xref: /linux-6.15/include/linux/mm.h (revision 9cb75552)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 #ifdef CONFIG_64BIT
410 #define VM_DROPPABLE_BIT	40
411 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
412 #else
413 #define VM_DROPPABLE		VM_NONE
414 #endif
415 
416 #ifdef CONFIG_64BIT
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED	_BITUL(63)
419 #endif
420 
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423 
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425 
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
428 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
430 				 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
432 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433 
434 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
436 #endif
437 
438 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440 #endif
441 
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443 
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK	VM_GROWSUP
446 #define VM_STACK_EARLY	VM_GROWSDOWN
447 #else
448 #define VM_STACK	VM_GROWSDOWN
449 #define VM_STACK_EARLY	0
450 #endif
451 
452 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453 
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456 
457 
458 /*
459  * Special vmas that are non-mergable, non-mlock()able.
460  */
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462 
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465 
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
468 
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
471 
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR	VM_NONE
475 #endif
476 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477 
478 /*
479  * mapping from the currently active vm_flags protection bits (the
480  * low four bits) to a page protection mask..
481  */
482 
483 /*
484  * The default fault flags that should be used by most of the
485  * arch-specific page fault handlers.
486  */
487 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
488 			     FAULT_FLAG_KILLABLE | \
489 			     FAULT_FLAG_INTERRUPTIBLE)
490 
491 /**
492  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493  * @flags: Fault flags.
494  *
495  * This is mostly used for places where we want to try to avoid taking
496  * the mmap_lock for too long a time when waiting for another condition
497  * to change, in which case we can try to be polite to release the
498  * mmap_lock in the first round to avoid potential starvation of other
499  * processes that would also want the mmap_lock.
500  *
501  * Return: true if the page fault allows retry and this is the first
502  * attempt of the fault handling; false otherwise.
503  */
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 	    (!(flags & FAULT_FLAG_TRIED));
508 }
509 
510 #define FAULT_FLAG_TRACE \
511 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
512 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
513 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
514 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
515 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
516 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
517 	{ FAULT_FLAG_USER,		"USER" }, \
518 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
519 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
520 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
521 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
522 
523 /*
524  * vm_fault is filled by the pagefault handler and passed to the vma's
525  * ->fault function. The vma's ->fault is responsible for returning a bitmask
526  * of VM_FAULT_xxx flags that give details about how the fault was handled.
527  *
528  * MM layer fills up gfp_mask for page allocations but fault handler might
529  * alter it if its implementation requires a different allocation context.
530  *
531  * pgoff should be used in favour of virtual_address, if possible.
532  */
533 struct vm_fault {
534 	const struct {
535 		struct vm_area_struct *vma;	/* Target VMA */
536 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
537 		pgoff_t pgoff;			/* Logical page offset based on vma */
538 		unsigned long address;		/* Faulting virtual address - masked */
539 		unsigned long real_address;	/* Faulting virtual address - unmasked */
540 	};
541 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
542 					 * XXX: should really be 'const' */
543 	pmd_t *pmd;			/* Pointer to pmd entry matching
544 					 * the 'address' */
545 	pud_t *pud;			/* Pointer to pud entry matching
546 					 * the 'address'
547 					 */
548 	union {
549 		pte_t orig_pte;		/* Value of PTE at the time of fault */
550 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
551 					 * used by PMD fault only.
552 					 */
553 	};
554 
555 	struct page *cow_page;		/* Page handler may use for COW fault */
556 	struct page *page;		/* ->fault handlers should return a
557 					 * page here, unless VM_FAULT_NOPAGE
558 					 * is set (which is also implied by
559 					 * VM_FAULT_ERROR).
560 					 */
561 	/* These three entries are valid only while holding ptl lock */
562 	pte_t *pte;			/* Pointer to pte entry matching
563 					 * the 'address'. NULL if the page
564 					 * table hasn't been allocated.
565 					 */
566 	spinlock_t *ptl;		/* Page table lock.
567 					 * Protects pte page table if 'pte'
568 					 * is not NULL, otherwise pmd.
569 					 */
570 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
571 					 * vm_ops->map_pages() sets up a page
572 					 * table from atomic context.
573 					 * do_fault_around() pre-allocates
574 					 * page table to avoid allocation from
575 					 * atomic context.
576 					 */
577 };
578 
579 /*
580  * These are the virtual MM functions - opening of an area, closing and
581  * unmapping it (needed to keep files on disk up-to-date etc), pointer
582  * to the functions called when a no-page or a wp-page exception occurs.
583  */
584 struct vm_operations_struct {
585 	void (*open)(struct vm_area_struct * area);
586 	/**
587 	 * @close: Called when the VMA is being removed from the MM.
588 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
589 	 */
590 	void (*close)(struct vm_area_struct * area);
591 	/* Called any time before splitting to check if it's allowed */
592 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 	int (*mremap)(struct vm_area_struct *area);
594 	/*
595 	 * Called by mprotect() to make driver-specific permission
596 	 * checks before mprotect() is finalised.   The VMA must not
597 	 * be modified.  Returns 0 if mprotect() can proceed.
598 	 */
599 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 			unsigned long end, unsigned long newflags);
601 	vm_fault_t (*fault)(struct vm_fault *vmf);
602 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr, pgoff_t *ilx);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 #ifdef CONFIG_NUMA_BALANCING
659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
660 {
661 	vma->numab_state = NULL;
662 }
663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
664 {
665 	kfree(vma->numab_state);
666 }
667 #else
668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
671 
672 #ifdef CONFIG_PER_VMA_LOCK
673 /*
674  * Try to read-lock a vma. The function is allowed to occasionally yield false
675  * locked result to avoid performance overhead, in which case we fall back to
676  * using mmap_lock. The function should never yield false unlocked result.
677  */
678 static inline bool vma_start_read(struct vm_area_struct *vma)
679 {
680 	/*
681 	 * Check before locking. A race might cause false locked result.
682 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
683 	 * ACQUIRE semantics, because this is just a lockless check whose result
684 	 * we don't rely on for anything - the mm_lock_seq read against which we
685 	 * need ordering is below.
686 	 */
687 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
688 		return false;
689 
690 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
691 		return false;
692 
693 	/*
694 	 * Overflow might produce false locked result.
695 	 * False unlocked result is impossible because we modify and check
696 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
697 	 * modification invalidates all existing locks.
698 	 *
699 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
700 	 * racing with vma_end_write_all(), we only start reading from the VMA
701 	 * after it has been unlocked.
702 	 * This pairs with RELEASE semantics in vma_end_write_all().
703 	 */
704 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
705 		up_read(&vma->vm_lock->lock);
706 		return false;
707 	}
708 	return true;
709 }
710 
711 static inline void vma_end_read(struct vm_area_struct *vma)
712 {
713 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
714 	up_read(&vma->vm_lock->lock);
715 	rcu_read_unlock();
716 }
717 
718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
720 {
721 	mmap_assert_write_locked(vma->vm_mm);
722 
723 	/*
724 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
725 	 * mm->mm_lock_seq can't be concurrently modified.
726 	 */
727 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
728 	return (vma->vm_lock_seq == *mm_lock_seq);
729 }
730 
731 /*
732  * Begin writing to a VMA.
733  * Exclude concurrent readers under the per-VMA lock until the currently
734  * write-locked mmap_lock is dropped or downgraded.
735  */
736 static inline void vma_start_write(struct vm_area_struct *vma)
737 {
738 	int mm_lock_seq;
739 
740 	if (__is_vma_write_locked(vma, &mm_lock_seq))
741 		return;
742 
743 	down_write(&vma->vm_lock->lock);
744 	/*
745 	 * We should use WRITE_ONCE() here because we can have concurrent reads
746 	 * from the early lockless pessimistic check in vma_start_read().
747 	 * We don't really care about the correctness of that early check, but
748 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
749 	 */
750 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
751 	up_write(&vma->vm_lock->lock);
752 }
753 
754 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
755 {
756 	int mm_lock_seq;
757 
758 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
759 }
760 
761 static inline void vma_assert_locked(struct vm_area_struct *vma)
762 {
763 	if (!rwsem_is_locked(&vma->vm_lock->lock))
764 		vma_assert_write_locked(vma);
765 }
766 
767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
768 {
769 	/* When detaching vma should be write-locked */
770 	if (detached)
771 		vma_assert_write_locked(vma);
772 	vma->detached = detached;
773 }
774 
775 static inline void release_fault_lock(struct vm_fault *vmf)
776 {
777 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
778 		vma_end_read(vmf->vma);
779 	else
780 		mmap_read_unlock(vmf->vma->vm_mm);
781 }
782 
783 static inline void assert_fault_locked(struct vm_fault *vmf)
784 {
785 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
786 		vma_assert_locked(vmf->vma);
787 	else
788 		mmap_assert_locked(vmf->vma->vm_mm);
789 }
790 
791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
792 					  unsigned long address);
793 
794 #else /* CONFIG_PER_VMA_LOCK */
795 
796 static inline bool vma_start_read(struct vm_area_struct *vma)
797 		{ return false; }
798 static inline void vma_end_read(struct vm_area_struct *vma) {}
799 static inline void vma_start_write(struct vm_area_struct *vma) {}
800 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
801 		{ mmap_assert_write_locked(vma->vm_mm); }
802 static inline void vma_mark_detached(struct vm_area_struct *vma,
803 				     bool detached) {}
804 
805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 		unsigned long address)
807 {
808 	return NULL;
809 }
810 
811 static inline void vma_assert_locked(struct vm_area_struct *vma)
812 {
813 	mmap_assert_locked(vma->vm_mm);
814 }
815 
816 static inline void release_fault_lock(struct vm_fault *vmf)
817 {
818 	mmap_read_unlock(vmf->vma->vm_mm);
819 }
820 
821 static inline void assert_fault_locked(struct vm_fault *vmf)
822 {
823 	mmap_assert_locked(vmf->vma->vm_mm);
824 }
825 
826 #endif /* CONFIG_PER_VMA_LOCK */
827 
828 extern const struct vm_operations_struct vma_dummy_vm_ops;
829 
830 /*
831  * WARNING: vma_init does not initialize vma->vm_lock.
832  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
833  */
834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
835 {
836 	memset(vma, 0, sizeof(*vma));
837 	vma->vm_mm = mm;
838 	vma->vm_ops = &vma_dummy_vm_ops;
839 	INIT_LIST_HEAD(&vma->anon_vma_chain);
840 	vma_mark_detached(vma, false);
841 	vma_numab_state_init(vma);
842 }
843 
844 /* Use when VMA is not part of the VMA tree and needs no locking */
845 static inline void vm_flags_init(struct vm_area_struct *vma,
846 				 vm_flags_t flags)
847 {
848 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
849 }
850 
851 /*
852  * Use when VMA is part of the VMA tree and modifications need coordination
853  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
854  * it should be locked explicitly beforehand.
855  */
856 static inline void vm_flags_reset(struct vm_area_struct *vma,
857 				  vm_flags_t flags)
858 {
859 	vma_assert_write_locked(vma);
860 	vm_flags_init(vma, flags);
861 }
862 
863 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
864 				       vm_flags_t flags)
865 {
866 	vma_assert_write_locked(vma);
867 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
868 }
869 
870 static inline void vm_flags_set(struct vm_area_struct *vma,
871 				vm_flags_t flags)
872 {
873 	vma_start_write(vma);
874 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
875 }
876 
877 static inline void vm_flags_clear(struct vm_area_struct *vma,
878 				  vm_flags_t flags)
879 {
880 	vma_start_write(vma);
881 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
882 }
883 
884 /*
885  * Use only if VMA is not part of the VMA tree or has no other users and
886  * therefore needs no locking.
887  */
888 static inline void __vm_flags_mod(struct vm_area_struct *vma,
889 				  vm_flags_t set, vm_flags_t clear)
890 {
891 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
892 }
893 
894 /*
895  * Use only when the order of set/clear operations is unimportant, otherwise
896  * use vm_flags_{set|clear} explicitly.
897  */
898 static inline void vm_flags_mod(struct vm_area_struct *vma,
899 				vm_flags_t set, vm_flags_t clear)
900 {
901 	vma_start_write(vma);
902 	__vm_flags_mod(vma, set, clear);
903 }
904 
905 static inline void vma_set_anonymous(struct vm_area_struct *vma)
906 {
907 	vma->vm_ops = NULL;
908 }
909 
910 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
911 {
912 	return !vma->vm_ops;
913 }
914 
915 /*
916  * Indicate if the VMA is a heap for the given task; for
917  * /proc/PID/maps that is the heap of the main task.
918  */
919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
920 {
921 	return vma->vm_start < vma->vm_mm->brk &&
922 		vma->vm_end > vma->vm_mm->start_brk;
923 }
924 
925 /*
926  * Indicate if the VMA is a stack for the given task; for
927  * /proc/PID/maps that is the stack of the main task.
928  */
929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
930 {
931 	/*
932 	 * We make no effort to guess what a given thread considers to be
933 	 * its "stack".  It's not even well-defined for programs written
934 	 * languages like Go.
935 	 */
936 	return vma->vm_start <= vma->vm_mm->start_stack &&
937 		vma->vm_end >= vma->vm_mm->start_stack;
938 }
939 
940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
941 {
942 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
943 
944 	if (!maybe_stack)
945 		return false;
946 
947 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
948 						VM_STACK_INCOMPLETE_SETUP)
949 		return true;
950 
951 	return false;
952 }
953 
954 static inline bool vma_is_foreign(struct vm_area_struct *vma)
955 {
956 	if (!current->mm)
957 		return true;
958 
959 	if (current->mm != vma->vm_mm)
960 		return true;
961 
962 	return false;
963 }
964 
965 static inline bool vma_is_accessible(struct vm_area_struct *vma)
966 {
967 	return vma->vm_flags & VM_ACCESS_FLAGS;
968 }
969 
970 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
971 {
972 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
973 		(VM_SHARED | VM_MAYWRITE);
974 }
975 
976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
977 {
978 	return is_shared_maywrite(vma->vm_flags);
979 }
980 
981 static inline
982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
983 {
984 	return mas_find(&vmi->mas, max - 1);
985 }
986 
987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
988 {
989 	/*
990 	 * Uses mas_find() to get the first VMA when the iterator starts.
991 	 * Calling mas_next() could skip the first entry.
992 	 */
993 	return mas_find(&vmi->mas, ULONG_MAX);
994 }
995 
996 static inline
997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
998 {
999 	return mas_next_range(&vmi->mas, ULONG_MAX);
1000 }
1001 
1002 
1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1004 {
1005 	return mas_prev(&vmi->mas, 0);
1006 }
1007 
1008 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1009 			unsigned long start, unsigned long end, gfp_t gfp)
1010 {
1011 	__mas_set_range(&vmi->mas, start, end - 1);
1012 	mas_store_gfp(&vmi->mas, NULL, gfp);
1013 	if (unlikely(mas_is_err(&vmi->mas)))
1014 		return -ENOMEM;
1015 
1016 	return 0;
1017 }
1018 
1019 /* Free any unused preallocations */
1020 static inline void vma_iter_free(struct vma_iterator *vmi)
1021 {
1022 	mas_destroy(&vmi->mas);
1023 }
1024 
1025 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1026 				      struct vm_area_struct *vma)
1027 {
1028 	vmi->mas.index = vma->vm_start;
1029 	vmi->mas.last = vma->vm_end - 1;
1030 	mas_store(&vmi->mas, vma);
1031 	if (unlikely(mas_is_err(&vmi->mas)))
1032 		return -ENOMEM;
1033 
1034 	return 0;
1035 }
1036 
1037 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1038 {
1039 	mas_pause(&vmi->mas);
1040 }
1041 
1042 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1043 {
1044 	mas_set(&vmi->mas, addr);
1045 }
1046 
1047 #define for_each_vma(__vmi, __vma)					\
1048 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1049 
1050 /* The MM code likes to work with exclusive end addresses */
1051 #define for_each_vma_range(__vmi, __vma, __end)				\
1052 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1053 
1054 #ifdef CONFIG_SHMEM
1055 /*
1056  * The vma_is_shmem is not inline because it is used only by slow
1057  * paths in userfault.
1058  */
1059 bool vma_is_shmem(struct vm_area_struct *vma);
1060 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1061 #else
1062 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1063 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1064 #endif
1065 
1066 int vma_is_stack_for_current(struct vm_area_struct *vma);
1067 
1068 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1069 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1070 
1071 struct mmu_gather;
1072 struct inode;
1073 
1074 /*
1075  * compound_order() can be called without holding a reference, which means
1076  * that niceties like page_folio() don't work.  These callers should be
1077  * prepared to handle wild return values.  For example, PG_head may be
1078  * set before the order is initialised, or this may be a tail page.
1079  * See compaction.c for some good examples.
1080  */
1081 static inline unsigned int compound_order(struct page *page)
1082 {
1083 	struct folio *folio = (struct folio *)page;
1084 
1085 	if (!test_bit(PG_head, &folio->flags))
1086 		return 0;
1087 	return folio->_flags_1 & 0xff;
1088 }
1089 
1090 /**
1091  * folio_order - The allocation order of a folio.
1092  * @folio: The folio.
1093  *
1094  * A folio is composed of 2^order pages.  See get_order() for the definition
1095  * of order.
1096  *
1097  * Return: The order of the folio.
1098  */
1099 static inline unsigned int folio_order(const struct folio *folio)
1100 {
1101 	if (!folio_test_large(folio))
1102 		return 0;
1103 	return folio->_flags_1 & 0xff;
1104 }
1105 
1106 #include <linux/huge_mm.h>
1107 
1108 /*
1109  * Methods to modify the page usage count.
1110  *
1111  * What counts for a page usage:
1112  * - cache mapping   (page->mapping)
1113  * - private data    (page->private)
1114  * - page mapped in a task's page tables, each mapping
1115  *   is counted separately
1116  *
1117  * Also, many kernel routines increase the page count before a critical
1118  * routine so they can be sure the page doesn't go away from under them.
1119  */
1120 
1121 /*
1122  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1123  */
1124 static inline int put_page_testzero(struct page *page)
1125 {
1126 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1127 	return page_ref_dec_and_test(page);
1128 }
1129 
1130 static inline int folio_put_testzero(struct folio *folio)
1131 {
1132 	return put_page_testzero(&folio->page);
1133 }
1134 
1135 /*
1136  * Try to grab a ref unless the page has a refcount of zero, return false if
1137  * that is the case.
1138  * This can be called when MMU is off so it must not access
1139  * any of the virtual mappings.
1140  */
1141 static inline bool get_page_unless_zero(struct page *page)
1142 {
1143 	return page_ref_add_unless(page, 1, 0);
1144 }
1145 
1146 static inline struct folio *folio_get_nontail_page(struct page *page)
1147 {
1148 	if (unlikely(!get_page_unless_zero(page)))
1149 		return NULL;
1150 	return (struct folio *)page;
1151 }
1152 
1153 extern int page_is_ram(unsigned long pfn);
1154 
1155 enum {
1156 	REGION_INTERSECTS,
1157 	REGION_DISJOINT,
1158 	REGION_MIXED,
1159 };
1160 
1161 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1162 		      unsigned long desc);
1163 
1164 /* Support for virtually mapped pages */
1165 struct page *vmalloc_to_page(const void *addr);
1166 unsigned long vmalloc_to_pfn(const void *addr);
1167 
1168 /*
1169  * Determine if an address is within the vmalloc range
1170  *
1171  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1172  * is no special casing required.
1173  */
1174 #ifdef CONFIG_MMU
1175 extern bool is_vmalloc_addr(const void *x);
1176 extern int is_vmalloc_or_module_addr(const void *x);
1177 #else
1178 static inline bool is_vmalloc_addr(const void *x)
1179 {
1180 	return false;
1181 }
1182 static inline int is_vmalloc_or_module_addr(const void *x)
1183 {
1184 	return 0;
1185 }
1186 #endif
1187 
1188 /*
1189  * How many times the entire folio is mapped as a single unit (eg by a
1190  * PMD or PUD entry).  This is probably not what you want, except for
1191  * debugging purposes or implementation of other core folio_*() primitives.
1192  */
1193 static inline int folio_entire_mapcount(const struct folio *folio)
1194 {
1195 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1196 	return atomic_read(&folio->_entire_mapcount) + 1;
1197 }
1198 
1199 static inline int folio_large_mapcount(const struct folio *folio)
1200 {
1201 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1202 	return atomic_read(&folio->_large_mapcount) + 1;
1203 }
1204 
1205 /**
1206  * folio_mapcount() - Number of mappings of this folio.
1207  * @folio: The folio.
1208  *
1209  * The folio mapcount corresponds to the number of present user page table
1210  * entries that reference any part of a folio. Each such present user page
1211  * table entry must be paired with exactly on folio reference.
1212  *
1213  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1214  * exactly once.
1215  *
1216  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1217  * references the entire folio counts exactly once, even when such special
1218  * page table entries are comprised of multiple ordinary page table entries.
1219  *
1220  * Will report 0 for pages which cannot be mapped into userspace, such as
1221  * slab, page tables and similar.
1222  *
1223  * Return: The number of times this folio is mapped.
1224  */
1225 static inline int folio_mapcount(const struct folio *folio)
1226 {
1227 	int mapcount;
1228 
1229 	if (likely(!folio_test_large(folio))) {
1230 		mapcount = atomic_read(&folio->_mapcount) + 1;
1231 		if (page_mapcount_is_type(mapcount))
1232 			mapcount = 0;
1233 		return mapcount;
1234 	}
1235 	return folio_large_mapcount(folio);
1236 }
1237 
1238 /**
1239  * folio_mapped - Is this folio mapped into userspace?
1240  * @folio: The folio.
1241  *
1242  * Return: True if any page in this folio is referenced by user page tables.
1243  */
1244 static inline bool folio_mapped(const struct folio *folio)
1245 {
1246 	return folio_mapcount(folio) >= 1;
1247 }
1248 
1249 /*
1250  * Return true if this page is mapped into pagetables.
1251  * For compound page it returns true if any sub-page of compound page is mapped,
1252  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1253  */
1254 static inline bool page_mapped(const struct page *page)
1255 {
1256 	return folio_mapped(page_folio(page));
1257 }
1258 
1259 static inline struct page *virt_to_head_page(const void *x)
1260 {
1261 	struct page *page = virt_to_page(x);
1262 
1263 	return compound_head(page);
1264 }
1265 
1266 static inline struct folio *virt_to_folio(const void *x)
1267 {
1268 	struct page *page = virt_to_page(x);
1269 
1270 	return page_folio(page);
1271 }
1272 
1273 void __folio_put(struct folio *folio);
1274 
1275 void put_pages_list(struct list_head *pages);
1276 
1277 void split_page(struct page *page, unsigned int order);
1278 void folio_copy(struct folio *dst, struct folio *src);
1279 int folio_mc_copy(struct folio *dst, struct folio *src);
1280 
1281 unsigned long nr_free_buffer_pages(void);
1282 
1283 /* Returns the number of bytes in this potentially compound page. */
1284 static inline unsigned long page_size(struct page *page)
1285 {
1286 	return PAGE_SIZE << compound_order(page);
1287 }
1288 
1289 /* Returns the number of bits needed for the number of bytes in a page */
1290 static inline unsigned int page_shift(struct page *page)
1291 {
1292 	return PAGE_SHIFT + compound_order(page);
1293 }
1294 
1295 /**
1296  * thp_order - Order of a transparent huge page.
1297  * @page: Head page of a transparent huge page.
1298  */
1299 static inline unsigned int thp_order(struct page *page)
1300 {
1301 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1302 	return compound_order(page);
1303 }
1304 
1305 /**
1306  * thp_size - Size of a transparent huge page.
1307  * @page: Head page of a transparent huge page.
1308  *
1309  * Return: Number of bytes in this page.
1310  */
1311 static inline unsigned long thp_size(struct page *page)
1312 {
1313 	return PAGE_SIZE << thp_order(page);
1314 }
1315 
1316 #ifdef CONFIG_MMU
1317 /*
1318  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1319  * servicing faults for write access.  In the normal case, do always want
1320  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1321  * that do not have writing enabled, when used by access_process_vm.
1322  */
1323 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1324 {
1325 	if (likely(vma->vm_flags & VM_WRITE))
1326 		pte = pte_mkwrite(pte, vma);
1327 	return pte;
1328 }
1329 
1330 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1331 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1332 		struct page *page, unsigned int nr, unsigned long addr);
1333 
1334 vm_fault_t finish_fault(struct vm_fault *vmf);
1335 #endif
1336 
1337 /*
1338  * Multiple processes may "see" the same page. E.g. for untouched
1339  * mappings of /dev/null, all processes see the same page full of
1340  * zeroes, and text pages of executables and shared libraries have
1341  * only one copy in memory, at most, normally.
1342  *
1343  * For the non-reserved pages, page_count(page) denotes a reference count.
1344  *   page_count() == 0 means the page is free. page->lru is then used for
1345  *   freelist management in the buddy allocator.
1346  *   page_count() > 0  means the page has been allocated.
1347  *
1348  * Pages are allocated by the slab allocator in order to provide memory
1349  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1350  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1351  * unless a particular usage is carefully commented. (the responsibility of
1352  * freeing the kmalloc memory is the caller's, of course).
1353  *
1354  * A page may be used by anyone else who does a __get_free_page().
1355  * In this case, page_count still tracks the references, and should only
1356  * be used through the normal accessor functions. The top bits of page->flags
1357  * and page->virtual store page management information, but all other fields
1358  * are unused and could be used privately, carefully. The management of this
1359  * page is the responsibility of the one who allocated it, and those who have
1360  * subsequently been given references to it.
1361  *
1362  * The other pages (we may call them "pagecache pages") are completely
1363  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1364  * The following discussion applies only to them.
1365  *
1366  * A pagecache page contains an opaque `private' member, which belongs to the
1367  * page's address_space. Usually, this is the address of a circular list of
1368  * the page's disk buffers. PG_private must be set to tell the VM to call
1369  * into the filesystem to release these pages.
1370  *
1371  * A page may belong to an inode's memory mapping. In this case, page->mapping
1372  * is the pointer to the inode, and page->index is the file offset of the page,
1373  * in units of PAGE_SIZE.
1374  *
1375  * If pagecache pages are not associated with an inode, they are said to be
1376  * anonymous pages. These may become associated with the swapcache, and in that
1377  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1378  *
1379  * In either case (swapcache or inode backed), the pagecache itself holds one
1380  * reference to the page. Setting PG_private should also increment the
1381  * refcount. The each user mapping also has a reference to the page.
1382  *
1383  * The pagecache pages are stored in a per-mapping radix tree, which is
1384  * rooted at mapping->i_pages, and indexed by offset.
1385  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1386  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1387  *
1388  * All pagecache pages may be subject to I/O:
1389  * - inode pages may need to be read from disk,
1390  * - inode pages which have been modified and are MAP_SHARED may need
1391  *   to be written back to the inode on disk,
1392  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1393  *   modified may need to be swapped out to swap space and (later) to be read
1394  *   back into memory.
1395  */
1396 
1397 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1398 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1399 
1400 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1401 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1402 {
1403 	if (!static_branch_unlikely(&devmap_managed_key))
1404 		return false;
1405 	if (!folio_is_zone_device(folio))
1406 		return false;
1407 	return __put_devmap_managed_folio_refs(folio, refs);
1408 }
1409 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1410 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1411 {
1412 	return false;
1413 }
1414 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1415 
1416 /* 127: arbitrary random number, small enough to assemble well */
1417 #define folio_ref_zero_or_close_to_overflow(folio) \
1418 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1419 
1420 /**
1421  * folio_get - Increment the reference count on a folio.
1422  * @folio: The folio.
1423  *
1424  * Context: May be called in any context, as long as you know that
1425  * you have a refcount on the folio.  If you do not already have one,
1426  * folio_try_get() may be the right interface for you to use.
1427  */
1428 static inline void folio_get(struct folio *folio)
1429 {
1430 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1431 	folio_ref_inc(folio);
1432 }
1433 
1434 static inline void get_page(struct page *page)
1435 {
1436 	folio_get(page_folio(page));
1437 }
1438 
1439 static inline __must_check bool try_get_page(struct page *page)
1440 {
1441 	page = compound_head(page);
1442 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1443 		return false;
1444 	page_ref_inc(page);
1445 	return true;
1446 }
1447 
1448 /**
1449  * folio_put - Decrement the reference count on a folio.
1450  * @folio: The folio.
1451  *
1452  * If the folio's reference count reaches zero, the memory will be
1453  * released back to the page allocator and may be used by another
1454  * allocation immediately.  Do not access the memory or the struct folio
1455  * after calling folio_put() unless you can be sure that it wasn't the
1456  * last reference.
1457  *
1458  * Context: May be called in process or interrupt context, but not in NMI
1459  * context.  May be called while holding a spinlock.
1460  */
1461 static inline void folio_put(struct folio *folio)
1462 {
1463 	if (folio_put_testzero(folio))
1464 		__folio_put(folio);
1465 }
1466 
1467 /**
1468  * folio_put_refs - Reduce the reference count on a folio.
1469  * @folio: The folio.
1470  * @refs: The amount to subtract from the folio's reference count.
1471  *
1472  * If the folio's reference count reaches zero, the memory will be
1473  * released back to the page allocator and may be used by another
1474  * allocation immediately.  Do not access the memory or the struct folio
1475  * after calling folio_put_refs() unless you can be sure that these weren't
1476  * the last references.
1477  *
1478  * Context: May be called in process or interrupt context, but not in NMI
1479  * context.  May be called while holding a spinlock.
1480  */
1481 static inline void folio_put_refs(struct folio *folio, int refs)
1482 {
1483 	if (folio_ref_sub_and_test(folio, refs))
1484 		__folio_put(folio);
1485 }
1486 
1487 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1488 
1489 /*
1490  * union release_pages_arg - an array of pages or folios
1491  *
1492  * release_pages() releases a simple array of multiple pages, and
1493  * accepts various different forms of said page array: either
1494  * a regular old boring array of pages, an array of folios, or
1495  * an array of encoded page pointers.
1496  *
1497  * The transparent union syntax for this kind of "any of these
1498  * argument types" is all kinds of ugly, so look away.
1499  */
1500 typedef union {
1501 	struct page **pages;
1502 	struct folio **folios;
1503 	struct encoded_page **encoded_pages;
1504 } release_pages_arg __attribute__ ((__transparent_union__));
1505 
1506 void release_pages(release_pages_arg, int nr);
1507 
1508 /**
1509  * folios_put - Decrement the reference count on an array of folios.
1510  * @folios: The folios.
1511  *
1512  * Like folio_put(), but for a batch of folios.  This is more efficient
1513  * than writing the loop yourself as it will optimise the locks which need
1514  * to be taken if the folios are freed.  The folios batch is returned
1515  * empty and ready to be reused for another batch; there is no need to
1516  * reinitialise it.
1517  *
1518  * Context: May be called in process or interrupt context, but not in NMI
1519  * context.  May be called while holding a spinlock.
1520  */
1521 static inline void folios_put(struct folio_batch *folios)
1522 {
1523 	folios_put_refs(folios, NULL);
1524 }
1525 
1526 static inline void put_page(struct page *page)
1527 {
1528 	struct folio *folio = page_folio(page);
1529 
1530 	/*
1531 	 * For some devmap managed pages we need to catch refcount transition
1532 	 * from 2 to 1:
1533 	 */
1534 	if (put_devmap_managed_folio_refs(folio, 1))
1535 		return;
1536 	folio_put(folio);
1537 }
1538 
1539 /*
1540  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1541  * the page's refcount so that two separate items are tracked: the original page
1542  * reference count, and also a new count of how many pin_user_pages() calls were
1543  * made against the page. ("gup-pinned" is another term for the latter).
1544  *
1545  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1546  * distinct from normal pages. As such, the unpin_user_page() call (and its
1547  * variants) must be used in order to release gup-pinned pages.
1548  *
1549  * Choice of value:
1550  *
1551  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1552  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1553  * simpler, due to the fact that adding an even power of two to the page
1554  * refcount has the effect of using only the upper N bits, for the code that
1555  * counts up using the bias value. This means that the lower bits are left for
1556  * the exclusive use of the original code that increments and decrements by one
1557  * (or at least, by much smaller values than the bias value).
1558  *
1559  * Of course, once the lower bits overflow into the upper bits (and this is
1560  * OK, because subtraction recovers the original values), then visual inspection
1561  * no longer suffices to directly view the separate counts. However, for normal
1562  * applications that don't have huge page reference counts, this won't be an
1563  * issue.
1564  *
1565  * Locking: the lockless algorithm described in folio_try_get_rcu()
1566  * provides safe operation for get_user_pages(), folio_mkclean() and
1567  * other calls that race to set up page table entries.
1568  */
1569 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1570 
1571 void unpin_user_page(struct page *page);
1572 void unpin_folio(struct folio *folio);
1573 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1574 				 bool make_dirty);
1575 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1576 				      bool make_dirty);
1577 void unpin_user_pages(struct page **pages, unsigned long npages);
1578 void unpin_folios(struct folio **folios, unsigned long nfolios);
1579 
1580 static inline bool is_cow_mapping(vm_flags_t flags)
1581 {
1582 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1583 }
1584 
1585 #ifndef CONFIG_MMU
1586 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1587 {
1588 	/*
1589 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1590 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1591 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1592 	 * underlying memory if ptrace is active, so this is only possible if
1593 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1594 	 * write permissions later.
1595 	 */
1596 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1597 }
1598 #endif
1599 
1600 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1601 #define SECTION_IN_PAGE_FLAGS
1602 #endif
1603 
1604 /*
1605  * The identification function is mainly used by the buddy allocator for
1606  * determining if two pages could be buddies. We are not really identifying
1607  * the zone since we could be using the section number id if we do not have
1608  * node id available in page flags.
1609  * We only guarantee that it will return the same value for two combinable
1610  * pages in a zone.
1611  */
1612 static inline int page_zone_id(struct page *page)
1613 {
1614 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1615 }
1616 
1617 #ifdef NODE_NOT_IN_PAGE_FLAGS
1618 int page_to_nid(const struct page *page);
1619 #else
1620 static inline int page_to_nid(const struct page *page)
1621 {
1622 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1623 }
1624 #endif
1625 
1626 static inline int folio_nid(const struct folio *folio)
1627 {
1628 	return page_to_nid(&folio->page);
1629 }
1630 
1631 #ifdef CONFIG_NUMA_BALANCING
1632 /* page access time bits needs to hold at least 4 seconds */
1633 #define PAGE_ACCESS_TIME_MIN_BITS	12
1634 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1635 #define PAGE_ACCESS_TIME_BUCKETS				\
1636 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1637 #else
1638 #define PAGE_ACCESS_TIME_BUCKETS	0
1639 #endif
1640 
1641 #define PAGE_ACCESS_TIME_MASK				\
1642 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1643 
1644 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1645 {
1646 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1647 }
1648 
1649 static inline int cpupid_to_pid(int cpupid)
1650 {
1651 	return cpupid & LAST__PID_MASK;
1652 }
1653 
1654 static inline int cpupid_to_cpu(int cpupid)
1655 {
1656 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1657 }
1658 
1659 static inline int cpupid_to_nid(int cpupid)
1660 {
1661 	return cpu_to_node(cpupid_to_cpu(cpupid));
1662 }
1663 
1664 static inline bool cpupid_pid_unset(int cpupid)
1665 {
1666 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1667 }
1668 
1669 static inline bool cpupid_cpu_unset(int cpupid)
1670 {
1671 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1672 }
1673 
1674 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1675 {
1676 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1677 }
1678 
1679 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1680 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1681 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1682 {
1683 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1684 }
1685 
1686 static inline int folio_last_cpupid(struct folio *folio)
1687 {
1688 	return folio->_last_cpupid;
1689 }
1690 static inline void page_cpupid_reset_last(struct page *page)
1691 {
1692 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1693 }
1694 #else
1695 static inline int folio_last_cpupid(struct folio *folio)
1696 {
1697 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1698 }
1699 
1700 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1701 
1702 static inline void page_cpupid_reset_last(struct page *page)
1703 {
1704 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1705 }
1706 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1707 
1708 static inline int folio_xchg_access_time(struct folio *folio, int time)
1709 {
1710 	int last_time;
1711 
1712 	last_time = folio_xchg_last_cpupid(folio,
1713 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1714 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1715 }
1716 
1717 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1718 {
1719 	unsigned int pid_bit;
1720 
1721 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1722 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1723 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1724 	}
1725 }
1726 
1727 bool folio_use_access_time(struct folio *folio);
1728 #else /* !CONFIG_NUMA_BALANCING */
1729 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1730 {
1731 	return folio_nid(folio); /* XXX */
1732 }
1733 
1734 static inline int folio_xchg_access_time(struct folio *folio, int time)
1735 {
1736 	return 0;
1737 }
1738 
1739 static inline int folio_last_cpupid(struct folio *folio)
1740 {
1741 	return folio_nid(folio); /* XXX */
1742 }
1743 
1744 static inline int cpupid_to_nid(int cpupid)
1745 {
1746 	return -1;
1747 }
1748 
1749 static inline int cpupid_to_pid(int cpupid)
1750 {
1751 	return -1;
1752 }
1753 
1754 static inline int cpupid_to_cpu(int cpupid)
1755 {
1756 	return -1;
1757 }
1758 
1759 static inline int cpu_pid_to_cpupid(int nid, int pid)
1760 {
1761 	return -1;
1762 }
1763 
1764 static inline bool cpupid_pid_unset(int cpupid)
1765 {
1766 	return true;
1767 }
1768 
1769 static inline void page_cpupid_reset_last(struct page *page)
1770 {
1771 }
1772 
1773 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1774 {
1775 	return false;
1776 }
1777 
1778 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1779 {
1780 }
1781 static inline bool folio_use_access_time(struct folio *folio)
1782 {
1783 	return false;
1784 }
1785 #endif /* CONFIG_NUMA_BALANCING */
1786 
1787 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1788 
1789 /*
1790  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1791  * setting tags for all pages to native kernel tag value 0xff, as the default
1792  * value 0x00 maps to 0xff.
1793  */
1794 
1795 static inline u8 page_kasan_tag(const struct page *page)
1796 {
1797 	u8 tag = KASAN_TAG_KERNEL;
1798 
1799 	if (kasan_enabled()) {
1800 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1801 		tag ^= 0xff;
1802 	}
1803 
1804 	return tag;
1805 }
1806 
1807 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1808 {
1809 	unsigned long old_flags, flags;
1810 
1811 	if (!kasan_enabled())
1812 		return;
1813 
1814 	tag ^= 0xff;
1815 	old_flags = READ_ONCE(page->flags);
1816 	do {
1817 		flags = old_flags;
1818 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1819 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1820 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1821 }
1822 
1823 static inline void page_kasan_tag_reset(struct page *page)
1824 {
1825 	if (kasan_enabled())
1826 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1827 }
1828 
1829 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1830 
1831 static inline u8 page_kasan_tag(const struct page *page)
1832 {
1833 	return 0xff;
1834 }
1835 
1836 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1837 static inline void page_kasan_tag_reset(struct page *page) { }
1838 
1839 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1840 
1841 static inline struct zone *page_zone(const struct page *page)
1842 {
1843 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1844 }
1845 
1846 static inline pg_data_t *page_pgdat(const struct page *page)
1847 {
1848 	return NODE_DATA(page_to_nid(page));
1849 }
1850 
1851 static inline struct zone *folio_zone(const struct folio *folio)
1852 {
1853 	return page_zone(&folio->page);
1854 }
1855 
1856 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1857 {
1858 	return page_pgdat(&folio->page);
1859 }
1860 
1861 #ifdef SECTION_IN_PAGE_FLAGS
1862 static inline void set_page_section(struct page *page, unsigned long section)
1863 {
1864 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1865 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1866 }
1867 
1868 static inline unsigned long page_to_section(const struct page *page)
1869 {
1870 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1871 }
1872 #endif
1873 
1874 /**
1875  * folio_pfn - Return the Page Frame Number of a folio.
1876  * @folio: The folio.
1877  *
1878  * A folio may contain multiple pages.  The pages have consecutive
1879  * Page Frame Numbers.
1880  *
1881  * Return: The Page Frame Number of the first page in the folio.
1882  */
1883 static inline unsigned long folio_pfn(struct folio *folio)
1884 {
1885 	return page_to_pfn(&folio->page);
1886 }
1887 
1888 static inline struct folio *pfn_folio(unsigned long pfn)
1889 {
1890 	return page_folio(pfn_to_page(pfn));
1891 }
1892 
1893 /**
1894  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1895  * @folio: The folio.
1896  *
1897  * This function checks if a folio has been pinned via a call to
1898  * a function in the pin_user_pages() family.
1899  *
1900  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1901  * because it means "definitely not pinned for DMA", but true means "probably
1902  * pinned for DMA, but possibly a false positive due to having at least
1903  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1904  *
1905  * False positives are OK, because: a) it's unlikely for a folio to
1906  * get that many refcounts, and b) all the callers of this routine are
1907  * expected to be able to deal gracefully with a false positive.
1908  *
1909  * For large folios, the result will be exactly correct. That's because
1910  * we have more tracking data available: the _pincount field is used
1911  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1912  *
1913  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1914  *
1915  * Return: True, if it is likely that the folio has been "dma-pinned".
1916  * False, if the folio is definitely not dma-pinned.
1917  */
1918 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1919 {
1920 	if (folio_test_large(folio))
1921 		return atomic_read(&folio->_pincount) > 0;
1922 
1923 	/*
1924 	 * folio_ref_count() is signed. If that refcount overflows, then
1925 	 * folio_ref_count() returns a negative value, and callers will avoid
1926 	 * further incrementing the refcount.
1927 	 *
1928 	 * Here, for that overflow case, use the sign bit to count a little
1929 	 * bit higher via unsigned math, and thus still get an accurate result.
1930 	 */
1931 	return ((unsigned int)folio_ref_count(folio)) >=
1932 		GUP_PIN_COUNTING_BIAS;
1933 }
1934 
1935 /*
1936  * This should most likely only be called during fork() to see whether we
1937  * should break the cow immediately for an anon page on the src mm.
1938  *
1939  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1940  */
1941 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1942 					  struct folio *folio)
1943 {
1944 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1945 
1946 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1947 		return false;
1948 
1949 	return folio_maybe_dma_pinned(folio);
1950 }
1951 
1952 /**
1953  * is_zero_page - Query if a page is a zero page
1954  * @page: The page to query
1955  *
1956  * This returns true if @page is one of the permanent zero pages.
1957  */
1958 static inline bool is_zero_page(const struct page *page)
1959 {
1960 	return is_zero_pfn(page_to_pfn(page));
1961 }
1962 
1963 /**
1964  * is_zero_folio - Query if a folio is a zero page
1965  * @folio: The folio to query
1966  *
1967  * This returns true if @folio is one of the permanent zero pages.
1968  */
1969 static inline bool is_zero_folio(const struct folio *folio)
1970 {
1971 	return is_zero_page(&folio->page);
1972 }
1973 
1974 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1975 #ifdef CONFIG_MIGRATION
1976 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1977 {
1978 #ifdef CONFIG_CMA
1979 	int mt = folio_migratetype(folio);
1980 
1981 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1982 		return false;
1983 #endif
1984 	/* The zero page can be "pinned" but gets special handling. */
1985 	if (is_zero_folio(folio))
1986 		return true;
1987 
1988 	/* Coherent device memory must always allow eviction. */
1989 	if (folio_is_device_coherent(folio))
1990 		return false;
1991 
1992 	/* Otherwise, non-movable zone folios can be pinned. */
1993 	return !folio_is_zone_movable(folio);
1994 
1995 }
1996 #else
1997 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1998 {
1999 	return true;
2000 }
2001 #endif
2002 
2003 static inline void set_page_zone(struct page *page, enum zone_type zone)
2004 {
2005 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2006 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2007 }
2008 
2009 static inline void set_page_node(struct page *page, unsigned long node)
2010 {
2011 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2012 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2013 }
2014 
2015 static inline void set_page_links(struct page *page, enum zone_type zone,
2016 	unsigned long node, unsigned long pfn)
2017 {
2018 	set_page_zone(page, zone);
2019 	set_page_node(page, node);
2020 #ifdef SECTION_IN_PAGE_FLAGS
2021 	set_page_section(page, pfn_to_section_nr(pfn));
2022 #endif
2023 }
2024 
2025 /**
2026  * folio_nr_pages - The number of pages in the folio.
2027  * @folio: The folio.
2028  *
2029  * Return: A positive power of two.
2030  */
2031 static inline long folio_nr_pages(const struct folio *folio)
2032 {
2033 	if (!folio_test_large(folio))
2034 		return 1;
2035 #ifdef CONFIG_64BIT
2036 	return folio->_folio_nr_pages;
2037 #else
2038 	return 1L << (folio->_flags_1 & 0xff);
2039 #endif
2040 }
2041 
2042 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2043 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2044 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2045 #else
2046 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2047 #endif
2048 
2049 /*
2050  * compound_nr() returns the number of pages in this potentially compound
2051  * page.  compound_nr() can be called on a tail page, and is defined to
2052  * return 1 in that case.
2053  */
2054 static inline unsigned long compound_nr(struct page *page)
2055 {
2056 	struct folio *folio = (struct folio *)page;
2057 
2058 	if (!test_bit(PG_head, &folio->flags))
2059 		return 1;
2060 #ifdef CONFIG_64BIT
2061 	return folio->_folio_nr_pages;
2062 #else
2063 	return 1L << (folio->_flags_1 & 0xff);
2064 #endif
2065 }
2066 
2067 /**
2068  * thp_nr_pages - The number of regular pages in this huge page.
2069  * @page: The head page of a huge page.
2070  */
2071 static inline int thp_nr_pages(struct page *page)
2072 {
2073 	return folio_nr_pages((struct folio *)page);
2074 }
2075 
2076 /**
2077  * folio_next - Move to the next physical folio.
2078  * @folio: The folio we're currently operating on.
2079  *
2080  * If you have physically contiguous memory which may span more than
2081  * one folio (eg a &struct bio_vec), use this function to move from one
2082  * folio to the next.  Do not use it if the memory is only virtually
2083  * contiguous as the folios are almost certainly not adjacent to each
2084  * other.  This is the folio equivalent to writing ``page++``.
2085  *
2086  * Context: We assume that the folios are refcounted and/or locked at a
2087  * higher level and do not adjust the reference counts.
2088  * Return: The next struct folio.
2089  */
2090 static inline struct folio *folio_next(struct folio *folio)
2091 {
2092 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2093 }
2094 
2095 /**
2096  * folio_shift - The size of the memory described by this folio.
2097  * @folio: The folio.
2098  *
2099  * A folio represents a number of bytes which is a power-of-two in size.
2100  * This function tells you which power-of-two the folio is.  See also
2101  * folio_size() and folio_order().
2102  *
2103  * Context: The caller should have a reference on the folio to prevent
2104  * it from being split.  It is not necessary for the folio to be locked.
2105  * Return: The base-2 logarithm of the size of this folio.
2106  */
2107 static inline unsigned int folio_shift(const struct folio *folio)
2108 {
2109 	return PAGE_SHIFT + folio_order(folio);
2110 }
2111 
2112 /**
2113  * folio_size - The number of bytes in a folio.
2114  * @folio: The folio.
2115  *
2116  * Context: The caller should have a reference on the folio to prevent
2117  * it from being split.  It is not necessary for the folio to be locked.
2118  * Return: The number of bytes in this folio.
2119  */
2120 static inline size_t folio_size(const struct folio *folio)
2121 {
2122 	return PAGE_SIZE << folio_order(folio);
2123 }
2124 
2125 /**
2126  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2127  *				tables of more than one MM
2128  * @folio: The folio.
2129  *
2130  * This function checks if the folio is currently mapped into more than one
2131  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2132  * ("mapped exclusively").
2133  *
2134  * For KSM folios, this function also returns "mapped shared" when a folio is
2135  * mapped multiple times into the same MM, because the individual page mappings
2136  * are independent.
2137  *
2138  * As precise information is not easily available for all folios, this function
2139  * estimates the number of MMs ("sharers") that are currently mapping a folio
2140  * using the number of times the first page of the folio is currently mapped
2141  * into page tables.
2142  *
2143  * For small anonymous folios and anonymous hugetlb folios, the return
2144  * value will be exactly correct: non-KSM folios can only be mapped at most once
2145  * into an MM, and they cannot be partially mapped. KSM folios are
2146  * considered shared even if mapped multiple times into the same MM.
2147  *
2148  * For other folios, the result can be fuzzy:
2149  *    #. For partially-mappable large folios (THP), the return value can wrongly
2150  *       indicate "mapped exclusively" (false negative) when the folio is
2151  *       only partially mapped into at least one MM.
2152  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2153  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2154  *       cover the same file range.
2155  *
2156  * Further, this function only considers current page table mappings that
2157  * are tracked using the folio mapcount(s).
2158  *
2159  * This function does not consider:
2160  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2161  *       pagecache, temporary unmapping for migration).
2162  *    #. If the folio is mapped differently (VM_PFNMAP).
2163  *    #. If hugetlb page table sharing applies. Callers might want to check
2164  *       hugetlb_pmd_shared().
2165  *
2166  * Return: Whether the folio is estimated to be mapped into more than one MM.
2167  */
2168 static inline bool folio_likely_mapped_shared(struct folio *folio)
2169 {
2170 	int mapcount = folio_mapcount(folio);
2171 
2172 	/* Only partially-mappable folios require more care. */
2173 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2174 		return mapcount > 1;
2175 
2176 	/* A single mapping implies "mapped exclusively". */
2177 	if (mapcount <= 1)
2178 		return false;
2179 
2180 	/* If any page is mapped more than once we treat it "mapped shared". */
2181 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2182 		return true;
2183 
2184 	/* Let's guess based on the first subpage. */
2185 	return atomic_read(&folio->_mapcount) > 0;
2186 }
2187 
2188 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2189 static inline int arch_make_folio_accessible(struct folio *folio)
2190 {
2191 	return 0;
2192 }
2193 #endif
2194 
2195 /*
2196  * Some inline functions in vmstat.h depend on page_zone()
2197  */
2198 #include <linux/vmstat.h>
2199 
2200 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2201 #define HASHED_PAGE_VIRTUAL
2202 #endif
2203 
2204 #if defined(WANT_PAGE_VIRTUAL)
2205 static inline void *page_address(const struct page *page)
2206 {
2207 	return page->virtual;
2208 }
2209 static inline void set_page_address(struct page *page, void *address)
2210 {
2211 	page->virtual = address;
2212 }
2213 #define page_address_init()  do { } while(0)
2214 #endif
2215 
2216 #if defined(HASHED_PAGE_VIRTUAL)
2217 void *page_address(const struct page *page);
2218 void set_page_address(struct page *page, void *virtual);
2219 void page_address_init(void);
2220 #endif
2221 
2222 static __always_inline void *lowmem_page_address(const struct page *page)
2223 {
2224 	return page_to_virt(page);
2225 }
2226 
2227 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2228 #define page_address(page) lowmem_page_address(page)
2229 #define set_page_address(page, address)  do { } while(0)
2230 #define page_address_init()  do { } while(0)
2231 #endif
2232 
2233 static inline void *folio_address(const struct folio *folio)
2234 {
2235 	return page_address(&folio->page);
2236 }
2237 
2238 /*
2239  * Return true only if the page has been allocated with
2240  * ALLOC_NO_WATERMARKS and the low watermark was not
2241  * met implying that the system is under some pressure.
2242  */
2243 static inline bool page_is_pfmemalloc(const struct page *page)
2244 {
2245 	/*
2246 	 * lru.next has bit 1 set if the page is allocated from the
2247 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2248 	 * they do not need to preserve that information.
2249 	 */
2250 	return (uintptr_t)page->lru.next & BIT(1);
2251 }
2252 
2253 /*
2254  * Return true only if the folio has been allocated with
2255  * ALLOC_NO_WATERMARKS and the low watermark was not
2256  * met implying that the system is under some pressure.
2257  */
2258 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2259 {
2260 	/*
2261 	 * lru.next has bit 1 set if the page is allocated from the
2262 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2263 	 * they do not need to preserve that information.
2264 	 */
2265 	return (uintptr_t)folio->lru.next & BIT(1);
2266 }
2267 
2268 /*
2269  * Only to be called by the page allocator on a freshly allocated
2270  * page.
2271  */
2272 static inline void set_page_pfmemalloc(struct page *page)
2273 {
2274 	page->lru.next = (void *)BIT(1);
2275 }
2276 
2277 static inline void clear_page_pfmemalloc(struct page *page)
2278 {
2279 	page->lru.next = NULL;
2280 }
2281 
2282 /*
2283  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2284  */
2285 extern void pagefault_out_of_memory(void);
2286 
2287 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2288 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2289 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2290 
2291 /*
2292  * Parameter block passed down to zap_pte_range in exceptional cases.
2293  */
2294 struct zap_details {
2295 	struct folio *single_folio;	/* Locked folio to be unmapped */
2296 	bool even_cows;			/* Zap COWed private pages too? */
2297 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2298 };
2299 
2300 /*
2301  * Whether to drop the pte markers, for example, the uffd-wp information for
2302  * file-backed memory.  This should only be specified when we will completely
2303  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2304  * default, the flag is not set.
2305  */
2306 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2307 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2308 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2309 
2310 #ifdef CONFIG_SCHED_MM_CID
2311 void sched_mm_cid_before_execve(struct task_struct *t);
2312 void sched_mm_cid_after_execve(struct task_struct *t);
2313 void sched_mm_cid_fork(struct task_struct *t);
2314 void sched_mm_cid_exit_signals(struct task_struct *t);
2315 static inline int task_mm_cid(struct task_struct *t)
2316 {
2317 	return t->mm_cid;
2318 }
2319 #else
2320 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2321 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2322 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2323 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2324 static inline int task_mm_cid(struct task_struct *t)
2325 {
2326 	/*
2327 	 * Use the processor id as a fall-back when the mm cid feature is
2328 	 * disabled. This provides functional per-cpu data structure accesses
2329 	 * in user-space, althrough it won't provide the memory usage benefits.
2330 	 */
2331 	return raw_smp_processor_id();
2332 }
2333 #endif
2334 
2335 #ifdef CONFIG_MMU
2336 extern bool can_do_mlock(void);
2337 #else
2338 static inline bool can_do_mlock(void) { return false; }
2339 #endif
2340 extern int user_shm_lock(size_t, struct ucounts *);
2341 extern void user_shm_unlock(size_t, struct ucounts *);
2342 
2343 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2344 			     pte_t pte);
2345 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2346 			     pte_t pte);
2347 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2348 				  unsigned long addr, pmd_t pmd);
2349 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2350 				pmd_t pmd);
2351 
2352 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2353 		  unsigned long size);
2354 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2355 			   unsigned long size, struct zap_details *details);
2356 static inline void zap_vma_pages(struct vm_area_struct *vma)
2357 {
2358 	zap_page_range_single(vma, vma->vm_start,
2359 			      vma->vm_end - vma->vm_start, NULL);
2360 }
2361 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2362 		struct vm_area_struct *start_vma, unsigned long start,
2363 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2364 
2365 struct mmu_notifier_range;
2366 
2367 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2368 		unsigned long end, unsigned long floor, unsigned long ceiling);
2369 int
2370 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2371 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2372 	       pte_t **ptepp, spinlock_t **ptlp);
2373 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2374 			void *buf, int len, int write);
2375 
2376 extern void truncate_pagecache(struct inode *inode, loff_t new);
2377 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2378 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2379 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2380 int generic_error_remove_folio(struct address_space *mapping,
2381 		struct folio *folio);
2382 
2383 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2384 		unsigned long address, struct pt_regs *regs);
2385 
2386 #ifdef CONFIG_MMU
2387 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2388 				  unsigned long address, unsigned int flags,
2389 				  struct pt_regs *regs);
2390 extern int fixup_user_fault(struct mm_struct *mm,
2391 			    unsigned long address, unsigned int fault_flags,
2392 			    bool *unlocked);
2393 void unmap_mapping_pages(struct address_space *mapping,
2394 		pgoff_t start, pgoff_t nr, bool even_cows);
2395 void unmap_mapping_range(struct address_space *mapping,
2396 		loff_t const holebegin, loff_t const holelen, int even_cows);
2397 #else
2398 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2399 					 unsigned long address, unsigned int flags,
2400 					 struct pt_regs *regs)
2401 {
2402 	/* should never happen if there's no MMU */
2403 	BUG();
2404 	return VM_FAULT_SIGBUS;
2405 }
2406 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2407 		unsigned int fault_flags, bool *unlocked)
2408 {
2409 	/* should never happen if there's no MMU */
2410 	BUG();
2411 	return -EFAULT;
2412 }
2413 static inline void unmap_mapping_pages(struct address_space *mapping,
2414 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2415 static inline void unmap_mapping_range(struct address_space *mapping,
2416 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2417 #endif
2418 
2419 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2420 		loff_t const holebegin, loff_t const holelen)
2421 {
2422 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2423 }
2424 
2425 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2426 						unsigned long addr);
2427 
2428 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2429 		void *buf, int len, unsigned int gup_flags);
2430 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2431 		void *buf, int len, unsigned int gup_flags);
2432 
2433 long get_user_pages_remote(struct mm_struct *mm,
2434 			   unsigned long start, unsigned long nr_pages,
2435 			   unsigned int gup_flags, struct page **pages,
2436 			   int *locked);
2437 long pin_user_pages_remote(struct mm_struct *mm,
2438 			   unsigned long start, unsigned long nr_pages,
2439 			   unsigned int gup_flags, struct page **pages,
2440 			   int *locked);
2441 
2442 /*
2443  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2444  */
2445 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2446 						    unsigned long addr,
2447 						    int gup_flags,
2448 						    struct vm_area_struct **vmap)
2449 {
2450 	struct page *page;
2451 	struct vm_area_struct *vma;
2452 	int got;
2453 
2454 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2455 		return ERR_PTR(-EINVAL);
2456 
2457 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2458 
2459 	if (got < 0)
2460 		return ERR_PTR(got);
2461 
2462 	vma = vma_lookup(mm, addr);
2463 	if (WARN_ON_ONCE(!vma)) {
2464 		put_page(page);
2465 		return ERR_PTR(-EINVAL);
2466 	}
2467 
2468 	*vmap = vma;
2469 	return page;
2470 }
2471 
2472 long get_user_pages(unsigned long start, unsigned long nr_pages,
2473 		    unsigned int gup_flags, struct page **pages);
2474 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2475 		    unsigned int gup_flags, struct page **pages);
2476 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2477 		    struct page **pages, unsigned int gup_flags);
2478 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2479 		    struct page **pages, unsigned int gup_flags);
2480 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2481 		      struct folio **folios, unsigned int max_folios,
2482 		      pgoff_t *offset);
2483 
2484 int get_user_pages_fast(unsigned long start, int nr_pages,
2485 			unsigned int gup_flags, struct page **pages);
2486 int pin_user_pages_fast(unsigned long start, int nr_pages,
2487 			unsigned int gup_flags, struct page **pages);
2488 void folio_add_pin(struct folio *folio);
2489 
2490 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2491 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2492 			struct task_struct *task, bool bypass_rlim);
2493 
2494 struct kvec;
2495 struct page *get_dump_page(unsigned long addr);
2496 
2497 bool folio_mark_dirty(struct folio *folio);
2498 bool set_page_dirty(struct page *page);
2499 int set_page_dirty_lock(struct page *page);
2500 
2501 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2502 
2503 /*
2504  * Flags used by change_protection().  For now we make it a bitmap so
2505  * that we can pass in multiple flags just like parameters.  However
2506  * for now all the callers are only use one of the flags at the same
2507  * time.
2508  */
2509 /*
2510  * Whether we should manually check if we can map individual PTEs writable,
2511  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2512  * PTEs automatically in a writable mapping.
2513  */
2514 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2515 /* Whether this protection change is for NUMA hints */
2516 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2517 /* Whether this change is for write protecting */
2518 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2519 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2520 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2521 					    MM_CP_UFFD_WP_RESOLVE)
2522 
2523 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2524 			     pte_t pte);
2525 extern long change_protection(struct mmu_gather *tlb,
2526 			      struct vm_area_struct *vma, unsigned long start,
2527 			      unsigned long end, unsigned long cp_flags);
2528 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2529 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2530 	  unsigned long start, unsigned long end, unsigned long newflags);
2531 
2532 /*
2533  * doesn't attempt to fault and will return short.
2534  */
2535 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2536 			     unsigned int gup_flags, struct page **pages);
2537 
2538 static inline bool get_user_page_fast_only(unsigned long addr,
2539 			unsigned int gup_flags, struct page **pagep)
2540 {
2541 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2542 }
2543 /*
2544  * per-process(per-mm_struct) statistics.
2545  */
2546 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2547 {
2548 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2549 }
2550 
2551 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2552 
2553 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2554 {
2555 	percpu_counter_add(&mm->rss_stat[member], value);
2556 
2557 	mm_trace_rss_stat(mm, member);
2558 }
2559 
2560 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2561 {
2562 	percpu_counter_inc(&mm->rss_stat[member]);
2563 
2564 	mm_trace_rss_stat(mm, member);
2565 }
2566 
2567 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2568 {
2569 	percpu_counter_dec(&mm->rss_stat[member]);
2570 
2571 	mm_trace_rss_stat(mm, member);
2572 }
2573 
2574 /* Optimized variant when folio is already known not to be anon */
2575 static inline int mm_counter_file(struct folio *folio)
2576 {
2577 	if (folio_test_swapbacked(folio))
2578 		return MM_SHMEMPAGES;
2579 	return MM_FILEPAGES;
2580 }
2581 
2582 static inline int mm_counter(struct folio *folio)
2583 {
2584 	if (folio_test_anon(folio))
2585 		return MM_ANONPAGES;
2586 	return mm_counter_file(folio);
2587 }
2588 
2589 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2590 {
2591 	return get_mm_counter(mm, MM_FILEPAGES) +
2592 		get_mm_counter(mm, MM_ANONPAGES) +
2593 		get_mm_counter(mm, MM_SHMEMPAGES);
2594 }
2595 
2596 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2597 {
2598 	return max(mm->hiwater_rss, get_mm_rss(mm));
2599 }
2600 
2601 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2602 {
2603 	return max(mm->hiwater_vm, mm->total_vm);
2604 }
2605 
2606 static inline void update_hiwater_rss(struct mm_struct *mm)
2607 {
2608 	unsigned long _rss = get_mm_rss(mm);
2609 
2610 	if ((mm)->hiwater_rss < _rss)
2611 		(mm)->hiwater_rss = _rss;
2612 }
2613 
2614 static inline void update_hiwater_vm(struct mm_struct *mm)
2615 {
2616 	if (mm->hiwater_vm < mm->total_vm)
2617 		mm->hiwater_vm = mm->total_vm;
2618 }
2619 
2620 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2621 {
2622 	mm->hiwater_rss = get_mm_rss(mm);
2623 }
2624 
2625 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2626 					 struct mm_struct *mm)
2627 {
2628 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2629 
2630 	if (*maxrss < hiwater_rss)
2631 		*maxrss = hiwater_rss;
2632 }
2633 
2634 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2635 static inline int pte_special(pte_t pte)
2636 {
2637 	return 0;
2638 }
2639 
2640 static inline pte_t pte_mkspecial(pte_t pte)
2641 {
2642 	return pte;
2643 }
2644 #endif
2645 
2646 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2647 static inline int pte_devmap(pte_t pte)
2648 {
2649 	return 0;
2650 }
2651 #endif
2652 
2653 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2654 			       spinlock_t **ptl);
2655 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2656 				    spinlock_t **ptl)
2657 {
2658 	pte_t *ptep;
2659 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2660 	return ptep;
2661 }
2662 
2663 #ifdef __PAGETABLE_P4D_FOLDED
2664 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2665 						unsigned long address)
2666 {
2667 	return 0;
2668 }
2669 #else
2670 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2671 #endif
2672 
2673 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2674 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2675 						unsigned long address)
2676 {
2677 	return 0;
2678 }
2679 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2680 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2681 
2682 #else
2683 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2684 
2685 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2686 {
2687 	if (mm_pud_folded(mm))
2688 		return;
2689 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2690 }
2691 
2692 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2693 {
2694 	if (mm_pud_folded(mm))
2695 		return;
2696 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2697 }
2698 #endif
2699 
2700 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2701 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2702 						unsigned long address)
2703 {
2704 	return 0;
2705 }
2706 
2707 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2708 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2709 
2710 #else
2711 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2712 
2713 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2714 {
2715 	if (mm_pmd_folded(mm))
2716 		return;
2717 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2718 }
2719 
2720 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2721 {
2722 	if (mm_pmd_folded(mm))
2723 		return;
2724 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2725 }
2726 #endif
2727 
2728 #ifdef CONFIG_MMU
2729 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2730 {
2731 	atomic_long_set(&mm->pgtables_bytes, 0);
2732 }
2733 
2734 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2735 {
2736 	return atomic_long_read(&mm->pgtables_bytes);
2737 }
2738 
2739 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2740 {
2741 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2742 }
2743 
2744 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2745 {
2746 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2747 }
2748 #else
2749 
2750 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2751 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2752 {
2753 	return 0;
2754 }
2755 
2756 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2757 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2758 #endif
2759 
2760 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2761 int __pte_alloc_kernel(pmd_t *pmd);
2762 
2763 #if defined(CONFIG_MMU)
2764 
2765 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2766 		unsigned long address)
2767 {
2768 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2769 		NULL : p4d_offset(pgd, address);
2770 }
2771 
2772 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2773 		unsigned long address)
2774 {
2775 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2776 		NULL : pud_offset(p4d, address);
2777 }
2778 
2779 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2780 {
2781 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2782 		NULL: pmd_offset(pud, address);
2783 }
2784 #endif /* CONFIG_MMU */
2785 
2786 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2787 {
2788 	return page_ptdesc(virt_to_page(x));
2789 }
2790 
2791 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2792 {
2793 	return page_to_virt(ptdesc_page(pt));
2794 }
2795 
2796 static inline void *ptdesc_address(const struct ptdesc *pt)
2797 {
2798 	return folio_address(ptdesc_folio(pt));
2799 }
2800 
2801 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2802 {
2803 	return folio_test_reserved(ptdesc_folio(pt));
2804 }
2805 
2806 /**
2807  * pagetable_alloc - Allocate pagetables
2808  * @gfp:    GFP flags
2809  * @order:  desired pagetable order
2810  *
2811  * pagetable_alloc allocates memory for page tables as well as a page table
2812  * descriptor to describe that memory.
2813  *
2814  * Return: The ptdesc describing the allocated page tables.
2815  */
2816 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2817 {
2818 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2819 
2820 	return page_ptdesc(page);
2821 }
2822 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2823 
2824 /**
2825  * pagetable_free - Free pagetables
2826  * @pt:	The page table descriptor
2827  *
2828  * pagetable_free frees the memory of all page tables described by a page
2829  * table descriptor and the memory for the descriptor itself.
2830  */
2831 static inline void pagetable_free(struct ptdesc *pt)
2832 {
2833 	struct page *page = ptdesc_page(pt);
2834 
2835 	__free_pages(page, compound_order(page));
2836 }
2837 
2838 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2839 #if ALLOC_SPLIT_PTLOCKS
2840 void __init ptlock_cache_init(void);
2841 bool ptlock_alloc(struct ptdesc *ptdesc);
2842 void ptlock_free(struct ptdesc *ptdesc);
2843 
2844 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2845 {
2846 	return ptdesc->ptl;
2847 }
2848 #else /* ALLOC_SPLIT_PTLOCKS */
2849 static inline void ptlock_cache_init(void)
2850 {
2851 }
2852 
2853 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2854 {
2855 	return true;
2856 }
2857 
2858 static inline void ptlock_free(struct ptdesc *ptdesc)
2859 {
2860 }
2861 
2862 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2863 {
2864 	return &ptdesc->ptl;
2865 }
2866 #endif /* ALLOC_SPLIT_PTLOCKS */
2867 
2868 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2869 {
2870 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2871 }
2872 
2873 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2874 {
2875 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2876 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2877 	return ptlock_ptr(virt_to_ptdesc(pte));
2878 }
2879 
2880 static inline bool ptlock_init(struct ptdesc *ptdesc)
2881 {
2882 	/*
2883 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2884 	 * with 0. Make sure nobody took it in use in between.
2885 	 *
2886 	 * It can happen if arch try to use slab for page table allocation:
2887 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2888 	 */
2889 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2890 	if (!ptlock_alloc(ptdesc))
2891 		return false;
2892 	spin_lock_init(ptlock_ptr(ptdesc));
2893 	return true;
2894 }
2895 
2896 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2897 /*
2898  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2899  */
2900 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2901 {
2902 	return &mm->page_table_lock;
2903 }
2904 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2905 {
2906 	return &mm->page_table_lock;
2907 }
2908 static inline void ptlock_cache_init(void) {}
2909 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2910 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2911 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2912 
2913 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2914 {
2915 	struct folio *folio = ptdesc_folio(ptdesc);
2916 
2917 	if (!ptlock_init(ptdesc))
2918 		return false;
2919 	__folio_set_pgtable(folio);
2920 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2921 	return true;
2922 }
2923 
2924 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2925 {
2926 	struct folio *folio = ptdesc_folio(ptdesc);
2927 
2928 	ptlock_free(ptdesc);
2929 	__folio_clear_pgtable(folio);
2930 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2931 }
2932 
2933 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2934 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2935 {
2936 	return __pte_offset_map(pmd, addr, NULL);
2937 }
2938 
2939 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2940 			unsigned long addr, spinlock_t **ptlp);
2941 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2942 			unsigned long addr, spinlock_t **ptlp)
2943 {
2944 	pte_t *pte;
2945 
2946 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2947 	return pte;
2948 }
2949 
2950 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2951 			unsigned long addr, spinlock_t **ptlp);
2952 
2953 #define pte_unmap_unlock(pte, ptl)	do {		\
2954 	spin_unlock(ptl);				\
2955 	pte_unmap(pte);					\
2956 } while (0)
2957 
2958 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2959 
2960 #define pte_alloc_map(mm, pmd, address)			\
2961 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2962 
2963 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2964 	(pte_alloc(mm, pmd) ?			\
2965 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2966 
2967 #define pte_alloc_kernel(pmd, address)			\
2968 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2969 		NULL: pte_offset_kernel(pmd, address))
2970 
2971 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
2972 
2973 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2974 {
2975 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2976 	return virt_to_page((void *)((unsigned long) pmd & mask));
2977 }
2978 
2979 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
2980 {
2981 	return page_ptdesc(pmd_pgtable_page(pmd));
2982 }
2983 
2984 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2985 {
2986 	return ptlock_ptr(pmd_ptdesc(pmd));
2987 }
2988 
2989 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
2990 {
2991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2992 	ptdesc->pmd_huge_pte = NULL;
2993 #endif
2994 	return ptlock_init(ptdesc);
2995 }
2996 
2997 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
2998 {
2999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3000 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3001 #endif
3002 	ptlock_free(ptdesc);
3003 }
3004 
3005 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3006 
3007 #else
3008 
3009 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3010 {
3011 	return &mm->page_table_lock;
3012 }
3013 
3014 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3015 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3016 
3017 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3018 
3019 #endif
3020 
3021 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3022 {
3023 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3024 	spin_lock(ptl);
3025 	return ptl;
3026 }
3027 
3028 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3029 {
3030 	struct folio *folio = ptdesc_folio(ptdesc);
3031 
3032 	if (!pmd_ptlock_init(ptdesc))
3033 		return false;
3034 	__folio_set_pgtable(folio);
3035 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3036 	return true;
3037 }
3038 
3039 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3040 {
3041 	struct folio *folio = ptdesc_folio(ptdesc);
3042 
3043 	pmd_ptlock_free(ptdesc);
3044 	__folio_clear_pgtable(folio);
3045 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3046 }
3047 
3048 /*
3049  * No scalability reason to split PUD locks yet, but follow the same pattern
3050  * as the PMD locks to make it easier if we decide to.  The VM should not be
3051  * considered ready to switch to split PUD locks yet; there may be places
3052  * which need to be converted from page_table_lock.
3053  */
3054 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3055 {
3056 	return &mm->page_table_lock;
3057 }
3058 
3059 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3060 {
3061 	spinlock_t *ptl = pud_lockptr(mm, pud);
3062 
3063 	spin_lock(ptl);
3064 	return ptl;
3065 }
3066 
3067 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3068 {
3069 	struct folio *folio = ptdesc_folio(ptdesc);
3070 
3071 	__folio_set_pgtable(folio);
3072 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3073 }
3074 
3075 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3076 {
3077 	struct folio *folio = ptdesc_folio(ptdesc);
3078 
3079 	__folio_clear_pgtable(folio);
3080 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3081 }
3082 
3083 extern void __init pagecache_init(void);
3084 extern void free_initmem(void);
3085 
3086 /*
3087  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3088  * into the buddy system. The freed pages will be poisoned with pattern
3089  * "poison" if it's within range [0, UCHAR_MAX].
3090  * Return pages freed into the buddy system.
3091  */
3092 extern unsigned long free_reserved_area(void *start, void *end,
3093 					int poison, const char *s);
3094 
3095 extern void adjust_managed_page_count(struct page *page, long count);
3096 
3097 extern void reserve_bootmem_region(phys_addr_t start,
3098 				   phys_addr_t end, int nid);
3099 
3100 /* Free the reserved page into the buddy system, so it gets managed. */
3101 void free_reserved_page(struct page *page);
3102 #define free_highmem_page(page) free_reserved_page(page)
3103 
3104 static inline void mark_page_reserved(struct page *page)
3105 {
3106 	SetPageReserved(page);
3107 	adjust_managed_page_count(page, -1);
3108 }
3109 
3110 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3111 {
3112 	free_reserved_page(ptdesc_page(pt));
3113 }
3114 
3115 /*
3116  * Default method to free all the __init memory into the buddy system.
3117  * The freed pages will be poisoned with pattern "poison" if it's within
3118  * range [0, UCHAR_MAX].
3119  * Return pages freed into the buddy system.
3120  */
3121 static inline unsigned long free_initmem_default(int poison)
3122 {
3123 	extern char __init_begin[], __init_end[];
3124 
3125 	return free_reserved_area(&__init_begin, &__init_end,
3126 				  poison, "unused kernel image (initmem)");
3127 }
3128 
3129 static inline unsigned long get_num_physpages(void)
3130 {
3131 	int nid;
3132 	unsigned long phys_pages = 0;
3133 
3134 	for_each_online_node(nid)
3135 		phys_pages += node_present_pages(nid);
3136 
3137 	return phys_pages;
3138 }
3139 
3140 /*
3141  * Using memblock node mappings, an architecture may initialise its
3142  * zones, allocate the backing mem_map and account for memory holes in an
3143  * architecture independent manner.
3144  *
3145  * An architecture is expected to register range of page frames backed by
3146  * physical memory with memblock_add[_node]() before calling
3147  * free_area_init() passing in the PFN each zone ends at. At a basic
3148  * usage, an architecture is expected to do something like
3149  *
3150  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3151  * 							 max_highmem_pfn};
3152  * for_each_valid_physical_page_range()
3153  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3154  * free_area_init(max_zone_pfns);
3155  */
3156 void free_area_init(unsigned long *max_zone_pfn);
3157 unsigned long node_map_pfn_alignment(void);
3158 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3159 						unsigned long end_pfn);
3160 extern void get_pfn_range_for_nid(unsigned int nid,
3161 			unsigned long *start_pfn, unsigned long *end_pfn);
3162 
3163 #ifndef CONFIG_NUMA
3164 static inline int early_pfn_to_nid(unsigned long pfn)
3165 {
3166 	return 0;
3167 }
3168 #else
3169 /* please see mm/page_alloc.c */
3170 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3171 #endif
3172 
3173 extern void mem_init(void);
3174 extern void __init mmap_init(void);
3175 
3176 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3177 static inline void show_mem(void)
3178 {
3179 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3180 }
3181 extern long si_mem_available(void);
3182 extern void si_meminfo(struct sysinfo * val);
3183 extern void si_meminfo_node(struct sysinfo *val, int nid);
3184 
3185 extern __printf(3, 4)
3186 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3187 
3188 extern void setup_per_cpu_pageset(void);
3189 
3190 /* nommu.c */
3191 extern atomic_long_t mmap_pages_allocated;
3192 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3193 
3194 /* interval_tree.c */
3195 void vma_interval_tree_insert(struct vm_area_struct *node,
3196 			      struct rb_root_cached *root);
3197 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3198 				    struct vm_area_struct *prev,
3199 				    struct rb_root_cached *root);
3200 void vma_interval_tree_remove(struct vm_area_struct *node,
3201 			      struct rb_root_cached *root);
3202 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3203 				unsigned long start, unsigned long last);
3204 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3205 				unsigned long start, unsigned long last);
3206 
3207 #define vma_interval_tree_foreach(vma, root, start, last)		\
3208 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3209 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3210 
3211 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3212 				   struct rb_root_cached *root);
3213 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3214 				   struct rb_root_cached *root);
3215 struct anon_vma_chain *
3216 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3217 				  unsigned long start, unsigned long last);
3218 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3219 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3220 #ifdef CONFIG_DEBUG_VM_RB
3221 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3222 #endif
3223 
3224 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3225 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3226 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3227 
3228 /* mmap.c */
3229 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3230 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3231 extern void exit_mmap(struct mm_struct *);
3232 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3233 
3234 static inline int check_data_rlimit(unsigned long rlim,
3235 				    unsigned long new,
3236 				    unsigned long start,
3237 				    unsigned long end_data,
3238 				    unsigned long start_data)
3239 {
3240 	if (rlim < RLIM_INFINITY) {
3241 		if (((new - start) + (end_data - start_data)) > rlim)
3242 			return -ENOSPC;
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 extern int mm_take_all_locks(struct mm_struct *mm);
3249 extern void mm_drop_all_locks(struct mm_struct *mm);
3250 
3251 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3252 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3253 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3254 extern struct file *get_task_exe_file(struct task_struct *task);
3255 
3256 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3257 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3258 
3259 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3260 				   const struct vm_special_mapping *sm);
3261 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3262 				   unsigned long addr, unsigned long len,
3263 				   unsigned long flags,
3264 				   const struct vm_special_mapping *spec);
3265 
3266 unsigned long randomize_stack_top(unsigned long stack_top);
3267 unsigned long randomize_page(unsigned long start, unsigned long range);
3268 
3269 unsigned long
3270 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3271 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3272 
3273 static inline unsigned long
3274 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3275 		  unsigned long pgoff, unsigned long flags)
3276 {
3277 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3278 }
3279 
3280 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3281 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3282 	struct list_head *uf);
3283 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3284 	unsigned long len, unsigned long prot, unsigned long flags,
3285 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3286 	struct list_head *uf);
3287 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3288 			 unsigned long start, size_t len, struct list_head *uf,
3289 			 bool unlock);
3290 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3291 		    struct mm_struct *mm, unsigned long start,
3292 		    unsigned long end, struct list_head *uf, bool unlock);
3293 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3294 		     struct list_head *uf);
3295 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3296 
3297 #ifdef CONFIG_MMU
3298 extern int __mm_populate(unsigned long addr, unsigned long len,
3299 			 int ignore_errors);
3300 static inline void mm_populate(unsigned long addr, unsigned long len)
3301 {
3302 	/* Ignore errors */
3303 	(void) __mm_populate(addr, len, 1);
3304 }
3305 #else
3306 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3307 #endif
3308 
3309 /* This takes the mm semaphore itself */
3310 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3311 extern int vm_munmap(unsigned long, size_t);
3312 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3313         unsigned long, unsigned long,
3314         unsigned long, unsigned long);
3315 
3316 struct vm_unmapped_area_info {
3317 #define VM_UNMAPPED_AREA_TOPDOWN 1
3318 	unsigned long flags;
3319 	unsigned long length;
3320 	unsigned long low_limit;
3321 	unsigned long high_limit;
3322 	unsigned long align_mask;
3323 	unsigned long align_offset;
3324 	unsigned long start_gap;
3325 };
3326 
3327 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3328 
3329 /* truncate.c */
3330 extern void truncate_inode_pages(struct address_space *, loff_t);
3331 extern void truncate_inode_pages_range(struct address_space *,
3332 				       loff_t lstart, loff_t lend);
3333 extern void truncate_inode_pages_final(struct address_space *);
3334 
3335 /* generic vm_area_ops exported for stackable file systems */
3336 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3337 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3338 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3339 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3340 
3341 extern unsigned long stack_guard_gap;
3342 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3343 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3344 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3345 
3346 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3347 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3348 
3349 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3350 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3351 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3352 					     struct vm_area_struct **pprev);
3353 
3354 /*
3355  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3356  * NULL if none.  Assume start_addr < end_addr.
3357  */
3358 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3359 			unsigned long start_addr, unsigned long end_addr);
3360 
3361 /**
3362  * vma_lookup() - Find a VMA at a specific address
3363  * @mm: The process address space.
3364  * @addr: The user address.
3365  *
3366  * Return: The vm_area_struct at the given address, %NULL otherwise.
3367  */
3368 static inline
3369 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3370 {
3371 	return mtree_load(&mm->mm_mt, addr);
3372 }
3373 
3374 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3375 {
3376 	if (vma->vm_flags & VM_GROWSDOWN)
3377 		return stack_guard_gap;
3378 
3379 	/* See reasoning around the VM_SHADOW_STACK definition */
3380 	if (vma->vm_flags & VM_SHADOW_STACK)
3381 		return PAGE_SIZE;
3382 
3383 	return 0;
3384 }
3385 
3386 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3387 {
3388 	unsigned long gap = stack_guard_start_gap(vma);
3389 	unsigned long vm_start = vma->vm_start;
3390 
3391 	vm_start -= gap;
3392 	if (vm_start > vma->vm_start)
3393 		vm_start = 0;
3394 	return vm_start;
3395 }
3396 
3397 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3398 {
3399 	unsigned long vm_end = vma->vm_end;
3400 
3401 	if (vma->vm_flags & VM_GROWSUP) {
3402 		vm_end += stack_guard_gap;
3403 		if (vm_end < vma->vm_end)
3404 			vm_end = -PAGE_SIZE;
3405 	}
3406 	return vm_end;
3407 }
3408 
3409 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3410 {
3411 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3412 }
3413 
3414 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3415 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3416 				unsigned long vm_start, unsigned long vm_end)
3417 {
3418 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3419 
3420 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3421 		vma = NULL;
3422 
3423 	return vma;
3424 }
3425 
3426 static inline bool range_in_vma(struct vm_area_struct *vma,
3427 				unsigned long start, unsigned long end)
3428 {
3429 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3430 }
3431 
3432 #ifdef CONFIG_MMU
3433 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3434 void vma_set_page_prot(struct vm_area_struct *vma);
3435 #else
3436 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3437 {
3438 	return __pgprot(0);
3439 }
3440 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3441 {
3442 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3443 }
3444 #endif
3445 
3446 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3447 
3448 #ifdef CONFIG_NUMA_BALANCING
3449 unsigned long change_prot_numa(struct vm_area_struct *vma,
3450 			unsigned long start, unsigned long end);
3451 #endif
3452 
3453 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3454 		unsigned long addr);
3455 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3456 			unsigned long pfn, unsigned long size, pgprot_t);
3457 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3458 		unsigned long pfn, unsigned long size, pgprot_t prot);
3459 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3460 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3461 			struct page **pages, unsigned long *num);
3462 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3463 				unsigned long num);
3464 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3465 				unsigned long num);
3466 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3467 			unsigned long pfn);
3468 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3469 			unsigned long pfn, pgprot_t pgprot);
3470 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3471 			pfn_t pfn);
3472 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3473 		unsigned long addr, pfn_t pfn);
3474 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3475 
3476 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3477 				unsigned long addr, struct page *page)
3478 {
3479 	int err = vm_insert_page(vma, addr, page);
3480 
3481 	if (err == -ENOMEM)
3482 		return VM_FAULT_OOM;
3483 	if (err < 0 && err != -EBUSY)
3484 		return VM_FAULT_SIGBUS;
3485 
3486 	return VM_FAULT_NOPAGE;
3487 }
3488 
3489 #ifndef io_remap_pfn_range
3490 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3491 				     unsigned long addr, unsigned long pfn,
3492 				     unsigned long size, pgprot_t prot)
3493 {
3494 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3495 }
3496 #endif
3497 
3498 static inline vm_fault_t vmf_error(int err)
3499 {
3500 	if (err == -ENOMEM)
3501 		return VM_FAULT_OOM;
3502 	else if (err == -EHWPOISON)
3503 		return VM_FAULT_HWPOISON;
3504 	return VM_FAULT_SIGBUS;
3505 }
3506 
3507 /*
3508  * Convert errno to return value for ->page_mkwrite() calls.
3509  *
3510  * This should eventually be merged with vmf_error() above, but will need a
3511  * careful audit of all vmf_error() callers.
3512  */
3513 static inline vm_fault_t vmf_fs_error(int err)
3514 {
3515 	if (err == 0)
3516 		return VM_FAULT_LOCKED;
3517 	if (err == -EFAULT || err == -EAGAIN)
3518 		return VM_FAULT_NOPAGE;
3519 	if (err == -ENOMEM)
3520 		return VM_FAULT_OOM;
3521 	/* -ENOSPC, -EDQUOT, -EIO ... */
3522 	return VM_FAULT_SIGBUS;
3523 }
3524 
3525 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3526 {
3527 	if (vm_fault & VM_FAULT_OOM)
3528 		return -ENOMEM;
3529 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3530 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3531 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3532 		return -EFAULT;
3533 	return 0;
3534 }
3535 
3536 /*
3537  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3538  * a (NUMA hinting) fault is required.
3539  */
3540 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3541 					   unsigned int flags)
3542 {
3543 	/*
3544 	 * If callers don't want to honor NUMA hinting faults, no need to
3545 	 * determine if we would actually have to trigger a NUMA hinting fault.
3546 	 */
3547 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3548 		return true;
3549 
3550 	/*
3551 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3552 	 *
3553 	 * Requiring a fault here even for inaccessible VMAs would mean that
3554 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3555 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3556 	 */
3557 	return !vma_is_accessible(vma);
3558 }
3559 
3560 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3561 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3562 			       unsigned long size, pte_fn_t fn, void *data);
3563 extern int apply_to_existing_page_range(struct mm_struct *mm,
3564 				   unsigned long address, unsigned long size,
3565 				   pte_fn_t fn, void *data);
3566 
3567 #ifdef CONFIG_PAGE_POISONING
3568 extern void __kernel_poison_pages(struct page *page, int numpages);
3569 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3570 extern bool _page_poisoning_enabled_early;
3571 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3572 static inline bool page_poisoning_enabled(void)
3573 {
3574 	return _page_poisoning_enabled_early;
3575 }
3576 /*
3577  * For use in fast paths after init_mem_debugging() has run, or when a
3578  * false negative result is not harmful when called too early.
3579  */
3580 static inline bool page_poisoning_enabled_static(void)
3581 {
3582 	return static_branch_unlikely(&_page_poisoning_enabled);
3583 }
3584 static inline void kernel_poison_pages(struct page *page, int numpages)
3585 {
3586 	if (page_poisoning_enabled_static())
3587 		__kernel_poison_pages(page, numpages);
3588 }
3589 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3590 {
3591 	if (page_poisoning_enabled_static())
3592 		__kernel_unpoison_pages(page, numpages);
3593 }
3594 #else
3595 static inline bool page_poisoning_enabled(void) { return false; }
3596 static inline bool page_poisoning_enabled_static(void) { return false; }
3597 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3598 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3599 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3600 #endif
3601 
3602 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3603 static inline bool want_init_on_alloc(gfp_t flags)
3604 {
3605 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3606 				&init_on_alloc))
3607 		return true;
3608 	return flags & __GFP_ZERO;
3609 }
3610 
3611 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3612 static inline bool want_init_on_free(void)
3613 {
3614 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3615 				   &init_on_free);
3616 }
3617 
3618 extern bool _debug_pagealloc_enabled_early;
3619 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3620 
3621 static inline bool debug_pagealloc_enabled(void)
3622 {
3623 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3624 		_debug_pagealloc_enabled_early;
3625 }
3626 
3627 /*
3628  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3629  * or when a false negative result is not harmful when called too early.
3630  */
3631 static inline bool debug_pagealloc_enabled_static(void)
3632 {
3633 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3634 		return false;
3635 
3636 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3637 }
3638 
3639 /*
3640  * To support DEBUG_PAGEALLOC architecture must ensure that
3641  * __kernel_map_pages() never fails
3642  */
3643 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3644 #ifdef CONFIG_DEBUG_PAGEALLOC
3645 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3646 {
3647 	if (debug_pagealloc_enabled_static())
3648 		__kernel_map_pages(page, numpages, 1);
3649 }
3650 
3651 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3652 {
3653 	if (debug_pagealloc_enabled_static())
3654 		__kernel_map_pages(page, numpages, 0);
3655 }
3656 
3657 extern unsigned int _debug_guardpage_minorder;
3658 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3659 
3660 static inline unsigned int debug_guardpage_minorder(void)
3661 {
3662 	return _debug_guardpage_minorder;
3663 }
3664 
3665 static inline bool debug_guardpage_enabled(void)
3666 {
3667 	return static_branch_unlikely(&_debug_guardpage_enabled);
3668 }
3669 
3670 static inline bool page_is_guard(struct page *page)
3671 {
3672 	if (!debug_guardpage_enabled())
3673 		return false;
3674 
3675 	return PageGuard(page);
3676 }
3677 
3678 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3679 static inline bool set_page_guard(struct zone *zone, struct page *page,
3680 				  unsigned int order)
3681 {
3682 	if (!debug_guardpage_enabled())
3683 		return false;
3684 	return __set_page_guard(zone, page, order);
3685 }
3686 
3687 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3688 static inline void clear_page_guard(struct zone *zone, struct page *page,
3689 				    unsigned int order)
3690 {
3691 	if (!debug_guardpage_enabled())
3692 		return;
3693 	__clear_page_guard(zone, page, order);
3694 }
3695 
3696 #else	/* CONFIG_DEBUG_PAGEALLOC */
3697 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3698 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3699 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3700 static inline bool debug_guardpage_enabled(void) { return false; }
3701 static inline bool page_is_guard(struct page *page) { return false; }
3702 static inline bool set_page_guard(struct zone *zone, struct page *page,
3703 			unsigned int order) { return false; }
3704 static inline void clear_page_guard(struct zone *zone, struct page *page,
3705 				unsigned int order) {}
3706 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3707 
3708 #ifdef __HAVE_ARCH_GATE_AREA
3709 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3710 extern int in_gate_area_no_mm(unsigned long addr);
3711 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3712 #else
3713 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3714 {
3715 	return NULL;
3716 }
3717 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3718 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3719 {
3720 	return 0;
3721 }
3722 #endif	/* __HAVE_ARCH_GATE_AREA */
3723 
3724 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3725 
3726 #ifdef CONFIG_SYSCTL
3727 extern int sysctl_drop_caches;
3728 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3729 		loff_t *);
3730 #endif
3731 
3732 void drop_slab(void);
3733 
3734 #ifndef CONFIG_MMU
3735 #define randomize_va_space 0
3736 #else
3737 extern int randomize_va_space;
3738 #endif
3739 
3740 const char * arch_vma_name(struct vm_area_struct *vma);
3741 #ifdef CONFIG_MMU
3742 void print_vma_addr(char *prefix, unsigned long rip);
3743 #else
3744 static inline void print_vma_addr(char *prefix, unsigned long rip)
3745 {
3746 }
3747 #endif
3748 
3749 void *sparse_buffer_alloc(unsigned long size);
3750 struct page * __populate_section_memmap(unsigned long pfn,
3751 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3752 		struct dev_pagemap *pgmap);
3753 void pmd_init(void *addr);
3754 void pud_init(void *addr);
3755 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3756 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3757 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3758 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3759 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3760 			    struct vmem_altmap *altmap, struct page *reuse);
3761 void *vmemmap_alloc_block(unsigned long size, int node);
3762 struct vmem_altmap;
3763 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3764 			      struct vmem_altmap *altmap);
3765 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3766 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3767 		     unsigned long addr, unsigned long next);
3768 int vmemmap_check_pmd(pmd_t *pmd, int node,
3769 		      unsigned long addr, unsigned long next);
3770 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3771 			       int node, struct vmem_altmap *altmap);
3772 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3773 			       int node, struct vmem_altmap *altmap);
3774 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3775 		struct vmem_altmap *altmap);
3776 void vmemmap_populate_print_last(void);
3777 #ifdef CONFIG_MEMORY_HOTPLUG
3778 void vmemmap_free(unsigned long start, unsigned long end,
3779 		struct vmem_altmap *altmap);
3780 #endif
3781 
3782 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3783 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3784 {
3785 	/* number of pfns from base where pfn_to_page() is valid */
3786 	if (altmap)
3787 		return altmap->reserve + altmap->free;
3788 	return 0;
3789 }
3790 
3791 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3792 				    unsigned long nr_pfns)
3793 {
3794 	altmap->alloc -= nr_pfns;
3795 }
3796 #else
3797 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3798 {
3799 	return 0;
3800 }
3801 
3802 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3803 				    unsigned long nr_pfns)
3804 {
3805 }
3806 #endif
3807 
3808 #define VMEMMAP_RESERVE_NR	2
3809 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3810 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3811 					  struct dev_pagemap *pgmap)
3812 {
3813 	unsigned long nr_pages;
3814 	unsigned long nr_vmemmap_pages;
3815 
3816 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3817 		return false;
3818 
3819 	nr_pages = pgmap_vmemmap_nr(pgmap);
3820 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3821 	/*
3822 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3823 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3824 	 */
3825 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3826 }
3827 /*
3828  * If we don't have an architecture override, use the generic rule
3829  */
3830 #ifndef vmemmap_can_optimize
3831 #define vmemmap_can_optimize __vmemmap_can_optimize
3832 #endif
3833 
3834 #else
3835 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3836 					   struct dev_pagemap *pgmap)
3837 {
3838 	return false;
3839 }
3840 #endif
3841 
3842 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3843 				  unsigned long nr_pages);
3844 
3845 enum mf_flags {
3846 	MF_COUNT_INCREASED = 1 << 0,
3847 	MF_ACTION_REQUIRED = 1 << 1,
3848 	MF_MUST_KILL = 1 << 2,
3849 	MF_SOFT_OFFLINE = 1 << 3,
3850 	MF_UNPOISON = 1 << 4,
3851 	MF_SW_SIMULATED = 1 << 5,
3852 	MF_NO_RETRY = 1 << 6,
3853 	MF_MEM_PRE_REMOVE = 1 << 7,
3854 };
3855 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3856 		      unsigned long count, int mf_flags);
3857 extern int memory_failure(unsigned long pfn, int flags);
3858 extern void memory_failure_queue_kick(int cpu);
3859 extern int unpoison_memory(unsigned long pfn);
3860 extern atomic_long_t num_poisoned_pages __read_mostly;
3861 extern int soft_offline_page(unsigned long pfn, int flags);
3862 #ifdef CONFIG_MEMORY_FAILURE
3863 /*
3864  * Sysfs entries for memory failure handling statistics.
3865  */
3866 extern const struct attribute_group memory_failure_attr_group;
3867 extern void memory_failure_queue(unsigned long pfn, int flags);
3868 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3869 					bool *migratable_cleared);
3870 void num_poisoned_pages_inc(unsigned long pfn);
3871 void num_poisoned_pages_sub(unsigned long pfn, long i);
3872 #else
3873 static inline void memory_failure_queue(unsigned long pfn, int flags)
3874 {
3875 }
3876 
3877 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3878 					bool *migratable_cleared)
3879 {
3880 	return 0;
3881 }
3882 
3883 static inline void num_poisoned_pages_inc(unsigned long pfn)
3884 {
3885 }
3886 
3887 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3888 {
3889 }
3890 #endif
3891 
3892 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3893 extern void memblk_nr_poison_inc(unsigned long pfn);
3894 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3895 #else
3896 static inline void memblk_nr_poison_inc(unsigned long pfn)
3897 {
3898 }
3899 
3900 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3901 {
3902 }
3903 #endif
3904 
3905 #ifndef arch_memory_failure
3906 static inline int arch_memory_failure(unsigned long pfn, int flags)
3907 {
3908 	return -ENXIO;
3909 }
3910 #endif
3911 
3912 #ifndef arch_is_platform_page
3913 static inline bool arch_is_platform_page(u64 paddr)
3914 {
3915 	return false;
3916 }
3917 #endif
3918 
3919 /*
3920  * Error handlers for various types of pages.
3921  */
3922 enum mf_result {
3923 	MF_IGNORED,	/* Error: cannot be handled */
3924 	MF_FAILED,	/* Error: handling failed */
3925 	MF_DELAYED,	/* Will be handled later */
3926 	MF_RECOVERED,	/* Successfully recovered */
3927 };
3928 
3929 enum mf_action_page_type {
3930 	MF_MSG_KERNEL,
3931 	MF_MSG_KERNEL_HIGH_ORDER,
3932 	MF_MSG_DIFFERENT_COMPOUND,
3933 	MF_MSG_HUGE,
3934 	MF_MSG_FREE_HUGE,
3935 	MF_MSG_GET_HWPOISON,
3936 	MF_MSG_UNMAP_FAILED,
3937 	MF_MSG_DIRTY_SWAPCACHE,
3938 	MF_MSG_CLEAN_SWAPCACHE,
3939 	MF_MSG_DIRTY_MLOCKED_LRU,
3940 	MF_MSG_CLEAN_MLOCKED_LRU,
3941 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3942 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3943 	MF_MSG_DIRTY_LRU,
3944 	MF_MSG_CLEAN_LRU,
3945 	MF_MSG_TRUNCATED_LRU,
3946 	MF_MSG_BUDDY,
3947 	MF_MSG_DAX,
3948 	MF_MSG_UNSPLIT_THP,
3949 	MF_MSG_ALREADY_POISONED,
3950 	MF_MSG_UNKNOWN,
3951 };
3952 
3953 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3954 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
3955 int copy_user_large_folio(struct folio *dst, struct folio *src,
3956 			  unsigned long addr_hint,
3957 			  struct vm_area_struct *vma);
3958 long copy_folio_from_user(struct folio *dst_folio,
3959 			   const void __user *usr_src,
3960 			   bool allow_pagefault);
3961 
3962 /**
3963  * vma_is_special_huge - Are transhuge page-table entries considered special?
3964  * @vma: Pointer to the struct vm_area_struct to consider
3965  *
3966  * Whether transhuge page-table entries are considered "special" following
3967  * the definition in vm_normal_page().
3968  *
3969  * Return: true if transhuge page-table entries should be considered special,
3970  * false otherwise.
3971  */
3972 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3973 {
3974 	return vma_is_dax(vma) || (vma->vm_file &&
3975 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3976 }
3977 
3978 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3979 
3980 #if MAX_NUMNODES > 1
3981 void __init setup_nr_node_ids(void);
3982 #else
3983 static inline void setup_nr_node_ids(void) {}
3984 #endif
3985 
3986 extern int memcmp_pages(struct page *page1, struct page *page2);
3987 
3988 static inline int pages_identical(struct page *page1, struct page *page2)
3989 {
3990 	return !memcmp_pages(page1, page2);
3991 }
3992 
3993 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3994 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3995 						pgoff_t first_index, pgoff_t nr,
3996 						pgoff_t bitmap_pgoff,
3997 						unsigned long *bitmap,
3998 						pgoff_t *start,
3999 						pgoff_t *end);
4000 
4001 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4002 				      pgoff_t first_index, pgoff_t nr);
4003 #endif
4004 
4005 extern int sysctl_nr_trim_pages;
4006 
4007 #ifdef CONFIG_PRINTK
4008 void mem_dump_obj(void *object);
4009 #else
4010 static inline void mem_dump_obj(void *object) {}
4011 #endif
4012 
4013 /**
4014  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4015  *                    handle them.
4016  * @seals: the seals to check
4017  * @vma: the vma to operate on
4018  *
4019  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4020  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4021  */
4022 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4023 {
4024 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4025 		/*
4026 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4027 		 * write seals are active.
4028 		 */
4029 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4030 			return -EPERM;
4031 
4032 		/*
4033 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4034 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4035 		 * revert protections on such mappings. Do this only for shared
4036 		 * mappings. For private mappings, don't need to mask
4037 		 * VM_MAYWRITE as we still want them to be COW-writable.
4038 		 */
4039 		if (vma->vm_flags & VM_SHARED)
4040 			vm_flags_clear(vma, VM_MAYWRITE);
4041 	}
4042 
4043 	return 0;
4044 }
4045 
4046 #ifdef CONFIG_ANON_VMA_NAME
4047 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4048 			  unsigned long len_in,
4049 			  struct anon_vma_name *anon_name);
4050 #else
4051 static inline int
4052 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4053 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4054 	return 0;
4055 }
4056 #endif
4057 
4058 #ifdef CONFIG_UNACCEPTED_MEMORY
4059 
4060 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4061 void accept_memory(phys_addr_t start, unsigned long size);
4062 
4063 #else
4064 
4065 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4066 						    unsigned long size)
4067 {
4068 	return false;
4069 }
4070 
4071 static inline void accept_memory(phys_addr_t start, unsigned long size)
4072 {
4073 }
4074 
4075 #endif
4076 
4077 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4078 {
4079 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4080 }
4081 
4082 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4083 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4084 
4085 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4086 
4087 #endif /* _LINUX_MM_H */
4088