1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/shrinker.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 struct anon_vma_chain; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 #endif 31 32 extern unsigned long num_physpages; 33 extern unsigned long totalram_pages; 34 extern void * high_memory; 35 extern int page_cluster; 36 37 #ifdef CONFIG_SYSCTL 38 extern int sysctl_legacy_va_layout; 39 #else 40 #define sysctl_legacy_va_layout 0 41 #endif 42 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/processor.h> 46 47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49 /* to align the pointer to the (next) page boundary */ 50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52 /* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61 extern struct kmem_cache *vm_area_cachep; 62 63 #ifndef CONFIG_MMU 64 extern struct rb_root nommu_region_tree; 65 extern struct rw_semaphore nommu_region_sem; 66 67 extern unsigned int kobjsize(const void *objp); 68 #endif 69 70 /* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73 #define VM_NONE 0x00000000 74 75 #define VM_READ 0x00000001 /* currently active flags */ 76 #define VM_WRITE 0x00000002 77 #define VM_EXEC 0x00000004 78 #define VM_SHARED 0x00000008 79 80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82 #define VM_MAYWRITE 0x00000020 83 #define VM_MAYEXEC 0x00000040 84 #define VM_MAYSHARE 0x00000080 85 86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90 #define VM_LOCKED 0x00002000 91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 92 93 /* Used by sys_madvise() */ 94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 96 97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 105 106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 110 111 #if defined(CONFIG_X86) 112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 113 #elif defined(CONFIG_PPC) 114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 115 #elif defined(CONFIG_PARISC) 116 # define VM_GROWSUP VM_ARCH_1 117 #elif defined(CONFIG_IA64) 118 # define VM_GROWSUP VM_ARCH_1 119 #elif !defined(CONFIG_MMU) 120 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 121 #endif 122 123 #ifndef VM_GROWSUP 124 # define VM_GROWSUP VM_NONE 125 #endif 126 127 /* Bits set in the VMA until the stack is in its final location */ 128 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 129 130 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 132 #endif 133 134 #ifdef CONFIG_STACK_GROWSUP 135 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 136 #else 137 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 138 #endif 139 140 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 141 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 142 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 143 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 144 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 145 146 /* 147 * Special vmas that are non-mergable, non-mlock()able. 148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 149 */ 150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 151 152 /* 153 * mapping from the currently active vm_flags protection bits (the 154 * low four bits) to a page protection mask.. 155 */ 156 extern pgprot_t protection_map[16]; 157 158 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 159 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 160 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 161 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 162 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 163 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 164 #define FAULT_FLAG_TRIED 0x40 /* second try */ 165 166 /* 167 * vm_fault is filled by the the pagefault handler and passed to the vma's 168 * ->fault function. The vma's ->fault is responsible for returning a bitmask 169 * of VM_FAULT_xxx flags that give details about how the fault was handled. 170 * 171 * pgoff should be used in favour of virtual_address, if possible. If pgoff 172 * is used, one may implement ->remap_pages to get nonlinear mapping support. 173 */ 174 struct vm_fault { 175 unsigned int flags; /* FAULT_FLAG_xxx flags */ 176 pgoff_t pgoff; /* Logical page offset based on vma */ 177 void __user *virtual_address; /* Faulting virtual address */ 178 179 struct page *page; /* ->fault handlers should return a 180 * page here, unless VM_FAULT_NOPAGE 181 * is set (which is also implied by 182 * VM_FAULT_ERROR). 183 */ 184 }; 185 186 /* 187 * These are the virtual MM functions - opening of an area, closing and 188 * unmapping it (needed to keep files on disk up-to-date etc), pointer 189 * to the functions called when a no-page or a wp-page exception occurs. 190 */ 191 struct vm_operations_struct { 192 void (*open)(struct vm_area_struct * area); 193 void (*close)(struct vm_area_struct * area); 194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 195 196 /* notification that a previously read-only page is about to become 197 * writable, if an error is returned it will cause a SIGBUS */ 198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 199 200 /* called by access_process_vm when get_user_pages() fails, typically 201 * for use by special VMAs that can switch between memory and hardware 202 */ 203 int (*access)(struct vm_area_struct *vma, unsigned long addr, 204 void *buf, int len, int write); 205 #ifdef CONFIG_NUMA 206 /* 207 * set_policy() op must add a reference to any non-NULL @new mempolicy 208 * to hold the policy upon return. Caller should pass NULL @new to 209 * remove a policy and fall back to surrounding context--i.e. do not 210 * install a MPOL_DEFAULT policy, nor the task or system default 211 * mempolicy. 212 */ 213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 214 215 /* 216 * get_policy() op must add reference [mpol_get()] to any policy at 217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 218 * in mm/mempolicy.c will do this automatically. 219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 222 * must return NULL--i.e., do not "fallback" to task or system default 223 * policy. 224 */ 225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 226 unsigned long addr); 227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 228 const nodemask_t *to, unsigned long flags); 229 #endif 230 /* called by sys_remap_file_pages() to populate non-linear mapping */ 231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 232 unsigned long size, pgoff_t pgoff); 233 }; 234 235 struct mmu_gather; 236 struct inode; 237 238 #define page_private(page) ((page)->private) 239 #define set_page_private(page, v) ((page)->private = (v)) 240 241 /* It's valid only if the page is free path or free_list */ 242 static inline void set_freepage_migratetype(struct page *page, int migratetype) 243 { 244 page->index = migratetype; 245 } 246 247 /* It's valid only if the page is free path or free_list */ 248 static inline int get_freepage_migratetype(struct page *page) 249 { 250 return page->index; 251 } 252 253 /* 254 * FIXME: take this include out, include page-flags.h in 255 * files which need it (119 of them) 256 */ 257 #include <linux/page-flags.h> 258 #include <linux/huge_mm.h> 259 260 /* 261 * Methods to modify the page usage count. 262 * 263 * What counts for a page usage: 264 * - cache mapping (page->mapping) 265 * - private data (page->private) 266 * - page mapped in a task's page tables, each mapping 267 * is counted separately 268 * 269 * Also, many kernel routines increase the page count before a critical 270 * routine so they can be sure the page doesn't go away from under them. 271 */ 272 273 /* 274 * Drop a ref, return true if the refcount fell to zero (the page has no users) 275 */ 276 static inline int put_page_testzero(struct page *page) 277 { 278 VM_BUG_ON(atomic_read(&page->_count) == 0); 279 return atomic_dec_and_test(&page->_count); 280 } 281 282 /* 283 * Try to grab a ref unless the page has a refcount of zero, return false if 284 * that is the case. 285 */ 286 static inline int get_page_unless_zero(struct page *page) 287 { 288 return atomic_inc_not_zero(&page->_count); 289 } 290 291 extern int page_is_ram(unsigned long pfn); 292 293 /* Support for virtually mapped pages */ 294 struct page *vmalloc_to_page(const void *addr); 295 unsigned long vmalloc_to_pfn(const void *addr); 296 297 /* 298 * Determine if an address is within the vmalloc range 299 * 300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 301 * is no special casing required. 302 */ 303 static inline int is_vmalloc_addr(const void *x) 304 { 305 #ifdef CONFIG_MMU 306 unsigned long addr = (unsigned long)x; 307 308 return addr >= VMALLOC_START && addr < VMALLOC_END; 309 #else 310 return 0; 311 #endif 312 } 313 #ifdef CONFIG_MMU 314 extern int is_vmalloc_or_module_addr(const void *x); 315 #else 316 static inline int is_vmalloc_or_module_addr(const void *x) 317 { 318 return 0; 319 } 320 #endif 321 322 static inline void compound_lock(struct page *page) 323 { 324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 325 VM_BUG_ON(PageSlab(page)); 326 bit_spin_lock(PG_compound_lock, &page->flags); 327 #endif 328 } 329 330 static inline void compound_unlock(struct page *page) 331 { 332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 333 VM_BUG_ON(PageSlab(page)); 334 bit_spin_unlock(PG_compound_lock, &page->flags); 335 #endif 336 } 337 338 static inline unsigned long compound_lock_irqsave(struct page *page) 339 { 340 unsigned long uninitialized_var(flags); 341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 342 local_irq_save(flags); 343 compound_lock(page); 344 #endif 345 return flags; 346 } 347 348 static inline void compound_unlock_irqrestore(struct page *page, 349 unsigned long flags) 350 { 351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 352 compound_unlock(page); 353 local_irq_restore(flags); 354 #endif 355 } 356 357 static inline struct page *compound_head(struct page *page) 358 { 359 if (unlikely(PageTail(page))) 360 return page->first_page; 361 return page; 362 } 363 364 /* 365 * The atomic page->_mapcount, starts from -1: so that transitions 366 * both from it and to it can be tracked, using atomic_inc_and_test 367 * and atomic_add_negative(-1). 368 */ 369 static inline void reset_page_mapcount(struct page *page) 370 { 371 atomic_set(&(page)->_mapcount, -1); 372 } 373 374 static inline int page_mapcount(struct page *page) 375 { 376 return atomic_read(&(page)->_mapcount) + 1; 377 } 378 379 static inline int page_count(struct page *page) 380 { 381 return atomic_read(&compound_head(page)->_count); 382 } 383 384 static inline void get_huge_page_tail(struct page *page) 385 { 386 /* 387 * __split_huge_page_refcount() cannot run 388 * from under us. 389 */ 390 VM_BUG_ON(page_mapcount(page) < 0); 391 VM_BUG_ON(atomic_read(&page->_count) != 0); 392 atomic_inc(&page->_mapcount); 393 } 394 395 extern bool __get_page_tail(struct page *page); 396 397 static inline void get_page(struct page *page) 398 { 399 if (unlikely(PageTail(page))) 400 if (likely(__get_page_tail(page))) 401 return; 402 /* 403 * Getting a normal page or the head of a compound page 404 * requires to already have an elevated page->_count. 405 */ 406 VM_BUG_ON(atomic_read(&page->_count) <= 0); 407 atomic_inc(&page->_count); 408 } 409 410 static inline struct page *virt_to_head_page(const void *x) 411 { 412 struct page *page = virt_to_page(x); 413 return compound_head(page); 414 } 415 416 /* 417 * Setup the page count before being freed into the page allocator for 418 * the first time (boot or memory hotplug) 419 */ 420 static inline void init_page_count(struct page *page) 421 { 422 atomic_set(&page->_count, 1); 423 } 424 425 /* 426 * PageBuddy() indicate that the page is free and in the buddy system 427 * (see mm/page_alloc.c). 428 * 429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 430 * -2 so that an underflow of the page_mapcount() won't be mistaken 431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 432 * efficiently by most CPU architectures. 433 */ 434 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 435 436 static inline int PageBuddy(struct page *page) 437 { 438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 439 } 440 441 static inline void __SetPageBuddy(struct page *page) 442 { 443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 445 } 446 447 static inline void __ClearPageBuddy(struct page *page) 448 { 449 VM_BUG_ON(!PageBuddy(page)); 450 atomic_set(&page->_mapcount, -1); 451 } 452 453 void put_page(struct page *page); 454 void put_pages_list(struct list_head *pages); 455 456 void split_page(struct page *page, unsigned int order); 457 int split_free_page(struct page *page); 458 int capture_free_page(struct page *page, int alloc_order, int migratetype); 459 460 /* 461 * Compound pages have a destructor function. Provide a 462 * prototype for that function and accessor functions. 463 * These are _only_ valid on the head of a PG_compound page. 464 */ 465 typedef void compound_page_dtor(struct page *); 466 467 static inline void set_compound_page_dtor(struct page *page, 468 compound_page_dtor *dtor) 469 { 470 page[1].lru.next = (void *)dtor; 471 } 472 473 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 474 { 475 return (compound_page_dtor *)page[1].lru.next; 476 } 477 478 static inline int compound_order(struct page *page) 479 { 480 if (!PageHead(page)) 481 return 0; 482 return (unsigned long)page[1].lru.prev; 483 } 484 485 static inline int compound_trans_order(struct page *page) 486 { 487 int order; 488 unsigned long flags; 489 490 if (!PageHead(page)) 491 return 0; 492 493 flags = compound_lock_irqsave(page); 494 order = compound_order(page); 495 compound_unlock_irqrestore(page, flags); 496 return order; 497 } 498 499 static inline void set_compound_order(struct page *page, unsigned long order) 500 { 501 page[1].lru.prev = (void *)order; 502 } 503 504 #ifdef CONFIG_MMU 505 /* 506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 507 * servicing faults for write access. In the normal case, do always want 508 * pte_mkwrite. But get_user_pages can cause write faults for mappings 509 * that do not have writing enabled, when used by access_process_vm. 510 */ 511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 512 { 513 if (likely(vma->vm_flags & VM_WRITE)) 514 pte = pte_mkwrite(pte); 515 return pte; 516 } 517 #endif 518 519 /* 520 * Multiple processes may "see" the same page. E.g. for untouched 521 * mappings of /dev/null, all processes see the same page full of 522 * zeroes, and text pages of executables and shared libraries have 523 * only one copy in memory, at most, normally. 524 * 525 * For the non-reserved pages, page_count(page) denotes a reference count. 526 * page_count() == 0 means the page is free. page->lru is then used for 527 * freelist management in the buddy allocator. 528 * page_count() > 0 means the page has been allocated. 529 * 530 * Pages are allocated by the slab allocator in order to provide memory 531 * to kmalloc and kmem_cache_alloc. In this case, the management of the 532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 533 * unless a particular usage is carefully commented. (the responsibility of 534 * freeing the kmalloc memory is the caller's, of course). 535 * 536 * A page may be used by anyone else who does a __get_free_page(). 537 * In this case, page_count still tracks the references, and should only 538 * be used through the normal accessor functions. The top bits of page->flags 539 * and page->virtual store page management information, but all other fields 540 * are unused and could be used privately, carefully. The management of this 541 * page is the responsibility of the one who allocated it, and those who have 542 * subsequently been given references to it. 543 * 544 * The other pages (we may call them "pagecache pages") are completely 545 * managed by the Linux memory manager: I/O, buffers, swapping etc. 546 * The following discussion applies only to them. 547 * 548 * A pagecache page contains an opaque `private' member, which belongs to the 549 * page's address_space. Usually, this is the address of a circular list of 550 * the page's disk buffers. PG_private must be set to tell the VM to call 551 * into the filesystem to release these pages. 552 * 553 * A page may belong to an inode's memory mapping. In this case, page->mapping 554 * is the pointer to the inode, and page->index is the file offset of the page, 555 * in units of PAGE_CACHE_SIZE. 556 * 557 * If pagecache pages are not associated with an inode, they are said to be 558 * anonymous pages. These may become associated with the swapcache, and in that 559 * case PG_swapcache is set, and page->private is an offset into the swapcache. 560 * 561 * In either case (swapcache or inode backed), the pagecache itself holds one 562 * reference to the page. Setting PG_private should also increment the 563 * refcount. The each user mapping also has a reference to the page. 564 * 565 * The pagecache pages are stored in a per-mapping radix tree, which is 566 * rooted at mapping->page_tree, and indexed by offset. 567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 568 * lists, we instead now tag pages as dirty/writeback in the radix tree. 569 * 570 * All pagecache pages may be subject to I/O: 571 * - inode pages may need to be read from disk, 572 * - inode pages which have been modified and are MAP_SHARED may need 573 * to be written back to the inode on disk, 574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 575 * modified may need to be swapped out to swap space and (later) to be read 576 * back into memory. 577 */ 578 579 /* 580 * The zone field is never updated after free_area_init_core() 581 * sets it, so none of the operations on it need to be atomic. 582 */ 583 584 585 /* 586 * page->flags layout: 587 * 588 * There are three possibilities for how page->flags get 589 * laid out. The first is for the normal case, without 590 * sparsemem. The second is for sparsemem when there is 591 * plenty of space for node and section. The last is when 592 * we have run out of space and have to fall back to an 593 * alternate (slower) way of determining the node. 594 * 595 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 596 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 597 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 598 */ 599 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 600 #define SECTIONS_WIDTH SECTIONS_SHIFT 601 #else 602 #define SECTIONS_WIDTH 0 603 #endif 604 605 #define ZONES_WIDTH ZONES_SHIFT 606 607 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 608 #define NODES_WIDTH NODES_SHIFT 609 #else 610 #ifdef CONFIG_SPARSEMEM_VMEMMAP 611 #error "Vmemmap: No space for nodes field in page flags" 612 #endif 613 #define NODES_WIDTH 0 614 #endif 615 616 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 617 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 618 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 619 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 620 621 /* 622 * We are going to use the flags for the page to node mapping if its in 623 * there. This includes the case where there is no node, so it is implicit. 624 */ 625 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 626 #define NODE_NOT_IN_PAGE_FLAGS 627 #endif 628 629 /* 630 * Define the bit shifts to access each section. For non-existent 631 * sections we define the shift as 0; that plus a 0 mask ensures 632 * the compiler will optimise away reference to them. 633 */ 634 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 635 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 636 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 637 638 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 639 #ifdef NODE_NOT_IN_PAGE_FLAGS 640 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 641 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 642 SECTIONS_PGOFF : ZONES_PGOFF) 643 #else 644 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 645 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 646 NODES_PGOFF : ZONES_PGOFF) 647 #endif 648 649 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 650 651 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 652 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 653 #endif 654 655 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 656 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 657 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 658 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 659 660 static inline enum zone_type page_zonenum(const struct page *page) 661 { 662 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 663 } 664 665 /* 666 * The identification function is only used by the buddy allocator for 667 * determining if two pages could be buddies. We are not really 668 * identifying a zone since we could be using a the section number 669 * id if we have not node id available in page flags. 670 * We guarantee only that it will return the same value for two 671 * combinable pages in a zone. 672 */ 673 static inline int page_zone_id(struct page *page) 674 { 675 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 676 } 677 678 static inline int zone_to_nid(struct zone *zone) 679 { 680 #ifdef CONFIG_NUMA 681 return zone->node; 682 #else 683 return 0; 684 #endif 685 } 686 687 #ifdef NODE_NOT_IN_PAGE_FLAGS 688 extern int page_to_nid(const struct page *page); 689 #else 690 static inline int page_to_nid(const struct page *page) 691 { 692 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 693 } 694 #endif 695 696 #ifdef CONFIG_NUMA_BALANCING 697 static inline int page_xchg_last_nid(struct page *page, int nid) 698 { 699 return xchg(&page->_last_nid, nid); 700 } 701 702 static inline int page_last_nid(struct page *page) 703 { 704 return page->_last_nid; 705 } 706 static inline void reset_page_last_nid(struct page *page) 707 { 708 page->_last_nid = -1; 709 } 710 #else 711 static inline int page_xchg_last_nid(struct page *page, int nid) 712 { 713 return page_to_nid(page); 714 } 715 716 static inline int page_last_nid(struct page *page) 717 { 718 return page_to_nid(page); 719 } 720 721 static inline void reset_page_last_nid(struct page *page) 722 { 723 } 724 #endif 725 726 static inline struct zone *page_zone(const struct page *page) 727 { 728 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 729 } 730 731 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 732 static inline void set_page_section(struct page *page, unsigned long section) 733 { 734 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 735 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 736 } 737 738 static inline unsigned long page_to_section(const struct page *page) 739 { 740 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 741 } 742 #endif 743 744 static inline void set_page_zone(struct page *page, enum zone_type zone) 745 { 746 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 747 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 748 } 749 750 static inline void set_page_node(struct page *page, unsigned long node) 751 { 752 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 753 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 754 } 755 756 static inline void set_page_links(struct page *page, enum zone_type zone, 757 unsigned long node, unsigned long pfn) 758 { 759 set_page_zone(page, zone); 760 set_page_node(page, node); 761 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 762 set_page_section(page, pfn_to_section_nr(pfn)); 763 #endif 764 } 765 766 /* 767 * Some inline functions in vmstat.h depend on page_zone() 768 */ 769 #include <linux/vmstat.h> 770 771 static __always_inline void *lowmem_page_address(const struct page *page) 772 { 773 return __va(PFN_PHYS(page_to_pfn(page))); 774 } 775 776 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 777 #define HASHED_PAGE_VIRTUAL 778 #endif 779 780 #if defined(WANT_PAGE_VIRTUAL) 781 #define page_address(page) ((page)->virtual) 782 #define set_page_address(page, address) \ 783 do { \ 784 (page)->virtual = (address); \ 785 } while(0) 786 #define page_address_init() do { } while(0) 787 #endif 788 789 #if defined(HASHED_PAGE_VIRTUAL) 790 void *page_address(const struct page *page); 791 void set_page_address(struct page *page, void *virtual); 792 void page_address_init(void); 793 #endif 794 795 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 796 #define page_address(page) lowmem_page_address(page) 797 #define set_page_address(page, address) do { } while(0) 798 #define page_address_init() do { } while(0) 799 #endif 800 801 /* 802 * On an anonymous page mapped into a user virtual memory area, 803 * page->mapping points to its anon_vma, not to a struct address_space; 804 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 805 * 806 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 807 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 808 * and then page->mapping points, not to an anon_vma, but to a private 809 * structure which KSM associates with that merged page. See ksm.h. 810 * 811 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 812 * 813 * Please note that, confusingly, "page_mapping" refers to the inode 814 * address_space which maps the page from disk; whereas "page_mapped" 815 * refers to user virtual address space into which the page is mapped. 816 */ 817 #define PAGE_MAPPING_ANON 1 818 #define PAGE_MAPPING_KSM 2 819 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 820 821 extern struct address_space swapper_space; 822 static inline struct address_space *page_mapping(struct page *page) 823 { 824 struct address_space *mapping = page->mapping; 825 826 VM_BUG_ON(PageSlab(page)); 827 if (unlikely(PageSwapCache(page))) 828 mapping = &swapper_space; 829 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 830 mapping = NULL; 831 return mapping; 832 } 833 834 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 835 static inline void *page_rmapping(struct page *page) 836 { 837 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 838 } 839 840 extern struct address_space *__page_file_mapping(struct page *); 841 842 static inline 843 struct address_space *page_file_mapping(struct page *page) 844 { 845 if (unlikely(PageSwapCache(page))) 846 return __page_file_mapping(page); 847 848 return page->mapping; 849 } 850 851 static inline int PageAnon(struct page *page) 852 { 853 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 854 } 855 856 /* 857 * Return the pagecache index of the passed page. Regular pagecache pages 858 * use ->index whereas swapcache pages use ->private 859 */ 860 static inline pgoff_t page_index(struct page *page) 861 { 862 if (unlikely(PageSwapCache(page))) 863 return page_private(page); 864 return page->index; 865 } 866 867 extern pgoff_t __page_file_index(struct page *page); 868 869 /* 870 * Return the file index of the page. Regular pagecache pages use ->index 871 * whereas swapcache pages use swp_offset(->private) 872 */ 873 static inline pgoff_t page_file_index(struct page *page) 874 { 875 if (unlikely(PageSwapCache(page))) 876 return __page_file_index(page); 877 878 return page->index; 879 } 880 881 /* 882 * Return true if this page is mapped into pagetables. 883 */ 884 static inline int page_mapped(struct page *page) 885 { 886 return atomic_read(&(page)->_mapcount) >= 0; 887 } 888 889 /* 890 * Different kinds of faults, as returned by handle_mm_fault(). 891 * Used to decide whether a process gets delivered SIGBUS or 892 * just gets major/minor fault counters bumped up. 893 */ 894 895 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 896 897 #define VM_FAULT_OOM 0x0001 898 #define VM_FAULT_SIGBUS 0x0002 899 #define VM_FAULT_MAJOR 0x0004 900 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 901 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 902 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 903 904 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 905 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 906 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 907 908 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 909 910 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 911 VM_FAULT_HWPOISON_LARGE) 912 913 /* Encode hstate index for a hwpoisoned large page */ 914 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 915 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 916 917 /* 918 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 919 */ 920 extern void pagefault_out_of_memory(void); 921 922 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 923 924 /* 925 * Flags passed to show_mem() and show_free_areas() to suppress output in 926 * various contexts. 927 */ 928 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 929 930 extern void show_free_areas(unsigned int flags); 931 extern bool skip_free_areas_node(unsigned int flags, int nid); 932 933 int shmem_zero_setup(struct vm_area_struct *); 934 935 extern int can_do_mlock(void); 936 extern int user_shm_lock(size_t, struct user_struct *); 937 extern void user_shm_unlock(size_t, struct user_struct *); 938 939 /* 940 * Parameter block passed down to zap_pte_range in exceptional cases. 941 */ 942 struct zap_details { 943 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 944 struct address_space *check_mapping; /* Check page->mapping if set */ 945 pgoff_t first_index; /* Lowest page->index to unmap */ 946 pgoff_t last_index; /* Highest page->index to unmap */ 947 }; 948 949 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 950 pte_t pte); 951 952 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 953 unsigned long size); 954 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 955 unsigned long size, struct zap_details *); 956 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 957 unsigned long start, unsigned long end); 958 959 /** 960 * mm_walk - callbacks for walk_page_range 961 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 962 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 963 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 964 * this handler is required to be able to handle 965 * pmd_trans_huge() pmds. They may simply choose to 966 * split_huge_page() instead of handling it explicitly. 967 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 968 * @pte_hole: if set, called for each hole at all levels 969 * @hugetlb_entry: if set, called for each hugetlb entry 970 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 971 * is used. 972 * 973 * (see walk_page_range for more details) 974 */ 975 struct mm_walk { 976 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 977 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 978 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 979 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 980 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 981 int (*hugetlb_entry)(pte_t *, unsigned long, 982 unsigned long, unsigned long, struct mm_walk *); 983 struct mm_struct *mm; 984 void *private; 985 }; 986 987 int walk_page_range(unsigned long addr, unsigned long end, 988 struct mm_walk *walk); 989 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 990 unsigned long end, unsigned long floor, unsigned long ceiling); 991 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 992 struct vm_area_struct *vma); 993 void unmap_mapping_range(struct address_space *mapping, 994 loff_t const holebegin, loff_t const holelen, int even_cows); 995 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 996 unsigned long *pfn); 997 int follow_phys(struct vm_area_struct *vma, unsigned long address, 998 unsigned int flags, unsigned long *prot, resource_size_t *phys); 999 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1000 void *buf, int len, int write); 1001 1002 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1003 loff_t const holebegin, loff_t const holelen) 1004 { 1005 unmap_mapping_range(mapping, holebegin, holelen, 0); 1006 } 1007 1008 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 1009 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1010 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1011 int truncate_inode_page(struct address_space *mapping, struct page *page); 1012 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1013 int invalidate_inode_page(struct page *page); 1014 1015 #ifdef CONFIG_MMU 1016 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1017 unsigned long address, unsigned int flags); 1018 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1019 unsigned long address, unsigned int fault_flags); 1020 #else 1021 static inline int handle_mm_fault(struct mm_struct *mm, 1022 struct vm_area_struct *vma, unsigned long address, 1023 unsigned int flags) 1024 { 1025 /* should never happen if there's no MMU */ 1026 BUG(); 1027 return VM_FAULT_SIGBUS; 1028 } 1029 static inline int fixup_user_fault(struct task_struct *tsk, 1030 struct mm_struct *mm, unsigned long address, 1031 unsigned int fault_flags) 1032 { 1033 /* should never happen if there's no MMU */ 1034 BUG(); 1035 return -EFAULT; 1036 } 1037 #endif 1038 1039 extern int make_pages_present(unsigned long addr, unsigned long end); 1040 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1041 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1042 void *buf, int len, int write); 1043 1044 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1045 unsigned long start, int len, unsigned int foll_flags, 1046 struct page **pages, struct vm_area_struct **vmas, 1047 int *nonblocking); 1048 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1049 unsigned long start, int nr_pages, int write, int force, 1050 struct page **pages, struct vm_area_struct **vmas); 1051 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1052 struct page **pages); 1053 struct kvec; 1054 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1055 struct page **pages); 1056 int get_kernel_page(unsigned long start, int write, struct page **pages); 1057 struct page *get_dump_page(unsigned long addr); 1058 1059 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1060 extern void do_invalidatepage(struct page *page, unsigned long offset); 1061 1062 int __set_page_dirty_nobuffers(struct page *page); 1063 int __set_page_dirty_no_writeback(struct page *page); 1064 int redirty_page_for_writepage(struct writeback_control *wbc, 1065 struct page *page); 1066 void account_page_dirtied(struct page *page, struct address_space *mapping); 1067 void account_page_writeback(struct page *page); 1068 int set_page_dirty(struct page *page); 1069 int set_page_dirty_lock(struct page *page); 1070 int clear_page_dirty_for_io(struct page *page); 1071 1072 /* Is the vma a continuation of the stack vma above it? */ 1073 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1074 { 1075 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1076 } 1077 1078 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1079 unsigned long addr) 1080 { 1081 return (vma->vm_flags & VM_GROWSDOWN) && 1082 (vma->vm_start == addr) && 1083 !vma_growsdown(vma->vm_prev, addr); 1084 } 1085 1086 /* Is the vma a continuation of the stack vma below it? */ 1087 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1088 { 1089 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1090 } 1091 1092 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1093 unsigned long addr) 1094 { 1095 return (vma->vm_flags & VM_GROWSUP) && 1096 (vma->vm_end == addr) && 1097 !vma_growsup(vma->vm_next, addr); 1098 } 1099 1100 extern pid_t 1101 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1102 1103 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1104 unsigned long old_addr, struct vm_area_struct *new_vma, 1105 unsigned long new_addr, unsigned long len, 1106 bool need_rmap_locks); 1107 extern unsigned long do_mremap(unsigned long addr, 1108 unsigned long old_len, unsigned long new_len, 1109 unsigned long flags, unsigned long new_addr); 1110 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1111 unsigned long end, pgprot_t newprot, 1112 int dirty_accountable, int prot_numa); 1113 extern int mprotect_fixup(struct vm_area_struct *vma, 1114 struct vm_area_struct **pprev, unsigned long start, 1115 unsigned long end, unsigned long newflags); 1116 1117 /* 1118 * doesn't attempt to fault and will return short. 1119 */ 1120 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1121 struct page **pages); 1122 /* 1123 * per-process(per-mm_struct) statistics. 1124 */ 1125 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1126 { 1127 long val = atomic_long_read(&mm->rss_stat.count[member]); 1128 1129 #ifdef SPLIT_RSS_COUNTING 1130 /* 1131 * counter is updated in asynchronous manner and may go to minus. 1132 * But it's never be expected number for users. 1133 */ 1134 if (val < 0) 1135 val = 0; 1136 #endif 1137 return (unsigned long)val; 1138 } 1139 1140 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1141 { 1142 atomic_long_add(value, &mm->rss_stat.count[member]); 1143 } 1144 1145 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1146 { 1147 atomic_long_inc(&mm->rss_stat.count[member]); 1148 } 1149 1150 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1151 { 1152 atomic_long_dec(&mm->rss_stat.count[member]); 1153 } 1154 1155 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1156 { 1157 return get_mm_counter(mm, MM_FILEPAGES) + 1158 get_mm_counter(mm, MM_ANONPAGES); 1159 } 1160 1161 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1162 { 1163 return max(mm->hiwater_rss, get_mm_rss(mm)); 1164 } 1165 1166 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1167 { 1168 return max(mm->hiwater_vm, mm->total_vm); 1169 } 1170 1171 static inline void update_hiwater_rss(struct mm_struct *mm) 1172 { 1173 unsigned long _rss = get_mm_rss(mm); 1174 1175 if ((mm)->hiwater_rss < _rss) 1176 (mm)->hiwater_rss = _rss; 1177 } 1178 1179 static inline void update_hiwater_vm(struct mm_struct *mm) 1180 { 1181 if (mm->hiwater_vm < mm->total_vm) 1182 mm->hiwater_vm = mm->total_vm; 1183 } 1184 1185 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1186 struct mm_struct *mm) 1187 { 1188 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1189 1190 if (*maxrss < hiwater_rss) 1191 *maxrss = hiwater_rss; 1192 } 1193 1194 #if defined(SPLIT_RSS_COUNTING) 1195 void sync_mm_rss(struct mm_struct *mm); 1196 #else 1197 static inline void sync_mm_rss(struct mm_struct *mm) 1198 { 1199 } 1200 #endif 1201 1202 int vma_wants_writenotify(struct vm_area_struct *vma); 1203 1204 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1205 spinlock_t **ptl); 1206 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1207 spinlock_t **ptl) 1208 { 1209 pte_t *ptep; 1210 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1211 return ptep; 1212 } 1213 1214 #ifdef __PAGETABLE_PUD_FOLDED 1215 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1216 unsigned long address) 1217 { 1218 return 0; 1219 } 1220 #else 1221 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1222 #endif 1223 1224 #ifdef __PAGETABLE_PMD_FOLDED 1225 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1226 unsigned long address) 1227 { 1228 return 0; 1229 } 1230 #else 1231 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1232 #endif 1233 1234 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1235 pmd_t *pmd, unsigned long address); 1236 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1237 1238 /* 1239 * The following ifdef needed to get the 4level-fixup.h header to work. 1240 * Remove it when 4level-fixup.h has been removed. 1241 */ 1242 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1243 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1244 { 1245 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1246 NULL: pud_offset(pgd, address); 1247 } 1248 1249 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1250 { 1251 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1252 NULL: pmd_offset(pud, address); 1253 } 1254 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1255 1256 #if USE_SPLIT_PTLOCKS 1257 /* 1258 * We tuck a spinlock to guard each pagetable page into its struct page, 1259 * at page->private, with BUILD_BUG_ON to make sure that this will not 1260 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1261 * When freeing, reset page->mapping so free_pages_check won't complain. 1262 */ 1263 #define __pte_lockptr(page) &((page)->ptl) 1264 #define pte_lock_init(_page) do { \ 1265 spin_lock_init(__pte_lockptr(_page)); \ 1266 } while (0) 1267 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1268 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1269 #else /* !USE_SPLIT_PTLOCKS */ 1270 /* 1271 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1272 */ 1273 #define pte_lock_init(page) do {} while (0) 1274 #define pte_lock_deinit(page) do {} while (0) 1275 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1276 #endif /* USE_SPLIT_PTLOCKS */ 1277 1278 static inline void pgtable_page_ctor(struct page *page) 1279 { 1280 pte_lock_init(page); 1281 inc_zone_page_state(page, NR_PAGETABLE); 1282 } 1283 1284 static inline void pgtable_page_dtor(struct page *page) 1285 { 1286 pte_lock_deinit(page); 1287 dec_zone_page_state(page, NR_PAGETABLE); 1288 } 1289 1290 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1291 ({ \ 1292 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1293 pte_t *__pte = pte_offset_map(pmd, address); \ 1294 *(ptlp) = __ptl; \ 1295 spin_lock(__ptl); \ 1296 __pte; \ 1297 }) 1298 1299 #define pte_unmap_unlock(pte, ptl) do { \ 1300 spin_unlock(ptl); \ 1301 pte_unmap(pte); \ 1302 } while (0) 1303 1304 #define pte_alloc_map(mm, vma, pmd, address) \ 1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1306 pmd, address))? \ 1307 NULL: pte_offset_map(pmd, address)) 1308 1309 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1310 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1311 pmd, address))? \ 1312 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1313 1314 #define pte_alloc_kernel(pmd, address) \ 1315 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1316 NULL: pte_offset_kernel(pmd, address)) 1317 1318 extern void free_area_init(unsigned long * zones_size); 1319 extern void free_area_init_node(int nid, unsigned long * zones_size, 1320 unsigned long zone_start_pfn, unsigned long *zholes_size); 1321 extern void free_initmem(void); 1322 1323 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1324 /* 1325 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1326 * zones, allocate the backing mem_map and account for memory holes in a more 1327 * architecture independent manner. This is a substitute for creating the 1328 * zone_sizes[] and zholes_size[] arrays and passing them to 1329 * free_area_init_node() 1330 * 1331 * An architecture is expected to register range of page frames backed by 1332 * physical memory with memblock_add[_node]() before calling 1333 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1334 * usage, an architecture is expected to do something like 1335 * 1336 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1337 * max_highmem_pfn}; 1338 * for_each_valid_physical_page_range() 1339 * memblock_add_node(base, size, nid) 1340 * free_area_init_nodes(max_zone_pfns); 1341 * 1342 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1343 * registered physical page range. Similarly 1344 * sparse_memory_present_with_active_regions() calls memory_present() for 1345 * each range when SPARSEMEM is enabled. 1346 * 1347 * See mm/page_alloc.c for more information on each function exposed by 1348 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1349 */ 1350 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1351 unsigned long node_map_pfn_alignment(void); 1352 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1353 unsigned long end_pfn); 1354 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1355 unsigned long end_pfn); 1356 extern void get_pfn_range_for_nid(unsigned int nid, 1357 unsigned long *start_pfn, unsigned long *end_pfn); 1358 extern unsigned long find_min_pfn_with_active_regions(void); 1359 extern void free_bootmem_with_active_regions(int nid, 1360 unsigned long max_low_pfn); 1361 extern void sparse_memory_present_with_active_regions(int nid); 1362 1363 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1364 1365 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1366 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1367 static inline int __early_pfn_to_nid(unsigned long pfn) 1368 { 1369 return 0; 1370 } 1371 #else 1372 /* please see mm/page_alloc.c */ 1373 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1374 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1375 /* there is a per-arch backend function. */ 1376 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1377 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1378 #endif 1379 1380 extern void set_dma_reserve(unsigned long new_dma_reserve); 1381 extern void memmap_init_zone(unsigned long, int, unsigned long, 1382 unsigned long, enum memmap_context); 1383 extern void setup_per_zone_wmarks(void); 1384 extern int __meminit init_per_zone_wmark_min(void); 1385 extern void mem_init(void); 1386 extern void __init mmap_init(void); 1387 extern void show_mem(unsigned int flags); 1388 extern void si_meminfo(struct sysinfo * val); 1389 extern void si_meminfo_node(struct sysinfo *val, int nid); 1390 extern int after_bootmem; 1391 1392 extern __printf(3, 4) 1393 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1394 1395 extern void setup_per_cpu_pageset(void); 1396 1397 extern void zone_pcp_update(struct zone *zone); 1398 extern void zone_pcp_reset(struct zone *zone); 1399 1400 /* nommu.c */ 1401 extern atomic_long_t mmap_pages_allocated; 1402 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1403 1404 /* interval_tree.c */ 1405 void vma_interval_tree_insert(struct vm_area_struct *node, 1406 struct rb_root *root); 1407 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1408 struct vm_area_struct *prev, 1409 struct rb_root *root); 1410 void vma_interval_tree_remove(struct vm_area_struct *node, 1411 struct rb_root *root); 1412 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1413 unsigned long start, unsigned long last); 1414 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1415 unsigned long start, unsigned long last); 1416 1417 #define vma_interval_tree_foreach(vma, root, start, last) \ 1418 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1419 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1420 1421 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1422 struct list_head *list) 1423 { 1424 list_add_tail(&vma->shared.nonlinear, list); 1425 } 1426 1427 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1428 struct rb_root *root); 1429 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1430 struct rb_root *root); 1431 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1432 struct rb_root *root, unsigned long start, unsigned long last); 1433 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1434 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1435 #ifdef CONFIG_DEBUG_VM_RB 1436 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1437 #endif 1438 1439 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1440 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1441 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1442 1443 /* mmap.c */ 1444 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1445 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1446 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1447 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1448 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1449 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1450 struct mempolicy *); 1451 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1452 extern int split_vma(struct mm_struct *, 1453 struct vm_area_struct *, unsigned long addr, int new_below); 1454 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1455 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1456 struct rb_node **, struct rb_node *); 1457 extern void unlink_file_vma(struct vm_area_struct *); 1458 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1459 unsigned long addr, unsigned long len, pgoff_t pgoff, 1460 bool *need_rmap_locks); 1461 extern void exit_mmap(struct mm_struct *); 1462 1463 extern int mm_take_all_locks(struct mm_struct *mm); 1464 extern void mm_drop_all_locks(struct mm_struct *mm); 1465 1466 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1467 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1468 1469 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1470 extern int install_special_mapping(struct mm_struct *mm, 1471 unsigned long addr, unsigned long len, 1472 unsigned long flags, struct page **pages); 1473 1474 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1475 1476 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1477 unsigned long len, unsigned long flags, 1478 vm_flags_t vm_flags, unsigned long pgoff); 1479 extern unsigned long do_mmap_pgoff(struct file *, unsigned long, 1480 unsigned long, unsigned long, 1481 unsigned long, unsigned long); 1482 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1483 1484 /* These take the mm semaphore themselves */ 1485 extern unsigned long vm_brk(unsigned long, unsigned long); 1486 extern int vm_munmap(unsigned long, size_t); 1487 extern unsigned long vm_mmap(struct file *, unsigned long, 1488 unsigned long, unsigned long, 1489 unsigned long, unsigned long); 1490 1491 struct vm_unmapped_area_info { 1492 #define VM_UNMAPPED_AREA_TOPDOWN 1 1493 unsigned long flags; 1494 unsigned long length; 1495 unsigned long low_limit; 1496 unsigned long high_limit; 1497 unsigned long align_mask; 1498 unsigned long align_offset; 1499 }; 1500 1501 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1502 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1503 1504 /* 1505 * Search for an unmapped address range. 1506 * 1507 * We are looking for a range that: 1508 * - does not intersect with any VMA; 1509 * - is contained within the [low_limit, high_limit) interval; 1510 * - is at least the desired size. 1511 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1512 */ 1513 static inline unsigned long 1514 vm_unmapped_area(struct vm_unmapped_area_info *info) 1515 { 1516 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1517 return unmapped_area(info); 1518 else 1519 return unmapped_area_topdown(info); 1520 } 1521 1522 /* truncate.c */ 1523 extern void truncate_inode_pages(struct address_space *, loff_t); 1524 extern void truncate_inode_pages_range(struct address_space *, 1525 loff_t lstart, loff_t lend); 1526 1527 /* generic vm_area_ops exported for stackable file systems */ 1528 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1529 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1530 1531 /* mm/page-writeback.c */ 1532 int write_one_page(struct page *page, int wait); 1533 void task_dirty_inc(struct task_struct *tsk); 1534 1535 /* readahead.c */ 1536 #define VM_MAX_READAHEAD 128 /* kbytes */ 1537 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1538 1539 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1540 pgoff_t offset, unsigned long nr_to_read); 1541 1542 void page_cache_sync_readahead(struct address_space *mapping, 1543 struct file_ra_state *ra, 1544 struct file *filp, 1545 pgoff_t offset, 1546 unsigned long size); 1547 1548 void page_cache_async_readahead(struct address_space *mapping, 1549 struct file_ra_state *ra, 1550 struct file *filp, 1551 struct page *pg, 1552 pgoff_t offset, 1553 unsigned long size); 1554 1555 unsigned long max_sane_readahead(unsigned long nr); 1556 unsigned long ra_submit(struct file_ra_state *ra, 1557 struct address_space *mapping, 1558 struct file *filp); 1559 1560 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1561 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1562 1563 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1564 extern int expand_downwards(struct vm_area_struct *vma, 1565 unsigned long address); 1566 #if VM_GROWSUP 1567 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1568 #else 1569 #define expand_upwards(vma, address) do { } while (0) 1570 #endif 1571 1572 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1573 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1574 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1575 struct vm_area_struct **pprev); 1576 1577 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1578 NULL if none. Assume start_addr < end_addr. */ 1579 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1580 { 1581 struct vm_area_struct * vma = find_vma(mm,start_addr); 1582 1583 if (vma && end_addr <= vma->vm_start) 1584 vma = NULL; 1585 return vma; 1586 } 1587 1588 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1589 { 1590 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1591 } 1592 1593 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1594 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1595 unsigned long vm_start, unsigned long vm_end) 1596 { 1597 struct vm_area_struct *vma = find_vma(mm, vm_start); 1598 1599 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1600 vma = NULL; 1601 1602 return vma; 1603 } 1604 1605 #ifdef CONFIG_MMU 1606 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1607 #else 1608 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1609 { 1610 return __pgprot(0); 1611 } 1612 #endif 1613 1614 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1615 unsigned long change_prot_numa(struct vm_area_struct *vma, 1616 unsigned long start, unsigned long end); 1617 #endif 1618 1619 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1620 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1621 unsigned long pfn, unsigned long size, pgprot_t); 1622 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1623 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1624 unsigned long pfn); 1625 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1626 unsigned long pfn); 1627 1628 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1629 unsigned int foll_flags); 1630 #define FOLL_WRITE 0x01 /* check pte is writable */ 1631 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1632 #define FOLL_GET 0x04 /* do get_page on page */ 1633 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1634 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1635 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1636 * and return without waiting upon it */ 1637 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1638 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1639 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1640 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1641 1642 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1643 void *data); 1644 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1645 unsigned long size, pte_fn_t fn, void *data); 1646 1647 #ifdef CONFIG_PROC_FS 1648 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1649 #else 1650 static inline void vm_stat_account(struct mm_struct *mm, 1651 unsigned long flags, struct file *file, long pages) 1652 { 1653 mm->total_vm += pages; 1654 } 1655 #endif /* CONFIG_PROC_FS */ 1656 1657 #ifdef CONFIG_DEBUG_PAGEALLOC 1658 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1659 #ifdef CONFIG_HIBERNATION 1660 extern bool kernel_page_present(struct page *page); 1661 #endif /* CONFIG_HIBERNATION */ 1662 #else 1663 static inline void 1664 kernel_map_pages(struct page *page, int numpages, int enable) {} 1665 #ifdef CONFIG_HIBERNATION 1666 static inline bool kernel_page_present(struct page *page) { return true; } 1667 #endif /* CONFIG_HIBERNATION */ 1668 #endif 1669 1670 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1671 #ifdef __HAVE_ARCH_GATE_AREA 1672 int in_gate_area_no_mm(unsigned long addr); 1673 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1674 #else 1675 int in_gate_area_no_mm(unsigned long addr); 1676 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1677 #endif /* __HAVE_ARCH_GATE_AREA */ 1678 1679 int drop_caches_sysctl_handler(struct ctl_table *, int, 1680 void __user *, size_t *, loff_t *); 1681 unsigned long shrink_slab(struct shrink_control *shrink, 1682 unsigned long nr_pages_scanned, 1683 unsigned long lru_pages); 1684 1685 #ifndef CONFIG_MMU 1686 #define randomize_va_space 0 1687 #else 1688 extern int randomize_va_space; 1689 #endif 1690 1691 const char * arch_vma_name(struct vm_area_struct *vma); 1692 void print_vma_addr(char *prefix, unsigned long rip); 1693 1694 void sparse_mem_maps_populate_node(struct page **map_map, 1695 unsigned long pnum_begin, 1696 unsigned long pnum_end, 1697 unsigned long map_count, 1698 int nodeid); 1699 1700 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1701 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1702 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1703 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1704 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1705 void *vmemmap_alloc_block(unsigned long size, int node); 1706 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1707 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1708 int vmemmap_populate_basepages(struct page *start_page, 1709 unsigned long pages, int node); 1710 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1711 void vmemmap_populate_print_last(void); 1712 1713 1714 enum mf_flags { 1715 MF_COUNT_INCREASED = 1 << 0, 1716 MF_ACTION_REQUIRED = 1 << 1, 1717 MF_MUST_KILL = 1 << 2, 1718 }; 1719 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1720 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1721 extern int unpoison_memory(unsigned long pfn); 1722 extern int sysctl_memory_failure_early_kill; 1723 extern int sysctl_memory_failure_recovery; 1724 extern void shake_page(struct page *p, int access); 1725 extern atomic_long_t mce_bad_pages; 1726 extern int soft_offline_page(struct page *page, int flags); 1727 1728 extern void dump_page(struct page *page); 1729 1730 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1731 extern void clear_huge_page(struct page *page, 1732 unsigned long addr, 1733 unsigned int pages_per_huge_page); 1734 extern void copy_user_huge_page(struct page *dst, struct page *src, 1735 unsigned long addr, struct vm_area_struct *vma, 1736 unsigned int pages_per_huge_page); 1737 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1738 1739 #ifdef CONFIG_DEBUG_PAGEALLOC 1740 extern unsigned int _debug_guardpage_minorder; 1741 1742 static inline unsigned int debug_guardpage_minorder(void) 1743 { 1744 return _debug_guardpage_minorder; 1745 } 1746 1747 static inline bool page_is_guard(struct page *page) 1748 { 1749 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1750 } 1751 #else 1752 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1753 static inline bool page_is_guard(struct page *page) { return false; } 1754 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1755 1756 #endif /* __KERNEL__ */ 1757 #endif /* _LINUX_MM_H */ 1758