1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 void init_mm_internals(void); 36 37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 38 extern unsigned long max_mapnr; 39 40 static inline void set_max_mapnr(unsigned long limit) 41 { 42 max_mapnr = limit; 43 } 44 #else 45 static inline void set_max_mapnr(unsigned long limit) { } 46 #endif 47 48 extern unsigned long totalram_pages; 49 extern void * high_memory; 50 extern int page_cluster; 51 52 #ifdef CONFIG_SYSCTL 53 extern int sysctl_legacy_va_layout; 54 #else 55 #define sysctl_legacy_va_layout 0 56 #endif 57 58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 59 extern const int mmap_rnd_bits_min; 60 extern const int mmap_rnd_bits_max; 61 extern int mmap_rnd_bits __read_mostly; 62 #endif 63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 64 extern const int mmap_rnd_compat_bits_min; 65 extern const int mmap_rnd_compat_bits_max; 66 extern int mmap_rnd_compat_bits __read_mostly; 67 #endif 68 69 #include <asm/page.h> 70 #include <asm/pgtable.h> 71 #include <asm/processor.h> 72 73 #ifndef __pa_symbol 74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 75 #endif 76 77 #ifndef page_to_virt 78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 79 #endif 80 81 #ifndef lm_alias 82 #define lm_alias(x) __va(__pa_symbol(x)) 83 #endif 84 85 /* 86 * To prevent common memory management code establishing 87 * a zero page mapping on a read fault. 88 * This macro should be defined within <asm/pgtable.h>. 89 * s390 does this to prevent multiplexing of hardware bits 90 * related to the physical page in case of virtualization. 91 */ 92 #ifndef mm_forbids_zeropage 93 #define mm_forbids_zeropage(X) (0) 94 #endif 95 96 /* 97 * Default maximum number of active map areas, this limits the number of vmas 98 * per mm struct. Users can overwrite this number by sysctl but there is a 99 * problem. 100 * 101 * When a program's coredump is generated as ELF format, a section is created 102 * per a vma. In ELF, the number of sections is represented in unsigned short. 103 * This means the number of sections should be smaller than 65535 at coredump. 104 * Because the kernel adds some informative sections to a image of program at 105 * generating coredump, we need some margin. The number of extra sections is 106 * 1-3 now and depends on arch. We use "5" as safe margin, here. 107 * 108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 109 * not a hard limit any more. Although some userspace tools can be surprised by 110 * that. 111 */ 112 #define MAPCOUNT_ELF_CORE_MARGIN (5) 113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 114 115 extern int sysctl_max_map_count; 116 117 extern unsigned long sysctl_user_reserve_kbytes; 118 extern unsigned long sysctl_admin_reserve_kbytes; 119 120 extern int sysctl_overcommit_memory; 121 extern int sysctl_overcommit_ratio; 122 extern unsigned long sysctl_overcommit_kbytes; 123 124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 125 size_t *, loff_t *); 126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 127 size_t *, loff_t *); 128 129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 130 131 /* to align the pointer to the (next) page boundary */ 132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 133 134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 136 137 /* 138 * Linux kernel virtual memory manager primitives. 139 * The idea being to have a "virtual" mm in the same way 140 * we have a virtual fs - giving a cleaner interface to the 141 * mm details, and allowing different kinds of memory mappings 142 * (from shared memory to executable loading to arbitrary 143 * mmap() functions). 144 */ 145 146 extern struct kmem_cache *vm_area_cachep; 147 148 #ifndef CONFIG_MMU 149 extern struct rb_root nommu_region_tree; 150 extern struct rw_semaphore nommu_region_sem; 151 152 extern unsigned int kobjsize(const void *objp); 153 #endif 154 155 /* 156 * vm_flags in vm_area_struct, see mm_types.h. 157 * When changing, update also include/trace/events/mmflags.h 158 */ 159 #define VM_NONE 0x00000000 160 161 #define VM_READ 0x00000001 /* currently active flags */ 162 #define VM_WRITE 0x00000002 163 #define VM_EXEC 0x00000004 164 #define VM_SHARED 0x00000008 165 166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 168 #define VM_MAYWRITE 0x00000020 169 #define VM_MAYEXEC 0x00000040 170 #define VM_MAYSHARE 0x00000080 171 172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 177 178 #define VM_LOCKED 0x00002000 179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 180 181 /* Used by sys_madvise() */ 182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 184 185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 192 #define VM_ARCH_2 0x02000000 193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 194 195 #ifdef CONFIG_MEM_SOFT_DIRTY 196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 197 #else 198 # define VM_SOFTDIRTY 0 199 #endif 200 201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 205 206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 211 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 212 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 213 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 214 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 216 217 #if defined(CONFIG_X86) 218 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 220 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 221 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 222 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 223 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 224 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 225 #endif 226 #elif defined(CONFIG_PPC) 227 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 228 #elif defined(CONFIG_PARISC) 229 # define VM_GROWSUP VM_ARCH_1 230 #elif defined(CONFIG_METAG) 231 # define VM_GROWSUP VM_ARCH_1 232 #elif defined(CONFIG_IA64) 233 # define VM_GROWSUP VM_ARCH_1 234 #elif !defined(CONFIG_MMU) 235 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 236 #endif 237 238 #if defined(CONFIG_X86) 239 /* MPX specific bounds table or bounds directory */ 240 # define VM_MPX VM_ARCH_2 241 #endif 242 243 #ifndef VM_GROWSUP 244 # define VM_GROWSUP VM_NONE 245 #endif 246 247 /* Bits set in the VMA until the stack is in its final location */ 248 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 249 250 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 252 #endif 253 254 #ifdef CONFIG_STACK_GROWSUP 255 #define VM_STACK VM_GROWSUP 256 #else 257 #define VM_STACK VM_GROWSDOWN 258 #endif 259 260 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 261 262 /* 263 * Special vmas that are non-mergable, non-mlock()able. 264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 265 */ 266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 267 268 /* This mask defines which mm->def_flags a process can inherit its parent */ 269 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 270 271 /* This mask is used to clear all the VMA flags used by mlock */ 272 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 273 274 /* 275 * mapping from the currently active vm_flags protection bits (the 276 * low four bits) to a page protection mask.. 277 */ 278 extern pgprot_t protection_map[16]; 279 280 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 281 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 282 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 283 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 284 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 285 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 286 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 287 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 288 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 289 290 #define FAULT_FLAG_TRACE \ 291 { FAULT_FLAG_WRITE, "WRITE" }, \ 292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 296 { FAULT_FLAG_TRIED, "TRIED" }, \ 297 { FAULT_FLAG_USER, "USER" }, \ 298 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 300 301 /* 302 * vm_fault is filled by the the pagefault handler and passed to the vma's 303 * ->fault function. The vma's ->fault is responsible for returning a bitmask 304 * of VM_FAULT_xxx flags that give details about how the fault was handled. 305 * 306 * MM layer fills up gfp_mask for page allocations but fault handler might 307 * alter it if its implementation requires a different allocation context. 308 * 309 * pgoff should be used in favour of virtual_address, if possible. 310 */ 311 struct vm_fault { 312 struct vm_area_struct *vma; /* Target VMA */ 313 unsigned int flags; /* FAULT_FLAG_xxx flags */ 314 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 315 pgoff_t pgoff; /* Logical page offset based on vma */ 316 unsigned long address; /* Faulting virtual address */ 317 pmd_t *pmd; /* Pointer to pmd entry matching 318 * the 'address' */ 319 pud_t *pud; /* Pointer to pud entry matching 320 * the 'address' 321 */ 322 pte_t orig_pte; /* Value of PTE at the time of fault */ 323 324 struct page *cow_page; /* Page handler may use for COW fault */ 325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 326 struct page *page; /* ->fault handlers should return a 327 * page here, unless VM_FAULT_NOPAGE 328 * is set (which is also implied by 329 * VM_FAULT_ERROR). 330 */ 331 /* These three entries are valid only while holding ptl lock */ 332 pte_t *pte; /* Pointer to pte entry matching 333 * the 'address'. NULL if the page 334 * table hasn't been allocated. 335 */ 336 spinlock_t *ptl; /* Page table lock. 337 * Protects pte page table if 'pte' 338 * is not NULL, otherwise pmd. 339 */ 340 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 341 * vm_ops->map_pages() calls 342 * alloc_set_pte() from atomic context. 343 * do_fault_around() pre-allocates 344 * page table to avoid allocation from 345 * atomic context. 346 */ 347 }; 348 349 /* page entry size for vm->huge_fault() */ 350 enum page_entry_size { 351 PE_SIZE_PTE = 0, 352 PE_SIZE_PMD, 353 PE_SIZE_PUD, 354 }; 355 356 /* 357 * These are the virtual MM functions - opening of an area, closing and 358 * unmapping it (needed to keep files on disk up-to-date etc), pointer 359 * to the functions called when a no-page or a wp-page exception occurs. 360 */ 361 struct vm_operations_struct { 362 void (*open)(struct vm_area_struct * area); 363 void (*close)(struct vm_area_struct * area); 364 int (*mremap)(struct vm_area_struct * area); 365 int (*fault)(struct vm_fault *vmf); 366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 367 void (*map_pages)(struct vm_fault *vmf, 368 pgoff_t start_pgoff, pgoff_t end_pgoff); 369 370 /* notification that a previously read-only page is about to become 371 * writable, if an error is returned it will cause a SIGBUS */ 372 int (*page_mkwrite)(struct vm_fault *vmf); 373 374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 375 int (*pfn_mkwrite)(struct vm_fault *vmf); 376 377 /* called by access_process_vm when get_user_pages() fails, typically 378 * for use by special VMAs that can switch between memory and hardware 379 */ 380 int (*access)(struct vm_area_struct *vma, unsigned long addr, 381 void *buf, int len, int write); 382 383 /* Called by the /proc/PID/maps code to ask the vma whether it 384 * has a special name. Returning non-NULL will also cause this 385 * vma to be dumped unconditionally. */ 386 const char *(*name)(struct vm_area_struct *vma); 387 388 #ifdef CONFIG_NUMA 389 /* 390 * set_policy() op must add a reference to any non-NULL @new mempolicy 391 * to hold the policy upon return. Caller should pass NULL @new to 392 * remove a policy and fall back to surrounding context--i.e. do not 393 * install a MPOL_DEFAULT policy, nor the task or system default 394 * mempolicy. 395 */ 396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 397 398 /* 399 * get_policy() op must add reference [mpol_get()] to any policy at 400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 401 * in mm/mempolicy.c will do this automatically. 402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 405 * must return NULL--i.e., do not "fallback" to task or system default 406 * policy. 407 */ 408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 409 unsigned long addr); 410 #endif 411 /* 412 * Called by vm_normal_page() for special PTEs to find the 413 * page for @addr. This is useful if the default behavior 414 * (using pte_page()) would not find the correct page. 415 */ 416 struct page *(*find_special_page)(struct vm_area_struct *vma, 417 unsigned long addr); 418 }; 419 420 struct mmu_gather; 421 struct inode; 422 423 #define page_private(page) ((page)->private) 424 #define set_page_private(page, v) ((page)->private = (v)) 425 426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 427 static inline int pmd_devmap(pmd_t pmd) 428 { 429 return 0; 430 } 431 static inline int pud_devmap(pud_t pud) 432 { 433 return 0; 434 } 435 static inline int pgd_devmap(pgd_t pgd) 436 { 437 return 0; 438 } 439 #endif 440 441 /* 442 * FIXME: take this include out, include page-flags.h in 443 * files which need it (119 of them) 444 */ 445 #include <linux/page-flags.h> 446 #include <linux/huge_mm.h> 447 448 /* 449 * Methods to modify the page usage count. 450 * 451 * What counts for a page usage: 452 * - cache mapping (page->mapping) 453 * - private data (page->private) 454 * - page mapped in a task's page tables, each mapping 455 * is counted separately 456 * 457 * Also, many kernel routines increase the page count before a critical 458 * routine so they can be sure the page doesn't go away from under them. 459 */ 460 461 /* 462 * Drop a ref, return true if the refcount fell to zero (the page has no users) 463 */ 464 static inline int put_page_testzero(struct page *page) 465 { 466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 467 return page_ref_dec_and_test(page); 468 } 469 470 /* 471 * Try to grab a ref unless the page has a refcount of zero, return false if 472 * that is the case. 473 * This can be called when MMU is off so it must not access 474 * any of the virtual mappings. 475 */ 476 static inline int get_page_unless_zero(struct page *page) 477 { 478 return page_ref_add_unless(page, 1, 0); 479 } 480 481 extern int page_is_ram(unsigned long pfn); 482 483 enum { 484 REGION_INTERSECTS, 485 REGION_DISJOINT, 486 REGION_MIXED, 487 }; 488 489 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 490 unsigned long desc); 491 492 /* Support for virtually mapped pages */ 493 struct page *vmalloc_to_page(const void *addr); 494 unsigned long vmalloc_to_pfn(const void *addr); 495 496 /* 497 * Determine if an address is within the vmalloc range 498 * 499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 500 * is no special casing required. 501 */ 502 static inline bool is_vmalloc_addr(const void *x) 503 { 504 #ifdef CONFIG_MMU 505 unsigned long addr = (unsigned long)x; 506 507 return addr >= VMALLOC_START && addr < VMALLOC_END; 508 #else 509 return false; 510 #endif 511 } 512 #ifdef CONFIG_MMU 513 extern int is_vmalloc_or_module_addr(const void *x); 514 #else 515 static inline int is_vmalloc_or_module_addr(const void *x) 516 { 517 return 0; 518 } 519 #endif 520 521 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 522 static inline void *kvmalloc(size_t size, gfp_t flags) 523 { 524 return kvmalloc_node(size, flags, NUMA_NO_NODE); 525 } 526 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 527 { 528 return kvmalloc_node(size, flags | __GFP_ZERO, node); 529 } 530 static inline void *kvzalloc(size_t size, gfp_t flags) 531 { 532 return kvmalloc(size, flags | __GFP_ZERO); 533 } 534 535 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 536 { 537 if (size != 0 && n > SIZE_MAX / size) 538 return NULL; 539 540 return kvmalloc(n * size, flags); 541 } 542 543 extern void kvfree(const void *addr); 544 545 static inline atomic_t *compound_mapcount_ptr(struct page *page) 546 { 547 return &page[1].compound_mapcount; 548 } 549 550 static inline int compound_mapcount(struct page *page) 551 { 552 VM_BUG_ON_PAGE(!PageCompound(page), page); 553 page = compound_head(page); 554 return atomic_read(compound_mapcount_ptr(page)) + 1; 555 } 556 557 /* 558 * The atomic page->_mapcount, starts from -1: so that transitions 559 * both from it and to it can be tracked, using atomic_inc_and_test 560 * and atomic_add_negative(-1). 561 */ 562 static inline void page_mapcount_reset(struct page *page) 563 { 564 atomic_set(&(page)->_mapcount, -1); 565 } 566 567 int __page_mapcount(struct page *page); 568 569 static inline int page_mapcount(struct page *page) 570 { 571 VM_BUG_ON_PAGE(PageSlab(page), page); 572 573 if (unlikely(PageCompound(page))) 574 return __page_mapcount(page); 575 return atomic_read(&page->_mapcount) + 1; 576 } 577 578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 579 int total_mapcount(struct page *page); 580 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 581 #else 582 static inline int total_mapcount(struct page *page) 583 { 584 return page_mapcount(page); 585 } 586 static inline int page_trans_huge_mapcount(struct page *page, 587 int *total_mapcount) 588 { 589 int mapcount = page_mapcount(page); 590 if (total_mapcount) 591 *total_mapcount = mapcount; 592 return mapcount; 593 } 594 #endif 595 596 static inline struct page *virt_to_head_page(const void *x) 597 { 598 struct page *page = virt_to_page(x); 599 600 return compound_head(page); 601 } 602 603 void __put_page(struct page *page); 604 605 void put_pages_list(struct list_head *pages); 606 607 void split_page(struct page *page, unsigned int order); 608 609 /* 610 * Compound pages have a destructor function. Provide a 611 * prototype for that function and accessor functions. 612 * These are _only_ valid on the head of a compound page. 613 */ 614 typedef void compound_page_dtor(struct page *); 615 616 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 617 enum compound_dtor_id { 618 NULL_COMPOUND_DTOR, 619 COMPOUND_PAGE_DTOR, 620 #ifdef CONFIG_HUGETLB_PAGE 621 HUGETLB_PAGE_DTOR, 622 #endif 623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 624 TRANSHUGE_PAGE_DTOR, 625 #endif 626 NR_COMPOUND_DTORS, 627 }; 628 extern compound_page_dtor * const compound_page_dtors[]; 629 630 static inline void set_compound_page_dtor(struct page *page, 631 enum compound_dtor_id compound_dtor) 632 { 633 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 634 page[1].compound_dtor = compound_dtor; 635 } 636 637 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 638 { 639 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 640 return compound_page_dtors[page[1].compound_dtor]; 641 } 642 643 static inline unsigned int compound_order(struct page *page) 644 { 645 if (!PageHead(page)) 646 return 0; 647 return page[1].compound_order; 648 } 649 650 static inline void set_compound_order(struct page *page, unsigned int order) 651 { 652 page[1].compound_order = order; 653 } 654 655 void free_compound_page(struct page *page); 656 657 #ifdef CONFIG_MMU 658 /* 659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 660 * servicing faults for write access. In the normal case, do always want 661 * pte_mkwrite. But get_user_pages can cause write faults for mappings 662 * that do not have writing enabled, when used by access_process_vm. 663 */ 664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 665 { 666 if (likely(vma->vm_flags & VM_WRITE)) 667 pte = pte_mkwrite(pte); 668 return pte; 669 } 670 671 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 672 struct page *page); 673 int finish_fault(struct vm_fault *vmf); 674 int finish_mkwrite_fault(struct vm_fault *vmf); 675 #endif 676 677 /* 678 * Multiple processes may "see" the same page. E.g. for untouched 679 * mappings of /dev/null, all processes see the same page full of 680 * zeroes, and text pages of executables and shared libraries have 681 * only one copy in memory, at most, normally. 682 * 683 * For the non-reserved pages, page_count(page) denotes a reference count. 684 * page_count() == 0 means the page is free. page->lru is then used for 685 * freelist management in the buddy allocator. 686 * page_count() > 0 means the page has been allocated. 687 * 688 * Pages are allocated by the slab allocator in order to provide memory 689 * to kmalloc and kmem_cache_alloc. In this case, the management of the 690 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 691 * unless a particular usage is carefully commented. (the responsibility of 692 * freeing the kmalloc memory is the caller's, of course). 693 * 694 * A page may be used by anyone else who does a __get_free_page(). 695 * In this case, page_count still tracks the references, and should only 696 * be used through the normal accessor functions. The top bits of page->flags 697 * and page->virtual store page management information, but all other fields 698 * are unused and could be used privately, carefully. The management of this 699 * page is the responsibility of the one who allocated it, and those who have 700 * subsequently been given references to it. 701 * 702 * The other pages (we may call them "pagecache pages") are completely 703 * managed by the Linux memory manager: I/O, buffers, swapping etc. 704 * The following discussion applies only to them. 705 * 706 * A pagecache page contains an opaque `private' member, which belongs to the 707 * page's address_space. Usually, this is the address of a circular list of 708 * the page's disk buffers. PG_private must be set to tell the VM to call 709 * into the filesystem to release these pages. 710 * 711 * A page may belong to an inode's memory mapping. In this case, page->mapping 712 * is the pointer to the inode, and page->index is the file offset of the page, 713 * in units of PAGE_SIZE. 714 * 715 * If pagecache pages are not associated with an inode, they are said to be 716 * anonymous pages. These may become associated with the swapcache, and in that 717 * case PG_swapcache is set, and page->private is an offset into the swapcache. 718 * 719 * In either case (swapcache or inode backed), the pagecache itself holds one 720 * reference to the page. Setting PG_private should also increment the 721 * refcount. The each user mapping also has a reference to the page. 722 * 723 * The pagecache pages are stored in a per-mapping radix tree, which is 724 * rooted at mapping->page_tree, and indexed by offset. 725 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 726 * lists, we instead now tag pages as dirty/writeback in the radix tree. 727 * 728 * All pagecache pages may be subject to I/O: 729 * - inode pages may need to be read from disk, 730 * - inode pages which have been modified and are MAP_SHARED may need 731 * to be written back to the inode on disk, 732 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 733 * modified may need to be swapped out to swap space and (later) to be read 734 * back into memory. 735 */ 736 737 /* 738 * The zone field is never updated after free_area_init_core() 739 * sets it, so none of the operations on it need to be atomic. 740 */ 741 742 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 743 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 744 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 745 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 746 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 747 748 /* 749 * Define the bit shifts to access each section. For non-existent 750 * sections we define the shift as 0; that plus a 0 mask ensures 751 * the compiler will optimise away reference to them. 752 */ 753 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 754 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 755 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 756 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 757 758 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 759 #ifdef NODE_NOT_IN_PAGE_FLAGS 760 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 761 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 762 SECTIONS_PGOFF : ZONES_PGOFF) 763 #else 764 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 765 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 766 NODES_PGOFF : ZONES_PGOFF) 767 #endif 768 769 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 770 771 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 772 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 773 #endif 774 775 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 776 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 777 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 778 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 779 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 780 781 static inline enum zone_type page_zonenum(const struct page *page) 782 { 783 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 784 } 785 786 #ifdef CONFIG_ZONE_DEVICE 787 static inline bool is_zone_device_page(const struct page *page) 788 { 789 return page_zonenum(page) == ZONE_DEVICE; 790 } 791 #else 792 static inline bool is_zone_device_page(const struct page *page) 793 { 794 return false; 795 } 796 #endif 797 798 static inline void get_page(struct page *page) 799 { 800 page = compound_head(page); 801 /* 802 * Getting a normal page or the head of a compound page 803 * requires to already have an elevated page->_refcount. 804 */ 805 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 806 page_ref_inc(page); 807 } 808 809 static inline void put_page(struct page *page) 810 { 811 page = compound_head(page); 812 813 if (put_page_testzero(page)) 814 __put_page(page); 815 } 816 817 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 818 #define SECTION_IN_PAGE_FLAGS 819 #endif 820 821 /* 822 * The identification function is mainly used by the buddy allocator for 823 * determining if two pages could be buddies. We are not really identifying 824 * the zone since we could be using the section number id if we do not have 825 * node id available in page flags. 826 * We only guarantee that it will return the same value for two combinable 827 * pages in a zone. 828 */ 829 static inline int page_zone_id(struct page *page) 830 { 831 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 832 } 833 834 static inline int zone_to_nid(struct zone *zone) 835 { 836 #ifdef CONFIG_NUMA 837 return zone->node; 838 #else 839 return 0; 840 #endif 841 } 842 843 #ifdef NODE_NOT_IN_PAGE_FLAGS 844 extern int page_to_nid(const struct page *page); 845 #else 846 static inline int page_to_nid(const struct page *page) 847 { 848 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 849 } 850 #endif 851 852 #ifdef CONFIG_NUMA_BALANCING 853 static inline int cpu_pid_to_cpupid(int cpu, int pid) 854 { 855 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 856 } 857 858 static inline int cpupid_to_pid(int cpupid) 859 { 860 return cpupid & LAST__PID_MASK; 861 } 862 863 static inline int cpupid_to_cpu(int cpupid) 864 { 865 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 866 } 867 868 static inline int cpupid_to_nid(int cpupid) 869 { 870 return cpu_to_node(cpupid_to_cpu(cpupid)); 871 } 872 873 static inline bool cpupid_pid_unset(int cpupid) 874 { 875 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 876 } 877 878 static inline bool cpupid_cpu_unset(int cpupid) 879 { 880 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 881 } 882 883 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 884 { 885 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 886 } 887 888 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 889 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 890 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 891 { 892 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 893 } 894 895 static inline int page_cpupid_last(struct page *page) 896 { 897 return page->_last_cpupid; 898 } 899 static inline void page_cpupid_reset_last(struct page *page) 900 { 901 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 902 } 903 #else 904 static inline int page_cpupid_last(struct page *page) 905 { 906 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 907 } 908 909 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 910 911 static inline void page_cpupid_reset_last(struct page *page) 912 { 913 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 914 } 915 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 916 #else /* !CONFIG_NUMA_BALANCING */ 917 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 918 { 919 return page_to_nid(page); /* XXX */ 920 } 921 922 static inline int page_cpupid_last(struct page *page) 923 { 924 return page_to_nid(page); /* XXX */ 925 } 926 927 static inline int cpupid_to_nid(int cpupid) 928 { 929 return -1; 930 } 931 932 static inline int cpupid_to_pid(int cpupid) 933 { 934 return -1; 935 } 936 937 static inline int cpupid_to_cpu(int cpupid) 938 { 939 return -1; 940 } 941 942 static inline int cpu_pid_to_cpupid(int nid, int pid) 943 { 944 return -1; 945 } 946 947 static inline bool cpupid_pid_unset(int cpupid) 948 { 949 return 1; 950 } 951 952 static inline void page_cpupid_reset_last(struct page *page) 953 { 954 } 955 956 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 957 { 958 return false; 959 } 960 #endif /* CONFIG_NUMA_BALANCING */ 961 962 static inline struct zone *page_zone(const struct page *page) 963 { 964 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 965 } 966 967 static inline pg_data_t *page_pgdat(const struct page *page) 968 { 969 return NODE_DATA(page_to_nid(page)); 970 } 971 972 #ifdef SECTION_IN_PAGE_FLAGS 973 static inline void set_page_section(struct page *page, unsigned long section) 974 { 975 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 976 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 977 } 978 979 static inline unsigned long page_to_section(const struct page *page) 980 { 981 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 982 } 983 #endif 984 985 static inline void set_page_zone(struct page *page, enum zone_type zone) 986 { 987 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 988 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 989 } 990 991 static inline void set_page_node(struct page *page, unsigned long node) 992 { 993 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 994 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 995 } 996 997 static inline void set_page_links(struct page *page, enum zone_type zone, 998 unsigned long node, unsigned long pfn) 999 { 1000 set_page_zone(page, zone); 1001 set_page_node(page, node); 1002 #ifdef SECTION_IN_PAGE_FLAGS 1003 set_page_section(page, pfn_to_section_nr(pfn)); 1004 #endif 1005 } 1006 1007 #ifdef CONFIG_MEMCG 1008 static inline struct mem_cgroup *page_memcg(struct page *page) 1009 { 1010 return page->mem_cgroup; 1011 } 1012 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1013 { 1014 WARN_ON_ONCE(!rcu_read_lock_held()); 1015 return READ_ONCE(page->mem_cgroup); 1016 } 1017 #else 1018 static inline struct mem_cgroup *page_memcg(struct page *page) 1019 { 1020 return NULL; 1021 } 1022 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1023 { 1024 WARN_ON_ONCE(!rcu_read_lock_held()); 1025 return NULL; 1026 } 1027 #endif 1028 1029 /* 1030 * Some inline functions in vmstat.h depend on page_zone() 1031 */ 1032 #include <linux/vmstat.h> 1033 1034 static __always_inline void *lowmem_page_address(const struct page *page) 1035 { 1036 return page_to_virt(page); 1037 } 1038 1039 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1040 #define HASHED_PAGE_VIRTUAL 1041 #endif 1042 1043 #if defined(WANT_PAGE_VIRTUAL) 1044 static inline void *page_address(const struct page *page) 1045 { 1046 return page->virtual; 1047 } 1048 static inline void set_page_address(struct page *page, void *address) 1049 { 1050 page->virtual = address; 1051 } 1052 #define page_address_init() do { } while(0) 1053 #endif 1054 1055 #if defined(HASHED_PAGE_VIRTUAL) 1056 void *page_address(const struct page *page); 1057 void set_page_address(struct page *page, void *virtual); 1058 void page_address_init(void); 1059 #endif 1060 1061 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1062 #define page_address(page) lowmem_page_address(page) 1063 #define set_page_address(page, address) do { } while(0) 1064 #define page_address_init() do { } while(0) 1065 #endif 1066 1067 extern void *page_rmapping(struct page *page); 1068 extern struct anon_vma *page_anon_vma(struct page *page); 1069 extern struct address_space *page_mapping(struct page *page); 1070 1071 extern struct address_space *__page_file_mapping(struct page *); 1072 1073 static inline 1074 struct address_space *page_file_mapping(struct page *page) 1075 { 1076 if (unlikely(PageSwapCache(page))) 1077 return __page_file_mapping(page); 1078 1079 return page->mapping; 1080 } 1081 1082 extern pgoff_t __page_file_index(struct page *page); 1083 1084 /* 1085 * Return the pagecache index of the passed page. Regular pagecache pages 1086 * use ->index whereas swapcache pages use swp_offset(->private) 1087 */ 1088 static inline pgoff_t page_index(struct page *page) 1089 { 1090 if (unlikely(PageSwapCache(page))) 1091 return __page_file_index(page); 1092 return page->index; 1093 } 1094 1095 bool page_mapped(struct page *page); 1096 struct address_space *page_mapping(struct page *page); 1097 1098 /* 1099 * Return true only if the page has been allocated with 1100 * ALLOC_NO_WATERMARKS and the low watermark was not 1101 * met implying that the system is under some pressure. 1102 */ 1103 static inline bool page_is_pfmemalloc(struct page *page) 1104 { 1105 /* 1106 * Page index cannot be this large so this must be 1107 * a pfmemalloc page. 1108 */ 1109 return page->index == -1UL; 1110 } 1111 1112 /* 1113 * Only to be called by the page allocator on a freshly allocated 1114 * page. 1115 */ 1116 static inline void set_page_pfmemalloc(struct page *page) 1117 { 1118 page->index = -1UL; 1119 } 1120 1121 static inline void clear_page_pfmemalloc(struct page *page) 1122 { 1123 page->index = 0; 1124 } 1125 1126 /* 1127 * Different kinds of faults, as returned by handle_mm_fault(). 1128 * Used to decide whether a process gets delivered SIGBUS or 1129 * just gets major/minor fault counters bumped up. 1130 */ 1131 1132 #define VM_FAULT_OOM 0x0001 1133 #define VM_FAULT_SIGBUS 0x0002 1134 #define VM_FAULT_MAJOR 0x0004 1135 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1136 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1137 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1138 #define VM_FAULT_SIGSEGV 0x0040 1139 1140 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1141 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1142 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1143 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1144 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1145 1146 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1147 1148 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1149 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1150 VM_FAULT_FALLBACK) 1151 1152 #define VM_FAULT_RESULT_TRACE \ 1153 { VM_FAULT_OOM, "OOM" }, \ 1154 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1155 { VM_FAULT_MAJOR, "MAJOR" }, \ 1156 { VM_FAULT_WRITE, "WRITE" }, \ 1157 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1158 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1159 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1160 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1161 { VM_FAULT_LOCKED, "LOCKED" }, \ 1162 { VM_FAULT_RETRY, "RETRY" }, \ 1163 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1164 { VM_FAULT_DONE_COW, "DONE_COW" } 1165 1166 /* Encode hstate index for a hwpoisoned large page */ 1167 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1168 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1169 1170 /* 1171 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1172 */ 1173 extern void pagefault_out_of_memory(void); 1174 1175 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1176 1177 /* 1178 * Flags passed to show_mem() and show_free_areas() to suppress output in 1179 * various contexts. 1180 */ 1181 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1182 1183 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1184 1185 extern bool can_do_mlock(void); 1186 extern int user_shm_lock(size_t, struct user_struct *); 1187 extern void user_shm_unlock(size_t, struct user_struct *); 1188 1189 /* 1190 * Parameter block passed down to zap_pte_range in exceptional cases. 1191 */ 1192 struct zap_details { 1193 struct address_space *check_mapping; /* Check page->mapping if set */ 1194 pgoff_t first_index; /* Lowest page->index to unmap */ 1195 pgoff_t last_index; /* Highest page->index to unmap */ 1196 }; 1197 1198 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1199 pte_t pte); 1200 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1201 pmd_t pmd); 1202 1203 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1204 unsigned long size); 1205 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1206 unsigned long size); 1207 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1208 unsigned long start, unsigned long end); 1209 1210 /** 1211 * mm_walk - callbacks for walk_page_range 1212 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1213 * this handler should only handle pud_trans_huge() puds. 1214 * the pmd_entry or pte_entry callbacks will be used for 1215 * regular PUDs. 1216 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1217 * this handler is required to be able to handle 1218 * pmd_trans_huge() pmds. They may simply choose to 1219 * split_huge_page() instead of handling it explicitly. 1220 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1221 * @pte_hole: if set, called for each hole at all levels 1222 * @hugetlb_entry: if set, called for each hugetlb entry 1223 * @test_walk: caller specific callback function to determine whether 1224 * we walk over the current vma or not. Returning 0 1225 * value means "do page table walk over the current vma," 1226 * and a negative one means "abort current page table walk 1227 * right now." 1 means "skip the current vma." 1228 * @mm: mm_struct representing the target process of page table walk 1229 * @vma: vma currently walked (NULL if walking outside vmas) 1230 * @private: private data for callbacks' usage 1231 * 1232 * (see the comment on walk_page_range() for more details) 1233 */ 1234 struct mm_walk { 1235 int (*pud_entry)(pud_t *pud, unsigned long addr, 1236 unsigned long next, struct mm_walk *walk); 1237 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1238 unsigned long next, struct mm_walk *walk); 1239 int (*pte_entry)(pte_t *pte, unsigned long addr, 1240 unsigned long next, struct mm_walk *walk); 1241 int (*pte_hole)(unsigned long addr, unsigned long next, 1242 struct mm_walk *walk); 1243 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1244 unsigned long addr, unsigned long next, 1245 struct mm_walk *walk); 1246 int (*test_walk)(unsigned long addr, unsigned long next, 1247 struct mm_walk *walk); 1248 struct mm_struct *mm; 1249 struct vm_area_struct *vma; 1250 void *private; 1251 }; 1252 1253 int walk_page_range(unsigned long addr, unsigned long end, 1254 struct mm_walk *walk); 1255 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1256 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1257 unsigned long end, unsigned long floor, unsigned long ceiling); 1258 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1259 struct vm_area_struct *vma); 1260 void unmap_mapping_range(struct address_space *mapping, 1261 loff_t const holebegin, loff_t const holelen, int even_cows); 1262 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1263 unsigned long *start, unsigned long *end, 1264 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1265 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1266 unsigned long *pfn); 1267 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1268 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1269 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1270 void *buf, int len, int write); 1271 1272 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1273 loff_t const holebegin, loff_t const holelen) 1274 { 1275 unmap_mapping_range(mapping, holebegin, holelen, 0); 1276 } 1277 1278 extern void truncate_pagecache(struct inode *inode, loff_t new); 1279 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1280 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1281 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1282 int truncate_inode_page(struct address_space *mapping, struct page *page); 1283 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1284 int invalidate_inode_page(struct page *page); 1285 1286 #ifdef CONFIG_MMU 1287 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1288 unsigned int flags); 1289 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1290 unsigned long address, unsigned int fault_flags, 1291 bool *unlocked); 1292 #else 1293 static inline int handle_mm_fault(struct vm_area_struct *vma, 1294 unsigned long address, unsigned int flags) 1295 { 1296 /* should never happen if there's no MMU */ 1297 BUG(); 1298 return VM_FAULT_SIGBUS; 1299 } 1300 static inline int fixup_user_fault(struct task_struct *tsk, 1301 struct mm_struct *mm, unsigned long address, 1302 unsigned int fault_flags, bool *unlocked) 1303 { 1304 /* should never happen if there's no MMU */ 1305 BUG(); 1306 return -EFAULT; 1307 } 1308 #endif 1309 1310 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1311 unsigned int gup_flags); 1312 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1313 void *buf, int len, unsigned int gup_flags); 1314 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1315 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1316 1317 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1318 unsigned long start, unsigned long nr_pages, 1319 unsigned int gup_flags, struct page **pages, 1320 struct vm_area_struct **vmas, int *locked); 1321 long get_user_pages(unsigned long start, unsigned long nr_pages, 1322 unsigned int gup_flags, struct page **pages, 1323 struct vm_area_struct **vmas); 1324 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1325 unsigned int gup_flags, struct page **pages, int *locked); 1326 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1327 struct page **pages, unsigned int gup_flags); 1328 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1329 struct page **pages); 1330 1331 /* Container for pinned pfns / pages */ 1332 struct frame_vector { 1333 unsigned int nr_allocated; /* Number of frames we have space for */ 1334 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1335 bool got_ref; /* Did we pin pages by getting page ref? */ 1336 bool is_pfns; /* Does array contain pages or pfns? */ 1337 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1338 * pfns_vector_pages() or pfns_vector_pfns() 1339 * for access */ 1340 }; 1341 1342 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1343 void frame_vector_destroy(struct frame_vector *vec); 1344 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1345 unsigned int gup_flags, struct frame_vector *vec); 1346 void put_vaddr_frames(struct frame_vector *vec); 1347 int frame_vector_to_pages(struct frame_vector *vec); 1348 void frame_vector_to_pfns(struct frame_vector *vec); 1349 1350 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1351 { 1352 return vec->nr_frames; 1353 } 1354 1355 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1356 { 1357 if (vec->is_pfns) { 1358 int err = frame_vector_to_pages(vec); 1359 1360 if (err) 1361 return ERR_PTR(err); 1362 } 1363 return (struct page **)(vec->ptrs); 1364 } 1365 1366 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1367 { 1368 if (!vec->is_pfns) 1369 frame_vector_to_pfns(vec); 1370 return (unsigned long *)(vec->ptrs); 1371 } 1372 1373 struct kvec; 1374 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1375 struct page **pages); 1376 int get_kernel_page(unsigned long start, int write, struct page **pages); 1377 struct page *get_dump_page(unsigned long addr); 1378 1379 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1380 extern void do_invalidatepage(struct page *page, unsigned int offset, 1381 unsigned int length); 1382 1383 int __set_page_dirty_nobuffers(struct page *page); 1384 int __set_page_dirty_no_writeback(struct page *page); 1385 int redirty_page_for_writepage(struct writeback_control *wbc, 1386 struct page *page); 1387 void account_page_dirtied(struct page *page, struct address_space *mapping); 1388 void account_page_cleaned(struct page *page, struct address_space *mapping, 1389 struct bdi_writeback *wb); 1390 int set_page_dirty(struct page *page); 1391 int set_page_dirty_lock(struct page *page); 1392 void cancel_dirty_page(struct page *page); 1393 int clear_page_dirty_for_io(struct page *page); 1394 1395 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1396 1397 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1398 { 1399 return !vma->vm_ops; 1400 } 1401 1402 #ifdef CONFIG_SHMEM 1403 /* 1404 * The vma_is_shmem is not inline because it is used only by slow 1405 * paths in userfault. 1406 */ 1407 bool vma_is_shmem(struct vm_area_struct *vma); 1408 #else 1409 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1410 #endif 1411 1412 int vma_is_stack_for_current(struct vm_area_struct *vma); 1413 1414 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1415 unsigned long old_addr, struct vm_area_struct *new_vma, 1416 unsigned long new_addr, unsigned long len, 1417 bool need_rmap_locks); 1418 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1419 unsigned long end, pgprot_t newprot, 1420 int dirty_accountable, int prot_numa); 1421 extern int mprotect_fixup(struct vm_area_struct *vma, 1422 struct vm_area_struct **pprev, unsigned long start, 1423 unsigned long end, unsigned long newflags); 1424 1425 /* 1426 * doesn't attempt to fault and will return short. 1427 */ 1428 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1429 struct page **pages); 1430 /* 1431 * per-process(per-mm_struct) statistics. 1432 */ 1433 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1434 { 1435 long val = atomic_long_read(&mm->rss_stat.count[member]); 1436 1437 #ifdef SPLIT_RSS_COUNTING 1438 /* 1439 * counter is updated in asynchronous manner and may go to minus. 1440 * But it's never be expected number for users. 1441 */ 1442 if (val < 0) 1443 val = 0; 1444 #endif 1445 return (unsigned long)val; 1446 } 1447 1448 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1449 { 1450 atomic_long_add(value, &mm->rss_stat.count[member]); 1451 } 1452 1453 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1454 { 1455 atomic_long_inc(&mm->rss_stat.count[member]); 1456 } 1457 1458 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1459 { 1460 atomic_long_dec(&mm->rss_stat.count[member]); 1461 } 1462 1463 /* Optimized variant when page is already known not to be PageAnon */ 1464 static inline int mm_counter_file(struct page *page) 1465 { 1466 if (PageSwapBacked(page)) 1467 return MM_SHMEMPAGES; 1468 return MM_FILEPAGES; 1469 } 1470 1471 static inline int mm_counter(struct page *page) 1472 { 1473 if (PageAnon(page)) 1474 return MM_ANONPAGES; 1475 return mm_counter_file(page); 1476 } 1477 1478 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1479 { 1480 return get_mm_counter(mm, MM_FILEPAGES) + 1481 get_mm_counter(mm, MM_ANONPAGES) + 1482 get_mm_counter(mm, MM_SHMEMPAGES); 1483 } 1484 1485 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1486 { 1487 return max(mm->hiwater_rss, get_mm_rss(mm)); 1488 } 1489 1490 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1491 { 1492 return max(mm->hiwater_vm, mm->total_vm); 1493 } 1494 1495 static inline void update_hiwater_rss(struct mm_struct *mm) 1496 { 1497 unsigned long _rss = get_mm_rss(mm); 1498 1499 if ((mm)->hiwater_rss < _rss) 1500 (mm)->hiwater_rss = _rss; 1501 } 1502 1503 static inline void update_hiwater_vm(struct mm_struct *mm) 1504 { 1505 if (mm->hiwater_vm < mm->total_vm) 1506 mm->hiwater_vm = mm->total_vm; 1507 } 1508 1509 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1510 { 1511 mm->hiwater_rss = get_mm_rss(mm); 1512 } 1513 1514 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1515 struct mm_struct *mm) 1516 { 1517 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1518 1519 if (*maxrss < hiwater_rss) 1520 *maxrss = hiwater_rss; 1521 } 1522 1523 #if defined(SPLIT_RSS_COUNTING) 1524 void sync_mm_rss(struct mm_struct *mm); 1525 #else 1526 static inline void sync_mm_rss(struct mm_struct *mm) 1527 { 1528 } 1529 #endif 1530 1531 #ifndef __HAVE_ARCH_PTE_DEVMAP 1532 static inline int pte_devmap(pte_t pte) 1533 { 1534 return 0; 1535 } 1536 #endif 1537 1538 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1539 1540 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1541 spinlock_t **ptl); 1542 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1543 spinlock_t **ptl) 1544 { 1545 pte_t *ptep; 1546 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1547 return ptep; 1548 } 1549 1550 #ifdef __PAGETABLE_P4D_FOLDED 1551 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1552 unsigned long address) 1553 { 1554 return 0; 1555 } 1556 #else 1557 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1558 #endif 1559 1560 #ifdef __PAGETABLE_PUD_FOLDED 1561 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1562 unsigned long address) 1563 { 1564 return 0; 1565 } 1566 #else 1567 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1568 #endif 1569 1570 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1571 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1572 unsigned long address) 1573 { 1574 return 0; 1575 } 1576 1577 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1578 1579 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1580 { 1581 return 0; 1582 } 1583 1584 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1585 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1586 1587 #else 1588 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1589 1590 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1591 { 1592 atomic_long_set(&mm->nr_pmds, 0); 1593 } 1594 1595 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1596 { 1597 return atomic_long_read(&mm->nr_pmds); 1598 } 1599 1600 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1601 { 1602 atomic_long_inc(&mm->nr_pmds); 1603 } 1604 1605 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1606 { 1607 atomic_long_dec(&mm->nr_pmds); 1608 } 1609 #endif 1610 1611 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1612 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1613 1614 /* 1615 * The following ifdef needed to get the 4level-fixup.h header to work. 1616 * Remove it when 4level-fixup.h has been removed. 1617 */ 1618 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1619 1620 #ifndef __ARCH_HAS_5LEVEL_HACK 1621 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1622 unsigned long address) 1623 { 1624 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1625 NULL : p4d_offset(pgd, address); 1626 } 1627 1628 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1629 unsigned long address) 1630 { 1631 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1632 NULL : pud_offset(p4d, address); 1633 } 1634 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1635 1636 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1637 { 1638 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1639 NULL: pmd_offset(pud, address); 1640 } 1641 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1642 1643 #if USE_SPLIT_PTE_PTLOCKS 1644 #if ALLOC_SPLIT_PTLOCKS 1645 void __init ptlock_cache_init(void); 1646 extern bool ptlock_alloc(struct page *page); 1647 extern void ptlock_free(struct page *page); 1648 1649 static inline spinlock_t *ptlock_ptr(struct page *page) 1650 { 1651 return page->ptl; 1652 } 1653 #else /* ALLOC_SPLIT_PTLOCKS */ 1654 static inline void ptlock_cache_init(void) 1655 { 1656 } 1657 1658 static inline bool ptlock_alloc(struct page *page) 1659 { 1660 return true; 1661 } 1662 1663 static inline void ptlock_free(struct page *page) 1664 { 1665 } 1666 1667 static inline spinlock_t *ptlock_ptr(struct page *page) 1668 { 1669 return &page->ptl; 1670 } 1671 #endif /* ALLOC_SPLIT_PTLOCKS */ 1672 1673 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1674 { 1675 return ptlock_ptr(pmd_page(*pmd)); 1676 } 1677 1678 static inline bool ptlock_init(struct page *page) 1679 { 1680 /* 1681 * prep_new_page() initialize page->private (and therefore page->ptl) 1682 * with 0. Make sure nobody took it in use in between. 1683 * 1684 * It can happen if arch try to use slab for page table allocation: 1685 * slab code uses page->slab_cache, which share storage with page->ptl. 1686 */ 1687 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1688 if (!ptlock_alloc(page)) 1689 return false; 1690 spin_lock_init(ptlock_ptr(page)); 1691 return true; 1692 } 1693 1694 /* Reset page->mapping so free_pages_check won't complain. */ 1695 static inline void pte_lock_deinit(struct page *page) 1696 { 1697 page->mapping = NULL; 1698 ptlock_free(page); 1699 } 1700 1701 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1702 /* 1703 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1704 */ 1705 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1706 { 1707 return &mm->page_table_lock; 1708 } 1709 static inline void ptlock_cache_init(void) {} 1710 static inline bool ptlock_init(struct page *page) { return true; } 1711 static inline void pte_lock_deinit(struct page *page) {} 1712 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1713 1714 static inline void pgtable_init(void) 1715 { 1716 ptlock_cache_init(); 1717 pgtable_cache_init(); 1718 } 1719 1720 static inline bool pgtable_page_ctor(struct page *page) 1721 { 1722 if (!ptlock_init(page)) 1723 return false; 1724 inc_zone_page_state(page, NR_PAGETABLE); 1725 return true; 1726 } 1727 1728 static inline void pgtable_page_dtor(struct page *page) 1729 { 1730 pte_lock_deinit(page); 1731 dec_zone_page_state(page, NR_PAGETABLE); 1732 } 1733 1734 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1735 ({ \ 1736 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1737 pte_t *__pte = pte_offset_map(pmd, address); \ 1738 *(ptlp) = __ptl; \ 1739 spin_lock(__ptl); \ 1740 __pte; \ 1741 }) 1742 1743 #define pte_unmap_unlock(pte, ptl) do { \ 1744 spin_unlock(ptl); \ 1745 pte_unmap(pte); \ 1746 } while (0) 1747 1748 #define pte_alloc(mm, pmd, address) \ 1749 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1750 1751 #define pte_alloc_map(mm, pmd, address) \ 1752 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1753 1754 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1755 (pte_alloc(mm, pmd, address) ? \ 1756 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1757 1758 #define pte_alloc_kernel(pmd, address) \ 1759 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1760 NULL: pte_offset_kernel(pmd, address)) 1761 1762 #if USE_SPLIT_PMD_PTLOCKS 1763 1764 static struct page *pmd_to_page(pmd_t *pmd) 1765 { 1766 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1767 return virt_to_page((void *)((unsigned long) pmd & mask)); 1768 } 1769 1770 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1771 { 1772 return ptlock_ptr(pmd_to_page(pmd)); 1773 } 1774 1775 static inline bool pgtable_pmd_page_ctor(struct page *page) 1776 { 1777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1778 page->pmd_huge_pte = NULL; 1779 #endif 1780 return ptlock_init(page); 1781 } 1782 1783 static inline void pgtable_pmd_page_dtor(struct page *page) 1784 { 1785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1786 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1787 #endif 1788 ptlock_free(page); 1789 } 1790 1791 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1792 1793 #else 1794 1795 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1796 { 1797 return &mm->page_table_lock; 1798 } 1799 1800 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1801 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1802 1803 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1804 1805 #endif 1806 1807 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1808 { 1809 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1810 spin_lock(ptl); 1811 return ptl; 1812 } 1813 1814 /* 1815 * No scalability reason to split PUD locks yet, but follow the same pattern 1816 * as the PMD locks to make it easier if we decide to. The VM should not be 1817 * considered ready to switch to split PUD locks yet; there may be places 1818 * which need to be converted from page_table_lock. 1819 */ 1820 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1821 { 1822 return &mm->page_table_lock; 1823 } 1824 1825 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1826 { 1827 spinlock_t *ptl = pud_lockptr(mm, pud); 1828 1829 spin_lock(ptl); 1830 return ptl; 1831 } 1832 1833 extern void __init pagecache_init(void); 1834 extern void free_area_init(unsigned long * zones_size); 1835 extern void free_area_init_node(int nid, unsigned long * zones_size, 1836 unsigned long zone_start_pfn, unsigned long *zholes_size); 1837 extern void free_initmem(void); 1838 1839 /* 1840 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1841 * into the buddy system. The freed pages will be poisoned with pattern 1842 * "poison" if it's within range [0, UCHAR_MAX]. 1843 * Return pages freed into the buddy system. 1844 */ 1845 extern unsigned long free_reserved_area(void *start, void *end, 1846 int poison, char *s); 1847 1848 #ifdef CONFIG_HIGHMEM 1849 /* 1850 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1851 * and totalram_pages. 1852 */ 1853 extern void free_highmem_page(struct page *page); 1854 #endif 1855 1856 extern void adjust_managed_page_count(struct page *page, long count); 1857 extern void mem_init_print_info(const char *str); 1858 1859 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1860 1861 /* Free the reserved page into the buddy system, so it gets managed. */ 1862 static inline void __free_reserved_page(struct page *page) 1863 { 1864 ClearPageReserved(page); 1865 init_page_count(page); 1866 __free_page(page); 1867 } 1868 1869 static inline void free_reserved_page(struct page *page) 1870 { 1871 __free_reserved_page(page); 1872 adjust_managed_page_count(page, 1); 1873 } 1874 1875 static inline void mark_page_reserved(struct page *page) 1876 { 1877 SetPageReserved(page); 1878 adjust_managed_page_count(page, -1); 1879 } 1880 1881 /* 1882 * Default method to free all the __init memory into the buddy system. 1883 * The freed pages will be poisoned with pattern "poison" if it's within 1884 * range [0, UCHAR_MAX]. 1885 * Return pages freed into the buddy system. 1886 */ 1887 static inline unsigned long free_initmem_default(int poison) 1888 { 1889 extern char __init_begin[], __init_end[]; 1890 1891 return free_reserved_area(&__init_begin, &__init_end, 1892 poison, "unused kernel"); 1893 } 1894 1895 static inline unsigned long get_num_physpages(void) 1896 { 1897 int nid; 1898 unsigned long phys_pages = 0; 1899 1900 for_each_online_node(nid) 1901 phys_pages += node_present_pages(nid); 1902 1903 return phys_pages; 1904 } 1905 1906 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1907 /* 1908 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1909 * zones, allocate the backing mem_map and account for memory holes in a more 1910 * architecture independent manner. This is a substitute for creating the 1911 * zone_sizes[] and zholes_size[] arrays and passing them to 1912 * free_area_init_node() 1913 * 1914 * An architecture is expected to register range of page frames backed by 1915 * physical memory with memblock_add[_node]() before calling 1916 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1917 * usage, an architecture is expected to do something like 1918 * 1919 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1920 * max_highmem_pfn}; 1921 * for_each_valid_physical_page_range() 1922 * memblock_add_node(base, size, nid) 1923 * free_area_init_nodes(max_zone_pfns); 1924 * 1925 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1926 * registered physical page range. Similarly 1927 * sparse_memory_present_with_active_regions() calls memory_present() for 1928 * each range when SPARSEMEM is enabled. 1929 * 1930 * See mm/page_alloc.c for more information on each function exposed by 1931 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1932 */ 1933 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1934 unsigned long node_map_pfn_alignment(void); 1935 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1936 unsigned long end_pfn); 1937 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1938 unsigned long end_pfn); 1939 extern void get_pfn_range_for_nid(unsigned int nid, 1940 unsigned long *start_pfn, unsigned long *end_pfn); 1941 extern unsigned long find_min_pfn_with_active_regions(void); 1942 extern void free_bootmem_with_active_regions(int nid, 1943 unsigned long max_low_pfn); 1944 extern void sparse_memory_present_with_active_regions(int nid); 1945 1946 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1947 1948 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1949 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1950 static inline int __early_pfn_to_nid(unsigned long pfn, 1951 struct mminit_pfnnid_cache *state) 1952 { 1953 return 0; 1954 } 1955 #else 1956 /* please see mm/page_alloc.c */ 1957 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1958 /* there is a per-arch backend function. */ 1959 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1960 struct mminit_pfnnid_cache *state); 1961 #endif 1962 1963 extern void set_dma_reserve(unsigned long new_dma_reserve); 1964 extern void memmap_init_zone(unsigned long, int, unsigned long, 1965 unsigned long, enum memmap_context); 1966 extern void setup_per_zone_wmarks(void); 1967 extern int __meminit init_per_zone_wmark_min(void); 1968 extern void mem_init(void); 1969 extern void __init mmap_init(void); 1970 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 1971 extern long si_mem_available(void); 1972 extern void si_meminfo(struct sysinfo * val); 1973 extern void si_meminfo_node(struct sysinfo *val, int nid); 1974 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1975 extern unsigned long arch_reserved_kernel_pages(void); 1976 #endif 1977 1978 extern __printf(3, 4) 1979 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 1980 1981 extern void setup_per_cpu_pageset(void); 1982 1983 extern void zone_pcp_update(struct zone *zone); 1984 extern void zone_pcp_reset(struct zone *zone); 1985 1986 /* page_alloc.c */ 1987 extern int min_free_kbytes; 1988 extern int watermark_scale_factor; 1989 1990 /* nommu.c */ 1991 extern atomic_long_t mmap_pages_allocated; 1992 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1993 1994 /* interval_tree.c */ 1995 void vma_interval_tree_insert(struct vm_area_struct *node, 1996 struct rb_root *root); 1997 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1998 struct vm_area_struct *prev, 1999 struct rb_root *root); 2000 void vma_interval_tree_remove(struct vm_area_struct *node, 2001 struct rb_root *root); 2002 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 2003 unsigned long start, unsigned long last); 2004 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2005 unsigned long start, unsigned long last); 2006 2007 #define vma_interval_tree_foreach(vma, root, start, last) \ 2008 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2009 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2010 2011 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2012 struct rb_root *root); 2013 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2014 struct rb_root *root); 2015 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 2016 struct rb_root *root, unsigned long start, unsigned long last); 2017 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2018 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2019 #ifdef CONFIG_DEBUG_VM_RB 2020 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2021 #endif 2022 2023 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2024 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2025 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2026 2027 /* mmap.c */ 2028 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2029 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2030 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2031 struct vm_area_struct *expand); 2032 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2033 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2034 { 2035 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2036 } 2037 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2038 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2039 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2040 struct mempolicy *, struct vm_userfaultfd_ctx); 2041 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2042 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2043 unsigned long addr, int new_below); 2044 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2045 unsigned long addr, int new_below); 2046 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2047 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2048 struct rb_node **, struct rb_node *); 2049 extern void unlink_file_vma(struct vm_area_struct *); 2050 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2051 unsigned long addr, unsigned long len, pgoff_t pgoff, 2052 bool *need_rmap_locks); 2053 extern void exit_mmap(struct mm_struct *); 2054 2055 static inline int check_data_rlimit(unsigned long rlim, 2056 unsigned long new, 2057 unsigned long start, 2058 unsigned long end_data, 2059 unsigned long start_data) 2060 { 2061 if (rlim < RLIM_INFINITY) { 2062 if (((new - start) + (end_data - start_data)) > rlim) 2063 return -ENOSPC; 2064 } 2065 2066 return 0; 2067 } 2068 2069 extern int mm_take_all_locks(struct mm_struct *mm); 2070 extern void mm_drop_all_locks(struct mm_struct *mm); 2071 2072 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2073 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2074 extern struct file *get_task_exe_file(struct task_struct *task); 2075 2076 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2077 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2078 2079 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2080 const struct vm_special_mapping *sm); 2081 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2082 unsigned long addr, unsigned long len, 2083 unsigned long flags, 2084 const struct vm_special_mapping *spec); 2085 /* This is an obsolete alternative to _install_special_mapping. */ 2086 extern int install_special_mapping(struct mm_struct *mm, 2087 unsigned long addr, unsigned long len, 2088 unsigned long flags, struct page **pages); 2089 2090 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2091 2092 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2093 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2094 struct list_head *uf); 2095 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2096 unsigned long len, unsigned long prot, unsigned long flags, 2097 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2098 struct list_head *uf); 2099 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2100 struct list_head *uf); 2101 2102 static inline unsigned long 2103 do_mmap_pgoff(struct file *file, unsigned long addr, 2104 unsigned long len, unsigned long prot, unsigned long flags, 2105 unsigned long pgoff, unsigned long *populate, 2106 struct list_head *uf) 2107 { 2108 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2109 } 2110 2111 #ifdef CONFIG_MMU 2112 extern int __mm_populate(unsigned long addr, unsigned long len, 2113 int ignore_errors); 2114 static inline void mm_populate(unsigned long addr, unsigned long len) 2115 { 2116 /* Ignore errors */ 2117 (void) __mm_populate(addr, len, 1); 2118 } 2119 #else 2120 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2121 #endif 2122 2123 /* These take the mm semaphore themselves */ 2124 extern int __must_check vm_brk(unsigned long, unsigned long); 2125 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2126 extern int vm_munmap(unsigned long, size_t); 2127 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2128 unsigned long, unsigned long, 2129 unsigned long, unsigned long); 2130 2131 struct vm_unmapped_area_info { 2132 #define VM_UNMAPPED_AREA_TOPDOWN 1 2133 unsigned long flags; 2134 unsigned long length; 2135 unsigned long low_limit; 2136 unsigned long high_limit; 2137 unsigned long align_mask; 2138 unsigned long align_offset; 2139 }; 2140 2141 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2142 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2143 2144 /* 2145 * Search for an unmapped address range. 2146 * 2147 * We are looking for a range that: 2148 * - does not intersect with any VMA; 2149 * - is contained within the [low_limit, high_limit) interval; 2150 * - is at least the desired size. 2151 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2152 */ 2153 static inline unsigned long 2154 vm_unmapped_area(struct vm_unmapped_area_info *info) 2155 { 2156 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2157 return unmapped_area_topdown(info); 2158 else 2159 return unmapped_area(info); 2160 } 2161 2162 /* truncate.c */ 2163 extern void truncate_inode_pages(struct address_space *, loff_t); 2164 extern void truncate_inode_pages_range(struct address_space *, 2165 loff_t lstart, loff_t lend); 2166 extern void truncate_inode_pages_final(struct address_space *); 2167 2168 /* generic vm_area_ops exported for stackable file systems */ 2169 extern int filemap_fault(struct vm_fault *vmf); 2170 extern void filemap_map_pages(struct vm_fault *vmf, 2171 pgoff_t start_pgoff, pgoff_t end_pgoff); 2172 extern int filemap_page_mkwrite(struct vm_fault *vmf); 2173 2174 /* mm/page-writeback.c */ 2175 int __must_check write_one_page(struct page *page); 2176 void task_dirty_inc(struct task_struct *tsk); 2177 2178 /* readahead.c */ 2179 #define VM_MAX_READAHEAD 128 /* kbytes */ 2180 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2181 2182 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2183 pgoff_t offset, unsigned long nr_to_read); 2184 2185 void page_cache_sync_readahead(struct address_space *mapping, 2186 struct file_ra_state *ra, 2187 struct file *filp, 2188 pgoff_t offset, 2189 unsigned long size); 2190 2191 void page_cache_async_readahead(struct address_space *mapping, 2192 struct file_ra_state *ra, 2193 struct file *filp, 2194 struct page *pg, 2195 pgoff_t offset, 2196 unsigned long size); 2197 2198 extern unsigned long stack_guard_gap; 2199 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2200 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2201 2202 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2203 extern int expand_downwards(struct vm_area_struct *vma, 2204 unsigned long address); 2205 #if VM_GROWSUP 2206 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2207 #else 2208 #define expand_upwards(vma, address) (0) 2209 #endif 2210 2211 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2212 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2213 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2214 struct vm_area_struct **pprev); 2215 2216 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2217 NULL if none. Assume start_addr < end_addr. */ 2218 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2219 { 2220 struct vm_area_struct * vma = find_vma(mm,start_addr); 2221 2222 if (vma && end_addr <= vma->vm_start) 2223 vma = NULL; 2224 return vma; 2225 } 2226 2227 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2228 { 2229 unsigned long vm_start = vma->vm_start; 2230 2231 if (vma->vm_flags & VM_GROWSDOWN) { 2232 vm_start -= stack_guard_gap; 2233 if (vm_start > vma->vm_start) 2234 vm_start = 0; 2235 } 2236 return vm_start; 2237 } 2238 2239 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2240 { 2241 unsigned long vm_end = vma->vm_end; 2242 2243 if (vma->vm_flags & VM_GROWSUP) { 2244 vm_end += stack_guard_gap; 2245 if (vm_end < vma->vm_end) 2246 vm_end = -PAGE_SIZE; 2247 } 2248 return vm_end; 2249 } 2250 2251 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2252 { 2253 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2254 } 2255 2256 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2257 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2258 unsigned long vm_start, unsigned long vm_end) 2259 { 2260 struct vm_area_struct *vma = find_vma(mm, vm_start); 2261 2262 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2263 vma = NULL; 2264 2265 return vma; 2266 } 2267 2268 #ifdef CONFIG_MMU 2269 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2270 void vma_set_page_prot(struct vm_area_struct *vma); 2271 #else 2272 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2273 { 2274 return __pgprot(0); 2275 } 2276 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2277 { 2278 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2279 } 2280 #endif 2281 2282 #ifdef CONFIG_NUMA_BALANCING 2283 unsigned long change_prot_numa(struct vm_area_struct *vma, 2284 unsigned long start, unsigned long end); 2285 #endif 2286 2287 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2288 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2289 unsigned long pfn, unsigned long size, pgprot_t); 2290 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2291 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2292 unsigned long pfn); 2293 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2294 unsigned long pfn, pgprot_t pgprot); 2295 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2296 pfn_t pfn); 2297 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2298 2299 2300 struct page *follow_page_mask(struct vm_area_struct *vma, 2301 unsigned long address, unsigned int foll_flags, 2302 unsigned int *page_mask); 2303 2304 static inline struct page *follow_page(struct vm_area_struct *vma, 2305 unsigned long address, unsigned int foll_flags) 2306 { 2307 unsigned int unused_page_mask; 2308 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2309 } 2310 2311 #define FOLL_WRITE 0x01 /* check pte is writable */ 2312 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2313 #define FOLL_GET 0x04 /* do get_page on page */ 2314 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2315 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2316 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2317 * and return without waiting upon it */ 2318 #define FOLL_POPULATE 0x40 /* fault in page */ 2319 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2320 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2321 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2322 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2323 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2324 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2325 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2326 #define FOLL_COW 0x4000 /* internal GUP flag */ 2327 2328 static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2329 { 2330 if (vm_fault & VM_FAULT_OOM) 2331 return -ENOMEM; 2332 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2333 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2334 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2335 return -EFAULT; 2336 return 0; 2337 } 2338 2339 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2340 void *data); 2341 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2342 unsigned long size, pte_fn_t fn, void *data); 2343 2344 2345 #ifdef CONFIG_PAGE_POISONING 2346 extern bool page_poisoning_enabled(void); 2347 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2348 extern bool page_is_poisoned(struct page *page); 2349 #else 2350 static inline bool page_poisoning_enabled(void) { return false; } 2351 static inline void kernel_poison_pages(struct page *page, int numpages, 2352 int enable) { } 2353 static inline bool page_is_poisoned(struct page *page) { return false; } 2354 #endif 2355 2356 #ifdef CONFIG_DEBUG_PAGEALLOC 2357 extern bool _debug_pagealloc_enabled; 2358 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2359 2360 static inline bool debug_pagealloc_enabled(void) 2361 { 2362 return _debug_pagealloc_enabled; 2363 } 2364 2365 static inline void 2366 kernel_map_pages(struct page *page, int numpages, int enable) 2367 { 2368 if (!debug_pagealloc_enabled()) 2369 return; 2370 2371 __kernel_map_pages(page, numpages, enable); 2372 } 2373 #ifdef CONFIG_HIBERNATION 2374 extern bool kernel_page_present(struct page *page); 2375 #endif /* CONFIG_HIBERNATION */ 2376 #else /* CONFIG_DEBUG_PAGEALLOC */ 2377 static inline void 2378 kernel_map_pages(struct page *page, int numpages, int enable) {} 2379 #ifdef CONFIG_HIBERNATION 2380 static inline bool kernel_page_present(struct page *page) { return true; } 2381 #endif /* CONFIG_HIBERNATION */ 2382 static inline bool debug_pagealloc_enabled(void) 2383 { 2384 return false; 2385 } 2386 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2387 2388 #ifdef __HAVE_ARCH_GATE_AREA 2389 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2390 extern int in_gate_area_no_mm(unsigned long addr); 2391 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2392 #else 2393 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2394 { 2395 return NULL; 2396 } 2397 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2398 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2399 { 2400 return 0; 2401 } 2402 #endif /* __HAVE_ARCH_GATE_AREA */ 2403 2404 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2405 2406 #ifdef CONFIG_SYSCTL 2407 extern int sysctl_drop_caches; 2408 int drop_caches_sysctl_handler(struct ctl_table *, int, 2409 void __user *, size_t *, loff_t *); 2410 #endif 2411 2412 void drop_slab(void); 2413 void drop_slab_node(int nid); 2414 2415 #ifndef CONFIG_MMU 2416 #define randomize_va_space 0 2417 #else 2418 extern int randomize_va_space; 2419 #endif 2420 2421 const char * arch_vma_name(struct vm_area_struct *vma); 2422 void print_vma_addr(char *prefix, unsigned long rip); 2423 2424 void sparse_mem_maps_populate_node(struct page **map_map, 2425 unsigned long pnum_begin, 2426 unsigned long pnum_end, 2427 unsigned long map_count, 2428 int nodeid); 2429 2430 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2431 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2432 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2433 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2434 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2435 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2436 void *vmemmap_alloc_block(unsigned long size, int node); 2437 struct vmem_altmap; 2438 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2439 struct vmem_altmap *altmap); 2440 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2441 { 2442 return __vmemmap_alloc_block_buf(size, node, NULL); 2443 } 2444 2445 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2446 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2447 int node); 2448 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2449 void vmemmap_populate_print_last(void); 2450 #ifdef CONFIG_MEMORY_HOTPLUG 2451 void vmemmap_free(unsigned long start, unsigned long end); 2452 #endif 2453 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2454 unsigned long size); 2455 2456 enum mf_flags { 2457 MF_COUNT_INCREASED = 1 << 0, 2458 MF_ACTION_REQUIRED = 1 << 1, 2459 MF_MUST_KILL = 1 << 2, 2460 MF_SOFT_OFFLINE = 1 << 3, 2461 }; 2462 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2463 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2464 extern int unpoison_memory(unsigned long pfn); 2465 extern int get_hwpoison_page(struct page *page); 2466 #define put_hwpoison_page(page) put_page(page) 2467 extern int sysctl_memory_failure_early_kill; 2468 extern int sysctl_memory_failure_recovery; 2469 extern void shake_page(struct page *p, int access); 2470 extern atomic_long_t num_poisoned_pages; 2471 extern int soft_offline_page(struct page *page, int flags); 2472 2473 2474 /* 2475 * Error handlers for various types of pages. 2476 */ 2477 enum mf_result { 2478 MF_IGNORED, /* Error: cannot be handled */ 2479 MF_FAILED, /* Error: handling failed */ 2480 MF_DELAYED, /* Will be handled later */ 2481 MF_RECOVERED, /* Successfully recovered */ 2482 }; 2483 2484 enum mf_action_page_type { 2485 MF_MSG_KERNEL, 2486 MF_MSG_KERNEL_HIGH_ORDER, 2487 MF_MSG_SLAB, 2488 MF_MSG_DIFFERENT_COMPOUND, 2489 MF_MSG_POISONED_HUGE, 2490 MF_MSG_HUGE, 2491 MF_MSG_FREE_HUGE, 2492 MF_MSG_UNMAP_FAILED, 2493 MF_MSG_DIRTY_SWAPCACHE, 2494 MF_MSG_CLEAN_SWAPCACHE, 2495 MF_MSG_DIRTY_MLOCKED_LRU, 2496 MF_MSG_CLEAN_MLOCKED_LRU, 2497 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2498 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2499 MF_MSG_DIRTY_LRU, 2500 MF_MSG_CLEAN_LRU, 2501 MF_MSG_TRUNCATED_LRU, 2502 MF_MSG_BUDDY, 2503 MF_MSG_BUDDY_2ND, 2504 MF_MSG_UNKNOWN, 2505 }; 2506 2507 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2508 extern void clear_huge_page(struct page *page, 2509 unsigned long addr, 2510 unsigned int pages_per_huge_page); 2511 extern void copy_user_huge_page(struct page *dst, struct page *src, 2512 unsigned long addr, struct vm_area_struct *vma, 2513 unsigned int pages_per_huge_page); 2514 extern long copy_huge_page_from_user(struct page *dst_page, 2515 const void __user *usr_src, 2516 unsigned int pages_per_huge_page, 2517 bool allow_pagefault); 2518 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2519 2520 extern struct page_ext_operations debug_guardpage_ops; 2521 2522 #ifdef CONFIG_DEBUG_PAGEALLOC 2523 extern unsigned int _debug_guardpage_minorder; 2524 extern bool _debug_guardpage_enabled; 2525 2526 static inline unsigned int debug_guardpage_minorder(void) 2527 { 2528 return _debug_guardpage_minorder; 2529 } 2530 2531 static inline bool debug_guardpage_enabled(void) 2532 { 2533 return _debug_guardpage_enabled; 2534 } 2535 2536 static inline bool page_is_guard(struct page *page) 2537 { 2538 struct page_ext *page_ext; 2539 2540 if (!debug_guardpage_enabled()) 2541 return false; 2542 2543 page_ext = lookup_page_ext(page); 2544 if (unlikely(!page_ext)) 2545 return false; 2546 2547 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2548 } 2549 #else 2550 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2551 static inline bool debug_guardpage_enabled(void) { return false; } 2552 static inline bool page_is_guard(struct page *page) { return false; } 2553 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2554 2555 #if MAX_NUMNODES > 1 2556 void __init setup_nr_node_ids(void); 2557 #else 2558 static inline void setup_nr_node_ids(void) {} 2559 #endif 2560 2561 #endif /* __KERNEL__ */ 2562 #endif /* _LINUX_MM_H */ 2563