1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 void init_mm_internals(void); 36 37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 38 extern unsigned long max_mapnr; 39 40 static inline void set_max_mapnr(unsigned long limit) 41 { 42 max_mapnr = limit; 43 } 44 #else 45 static inline void set_max_mapnr(unsigned long limit) { } 46 #endif 47 48 extern unsigned long totalram_pages; 49 extern void * high_memory; 50 extern int page_cluster; 51 52 #ifdef CONFIG_SYSCTL 53 extern int sysctl_legacy_va_layout; 54 #else 55 #define sysctl_legacy_va_layout 0 56 #endif 57 58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 59 extern const int mmap_rnd_bits_min; 60 extern const int mmap_rnd_bits_max; 61 extern int mmap_rnd_bits __read_mostly; 62 #endif 63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 64 extern const int mmap_rnd_compat_bits_min; 65 extern const int mmap_rnd_compat_bits_max; 66 extern int mmap_rnd_compat_bits __read_mostly; 67 #endif 68 69 #include <asm/page.h> 70 #include <asm/pgtable.h> 71 #include <asm/processor.h> 72 73 #ifndef __pa_symbol 74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 75 #endif 76 77 #ifndef page_to_virt 78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 79 #endif 80 81 #ifndef lm_alias 82 #define lm_alias(x) __va(__pa_symbol(x)) 83 #endif 84 85 /* 86 * To prevent common memory management code establishing 87 * a zero page mapping on a read fault. 88 * This macro should be defined within <asm/pgtable.h>. 89 * s390 does this to prevent multiplexing of hardware bits 90 * related to the physical page in case of virtualization. 91 */ 92 #ifndef mm_forbids_zeropage 93 #define mm_forbids_zeropage(X) (0) 94 #endif 95 96 /* 97 * Default maximum number of active map areas, this limits the number of vmas 98 * per mm struct. Users can overwrite this number by sysctl but there is a 99 * problem. 100 * 101 * When a program's coredump is generated as ELF format, a section is created 102 * per a vma. In ELF, the number of sections is represented in unsigned short. 103 * This means the number of sections should be smaller than 65535 at coredump. 104 * Because the kernel adds some informative sections to a image of program at 105 * generating coredump, we need some margin. The number of extra sections is 106 * 1-3 now and depends on arch. We use "5" as safe margin, here. 107 * 108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 109 * not a hard limit any more. Although some userspace tools can be surprised by 110 * that. 111 */ 112 #define MAPCOUNT_ELF_CORE_MARGIN (5) 113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 114 115 extern int sysctl_max_map_count; 116 117 extern unsigned long sysctl_user_reserve_kbytes; 118 extern unsigned long sysctl_admin_reserve_kbytes; 119 120 extern int sysctl_overcommit_memory; 121 extern int sysctl_overcommit_ratio; 122 extern unsigned long sysctl_overcommit_kbytes; 123 124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 125 size_t *, loff_t *); 126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 127 size_t *, loff_t *); 128 129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 130 131 /* to align the pointer to the (next) page boundary */ 132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 133 134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 136 137 /* 138 * Linux kernel virtual memory manager primitives. 139 * The idea being to have a "virtual" mm in the same way 140 * we have a virtual fs - giving a cleaner interface to the 141 * mm details, and allowing different kinds of memory mappings 142 * (from shared memory to executable loading to arbitrary 143 * mmap() functions). 144 */ 145 146 extern struct kmem_cache *vm_area_cachep; 147 148 #ifndef CONFIG_MMU 149 extern struct rb_root nommu_region_tree; 150 extern struct rw_semaphore nommu_region_sem; 151 152 extern unsigned int kobjsize(const void *objp); 153 #endif 154 155 /* 156 * vm_flags in vm_area_struct, see mm_types.h. 157 * When changing, update also include/trace/events/mmflags.h 158 */ 159 #define VM_NONE 0x00000000 160 161 #define VM_READ 0x00000001 /* currently active flags */ 162 #define VM_WRITE 0x00000002 163 #define VM_EXEC 0x00000004 164 #define VM_SHARED 0x00000008 165 166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 168 #define VM_MAYWRITE 0x00000020 169 #define VM_MAYEXEC 0x00000040 170 #define VM_MAYSHARE 0x00000080 171 172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 177 178 #define VM_LOCKED 0x00002000 179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 180 181 /* Used by sys_madvise() */ 182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 184 185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 192 #define VM_ARCH_2 0x02000000 193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 194 195 #ifdef CONFIG_MEM_SOFT_DIRTY 196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 197 #else 198 # define VM_SOFTDIRTY 0 199 #endif 200 201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 205 206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 211 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 212 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 213 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 214 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 216 217 #if defined(CONFIG_X86) 218 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 220 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 221 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 222 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 223 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 224 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 225 #endif 226 #elif defined(CONFIG_PPC) 227 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 228 #elif defined(CONFIG_PARISC) 229 # define VM_GROWSUP VM_ARCH_1 230 #elif defined(CONFIG_METAG) 231 # define VM_GROWSUP VM_ARCH_1 232 #elif defined(CONFIG_IA64) 233 # define VM_GROWSUP VM_ARCH_1 234 #elif !defined(CONFIG_MMU) 235 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 236 #endif 237 238 #if defined(CONFIG_X86) 239 /* MPX specific bounds table or bounds directory */ 240 # define VM_MPX VM_ARCH_2 241 #endif 242 243 #ifndef VM_GROWSUP 244 # define VM_GROWSUP VM_NONE 245 #endif 246 247 /* Bits set in the VMA until the stack is in its final location */ 248 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 249 250 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 252 #endif 253 254 #ifdef CONFIG_STACK_GROWSUP 255 #define VM_STACK VM_GROWSUP 256 #else 257 #define VM_STACK VM_GROWSDOWN 258 #endif 259 260 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 261 262 /* 263 * Special vmas that are non-mergable, non-mlock()able. 264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 265 */ 266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 267 268 /* This mask defines which mm->def_flags a process can inherit its parent */ 269 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 270 271 /* This mask is used to clear all the VMA flags used by mlock */ 272 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 273 274 /* 275 * mapping from the currently active vm_flags protection bits (the 276 * low four bits) to a page protection mask.. 277 */ 278 extern pgprot_t protection_map[16]; 279 280 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 281 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 282 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 283 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 284 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 285 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 286 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 287 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 288 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 289 290 #define FAULT_FLAG_TRACE \ 291 { FAULT_FLAG_WRITE, "WRITE" }, \ 292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 296 { FAULT_FLAG_TRIED, "TRIED" }, \ 297 { FAULT_FLAG_USER, "USER" }, \ 298 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 300 301 /* 302 * vm_fault is filled by the the pagefault handler and passed to the vma's 303 * ->fault function. The vma's ->fault is responsible for returning a bitmask 304 * of VM_FAULT_xxx flags that give details about how the fault was handled. 305 * 306 * MM layer fills up gfp_mask for page allocations but fault handler might 307 * alter it if its implementation requires a different allocation context. 308 * 309 * pgoff should be used in favour of virtual_address, if possible. 310 */ 311 struct vm_fault { 312 struct vm_area_struct *vma; /* Target VMA */ 313 unsigned int flags; /* FAULT_FLAG_xxx flags */ 314 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 315 pgoff_t pgoff; /* Logical page offset based on vma */ 316 unsigned long address; /* Faulting virtual address */ 317 pmd_t *pmd; /* Pointer to pmd entry matching 318 * the 'address' */ 319 pud_t *pud; /* Pointer to pud entry matching 320 * the 'address' 321 */ 322 pte_t orig_pte; /* Value of PTE at the time of fault */ 323 324 struct page *cow_page; /* Page handler may use for COW fault */ 325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 326 struct page *page; /* ->fault handlers should return a 327 * page here, unless VM_FAULT_NOPAGE 328 * is set (which is also implied by 329 * VM_FAULT_ERROR). 330 */ 331 /* These three entries are valid only while holding ptl lock */ 332 pte_t *pte; /* Pointer to pte entry matching 333 * the 'address'. NULL if the page 334 * table hasn't been allocated. 335 */ 336 spinlock_t *ptl; /* Page table lock. 337 * Protects pte page table if 'pte' 338 * is not NULL, otherwise pmd. 339 */ 340 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 341 * vm_ops->map_pages() calls 342 * alloc_set_pte() from atomic context. 343 * do_fault_around() pre-allocates 344 * page table to avoid allocation from 345 * atomic context. 346 */ 347 }; 348 349 /* page entry size for vm->huge_fault() */ 350 enum page_entry_size { 351 PE_SIZE_PTE = 0, 352 PE_SIZE_PMD, 353 PE_SIZE_PUD, 354 }; 355 356 /* 357 * These are the virtual MM functions - opening of an area, closing and 358 * unmapping it (needed to keep files on disk up-to-date etc), pointer 359 * to the functions called when a no-page or a wp-page exception occurs. 360 */ 361 struct vm_operations_struct { 362 void (*open)(struct vm_area_struct * area); 363 void (*close)(struct vm_area_struct * area); 364 int (*mremap)(struct vm_area_struct * area); 365 int (*fault)(struct vm_fault *vmf); 366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 367 void (*map_pages)(struct vm_fault *vmf, 368 pgoff_t start_pgoff, pgoff_t end_pgoff); 369 370 /* notification that a previously read-only page is about to become 371 * writable, if an error is returned it will cause a SIGBUS */ 372 int (*page_mkwrite)(struct vm_fault *vmf); 373 374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 375 int (*pfn_mkwrite)(struct vm_fault *vmf); 376 377 /* called by access_process_vm when get_user_pages() fails, typically 378 * for use by special VMAs that can switch between memory and hardware 379 */ 380 int (*access)(struct vm_area_struct *vma, unsigned long addr, 381 void *buf, int len, int write); 382 383 /* Called by the /proc/PID/maps code to ask the vma whether it 384 * has a special name. Returning non-NULL will also cause this 385 * vma to be dumped unconditionally. */ 386 const char *(*name)(struct vm_area_struct *vma); 387 388 #ifdef CONFIG_NUMA 389 /* 390 * set_policy() op must add a reference to any non-NULL @new mempolicy 391 * to hold the policy upon return. Caller should pass NULL @new to 392 * remove a policy and fall back to surrounding context--i.e. do not 393 * install a MPOL_DEFAULT policy, nor the task or system default 394 * mempolicy. 395 */ 396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 397 398 /* 399 * get_policy() op must add reference [mpol_get()] to any policy at 400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 401 * in mm/mempolicy.c will do this automatically. 402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 405 * must return NULL--i.e., do not "fallback" to task or system default 406 * policy. 407 */ 408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 409 unsigned long addr); 410 #endif 411 /* 412 * Called by vm_normal_page() for special PTEs to find the 413 * page for @addr. This is useful if the default behavior 414 * (using pte_page()) would not find the correct page. 415 */ 416 struct page *(*find_special_page)(struct vm_area_struct *vma, 417 unsigned long addr); 418 }; 419 420 struct mmu_gather; 421 struct inode; 422 423 #define page_private(page) ((page)->private) 424 #define set_page_private(page, v) ((page)->private = (v)) 425 426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 427 static inline int pmd_devmap(pmd_t pmd) 428 { 429 return 0; 430 } 431 static inline int pud_devmap(pud_t pud) 432 { 433 return 0; 434 } 435 static inline int pgd_devmap(pgd_t pgd) 436 { 437 return 0; 438 } 439 #endif 440 441 /* 442 * FIXME: take this include out, include page-flags.h in 443 * files which need it (119 of them) 444 */ 445 #include <linux/page-flags.h> 446 #include <linux/huge_mm.h> 447 448 /* 449 * Methods to modify the page usage count. 450 * 451 * What counts for a page usage: 452 * - cache mapping (page->mapping) 453 * - private data (page->private) 454 * - page mapped in a task's page tables, each mapping 455 * is counted separately 456 * 457 * Also, many kernel routines increase the page count before a critical 458 * routine so they can be sure the page doesn't go away from under them. 459 */ 460 461 /* 462 * Drop a ref, return true if the refcount fell to zero (the page has no users) 463 */ 464 static inline int put_page_testzero(struct page *page) 465 { 466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 467 return page_ref_dec_and_test(page); 468 } 469 470 /* 471 * Try to grab a ref unless the page has a refcount of zero, return false if 472 * that is the case. 473 * This can be called when MMU is off so it must not access 474 * any of the virtual mappings. 475 */ 476 static inline int get_page_unless_zero(struct page *page) 477 { 478 return page_ref_add_unless(page, 1, 0); 479 } 480 481 extern int page_is_ram(unsigned long pfn); 482 483 enum { 484 REGION_INTERSECTS, 485 REGION_DISJOINT, 486 REGION_MIXED, 487 }; 488 489 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 490 unsigned long desc); 491 492 /* Support for virtually mapped pages */ 493 struct page *vmalloc_to_page(const void *addr); 494 unsigned long vmalloc_to_pfn(const void *addr); 495 496 /* 497 * Determine if an address is within the vmalloc range 498 * 499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 500 * is no special casing required. 501 */ 502 static inline bool is_vmalloc_addr(const void *x) 503 { 504 #ifdef CONFIG_MMU 505 unsigned long addr = (unsigned long)x; 506 507 return addr >= VMALLOC_START && addr < VMALLOC_END; 508 #else 509 return false; 510 #endif 511 } 512 #ifdef CONFIG_MMU 513 extern int is_vmalloc_or_module_addr(const void *x); 514 #else 515 static inline int is_vmalloc_or_module_addr(const void *x) 516 { 517 return 0; 518 } 519 #endif 520 521 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 522 static inline void *kvmalloc(size_t size, gfp_t flags) 523 { 524 return kvmalloc_node(size, flags, NUMA_NO_NODE); 525 } 526 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 527 { 528 return kvmalloc_node(size, flags | __GFP_ZERO, node); 529 } 530 static inline void *kvzalloc(size_t size, gfp_t flags) 531 { 532 return kvmalloc(size, flags | __GFP_ZERO); 533 } 534 535 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 536 { 537 if (size != 0 && n > SIZE_MAX / size) 538 return NULL; 539 540 return kvmalloc(n * size, flags); 541 } 542 543 extern void kvfree(const void *addr); 544 545 static inline atomic_t *compound_mapcount_ptr(struct page *page) 546 { 547 return &page[1].compound_mapcount; 548 } 549 550 static inline int compound_mapcount(struct page *page) 551 { 552 VM_BUG_ON_PAGE(!PageCompound(page), page); 553 page = compound_head(page); 554 return atomic_read(compound_mapcount_ptr(page)) + 1; 555 } 556 557 /* 558 * The atomic page->_mapcount, starts from -1: so that transitions 559 * both from it and to it can be tracked, using atomic_inc_and_test 560 * and atomic_add_negative(-1). 561 */ 562 static inline void page_mapcount_reset(struct page *page) 563 { 564 atomic_set(&(page)->_mapcount, -1); 565 } 566 567 int __page_mapcount(struct page *page); 568 569 static inline int page_mapcount(struct page *page) 570 { 571 VM_BUG_ON_PAGE(PageSlab(page), page); 572 573 if (unlikely(PageCompound(page))) 574 return __page_mapcount(page); 575 return atomic_read(&page->_mapcount) + 1; 576 } 577 578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 579 int total_mapcount(struct page *page); 580 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 581 #else 582 static inline int total_mapcount(struct page *page) 583 { 584 return page_mapcount(page); 585 } 586 static inline int page_trans_huge_mapcount(struct page *page, 587 int *total_mapcount) 588 { 589 int mapcount = page_mapcount(page); 590 if (total_mapcount) 591 *total_mapcount = mapcount; 592 return mapcount; 593 } 594 #endif 595 596 static inline struct page *virt_to_head_page(const void *x) 597 { 598 struct page *page = virt_to_page(x); 599 600 return compound_head(page); 601 } 602 603 void __put_page(struct page *page); 604 605 void put_pages_list(struct list_head *pages); 606 607 void split_page(struct page *page, unsigned int order); 608 609 /* 610 * Compound pages have a destructor function. Provide a 611 * prototype for that function and accessor functions. 612 * These are _only_ valid on the head of a compound page. 613 */ 614 typedef void compound_page_dtor(struct page *); 615 616 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 617 enum compound_dtor_id { 618 NULL_COMPOUND_DTOR, 619 COMPOUND_PAGE_DTOR, 620 #ifdef CONFIG_HUGETLB_PAGE 621 HUGETLB_PAGE_DTOR, 622 #endif 623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 624 TRANSHUGE_PAGE_DTOR, 625 #endif 626 NR_COMPOUND_DTORS, 627 }; 628 extern compound_page_dtor * const compound_page_dtors[]; 629 630 static inline void set_compound_page_dtor(struct page *page, 631 enum compound_dtor_id compound_dtor) 632 { 633 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 634 page[1].compound_dtor = compound_dtor; 635 } 636 637 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 638 { 639 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 640 return compound_page_dtors[page[1].compound_dtor]; 641 } 642 643 static inline unsigned int compound_order(struct page *page) 644 { 645 if (!PageHead(page)) 646 return 0; 647 return page[1].compound_order; 648 } 649 650 static inline void set_compound_order(struct page *page, unsigned int order) 651 { 652 page[1].compound_order = order; 653 } 654 655 void free_compound_page(struct page *page); 656 657 #ifdef CONFIG_MMU 658 /* 659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 660 * servicing faults for write access. In the normal case, do always want 661 * pte_mkwrite. But get_user_pages can cause write faults for mappings 662 * that do not have writing enabled, when used by access_process_vm. 663 */ 664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 665 { 666 if (likely(vma->vm_flags & VM_WRITE)) 667 pte = pte_mkwrite(pte); 668 return pte; 669 } 670 671 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 672 struct page *page); 673 int finish_fault(struct vm_fault *vmf); 674 int finish_mkwrite_fault(struct vm_fault *vmf); 675 #endif 676 677 /* 678 * Multiple processes may "see" the same page. E.g. for untouched 679 * mappings of /dev/null, all processes see the same page full of 680 * zeroes, and text pages of executables and shared libraries have 681 * only one copy in memory, at most, normally. 682 * 683 * For the non-reserved pages, page_count(page) denotes a reference count. 684 * page_count() == 0 means the page is free. page->lru is then used for 685 * freelist management in the buddy allocator. 686 * page_count() > 0 means the page has been allocated. 687 * 688 * Pages are allocated by the slab allocator in order to provide memory 689 * to kmalloc and kmem_cache_alloc. In this case, the management of the 690 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 691 * unless a particular usage is carefully commented. (the responsibility of 692 * freeing the kmalloc memory is the caller's, of course). 693 * 694 * A page may be used by anyone else who does a __get_free_page(). 695 * In this case, page_count still tracks the references, and should only 696 * be used through the normal accessor functions. The top bits of page->flags 697 * and page->virtual store page management information, but all other fields 698 * are unused and could be used privately, carefully. The management of this 699 * page is the responsibility of the one who allocated it, and those who have 700 * subsequently been given references to it. 701 * 702 * The other pages (we may call them "pagecache pages") are completely 703 * managed by the Linux memory manager: I/O, buffers, swapping etc. 704 * The following discussion applies only to them. 705 * 706 * A pagecache page contains an opaque `private' member, which belongs to the 707 * page's address_space. Usually, this is the address of a circular list of 708 * the page's disk buffers. PG_private must be set to tell the VM to call 709 * into the filesystem to release these pages. 710 * 711 * A page may belong to an inode's memory mapping. In this case, page->mapping 712 * is the pointer to the inode, and page->index is the file offset of the page, 713 * in units of PAGE_SIZE. 714 * 715 * If pagecache pages are not associated with an inode, they are said to be 716 * anonymous pages. These may become associated with the swapcache, and in that 717 * case PG_swapcache is set, and page->private is an offset into the swapcache. 718 * 719 * In either case (swapcache or inode backed), the pagecache itself holds one 720 * reference to the page. Setting PG_private should also increment the 721 * refcount. The each user mapping also has a reference to the page. 722 * 723 * The pagecache pages are stored in a per-mapping radix tree, which is 724 * rooted at mapping->page_tree, and indexed by offset. 725 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 726 * lists, we instead now tag pages as dirty/writeback in the radix tree. 727 * 728 * All pagecache pages may be subject to I/O: 729 * - inode pages may need to be read from disk, 730 * - inode pages which have been modified and are MAP_SHARED may need 731 * to be written back to the inode on disk, 732 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 733 * modified may need to be swapped out to swap space and (later) to be read 734 * back into memory. 735 */ 736 737 /* 738 * The zone field is never updated after free_area_init_core() 739 * sets it, so none of the operations on it need to be atomic. 740 */ 741 742 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 743 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 744 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 745 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 746 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 747 748 /* 749 * Define the bit shifts to access each section. For non-existent 750 * sections we define the shift as 0; that plus a 0 mask ensures 751 * the compiler will optimise away reference to them. 752 */ 753 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 754 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 755 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 756 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 757 758 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 759 #ifdef NODE_NOT_IN_PAGE_FLAGS 760 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 761 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 762 SECTIONS_PGOFF : ZONES_PGOFF) 763 #else 764 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 765 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 766 NODES_PGOFF : ZONES_PGOFF) 767 #endif 768 769 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 770 771 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 772 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 773 #endif 774 775 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 776 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 777 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 778 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 779 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 780 781 static inline enum zone_type page_zonenum(const struct page *page) 782 { 783 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 784 } 785 786 #ifdef CONFIG_ZONE_DEVICE 787 static inline bool is_zone_device_page(const struct page *page) 788 { 789 return page_zonenum(page) == ZONE_DEVICE; 790 } 791 #else 792 static inline bool is_zone_device_page(const struct page *page) 793 { 794 return false; 795 } 796 #endif 797 798 static inline void get_page(struct page *page) 799 { 800 page = compound_head(page); 801 /* 802 * Getting a normal page or the head of a compound page 803 * requires to already have an elevated page->_refcount. 804 */ 805 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 806 page_ref_inc(page); 807 } 808 809 static inline void put_page(struct page *page) 810 { 811 page = compound_head(page); 812 813 if (put_page_testzero(page)) 814 __put_page(page); 815 } 816 817 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 818 #define SECTION_IN_PAGE_FLAGS 819 #endif 820 821 /* 822 * The identification function is mainly used by the buddy allocator for 823 * determining if two pages could be buddies. We are not really identifying 824 * the zone since we could be using the section number id if we do not have 825 * node id available in page flags. 826 * We only guarantee that it will return the same value for two combinable 827 * pages in a zone. 828 */ 829 static inline int page_zone_id(struct page *page) 830 { 831 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 832 } 833 834 static inline int zone_to_nid(struct zone *zone) 835 { 836 #ifdef CONFIG_NUMA 837 return zone->node; 838 #else 839 return 0; 840 #endif 841 } 842 843 #ifdef NODE_NOT_IN_PAGE_FLAGS 844 extern int page_to_nid(const struct page *page); 845 #else 846 static inline int page_to_nid(const struct page *page) 847 { 848 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 849 } 850 #endif 851 852 #ifdef CONFIG_NUMA_BALANCING 853 static inline int cpu_pid_to_cpupid(int cpu, int pid) 854 { 855 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 856 } 857 858 static inline int cpupid_to_pid(int cpupid) 859 { 860 return cpupid & LAST__PID_MASK; 861 } 862 863 static inline int cpupid_to_cpu(int cpupid) 864 { 865 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 866 } 867 868 static inline int cpupid_to_nid(int cpupid) 869 { 870 return cpu_to_node(cpupid_to_cpu(cpupid)); 871 } 872 873 static inline bool cpupid_pid_unset(int cpupid) 874 { 875 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 876 } 877 878 static inline bool cpupid_cpu_unset(int cpupid) 879 { 880 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 881 } 882 883 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 884 { 885 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 886 } 887 888 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 889 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 890 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 891 { 892 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 893 } 894 895 static inline int page_cpupid_last(struct page *page) 896 { 897 return page->_last_cpupid; 898 } 899 static inline void page_cpupid_reset_last(struct page *page) 900 { 901 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 902 } 903 #else 904 static inline int page_cpupid_last(struct page *page) 905 { 906 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 907 } 908 909 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 910 911 static inline void page_cpupid_reset_last(struct page *page) 912 { 913 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 914 } 915 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 916 #else /* !CONFIG_NUMA_BALANCING */ 917 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 918 { 919 return page_to_nid(page); /* XXX */ 920 } 921 922 static inline int page_cpupid_last(struct page *page) 923 { 924 return page_to_nid(page); /* XXX */ 925 } 926 927 static inline int cpupid_to_nid(int cpupid) 928 { 929 return -1; 930 } 931 932 static inline int cpupid_to_pid(int cpupid) 933 { 934 return -1; 935 } 936 937 static inline int cpupid_to_cpu(int cpupid) 938 { 939 return -1; 940 } 941 942 static inline int cpu_pid_to_cpupid(int nid, int pid) 943 { 944 return -1; 945 } 946 947 static inline bool cpupid_pid_unset(int cpupid) 948 { 949 return 1; 950 } 951 952 static inline void page_cpupid_reset_last(struct page *page) 953 { 954 } 955 956 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 957 { 958 return false; 959 } 960 #endif /* CONFIG_NUMA_BALANCING */ 961 962 static inline struct zone *page_zone(const struct page *page) 963 { 964 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 965 } 966 967 static inline pg_data_t *page_pgdat(const struct page *page) 968 { 969 return NODE_DATA(page_to_nid(page)); 970 } 971 972 #ifdef SECTION_IN_PAGE_FLAGS 973 static inline void set_page_section(struct page *page, unsigned long section) 974 { 975 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 976 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 977 } 978 979 static inline unsigned long page_to_section(const struct page *page) 980 { 981 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 982 } 983 #endif 984 985 static inline void set_page_zone(struct page *page, enum zone_type zone) 986 { 987 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 988 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 989 } 990 991 static inline void set_page_node(struct page *page, unsigned long node) 992 { 993 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 994 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 995 } 996 997 static inline void set_page_links(struct page *page, enum zone_type zone, 998 unsigned long node, unsigned long pfn) 999 { 1000 set_page_zone(page, zone); 1001 set_page_node(page, node); 1002 #ifdef SECTION_IN_PAGE_FLAGS 1003 set_page_section(page, pfn_to_section_nr(pfn)); 1004 #endif 1005 } 1006 1007 #ifdef CONFIG_MEMCG 1008 static inline struct mem_cgroup *page_memcg(struct page *page) 1009 { 1010 return page->mem_cgroup; 1011 } 1012 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1013 { 1014 WARN_ON_ONCE(!rcu_read_lock_held()); 1015 return READ_ONCE(page->mem_cgroup); 1016 } 1017 #else 1018 static inline struct mem_cgroup *page_memcg(struct page *page) 1019 { 1020 return NULL; 1021 } 1022 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1023 { 1024 WARN_ON_ONCE(!rcu_read_lock_held()); 1025 return NULL; 1026 } 1027 #endif 1028 1029 /* 1030 * Some inline functions in vmstat.h depend on page_zone() 1031 */ 1032 #include <linux/vmstat.h> 1033 1034 static __always_inline void *lowmem_page_address(const struct page *page) 1035 { 1036 return page_to_virt(page); 1037 } 1038 1039 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1040 #define HASHED_PAGE_VIRTUAL 1041 #endif 1042 1043 #if defined(WANT_PAGE_VIRTUAL) 1044 static inline void *page_address(const struct page *page) 1045 { 1046 return page->virtual; 1047 } 1048 static inline void set_page_address(struct page *page, void *address) 1049 { 1050 page->virtual = address; 1051 } 1052 #define page_address_init() do { } while(0) 1053 #endif 1054 1055 #if defined(HASHED_PAGE_VIRTUAL) 1056 void *page_address(const struct page *page); 1057 void set_page_address(struct page *page, void *virtual); 1058 void page_address_init(void); 1059 #endif 1060 1061 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1062 #define page_address(page) lowmem_page_address(page) 1063 #define set_page_address(page, address) do { } while(0) 1064 #define page_address_init() do { } while(0) 1065 #endif 1066 1067 extern void *page_rmapping(struct page *page); 1068 extern struct anon_vma *page_anon_vma(struct page *page); 1069 extern struct address_space *page_mapping(struct page *page); 1070 1071 extern struct address_space *__page_file_mapping(struct page *); 1072 1073 static inline 1074 struct address_space *page_file_mapping(struct page *page) 1075 { 1076 if (unlikely(PageSwapCache(page))) 1077 return __page_file_mapping(page); 1078 1079 return page->mapping; 1080 } 1081 1082 extern pgoff_t __page_file_index(struct page *page); 1083 1084 /* 1085 * Return the pagecache index of the passed page. Regular pagecache pages 1086 * use ->index whereas swapcache pages use swp_offset(->private) 1087 */ 1088 static inline pgoff_t page_index(struct page *page) 1089 { 1090 if (unlikely(PageSwapCache(page))) 1091 return __page_file_index(page); 1092 return page->index; 1093 } 1094 1095 bool page_mapped(struct page *page); 1096 struct address_space *page_mapping(struct page *page); 1097 1098 /* 1099 * Return true only if the page has been allocated with 1100 * ALLOC_NO_WATERMARKS and the low watermark was not 1101 * met implying that the system is under some pressure. 1102 */ 1103 static inline bool page_is_pfmemalloc(struct page *page) 1104 { 1105 /* 1106 * Page index cannot be this large so this must be 1107 * a pfmemalloc page. 1108 */ 1109 return page->index == -1UL; 1110 } 1111 1112 /* 1113 * Only to be called by the page allocator on a freshly allocated 1114 * page. 1115 */ 1116 static inline void set_page_pfmemalloc(struct page *page) 1117 { 1118 page->index = -1UL; 1119 } 1120 1121 static inline void clear_page_pfmemalloc(struct page *page) 1122 { 1123 page->index = 0; 1124 } 1125 1126 /* 1127 * Different kinds of faults, as returned by handle_mm_fault(). 1128 * Used to decide whether a process gets delivered SIGBUS or 1129 * just gets major/minor fault counters bumped up. 1130 */ 1131 1132 #define VM_FAULT_OOM 0x0001 1133 #define VM_FAULT_SIGBUS 0x0002 1134 #define VM_FAULT_MAJOR 0x0004 1135 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1136 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1137 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1138 #define VM_FAULT_SIGSEGV 0x0040 1139 1140 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1141 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1142 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1143 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1144 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1145 1146 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1147 1148 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1149 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1150 VM_FAULT_FALLBACK) 1151 1152 #define VM_FAULT_RESULT_TRACE \ 1153 { VM_FAULT_OOM, "OOM" }, \ 1154 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1155 { VM_FAULT_MAJOR, "MAJOR" }, \ 1156 { VM_FAULT_WRITE, "WRITE" }, \ 1157 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1158 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1159 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1160 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1161 { VM_FAULT_LOCKED, "LOCKED" }, \ 1162 { VM_FAULT_RETRY, "RETRY" }, \ 1163 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1164 { VM_FAULT_DONE_COW, "DONE_COW" } 1165 1166 /* Encode hstate index for a hwpoisoned large page */ 1167 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1168 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1169 1170 /* 1171 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1172 */ 1173 extern void pagefault_out_of_memory(void); 1174 1175 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1176 1177 /* 1178 * Flags passed to show_mem() and show_free_areas() to suppress output in 1179 * various contexts. 1180 */ 1181 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1182 1183 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1184 1185 extern bool can_do_mlock(void); 1186 extern int user_shm_lock(size_t, struct user_struct *); 1187 extern void user_shm_unlock(size_t, struct user_struct *); 1188 1189 /* 1190 * Parameter block passed down to zap_pte_range in exceptional cases. 1191 */ 1192 struct zap_details { 1193 struct address_space *check_mapping; /* Check page->mapping if set */ 1194 pgoff_t first_index; /* Lowest page->index to unmap */ 1195 pgoff_t last_index; /* Highest page->index to unmap */ 1196 }; 1197 1198 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1199 pte_t pte); 1200 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1201 pmd_t pmd); 1202 1203 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1204 unsigned long size); 1205 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1206 unsigned long size); 1207 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1208 unsigned long start, unsigned long end); 1209 1210 /** 1211 * mm_walk - callbacks for walk_page_range 1212 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1213 * this handler should only handle pud_trans_huge() puds. 1214 * the pmd_entry or pte_entry callbacks will be used for 1215 * regular PUDs. 1216 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1217 * this handler is required to be able to handle 1218 * pmd_trans_huge() pmds. They may simply choose to 1219 * split_huge_page() instead of handling it explicitly. 1220 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1221 * @pte_hole: if set, called for each hole at all levels 1222 * @hugetlb_entry: if set, called for each hugetlb entry 1223 * @test_walk: caller specific callback function to determine whether 1224 * we walk over the current vma or not. Returning 0 1225 * value means "do page table walk over the current vma," 1226 * and a negative one means "abort current page table walk 1227 * right now." 1 means "skip the current vma." 1228 * @mm: mm_struct representing the target process of page table walk 1229 * @vma: vma currently walked (NULL if walking outside vmas) 1230 * @private: private data for callbacks' usage 1231 * 1232 * (see the comment on walk_page_range() for more details) 1233 */ 1234 struct mm_walk { 1235 int (*pud_entry)(pud_t *pud, unsigned long addr, 1236 unsigned long next, struct mm_walk *walk); 1237 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1238 unsigned long next, struct mm_walk *walk); 1239 int (*pte_entry)(pte_t *pte, unsigned long addr, 1240 unsigned long next, struct mm_walk *walk); 1241 int (*pte_hole)(unsigned long addr, unsigned long next, 1242 struct mm_walk *walk); 1243 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1244 unsigned long addr, unsigned long next, 1245 struct mm_walk *walk); 1246 int (*test_walk)(unsigned long addr, unsigned long next, 1247 struct mm_walk *walk); 1248 struct mm_struct *mm; 1249 struct vm_area_struct *vma; 1250 void *private; 1251 }; 1252 1253 int walk_page_range(unsigned long addr, unsigned long end, 1254 struct mm_walk *walk); 1255 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1256 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1257 unsigned long end, unsigned long floor, unsigned long ceiling); 1258 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1259 struct vm_area_struct *vma); 1260 void unmap_mapping_range(struct address_space *mapping, 1261 loff_t const holebegin, loff_t const holelen, int even_cows); 1262 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1263 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1264 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1265 unsigned long *pfn); 1266 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1267 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1268 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1269 void *buf, int len, int write); 1270 1271 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1272 loff_t const holebegin, loff_t const holelen) 1273 { 1274 unmap_mapping_range(mapping, holebegin, holelen, 0); 1275 } 1276 1277 extern void truncate_pagecache(struct inode *inode, loff_t new); 1278 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1279 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1280 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1281 int truncate_inode_page(struct address_space *mapping, struct page *page); 1282 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1283 int invalidate_inode_page(struct page *page); 1284 1285 #ifdef CONFIG_MMU 1286 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1287 unsigned int flags); 1288 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1289 unsigned long address, unsigned int fault_flags, 1290 bool *unlocked); 1291 #else 1292 static inline int handle_mm_fault(struct vm_area_struct *vma, 1293 unsigned long address, unsigned int flags) 1294 { 1295 /* should never happen if there's no MMU */ 1296 BUG(); 1297 return VM_FAULT_SIGBUS; 1298 } 1299 static inline int fixup_user_fault(struct task_struct *tsk, 1300 struct mm_struct *mm, unsigned long address, 1301 unsigned int fault_flags, bool *unlocked) 1302 { 1303 /* should never happen if there's no MMU */ 1304 BUG(); 1305 return -EFAULT; 1306 } 1307 #endif 1308 1309 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1310 unsigned int gup_flags); 1311 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1312 void *buf, int len, unsigned int gup_flags); 1313 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1314 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1315 1316 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1317 unsigned long start, unsigned long nr_pages, 1318 unsigned int gup_flags, struct page **pages, 1319 struct vm_area_struct **vmas, int *locked); 1320 long get_user_pages(unsigned long start, unsigned long nr_pages, 1321 unsigned int gup_flags, struct page **pages, 1322 struct vm_area_struct **vmas); 1323 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1324 unsigned int gup_flags, struct page **pages, int *locked); 1325 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1326 struct page **pages, unsigned int gup_flags); 1327 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1328 struct page **pages); 1329 1330 /* Container for pinned pfns / pages */ 1331 struct frame_vector { 1332 unsigned int nr_allocated; /* Number of frames we have space for */ 1333 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1334 bool got_ref; /* Did we pin pages by getting page ref? */ 1335 bool is_pfns; /* Does array contain pages or pfns? */ 1336 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1337 * pfns_vector_pages() or pfns_vector_pfns() 1338 * for access */ 1339 }; 1340 1341 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1342 void frame_vector_destroy(struct frame_vector *vec); 1343 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1344 unsigned int gup_flags, struct frame_vector *vec); 1345 void put_vaddr_frames(struct frame_vector *vec); 1346 int frame_vector_to_pages(struct frame_vector *vec); 1347 void frame_vector_to_pfns(struct frame_vector *vec); 1348 1349 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1350 { 1351 return vec->nr_frames; 1352 } 1353 1354 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1355 { 1356 if (vec->is_pfns) { 1357 int err = frame_vector_to_pages(vec); 1358 1359 if (err) 1360 return ERR_PTR(err); 1361 } 1362 return (struct page **)(vec->ptrs); 1363 } 1364 1365 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1366 { 1367 if (!vec->is_pfns) 1368 frame_vector_to_pfns(vec); 1369 return (unsigned long *)(vec->ptrs); 1370 } 1371 1372 struct kvec; 1373 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1374 struct page **pages); 1375 int get_kernel_page(unsigned long start, int write, struct page **pages); 1376 struct page *get_dump_page(unsigned long addr); 1377 1378 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1379 extern void do_invalidatepage(struct page *page, unsigned int offset, 1380 unsigned int length); 1381 1382 int __set_page_dirty_nobuffers(struct page *page); 1383 int __set_page_dirty_no_writeback(struct page *page); 1384 int redirty_page_for_writepage(struct writeback_control *wbc, 1385 struct page *page); 1386 void account_page_dirtied(struct page *page, struct address_space *mapping); 1387 void account_page_cleaned(struct page *page, struct address_space *mapping, 1388 struct bdi_writeback *wb); 1389 int set_page_dirty(struct page *page); 1390 int set_page_dirty_lock(struct page *page); 1391 void cancel_dirty_page(struct page *page); 1392 int clear_page_dirty_for_io(struct page *page); 1393 1394 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1395 1396 /* Is the vma a continuation of the stack vma above it? */ 1397 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1398 { 1399 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1400 } 1401 1402 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1403 { 1404 return !vma->vm_ops; 1405 } 1406 1407 #ifdef CONFIG_SHMEM 1408 /* 1409 * The vma_is_shmem is not inline because it is used only by slow 1410 * paths in userfault. 1411 */ 1412 bool vma_is_shmem(struct vm_area_struct *vma); 1413 #else 1414 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1415 #endif 1416 1417 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1418 unsigned long addr) 1419 { 1420 return (vma->vm_flags & VM_GROWSDOWN) && 1421 (vma->vm_start == addr) && 1422 !vma_growsdown(vma->vm_prev, addr); 1423 } 1424 1425 /* Is the vma a continuation of the stack vma below it? */ 1426 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1427 { 1428 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1429 } 1430 1431 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1432 unsigned long addr) 1433 { 1434 return (vma->vm_flags & VM_GROWSUP) && 1435 (vma->vm_end == addr) && 1436 !vma_growsup(vma->vm_next, addr); 1437 } 1438 1439 int vma_is_stack_for_current(struct vm_area_struct *vma); 1440 1441 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1442 unsigned long old_addr, struct vm_area_struct *new_vma, 1443 unsigned long new_addr, unsigned long len, 1444 bool need_rmap_locks); 1445 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1446 unsigned long end, pgprot_t newprot, 1447 int dirty_accountable, int prot_numa); 1448 extern int mprotect_fixup(struct vm_area_struct *vma, 1449 struct vm_area_struct **pprev, unsigned long start, 1450 unsigned long end, unsigned long newflags); 1451 1452 /* 1453 * doesn't attempt to fault and will return short. 1454 */ 1455 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1456 struct page **pages); 1457 /* 1458 * per-process(per-mm_struct) statistics. 1459 */ 1460 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1461 { 1462 long val = atomic_long_read(&mm->rss_stat.count[member]); 1463 1464 #ifdef SPLIT_RSS_COUNTING 1465 /* 1466 * counter is updated in asynchronous manner and may go to minus. 1467 * But it's never be expected number for users. 1468 */ 1469 if (val < 0) 1470 val = 0; 1471 #endif 1472 return (unsigned long)val; 1473 } 1474 1475 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1476 { 1477 atomic_long_add(value, &mm->rss_stat.count[member]); 1478 } 1479 1480 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1481 { 1482 atomic_long_inc(&mm->rss_stat.count[member]); 1483 } 1484 1485 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1486 { 1487 atomic_long_dec(&mm->rss_stat.count[member]); 1488 } 1489 1490 /* Optimized variant when page is already known not to be PageAnon */ 1491 static inline int mm_counter_file(struct page *page) 1492 { 1493 if (PageSwapBacked(page)) 1494 return MM_SHMEMPAGES; 1495 return MM_FILEPAGES; 1496 } 1497 1498 static inline int mm_counter(struct page *page) 1499 { 1500 if (PageAnon(page)) 1501 return MM_ANONPAGES; 1502 return mm_counter_file(page); 1503 } 1504 1505 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1506 { 1507 return get_mm_counter(mm, MM_FILEPAGES) + 1508 get_mm_counter(mm, MM_ANONPAGES) + 1509 get_mm_counter(mm, MM_SHMEMPAGES); 1510 } 1511 1512 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1513 { 1514 return max(mm->hiwater_rss, get_mm_rss(mm)); 1515 } 1516 1517 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1518 { 1519 return max(mm->hiwater_vm, mm->total_vm); 1520 } 1521 1522 static inline void update_hiwater_rss(struct mm_struct *mm) 1523 { 1524 unsigned long _rss = get_mm_rss(mm); 1525 1526 if ((mm)->hiwater_rss < _rss) 1527 (mm)->hiwater_rss = _rss; 1528 } 1529 1530 static inline void update_hiwater_vm(struct mm_struct *mm) 1531 { 1532 if (mm->hiwater_vm < mm->total_vm) 1533 mm->hiwater_vm = mm->total_vm; 1534 } 1535 1536 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1537 { 1538 mm->hiwater_rss = get_mm_rss(mm); 1539 } 1540 1541 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1542 struct mm_struct *mm) 1543 { 1544 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1545 1546 if (*maxrss < hiwater_rss) 1547 *maxrss = hiwater_rss; 1548 } 1549 1550 #if defined(SPLIT_RSS_COUNTING) 1551 void sync_mm_rss(struct mm_struct *mm); 1552 #else 1553 static inline void sync_mm_rss(struct mm_struct *mm) 1554 { 1555 } 1556 #endif 1557 1558 #ifndef __HAVE_ARCH_PTE_DEVMAP 1559 static inline int pte_devmap(pte_t pte) 1560 { 1561 return 0; 1562 } 1563 #endif 1564 1565 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1566 1567 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1568 spinlock_t **ptl); 1569 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1570 spinlock_t **ptl) 1571 { 1572 pte_t *ptep; 1573 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1574 return ptep; 1575 } 1576 1577 #ifdef __PAGETABLE_P4D_FOLDED 1578 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1579 unsigned long address) 1580 { 1581 return 0; 1582 } 1583 #else 1584 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1585 #endif 1586 1587 #ifdef __PAGETABLE_PUD_FOLDED 1588 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1589 unsigned long address) 1590 { 1591 return 0; 1592 } 1593 #else 1594 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1595 #endif 1596 1597 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1598 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1599 unsigned long address) 1600 { 1601 return 0; 1602 } 1603 1604 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1605 1606 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1607 { 1608 return 0; 1609 } 1610 1611 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1612 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1613 1614 #else 1615 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1616 1617 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1618 { 1619 atomic_long_set(&mm->nr_pmds, 0); 1620 } 1621 1622 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1623 { 1624 return atomic_long_read(&mm->nr_pmds); 1625 } 1626 1627 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1628 { 1629 atomic_long_inc(&mm->nr_pmds); 1630 } 1631 1632 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1633 { 1634 atomic_long_dec(&mm->nr_pmds); 1635 } 1636 #endif 1637 1638 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1640 1641 /* 1642 * The following ifdef needed to get the 4level-fixup.h header to work. 1643 * Remove it when 4level-fixup.h has been removed. 1644 */ 1645 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1646 1647 #ifndef __ARCH_HAS_5LEVEL_HACK 1648 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1649 unsigned long address) 1650 { 1651 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1652 NULL : p4d_offset(pgd, address); 1653 } 1654 1655 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1656 unsigned long address) 1657 { 1658 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1659 NULL : pud_offset(p4d, address); 1660 } 1661 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1662 1663 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1664 { 1665 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1666 NULL: pmd_offset(pud, address); 1667 } 1668 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1669 1670 #if USE_SPLIT_PTE_PTLOCKS 1671 #if ALLOC_SPLIT_PTLOCKS 1672 void __init ptlock_cache_init(void); 1673 extern bool ptlock_alloc(struct page *page); 1674 extern void ptlock_free(struct page *page); 1675 1676 static inline spinlock_t *ptlock_ptr(struct page *page) 1677 { 1678 return page->ptl; 1679 } 1680 #else /* ALLOC_SPLIT_PTLOCKS */ 1681 static inline void ptlock_cache_init(void) 1682 { 1683 } 1684 1685 static inline bool ptlock_alloc(struct page *page) 1686 { 1687 return true; 1688 } 1689 1690 static inline void ptlock_free(struct page *page) 1691 { 1692 } 1693 1694 static inline spinlock_t *ptlock_ptr(struct page *page) 1695 { 1696 return &page->ptl; 1697 } 1698 #endif /* ALLOC_SPLIT_PTLOCKS */ 1699 1700 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1701 { 1702 return ptlock_ptr(pmd_page(*pmd)); 1703 } 1704 1705 static inline bool ptlock_init(struct page *page) 1706 { 1707 /* 1708 * prep_new_page() initialize page->private (and therefore page->ptl) 1709 * with 0. Make sure nobody took it in use in between. 1710 * 1711 * It can happen if arch try to use slab for page table allocation: 1712 * slab code uses page->slab_cache, which share storage with page->ptl. 1713 */ 1714 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1715 if (!ptlock_alloc(page)) 1716 return false; 1717 spin_lock_init(ptlock_ptr(page)); 1718 return true; 1719 } 1720 1721 /* Reset page->mapping so free_pages_check won't complain. */ 1722 static inline void pte_lock_deinit(struct page *page) 1723 { 1724 page->mapping = NULL; 1725 ptlock_free(page); 1726 } 1727 1728 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1729 /* 1730 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1731 */ 1732 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1733 { 1734 return &mm->page_table_lock; 1735 } 1736 static inline void ptlock_cache_init(void) {} 1737 static inline bool ptlock_init(struct page *page) { return true; } 1738 static inline void pte_lock_deinit(struct page *page) {} 1739 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1740 1741 static inline void pgtable_init(void) 1742 { 1743 ptlock_cache_init(); 1744 pgtable_cache_init(); 1745 } 1746 1747 static inline bool pgtable_page_ctor(struct page *page) 1748 { 1749 if (!ptlock_init(page)) 1750 return false; 1751 inc_zone_page_state(page, NR_PAGETABLE); 1752 return true; 1753 } 1754 1755 static inline void pgtable_page_dtor(struct page *page) 1756 { 1757 pte_lock_deinit(page); 1758 dec_zone_page_state(page, NR_PAGETABLE); 1759 } 1760 1761 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1762 ({ \ 1763 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1764 pte_t *__pte = pte_offset_map(pmd, address); \ 1765 *(ptlp) = __ptl; \ 1766 spin_lock(__ptl); \ 1767 __pte; \ 1768 }) 1769 1770 #define pte_unmap_unlock(pte, ptl) do { \ 1771 spin_unlock(ptl); \ 1772 pte_unmap(pte); \ 1773 } while (0) 1774 1775 #define pte_alloc(mm, pmd, address) \ 1776 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1777 1778 #define pte_alloc_map(mm, pmd, address) \ 1779 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1780 1781 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1782 (pte_alloc(mm, pmd, address) ? \ 1783 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1784 1785 #define pte_alloc_kernel(pmd, address) \ 1786 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1787 NULL: pte_offset_kernel(pmd, address)) 1788 1789 #if USE_SPLIT_PMD_PTLOCKS 1790 1791 static struct page *pmd_to_page(pmd_t *pmd) 1792 { 1793 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1794 return virt_to_page((void *)((unsigned long) pmd & mask)); 1795 } 1796 1797 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1798 { 1799 return ptlock_ptr(pmd_to_page(pmd)); 1800 } 1801 1802 static inline bool pgtable_pmd_page_ctor(struct page *page) 1803 { 1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1805 page->pmd_huge_pte = NULL; 1806 #endif 1807 return ptlock_init(page); 1808 } 1809 1810 static inline void pgtable_pmd_page_dtor(struct page *page) 1811 { 1812 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1813 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1814 #endif 1815 ptlock_free(page); 1816 } 1817 1818 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1819 1820 #else 1821 1822 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1823 { 1824 return &mm->page_table_lock; 1825 } 1826 1827 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1828 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1829 1830 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1831 1832 #endif 1833 1834 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1835 { 1836 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1837 spin_lock(ptl); 1838 return ptl; 1839 } 1840 1841 /* 1842 * No scalability reason to split PUD locks yet, but follow the same pattern 1843 * as the PMD locks to make it easier if we decide to. The VM should not be 1844 * considered ready to switch to split PUD locks yet; there may be places 1845 * which need to be converted from page_table_lock. 1846 */ 1847 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1848 { 1849 return &mm->page_table_lock; 1850 } 1851 1852 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1853 { 1854 spinlock_t *ptl = pud_lockptr(mm, pud); 1855 1856 spin_lock(ptl); 1857 return ptl; 1858 } 1859 1860 extern void __init pagecache_init(void); 1861 extern void free_area_init(unsigned long * zones_size); 1862 extern void free_area_init_node(int nid, unsigned long * zones_size, 1863 unsigned long zone_start_pfn, unsigned long *zholes_size); 1864 extern void free_initmem(void); 1865 1866 /* 1867 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1868 * into the buddy system. The freed pages will be poisoned with pattern 1869 * "poison" if it's within range [0, UCHAR_MAX]. 1870 * Return pages freed into the buddy system. 1871 */ 1872 extern unsigned long free_reserved_area(void *start, void *end, 1873 int poison, char *s); 1874 1875 #ifdef CONFIG_HIGHMEM 1876 /* 1877 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1878 * and totalram_pages. 1879 */ 1880 extern void free_highmem_page(struct page *page); 1881 #endif 1882 1883 extern void adjust_managed_page_count(struct page *page, long count); 1884 extern void mem_init_print_info(const char *str); 1885 1886 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1887 1888 /* Free the reserved page into the buddy system, so it gets managed. */ 1889 static inline void __free_reserved_page(struct page *page) 1890 { 1891 ClearPageReserved(page); 1892 init_page_count(page); 1893 __free_page(page); 1894 } 1895 1896 static inline void free_reserved_page(struct page *page) 1897 { 1898 __free_reserved_page(page); 1899 adjust_managed_page_count(page, 1); 1900 } 1901 1902 static inline void mark_page_reserved(struct page *page) 1903 { 1904 SetPageReserved(page); 1905 adjust_managed_page_count(page, -1); 1906 } 1907 1908 /* 1909 * Default method to free all the __init memory into the buddy system. 1910 * The freed pages will be poisoned with pattern "poison" if it's within 1911 * range [0, UCHAR_MAX]. 1912 * Return pages freed into the buddy system. 1913 */ 1914 static inline unsigned long free_initmem_default(int poison) 1915 { 1916 extern char __init_begin[], __init_end[]; 1917 1918 return free_reserved_area(&__init_begin, &__init_end, 1919 poison, "unused kernel"); 1920 } 1921 1922 static inline unsigned long get_num_physpages(void) 1923 { 1924 int nid; 1925 unsigned long phys_pages = 0; 1926 1927 for_each_online_node(nid) 1928 phys_pages += node_present_pages(nid); 1929 1930 return phys_pages; 1931 } 1932 1933 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1934 /* 1935 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1936 * zones, allocate the backing mem_map and account for memory holes in a more 1937 * architecture independent manner. This is a substitute for creating the 1938 * zone_sizes[] and zholes_size[] arrays and passing them to 1939 * free_area_init_node() 1940 * 1941 * An architecture is expected to register range of page frames backed by 1942 * physical memory with memblock_add[_node]() before calling 1943 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1944 * usage, an architecture is expected to do something like 1945 * 1946 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1947 * max_highmem_pfn}; 1948 * for_each_valid_physical_page_range() 1949 * memblock_add_node(base, size, nid) 1950 * free_area_init_nodes(max_zone_pfns); 1951 * 1952 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1953 * registered physical page range. Similarly 1954 * sparse_memory_present_with_active_regions() calls memory_present() for 1955 * each range when SPARSEMEM is enabled. 1956 * 1957 * See mm/page_alloc.c for more information on each function exposed by 1958 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1959 */ 1960 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1961 unsigned long node_map_pfn_alignment(void); 1962 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1963 unsigned long end_pfn); 1964 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1965 unsigned long end_pfn); 1966 extern void get_pfn_range_for_nid(unsigned int nid, 1967 unsigned long *start_pfn, unsigned long *end_pfn); 1968 extern unsigned long find_min_pfn_with_active_regions(void); 1969 extern void free_bootmem_with_active_regions(int nid, 1970 unsigned long max_low_pfn); 1971 extern void sparse_memory_present_with_active_regions(int nid); 1972 1973 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1974 1975 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1976 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1977 static inline int __early_pfn_to_nid(unsigned long pfn, 1978 struct mminit_pfnnid_cache *state) 1979 { 1980 return 0; 1981 } 1982 #else 1983 /* please see mm/page_alloc.c */ 1984 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1985 /* there is a per-arch backend function. */ 1986 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1987 struct mminit_pfnnid_cache *state); 1988 #endif 1989 1990 extern void set_dma_reserve(unsigned long new_dma_reserve); 1991 extern void memmap_init_zone(unsigned long, int, unsigned long, 1992 unsigned long, enum memmap_context); 1993 extern void setup_per_zone_wmarks(void); 1994 extern int __meminit init_per_zone_wmark_min(void); 1995 extern void mem_init(void); 1996 extern void __init mmap_init(void); 1997 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 1998 extern long si_mem_available(void); 1999 extern void si_meminfo(struct sysinfo * val); 2000 extern void si_meminfo_node(struct sysinfo *val, int nid); 2001 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2002 extern unsigned long arch_reserved_kernel_pages(void); 2003 #endif 2004 2005 extern __printf(3, 4) 2006 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2007 2008 extern void setup_per_cpu_pageset(void); 2009 2010 extern void zone_pcp_update(struct zone *zone); 2011 extern void zone_pcp_reset(struct zone *zone); 2012 2013 /* page_alloc.c */ 2014 extern int min_free_kbytes; 2015 extern int watermark_scale_factor; 2016 2017 /* nommu.c */ 2018 extern atomic_long_t mmap_pages_allocated; 2019 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2020 2021 /* interval_tree.c */ 2022 void vma_interval_tree_insert(struct vm_area_struct *node, 2023 struct rb_root *root); 2024 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2025 struct vm_area_struct *prev, 2026 struct rb_root *root); 2027 void vma_interval_tree_remove(struct vm_area_struct *node, 2028 struct rb_root *root); 2029 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 2030 unsigned long start, unsigned long last); 2031 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2032 unsigned long start, unsigned long last); 2033 2034 #define vma_interval_tree_foreach(vma, root, start, last) \ 2035 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2036 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2037 2038 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2039 struct rb_root *root); 2040 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2041 struct rb_root *root); 2042 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 2043 struct rb_root *root, unsigned long start, unsigned long last); 2044 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2045 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2046 #ifdef CONFIG_DEBUG_VM_RB 2047 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2048 #endif 2049 2050 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2051 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2052 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2053 2054 /* mmap.c */ 2055 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2056 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2057 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2058 struct vm_area_struct *expand); 2059 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2060 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2061 { 2062 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2063 } 2064 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2065 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2066 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2067 struct mempolicy *, struct vm_userfaultfd_ctx); 2068 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2069 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2070 unsigned long addr, int new_below); 2071 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2072 unsigned long addr, int new_below); 2073 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2074 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2075 struct rb_node **, struct rb_node *); 2076 extern void unlink_file_vma(struct vm_area_struct *); 2077 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2078 unsigned long addr, unsigned long len, pgoff_t pgoff, 2079 bool *need_rmap_locks); 2080 extern void exit_mmap(struct mm_struct *); 2081 2082 static inline int check_data_rlimit(unsigned long rlim, 2083 unsigned long new, 2084 unsigned long start, 2085 unsigned long end_data, 2086 unsigned long start_data) 2087 { 2088 if (rlim < RLIM_INFINITY) { 2089 if (((new - start) + (end_data - start_data)) > rlim) 2090 return -ENOSPC; 2091 } 2092 2093 return 0; 2094 } 2095 2096 extern int mm_take_all_locks(struct mm_struct *mm); 2097 extern void mm_drop_all_locks(struct mm_struct *mm); 2098 2099 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2100 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2101 extern struct file *get_task_exe_file(struct task_struct *task); 2102 2103 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2104 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2105 2106 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2107 const struct vm_special_mapping *sm); 2108 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2109 unsigned long addr, unsigned long len, 2110 unsigned long flags, 2111 const struct vm_special_mapping *spec); 2112 /* This is an obsolete alternative to _install_special_mapping. */ 2113 extern int install_special_mapping(struct mm_struct *mm, 2114 unsigned long addr, unsigned long len, 2115 unsigned long flags, struct page **pages); 2116 2117 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2118 2119 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2120 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2121 struct list_head *uf); 2122 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2123 unsigned long len, unsigned long prot, unsigned long flags, 2124 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2125 struct list_head *uf); 2126 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2127 struct list_head *uf); 2128 2129 static inline unsigned long 2130 do_mmap_pgoff(struct file *file, unsigned long addr, 2131 unsigned long len, unsigned long prot, unsigned long flags, 2132 unsigned long pgoff, unsigned long *populate, 2133 struct list_head *uf) 2134 { 2135 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2136 } 2137 2138 #ifdef CONFIG_MMU 2139 extern int __mm_populate(unsigned long addr, unsigned long len, 2140 int ignore_errors); 2141 static inline void mm_populate(unsigned long addr, unsigned long len) 2142 { 2143 /* Ignore errors */ 2144 (void) __mm_populate(addr, len, 1); 2145 } 2146 #else 2147 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2148 #endif 2149 2150 /* These take the mm semaphore themselves */ 2151 extern int __must_check vm_brk(unsigned long, unsigned long); 2152 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2153 extern int vm_munmap(unsigned long, size_t); 2154 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2155 unsigned long, unsigned long, 2156 unsigned long, unsigned long); 2157 2158 struct vm_unmapped_area_info { 2159 #define VM_UNMAPPED_AREA_TOPDOWN 1 2160 unsigned long flags; 2161 unsigned long length; 2162 unsigned long low_limit; 2163 unsigned long high_limit; 2164 unsigned long align_mask; 2165 unsigned long align_offset; 2166 }; 2167 2168 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2169 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2170 2171 /* 2172 * Search for an unmapped address range. 2173 * 2174 * We are looking for a range that: 2175 * - does not intersect with any VMA; 2176 * - is contained within the [low_limit, high_limit) interval; 2177 * - is at least the desired size. 2178 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2179 */ 2180 static inline unsigned long 2181 vm_unmapped_area(struct vm_unmapped_area_info *info) 2182 { 2183 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2184 return unmapped_area_topdown(info); 2185 else 2186 return unmapped_area(info); 2187 } 2188 2189 /* truncate.c */ 2190 extern void truncate_inode_pages(struct address_space *, loff_t); 2191 extern void truncate_inode_pages_range(struct address_space *, 2192 loff_t lstart, loff_t lend); 2193 extern void truncate_inode_pages_final(struct address_space *); 2194 2195 /* generic vm_area_ops exported for stackable file systems */ 2196 extern int filemap_fault(struct vm_fault *vmf); 2197 extern void filemap_map_pages(struct vm_fault *vmf, 2198 pgoff_t start_pgoff, pgoff_t end_pgoff); 2199 extern int filemap_page_mkwrite(struct vm_fault *vmf); 2200 2201 /* mm/page-writeback.c */ 2202 int write_one_page(struct page *page, int wait); 2203 void task_dirty_inc(struct task_struct *tsk); 2204 2205 /* readahead.c */ 2206 #define VM_MAX_READAHEAD 128 /* kbytes */ 2207 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2208 2209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2210 pgoff_t offset, unsigned long nr_to_read); 2211 2212 void page_cache_sync_readahead(struct address_space *mapping, 2213 struct file_ra_state *ra, 2214 struct file *filp, 2215 pgoff_t offset, 2216 unsigned long size); 2217 2218 void page_cache_async_readahead(struct address_space *mapping, 2219 struct file_ra_state *ra, 2220 struct file *filp, 2221 struct page *pg, 2222 pgoff_t offset, 2223 unsigned long size); 2224 2225 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2226 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2227 2228 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2229 extern int expand_downwards(struct vm_area_struct *vma, 2230 unsigned long address); 2231 #if VM_GROWSUP 2232 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2233 #else 2234 #define expand_upwards(vma, address) (0) 2235 #endif 2236 2237 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2238 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2239 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2240 struct vm_area_struct **pprev); 2241 2242 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2243 NULL if none. Assume start_addr < end_addr. */ 2244 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2245 { 2246 struct vm_area_struct * vma = find_vma(mm,start_addr); 2247 2248 if (vma && end_addr <= vma->vm_start) 2249 vma = NULL; 2250 return vma; 2251 } 2252 2253 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2254 { 2255 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2256 } 2257 2258 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2259 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2260 unsigned long vm_start, unsigned long vm_end) 2261 { 2262 struct vm_area_struct *vma = find_vma(mm, vm_start); 2263 2264 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2265 vma = NULL; 2266 2267 return vma; 2268 } 2269 2270 #ifdef CONFIG_MMU 2271 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2272 void vma_set_page_prot(struct vm_area_struct *vma); 2273 #else 2274 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2275 { 2276 return __pgprot(0); 2277 } 2278 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2279 { 2280 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2281 } 2282 #endif 2283 2284 #ifdef CONFIG_NUMA_BALANCING 2285 unsigned long change_prot_numa(struct vm_area_struct *vma, 2286 unsigned long start, unsigned long end); 2287 #endif 2288 2289 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2290 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2291 unsigned long pfn, unsigned long size, pgprot_t); 2292 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2293 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2294 unsigned long pfn); 2295 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2296 unsigned long pfn, pgprot_t pgprot); 2297 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2298 pfn_t pfn); 2299 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2300 2301 2302 struct page *follow_page_mask(struct vm_area_struct *vma, 2303 unsigned long address, unsigned int foll_flags, 2304 unsigned int *page_mask); 2305 2306 static inline struct page *follow_page(struct vm_area_struct *vma, 2307 unsigned long address, unsigned int foll_flags) 2308 { 2309 unsigned int unused_page_mask; 2310 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2311 } 2312 2313 #define FOLL_WRITE 0x01 /* check pte is writable */ 2314 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2315 #define FOLL_GET 0x04 /* do get_page on page */ 2316 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2317 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2318 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2319 * and return without waiting upon it */ 2320 #define FOLL_POPULATE 0x40 /* fault in page */ 2321 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2322 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2323 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2324 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2325 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2326 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2327 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2328 #define FOLL_COW 0x4000 /* internal GUP flag */ 2329 2330 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2331 void *data); 2332 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2333 unsigned long size, pte_fn_t fn, void *data); 2334 2335 2336 #ifdef CONFIG_PAGE_POISONING 2337 extern bool page_poisoning_enabled(void); 2338 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2339 extern bool page_is_poisoned(struct page *page); 2340 #else 2341 static inline bool page_poisoning_enabled(void) { return false; } 2342 static inline void kernel_poison_pages(struct page *page, int numpages, 2343 int enable) { } 2344 static inline bool page_is_poisoned(struct page *page) { return false; } 2345 #endif 2346 2347 #ifdef CONFIG_DEBUG_PAGEALLOC 2348 extern bool _debug_pagealloc_enabled; 2349 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2350 2351 static inline bool debug_pagealloc_enabled(void) 2352 { 2353 return _debug_pagealloc_enabled; 2354 } 2355 2356 static inline void 2357 kernel_map_pages(struct page *page, int numpages, int enable) 2358 { 2359 if (!debug_pagealloc_enabled()) 2360 return; 2361 2362 __kernel_map_pages(page, numpages, enable); 2363 } 2364 #ifdef CONFIG_HIBERNATION 2365 extern bool kernel_page_present(struct page *page); 2366 #endif /* CONFIG_HIBERNATION */ 2367 #else /* CONFIG_DEBUG_PAGEALLOC */ 2368 static inline void 2369 kernel_map_pages(struct page *page, int numpages, int enable) {} 2370 #ifdef CONFIG_HIBERNATION 2371 static inline bool kernel_page_present(struct page *page) { return true; } 2372 #endif /* CONFIG_HIBERNATION */ 2373 static inline bool debug_pagealloc_enabled(void) 2374 { 2375 return false; 2376 } 2377 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2378 2379 #ifdef __HAVE_ARCH_GATE_AREA 2380 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2381 extern int in_gate_area_no_mm(unsigned long addr); 2382 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2383 #else 2384 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2385 { 2386 return NULL; 2387 } 2388 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2389 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2390 { 2391 return 0; 2392 } 2393 #endif /* __HAVE_ARCH_GATE_AREA */ 2394 2395 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2396 2397 #ifdef CONFIG_SYSCTL 2398 extern int sysctl_drop_caches; 2399 int drop_caches_sysctl_handler(struct ctl_table *, int, 2400 void __user *, size_t *, loff_t *); 2401 #endif 2402 2403 void drop_slab(void); 2404 void drop_slab_node(int nid); 2405 2406 #ifndef CONFIG_MMU 2407 #define randomize_va_space 0 2408 #else 2409 extern int randomize_va_space; 2410 #endif 2411 2412 const char * arch_vma_name(struct vm_area_struct *vma); 2413 void print_vma_addr(char *prefix, unsigned long rip); 2414 2415 void sparse_mem_maps_populate_node(struct page **map_map, 2416 unsigned long pnum_begin, 2417 unsigned long pnum_end, 2418 unsigned long map_count, 2419 int nodeid); 2420 2421 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2422 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2423 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2424 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2425 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2426 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2427 void *vmemmap_alloc_block(unsigned long size, int node); 2428 struct vmem_altmap; 2429 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2430 struct vmem_altmap *altmap); 2431 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2432 { 2433 return __vmemmap_alloc_block_buf(size, node, NULL); 2434 } 2435 2436 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2437 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2438 int node); 2439 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2440 void vmemmap_populate_print_last(void); 2441 #ifdef CONFIG_MEMORY_HOTPLUG 2442 void vmemmap_free(unsigned long start, unsigned long end); 2443 #endif 2444 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2445 unsigned long size); 2446 2447 enum mf_flags { 2448 MF_COUNT_INCREASED = 1 << 0, 2449 MF_ACTION_REQUIRED = 1 << 1, 2450 MF_MUST_KILL = 1 << 2, 2451 MF_SOFT_OFFLINE = 1 << 3, 2452 }; 2453 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2454 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2455 extern int unpoison_memory(unsigned long pfn); 2456 extern int get_hwpoison_page(struct page *page); 2457 #define put_hwpoison_page(page) put_page(page) 2458 extern int sysctl_memory_failure_early_kill; 2459 extern int sysctl_memory_failure_recovery; 2460 extern void shake_page(struct page *p, int access); 2461 extern atomic_long_t num_poisoned_pages; 2462 extern int soft_offline_page(struct page *page, int flags); 2463 2464 2465 /* 2466 * Error handlers for various types of pages. 2467 */ 2468 enum mf_result { 2469 MF_IGNORED, /* Error: cannot be handled */ 2470 MF_FAILED, /* Error: handling failed */ 2471 MF_DELAYED, /* Will be handled later */ 2472 MF_RECOVERED, /* Successfully recovered */ 2473 }; 2474 2475 enum mf_action_page_type { 2476 MF_MSG_KERNEL, 2477 MF_MSG_KERNEL_HIGH_ORDER, 2478 MF_MSG_SLAB, 2479 MF_MSG_DIFFERENT_COMPOUND, 2480 MF_MSG_POISONED_HUGE, 2481 MF_MSG_HUGE, 2482 MF_MSG_FREE_HUGE, 2483 MF_MSG_UNMAP_FAILED, 2484 MF_MSG_DIRTY_SWAPCACHE, 2485 MF_MSG_CLEAN_SWAPCACHE, 2486 MF_MSG_DIRTY_MLOCKED_LRU, 2487 MF_MSG_CLEAN_MLOCKED_LRU, 2488 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2489 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2490 MF_MSG_DIRTY_LRU, 2491 MF_MSG_CLEAN_LRU, 2492 MF_MSG_TRUNCATED_LRU, 2493 MF_MSG_BUDDY, 2494 MF_MSG_BUDDY_2ND, 2495 MF_MSG_UNKNOWN, 2496 }; 2497 2498 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2499 extern void clear_huge_page(struct page *page, 2500 unsigned long addr, 2501 unsigned int pages_per_huge_page); 2502 extern void copy_user_huge_page(struct page *dst, struct page *src, 2503 unsigned long addr, struct vm_area_struct *vma, 2504 unsigned int pages_per_huge_page); 2505 extern long copy_huge_page_from_user(struct page *dst_page, 2506 const void __user *usr_src, 2507 unsigned int pages_per_huge_page, 2508 bool allow_pagefault); 2509 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2510 2511 extern struct page_ext_operations debug_guardpage_ops; 2512 2513 #ifdef CONFIG_DEBUG_PAGEALLOC 2514 extern unsigned int _debug_guardpage_minorder; 2515 extern bool _debug_guardpage_enabled; 2516 2517 static inline unsigned int debug_guardpage_minorder(void) 2518 { 2519 return _debug_guardpage_minorder; 2520 } 2521 2522 static inline bool debug_guardpage_enabled(void) 2523 { 2524 return _debug_guardpage_enabled; 2525 } 2526 2527 static inline bool page_is_guard(struct page *page) 2528 { 2529 struct page_ext *page_ext; 2530 2531 if (!debug_guardpage_enabled()) 2532 return false; 2533 2534 page_ext = lookup_page_ext(page); 2535 if (unlikely(!page_ext)) 2536 return false; 2537 2538 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2539 } 2540 #else 2541 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2542 static inline bool debug_guardpage_enabled(void) { return false; } 2543 static inline bool page_is_guard(struct page *page) { return false; } 2544 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2545 2546 #if MAX_NUMNODES > 1 2547 void __init setup_nr_node_ids(void); 2548 #else 2549 static inline void setup_nr_node_ids(void) {} 2550 #endif 2551 2552 #endif /* __KERNEL__ */ 2553 #endif /* _LINUX_MM_H */ 2554