval_tree_foreach(vma, root, start, last) \ 3392 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3393 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3394 3395 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3396 struct rb_root_cached *root); 3397 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3398 struct rb_root_cached *root); 3399 struct anon_vma_chain * 3400 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3401 unsigned long start, unsigned long last); 3402 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3403 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3404 #ifdef CONFIG_DEBUG_VM_RB 3405 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3406 #endif 3407 3408 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3409 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3410 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3411 3412 /* mmap.c */ 3413 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3414 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3415 extern void exit_mmap(struct mm_struct *); 3416 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3417 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3418 unsigned long addr, bool write); 3419 3420 static inline int check_data_rlimit(unsigned long rlim, 3421 unsigned long new, 3422 unsigned long start, 3423 unsigned long end_data, 3424 unsigned long start_data) 3425 { 3426 if (rlim < RLIM_INFINITY) { 3427 if (((new - start) + (end_data - start_data)) > rlim) 3428 return -ENOSPC; 3429 } 3430 3431 return 0; 3432 } 3433 3434 extern int mm_take_all_locks(struct mm_struct *mm); 3435 extern void mm_drop_all_locks(struct mm_struct *mm); 3436 3437 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3438 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3439 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3440 extern struct file *get_task_exe_file(struct task_struct *task); 3441 3442 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3443 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3444 3445 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3446 const struct vm_special_mapping *sm); 3447 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3448 unsigned long addr, unsigned long len, 3449 unsigned long flags, 3450 const struct vm_special_mapping *spec); 3451 3452 unsigned long randomize_stack_top(unsigned long stack_top); 3453 unsigned long randomize_page(unsigned long start, unsigned long range); 3454 3455 unsigned long 3456 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3457 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3458 3459 static inline unsigned long 3460 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3461 unsigned long pgoff, unsigned long flags) 3462 { 3463 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3464 } 3465 3466 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3467 unsigned long len, unsigned long prot, unsigned long flags, 3468 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3469 struct list_head *uf); 3470 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3471 unsigned long start, size_t len, struct list_head *uf, 3472 bool unlock); 3473 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3474 struct mm_struct *mm, unsigned long start, 3475 unsigned long end, struct list_head *uf, bool unlock); 3476 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3477 struct list_head *uf); 3478 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3479 3480 #ifdef CONFIG_MMU 3481 extern int __mm_populate(unsigned long addr, unsigned long len, 3482 int ignore_errors); 3483 static inline void mm_populate(unsigned long addr, unsigned long len) 3484 { 3485 /* Ignore errors */ 3486 (void) __mm_populate(addr, len, 1); 3487 } 3488 #else 3489 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3490 #endif 3491 3492 /* This takes the mm semaphore itself */ 3493 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3494 extern int vm_munmap(unsigned long, size_t); 3495 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3496 unsigned long, unsigned long, 3497 unsigned long, unsigned long); 3498 3499 struct vm_unmapped_area_info { 3500 #define VM_UNMAPPED_AREA_TOPDOWN 1 3501 unsigned long flags; 3502 unsigned long length; 3503 unsigned long low_limit; 3504 unsigned long high_limit; 3505 unsigned long align_mask; 3506 unsigned long align_offset; 3507 unsigned long start_gap; 3508 }; 3509 3510 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3511 3512 /* truncate.c */ 3513 extern void truncate_inode_pages(struct address_space *, loff_t); 3514 extern void truncate_inode_pages_range(struct address_space *, 3515 loff_t lstart, loff_t lend); 3516 extern void truncate_inode_pages_final(struct address_space *); 3517 3518 /* generic vm_area_ops exported for stackable file systems */ 3519 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3520 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3521 pgoff_t start_pgoff, pgoff_t end_pgoff); 3522 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3523 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf); 3524 3525 extern unsigned long stack_guard_gap; 3526 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3527 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3528 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3529 3530 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3531 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3532 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3533 struct vm_area_struct **pprev); 3534 3535 /* 3536 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3537 * NULL if none. Assume start_addr < end_addr. 3538 */ 3539 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3540 unsigned long start_addr, unsigned long end_addr); 3541 3542 /** 3543 * vma_lookup() - Find a VMA at a specific address 3544 * @mm: The process address space. 3545 * @addr: The user address. 3546 * 3547 * Return: The vm_area_struct at the given address, %NULL otherwise. 3548 */ 3549 static inline 3550 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3551 { 3552 return mtree_load(&mm->mm_mt, addr); 3553 } 3554 3555 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3556 { 3557 if (vma->vm_flags & VM_GROWSDOWN) 3558 return stack_guard_gap; 3559 3560 /* See reasoning around the VM_SHADOW_STACK definition */ 3561 if (vma->vm_flags & VM_SHADOW_STACK) 3562 return PAGE_SIZE; 3563 3564 return 0; 3565 } 3566 3567 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3568 { 3569 unsigned long gap = stack_guard_start_gap(vma); 3570 unsigned long vm_start = vma->vm_start; 3571 3572 vm_start -= gap; 3573 if (vm_start > vma->vm_start) 3574 vm_start = 0; 3575 return vm_start; 3576 } 3577 3578 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3579 { 3580 unsigned long vm_end = vma->vm_end; 3581 3582 if (vma->vm_flags & VM_GROWSUP) { 3583 vm_end += stack_guard_gap; 3584 if (vm_end < vma->vm_end) 3585 vm_end = -PAGE_SIZE; 3586 } 3587 return vm_end; 3588 } 3589 3590 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3591 { 3592 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3593 } 3594 3595 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3596 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3597 unsigned long vm_start, unsigned long vm_end) 3598 { 3599 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3600 3601 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3602 vma = NULL; 3603 3604 return vma; 3605 } 3606 3607 static inline bool range_in_vma(struct vm_area_struct *vma, 3608 unsigned long start, unsigned long end) 3609 { 3610 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3611 } 3612 3613 #ifdef CONFIG_MMU 3614 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3615 void vma_set_page_prot(struct vm_area_struct *vma); 3616 #else 3617 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3618 { 3619 return __pgprot(0); 3620 } 3621 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3622 { 3623 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3624 } 3625 #endif 3626 3627 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3628 3629 #ifdef CONFIG_NUMA_BALANCING 3630 unsigned long change_prot_numa(struct vm_area_struct *vma, 3631 unsigned long start, unsigned long end); 3632 #endif 3633 3634 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3635 unsigned long addr); 3636 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3637 unsigned long pfn, unsigned long size, pgprot_t); 3638 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3639 unsigned long pfn, unsigned long size, pgprot_t prot); 3640 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3641 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3642 struct page **pages, unsigned long *num); 3643 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3644 unsigned long num); 3645 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3646 unsigned long num); 3647 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3648 unsigned long pfn); 3649 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3650 unsigned long pfn, pgprot_t pgprot); 3651 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3652 pfn_t pfn); 3653 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3654 unsigned long addr, pfn_t pfn); 3655 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3656 3657 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3658 unsigned long addr, struct page *page) 3659 { 3660 int err = vm_insert_page(vma, addr, page); 3661 3662 if (err == -ENOMEM) 3663 return VM_FAULT_OOM; 3664 if (err < 0 && err != -EBUSY) 3665 return VM_FAULT_SIGBUS; 3666 3667 return VM_FAULT_NOPAGE; 3668 } 3669 3670 #ifndef io_remap_pfn_range 3671 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3672 unsigned long addr, unsigned long pfn, 3673 unsigned long size, pgprot_t prot) 3674 { 3675 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3676 } 3677 #endif 3678 3679 static inline vm_fault_t vmf_error(int err) 3680 { 3681 if (err == -ENOMEM) 3682 return VM_FAULT_OOM; 3683 else if (err == -EHWPOISON) 3684 return VM_FAULT_HWPOISON; 3685 return VM_FAULT_SIGBUS; 3686 } 3687 3688 /* 3689 * Convert errno to return value for ->page_mkwrite() calls. 3690 * 3691 * This should eventually be merged with vmf_error() above, but will need a 3692 * careful audit of all vmf_error() callers. 3693 */ 3694 static inline vm_fault_t vmf_fs_error(int err) 3695 { 3696 if (err == 0) 3697 return VM_FAULT_LOCKED; 3698 if (err == -EFAULT || err == -EAGAIN) 3699 return VM_FAULT_NOPAGE; 3700 if (err == -ENOMEM) 3701 return VM_FAULT_OOM; 3702 /* -ENOSPC, -EDQUOT, -EIO ... */ 3703 return VM_FAULT_SIGBUS; 3704 } 3705 3706 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3707 { 3708 if (vm_fault & VM_FAULT_OOM) 3709 return -ENOMEM; 3710 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3711 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3712 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3713 return -EFAULT; 3714 return 0; 3715 } 3716 3717 /* 3718 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3719 * a (NUMA hinting) fault is required. 3720 */ 3721 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3722 unsigned int flags) 3723 { 3724 /* 3725 * If callers don't want to honor NUMA hinting faults, no need to 3726 * determine if we would actually have to trigger a NUMA hinting fault. 3727 */ 3728 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3729 return true; 3730 3731 /* 3732 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3733 * 3734 * Requiring a fault here even for inaccessible VMAs would mean that 3735 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3736 * refuses to process NUMA hinting faults in inaccessible VMAs. 3737 */ 3738 return !vma_is_accessible(vma); 3739 } 3740 3741 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3742 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3743 unsigned long size, pte_fn_t fn, void *data); 3744 extern int apply_to_existing_page_range(struct mm_struct *mm, 3745 unsigned long address, unsigned long size, 3746 pte_fn_t fn, void *data); 3747 3748 #ifdef CONFIG_PAGE_POISONING 3749 extern void __kernel_poison_pages(struct page *page, int numpages); 3750 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3751 extern bool _page_poisoning_enabled_early; 3752 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3753 static inline bool page_poisoning_enabled(void) 3754 { 3755 return _page_poisoning_enabled_early; 3756 } 3757 /* 3758 * For use in fast paths after init_mem_debugging() has run, or when a 3759 * false negative result is not harmful when called too early. 3760 */ 3761 static inline bool page_poisoning_enabled_static(void) 3762 { 3763 return static_branch_unlikely(&_page_poisoning_enabled); 3764 } 3765 static inline void kernel_poison_pages(struct page *page, int numpages) 3766 { 3767 if (page_poisoning_enabled_static()) 3768 __kernel_poison_pages(page, numpages); 3769 } 3770 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3771 { 3772 if (page_poisoning_enabled_static()) 3773 __kernel_unpoison_pages(page, numpages); 3774 } 3775 #else 3776 static inline bool page_poisoning_enabled(void) { return false; } 3777 static inline bool page_poisoning_enabled_static(void) { return false; } 3778 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3779 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3780 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3781 #endif 3782 3783 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3784 static inline bool want_init_on_alloc(gfp_t flags) 3785 { 3786 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3787 &init_on_alloc)) 3788 return true; 3789 return flags & __GFP_ZERO; 3790 } 3791 3792 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3793 static inline bool want_init_on_free(void) 3794 { 3795 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3796 &init_on_free); 3797 } 3798 3799 extern bool _debug_pagealloc_enabled_early; 3800 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3801 3802 static inline bool debug_pagealloc_enabled(void) 3803 { 3804 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3805 _debug_pagealloc_enabled_early; 3806 } 3807 3808 /* 3809 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3810 * or when a false negative result is not harmful when called too early. 3811 */ 3812 static inline bool debug_pagealloc_enabled_static(void) 3813 { 3814 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3815 return false; 3816 3817 return static_branch_unlikely(&_debug_pagealloc_enabled); 3818 } 3819 3820 /* 3821 * To support DEBUG_PAGEALLOC architecture must ensure that 3822 * __kernel_map_pages() never fails 3823 */ 3824 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3825 #ifdef CONFIG_DEBUG_PAGEALLOC 3826 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3827 { 3828 if (debug_pagealloc_enabled_static()) 3829 __kernel_map_pages(page, numpages, 1); 3830 } 3831 3832 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3833 { 3834 if (debug_pagealloc_enabled_static()) 3835 __kernel_map_pages(page, numpages, 0); 3836 } 3837 3838 extern unsigned int _debug_guardpage_minorder; 3839 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3840 3841 static inline unsigned int debug_guardpage_minorder(void) 3842 { 3843 return _debug_guardpage_minorder; 3844 } 3845 3846 static inline bool debug_guardpage_enabled(void) 3847 { 3848 return static_branch_unlikely(&_debug_guardpage_enabled); 3849 } 3850 3851 static inline bool page_is_guard(struct page *page) 3852 { 3853 if (!debug_guardpage_enabled()) 3854 return false; 3855 3856 return PageGuard(page); 3857 } 3858 3859 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3860 static inline bool set_page_guard(struct zone *zone, struct page *page, 3861 unsigned int order) 3862 { 3863 if (!debug_guardpage_enabled()) 3864 return false; 3865 return __set_page_guard(zone, page, order); 3866 } 3867 3868 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3869 static inline void clear_page_guard(struct zone *zone, struct page *page, 3870 unsigned int order) 3871 { 3872 if (!debug_guardpage_enabled()) 3873 return; 3874 __clear_page_guard(zone, page, order); 3875 } 3876 3877 #else /* CONFIG_DEBUG_PAGEALLOC */ 3878 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3879 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3880 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3881 static inline bool debug_guardpage_enabled(void) { return false; } 3882 static inline bool page_is_guard(struct page *page) { return false; } 3883 static inline bool set_page_guard(struct zone *zone, struct page *page, 3884 unsigned int order) { return false; } 3885 static inline void clear_page_guard(struct zone *zone, struct page *page, 3886 unsigned int order) {} 3887 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3888 3889 #ifdef __HAVE_ARCH_GATE_AREA 3890 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3891 extern int in_gate_area_no_mm(unsigned long addr); 3892 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3893 #else 3894 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3895 { 3896 return NULL; 3897 } 3898 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3899 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3900 { 3901 return 0; 3902 } 3903 #endif /* __HAVE_ARCH_GATE_AREA */ 3904 3905 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3906 3907 #ifdef CONFIG_SYSCTL 3908 extern int sysctl_drop_caches; 3909 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3910 loff_t *); 3911 #endif 3912 3913 void drop_slab(void); 3914 3915 #ifndef CONFIG_MMU 3916 #define randomize_va_space 0 3917 #else 3918 extern int randomize_va_space; 3919 #endif 3920 3921 const char * arch_vma_name(struct vm_area_struct *vma); 3922 #ifdef CONFIG_MMU 3923 void print_vma_addr(char *prefix, unsigned long rip); 3924 #else 3925 static inline void print_vma_addr(char *prefix, unsigned long rip) 3926 { 3927 } 3928 #endif 3929 3930 void *sparse_buffer_alloc(unsigned long size); 3931 unsigned long section_map_size(void); 3932 struct page * __populate_section_memmap(unsigned long pfn, 3933 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3934 struct dev_pagemap *pgmap); 3935 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3936 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3937 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3938 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3939 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3940 struct vmem_altmap *altmap, unsigned long ptpfn, 3941 unsigned long flags); 3942 void *vmemmap_alloc_block(unsigned long size, int node); 3943 struct vmem_altmap; 3944 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3945 struct vmem_altmap *altmap); 3946 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3947 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3948 unsigned long addr, unsigned long next); 3949 int vmemmap_check_pmd(pmd_t *pmd, int node, 3950 unsigned long addr, unsigned long next); 3951 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3952 int node, struct vmem_altmap *altmap); 3953 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3954 int node, struct vmem_altmap *altmap); 3955 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3956 struct vmem_altmap *altmap); 3957 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3958 unsigned long headsize); 3959 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3960 unsigned long headsize); 3961 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3962 unsigned long headsize); 3963 void vmemmap_populate_print_last(void); 3964 #ifdef CONFIG_MEMORY_HOTPLUG 3965 void vmemmap_free(unsigned long start, unsigned long end, 3966 struct vmem_altmap *altmap); 3967 #endif 3968 3969 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3970 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3971 { 3972 /* number of pfns from base where pfn_to_page() is valid */ 3973 if (altmap) 3974 return altmap->reserve + altmap->free; 3975 return 0; 3976 } 3977 3978 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3979 unsigned long nr_pfns) 3980 { 3981 altmap->alloc -= nr_pfns; 3982 } 3983 #else 3984 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3985 { 3986 return 0; 3987 } 3988 3989 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3990 unsigned long nr_pfns) 3991 { 3992 } 3993 #endif 3994 3995 #define VMEMMAP_RESERVE_NR 2 3996 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3997 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3998 struct dev_pagemap *pgmap) 3999 { 4000 unsigned long nr_pages; 4001 unsigned long nr_vmemmap_pages; 4002 4003 if (!pgmap || !is_power_of_2(sizeof(struct page))) 4004 return false; 4005 4006 nr_pages = pgmap_vmemmap_nr(pgmap); 4007 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4008 /* 4009 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4010 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4011 */ 4012 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4013 } 4014 /* 4015 * If we don't have an architecture override, use the generic rule 4016 */ 4017 #ifndef vmemmap_can_optimize 4018 #define vmemmap_can_optimize __vmemmap_can_optimize 4019 #endif 4020 4021 #else 4022 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4023 struct dev_pagemap *pgmap) 4024 { 4025 return false; 4026 } 4027 #endif 4028 4029 enum mf_flags { 4030 MF_COUNT_INCREASED = 1 << 0, 4031 MF_ACTION_REQUIRED = 1 << 1, 4032 MF_MUST_KILL = 1 << 2, 4033 MF_SOFT_OFFLINE = 1 << 3, 4034 MF_UNPOISON = 1 << 4, 4035 MF_SW_SIMULATED = 1 << 5, 4036 MF_NO_RETRY = 1 << 6, 4037 MF_MEM_PRE_REMOVE = 1 << 7, 4038 }; 4039 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4040 unsigned long count, int mf_flags); 4041 extern int memory_failure(unsigned long pfn, int flags); 4042 extern void memory_failure_queue_kick(int cpu); 4043 extern int unpoison_memory(unsigned long pfn); 4044 extern atomic_long_t num_poisoned_pages __read_mostly; 4045 extern int soft_offline_page(unsigned long pfn, int flags); 4046 #ifdef CONFIG_MEMORY_FAILURE 4047 /* 4048 * Sysfs entries for memory failure handling statistics. 4049 */ 4050 extern const struct attribute_group memory_failure_attr_group; 4051 extern void memory_failure_queue(unsigned long pfn, int flags); 4052 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4053 bool *migratable_cleared); 4054 void num_poisoned_pages_inc(unsigned long pfn); 4055 void num_poisoned_pages_sub(unsigned long pfn, long i); 4056 #else 4057 static inline void memory_failure_queue(unsigned long pfn, int flags) 4058 { 4059 } 4060 4061 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4062 bool *migratable_cleared) 4063 { 4064 return 0; 4065 } 4066 4067 static inline void num_poisoned_pages_inc(unsigned long pfn) 4068 { 4069 } 4070 4071 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4072 { 4073 } 4074 #endif 4075 4076 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4077 extern void memblk_nr_poison_inc(unsigned long pfn); 4078 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4079 #else 4080 static inline void memblk_nr_poison_inc(unsigned long pfn) 4081 { 4082 } 4083 4084 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4085 { 4086 } 4087 #endif 4088 4089 #ifndef arch_memory_failure 4090 static inline int arch_memory_failure(unsigned long pfn, int flags) 4091 { 4092 return -ENXIO; 4093 } 4094 #endif 4095 4096 #ifndef arch_is_platform_page 4097 static inline bool arch_is_platform_page(u64 paddr) 4098 { 4099 return false; 4100 } 4101 #endif 4102 4103 /* 4104 * Error handlers for various types of pages. 4105 */ 4106 enum mf_result { 4107 MF_IGNORED, /* Error: cannot be handled */ 4108 MF_FAILED, /* Error: handling failed */ 4109 MF_DELAYED, /* Will be handled later */ 4110 MF_RECOVERED, /* Successfully recovered */ 4111 }; 4112 4113 enum mf_action_page_type { 4114 MF_MSG_KERNEL, 4115 MF_MSG_KERNEL_HIGH_ORDER, 4116 MF_MSG_DIFFERENT_COMPOUND, 4117 MF_MSG_HUGE, 4118 MF_MSG_FREE_HUGE, 4119 MF_MSG_GET_HWPOISON, 4120 MF_MSG_UNMAP_FAILED, 4121 MF_MSG_DIRTY_SWAPCACHE, 4122 MF_MSG_CLEAN_SWAPCACHE, 4123 MF_MSG_DIRTY_MLOCKED_LRU, 4124 MF_MSG_CLEAN_MLOCKED_LRU, 4125 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4126 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4127 MF_MSG_DIRTY_LRU, 4128 MF_MSG_CLEAN_LRU, 4129 MF_MSG_TRUNCATED_LRU, 4130 MF_MSG_BUDDY, 4131 MF_MSG_DAX, 4132 MF_MSG_UNSPLIT_THP, 4133 MF_MSG_ALREADY_POISONED, 4134 MF_MSG_UNKNOWN, 4135 }; 4136 4137 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4138 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4139 int copy_user_large_folio(struct folio *dst, struct folio *src, 4140 unsigned long addr_hint, 4141 struct vm_area_struct *vma); 4142 long copy_folio_from_user(struct folio *dst_folio, 4143 const void __user *usr_src, 4144 bool allow_pagefault); 4145 4146 /** 4147 * vma_is_special_huge - Are transhuge page-table entries considered special? 4148 * @vma: Pointer to the struct vm_area_struct to consider 4149 * 4150 * Whether transhuge page-table entries are considered "special" following 4151 * the definition in vm_normal_page(). 4152 * 4153 * Return: true if transhuge page-table entries should be considered special, 4154 * false otherwise. 4155 */ 4156 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4157 { 4158 return vma_is_dax(vma) || (vma->vm_file && 4159 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4160 } 4161 4162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4163 4164 #if MAX_NUMNODES > 1 4165 void __init setup_nr_node_ids(void); 4166 #else 4167 static inline void setup_nr_node_ids(void) {} 4168 #endif 4169 4170 extern int memcmp_pages(struct page *page1, struct page *page2); 4171 4172 static inline int pages_identical(struct page *page1, struct page *page2) 4173 { 4174 return !memcmp_pages(page1, page2); 4175 } 4176 4177 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4178 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4179 pgoff_t first_index, pgoff_t nr, 4180 pgoff_t bitmap_pgoff, 4181 unsigned long *bitmap, 4182 pgoff_t *start, 4183 pgoff_t *end); 4184 4185 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4186 pgoff_t first_index, pgoff_t nr); 4187 #endif 4188 4189 extern int sysctl_nr_trim_pages; 4190 4191 #ifdef CONFIG_ANON_VMA_NAME 4192 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4193 unsigned long len_in, 4194 struct anon_vma_name *anon_name); 4195 #else 4196 static inline int 4197 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4198 unsigned long len_in, struct anon_vma_name *anon_name) { 4199 return 0; 4200 } 4201 #endif 4202 4203 #ifdef CONFIG_UNACCEPTED_MEMORY 4204 4205 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4206 void accept_memory(phys_addr_t start, unsigned long size); 4207 4208 #else 4209 4210 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4211 unsigned long size) 4212 { 4213 return false; 4214 } 4215 4216 static inline void accept_memory(phys_addr_t start, unsigned long size) 4217 { 4218 } 4219 4220 #endif 4221 4222 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4223 { 4224 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4225 } 4226 4227 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4228 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4229 4230 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4231 4232 #ifdef CONFIG_64BIT 4233 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4234 #else 4235 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4236 { 4237 /* noop on 32 bit */ 4238 return 0; 4239 } 4240 #endif 4241 4242 /* 4243 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4244 * be zeroed or not. 4245 */ 4246 static inline bool user_alloc_needs_zeroing(void) 4247 { 4248 /* 4249 * for user folios, arch with cache aliasing requires cache flush and 4250 * arc changes folio->flags to make icache coherent with dcache, so 4251 * always return false to make caller use 4252 * clear_user_page()/clear_user_highpage(). 4253 */ 4254 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4255 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4256 &init_on_alloc); 4257 } 4258 4259 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4260 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4261 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4262 4263 #endif /* _LINUX_MM_H */ 4264