1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 #ifdef CONFIG_64BIT 410 /* VM is sealed, in vm_flags */ 411 #define VM_SEALED _BITUL(63) 412 #endif 413 414 /* Bits set in the VMA until the stack is in its final location */ 415 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 416 417 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 418 419 /* Common data flag combinations */ 420 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 421 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 422 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 423 VM_MAYWRITE | VM_MAYEXEC) 424 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 425 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 426 427 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 428 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 429 #endif 430 431 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 432 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 433 #endif 434 435 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 436 437 #ifdef CONFIG_STACK_GROWSUP 438 #define VM_STACK VM_GROWSUP 439 #define VM_STACK_EARLY VM_GROWSDOWN 440 #else 441 #define VM_STACK VM_GROWSDOWN 442 #define VM_STACK_EARLY 0 443 #endif 444 445 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 446 447 /* VMA basic access permission flags */ 448 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 449 450 451 /* 452 * Special vmas that are non-mergable, non-mlock()able. 453 */ 454 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 455 456 /* This mask prevents VMA from being scanned with khugepaged */ 457 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 458 459 /* This mask defines which mm->def_flags a process can inherit its parent */ 460 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 461 462 /* This mask represents all the VMA flag bits used by mlock */ 463 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 464 465 /* Arch-specific flags to clear when updating VM flags on protection change */ 466 #ifndef VM_ARCH_CLEAR 467 # define VM_ARCH_CLEAR VM_NONE 468 #endif 469 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 470 471 /* 472 * mapping from the currently active vm_flags protection bits (the 473 * low four bits) to a page protection mask.. 474 */ 475 476 /* 477 * The default fault flags that should be used by most of the 478 * arch-specific page fault handlers. 479 */ 480 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 481 FAULT_FLAG_KILLABLE | \ 482 FAULT_FLAG_INTERRUPTIBLE) 483 484 /** 485 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 486 * @flags: Fault flags. 487 * 488 * This is mostly used for places where we want to try to avoid taking 489 * the mmap_lock for too long a time when waiting for another condition 490 * to change, in which case we can try to be polite to release the 491 * mmap_lock in the first round to avoid potential starvation of other 492 * processes that would also want the mmap_lock. 493 * 494 * Return: true if the page fault allows retry and this is the first 495 * attempt of the fault handling; false otherwise. 496 */ 497 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 498 { 499 return (flags & FAULT_FLAG_ALLOW_RETRY) && 500 (!(flags & FAULT_FLAG_TRIED)); 501 } 502 503 #define FAULT_FLAG_TRACE \ 504 { FAULT_FLAG_WRITE, "WRITE" }, \ 505 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 506 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 507 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 508 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 509 { FAULT_FLAG_TRIED, "TRIED" }, \ 510 { FAULT_FLAG_USER, "USER" }, \ 511 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 512 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 513 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 514 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 515 516 /* 517 * vm_fault is filled by the pagefault handler and passed to the vma's 518 * ->fault function. The vma's ->fault is responsible for returning a bitmask 519 * of VM_FAULT_xxx flags that give details about how the fault was handled. 520 * 521 * MM layer fills up gfp_mask for page allocations but fault handler might 522 * alter it if its implementation requires a different allocation context. 523 * 524 * pgoff should be used in favour of virtual_address, if possible. 525 */ 526 struct vm_fault { 527 const struct { 528 struct vm_area_struct *vma; /* Target VMA */ 529 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 530 pgoff_t pgoff; /* Logical page offset based on vma */ 531 unsigned long address; /* Faulting virtual address - masked */ 532 unsigned long real_address; /* Faulting virtual address - unmasked */ 533 }; 534 enum fault_flag flags; /* FAULT_FLAG_xxx flags 535 * XXX: should really be 'const' */ 536 pmd_t *pmd; /* Pointer to pmd entry matching 537 * the 'address' */ 538 pud_t *pud; /* Pointer to pud entry matching 539 * the 'address' 540 */ 541 union { 542 pte_t orig_pte; /* Value of PTE at the time of fault */ 543 pmd_t orig_pmd; /* Value of PMD at the time of fault, 544 * used by PMD fault only. 545 */ 546 }; 547 548 struct page *cow_page; /* Page handler may use for COW fault */ 549 struct page *page; /* ->fault handlers should return a 550 * page here, unless VM_FAULT_NOPAGE 551 * is set (which is also implied by 552 * VM_FAULT_ERROR). 553 */ 554 /* These three entries are valid only while holding ptl lock */ 555 pte_t *pte; /* Pointer to pte entry matching 556 * the 'address'. NULL if the page 557 * table hasn't been allocated. 558 */ 559 spinlock_t *ptl; /* Page table lock. 560 * Protects pte page table if 'pte' 561 * is not NULL, otherwise pmd. 562 */ 563 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 564 * vm_ops->map_pages() sets up a page 565 * table from atomic context. 566 * do_fault_around() pre-allocates 567 * page table to avoid allocation from 568 * atomic context. 569 */ 570 }; 571 572 /* 573 * These are the virtual MM functions - opening of an area, closing and 574 * unmapping it (needed to keep files on disk up-to-date etc), pointer 575 * to the functions called when a no-page or a wp-page exception occurs. 576 */ 577 struct vm_operations_struct { 578 void (*open)(struct vm_area_struct * area); 579 /** 580 * @close: Called when the VMA is being removed from the MM. 581 * Context: User context. May sleep. Caller holds mmap_lock. 582 */ 583 void (*close)(struct vm_area_struct * area); 584 /* Called any time before splitting to check if it's allowed */ 585 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 586 int (*mremap)(struct vm_area_struct *area); 587 /* 588 * Called by mprotect() to make driver-specific permission 589 * checks before mprotect() is finalised. The VMA must not 590 * be modified. Returns 0 if mprotect() can proceed. 591 */ 592 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 593 unsigned long end, unsigned long newflags); 594 vm_fault_t (*fault)(struct vm_fault *vmf); 595 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 596 vm_fault_t (*map_pages)(struct vm_fault *vmf, 597 pgoff_t start_pgoff, pgoff_t end_pgoff); 598 unsigned long (*pagesize)(struct vm_area_struct * area); 599 600 /* notification that a previously read-only page is about to become 601 * writable, if an error is returned it will cause a SIGBUS */ 602 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 603 604 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 605 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 606 607 /* called by access_process_vm when get_user_pages() fails, typically 608 * for use by special VMAs. See also generic_access_phys() for a generic 609 * implementation useful for any iomem mapping. 610 */ 611 int (*access)(struct vm_area_struct *vma, unsigned long addr, 612 void *buf, int len, int write); 613 614 /* Called by the /proc/PID/maps code to ask the vma whether it 615 * has a special name. Returning non-NULL will also cause this 616 * vma to be dumped unconditionally. */ 617 const char *(*name)(struct vm_area_struct *vma); 618 619 #ifdef CONFIG_NUMA 620 /* 621 * set_policy() op must add a reference to any non-NULL @new mempolicy 622 * to hold the policy upon return. Caller should pass NULL @new to 623 * remove a policy and fall back to surrounding context--i.e. do not 624 * install a MPOL_DEFAULT policy, nor the task or system default 625 * mempolicy. 626 */ 627 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 628 629 /* 630 * get_policy() op must add reference [mpol_get()] to any policy at 631 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 632 * in mm/mempolicy.c will do this automatically. 633 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 634 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 635 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 636 * must return NULL--i.e., do not "fallback" to task or system default 637 * policy. 638 */ 639 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 640 unsigned long addr, pgoff_t *ilx); 641 #endif 642 /* 643 * Called by vm_normal_page() for special PTEs to find the 644 * page for @addr. This is useful if the default behavior 645 * (using pte_page()) would not find the correct page. 646 */ 647 struct page *(*find_special_page)(struct vm_area_struct *vma, 648 unsigned long addr); 649 }; 650 651 #ifdef CONFIG_NUMA_BALANCING 652 static inline void vma_numab_state_init(struct vm_area_struct *vma) 653 { 654 vma->numab_state = NULL; 655 } 656 static inline void vma_numab_state_free(struct vm_area_struct *vma) 657 { 658 kfree(vma->numab_state); 659 } 660 #else 661 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 662 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 663 #endif /* CONFIG_NUMA_BALANCING */ 664 665 #ifdef CONFIG_PER_VMA_LOCK 666 /* 667 * Try to read-lock a vma. The function is allowed to occasionally yield false 668 * locked result to avoid performance overhead, in which case we fall back to 669 * using mmap_lock. The function should never yield false unlocked result. 670 */ 671 static inline bool vma_start_read(struct vm_area_struct *vma) 672 { 673 /* 674 * Check before locking. A race might cause false locked result. 675 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 676 * ACQUIRE semantics, because this is just a lockless check whose result 677 * we don't rely on for anything - the mm_lock_seq read against which we 678 * need ordering is below. 679 */ 680 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 681 return false; 682 683 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 684 return false; 685 686 /* 687 * Overflow might produce false locked result. 688 * False unlocked result is impossible because we modify and check 689 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 690 * modification invalidates all existing locks. 691 * 692 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 693 * racing with vma_end_write_all(), we only start reading from the VMA 694 * after it has been unlocked. 695 * This pairs with RELEASE semantics in vma_end_write_all(). 696 */ 697 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 698 up_read(&vma->vm_lock->lock); 699 return false; 700 } 701 return true; 702 } 703 704 static inline void vma_end_read(struct vm_area_struct *vma) 705 { 706 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 707 up_read(&vma->vm_lock->lock); 708 rcu_read_unlock(); 709 } 710 711 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 712 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 713 { 714 mmap_assert_write_locked(vma->vm_mm); 715 716 /* 717 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 718 * mm->mm_lock_seq can't be concurrently modified. 719 */ 720 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 721 return (vma->vm_lock_seq == *mm_lock_seq); 722 } 723 724 /* 725 * Begin writing to a VMA. 726 * Exclude concurrent readers under the per-VMA lock until the currently 727 * write-locked mmap_lock is dropped or downgraded. 728 */ 729 static inline void vma_start_write(struct vm_area_struct *vma) 730 { 731 int mm_lock_seq; 732 733 if (__is_vma_write_locked(vma, &mm_lock_seq)) 734 return; 735 736 down_write(&vma->vm_lock->lock); 737 /* 738 * We should use WRITE_ONCE() here because we can have concurrent reads 739 * from the early lockless pessimistic check in vma_start_read(). 740 * We don't really care about the correctness of that early check, but 741 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 742 */ 743 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 744 up_write(&vma->vm_lock->lock); 745 } 746 747 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 748 { 749 int mm_lock_seq; 750 751 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 752 } 753 754 static inline void vma_assert_locked(struct vm_area_struct *vma) 755 { 756 if (!rwsem_is_locked(&vma->vm_lock->lock)) 757 vma_assert_write_locked(vma); 758 } 759 760 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 761 { 762 /* When detaching vma should be write-locked */ 763 if (detached) 764 vma_assert_write_locked(vma); 765 vma->detached = detached; 766 } 767 768 static inline void release_fault_lock(struct vm_fault *vmf) 769 { 770 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 771 vma_end_read(vmf->vma); 772 else 773 mmap_read_unlock(vmf->vma->vm_mm); 774 } 775 776 static inline void assert_fault_locked(struct vm_fault *vmf) 777 { 778 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 779 vma_assert_locked(vmf->vma); 780 else 781 mmap_assert_locked(vmf->vma->vm_mm); 782 } 783 784 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 785 unsigned long address); 786 787 #else /* CONFIG_PER_VMA_LOCK */ 788 789 static inline bool vma_start_read(struct vm_area_struct *vma) 790 { return false; } 791 static inline void vma_end_read(struct vm_area_struct *vma) {} 792 static inline void vma_start_write(struct vm_area_struct *vma) {} 793 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 794 { mmap_assert_write_locked(vma->vm_mm); } 795 static inline void vma_mark_detached(struct vm_area_struct *vma, 796 bool detached) {} 797 798 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 799 unsigned long address) 800 { 801 return NULL; 802 } 803 804 static inline void vma_assert_locked(struct vm_area_struct *vma) 805 { 806 mmap_assert_locked(vma->vm_mm); 807 } 808 809 static inline void release_fault_lock(struct vm_fault *vmf) 810 { 811 mmap_read_unlock(vmf->vma->vm_mm); 812 } 813 814 static inline void assert_fault_locked(struct vm_fault *vmf) 815 { 816 mmap_assert_locked(vmf->vma->vm_mm); 817 } 818 819 #endif /* CONFIG_PER_VMA_LOCK */ 820 821 extern const struct vm_operations_struct vma_dummy_vm_ops; 822 823 /* 824 * WARNING: vma_init does not initialize vma->vm_lock. 825 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 826 */ 827 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 828 { 829 memset(vma, 0, sizeof(*vma)); 830 vma->vm_mm = mm; 831 vma->vm_ops = &vma_dummy_vm_ops; 832 INIT_LIST_HEAD(&vma->anon_vma_chain); 833 vma_mark_detached(vma, false); 834 vma_numab_state_init(vma); 835 } 836 837 /* Use when VMA is not part of the VMA tree and needs no locking */ 838 static inline void vm_flags_init(struct vm_area_struct *vma, 839 vm_flags_t flags) 840 { 841 ACCESS_PRIVATE(vma, __vm_flags) = flags; 842 } 843 844 /* 845 * Use when VMA is part of the VMA tree and modifications need coordination 846 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 847 * it should be locked explicitly beforehand. 848 */ 849 static inline void vm_flags_reset(struct vm_area_struct *vma, 850 vm_flags_t flags) 851 { 852 vma_assert_write_locked(vma); 853 vm_flags_init(vma, flags); 854 } 855 856 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 857 vm_flags_t flags) 858 { 859 vma_assert_write_locked(vma); 860 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 861 } 862 863 static inline void vm_flags_set(struct vm_area_struct *vma, 864 vm_flags_t flags) 865 { 866 vma_start_write(vma); 867 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 868 } 869 870 static inline void vm_flags_clear(struct vm_area_struct *vma, 871 vm_flags_t flags) 872 { 873 vma_start_write(vma); 874 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 875 } 876 877 /* 878 * Use only if VMA is not part of the VMA tree or has no other users and 879 * therefore needs no locking. 880 */ 881 static inline void __vm_flags_mod(struct vm_area_struct *vma, 882 vm_flags_t set, vm_flags_t clear) 883 { 884 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 885 } 886 887 /* 888 * Use only when the order of set/clear operations is unimportant, otherwise 889 * use vm_flags_{set|clear} explicitly. 890 */ 891 static inline void vm_flags_mod(struct vm_area_struct *vma, 892 vm_flags_t set, vm_flags_t clear) 893 { 894 vma_start_write(vma); 895 __vm_flags_mod(vma, set, clear); 896 } 897 898 static inline void vma_set_anonymous(struct vm_area_struct *vma) 899 { 900 vma->vm_ops = NULL; 901 } 902 903 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 904 { 905 return !vma->vm_ops; 906 } 907 908 /* 909 * Indicate if the VMA is a heap for the given task; for 910 * /proc/PID/maps that is the heap of the main task. 911 */ 912 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 913 { 914 return vma->vm_start < vma->vm_mm->brk && 915 vma->vm_end > vma->vm_mm->start_brk; 916 } 917 918 /* 919 * Indicate if the VMA is a stack for the given task; for 920 * /proc/PID/maps that is the stack of the main task. 921 */ 922 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 923 { 924 /* 925 * We make no effort to guess what a given thread considers to be 926 * its "stack". It's not even well-defined for programs written 927 * languages like Go. 928 */ 929 return vma->vm_start <= vma->vm_mm->start_stack && 930 vma->vm_end >= vma->vm_mm->start_stack; 931 } 932 933 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 934 { 935 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 936 937 if (!maybe_stack) 938 return false; 939 940 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 941 VM_STACK_INCOMPLETE_SETUP) 942 return true; 943 944 return false; 945 } 946 947 static inline bool vma_is_foreign(struct vm_area_struct *vma) 948 { 949 if (!current->mm) 950 return true; 951 952 if (current->mm != vma->vm_mm) 953 return true; 954 955 return false; 956 } 957 958 static inline bool vma_is_accessible(struct vm_area_struct *vma) 959 { 960 return vma->vm_flags & VM_ACCESS_FLAGS; 961 } 962 963 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 964 { 965 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 966 (VM_SHARED | VM_MAYWRITE); 967 } 968 969 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 970 { 971 return is_shared_maywrite(vma->vm_flags); 972 } 973 974 static inline 975 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 976 { 977 return mas_find(&vmi->mas, max - 1); 978 } 979 980 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 981 { 982 /* 983 * Uses mas_find() to get the first VMA when the iterator starts. 984 * Calling mas_next() could skip the first entry. 985 */ 986 return mas_find(&vmi->mas, ULONG_MAX); 987 } 988 989 static inline 990 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 991 { 992 return mas_next_range(&vmi->mas, ULONG_MAX); 993 } 994 995 996 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 997 { 998 return mas_prev(&vmi->mas, 0); 999 } 1000 1001 static inline 1002 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 1003 { 1004 return mas_prev_range(&vmi->mas, 0); 1005 } 1006 1007 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1008 { 1009 return vmi->mas.index; 1010 } 1011 1012 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1013 { 1014 return vmi->mas.last + 1; 1015 } 1016 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1017 unsigned long count) 1018 { 1019 return mas_expected_entries(&vmi->mas, count); 1020 } 1021 1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1023 unsigned long start, unsigned long end, gfp_t gfp) 1024 { 1025 __mas_set_range(&vmi->mas, start, end - 1); 1026 mas_store_gfp(&vmi->mas, NULL, gfp); 1027 if (unlikely(mas_is_err(&vmi->mas))) 1028 return -ENOMEM; 1029 1030 return 0; 1031 } 1032 1033 /* Free any unused preallocations */ 1034 static inline void vma_iter_free(struct vma_iterator *vmi) 1035 { 1036 mas_destroy(&vmi->mas); 1037 } 1038 1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1040 struct vm_area_struct *vma) 1041 { 1042 vmi->mas.index = vma->vm_start; 1043 vmi->mas.last = vma->vm_end - 1; 1044 mas_store(&vmi->mas, vma); 1045 if (unlikely(mas_is_err(&vmi->mas))) 1046 return -ENOMEM; 1047 1048 return 0; 1049 } 1050 1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1052 { 1053 mas_pause(&vmi->mas); 1054 } 1055 1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1057 { 1058 mas_set(&vmi->mas, addr); 1059 } 1060 1061 #define for_each_vma(__vmi, __vma) \ 1062 while (((__vma) = vma_next(&(__vmi))) != NULL) 1063 1064 /* The MM code likes to work with exclusive end addresses */ 1065 #define for_each_vma_range(__vmi, __vma, __end) \ 1066 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1067 1068 #ifdef CONFIG_SHMEM 1069 /* 1070 * The vma_is_shmem is not inline because it is used only by slow 1071 * paths in userfault. 1072 */ 1073 bool vma_is_shmem(struct vm_area_struct *vma); 1074 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1075 #else 1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1078 #endif 1079 1080 int vma_is_stack_for_current(struct vm_area_struct *vma); 1081 1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1084 1085 struct mmu_gather; 1086 struct inode; 1087 1088 /* 1089 * compound_order() can be called without holding a reference, which means 1090 * that niceties like page_folio() don't work. These callers should be 1091 * prepared to handle wild return values. For example, PG_head may be 1092 * set before the order is initialised, or this may be a tail page. 1093 * See compaction.c for some good examples. 1094 */ 1095 static inline unsigned int compound_order(struct page *page) 1096 { 1097 struct folio *folio = (struct folio *)page; 1098 1099 if (!test_bit(PG_head, &folio->flags)) 1100 return 0; 1101 return folio->_flags_1 & 0xff; 1102 } 1103 1104 /** 1105 * folio_order - The allocation order of a folio. 1106 * @folio: The folio. 1107 * 1108 * A folio is composed of 2^order pages. See get_order() for the definition 1109 * of order. 1110 * 1111 * Return: The order of the folio. 1112 */ 1113 static inline unsigned int folio_order(struct folio *folio) 1114 { 1115 if (!folio_test_large(folio)) 1116 return 0; 1117 return folio->_flags_1 & 0xff; 1118 } 1119 1120 #include <linux/huge_mm.h> 1121 1122 /* 1123 * Methods to modify the page usage count. 1124 * 1125 * What counts for a page usage: 1126 * - cache mapping (page->mapping) 1127 * - private data (page->private) 1128 * - page mapped in a task's page tables, each mapping 1129 * is counted separately 1130 * 1131 * Also, many kernel routines increase the page count before a critical 1132 * routine so they can be sure the page doesn't go away from under them. 1133 */ 1134 1135 /* 1136 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1137 */ 1138 static inline int put_page_testzero(struct page *page) 1139 { 1140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1141 return page_ref_dec_and_test(page); 1142 } 1143 1144 static inline int folio_put_testzero(struct folio *folio) 1145 { 1146 return put_page_testzero(&folio->page); 1147 } 1148 1149 /* 1150 * Try to grab a ref unless the page has a refcount of zero, return false if 1151 * that is the case. 1152 * This can be called when MMU is off so it must not access 1153 * any of the virtual mappings. 1154 */ 1155 static inline bool get_page_unless_zero(struct page *page) 1156 { 1157 return page_ref_add_unless(page, 1, 0); 1158 } 1159 1160 static inline struct folio *folio_get_nontail_page(struct page *page) 1161 { 1162 if (unlikely(!get_page_unless_zero(page))) 1163 return NULL; 1164 return (struct folio *)page; 1165 } 1166 1167 extern int page_is_ram(unsigned long pfn); 1168 1169 enum { 1170 REGION_INTERSECTS, 1171 REGION_DISJOINT, 1172 REGION_MIXED, 1173 }; 1174 1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1176 unsigned long desc); 1177 1178 /* Support for virtually mapped pages */ 1179 struct page *vmalloc_to_page(const void *addr); 1180 unsigned long vmalloc_to_pfn(const void *addr); 1181 1182 /* 1183 * Determine if an address is within the vmalloc range 1184 * 1185 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1186 * is no special casing required. 1187 */ 1188 #ifdef CONFIG_MMU 1189 extern bool is_vmalloc_addr(const void *x); 1190 extern int is_vmalloc_or_module_addr(const void *x); 1191 #else 1192 static inline bool is_vmalloc_addr(const void *x) 1193 { 1194 return false; 1195 } 1196 static inline int is_vmalloc_or_module_addr(const void *x) 1197 { 1198 return 0; 1199 } 1200 #endif 1201 1202 /* 1203 * How many times the entire folio is mapped as a single unit (eg by a 1204 * PMD or PUD entry). This is probably not what you want, except for 1205 * debugging purposes or implementation of other core folio_*() primitives. 1206 */ 1207 static inline int folio_entire_mapcount(const struct folio *folio) 1208 { 1209 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1210 return atomic_read(&folio->_entire_mapcount) + 1; 1211 } 1212 1213 static inline int folio_large_mapcount(const struct folio *folio) 1214 { 1215 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1216 return atomic_read(&folio->_large_mapcount) + 1; 1217 } 1218 1219 /** 1220 * folio_mapcount() - Number of mappings of this folio. 1221 * @folio: The folio. 1222 * 1223 * The folio mapcount corresponds to the number of present user page table 1224 * entries that reference any part of a folio. Each such present user page 1225 * table entry must be paired with exactly on folio reference. 1226 * 1227 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1228 * exactly once. 1229 * 1230 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1231 * references the entire folio counts exactly once, even when such special 1232 * page table entries are comprised of multiple ordinary page table entries. 1233 * 1234 * Will report 0 for pages which cannot be mapped into userspace, such as 1235 * slab, page tables and similar. 1236 * 1237 * Return: The number of times this folio is mapped. 1238 */ 1239 static inline int folio_mapcount(const struct folio *folio) 1240 { 1241 int mapcount; 1242 1243 if (likely(!folio_test_large(folio))) { 1244 mapcount = atomic_read(&folio->_mapcount) + 1; 1245 /* Handle page_has_type() pages */ 1246 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1247 mapcount = 0; 1248 return mapcount; 1249 } 1250 return folio_large_mapcount(folio); 1251 } 1252 1253 /** 1254 * folio_mapped - Is this folio mapped into userspace? 1255 * @folio: The folio. 1256 * 1257 * Return: True if any page in this folio is referenced by user page tables. 1258 */ 1259 static inline bool folio_mapped(const struct folio *folio) 1260 { 1261 return folio_mapcount(folio) >= 1; 1262 } 1263 1264 /* 1265 * Return true if this page is mapped into pagetables. 1266 * For compound page it returns true if any sub-page of compound page is mapped, 1267 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1268 */ 1269 static inline bool page_mapped(const struct page *page) 1270 { 1271 return folio_mapped(page_folio(page)); 1272 } 1273 1274 static inline struct page *virt_to_head_page(const void *x) 1275 { 1276 struct page *page = virt_to_page(x); 1277 1278 return compound_head(page); 1279 } 1280 1281 static inline struct folio *virt_to_folio(const void *x) 1282 { 1283 struct page *page = virt_to_page(x); 1284 1285 return page_folio(page); 1286 } 1287 1288 void __folio_put(struct folio *folio); 1289 1290 void put_pages_list(struct list_head *pages); 1291 1292 void split_page(struct page *page, unsigned int order); 1293 void folio_copy(struct folio *dst, struct folio *src); 1294 int folio_mc_copy(struct folio *dst, struct folio *src); 1295 1296 unsigned long nr_free_buffer_pages(void); 1297 1298 /* Returns the number of bytes in this potentially compound page. */ 1299 static inline unsigned long page_size(struct page *page) 1300 { 1301 return PAGE_SIZE << compound_order(page); 1302 } 1303 1304 /* Returns the number of bits needed for the number of bytes in a page */ 1305 static inline unsigned int page_shift(struct page *page) 1306 { 1307 return PAGE_SHIFT + compound_order(page); 1308 } 1309 1310 /** 1311 * thp_order - Order of a transparent huge page. 1312 * @page: Head page of a transparent huge page. 1313 */ 1314 static inline unsigned int thp_order(struct page *page) 1315 { 1316 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1317 return compound_order(page); 1318 } 1319 1320 /** 1321 * thp_size - Size of a transparent huge page. 1322 * @page: Head page of a transparent huge page. 1323 * 1324 * Return: Number of bytes in this page. 1325 */ 1326 static inline unsigned long thp_size(struct page *page) 1327 { 1328 return PAGE_SIZE << thp_order(page); 1329 } 1330 1331 #ifdef CONFIG_MMU 1332 /* 1333 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1334 * servicing faults for write access. In the normal case, do always want 1335 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1336 * that do not have writing enabled, when used by access_process_vm. 1337 */ 1338 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1339 { 1340 if (likely(vma->vm_flags & VM_WRITE)) 1341 pte = pte_mkwrite(pte, vma); 1342 return pte; 1343 } 1344 1345 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1346 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1347 struct page *page, unsigned int nr, unsigned long addr); 1348 1349 vm_fault_t finish_fault(struct vm_fault *vmf); 1350 #endif 1351 1352 /* 1353 * Multiple processes may "see" the same page. E.g. for untouched 1354 * mappings of /dev/null, all processes see the same page full of 1355 * zeroes, and text pages of executables and shared libraries have 1356 * only one copy in memory, at most, normally. 1357 * 1358 * For the non-reserved pages, page_count(page) denotes a reference count. 1359 * page_count() == 0 means the page is free. page->lru is then used for 1360 * freelist management in the buddy allocator. 1361 * page_count() > 0 means the page has been allocated. 1362 * 1363 * Pages are allocated by the slab allocator in order to provide memory 1364 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1365 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1366 * unless a particular usage is carefully commented. (the responsibility of 1367 * freeing the kmalloc memory is the caller's, of course). 1368 * 1369 * A page may be used by anyone else who does a __get_free_page(). 1370 * In this case, page_count still tracks the references, and should only 1371 * be used through the normal accessor functions. The top bits of page->flags 1372 * and page->virtual store page management information, but all other fields 1373 * are unused and could be used privately, carefully. The management of this 1374 * page is the responsibility of the one who allocated it, and those who have 1375 * subsequently been given references to it. 1376 * 1377 * The other pages (we may call them "pagecache pages") are completely 1378 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1379 * The following discussion applies only to them. 1380 * 1381 * A pagecache page contains an opaque `private' member, which belongs to the 1382 * page's address_space. Usually, this is the address of a circular list of 1383 * the page's disk buffers. PG_private must be set to tell the VM to call 1384 * into the filesystem to release these pages. 1385 * 1386 * A page may belong to an inode's memory mapping. In this case, page->mapping 1387 * is the pointer to the inode, and page->index is the file offset of the page, 1388 * in units of PAGE_SIZE. 1389 * 1390 * If pagecache pages are not associated with an inode, they are said to be 1391 * anonymous pages. These may become associated with the swapcache, and in that 1392 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1393 * 1394 * In either case (swapcache or inode backed), the pagecache itself holds one 1395 * reference to the page. Setting PG_private should also increment the 1396 * refcount. The each user mapping also has a reference to the page. 1397 * 1398 * The pagecache pages are stored in a per-mapping radix tree, which is 1399 * rooted at mapping->i_pages, and indexed by offset. 1400 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1401 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1402 * 1403 * All pagecache pages may be subject to I/O: 1404 * - inode pages may need to be read from disk, 1405 * - inode pages which have been modified and are MAP_SHARED may need 1406 * to be written back to the inode on disk, 1407 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1408 * modified may need to be swapped out to swap space and (later) to be read 1409 * back into memory. 1410 */ 1411 1412 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1413 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1414 1415 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1416 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1417 { 1418 if (!static_branch_unlikely(&devmap_managed_key)) 1419 return false; 1420 if (!folio_is_zone_device(folio)) 1421 return false; 1422 return __put_devmap_managed_folio_refs(folio, refs); 1423 } 1424 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1425 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1426 { 1427 return false; 1428 } 1429 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1430 1431 /* 127: arbitrary random number, small enough to assemble well */ 1432 #define folio_ref_zero_or_close_to_overflow(folio) \ 1433 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1434 1435 /** 1436 * folio_get - Increment the reference count on a folio. 1437 * @folio: The folio. 1438 * 1439 * Context: May be called in any context, as long as you know that 1440 * you have a refcount on the folio. If you do not already have one, 1441 * folio_try_get() may be the right interface for you to use. 1442 */ 1443 static inline void folio_get(struct folio *folio) 1444 { 1445 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1446 folio_ref_inc(folio); 1447 } 1448 1449 static inline void get_page(struct page *page) 1450 { 1451 folio_get(page_folio(page)); 1452 } 1453 1454 static inline __must_check bool try_get_page(struct page *page) 1455 { 1456 page = compound_head(page); 1457 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1458 return false; 1459 page_ref_inc(page); 1460 return true; 1461 } 1462 1463 /** 1464 * folio_put - Decrement the reference count on a folio. 1465 * @folio: The folio. 1466 * 1467 * If the folio's reference count reaches zero, the memory will be 1468 * released back to the page allocator and may be used by another 1469 * allocation immediately. Do not access the memory or the struct folio 1470 * after calling folio_put() unless you can be sure that it wasn't the 1471 * last reference. 1472 * 1473 * Context: May be called in process or interrupt context, but not in NMI 1474 * context. May be called while holding a spinlock. 1475 */ 1476 static inline void folio_put(struct folio *folio) 1477 { 1478 if (folio_put_testzero(folio)) 1479 __folio_put(folio); 1480 } 1481 1482 /** 1483 * folio_put_refs - Reduce the reference count on a folio. 1484 * @folio: The folio. 1485 * @refs: The amount to subtract from the folio's reference count. 1486 * 1487 * If the folio's reference count reaches zero, the memory will be 1488 * released back to the page allocator and may be used by another 1489 * allocation immediately. Do not access the memory or the struct folio 1490 * after calling folio_put_refs() unless you can be sure that these weren't 1491 * the last references. 1492 * 1493 * Context: May be called in process or interrupt context, but not in NMI 1494 * context. May be called while holding a spinlock. 1495 */ 1496 static inline void folio_put_refs(struct folio *folio, int refs) 1497 { 1498 if (folio_ref_sub_and_test(folio, refs)) 1499 __folio_put(folio); 1500 } 1501 1502 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1503 1504 /* 1505 * union release_pages_arg - an array of pages or folios 1506 * 1507 * release_pages() releases a simple array of multiple pages, and 1508 * accepts various different forms of said page array: either 1509 * a regular old boring array of pages, an array of folios, or 1510 * an array of encoded page pointers. 1511 * 1512 * The transparent union syntax for this kind of "any of these 1513 * argument types" is all kinds of ugly, so look away. 1514 */ 1515 typedef union { 1516 struct page **pages; 1517 struct folio **folios; 1518 struct encoded_page **encoded_pages; 1519 } release_pages_arg __attribute__ ((__transparent_union__)); 1520 1521 void release_pages(release_pages_arg, int nr); 1522 1523 /** 1524 * folios_put - Decrement the reference count on an array of folios. 1525 * @folios: The folios. 1526 * 1527 * Like folio_put(), but for a batch of folios. This is more efficient 1528 * than writing the loop yourself as it will optimise the locks which need 1529 * to be taken if the folios are freed. The folios batch is returned 1530 * empty and ready to be reused for another batch; there is no need to 1531 * reinitialise it. 1532 * 1533 * Context: May be called in process or interrupt context, but not in NMI 1534 * context. May be called while holding a spinlock. 1535 */ 1536 static inline void folios_put(struct folio_batch *folios) 1537 { 1538 folios_put_refs(folios, NULL); 1539 } 1540 1541 static inline void put_page(struct page *page) 1542 { 1543 struct folio *folio = page_folio(page); 1544 1545 /* 1546 * For some devmap managed pages we need to catch refcount transition 1547 * from 2 to 1: 1548 */ 1549 if (put_devmap_managed_folio_refs(folio, 1)) 1550 return; 1551 folio_put(folio); 1552 } 1553 1554 /* 1555 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1556 * the page's refcount so that two separate items are tracked: the original page 1557 * reference count, and also a new count of how many pin_user_pages() calls were 1558 * made against the page. ("gup-pinned" is another term for the latter). 1559 * 1560 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1561 * distinct from normal pages. As such, the unpin_user_page() call (and its 1562 * variants) must be used in order to release gup-pinned pages. 1563 * 1564 * Choice of value: 1565 * 1566 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1567 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1568 * simpler, due to the fact that adding an even power of two to the page 1569 * refcount has the effect of using only the upper N bits, for the code that 1570 * counts up using the bias value. This means that the lower bits are left for 1571 * the exclusive use of the original code that increments and decrements by one 1572 * (or at least, by much smaller values than the bias value). 1573 * 1574 * Of course, once the lower bits overflow into the upper bits (and this is 1575 * OK, because subtraction recovers the original values), then visual inspection 1576 * no longer suffices to directly view the separate counts. However, for normal 1577 * applications that don't have huge page reference counts, this won't be an 1578 * issue. 1579 * 1580 * Locking: the lockless algorithm described in folio_try_get_rcu() 1581 * provides safe operation for get_user_pages(), folio_mkclean() and 1582 * other calls that race to set up page table entries. 1583 */ 1584 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1585 1586 void unpin_user_page(struct page *page); 1587 void unpin_folio(struct folio *folio); 1588 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1589 bool make_dirty); 1590 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1591 bool make_dirty); 1592 void unpin_user_pages(struct page **pages, unsigned long npages); 1593 void unpin_folios(struct folio **folios, unsigned long nfolios); 1594 1595 static inline bool is_cow_mapping(vm_flags_t flags) 1596 { 1597 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1598 } 1599 1600 #ifndef CONFIG_MMU 1601 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1602 { 1603 /* 1604 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1605 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1606 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1607 * underlying memory if ptrace is active, so this is only possible if 1608 * ptrace does not apply. Note that there is no mprotect() to upgrade 1609 * write permissions later. 1610 */ 1611 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1612 } 1613 #endif 1614 1615 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1616 #define SECTION_IN_PAGE_FLAGS 1617 #endif 1618 1619 /* 1620 * The identification function is mainly used by the buddy allocator for 1621 * determining if two pages could be buddies. We are not really identifying 1622 * the zone since we could be using the section number id if we do not have 1623 * node id available in page flags. 1624 * We only guarantee that it will return the same value for two combinable 1625 * pages in a zone. 1626 */ 1627 static inline int page_zone_id(struct page *page) 1628 { 1629 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1630 } 1631 1632 #ifdef NODE_NOT_IN_PAGE_FLAGS 1633 int page_to_nid(const struct page *page); 1634 #else 1635 static inline int page_to_nid(const struct page *page) 1636 { 1637 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1638 } 1639 #endif 1640 1641 static inline int folio_nid(const struct folio *folio) 1642 { 1643 return page_to_nid(&folio->page); 1644 } 1645 1646 #ifdef CONFIG_NUMA_BALANCING 1647 /* page access time bits needs to hold at least 4 seconds */ 1648 #define PAGE_ACCESS_TIME_MIN_BITS 12 1649 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1650 #define PAGE_ACCESS_TIME_BUCKETS \ 1651 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1652 #else 1653 #define PAGE_ACCESS_TIME_BUCKETS 0 1654 #endif 1655 1656 #define PAGE_ACCESS_TIME_MASK \ 1657 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1658 1659 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1660 { 1661 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1662 } 1663 1664 static inline int cpupid_to_pid(int cpupid) 1665 { 1666 return cpupid & LAST__PID_MASK; 1667 } 1668 1669 static inline int cpupid_to_cpu(int cpupid) 1670 { 1671 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1672 } 1673 1674 static inline int cpupid_to_nid(int cpupid) 1675 { 1676 return cpu_to_node(cpupid_to_cpu(cpupid)); 1677 } 1678 1679 static inline bool cpupid_pid_unset(int cpupid) 1680 { 1681 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1682 } 1683 1684 static inline bool cpupid_cpu_unset(int cpupid) 1685 { 1686 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1687 } 1688 1689 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1690 { 1691 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1692 } 1693 1694 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1695 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1696 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1697 { 1698 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1699 } 1700 1701 static inline int folio_last_cpupid(struct folio *folio) 1702 { 1703 return folio->_last_cpupid; 1704 } 1705 static inline void page_cpupid_reset_last(struct page *page) 1706 { 1707 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1708 } 1709 #else 1710 static inline int folio_last_cpupid(struct folio *folio) 1711 { 1712 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1713 } 1714 1715 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1716 1717 static inline void page_cpupid_reset_last(struct page *page) 1718 { 1719 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1720 } 1721 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1722 1723 static inline int folio_xchg_access_time(struct folio *folio, int time) 1724 { 1725 int last_time; 1726 1727 last_time = folio_xchg_last_cpupid(folio, 1728 time >> PAGE_ACCESS_TIME_BUCKETS); 1729 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1730 } 1731 1732 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1733 { 1734 unsigned int pid_bit; 1735 1736 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1737 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1738 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1739 } 1740 } 1741 #else /* !CONFIG_NUMA_BALANCING */ 1742 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1743 { 1744 return folio_nid(folio); /* XXX */ 1745 } 1746 1747 static inline int folio_xchg_access_time(struct folio *folio, int time) 1748 { 1749 return 0; 1750 } 1751 1752 static inline int folio_last_cpupid(struct folio *folio) 1753 { 1754 return folio_nid(folio); /* XXX */ 1755 } 1756 1757 static inline int cpupid_to_nid(int cpupid) 1758 { 1759 return -1; 1760 } 1761 1762 static inline int cpupid_to_pid(int cpupid) 1763 { 1764 return -1; 1765 } 1766 1767 static inline int cpupid_to_cpu(int cpupid) 1768 { 1769 return -1; 1770 } 1771 1772 static inline int cpu_pid_to_cpupid(int nid, int pid) 1773 { 1774 return -1; 1775 } 1776 1777 static inline bool cpupid_pid_unset(int cpupid) 1778 { 1779 return true; 1780 } 1781 1782 static inline void page_cpupid_reset_last(struct page *page) 1783 { 1784 } 1785 1786 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1787 { 1788 return false; 1789 } 1790 1791 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1792 { 1793 } 1794 #endif /* CONFIG_NUMA_BALANCING */ 1795 1796 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1797 1798 /* 1799 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1800 * setting tags for all pages to native kernel tag value 0xff, as the default 1801 * value 0x00 maps to 0xff. 1802 */ 1803 1804 static inline u8 page_kasan_tag(const struct page *page) 1805 { 1806 u8 tag = KASAN_TAG_KERNEL; 1807 1808 if (kasan_enabled()) { 1809 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1810 tag ^= 0xff; 1811 } 1812 1813 return tag; 1814 } 1815 1816 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1817 { 1818 unsigned long old_flags, flags; 1819 1820 if (!kasan_enabled()) 1821 return; 1822 1823 tag ^= 0xff; 1824 old_flags = READ_ONCE(page->flags); 1825 do { 1826 flags = old_flags; 1827 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1828 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1829 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1830 } 1831 1832 static inline void page_kasan_tag_reset(struct page *page) 1833 { 1834 if (kasan_enabled()) 1835 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1836 } 1837 1838 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1839 1840 static inline u8 page_kasan_tag(const struct page *page) 1841 { 1842 return 0xff; 1843 } 1844 1845 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1846 static inline void page_kasan_tag_reset(struct page *page) { } 1847 1848 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1849 1850 static inline struct zone *page_zone(const struct page *page) 1851 { 1852 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1853 } 1854 1855 static inline pg_data_t *page_pgdat(const struct page *page) 1856 { 1857 return NODE_DATA(page_to_nid(page)); 1858 } 1859 1860 static inline struct zone *folio_zone(const struct folio *folio) 1861 { 1862 return page_zone(&folio->page); 1863 } 1864 1865 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1866 { 1867 return page_pgdat(&folio->page); 1868 } 1869 1870 #ifdef SECTION_IN_PAGE_FLAGS 1871 static inline void set_page_section(struct page *page, unsigned long section) 1872 { 1873 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1874 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1875 } 1876 1877 static inline unsigned long page_to_section(const struct page *page) 1878 { 1879 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1880 } 1881 #endif 1882 1883 /** 1884 * folio_pfn - Return the Page Frame Number of a folio. 1885 * @folio: The folio. 1886 * 1887 * A folio may contain multiple pages. The pages have consecutive 1888 * Page Frame Numbers. 1889 * 1890 * Return: The Page Frame Number of the first page in the folio. 1891 */ 1892 static inline unsigned long folio_pfn(struct folio *folio) 1893 { 1894 return page_to_pfn(&folio->page); 1895 } 1896 1897 static inline struct folio *pfn_folio(unsigned long pfn) 1898 { 1899 return page_folio(pfn_to_page(pfn)); 1900 } 1901 1902 /** 1903 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1904 * @folio: The folio. 1905 * 1906 * This function checks if a folio has been pinned via a call to 1907 * a function in the pin_user_pages() family. 1908 * 1909 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1910 * because it means "definitely not pinned for DMA", but true means "probably 1911 * pinned for DMA, but possibly a false positive due to having at least 1912 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1913 * 1914 * False positives are OK, because: a) it's unlikely for a folio to 1915 * get that many refcounts, and b) all the callers of this routine are 1916 * expected to be able to deal gracefully with a false positive. 1917 * 1918 * For large folios, the result will be exactly correct. That's because 1919 * we have more tracking data available: the _pincount field is used 1920 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1921 * 1922 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1923 * 1924 * Return: True, if it is likely that the folio has been "dma-pinned". 1925 * False, if the folio is definitely not dma-pinned. 1926 */ 1927 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1928 { 1929 if (folio_test_large(folio)) 1930 return atomic_read(&folio->_pincount) > 0; 1931 1932 /* 1933 * folio_ref_count() is signed. If that refcount overflows, then 1934 * folio_ref_count() returns a negative value, and callers will avoid 1935 * further incrementing the refcount. 1936 * 1937 * Here, for that overflow case, use the sign bit to count a little 1938 * bit higher via unsigned math, and thus still get an accurate result. 1939 */ 1940 return ((unsigned int)folio_ref_count(folio)) >= 1941 GUP_PIN_COUNTING_BIAS; 1942 } 1943 1944 /* 1945 * This should most likely only be called during fork() to see whether we 1946 * should break the cow immediately for an anon page on the src mm. 1947 * 1948 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1949 */ 1950 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1951 struct folio *folio) 1952 { 1953 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1954 1955 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1956 return false; 1957 1958 return folio_maybe_dma_pinned(folio); 1959 } 1960 1961 /** 1962 * is_zero_page - Query if a page is a zero page 1963 * @page: The page to query 1964 * 1965 * This returns true if @page is one of the permanent zero pages. 1966 */ 1967 static inline bool is_zero_page(const struct page *page) 1968 { 1969 return is_zero_pfn(page_to_pfn(page)); 1970 } 1971 1972 /** 1973 * is_zero_folio - Query if a folio is a zero page 1974 * @folio: The folio to query 1975 * 1976 * This returns true if @folio is one of the permanent zero pages. 1977 */ 1978 static inline bool is_zero_folio(const struct folio *folio) 1979 { 1980 return is_zero_page(&folio->page); 1981 } 1982 1983 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1984 #ifdef CONFIG_MIGRATION 1985 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1986 { 1987 #ifdef CONFIG_CMA 1988 int mt = folio_migratetype(folio); 1989 1990 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1991 return false; 1992 #endif 1993 /* The zero page can be "pinned" but gets special handling. */ 1994 if (is_zero_folio(folio)) 1995 return true; 1996 1997 /* Coherent device memory must always allow eviction. */ 1998 if (folio_is_device_coherent(folio)) 1999 return false; 2000 2001 /* Otherwise, non-movable zone folios can be pinned. */ 2002 return !folio_is_zone_movable(folio); 2003 2004 } 2005 #else 2006 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2007 { 2008 return true; 2009 } 2010 #endif 2011 2012 static inline void set_page_zone(struct page *page, enum zone_type zone) 2013 { 2014 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2015 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2016 } 2017 2018 static inline void set_page_node(struct page *page, unsigned long node) 2019 { 2020 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2021 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2022 } 2023 2024 static inline void set_page_links(struct page *page, enum zone_type zone, 2025 unsigned long node, unsigned long pfn) 2026 { 2027 set_page_zone(page, zone); 2028 set_page_node(page, node); 2029 #ifdef SECTION_IN_PAGE_FLAGS 2030 set_page_section(page, pfn_to_section_nr(pfn)); 2031 #endif 2032 } 2033 2034 /** 2035 * folio_nr_pages - The number of pages in the folio. 2036 * @folio: The folio. 2037 * 2038 * Return: A positive power of two. 2039 */ 2040 static inline long folio_nr_pages(const struct folio *folio) 2041 { 2042 if (!folio_test_large(folio)) 2043 return 1; 2044 #ifdef CONFIG_64BIT 2045 return folio->_folio_nr_pages; 2046 #else 2047 return 1L << (folio->_flags_1 & 0xff); 2048 #endif 2049 } 2050 2051 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2052 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2053 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2054 #else 2055 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2056 #endif 2057 2058 /* 2059 * compound_nr() returns the number of pages in this potentially compound 2060 * page. compound_nr() can be called on a tail page, and is defined to 2061 * return 1 in that case. 2062 */ 2063 static inline unsigned long compound_nr(struct page *page) 2064 { 2065 struct folio *folio = (struct folio *)page; 2066 2067 if (!test_bit(PG_head, &folio->flags)) 2068 return 1; 2069 #ifdef CONFIG_64BIT 2070 return folio->_folio_nr_pages; 2071 #else 2072 return 1L << (folio->_flags_1 & 0xff); 2073 #endif 2074 } 2075 2076 /** 2077 * thp_nr_pages - The number of regular pages in this huge page. 2078 * @page: The head page of a huge page. 2079 */ 2080 static inline int thp_nr_pages(struct page *page) 2081 { 2082 return folio_nr_pages((struct folio *)page); 2083 } 2084 2085 /** 2086 * folio_next - Move to the next physical folio. 2087 * @folio: The folio we're currently operating on. 2088 * 2089 * If you have physically contiguous memory which may span more than 2090 * one folio (eg a &struct bio_vec), use this function to move from one 2091 * folio to the next. Do not use it if the memory is only virtually 2092 * contiguous as the folios are almost certainly not adjacent to each 2093 * other. This is the folio equivalent to writing ``page++``. 2094 * 2095 * Context: We assume that the folios are refcounted and/or locked at a 2096 * higher level and do not adjust the reference counts. 2097 * Return: The next struct folio. 2098 */ 2099 static inline struct folio *folio_next(struct folio *folio) 2100 { 2101 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2102 } 2103 2104 /** 2105 * folio_shift - The size of the memory described by this folio. 2106 * @folio: The folio. 2107 * 2108 * A folio represents a number of bytes which is a power-of-two in size. 2109 * This function tells you which power-of-two the folio is. See also 2110 * folio_size() and folio_order(). 2111 * 2112 * Context: The caller should have a reference on the folio to prevent 2113 * it from being split. It is not necessary for the folio to be locked. 2114 * Return: The base-2 logarithm of the size of this folio. 2115 */ 2116 static inline unsigned int folio_shift(struct folio *folio) 2117 { 2118 return PAGE_SHIFT + folio_order(folio); 2119 } 2120 2121 /** 2122 * folio_size - The number of bytes in a folio. 2123 * @folio: The folio. 2124 * 2125 * Context: The caller should have a reference on the folio to prevent 2126 * it from being split. It is not necessary for the folio to be locked. 2127 * Return: The number of bytes in this folio. 2128 */ 2129 static inline size_t folio_size(struct folio *folio) 2130 { 2131 return PAGE_SIZE << folio_order(folio); 2132 } 2133 2134 /** 2135 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2136 * tables of more than one MM 2137 * @folio: The folio. 2138 * 2139 * This function checks if the folio is currently mapped into more than one 2140 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2141 * ("mapped exclusively"). 2142 * 2143 * As precise information is not easily available for all folios, this function 2144 * estimates the number of MMs ("sharers") that are currently mapping a folio 2145 * using the number of times the first page of the folio is currently mapped 2146 * into page tables. 2147 * 2148 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios, 2149 * the return value will be exactly correct, because they can only be mapped 2150 * at most once into an MM, and they cannot be partially mapped. 2151 * 2152 * For other folios, the result can be fuzzy: 2153 * #. For partially-mappable large folios (THP), the return value can wrongly 2154 * indicate "mapped exclusively" (false negative) when the folio is 2155 * only partially mapped into at least one MM. 2156 * #. For pagecache folios (including hugetlb), the return value can wrongly 2157 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2158 * cover the same file range. 2159 * #. For (small) KSM folios, the return value can wrongly indicate "mapped 2160 * shared" (false positive), when the folio is mapped multiple times into 2161 * the same MM. 2162 * 2163 * Further, this function only considers current page table mappings that 2164 * are tracked using the folio mapcount(s). 2165 * 2166 * This function does not consider: 2167 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2168 * pagecache, temporary unmapping for migration). 2169 * #. If the folio is mapped differently (VM_PFNMAP). 2170 * #. If hugetlb page table sharing applies. Callers might want to check 2171 * hugetlb_pmd_shared(). 2172 * 2173 * Return: Whether the folio is estimated to be mapped into more than one MM. 2174 */ 2175 static inline bool folio_likely_mapped_shared(struct folio *folio) 2176 { 2177 int mapcount = folio_mapcount(folio); 2178 2179 /* Only partially-mappable folios require more care. */ 2180 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2181 return mapcount > 1; 2182 2183 /* A single mapping implies "mapped exclusively". */ 2184 if (mapcount <= 1) 2185 return false; 2186 2187 /* If any page is mapped more than once we treat it "mapped shared". */ 2188 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2189 return true; 2190 2191 /* Let's guess based on the first subpage. */ 2192 return atomic_read(&folio->_mapcount) > 0; 2193 } 2194 2195 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2196 static inline int arch_make_page_accessible(struct page *page) 2197 { 2198 return 0; 2199 } 2200 #endif 2201 2202 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2203 static inline int arch_make_folio_accessible(struct folio *folio) 2204 { 2205 int ret; 2206 long i, nr = folio_nr_pages(folio); 2207 2208 for (i = 0; i < nr; i++) { 2209 ret = arch_make_page_accessible(folio_page(folio, i)); 2210 if (ret) 2211 break; 2212 } 2213 2214 return ret; 2215 } 2216 #endif 2217 2218 /* 2219 * Some inline functions in vmstat.h depend on page_zone() 2220 */ 2221 #include <linux/vmstat.h> 2222 2223 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2224 #define HASHED_PAGE_VIRTUAL 2225 #endif 2226 2227 #if defined(WANT_PAGE_VIRTUAL) 2228 static inline void *page_address(const struct page *page) 2229 { 2230 return page->virtual; 2231 } 2232 static inline void set_page_address(struct page *page, void *address) 2233 { 2234 page->virtual = address; 2235 } 2236 #define page_address_init() do { } while(0) 2237 #endif 2238 2239 #if defined(HASHED_PAGE_VIRTUAL) 2240 void *page_address(const struct page *page); 2241 void set_page_address(struct page *page, void *virtual); 2242 void page_address_init(void); 2243 #endif 2244 2245 static __always_inline void *lowmem_page_address(const struct page *page) 2246 { 2247 return page_to_virt(page); 2248 } 2249 2250 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2251 #define page_address(page) lowmem_page_address(page) 2252 #define set_page_address(page, address) do { } while(0) 2253 #define page_address_init() do { } while(0) 2254 #endif 2255 2256 static inline void *folio_address(const struct folio *folio) 2257 { 2258 return page_address(&folio->page); 2259 } 2260 2261 /* 2262 * Return true only if the page has been allocated with 2263 * ALLOC_NO_WATERMARKS and the low watermark was not 2264 * met implying that the system is under some pressure. 2265 */ 2266 static inline bool page_is_pfmemalloc(const struct page *page) 2267 { 2268 /* 2269 * lru.next has bit 1 set if the page is allocated from the 2270 * pfmemalloc reserves. Callers may simply overwrite it if 2271 * they do not need to preserve that information. 2272 */ 2273 return (uintptr_t)page->lru.next & BIT(1); 2274 } 2275 2276 /* 2277 * Return true only if the folio has been allocated with 2278 * ALLOC_NO_WATERMARKS and the low watermark was not 2279 * met implying that the system is under some pressure. 2280 */ 2281 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2282 { 2283 /* 2284 * lru.next has bit 1 set if the page is allocated from the 2285 * pfmemalloc reserves. Callers may simply overwrite it if 2286 * they do not need to preserve that information. 2287 */ 2288 return (uintptr_t)folio->lru.next & BIT(1); 2289 } 2290 2291 /* 2292 * Only to be called by the page allocator on a freshly allocated 2293 * page. 2294 */ 2295 static inline void set_page_pfmemalloc(struct page *page) 2296 { 2297 page->lru.next = (void *)BIT(1); 2298 } 2299 2300 static inline void clear_page_pfmemalloc(struct page *page) 2301 { 2302 page->lru.next = NULL; 2303 } 2304 2305 /* 2306 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2307 */ 2308 extern void pagefault_out_of_memory(void); 2309 2310 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2311 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2312 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2313 2314 /* 2315 * Parameter block passed down to zap_pte_range in exceptional cases. 2316 */ 2317 struct zap_details { 2318 struct folio *single_folio; /* Locked folio to be unmapped */ 2319 bool even_cows; /* Zap COWed private pages too? */ 2320 zap_flags_t zap_flags; /* Extra flags for zapping */ 2321 }; 2322 2323 /* 2324 * Whether to drop the pte markers, for example, the uffd-wp information for 2325 * file-backed memory. This should only be specified when we will completely 2326 * drop the page in the mm, either by truncation or unmapping of the vma. By 2327 * default, the flag is not set. 2328 */ 2329 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2330 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2331 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2332 2333 #ifdef CONFIG_SCHED_MM_CID 2334 void sched_mm_cid_before_execve(struct task_struct *t); 2335 void sched_mm_cid_after_execve(struct task_struct *t); 2336 void sched_mm_cid_fork(struct task_struct *t); 2337 void sched_mm_cid_exit_signals(struct task_struct *t); 2338 static inline int task_mm_cid(struct task_struct *t) 2339 { 2340 return t->mm_cid; 2341 } 2342 #else 2343 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2344 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2345 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2346 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2347 static inline int task_mm_cid(struct task_struct *t) 2348 { 2349 /* 2350 * Use the processor id as a fall-back when the mm cid feature is 2351 * disabled. This provides functional per-cpu data structure accesses 2352 * in user-space, althrough it won't provide the memory usage benefits. 2353 */ 2354 return raw_smp_processor_id(); 2355 } 2356 #endif 2357 2358 #ifdef CONFIG_MMU 2359 extern bool can_do_mlock(void); 2360 #else 2361 static inline bool can_do_mlock(void) { return false; } 2362 #endif 2363 extern int user_shm_lock(size_t, struct ucounts *); 2364 extern void user_shm_unlock(size_t, struct ucounts *); 2365 2366 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2367 pte_t pte); 2368 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2369 pte_t pte); 2370 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2371 unsigned long addr, pmd_t pmd); 2372 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2373 pmd_t pmd); 2374 2375 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2376 unsigned long size); 2377 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2378 unsigned long size, struct zap_details *details); 2379 static inline void zap_vma_pages(struct vm_area_struct *vma) 2380 { 2381 zap_page_range_single(vma, vma->vm_start, 2382 vma->vm_end - vma->vm_start, NULL); 2383 } 2384 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2385 struct vm_area_struct *start_vma, unsigned long start, 2386 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2387 2388 struct mmu_notifier_range; 2389 2390 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2391 unsigned long end, unsigned long floor, unsigned long ceiling); 2392 int 2393 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2394 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2395 pte_t **ptepp, spinlock_t **ptlp); 2396 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2397 void *buf, int len, int write); 2398 2399 extern void truncate_pagecache(struct inode *inode, loff_t new); 2400 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2401 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2402 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2403 int generic_error_remove_folio(struct address_space *mapping, 2404 struct folio *folio); 2405 2406 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2407 unsigned long address, struct pt_regs *regs); 2408 2409 #ifdef CONFIG_MMU 2410 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2411 unsigned long address, unsigned int flags, 2412 struct pt_regs *regs); 2413 extern int fixup_user_fault(struct mm_struct *mm, 2414 unsigned long address, unsigned int fault_flags, 2415 bool *unlocked); 2416 void unmap_mapping_pages(struct address_space *mapping, 2417 pgoff_t start, pgoff_t nr, bool even_cows); 2418 void unmap_mapping_range(struct address_space *mapping, 2419 loff_t const holebegin, loff_t const holelen, int even_cows); 2420 #else 2421 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2422 unsigned long address, unsigned int flags, 2423 struct pt_regs *regs) 2424 { 2425 /* should never happen if there's no MMU */ 2426 BUG(); 2427 return VM_FAULT_SIGBUS; 2428 } 2429 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2430 unsigned int fault_flags, bool *unlocked) 2431 { 2432 /* should never happen if there's no MMU */ 2433 BUG(); 2434 return -EFAULT; 2435 } 2436 static inline void unmap_mapping_pages(struct address_space *mapping, 2437 pgoff_t start, pgoff_t nr, bool even_cows) { } 2438 static inline void unmap_mapping_range(struct address_space *mapping, 2439 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2440 #endif 2441 2442 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2443 loff_t const holebegin, loff_t const holelen) 2444 { 2445 unmap_mapping_range(mapping, holebegin, holelen, 0); 2446 } 2447 2448 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2449 unsigned long addr); 2450 2451 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2452 void *buf, int len, unsigned int gup_flags); 2453 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2454 void *buf, int len, unsigned int gup_flags); 2455 2456 long get_user_pages_remote(struct mm_struct *mm, 2457 unsigned long start, unsigned long nr_pages, 2458 unsigned int gup_flags, struct page **pages, 2459 int *locked); 2460 long pin_user_pages_remote(struct mm_struct *mm, 2461 unsigned long start, unsigned long nr_pages, 2462 unsigned int gup_flags, struct page **pages, 2463 int *locked); 2464 2465 /* 2466 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2467 */ 2468 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2469 unsigned long addr, 2470 int gup_flags, 2471 struct vm_area_struct **vmap) 2472 { 2473 struct page *page; 2474 struct vm_area_struct *vma; 2475 int got; 2476 2477 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2478 return ERR_PTR(-EINVAL); 2479 2480 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2481 2482 if (got < 0) 2483 return ERR_PTR(got); 2484 2485 vma = vma_lookup(mm, addr); 2486 if (WARN_ON_ONCE(!vma)) { 2487 put_page(page); 2488 return ERR_PTR(-EINVAL); 2489 } 2490 2491 *vmap = vma; 2492 return page; 2493 } 2494 2495 long get_user_pages(unsigned long start, unsigned long nr_pages, 2496 unsigned int gup_flags, struct page **pages); 2497 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2498 unsigned int gup_flags, struct page **pages); 2499 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2500 struct page **pages, unsigned int gup_flags); 2501 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2502 struct page **pages, unsigned int gup_flags); 2503 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2504 struct folio **folios, unsigned int max_folios, 2505 pgoff_t *offset); 2506 2507 int get_user_pages_fast(unsigned long start, int nr_pages, 2508 unsigned int gup_flags, struct page **pages); 2509 int pin_user_pages_fast(unsigned long start, int nr_pages, 2510 unsigned int gup_flags, struct page **pages); 2511 void folio_add_pin(struct folio *folio); 2512 2513 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2514 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2515 struct task_struct *task, bool bypass_rlim); 2516 2517 struct kvec; 2518 struct page *get_dump_page(unsigned long addr); 2519 2520 bool folio_mark_dirty(struct folio *folio); 2521 bool set_page_dirty(struct page *page); 2522 int set_page_dirty_lock(struct page *page); 2523 2524 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2525 2526 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2527 unsigned long old_addr, struct vm_area_struct *new_vma, 2528 unsigned long new_addr, unsigned long len, 2529 bool need_rmap_locks, bool for_stack); 2530 2531 /* 2532 * Flags used by change_protection(). For now we make it a bitmap so 2533 * that we can pass in multiple flags just like parameters. However 2534 * for now all the callers are only use one of the flags at the same 2535 * time. 2536 */ 2537 /* 2538 * Whether we should manually check if we can map individual PTEs writable, 2539 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2540 * PTEs automatically in a writable mapping. 2541 */ 2542 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2543 /* Whether this protection change is for NUMA hints */ 2544 #define MM_CP_PROT_NUMA (1UL << 1) 2545 /* Whether this change is for write protecting */ 2546 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2547 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2548 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2549 MM_CP_UFFD_WP_RESOLVE) 2550 2551 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2552 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2553 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2554 { 2555 /* 2556 * We want to check manually if we can change individual PTEs writable 2557 * if we can't do that automatically for all PTEs in a mapping. For 2558 * private mappings, that's always the case when we have write 2559 * permissions as we properly have to handle COW. 2560 */ 2561 if (vma->vm_flags & VM_SHARED) 2562 return vma_wants_writenotify(vma, vma->vm_page_prot); 2563 return !!(vma->vm_flags & VM_WRITE); 2564 2565 } 2566 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2567 pte_t pte); 2568 extern long change_protection(struct mmu_gather *tlb, 2569 struct vm_area_struct *vma, unsigned long start, 2570 unsigned long end, unsigned long cp_flags); 2571 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2572 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2573 unsigned long start, unsigned long end, unsigned long newflags); 2574 2575 /* 2576 * doesn't attempt to fault and will return short. 2577 */ 2578 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2579 unsigned int gup_flags, struct page **pages); 2580 2581 static inline bool get_user_page_fast_only(unsigned long addr, 2582 unsigned int gup_flags, struct page **pagep) 2583 { 2584 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2585 } 2586 /* 2587 * per-process(per-mm_struct) statistics. 2588 */ 2589 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2590 { 2591 return percpu_counter_read_positive(&mm->rss_stat[member]); 2592 } 2593 2594 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2595 2596 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2597 { 2598 percpu_counter_add(&mm->rss_stat[member], value); 2599 2600 mm_trace_rss_stat(mm, member); 2601 } 2602 2603 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2604 { 2605 percpu_counter_inc(&mm->rss_stat[member]); 2606 2607 mm_trace_rss_stat(mm, member); 2608 } 2609 2610 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2611 { 2612 percpu_counter_dec(&mm->rss_stat[member]); 2613 2614 mm_trace_rss_stat(mm, member); 2615 } 2616 2617 /* Optimized variant when folio is already known not to be anon */ 2618 static inline int mm_counter_file(struct folio *folio) 2619 { 2620 if (folio_test_swapbacked(folio)) 2621 return MM_SHMEMPAGES; 2622 return MM_FILEPAGES; 2623 } 2624 2625 static inline int mm_counter(struct folio *folio) 2626 { 2627 if (folio_test_anon(folio)) 2628 return MM_ANONPAGES; 2629 return mm_counter_file(folio); 2630 } 2631 2632 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2633 { 2634 return get_mm_counter(mm, MM_FILEPAGES) + 2635 get_mm_counter(mm, MM_ANONPAGES) + 2636 get_mm_counter(mm, MM_SHMEMPAGES); 2637 } 2638 2639 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2640 { 2641 return max(mm->hiwater_rss, get_mm_rss(mm)); 2642 } 2643 2644 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2645 { 2646 return max(mm->hiwater_vm, mm->total_vm); 2647 } 2648 2649 static inline void update_hiwater_rss(struct mm_struct *mm) 2650 { 2651 unsigned long _rss = get_mm_rss(mm); 2652 2653 if ((mm)->hiwater_rss < _rss) 2654 (mm)->hiwater_rss = _rss; 2655 } 2656 2657 static inline void update_hiwater_vm(struct mm_struct *mm) 2658 { 2659 if (mm->hiwater_vm < mm->total_vm) 2660 mm->hiwater_vm = mm->total_vm; 2661 } 2662 2663 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2664 { 2665 mm->hiwater_rss = get_mm_rss(mm); 2666 } 2667 2668 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2669 struct mm_struct *mm) 2670 { 2671 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2672 2673 if (*maxrss < hiwater_rss) 2674 *maxrss = hiwater_rss; 2675 } 2676 2677 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2678 static inline int pte_special(pte_t pte) 2679 { 2680 return 0; 2681 } 2682 2683 static inline pte_t pte_mkspecial(pte_t pte) 2684 { 2685 return pte; 2686 } 2687 #endif 2688 2689 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2690 static inline int pte_devmap(pte_t pte) 2691 { 2692 return 0; 2693 } 2694 #endif 2695 2696 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2697 spinlock_t **ptl); 2698 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2699 spinlock_t **ptl) 2700 { 2701 pte_t *ptep; 2702 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2703 return ptep; 2704 } 2705 2706 #ifdef __PAGETABLE_P4D_FOLDED 2707 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2708 unsigned long address) 2709 { 2710 return 0; 2711 } 2712 #else 2713 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2714 #endif 2715 2716 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2717 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2718 unsigned long address) 2719 { 2720 return 0; 2721 } 2722 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2723 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2724 2725 #else 2726 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2727 2728 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2729 { 2730 if (mm_pud_folded(mm)) 2731 return; 2732 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2733 } 2734 2735 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2736 { 2737 if (mm_pud_folded(mm)) 2738 return; 2739 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2740 } 2741 #endif 2742 2743 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2744 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2745 unsigned long address) 2746 { 2747 return 0; 2748 } 2749 2750 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2751 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2752 2753 #else 2754 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2755 2756 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2757 { 2758 if (mm_pmd_folded(mm)) 2759 return; 2760 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2761 } 2762 2763 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2764 { 2765 if (mm_pmd_folded(mm)) 2766 return; 2767 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2768 } 2769 #endif 2770 2771 #ifdef CONFIG_MMU 2772 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2773 { 2774 atomic_long_set(&mm->pgtables_bytes, 0); 2775 } 2776 2777 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2778 { 2779 return atomic_long_read(&mm->pgtables_bytes); 2780 } 2781 2782 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2783 { 2784 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2785 } 2786 2787 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2788 { 2789 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2790 } 2791 #else 2792 2793 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2794 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2795 { 2796 return 0; 2797 } 2798 2799 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2800 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2801 #endif 2802 2803 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2804 int __pte_alloc_kernel(pmd_t *pmd); 2805 2806 #if defined(CONFIG_MMU) 2807 2808 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2809 unsigned long address) 2810 { 2811 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2812 NULL : p4d_offset(pgd, address); 2813 } 2814 2815 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2816 unsigned long address) 2817 { 2818 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2819 NULL : pud_offset(p4d, address); 2820 } 2821 2822 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2823 { 2824 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2825 NULL: pmd_offset(pud, address); 2826 } 2827 #endif /* CONFIG_MMU */ 2828 2829 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2830 { 2831 return page_ptdesc(virt_to_page(x)); 2832 } 2833 2834 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2835 { 2836 return page_to_virt(ptdesc_page(pt)); 2837 } 2838 2839 static inline void *ptdesc_address(const struct ptdesc *pt) 2840 { 2841 return folio_address(ptdesc_folio(pt)); 2842 } 2843 2844 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2845 { 2846 return folio_test_reserved(ptdesc_folio(pt)); 2847 } 2848 2849 /** 2850 * pagetable_alloc - Allocate pagetables 2851 * @gfp: GFP flags 2852 * @order: desired pagetable order 2853 * 2854 * pagetable_alloc allocates memory for page tables as well as a page table 2855 * descriptor to describe that memory. 2856 * 2857 * Return: The ptdesc describing the allocated page tables. 2858 */ 2859 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2860 { 2861 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2862 2863 return page_ptdesc(page); 2864 } 2865 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2866 2867 /** 2868 * pagetable_free - Free pagetables 2869 * @pt: The page table descriptor 2870 * 2871 * pagetable_free frees the memory of all page tables described by a page 2872 * table descriptor and the memory for the descriptor itself. 2873 */ 2874 static inline void pagetable_free(struct ptdesc *pt) 2875 { 2876 struct page *page = ptdesc_page(pt); 2877 2878 __free_pages(page, compound_order(page)); 2879 } 2880 2881 #if USE_SPLIT_PTE_PTLOCKS 2882 #if ALLOC_SPLIT_PTLOCKS 2883 void __init ptlock_cache_init(void); 2884 bool ptlock_alloc(struct ptdesc *ptdesc); 2885 void ptlock_free(struct ptdesc *ptdesc); 2886 2887 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2888 { 2889 return ptdesc->ptl; 2890 } 2891 #else /* ALLOC_SPLIT_PTLOCKS */ 2892 static inline void ptlock_cache_init(void) 2893 { 2894 } 2895 2896 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2897 { 2898 return true; 2899 } 2900 2901 static inline void ptlock_free(struct ptdesc *ptdesc) 2902 { 2903 } 2904 2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2906 { 2907 return &ptdesc->ptl; 2908 } 2909 #endif /* ALLOC_SPLIT_PTLOCKS */ 2910 2911 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2912 { 2913 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2914 } 2915 2916 static inline bool ptlock_init(struct ptdesc *ptdesc) 2917 { 2918 /* 2919 * prep_new_page() initialize page->private (and therefore page->ptl) 2920 * with 0. Make sure nobody took it in use in between. 2921 * 2922 * It can happen if arch try to use slab for page table allocation: 2923 * slab code uses page->slab_cache, which share storage with page->ptl. 2924 */ 2925 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2926 if (!ptlock_alloc(ptdesc)) 2927 return false; 2928 spin_lock_init(ptlock_ptr(ptdesc)); 2929 return true; 2930 } 2931 2932 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2933 /* 2934 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2935 */ 2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2937 { 2938 return &mm->page_table_lock; 2939 } 2940 static inline void ptlock_cache_init(void) {} 2941 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2942 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2943 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2944 2945 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2946 { 2947 struct folio *folio = ptdesc_folio(ptdesc); 2948 2949 if (!ptlock_init(ptdesc)) 2950 return false; 2951 __folio_set_pgtable(folio); 2952 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2953 return true; 2954 } 2955 2956 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2957 { 2958 struct folio *folio = ptdesc_folio(ptdesc); 2959 2960 ptlock_free(ptdesc); 2961 __folio_clear_pgtable(folio); 2962 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2963 } 2964 2965 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2966 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2967 { 2968 return __pte_offset_map(pmd, addr, NULL); 2969 } 2970 2971 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2972 unsigned long addr, spinlock_t **ptlp); 2973 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2974 unsigned long addr, spinlock_t **ptlp) 2975 { 2976 pte_t *pte; 2977 2978 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2979 return pte; 2980 } 2981 2982 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2983 unsigned long addr, spinlock_t **ptlp); 2984 2985 #define pte_unmap_unlock(pte, ptl) do { \ 2986 spin_unlock(ptl); \ 2987 pte_unmap(pte); \ 2988 } while (0) 2989 2990 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2991 2992 #define pte_alloc_map(mm, pmd, address) \ 2993 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2994 2995 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2996 (pte_alloc(mm, pmd) ? \ 2997 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2998 2999 #define pte_alloc_kernel(pmd, address) \ 3000 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3001 NULL: pte_offset_kernel(pmd, address)) 3002 3003 #if USE_SPLIT_PMD_PTLOCKS 3004 3005 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3006 { 3007 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3008 return virt_to_page((void *)((unsigned long) pmd & mask)); 3009 } 3010 3011 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3012 { 3013 return page_ptdesc(pmd_pgtable_page(pmd)); 3014 } 3015 3016 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3017 { 3018 return ptlock_ptr(pmd_ptdesc(pmd)); 3019 } 3020 3021 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3022 { 3023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3024 ptdesc->pmd_huge_pte = NULL; 3025 #endif 3026 return ptlock_init(ptdesc); 3027 } 3028 3029 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3030 { 3031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3032 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3033 #endif 3034 ptlock_free(ptdesc); 3035 } 3036 3037 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3038 3039 #else 3040 3041 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3042 { 3043 return &mm->page_table_lock; 3044 } 3045 3046 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3047 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3048 3049 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3050 3051 #endif 3052 3053 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3054 { 3055 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3056 spin_lock(ptl); 3057 return ptl; 3058 } 3059 3060 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3061 { 3062 struct folio *folio = ptdesc_folio(ptdesc); 3063 3064 if (!pmd_ptlock_init(ptdesc)) 3065 return false; 3066 __folio_set_pgtable(folio); 3067 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3068 return true; 3069 } 3070 3071 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3072 { 3073 struct folio *folio = ptdesc_folio(ptdesc); 3074 3075 pmd_ptlock_free(ptdesc); 3076 __folio_clear_pgtable(folio); 3077 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3078 } 3079 3080 /* 3081 * No scalability reason to split PUD locks yet, but follow the same pattern 3082 * as the PMD locks to make it easier if we decide to. The VM should not be 3083 * considered ready to switch to split PUD locks yet; there may be places 3084 * which need to be converted from page_table_lock. 3085 */ 3086 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3087 { 3088 return &mm->page_table_lock; 3089 } 3090 3091 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3092 { 3093 spinlock_t *ptl = pud_lockptr(mm, pud); 3094 3095 spin_lock(ptl); 3096 return ptl; 3097 } 3098 3099 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3100 { 3101 struct folio *folio = ptdesc_folio(ptdesc); 3102 3103 __folio_set_pgtable(folio); 3104 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3105 } 3106 3107 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3108 { 3109 struct folio *folio = ptdesc_folio(ptdesc); 3110 3111 __folio_clear_pgtable(folio); 3112 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3113 } 3114 3115 extern void __init pagecache_init(void); 3116 extern void free_initmem(void); 3117 3118 /* 3119 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3120 * into the buddy system. The freed pages will be poisoned with pattern 3121 * "poison" if it's within range [0, UCHAR_MAX]. 3122 * Return pages freed into the buddy system. 3123 */ 3124 extern unsigned long free_reserved_area(void *start, void *end, 3125 int poison, const char *s); 3126 3127 extern void adjust_managed_page_count(struct page *page, long count); 3128 3129 extern void reserve_bootmem_region(phys_addr_t start, 3130 phys_addr_t end, int nid); 3131 3132 /* Free the reserved page into the buddy system, so it gets managed. */ 3133 static inline void free_reserved_page(struct page *page) 3134 { 3135 if (mem_alloc_profiling_enabled()) { 3136 union codetag_ref *ref = get_page_tag_ref(page); 3137 3138 if (ref) { 3139 set_codetag_empty(ref); 3140 put_page_tag_ref(ref); 3141 } 3142 } 3143 ClearPageReserved(page); 3144 init_page_count(page); 3145 __free_page(page); 3146 adjust_managed_page_count(page, 1); 3147 } 3148 #define free_highmem_page(page) free_reserved_page(page) 3149 3150 static inline void mark_page_reserved(struct page *page) 3151 { 3152 SetPageReserved(page); 3153 adjust_managed_page_count(page, -1); 3154 } 3155 3156 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3157 { 3158 free_reserved_page(ptdesc_page(pt)); 3159 } 3160 3161 /* 3162 * Default method to free all the __init memory into the buddy system. 3163 * The freed pages will be poisoned with pattern "poison" if it's within 3164 * range [0, UCHAR_MAX]. 3165 * Return pages freed into the buddy system. 3166 */ 3167 static inline unsigned long free_initmem_default(int poison) 3168 { 3169 extern char __init_begin[], __init_end[]; 3170 3171 return free_reserved_area(&__init_begin, &__init_end, 3172 poison, "unused kernel image (initmem)"); 3173 } 3174 3175 static inline unsigned long get_num_physpages(void) 3176 { 3177 int nid; 3178 unsigned long phys_pages = 0; 3179 3180 for_each_online_node(nid) 3181 phys_pages += node_present_pages(nid); 3182 3183 return phys_pages; 3184 } 3185 3186 /* 3187 * Using memblock node mappings, an architecture may initialise its 3188 * zones, allocate the backing mem_map and account for memory holes in an 3189 * architecture independent manner. 3190 * 3191 * An architecture is expected to register range of page frames backed by 3192 * physical memory with memblock_add[_node]() before calling 3193 * free_area_init() passing in the PFN each zone ends at. At a basic 3194 * usage, an architecture is expected to do something like 3195 * 3196 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3197 * max_highmem_pfn}; 3198 * for_each_valid_physical_page_range() 3199 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3200 * free_area_init(max_zone_pfns); 3201 */ 3202 void free_area_init(unsigned long *max_zone_pfn); 3203 unsigned long node_map_pfn_alignment(void); 3204 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3205 unsigned long end_pfn); 3206 extern void get_pfn_range_for_nid(unsigned int nid, 3207 unsigned long *start_pfn, unsigned long *end_pfn); 3208 3209 #ifndef CONFIG_NUMA 3210 static inline int early_pfn_to_nid(unsigned long pfn) 3211 { 3212 return 0; 3213 } 3214 #else 3215 /* please see mm/page_alloc.c */ 3216 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3217 #endif 3218 3219 extern void mem_init(void); 3220 extern void __init mmap_init(void); 3221 3222 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3223 static inline void show_mem(void) 3224 { 3225 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3226 } 3227 extern long si_mem_available(void); 3228 extern void si_meminfo(struct sysinfo * val); 3229 extern void si_meminfo_node(struct sysinfo *val, int nid); 3230 3231 extern __printf(3, 4) 3232 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3233 3234 extern void setup_per_cpu_pageset(void); 3235 3236 /* nommu.c */ 3237 extern atomic_long_t mmap_pages_allocated; 3238 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3239 3240 /* interval_tree.c */ 3241 void vma_interval_tree_insert(struct vm_area_struct *node, 3242 struct rb_root_cached *root); 3243 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3244 struct vm_area_struct *prev, 3245 struct rb_root_cached *root); 3246 void vma_interval_tree_remove(struct vm_area_struct *node, 3247 struct rb_root_cached *root); 3248 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3249 unsigned long start, unsigned long last); 3250 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3251 unsigned long start, unsigned long last); 3252 3253 #define vma_interval_tree_foreach(vma, root, start, last) \ 3254 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3255 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3256 3257 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3258 struct rb_root_cached *root); 3259 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3260 struct rb_root_cached *root); 3261 struct anon_vma_chain * 3262 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3263 unsigned long start, unsigned long last); 3264 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3265 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3266 #ifdef CONFIG_DEBUG_VM_RB 3267 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3268 #endif 3269 3270 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3271 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3272 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3273 3274 /* mmap.c */ 3275 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3276 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3277 unsigned long start, unsigned long end, pgoff_t pgoff, 3278 struct vm_area_struct *next); 3279 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3280 unsigned long start, unsigned long end, pgoff_t pgoff); 3281 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3283 extern void unlink_file_vma(struct vm_area_struct *); 3284 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3285 unsigned long addr, unsigned long len, pgoff_t pgoff, 3286 bool *need_rmap_locks); 3287 extern void exit_mmap(struct mm_struct *); 3288 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3289 struct vm_area_struct *prev, 3290 struct vm_area_struct *vma, 3291 unsigned long start, unsigned long end, 3292 unsigned long vm_flags, 3293 struct mempolicy *policy, 3294 struct vm_userfaultfd_ctx uffd_ctx, 3295 struct anon_vma_name *anon_name); 3296 3297 /* We are about to modify the VMA's flags. */ 3298 static inline struct vm_area_struct 3299 *vma_modify_flags(struct vma_iterator *vmi, 3300 struct vm_area_struct *prev, 3301 struct vm_area_struct *vma, 3302 unsigned long start, unsigned long end, 3303 unsigned long new_flags) 3304 { 3305 return vma_modify(vmi, prev, vma, start, end, new_flags, 3306 vma_policy(vma), vma->vm_userfaultfd_ctx, 3307 anon_vma_name(vma)); 3308 } 3309 3310 /* We are about to modify the VMA's flags and/or anon_name. */ 3311 static inline struct vm_area_struct 3312 *vma_modify_flags_name(struct vma_iterator *vmi, 3313 struct vm_area_struct *prev, 3314 struct vm_area_struct *vma, 3315 unsigned long start, 3316 unsigned long end, 3317 unsigned long new_flags, 3318 struct anon_vma_name *new_name) 3319 { 3320 return vma_modify(vmi, prev, vma, start, end, new_flags, 3321 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3322 } 3323 3324 /* We are about to modify the VMA's memory policy. */ 3325 static inline struct vm_area_struct 3326 *vma_modify_policy(struct vma_iterator *vmi, 3327 struct vm_area_struct *prev, 3328 struct vm_area_struct *vma, 3329 unsigned long start, unsigned long end, 3330 struct mempolicy *new_pol) 3331 { 3332 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3333 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3334 } 3335 3336 /* We are about to modify the VMA's flags and/or uffd context. */ 3337 static inline struct vm_area_struct 3338 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3339 struct vm_area_struct *prev, 3340 struct vm_area_struct *vma, 3341 unsigned long start, unsigned long end, 3342 unsigned long new_flags, 3343 struct vm_userfaultfd_ctx new_ctx) 3344 { 3345 return vma_modify(vmi, prev, vma, start, end, new_flags, 3346 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3347 } 3348 3349 static inline int check_data_rlimit(unsigned long rlim, 3350 unsigned long new, 3351 unsigned long start, 3352 unsigned long end_data, 3353 unsigned long start_data) 3354 { 3355 if (rlim < RLIM_INFINITY) { 3356 if (((new - start) + (end_data - start_data)) > rlim) 3357 return -ENOSPC; 3358 } 3359 3360 return 0; 3361 } 3362 3363 extern int mm_take_all_locks(struct mm_struct *mm); 3364 extern void mm_drop_all_locks(struct mm_struct *mm); 3365 3366 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3367 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3368 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3369 extern struct file *get_task_exe_file(struct task_struct *task); 3370 3371 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3372 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3373 3374 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3375 const struct vm_special_mapping *sm); 3376 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3377 unsigned long addr, unsigned long len, 3378 unsigned long flags, 3379 const struct vm_special_mapping *spec); 3380 /* This is an obsolete alternative to _install_special_mapping. */ 3381 extern int install_special_mapping(struct mm_struct *mm, 3382 unsigned long addr, unsigned long len, 3383 unsigned long flags, struct page **pages); 3384 3385 unsigned long randomize_stack_top(unsigned long stack_top); 3386 unsigned long randomize_page(unsigned long start, unsigned long range); 3387 3388 unsigned long 3389 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3390 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3391 3392 static inline unsigned long 3393 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3394 unsigned long pgoff, unsigned long flags) 3395 { 3396 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3397 } 3398 3399 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3400 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3401 struct list_head *uf); 3402 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3403 unsigned long len, unsigned long prot, unsigned long flags, 3404 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3405 struct list_head *uf); 3406 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3407 unsigned long start, size_t len, struct list_head *uf, 3408 bool unlock); 3409 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3410 struct list_head *uf); 3411 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3412 3413 #ifdef CONFIG_MMU 3414 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3415 unsigned long start, unsigned long end, 3416 struct list_head *uf, bool unlock); 3417 extern int __mm_populate(unsigned long addr, unsigned long len, 3418 int ignore_errors); 3419 static inline void mm_populate(unsigned long addr, unsigned long len) 3420 { 3421 /* Ignore errors */ 3422 (void) __mm_populate(addr, len, 1); 3423 } 3424 #else 3425 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3426 #endif 3427 3428 /* This takes the mm semaphore itself */ 3429 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3430 extern int vm_munmap(unsigned long, size_t); 3431 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3432 unsigned long, unsigned long, 3433 unsigned long, unsigned long); 3434 3435 struct vm_unmapped_area_info { 3436 #define VM_UNMAPPED_AREA_TOPDOWN 1 3437 unsigned long flags; 3438 unsigned long length; 3439 unsigned long low_limit; 3440 unsigned long high_limit; 3441 unsigned long align_mask; 3442 unsigned long align_offset; 3443 unsigned long start_gap; 3444 }; 3445 3446 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3447 3448 /* truncate.c */ 3449 extern void truncate_inode_pages(struct address_space *, loff_t); 3450 extern void truncate_inode_pages_range(struct address_space *, 3451 loff_t lstart, loff_t lend); 3452 extern void truncate_inode_pages_final(struct address_space *); 3453 3454 /* generic vm_area_ops exported for stackable file systems */ 3455 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3456 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3457 pgoff_t start_pgoff, pgoff_t end_pgoff); 3458 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3459 3460 extern unsigned long stack_guard_gap; 3461 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3462 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3463 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3464 3465 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3466 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3467 3468 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3469 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3470 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3471 struct vm_area_struct **pprev); 3472 3473 /* 3474 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3475 * NULL if none. Assume start_addr < end_addr. 3476 */ 3477 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3478 unsigned long start_addr, unsigned long end_addr); 3479 3480 /** 3481 * vma_lookup() - Find a VMA at a specific address 3482 * @mm: The process address space. 3483 * @addr: The user address. 3484 * 3485 * Return: The vm_area_struct at the given address, %NULL otherwise. 3486 */ 3487 static inline 3488 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3489 { 3490 return mtree_load(&mm->mm_mt, addr); 3491 } 3492 3493 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3494 { 3495 if (vma->vm_flags & VM_GROWSDOWN) 3496 return stack_guard_gap; 3497 3498 /* See reasoning around the VM_SHADOW_STACK definition */ 3499 if (vma->vm_flags & VM_SHADOW_STACK) 3500 return PAGE_SIZE; 3501 3502 return 0; 3503 } 3504 3505 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3506 { 3507 unsigned long gap = stack_guard_start_gap(vma); 3508 unsigned long vm_start = vma->vm_start; 3509 3510 vm_start -= gap; 3511 if (vm_start > vma->vm_start) 3512 vm_start = 0; 3513 return vm_start; 3514 } 3515 3516 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3517 { 3518 unsigned long vm_end = vma->vm_end; 3519 3520 if (vma->vm_flags & VM_GROWSUP) { 3521 vm_end += stack_guard_gap; 3522 if (vm_end < vma->vm_end) 3523 vm_end = -PAGE_SIZE; 3524 } 3525 return vm_end; 3526 } 3527 3528 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3529 { 3530 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3531 } 3532 3533 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3534 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3535 unsigned long vm_start, unsigned long vm_end) 3536 { 3537 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3538 3539 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3540 vma = NULL; 3541 3542 return vma; 3543 } 3544 3545 static inline bool range_in_vma(struct vm_area_struct *vma, 3546 unsigned long start, unsigned long end) 3547 { 3548 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3549 } 3550 3551 #ifdef CONFIG_MMU 3552 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3553 void vma_set_page_prot(struct vm_area_struct *vma); 3554 #else 3555 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3556 { 3557 return __pgprot(0); 3558 } 3559 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3560 { 3561 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3562 } 3563 #endif 3564 3565 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3566 3567 #ifdef CONFIG_NUMA_BALANCING 3568 unsigned long change_prot_numa(struct vm_area_struct *vma, 3569 unsigned long start, unsigned long end); 3570 #endif 3571 3572 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3573 unsigned long addr); 3574 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3575 unsigned long pfn, unsigned long size, pgprot_t); 3576 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3577 unsigned long pfn, unsigned long size, pgprot_t prot); 3578 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3579 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3580 struct page **pages, unsigned long *num); 3581 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3582 unsigned long num); 3583 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3584 unsigned long num); 3585 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3586 unsigned long pfn); 3587 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3588 unsigned long pfn, pgprot_t pgprot); 3589 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3590 pfn_t pfn); 3591 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3592 unsigned long addr, pfn_t pfn); 3593 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3594 3595 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3596 unsigned long addr, struct page *page) 3597 { 3598 int err = vm_insert_page(vma, addr, page); 3599 3600 if (err == -ENOMEM) 3601 return VM_FAULT_OOM; 3602 if (err < 0 && err != -EBUSY) 3603 return VM_FAULT_SIGBUS; 3604 3605 return VM_FAULT_NOPAGE; 3606 } 3607 3608 #ifndef io_remap_pfn_range 3609 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3610 unsigned long addr, unsigned long pfn, 3611 unsigned long size, pgprot_t prot) 3612 { 3613 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3614 } 3615 #endif 3616 3617 static inline vm_fault_t vmf_error(int err) 3618 { 3619 if (err == -ENOMEM) 3620 return VM_FAULT_OOM; 3621 else if (err == -EHWPOISON) 3622 return VM_FAULT_HWPOISON; 3623 return VM_FAULT_SIGBUS; 3624 } 3625 3626 /* 3627 * Convert errno to return value for ->page_mkwrite() calls. 3628 * 3629 * This should eventually be merged with vmf_error() above, but will need a 3630 * careful audit of all vmf_error() callers. 3631 */ 3632 static inline vm_fault_t vmf_fs_error(int err) 3633 { 3634 if (err == 0) 3635 return VM_FAULT_LOCKED; 3636 if (err == -EFAULT || err == -EAGAIN) 3637 return VM_FAULT_NOPAGE; 3638 if (err == -ENOMEM) 3639 return VM_FAULT_OOM; 3640 /* -ENOSPC, -EDQUOT, -EIO ... */ 3641 return VM_FAULT_SIGBUS; 3642 } 3643 3644 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3645 unsigned int foll_flags); 3646 3647 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3648 { 3649 if (vm_fault & VM_FAULT_OOM) 3650 return -ENOMEM; 3651 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3652 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3653 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3654 return -EFAULT; 3655 return 0; 3656 } 3657 3658 /* 3659 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3660 * a (NUMA hinting) fault is required. 3661 */ 3662 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3663 unsigned int flags) 3664 { 3665 /* 3666 * If callers don't want to honor NUMA hinting faults, no need to 3667 * determine if we would actually have to trigger a NUMA hinting fault. 3668 */ 3669 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3670 return true; 3671 3672 /* 3673 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3674 * 3675 * Requiring a fault here even for inaccessible VMAs would mean that 3676 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3677 * refuses to process NUMA hinting faults in inaccessible VMAs. 3678 */ 3679 return !vma_is_accessible(vma); 3680 } 3681 3682 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3683 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3684 unsigned long size, pte_fn_t fn, void *data); 3685 extern int apply_to_existing_page_range(struct mm_struct *mm, 3686 unsigned long address, unsigned long size, 3687 pte_fn_t fn, void *data); 3688 3689 #ifdef CONFIG_PAGE_POISONING 3690 extern void __kernel_poison_pages(struct page *page, int numpages); 3691 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3692 extern bool _page_poisoning_enabled_early; 3693 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3694 static inline bool page_poisoning_enabled(void) 3695 { 3696 return _page_poisoning_enabled_early; 3697 } 3698 /* 3699 * For use in fast paths after init_mem_debugging() has run, or when a 3700 * false negative result is not harmful when called too early. 3701 */ 3702 static inline bool page_poisoning_enabled_static(void) 3703 { 3704 return static_branch_unlikely(&_page_poisoning_enabled); 3705 } 3706 static inline void kernel_poison_pages(struct page *page, int numpages) 3707 { 3708 if (page_poisoning_enabled_static()) 3709 __kernel_poison_pages(page, numpages); 3710 } 3711 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3712 { 3713 if (page_poisoning_enabled_static()) 3714 __kernel_unpoison_pages(page, numpages); 3715 } 3716 #else 3717 static inline bool page_poisoning_enabled(void) { return false; } 3718 static inline bool page_poisoning_enabled_static(void) { return false; } 3719 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3720 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3721 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3722 #endif 3723 3724 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3725 static inline bool want_init_on_alloc(gfp_t flags) 3726 { 3727 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3728 &init_on_alloc)) 3729 return true; 3730 return flags & __GFP_ZERO; 3731 } 3732 3733 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3734 static inline bool want_init_on_free(void) 3735 { 3736 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3737 &init_on_free); 3738 } 3739 3740 extern bool _debug_pagealloc_enabled_early; 3741 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3742 3743 static inline bool debug_pagealloc_enabled(void) 3744 { 3745 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3746 _debug_pagealloc_enabled_early; 3747 } 3748 3749 /* 3750 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3751 * or when a false negative result is not harmful when called too early. 3752 */ 3753 static inline bool debug_pagealloc_enabled_static(void) 3754 { 3755 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3756 return false; 3757 3758 return static_branch_unlikely(&_debug_pagealloc_enabled); 3759 } 3760 3761 /* 3762 * To support DEBUG_PAGEALLOC architecture must ensure that 3763 * __kernel_map_pages() never fails 3764 */ 3765 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3766 #ifdef CONFIG_DEBUG_PAGEALLOC 3767 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3768 { 3769 if (debug_pagealloc_enabled_static()) 3770 __kernel_map_pages(page, numpages, 1); 3771 } 3772 3773 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3774 { 3775 if (debug_pagealloc_enabled_static()) 3776 __kernel_map_pages(page, numpages, 0); 3777 } 3778 3779 extern unsigned int _debug_guardpage_minorder; 3780 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3781 3782 static inline unsigned int debug_guardpage_minorder(void) 3783 { 3784 return _debug_guardpage_minorder; 3785 } 3786 3787 static inline bool debug_guardpage_enabled(void) 3788 { 3789 return static_branch_unlikely(&_debug_guardpage_enabled); 3790 } 3791 3792 static inline bool page_is_guard(struct page *page) 3793 { 3794 if (!debug_guardpage_enabled()) 3795 return false; 3796 3797 return PageGuard(page); 3798 } 3799 3800 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3801 static inline bool set_page_guard(struct zone *zone, struct page *page, 3802 unsigned int order) 3803 { 3804 if (!debug_guardpage_enabled()) 3805 return false; 3806 return __set_page_guard(zone, page, order); 3807 } 3808 3809 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3810 static inline void clear_page_guard(struct zone *zone, struct page *page, 3811 unsigned int order) 3812 { 3813 if (!debug_guardpage_enabled()) 3814 return; 3815 __clear_page_guard(zone, page, order); 3816 } 3817 3818 #else /* CONFIG_DEBUG_PAGEALLOC */ 3819 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3820 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3821 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3822 static inline bool debug_guardpage_enabled(void) { return false; } 3823 static inline bool page_is_guard(struct page *page) { return false; } 3824 static inline bool set_page_guard(struct zone *zone, struct page *page, 3825 unsigned int order) { return false; } 3826 static inline void clear_page_guard(struct zone *zone, struct page *page, 3827 unsigned int order) {} 3828 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3829 3830 #ifdef __HAVE_ARCH_GATE_AREA 3831 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3832 extern int in_gate_area_no_mm(unsigned long addr); 3833 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3834 #else 3835 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3836 { 3837 return NULL; 3838 } 3839 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3840 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3841 { 3842 return 0; 3843 } 3844 #endif /* __HAVE_ARCH_GATE_AREA */ 3845 3846 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3847 3848 #ifdef CONFIG_SYSCTL 3849 extern int sysctl_drop_caches; 3850 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3851 loff_t *); 3852 #endif 3853 3854 void drop_slab(void); 3855 3856 #ifndef CONFIG_MMU 3857 #define randomize_va_space 0 3858 #else 3859 extern int randomize_va_space; 3860 #endif 3861 3862 const char * arch_vma_name(struct vm_area_struct *vma); 3863 #ifdef CONFIG_MMU 3864 void print_vma_addr(char *prefix, unsigned long rip); 3865 #else 3866 static inline void print_vma_addr(char *prefix, unsigned long rip) 3867 { 3868 } 3869 #endif 3870 3871 void *sparse_buffer_alloc(unsigned long size); 3872 struct page * __populate_section_memmap(unsigned long pfn, 3873 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3874 struct dev_pagemap *pgmap); 3875 void pmd_init(void *addr); 3876 void pud_init(void *addr); 3877 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3878 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3879 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3880 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3881 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3882 struct vmem_altmap *altmap, struct page *reuse); 3883 void *vmemmap_alloc_block(unsigned long size, int node); 3884 struct vmem_altmap; 3885 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3886 struct vmem_altmap *altmap); 3887 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3888 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3889 unsigned long addr, unsigned long next); 3890 int vmemmap_check_pmd(pmd_t *pmd, int node, 3891 unsigned long addr, unsigned long next); 3892 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3893 int node, struct vmem_altmap *altmap); 3894 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3895 int node, struct vmem_altmap *altmap); 3896 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3897 struct vmem_altmap *altmap); 3898 void vmemmap_populate_print_last(void); 3899 #ifdef CONFIG_MEMORY_HOTPLUG 3900 void vmemmap_free(unsigned long start, unsigned long end, 3901 struct vmem_altmap *altmap); 3902 #endif 3903 3904 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3905 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3906 { 3907 /* number of pfns from base where pfn_to_page() is valid */ 3908 if (altmap) 3909 return altmap->reserve + altmap->free; 3910 return 0; 3911 } 3912 3913 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3914 unsigned long nr_pfns) 3915 { 3916 altmap->alloc -= nr_pfns; 3917 } 3918 #else 3919 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3920 { 3921 return 0; 3922 } 3923 3924 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3925 unsigned long nr_pfns) 3926 { 3927 } 3928 #endif 3929 3930 #define VMEMMAP_RESERVE_NR 2 3931 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3932 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3933 struct dev_pagemap *pgmap) 3934 { 3935 unsigned long nr_pages; 3936 unsigned long nr_vmemmap_pages; 3937 3938 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3939 return false; 3940 3941 nr_pages = pgmap_vmemmap_nr(pgmap); 3942 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3943 /* 3944 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3945 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3946 */ 3947 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3948 } 3949 /* 3950 * If we don't have an architecture override, use the generic rule 3951 */ 3952 #ifndef vmemmap_can_optimize 3953 #define vmemmap_can_optimize __vmemmap_can_optimize 3954 #endif 3955 3956 #else 3957 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3958 struct dev_pagemap *pgmap) 3959 { 3960 return false; 3961 } 3962 #endif 3963 3964 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3965 unsigned long nr_pages); 3966 3967 enum mf_flags { 3968 MF_COUNT_INCREASED = 1 << 0, 3969 MF_ACTION_REQUIRED = 1 << 1, 3970 MF_MUST_KILL = 1 << 2, 3971 MF_SOFT_OFFLINE = 1 << 3, 3972 MF_UNPOISON = 1 << 4, 3973 MF_SW_SIMULATED = 1 << 5, 3974 MF_NO_RETRY = 1 << 6, 3975 MF_MEM_PRE_REMOVE = 1 << 7, 3976 }; 3977 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3978 unsigned long count, int mf_flags); 3979 extern int memory_failure(unsigned long pfn, int flags); 3980 extern void memory_failure_queue_kick(int cpu); 3981 extern int unpoison_memory(unsigned long pfn); 3982 extern atomic_long_t num_poisoned_pages __read_mostly; 3983 extern int soft_offline_page(unsigned long pfn, int flags); 3984 #ifdef CONFIG_MEMORY_FAILURE 3985 /* 3986 * Sysfs entries for memory failure handling statistics. 3987 */ 3988 extern const struct attribute_group memory_failure_attr_group; 3989 extern void memory_failure_queue(unsigned long pfn, int flags); 3990 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3991 bool *migratable_cleared); 3992 void num_poisoned_pages_inc(unsigned long pfn); 3993 void num_poisoned_pages_sub(unsigned long pfn, long i); 3994 #else 3995 static inline void memory_failure_queue(unsigned long pfn, int flags) 3996 { 3997 } 3998 3999 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4000 bool *migratable_cleared) 4001 { 4002 return 0; 4003 } 4004 4005 static inline void num_poisoned_pages_inc(unsigned long pfn) 4006 { 4007 } 4008 4009 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4010 { 4011 } 4012 #endif 4013 4014 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4015 extern void memblk_nr_poison_inc(unsigned long pfn); 4016 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4017 #else 4018 static inline void memblk_nr_poison_inc(unsigned long pfn) 4019 { 4020 } 4021 4022 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4023 { 4024 } 4025 #endif 4026 4027 #ifndef arch_memory_failure 4028 static inline int arch_memory_failure(unsigned long pfn, int flags) 4029 { 4030 return -ENXIO; 4031 } 4032 #endif 4033 4034 #ifndef arch_is_platform_page 4035 static inline bool arch_is_platform_page(u64 paddr) 4036 { 4037 return false; 4038 } 4039 #endif 4040 4041 /* 4042 * Error handlers for various types of pages. 4043 */ 4044 enum mf_result { 4045 MF_IGNORED, /* Error: cannot be handled */ 4046 MF_FAILED, /* Error: handling failed */ 4047 MF_DELAYED, /* Will be handled later */ 4048 MF_RECOVERED, /* Successfully recovered */ 4049 }; 4050 4051 enum mf_action_page_type { 4052 MF_MSG_KERNEL, 4053 MF_MSG_KERNEL_HIGH_ORDER, 4054 MF_MSG_DIFFERENT_COMPOUND, 4055 MF_MSG_HUGE, 4056 MF_MSG_FREE_HUGE, 4057 MF_MSG_GET_HWPOISON, 4058 MF_MSG_UNMAP_FAILED, 4059 MF_MSG_DIRTY_SWAPCACHE, 4060 MF_MSG_CLEAN_SWAPCACHE, 4061 MF_MSG_DIRTY_MLOCKED_LRU, 4062 MF_MSG_CLEAN_MLOCKED_LRU, 4063 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4064 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4065 MF_MSG_DIRTY_LRU, 4066 MF_MSG_CLEAN_LRU, 4067 MF_MSG_TRUNCATED_LRU, 4068 MF_MSG_BUDDY, 4069 MF_MSG_DAX, 4070 MF_MSG_UNSPLIT_THP, 4071 MF_MSG_ALREADY_POISONED, 4072 MF_MSG_UNKNOWN, 4073 }; 4074 4075 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4076 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4077 int copy_user_large_folio(struct folio *dst, struct folio *src, 4078 unsigned long addr_hint, 4079 struct vm_area_struct *vma); 4080 long copy_folio_from_user(struct folio *dst_folio, 4081 const void __user *usr_src, 4082 bool allow_pagefault); 4083 4084 /** 4085 * vma_is_special_huge - Are transhuge page-table entries considered special? 4086 * @vma: Pointer to the struct vm_area_struct to consider 4087 * 4088 * Whether transhuge page-table entries are considered "special" following 4089 * the definition in vm_normal_page(). 4090 * 4091 * Return: true if transhuge page-table entries should be considered special, 4092 * false otherwise. 4093 */ 4094 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4095 { 4096 return vma_is_dax(vma) || (vma->vm_file && 4097 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4098 } 4099 4100 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4101 4102 #if MAX_NUMNODES > 1 4103 void __init setup_nr_node_ids(void); 4104 #else 4105 static inline void setup_nr_node_ids(void) {} 4106 #endif 4107 4108 extern int memcmp_pages(struct page *page1, struct page *page2); 4109 4110 static inline int pages_identical(struct page *page1, struct page *page2) 4111 { 4112 return !memcmp_pages(page1, page2); 4113 } 4114 4115 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4116 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4117 pgoff_t first_index, pgoff_t nr, 4118 pgoff_t bitmap_pgoff, 4119 unsigned long *bitmap, 4120 pgoff_t *start, 4121 pgoff_t *end); 4122 4123 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4124 pgoff_t first_index, pgoff_t nr); 4125 #endif 4126 4127 extern int sysctl_nr_trim_pages; 4128 4129 #ifdef CONFIG_PRINTK 4130 void mem_dump_obj(void *object); 4131 #else 4132 static inline void mem_dump_obj(void *object) {} 4133 #endif 4134 4135 /** 4136 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4137 * handle them. 4138 * @seals: the seals to check 4139 * @vma: the vma to operate on 4140 * 4141 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4142 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4143 */ 4144 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4145 { 4146 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4147 /* 4148 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4149 * write seals are active. 4150 */ 4151 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4152 return -EPERM; 4153 4154 /* 4155 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4156 * MAP_SHARED and read-only, take care to not allow mprotect to 4157 * revert protections on such mappings. Do this only for shared 4158 * mappings. For private mappings, don't need to mask 4159 * VM_MAYWRITE as we still want them to be COW-writable. 4160 */ 4161 if (vma->vm_flags & VM_SHARED) 4162 vm_flags_clear(vma, VM_MAYWRITE); 4163 } 4164 4165 return 0; 4166 } 4167 4168 #ifdef CONFIG_ANON_VMA_NAME 4169 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4170 unsigned long len_in, 4171 struct anon_vma_name *anon_name); 4172 #else 4173 static inline int 4174 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4175 unsigned long len_in, struct anon_vma_name *anon_name) { 4176 return 0; 4177 } 4178 #endif 4179 4180 #ifdef CONFIG_UNACCEPTED_MEMORY 4181 4182 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4183 void accept_memory(phys_addr_t start, phys_addr_t end); 4184 4185 #else 4186 4187 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4188 phys_addr_t end) 4189 { 4190 return false; 4191 } 4192 4193 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4194 { 4195 } 4196 4197 #endif 4198 4199 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4200 { 4201 phys_addr_t paddr = pfn << PAGE_SHIFT; 4202 4203 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4204 } 4205 4206 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4207 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4208 4209 #endif /* _LINUX_MM_H */ 4210