xref: /linux-6.15/include/linux/mm.h (revision 8d42e2a9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 #ifdef CONFIG_64BIT
410 /* VM is sealed, in vm_flags */
411 #define VM_SEALED	_BITUL(63)
412 #endif
413 
414 /* Bits set in the VMA until the stack is in its final location */
415 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
416 
417 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
418 
419 /* Common data flag combinations */
420 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
421 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
422 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
423 				 VM_MAYWRITE | VM_MAYEXEC)
424 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
425 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
426 
427 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
428 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
429 #endif
430 
431 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
432 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
433 #endif
434 
435 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
436 
437 #ifdef CONFIG_STACK_GROWSUP
438 #define VM_STACK	VM_GROWSUP
439 #define VM_STACK_EARLY	VM_GROWSDOWN
440 #else
441 #define VM_STACK	VM_GROWSDOWN
442 #define VM_STACK_EARLY	0
443 #endif
444 
445 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
446 
447 /* VMA basic access permission flags */
448 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
449 
450 
451 /*
452  * Special vmas that are non-mergable, non-mlock()able.
453  */
454 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
455 
456 /* This mask prevents VMA from being scanned with khugepaged */
457 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
458 
459 /* This mask defines which mm->def_flags a process can inherit its parent */
460 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
461 
462 /* This mask represents all the VMA flag bits used by mlock */
463 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
464 
465 /* Arch-specific flags to clear when updating VM flags on protection change */
466 #ifndef VM_ARCH_CLEAR
467 # define VM_ARCH_CLEAR	VM_NONE
468 #endif
469 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
470 
471 /*
472  * mapping from the currently active vm_flags protection bits (the
473  * low four bits) to a page protection mask..
474  */
475 
476 /*
477  * The default fault flags that should be used by most of the
478  * arch-specific page fault handlers.
479  */
480 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
481 			     FAULT_FLAG_KILLABLE | \
482 			     FAULT_FLAG_INTERRUPTIBLE)
483 
484 /**
485  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
486  * @flags: Fault flags.
487  *
488  * This is mostly used for places where we want to try to avoid taking
489  * the mmap_lock for too long a time when waiting for another condition
490  * to change, in which case we can try to be polite to release the
491  * mmap_lock in the first round to avoid potential starvation of other
492  * processes that would also want the mmap_lock.
493  *
494  * Return: true if the page fault allows retry and this is the first
495  * attempt of the fault handling; false otherwise.
496  */
497 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
498 {
499 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
500 	    (!(flags & FAULT_FLAG_TRIED));
501 }
502 
503 #define FAULT_FLAG_TRACE \
504 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
505 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
506 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
507 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
508 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
509 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
510 	{ FAULT_FLAG_USER,		"USER" }, \
511 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
512 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
513 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
514 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
515 
516 /*
517  * vm_fault is filled by the pagefault handler and passed to the vma's
518  * ->fault function. The vma's ->fault is responsible for returning a bitmask
519  * of VM_FAULT_xxx flags that give details about how the fault was handled.
520  *
521  * MM layer fills up gfp_mask for page allocations but fault handler might
522  * alter it if its implementation requires a different allocation context.
523  *
524  * pgoff should be used in favour of virtual_address, if possible.
525  */
526 struct vm_fault {
527 	const struct {
528 		struct vm_area_struct *vma;	/* Target VMA */
529 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
530 		pgoff_t pgoff;			/* Logical page offset based on vma */
531 		unsigned long address;		/* Faulting virtual address - masked */
532 		unsigned long real_address;	/* Faulting virtual address - unmasked */
533 	};
534 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
535 					 * XXX: should really be 'const' */
536 	pmd_t *pmd;			/* Pointer to pmd entry matching
537 					 * the 'address' */
538 	pud_t *pud;			/* Pointer to pud entry matching
539 					 * the 'address'
540 					 */
541 	union {
542 		pte_t orig_pte;		/* Value of PTE at the time of fault */
543 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
544 					 * used by PMD fault only.
545 					 */
546 	};
547 
548 	struct page *cow_page;		/* Page handler may use for COW fault */
549 	struct page *page;		/* ->fault handlers should return a
550 					 * page here, unless VM_FAULT_NOPAGE
551 					 * is set (which is also implied by
552 					 * VM_FAULT_ERROR).
553 					 */
554 	/* These three entries are valid only while holding ptl lock */
555 	pte_t *pte;			/* Pointer to pte entry matching
556 					 * the 'address'. NULL if the page
557 					 * table hasn't been allocated.
558 					 */
559 	spinlock_t *ptl;		/* Page table lock.
560 					 * Protects pte page table if 'pte'
561 					 * is not NULL, otherwise pmd.
562 					 */
563 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
564 					 * vm_ops->map_pages() sets up a page
565 					 * table from atomic context.
566 					 * do_fault_around() pre-allocates
567 					 * page table to avoid allocation from
568 					 * atomic context.
569 					 */
570 };
571 
572 /*
573  * These are the virtual MM functions - opening of an area, closing and
574  * unmapping it (needed to keep files on disk up-to-date etc), pointer
575  * to the functions called when a no-page or a wp-page exception occurs.
576  */
577 struct vm_operations_struct {
578 	void (*open)(struct vm_area_struct * area);
579 	/**
580 	 * @close: Called when the VMA is being removed from the MM.
581 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
582 	 */
583 	void (*close)(struct vm_area_struct * area);
584 	/* Called any time before splitting to check if it's allowed */
585 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
586 	int (*mremap)(struct vm_area_struct *area);
587 	/*
588 	 * Called by mprotect() to make driver-specific permission
589 	 * checks before mprotect() is finalised.   The VMA must not
590 	 * be modified.  Returns 0 if mprotect() can proceed.
591 	 */
592 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
593 			unsigned long end, unsigned long newflags);
594 	vm_fault_t (*fault)(struct vm_fault *vmf);
595 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
596 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
597 			pgoff_t start_pgoff, pgoff_t end_pgoff);
598 	unsigned long (*pagesize)(struct vm_area_struct * area);
599 
600 	/* notification that a previously read-only page is about to become
601 	 * writable, if an error is returned it will cause a SIGBUS */
602 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
603 
604 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
605 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
606 
607 	/* called by access_process_vm when get_user_pages() fails, typically
608 	 * for use by special VMAs. See also generic_access_phys() for a generic
609 	 * implementation useful for any iomem mapping.
610 	 */
611 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
612 		      void *buf, int len, int write);
613 
614 	/* Called by the /proc/PID/maps code to ask the vma whether it
615 	 * has a special name.  Returning non-NULL will also cause this
616 	 * vma to be dumped unconditionally. */
617 	const char *(*name)(struct vm_area_struct *vma);
618 
619 #ifdef CONFIG_NUMA
620 	/*
621 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
622 	 * to hold the policy upon return.  Caller should pass NULL @new to
623 	 * remove a policy and fall back to surrounding context--i.e. do not
624 	 * install a MPOL_DEFAULT policy, nor the task or system default
625 	 * mempolicy.
626 	 */
627 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
628 
629 	/*
630 	 * get_policy() op must add reference [mpol_get()] to any policy at
631 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
632 	 * in mm/mempolicy.c will do this automatically.
633 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
634 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
635 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
636 	 * must return NULL--i.e., do not "fallback" to task or system default
637 	 * policy.
638 	 */
639 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
640 					unsigned long addr, pgoff_t *ilx);
641 #endif
642 	/*
643 	 * Called by vm_normal_page() for special PTEs to find the
644 	 * page for @addr.  This is useful if the default behavior
645 	 * (using pte_page()) would not find the correct page.
646 	 */
647 	struct page *(*find_special_page)(struct vm_area_struct *vma,
648 					  unsigned long addr);
649 };
650 
651 #ifdef CONFIG_NUMA_BALANCING
652 static inline void vma_numab_state_init(struct vm_area_struct *vma)
653 {
654 	vma->numab_state = NULL;
655 }
656 static inline void vma_numab_state_free(struct vm_area_struct *vma)
657 {
658 	kfree(vma->numab_state);
659 }
660 #else
661 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
662 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
663 #endif /* CONFIG_NUMA_BALANCING */
664 
665 #ifdef CONFIG_PER_VMA_LOCK
666 /*
667  * Try to read-lock a vma. The function is allowed to occasionally yield false
668  * locked result to avoid performance overhead, in which case we fall back to
669  * using mmap_lock. The function should never yield false unlocked result.
670  */
671 static inline bool vma_start_read(struct vm_area_struct *vma)
672 {
673 	/*
674 	 * Check before locking. A race might cause false locked result.
675 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
676 	 * ACQUIRE semantics, because this is just a lockless check whose result
677 	 * we don't rely on for anything - the mm_lock_seq read against which we
678 	 * need ordering is below.
679 	 */
680 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
681 		return false;
682 
683 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
684 		return false;
685 
686 	/*
687 	 * Overflow might produce false locked result.
688 	 * False unlocked result is impossible because we modify and check
689 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
690 	 * modification invalidates all existing locks.
691 	 *
692 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
693 	 * racing with vma_end_write_all(), we only start reading from the VMA
694 	 * after it has been unlocked.
695 	 * This pairs with RELEASE semantics in vma_end_write_all().
696 	 */
697 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
698 		up_read(&vma->vm_lock->lock);
699 		return false;
700 	}
701 	return true;
702 }
703 
704 static inline void vma_end_read(struct vm_area_struct *vma)
705 {
706 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
707 	up_read(&vma->vm_lock->lock);
708 	rcu_read_unlock();
709 }
710 
711 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
712 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
713 {
714 	mmap_assert_write_locked(vma->vm_mm);
715 
716 	/*
717 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
718 	 * mm->mm_lock_seq can't be concurrently modified.
719 	 */
720 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
721 	return (vma->vm_lock_seq == *mm_lock_seq);
722 }
723 
724 /*
725  * Begin writing to a VMA.
726  * Exclude concurrent readers under the per-VMA lock until the currently
727  * write-locked mmap_lock is dropped or downgraded.
728  */
729 static inline void vma_start_write(struct vm_area_struct *vma)
730 {
731 	int mm_lock_seq;
732 
733 	if (__is_vma_write_locked(vma, &mm_lock_seq))
734 		return;
735 
736 	down_write(&vma->vm_lock->lock);
737 	/*
738 	 * We should use WRITE_ONCE() here because we can have concurrent reads
739 	 * from the early lockless pessimistic check in vma_start_read().
740 	 * We don't really care about the correctness of that early check, but
741 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
742 	 */
743 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
744 	up_write(&vma->vm_lock->lock);
745 }
746 
747 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
748 {
749 	int mm_lock_seq;
750 
751 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
752 }
753 
754 static inline void vma_assert_locked(struct vm_area_struct *vma)
755 {
756 	if (!rwsem_is_locked(&vma->vm_lock->lock))
757 		vma_assert_write_locked(vma);
758 }
759 
760 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
761 {
762 	/* When detaching vma should be write-locked */
763 	if (detached)
764 		vma_assert_write_locked(vma);
765 	vma->detached = detached;
766 }
767 
768 static inline void release_fault_lock(struct vm_fault *vmf)
769 {
770 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
771 		vma_end_read(vmf->vma);
772 	else
773 		mmap_read_unlock(vmf->vma->vm_mm);
774 }
775 
776 static inline void assert_fault_locked(struct vm_fault *vmf)
777 {
778 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
779 		vma_assert_locked(vmf->vma);
780 	else
781 		mmap_assert_locked(vmf->vma->vm_mm);
782 }
783 
784 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
785 					  unsigned long address);
786 
787 #else /* CONFIG_PER_VMA_LOCK */
788 
789 static inline bool vma_start_read(struct vm_area_struct *vma)
790 		{ return false; }
791 static inline void vma_end_read(struct vm_area_struct *vma) {}
792 static inline void vma_start_write(struct vm_area_struct *vma) {}
793 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
794 		{ mmap_assert_write_locked(vma->vm_mm); }
795 static inline void vma_mark_detached(struct vm_area_struct *vma,
796 				     bool detached) {}
797 
798 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
799 		unsigned long address)
800 {
801 	return NULL;
802 }
803 
804 static inline void vma_assert_locked(struct vm_area_struct *vma)
805 {
806 	mmap_assert_locked(vma->vm_mm);
807 }
808 
809 static inline void release_fault_lock(struct vm_fault *vmf)
810 {
811 	mmap_read_unlock(vmf->vma->vm_mm);
812 }
813 
814 static inline void assert_fault_locked(struct vm_fault *vmf)
815 {
816 	mmap_assert_locked(vmf->vma->vm_mm);
817 }
818 
819 #endif /* CONFIG_PER_VMA_LOCK */
820 
821 extern const struct vm_operations_struct vma_dummy_vm_ops;
822 
823 /*
824  * WARNING: vma_init does not initialize vma->vm_lock.
825  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
826  */
827 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
828 {
829 	memset(vma, 0, sizeof(*vma));
830 	vma->vm_mm = mm;
831 	vma->vm_ops = &vma_dummy_vm_ops;
832 	INIT_LIST_HEAD(&vma->anon_vma_chain);
833 	vma_mark_detached(vma, false);
834 	vma_numab_state_init(vma);
835 }
836 
837 /* Use when VMA is not part of the VMA tree and needs no locking */
838 static inline void vm_flags_init(struct vm_area_struct *vma,
839 				 vm_flags_t flags)
840 {
841 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
842 }
843 
844 /*
845  * Use when VMA is part of the VMA tree and modifications need coordination
846  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
847  * it should be locked explicitly beforehand.
848  */
849 static inline void vm_flags_reset(struct vm_area_struct *vma,
850 				  vm_flags_t flags)
851 {
852 	vma_assert_write_locked(vma);
853 	vm_flags_init(vma, flags);
854 }
855 
856 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
857 				       vm_flags_t flags)
858 {
859 	vma_assert_write_locked(vma);
860 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
861 }
862 
863 static inline void vm_flags_set(struct vm_area_struct *vma,
864 				vm_flags_t flags)
865 {
866 	vma_start_write(vma);
867 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
868 }
869 
870 static inline void vm_flags_clear(struct vm_area_struct *vma,
871 				  vm_flags_t flags)
872 {
873 	vma_start_write(vma);
874 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
875 }
876 
877 /*
878  * Use only if VMA is not part of the VMA tree or has no other users and
879  * therefore needs no locking.
880  */
881 static inline void __vm_flags_mod(struct vm_area_struct *vma,
882 				  vm_flags_t set, vm_flags_t clear)
883 {
884 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
885 }
886 
887 /*
888  * Use only when the order of set/clear operations is unimportant, otherwise
889  * use vm_flags_{set|clear} explicitly.
890  */
891 static inline void vm_flags_mod(struct vm_area_struct *vma,
892 				vm_flags_t set, vm_flags_t clear)
893 {
894 	vma_start_write(vma);
895 	__vm_flags_mod(vma, set, clear);
896 }
897 
898 static inline void vma_set_anonymous(struct vm_area_struct *vma)
899 {
900 	vma->vm_ops = NULL;
901 }
902 
903 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
904 {
905 	return !vma->vm_ops;
906 }
907 
908 /*
909  * Indicate if the VMA is a heap for the given task; for
910  * /proc/PID/maps that is the heap of the main task.
911  */
912 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
913 {
914 	return vma->vm_start < vma->vm_mm->brk &&
915 		vma->vm_end > vma->vm_mm->start_brk;
916 }
917 
918 /*
919  * Indicate if the VMA is a stack for the given task; for
920  * /proc/PID/maps that is the stack of the main task.
921  */
922 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
923 {
924 	/*
925 	 * We make no effort to guess what a given thread considers to be
926 	 * its "stack".  It's not even well-defined for programs written
927 	 * languages like Go.
928 	 */
929 	return vma->vm_start <= vma->vm_mm->start_stack &&
930 		vma->vm_end >= vma->vm_mm->start_stack;
931 }
932 
933 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
934 {
935 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
936 
937 	if (!maybe_stack)
938 		return false;
939 
940 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
941 						VM_STACK_INCOMPLETE_SETUP)
942 		return true;
943 
944 	return false;
945 }
946 
947 static inline bool vma_is_foreign(struct vm_area_struct *vma)
948 {
949 	if (!current->mm)
950 		return true;
951 
952 	if (current->mm != vma->vm_mm)
953 		return true;
954 
955 	return false;
956 }
957 
958 static inline bool vma_is_accessible(struct vm_area_struct *vma)
959 {
960 	return vma->vm_flags & VM_ACCESS_FLAGS;
961 }
962 
963 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
964 {
965 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
966 		(VM_SHARED | VM_MAYWRITE);
967 }
968 
969 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
970 {
971 	return is_shared_maywrite(vma->vm_flags);
972 }
973 
974 static inline
975 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
976 {
977 	return mas_find(&vmi->mas, max - 1);
978 }
979 
980 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
981 {
982 	/*
983 	 * Uses mas_find() to get the first VMA when the iterator starts.
984 	 * Calling mas_next() could skip the first entry.
985 	 */
986 	return mas_find(&vmi->mas, ULONG_MAX);
987 }
988 
989 static inline
990 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
991 {
992 	return mas_next_range(&vmi->mas, ULONG_MAX);
993 }
994 
995 
996 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
997 {
998 	return mas_prev(&vmi->mas, 0);
999 }
1000 
1001 static inline
1002 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1003 {
1004 	return mas_prev_range(&vmi->mas, 0);
1005 }
1006 
1007 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1008 {
1009 	return vmi->mas.index;
1010 }
1011 
1012 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1013 {
1014 	return vmi->mas.last + 1;
1015 }
1016 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1017 				      unsigned long count)
1018 {
1019 	return mas_expected_entries(&vmi->mas, count);
1020 }
1021 
1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1023 			unsigned long start, unsigned long end, gfp_t gfp)
1024 {
1025 	__mas_set_range(&vmi->mas, start, end - 1);
1026 	mas_store_gfp(&vmi->mas, NULL, gfp);
1027 	if (unlikely(mas_is_err(&vmi->mas)))
1028 		return -ENOMEM;
1029 
1030 	return 0;
1031 }
1032 
1033 /* Free any unused preallocations */
1034 static inline void vma_iter_free(struct vma_iterator *vmi)
1035 {
1036 	mas_destroy(&vmi->mas);
1037 }
1038 
1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1040 				      struct vm_area_struct *vma)
1041 {
1042 	vmi->mas.index = vma->vm_start;
1043 	vmi->mas.last = vma->vm_end - 1;
1044 	mas_store(&vmi->mas, vma);
1045 	if (unlikely(mas_is_err(&vmi->mas)))
1046 		return -ENOMEM;
1047 
1048 	return 0;
1049 }
1050 
1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1052 {
1053 	mas_pause(&vmi->mas);
1054 }
1055 
1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1057 {
1058 	mas_set(&vmi->mas, addr);
1059 }
1060 
1061 #define for_each_vma(__vmi, __vma)					\
1062 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1063 
1064 /* The MM code likes to work with exclusive end addresses */
1065 #define for_each_vma_range(__vmi, __vma, __end)				\
1066 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1067 
1068 #ifdef CONFIG_SHMEM
1069 /*
1070  * The vma_is_shmem is not inline because it is used only by slow
1071  * paths in userfault.
1072  */
1073 bool vma_is_shmem(struct vm_area_struct *vma);
1074 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1075 #else
1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1078 #endif
1079 
1080 int vma_is_stack_for_current(struct vm_area_struct *vma);
1081 
1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1084 
1085 struct mmu_gather;
1086 struct inode;
1087 
1088 /*
1089  * compound_order() can be called without holding a reference, which means
1090  * that niceties like page_folio() don't work.  These callers should be
1091  * prepared to handle wild return values.  For example, PG_head may be
1092  * set before the order is initialised, or this may be a tail page.
1093  * See compaction.c for some good examples.
1094  */
1095 static inline unsigned int compound_order(struct page *page)
1096 {
1097 	struct folio *folio = (struct folio *)page;
1098 
1099 	if (!test_bit(PG_head, &folio->flags))
1100 		return 0;
1101 	return folio->_flags_1 & 0xff;
1102 }
1103 
1104 /**
1105  * folio_order - The allocation order of a folio.
1106  * @folio: The folio.
1107  *
1108  * A folio is composed of 2^order pages.  See get_order() for the definition
1109  * of order.
1110  *
1111  * Return: The order of the folio.
1112  */
1113 static inline unsigned int folio_order(struct folio *folio)
1114 {
1115 	if (!folio_test_large(folio))
1116 		return 0;
1117 	return folio->_flags_1 & 0xff;
1118 }
1119 
1120 #include <linux/huge_mm.h>
1121 
1122 /*
1123  * Methods to modify the page usage count.
1124  *
1125  * What counts for a page usage:
1126  * - cache mapping   (page->mapping)
1127  * - private data    (page->private)
1128  * - page mapped in a task's page tables, each mapping
1129  *   is counted separately
1130  *
1131  * Also, many kernel routines increase the page count before a critical
1132  * routine so they can be sure the page doesn't go away from under them.
1133  */
1134 
1135 /*
1136  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1137  */
1138 static inline int put_page_testzero(struct page *page)
1139 {
1140 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1141 	return page_ref_dec_and_test(page);
1142 }
1143 
1144 static inline int folio_put_testzero(struct folio *folio)
1145 {
1146 	return put_page_testzero(&folio->page);
1147 }
1148 
1149 /*
1150  * Try to grab a ref unless the page has a refcount of zero, return false if
1151  * that is the case.
1152  * This can be called when MMU is off so it must not access
1153  * any of the virtual mappings.
1154  */
1155 static inline bool get_page_unless_zero(struct page *page)
1156 {
1157 	return page_ref_add_unless(page, 1, 0);
1158 }
1159 
1160 static inline struct folio *folio_get_nontail_page(struct page *page)
1161 {
1162 	if (unlikely(!get_page_unless_zero(page)))
1163 		return NULL;
1164 	return (struct folio *)page;
1165 }
1166 
1167 extern int page_is_ram(unsigned long pfn);
1168 
1169 enum {
1170 	REGION_INTERSECTS,
1171 	REGION_DISJOINT,
1172 	REGION_MIXED,
1173 };
1174 
1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1176 		      unsigned long desc);
1177 
1178 /* Support for virtually mapped pages */
1179 struct page *vmalloc_to_page(const void *addr);
1180 unsigned long vmalloc_to_pfn(const void *addr);
1181 
1182 /*
1183  * Determine if an address is within the vmalloc range
1184  *
1185  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1186  * is no special casing required.
1187  */
1188 #ifdef CONFIG_MMU
1189 extern bool is_vmalloc_addr(const void *x);
1190 extern int is_vmalloc_or_module_addr(const void *x);
1191 #else
1192 static inline bool is_vmalloc_addr(const void *x)
1193 {
1194 	return false;
1195 }
1196 static inline int is_vmalloc_or_module_addr(const void *x)
1197 {
1198 	return 0;
1199 }
1200 #endif
1201 
1202 /*
1203  * How many times the entire folio is mapped as a single unit (eg by a
1204  * PMD or PUD entry).  This is probably not what you want, except for
1205  * debugging purposes or implementation of other core folio_*() primitives.
1206  */
1207 static inline int folio_entire_mapcount(const struct folio *folio)
1208 {
1209 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1210 	return atomic_read(&folio->_entire_mapcount) + 1;
1211 }
1212 
1213 static inline int folio_large_mapcount(const struct folio *folio)
1214 {
1215 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1216 	return atomic_read(&folio->_large_mapcount) + 1;
1217 }
1218 
1219 /**
1220  * folio_mapcount() - Number of mappings of this folio.
1221  * @folio: The folio.
1222  *
1223  * The folio mapcount corresponds to the number of present user page table
1224  * entries that reference any part of a folio. Each such present user page
1225  * table entry must be paired with exactly on folio reference.
1226  *
1227  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1228  * exactly once.
1229  *
1230  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1231  * references the entire folio counts exactly once, even when such special
1232  * page table entries are comprised of multiple ordinary page table entries.
1233  *
1234  * Will report 0 for pages which cannot be mapped into userspace, such as
1235  * slab, page tables and similar.
1236  *
1237  * Return: The number of times this folio is mapped.
1238  */
1239 static inline int folio_mapcount(const struct folio *folio)
1240 {
1241 	int mapcount;
1242 
1243 	if (likely(!folio_test_large(folio))) {
1244 		mapcount = atomic_read(&folio->_mapcount) + 1;
1245 		/* Handle page_has_type() pages */
1246 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1247 			mapcount = 0;
1248 		return mapcount;
1249 	}
1250 	return folio_large_mapcount(folio);
1251 }
1252 
1253 /**
1254  * folio_mapped - Is this folio mapped into userspace?
1255  * @folio: The folio.
1256  *
1257  * Return: True if any page in this folio is referenced by user page tables.
1258  */
1259 static inline bool folio_mapped(const struct folio *folio)
1260 {
1261 	return folio_mapcount(folio) >= 1;
1262 }
1263 
1264 /*
1265  * Return true if this page is mapped into pagetables.
1266  * For compound page it returns true if any sub-page of compound page is mapped,
1267  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1268  */
1269 static inline bool page_mapped(const struct page *page)
1270 {
1271 	return folio_mapped(page_folio(page));
1272 }
1273 
1274 static inline struct page *virt_to_head_page(const void *x)
1275 {
1276 	struct page *page = virt_to_page(x);
1277 
1278 	return compound_head(page);
1279 }
1280 
1281 static inline struct folio *virt_to_folio(const void *x)
1282 {
1283 	struct page *page = virt_to_page(x);
1284 
1285 	return page_folio(page);
1286 }
1287 
1288 void __folio_put(struct folio *folio);
1289 
1290 void put_pages_list(struct list_head *pages);
1291 
1292 void split_page(struct page *page, unsigned int order);
1293 void folio_copy(struct folio *dst, struct folio *src);
1294 int folio_mc_copy(struct folio *dst, struct folio *src);
1295 
1296 unsigned long nr_free_buffer_pages(void);
1297 
1298 /* Returns the number of bytes in this potentially compound page. */
1299 static inline unsigned long page_size(struct page *page)
1300 {
1301 	return PAGE_SIZE << compound_order(page);
1302 }
1303 
1304 /* Returns the number of bits needed for the number of bytes in a page */
1305 static inline unsigned int page_shift(struct page *page)
1306 {
1307 	return PAGE_SHIFT + compound_order(page);
1308 }
1309 
1310 /**
1311  * thp_order - Order of a transparent huge page.
1312  * @page: Head page of a transparent huge page.
1313  */
1314 static inline unsigned int thp_order(struct page *page)
1315 {
1316 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1317 	return compound_order(page);
1318 }
1319 
1320 /**
1321  * thp_size - Size of a transparent huge page.
1322  * @page: Head page of a transparent huge page.
1323  *
1324  * Return: Number of bytes in this page.
1325  */
1326 static inline unsigned long thp_size(struct page *page)
1327 {
1328 	return PAGE_SIZE << thp_order(page);
1329 }
1330 
1331 #ifdef CONFIG_MMU
1332 /*
1333  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1334  * servicing faults for write access.  In the normal case, do always want
1335  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1336  * that do not have writing enabled, when used by access_process_vm.
1337  */
1338 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1339 {
1340 	if (likely(vma->vm_flags & VM_WRITE))
1341 		pte = pte_mkwrite(pte, vma);
1342 	return pte;
1343 }
1344 
1345 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1346 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1347 		struct page *page, unsigned int nr, unsigned long addr);
1348 
1349 vm_fault_t finish_fault(struct vm_fault *vmf);
1350 #endif
1351 
1352 /*
1353  * Multiple processes may "see" the same page. E.g. for untouched
1354  * mappings of /dev/null, all processes see the same page full of
1355  * zeroes, and text pages of executables and shared libraries have
1356  * only one copy in memory, at most, normally.
1357  *
1358  * For the non-reserved pages, page_count(page) denotes a reference count.
1359  *   page_count() == 0 means the page is free. page->lru is then used for
1360  *   freelist management in the buddy allocator.
1361  *   page_count() > 0  means the page has been allocated.
1362  *
1363  * Pages are allocated by the slab allocator in order to provide memory
1364  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1365  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1366  * unless a particular usage is carefully commented. (the responsibility of
1367  * freeing the kmalloc memory is the caller's, of course).
1368  *
1369  * A page may be used by anyone else who does a __get_free_page().
1370  * In this case, page_count still tracks the references, and should only
1371  * be used through the normal accessor functions. The top bits of page->flags
1372  * and page->virtual store page management information, but all other fields
1373  * are unused and could be used privately, carefully. The management of this
1374  * page is the responsibility of the one who allocated it, and those who have
1375  * subsequently been given references to it.
1376  *
1377  * The other pages (we may call them "pagecache pages") are completely
1378  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1379  * The following discussion applies only to them.
1380  *
1381  * A pagecache page contains an opaque `private' member, which belongs to the
1382  * page's address_space. Usually, this is the address of a circular list of
1383  * the page's disk buffers. PG_private must be set to tell the VM to call
1384  * into the filesystem to release these pages.
1385  *
1386  * A page may belong to an inode's memory mapping. In this case, page->mapping
1387  * is the pointer to the inode, and page->index is the file offset of the page,
1388  * in units of PAGE_SIZE.
1389  *
1390  * If pagecache pages are not associated with an inode, they are said to be
1391  * anonymous pages. These may become associated with the swapcache, and in that
1392  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1393  *
1394  * In either case (swapcache or inode backed), the pagecache itself holds one
1395  * reference to the page. Setting PG_private should also increment the
1396  * refcount. The each user mapping also has a reference to the page.
1397  *
1398  * The pagecache pages are stored in a per-mapping radix tree, which is
1399  * rooted at mapping->i_pages, and indexed by offset.
1400  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1401  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1402  *
1403  * All pagecache pages may be subject to I/O:
1404  * - inode pages may need to be read from disk,
1405  * - inode pages which have been modified and are MAP_SHARED may need
1406  *   to be written back to the inode on disk,
1407  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1408  *   modified may need to be swapped out to swap space and (later) to be read
1409  *   back into memory.
1410  */
1411 
1412 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1413 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1414 
1415 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1416 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1417 {
1418 	if (!static_branch_unlikely(&devmap_managed_key))
1419 		return false;
1420 	if (!folio_is_zone_device(folio))
1421 		return false;
1422 	return __put_devmap_managed_folio_refs(folio, refs);
1423 }
1424 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1425 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1426 {
1427 	return false;
1428 }
1429 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1430 
1431 /* 127: arbitrary random number, small enough to assemble well */
1432 #define folio_ref_zero_or_close_to_overflow(folio) \
1433 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1434 
1435 /**
1436  * folio_get - Increment the reference count on a folio.
1437  * @folio: The folio.
1438  *
1439  * Context: May be called in any context, as long as you know that
1440  * you have a refcount on the folio.  If you do not already have one,
1441  * folio_try_get() may be the right interface for you to use.
1442  */
1443 static inline void folio_get(struct folio *folio)
1444 {
1445 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1446 	folio_ref_inc(folio);
1447 }
1448 
1449 static inline void get_page(struct page *page)
1450 {
1451 	folio_get(page_folio(page));
1452 }
1453 
1454 static inline __must_check bool try_get_page(struct page *page)
1455 {
1456 	page = compound_head(page);
1457 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1458 		return false;
1459 	page_ref_inc(page);
1460 	return true;
1461 }
1462 
1463 /**
1464  * folio_put - Decrement the reference count on a folio.
1465  * @folio: The folio.
1466  *
1467  * If the folio's reference count reaches zero, the memory will be
1468  * released back to the page allocator and may be used by another
1469  * allocation immediately.  Do not access the memory or the struct folio
1470  * after calling folio_put() unless you can be sure that it wasn't the
1471  * last reference.
1472  *
1473  * Context: May be called in process or interrupt context, but not in NMI
1474  * context.  May be called while holding a spinlock.
1475  */
1476 static inline void folio_put(struct folio *folio)
1477 {
1478 	if (folio_put_testzero(folio))
1479 		__folio_put(folio);
1480 }
1481 
1482 /**
1483  * folio_put_refs - Reduce the reference count on a folio.
1484  * @folio: The folio.
1485  * @refs: The amount to subtract from the folio's reference count.
1486  *
1487  * If the folio's reference count reaches zero, the memory will be
1488  * released back to the page allocator and may be used by another
1489  * allocation immediately.  Do not access the memory or the struct folio
1490  * after calling folio_put_refs() unless you can be sure that these weren't
1491  * the last references.
1492  *
1493  * Context: May be called in process or interrupt context, but not in NMI
1494  * context.  May be called while holding a spinlock.
1495  */
1496 static inline void folio_put_refs(struct folio *folio, int refs)
1497 {
1498 	if (folio_ref_sub_and_test(folio, refs))
1499 		__folio_put(folio);
1500 }
1501 
1502 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1503 
1504 /*
1505  * union release_pages_arg - an array of pages or folios
1506  *
1507  * release_pages() releases a simple array of multiple pages, and
1508  * accepts various different forms of said page array: either
1509  * a regular old boring array of pages, an array of folios, or
1510  * an array of encoded page pointers.
1511  *
1512  * The transparent union syntax for this kind of "any of these
1513  * argument types" is all kinds of ugly, so look away.
1514  */
1515 typedef union {
1516 	struct page **pages;
1517 	struct folio **folios;
1518 	struct encoded_page **encoded_pages;
1519 } release_pages_arg __attribute__ ((__transparent_union__));
1520 
1521 void release_pages(release_pages_arg, int nr);
1522 
1523 /**
1524  * folios_put - Decrement the reference count on an array of folios.
1525  * @folios: The folios.
1526  *
1527  * Like folio_put(), but for a batch of folios.  This is more efficient
1528  * than writing the loop yourself as it will optimise the locks which need
1529  * to be taken if the folios are freed.  The folios batch is returned
1530  * empty and ready to be reused for another batch; there is no need to
1531  * reinitialise it.
1532  *
1533  * Context: May be called in process or interrupt context, but not in NMI
1534  * context.  May be called while holding a spinlock.
1535  */
1536 static inline void folios_put(struct folio_batch *folios)
1537 {
1538 	folios_put_refs(folios, NULL);
1539 }
1540 
1541 static inline void put_page(struct page *page)
1542 {
1543 	struct folio *folio = page_folio(page);
1544 
1545 	/*
1546 	 * For some devmap managed pages we need to catch refcount transition
1547 	 * from 2 to 1:
1548 	 */
1549 	if (put_devmap_managed_folio_refs(folio, 1))
1550 		return;
1551 	folio_put(folio);
1552 }
1553 
1554 /*
1555  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1556  * the page's refcount so that two separate items are tracked: the original page
1557  * reference count, and also a new count of how many pin_user_pages() calls were
1558  * made against the page. ("gup-pinned" is another term for the latter).
1559  *
1560  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1561  * distinct from normal pages. As such, the unpin_user_page() call (and its
1562  * variants) must be used in order to release gup-pinned pages.
1563  *
1564  * Choice of value:
1565  *
1566  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1567  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1568  * simpler, due to the fact that adding an even power of two to the page
1569  * refcount has the effect of using only the upper N bits, for the code that
1570  * counts up using the bias value. This means that the lower bits are left for
1571  * the exclusive use of the original code that increments and decrements by one
1572  * (or at least, by much smaller values than the bias value).
1573  *
1574  * Of course, once the lower bits overflow into the upper bits (and this is
1575  * OK, because subtraction recovers the original values), then visual inspection
1576  * no longer suffices to directly view the separate counts. However, for normal
1577  * applications that don't have huge page reference counts, this won't be an
1578  * issue.
1579  *
1580  * Locking: the lockless algorithm described in folio_try_get_rcu()
1581  * provides safe operation for get_user_pages(), folio_mkclean() and
1582  * other calls that race to set up page table entries.
1583  */
1584 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1585 
1586 void unpin_user_page(struct page *page);
1587 void unpin_folio(struct folio *folio);
1588 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1589 				 bool make_dirty);
1590 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1591 				      bool make_dirty);
1592 void unpin_user_pages(struct page **pages, unsigned long npages);
1593 void unpin_folios(struct folio **folios, unsigned long nfolios);
1594 
1595 static inline bool is_cow_mapping(vm_flags_t flags)
1596 {
1597 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1598 }
1599 
1600 #ifndef CONFIG_MMU
1601 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1602 {
1603 	/*
1604 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1605 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1606 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1607 	 * underlying memory if ptrace is active, so this is only possible if
1608 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1609 	 * write permissions later.
1610 	 */
1611 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1612 }
1613 #endif
1614 
1615 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1616 #define SECTION_IN_PAGE_FLAGS
1617 #endif
1618 
1619 /*
1620  * The identification function is mainly used by the buddy allocator for
1621  * determining if two pages could be buddies. We are not really identifying
1622  * the zone since we could be using the section number id if we do not have
1623  * node id available in page flags.
1624  * We only guarantee that it will return the same value for two combinable
1625  * pages in a zone.
1626  */
1627 static inline int page_zone_id(struct page *page)
1628 {
1629 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1630 }
1631 
1632 #ifdef NODE_NOT_IN_PAGE_FLAGS
1633 int page_to_nid(const struct page *page);
1634 #else
1635 static inline int page_to_nid(const struct page *page)
1636 {
1637 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1638 }
1639 #endif
1640 
1641 static inline int folio_nid(const struct folio *folio)
1642 {
1643 	return page_to_nid(&folio->page);
1644 }
1645 
1646 #ifdef CONFIG_NUMA_BALANCING
1647 /* page access time bits needs to hold at least 4 seconds */
1648 #define PAGE_ACCESS_TIME_MIN_BITS	12
1649 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1650 #define PAGE_ACCESS_TIME_BUCKETS				\
1651 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1652 #else
1653 #define PAGE_ACCESS_TIME_BUCKETS	0
1654 #endif
1655 
1656 #define PAGE_ACCESS_TIME_MASK				\
1657 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1658 
1659 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1660 {
1661 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1662 }
1663 
1664 static inline int cpupid_to_pid(int cpupid)
1665 {
1666 	return cpupid & LAST__PID_MASK;
1667 }
1668 
1669 static inline int cpupid_to_cpu(int cpupid)
1670 {
1671 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1672 }
1673 
1674 static inline int cpupid_to_nid(int cpupid)
1675 {
1676 	return cpu_to_node(cpupid_to_cpu(cpupid));
1677 }
1678 
1679 static inline bool cpupid_pid_unset(int cpupid)
1680 {
1681 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1682 }
1683 
1684 static inline bool cpupid_cpu_unset(int cpupid)
1685 {
1686 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1687 }
1688 
1689 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1690 {
1691 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1692 }
1693 
1694 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1695 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1696 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1697 {
1698 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1699 }
1700 
1701 static inline int folio_last_cpupid(struct folio *folio)
1702 {
1703 	return folio->_last_cpupid;
1704 }
1705 static inline void page_cpupid_reset_last(struct page *page)
1706 {
1707 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1708 }
1709 #else
1710 static inline int folio_last_cpupid(struct folio *folio)
1711 {
1712 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1713 }
1714 
1715 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1716 
1717 static inline void page_cpupid_reset_last(struct page *page)
1718 {
1719 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1720 }
1721 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1722 
1723 static inline int folio_xchg_access_time(struct folio *folio, int time)
1724 {
1725 	int last_time;
1726 
1727 	last_time = folio_xchg_last_cpupid(folio,
1728 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1729 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1730 }
1731 
1732 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1733 {
1734 	unsigned int pid_bit;
1735 
1736 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1737 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1738 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1739 	}
1740 }
1741 #else /* !CONFIG_NUMA_BALANCING */
1742 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1743 {
1744 	return folio_nid(folio); /* XXX */
1745 }
1746 
1747 static inline int folio_xchg_access_time(struct folio *folio, int time)
1748 {
1749 	return 0;
1750 }
1751 
1752 static inline int folio_last_cpupid(struct folio *folio)
1753 {
1754 	return folio_nid(folio); /* XXX */
1755 }
1756 
1757 static inline int cpupid_to_nid(int cpupid)
1758 {
1759 	return -1;
1760 }
1761 
1762 static inline int cpupid_to_pid(int cpupid)
1763 {
1764 	return -1;
1765 }
1766 
1767 static inline int cpupid_to_cpu(int cpupid)
1768 {
1769 	return -1;
1770 }
1771 
1772 static inline int cpu_pid_to_cpupid(int nid, int pid)
1773 {
1774 	return -1;
1775 }
1776 
1777 static inline bool cpupid_pid_unset(int cpupid)
1778 {
1779 	return true;
1780 }
1781 
1782 static inline void page_cpupid_reset_last(struct page *page)
1783 {
1784 }
1785 
1786 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1787 {
1788 	return false;
1789 }
1790 
1791 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1792 {
1793 }
1794 #endif /* CONFIG_NUMA_BALANCING */
1795 
1796 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1797 
1798 /*
1799  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1800  * setting tags for all pages to native kernel tag value 0xff, as the default
1801  * value 0x00 maps to 0xff.
1802  */
1803 
1804 static inline u8 page_kasan_tag(const struct page *page)
1805 {
1806 	u8 tag = KASAN_TAG_KERNEL;
1807 
1808 	if (kasan_enabled()) {
1809 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1810 		tag ^= 0xff;
1811 	}
1812 
1813 	return tag;
1814 }
1815 
1816 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1817 {
1818 	unsigned long old_flags, flags;
1819 
1820 	if (!kasan_enabled())
1821 		return;
1822 
1823 	tag ^= 0xff;
1824 	old_flags = READ_ONCE(page->flags);
1825 	do {
1826 		flags = old_flags;
1827 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1828 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1829 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1830 }
1831 
1832 static inline void page_kasan_tag_reset(struct page *page)
1833 {
1834 	if (kasan_enabled())
1835 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1836 }
1837 
1838 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1839 
1840 static inline u8 page_kasan_tag(const struct page *page)
1841 {
1842 	return 0xff;
1843 }
1844 
1845 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1846 static inline void page_kasan_tag_reset(struct page *page) { }
1847 
1848 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1849 
1850 static inline struct zone *page_zone(const struct page *page)
1851 {
1852 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1853 }
1854 
1855 static inline pg_data_t *page_pgdat(const struct page *page)
1856 {
1857 	return NODE_DATA(page_to_nid(page));
1858 }
1859 
1860 static inline struct zone *folio_zone(const struct folio *folio)
1861 {
1862 	return page_zone(&folio->page);
1863 }
1864 
1865 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1866 {
1867 	return page_pgdat(&folio->page);
1868 }
1869 
1870 #ifdef SECTION_IN_PAGE_FLAGS
1871 static inline void set_page_section(struct page *page, unsigned long section)
1872 {
1873 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1874 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1875 }
1876 
1877 static inline unsigned long page_to_section(const struct page *page)
1878 {
1879 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1880 }
1881 #endif
1882 
1883 /**
1884  * folio_pfn - Return the Page Frame Number of a folio.
1885  * @folio: The folio.
1886  *
1887  * A folio may contain multiple pages.  The pages have consecutive
1888  * Page Frame Numbers.
1889  *
1890  * Return: The Page Frame Number of the first page in the folio.
1891  */
1892 static inline unsigned long folio_pfn(struct folio *folio)
1893 {
1894 	return page_to_pfn(&folio->page);
1895 }
1896 
1897 static inline struct folio *pfn_folio(unsigned long pfn)
1898 {
1899 	return page_folio(pfn_to_page(pfn));
1900 }
1901 
1902 /**
1903  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1904  * @folio: The folio.
1905  *
1906  * This function checks if a folio has been pinned via a call to
1907  * a function in the pin_user_pages() family.
1908  *
1909  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1910  * because it means "definitely not pinned for DMA", but true means "probably
1911  * pinned for DMA, but possibly a false positive due to having at least
1912  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1913  *
1914  * False positives are OK, because: a) it's unlikely for a folio to
1915  * get that many refcounts, and b) all the callers of this routine are
1916  * expected to be able to deal gracefully with a false positive.
1917  *
1918  * For large folios, the result will be exactly correct. That's because
1919  * we have more tracking data available: the _pincount field is used
1920  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1921  *
1922  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1923  *
1924  * Return: True, if it is likely that the folio has been "dma-pinned".
1925  * False, if the folio is definitely not dma-pinned.
1926  */
1927 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1928 {
1929 	if (folio_test_large(folio))
1930 		return atomic_read(&folio->_pincount) > 0;
1931 
1932 	/*
1933 	 * folio_ref_count() is signed. If that refcount overflows, then
1934 	 * folio_ref_count() returns a negative value, and callers will avoid
1935 	 * further incrementing the refcount.
1936 	 *
1937 	 * Here, for that overflow case, use the sign bit to count a little
1938 	 * bit higher via unsigned math, and thus still get an accurate result.
1939 	 */
1940 	return ((unsigned int)folio_ref_count(folio)) >=
1941 		GUP_PIN_COUNTING_BIAS;
1942 }
1943 
1944 /*
1945  * This should most likely only be called during fork() to see whether we
1946  * should break the cow immediately for an anon page on the src mm.
1947  *
1948  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1949  */
1950 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1951 					  struct folio *folio)
1952 {
1953 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1954 
1955 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1956 		return false;
1957 
1958 	return folio_maybe_dma_pinned(folio);
1959 }
1960 
1961 /**
1962  * is_zero_page - Query if a page is a zero page
1963  * @page: The page to query
1964  *
1965  * This returns true if @page is one of the permanent zero pages.
1966  */
1967 static inline bool is_zero_page(const struct page *page)
1968 {
1969 	return is_zero_pfn(page_to_pfn(page));
1970 }
1971 
1972 /**
1973  * is_zero_folio - Query if a folio is a zero page
1974  * @folio: The folio to query
1975  *
1976  * This returns true if @folio is one of the permanent zero pages.
1977  */
1978 static inline bool is_zero_folio(const struct folio *folio)
1979 {
1980 	return is_zero_page(&folio->page);
1981 }
1982 
1983 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1984 #ifdef CONFIG_MIGRATION
1985 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1986 {
1987 #ifdef CONFIG_CMA
1988 	int mt = folio_migratetype(folio);
1989 
1990 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1991 		return false;
1992 #endif
1993 	/* The zero page can be "pinned" but gets special handling. */
1994 	if (is_zero_folio(folio))
1995 		return true;
1996 
1997 	/* Coherent device memory must always allow eviction. */
1998 	if (folio_is_device_coherent(folio))
1999 		return false;
2000 
2001 	/* Otherwise, non-movable zone folios can be pinned. */
2002 	return !folio_is_zone_movable(folio);
2003 
2004 }
2005 #else
2006 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2007 {
2008 	return true;
2009 }
2010 #endif
2011 
2012 static inline void set_page_zone(struct page *page, enum zone_type zone)
2013 {
2014 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2015 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2016 }
2017 
2018 static inline void set_page_node(struct page *page, unsigned long node)
2019 {
2020 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2021 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2022 }
2023 
2024 static inline void set_page_links(struct page *page, enum zone_type zone,
2025 	unsigned long node, unsigned long pfn)
2026 {
2027 	set_page_zone(page, zone);
2028 	set_page_node(page, node);
2029 #ifdef SECTION_IN_PAGE_FLAGS
2030 	set_page_section(page, pfn_to_section_nr(pfn));
2031 #endif
2032 }
2033 
2034 /**
2035  * folio_nr_pages - The number of pages in the folio.
2036  * @folio: The folio.
2037  *
2038  * Return: A positive power of two.
2039  */
2040 static inline long folio_nr_pages(const struct folio *folio)
2041 {
2042 	if (!folio_test_large(folio))
2043 		return 1;
2044 #ifdef CONFIG_64BIT
2045 	return folio->_folio_nr_pages;
2046 #else
2047 	return 1L << (folio->_flags_1 & 0xff);
2048 #endif
2049 }
2050 
2051 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2052 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2053 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2054 #else
2055 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2056 #endif
2057 
2058 /*
2059  * compound_nr() returns the number of pages in this potentially compound
2060  * page.  compound_nr() can be called on a tail page, and is defined to
2061  * return 1 in that case.
2062  */
2063 static inline unsigned long compound_nr(struct page *page)
2064 {
2065 	struct folio *folio = (struct folio *)page;
2066 
2067 	if (!test_bit(PG_head, &folio->flags))
2068 		return 1;
2069 #ifdef CONFIG_64BIT
2070 	return folio->_folio_nr_pages;
2071 #else
2072 	return 1L << (folio->_flags_1 & 0xff);
2073 #endif
2074 }
2075 
2076 /**
2077  * thp_nr_pages - The number of regular pages in this huge page.
2078  * @page: The head page of a huge page.
2079  */
2080 static inline int thp_nr_pages(struct page *page)
2081 {
2082 	return folio_nr_pages((struct folio *)page);
2083 }
2084 
2085 /**
2086  * folio_next - Move to the next physical folio.
2087  * @folio: The folio we're currently operating on.
2088  *
2089  * If you have physically contiguous memory which may span more than
2090  * one folio (eg a &struct bio_vec), use this function to move from one
2091  * folio to the next.  Do not use it if the memory is only virtually
2092  * contiguous as the folios are almost certainly not adjacent to each
2093  * other.  This is the folio equivalent to writing ``page++``.
2094  *
2095  * Context: We assume that the folios are refcounted and/or locked at a
2096  * higher level and do not adjust the reference counts.
2097  * Return: The next struct folio.
2098  */
2099 static inline struct folio *folio_next(struct folio *folio)
2100 {
2101 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2102 }
2103 
2104 /**
2105  * folio_shift - The size of the memory described by this folio.
2106  * @folio: The folio.
2107  *
2108  * A folio represents a number of bytes which is a power-of-two in size.
2109  * This function tells you which power-of-two the folio is.  See also
2110  * folio_size() and folio_order().
2111  *
2112  * Context: The caller should have a reference on the folio to prevent
2113  * it from being split.  It is not necessary for the folio to be locked.
2114  * Return: The base-2 logarithm of the size of this folio.
2115  */
2116 static inline unsigned int folio_shift(struct folio *folio)
2117 {
2118 	return PAGE_SHIFT + folio_order(folio);
2119 }
2120 
2121 /**
2122  * folio_size - The number of bytes in a folio.
2123  * @folio: The folio.
2124  *
2125  * Context: The caller should have a reference on the folio to prevent
2126  * it from being split.  It is not necessary for the folio to be locked.
2127  * Return: The number of bytes in this folio.
2128  */
2129 static inline size_t folio_size(struct folio *folio)
2130 {
2131 	return PAGE_SIZE << folio_order(folio);
2132 }
2133 
2134 /**
2135  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2136  *				tables of more than one MM
2137  * @folio: The folio.
2138  *
2139  * This function checks if the folio is currently mapped into more than one
2140  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2141  * ("mapped exclusively").
2142  *
2143  * As precise information is not easily available for all folios, this function
2144  * estimates the number of MMs ("sharers") that are currently mapping a folio
2145  * using the number of times the first page of the folio is currently mapped
2146  * into page tables.
2147  *
2148  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2149  * the return value will be exactly correct, because they can only be mapped
2150  * at most once into an MM, and they cannot be partially mapped.
2151  *
2152  * For other folios, the result can be fuzzy:
2153  *    #. For partially-mappable large folios (THP), the return value can wrongly
2154  *       indicate "mapped exclusively" (false negative) when the folio is
2155  *       only partially mapped into at least one MM.
2156  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2157  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2158  *       cover the same file range.
2159  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2160  *       shared" (false positive), when the folio is mapped multiple times into
2161  *       the same MM.
2162  *
2163  * Further, this function only considers current page table mappings that
2164  * are tracked using the folio mapcount(s).
2165  *
2166  * This function does not consider:
2167  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2168  *       pagecache, temporary unmapping for migration).
2169  *    #. If the folio is mapped differently (VM_PFNMAP).
2170  *    #. If hugetlb page table sharing applies. Callers might want to check
2171  *       hugetlb_pmd_shared().
2172  *
2173  * Return: Whether the folio is estimated to be mapped into more than one MM.
2174  */
2175 static inline bool folio_likely_mapped_shared(struct folio *folio)
2176 {
2177 	int mapcount = folio_mapcount(folio);
2178 
2179 	/* Only partially-mappable folios require more care. */
2180 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2181 		return mapcount > 1;
2182 
2183 	/* A single mapping implies "mapped exclusively". */
2184 	if (mapcount <= 1)
2185 		return false;
2186 
2187 	/* If any page is mapped more than once we treat it "mapped shared". */
2188 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2189 		return true;
2190 
2191 	/* Let's guess based on the first subpage. */
2192 	return atomic_read(&folio->_mapcount) > 0;
2193 }
2194 
2195 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2196 static inline int arch_make_page_accessible(struct page *page)
2197 {
2198 	return 0;
2199 }
2200 #endif
2201 
2202 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2203 static inline int arch_make_folio_accessible(struct folio *folio)
2204 {
2205 	int ret;
2206 	long i, nr = folio_nr_pages(folio);
2207 
2208 	for (i = 0; i < nr; i++) {
2209 		ret = arch_make_page_accessible(folio_page(folio, i));
2210 		if (ret)
2211 			break;
2212 	}
2213 
2214 	return ret;
2215 }
2216 #endif
2217 
2218 /*
2219  * Some inline functions in vmstat.h depend on page_zone()
2220  */
2221 #include <linux/vmstat.h>
2222 
2223 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2224 #define HASHED_PAGE_VIRTUAL
2225 #endif
2226 
2227 #if defined(WANT_PAGE_VIRTUAL)
2228 static inline void *page_address(const struct page *page)
2229 {
2230 	return page->virtual;
2231 }
2232 static inline void set_page_address(struct page *page, void *address)
2233 {
2234 	page->virtual = address;
2235 }
2236 #define page_address_init()  do { } while(0)
2237 #endif
2238 
2239 #if defined(HASHED_PAGE_VIRTUAL)
2240 void *page_address(const struct page *page);
2241 void set_page_address(struct page *page, void *virtual);
2242 void page_address_init(void);
2243 #endif
2244 
2245 static __always_inline void *lowmem_page_address(const struct page *page)
2246 {
2247 	return page_to_virt(page);
2248 }
2249 
2250 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2251 #define page_address(page) lowmem_page_address(page)
2252 #define set_page_address(page, address)  do { } while(0)
2253 #define page_address_init()  do { } while(0)
2254 #endif
2255 
2256 static inline void *folio_address(const struct folio *folio)
2257 {
2258 	return page_address(&folio->page);
2259 }
2260 
2261 /*
2262  * Return true only if the page has been allocated with
2263  * ALLOC_NO_WATERMARKS and the low watermark was not
2264  * met implying that the system is under some pressure.
2265  */
2266 static inline bool page_is_pfmemalloc(const struct page *page)
2267 {
2268 	/*
2269 	 * lru.next has bit 1 set if the page is allocated from the
2270 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2271 	 * they do not need to preserve that information.
2272 	 */
2273 	return (uintptr_t)page->lru.next & BIT(1);
2274 }
2275 
2276 /*
2277  * Return true only if the folio has been allocated with
2278  * ALLOC_NO_WATERMARKS and the low watermark was not
2279  * met implying that the system is under some pressure.
2280  */
2281 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2282 {
2283 	/*
2284 	 * lru.next has bit 1 set if the page is allocated from the
2285 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2286 	 * they do not need to preserve that information.
2287 	 */
2288 	return (uintptr_t)folio->lru.next & BIT(1);
2289 }
2290 
2291 /*
2292  * Only to be called by the page allocator on a freshly allocated
2293  * page.
2294  */
2295 static inline void set_page_pfmemalloc(struct page *page)
2296 {
2297 	page->lru.next = (void *)BIT(1);
2298 }
2299 
2300 static inline void clear_page_pfmemalloc(struct page *page)
2301 {
2302 	page->lru.next = NULL;
2303 }
2304 
2305 /*
2306  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2307  */
2308 extern void pagefault_out_of_memory(void);
2309 
2310 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2311 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2312 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2313 
2314 /*
2315  * Parameter block passed down to zap_pte_range in exceptional cases.
2316  */
2317 struct zap_details {
2318 	struct folio *single_folio;	/* Locked folio to be unmapped */
2319 	bool even_cows;			/* Zap COWed private pages too? */
2320 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2321 };
2322 
2323 /*
2324  * Whether to drop the pte markers, for example, the uffd-wp information for
2325  * file-backed memory.  This should only be specified when we will completely
2326  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2327  * default, the flag is not set.
2328  */
2329 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2330 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2331 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2332 
2333 #ifdef CONFIG_SCHED_MM_CID
2334 void sched_mm_cid_before_execve(struct task_struct *t);
2335 void sched_mm_cid_after_execve(struct task_struct *t);
2336 void sched_mm_cid_fork(struct task_struct *t);
2337 void sched_mm_cid_exit_signals(struct task_struct *t);
2338 static inline int task_mm_cid(struct task_struct *t)
2339 {
2340 	return t->mm_cid;
2341 }
2342 #else
2343 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2344 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2345 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2346 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2347 static inline int task_mm_cid(struct task_struct *t)
2348 {
2349 	/*
2350 	 * Use the processor id as a fall-back when the mm cid feature is
2351 	 * disabled. This provides functional per-cpu data structure accesses
2352 	 * in user-space, althrough it won't provide the memory usage benefits.
2353 	 */
2354 	return raw_smp_processor_id();
2355 }
2356 #endif
2357 
2358 #ifdef CONFIG_MMU
2359 extern bool can_do_mlock(void);
2360 #else
2361 static inline bool can_do_mlock(void) { return false; }
2362 #endif
2363 extern int user_shm_lock(size_t, struct ucounts *);
2364 extern void user_shm_unlock(size_t, struct ucounts *);
2365 
2366 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2367 			     pte_t pte);
2368 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2369 			     pte_t pte);
2370 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2371 				  unsigned long addr, pmd_t pmd);
2372 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2373 				pmd_t pmd);
2374 
2375 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2376 		  unsigned long size);
2377 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2378 			   unsigned long size, struct zap_details *details);
2379 static inline void zap_vma_pages(struct vm_area_struct *vma)
2380 {
2381 	zap_page_range_single(vma, vma->vm_start,
2382 			      vma->vm_end - vma->vm_start, NULL);
2383 }
2384 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2385 		struct vm_area_struct *start_vma, unsigned long start,
2386 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2387 
2388 struct mmu_notifier_range;
2389 
2390 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2391 		unsigned long end, unsigned long floor, unsigned long ceiling);
2392 int
2393 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2394 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2395 	       pte_t **ptepp, spinlock_t **ptlp);
2396 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2397 			void *buf, int len, int write);
2398 
2399 extern void truncate_pagecache(struct inode *inode, loff_t new);
2400 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2401 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2402 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2403 int generic_error_remove_folio(struct address_space *mapping,
2404 		struct folio *folio);
2405 
2406 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2407 		unsigned long address, struct pt_regs *regs);
2408 
2409 #ifdef CONFIG_MMU
2410 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2411 				  unsigned long address, unsigned int flags,
2412 				  struct pt_regs *regs);
2413 extern int fixup_user_fault(struct mm_struct *mm,
2414 			    unsigned long address, unsigned int fault_flags,
2415 			    bool *unlocked);
2416 void unmap_mapping_pages(struct address_space *mapping,
2417 		pgoff_t start, pgoff_t nr, bool even_cows);
2418 void unmap_mapping_range(struct address_space *mapping,
2419 		loff_t const holebegin, loff_t const holelen, int even_cows);
2420 #else
2421 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2422 					 unsigned long address, unsigned int flags,
2423 					 struct pt_regs *regs)
2424 {
2425 	/* should never happen if there's no MMU */
2426 	BUG();
2427 	return VM_FAULT_SIGBUS;
2428 }
2429 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2430 		unsigned int fault_flags, bool *unlocked)
2431 {
2432 	/* should never happen if there's no MMU */
2433 	BUG();
2434 	return -EFAULT;
2435 }
2436 static inline void unmap_mapping_pages(struct address_space *mapping,
2437 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2438 static inline void unmap_mapping_range(struct address_space *mapping,
2439 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2440 #endif
2441 
2442 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2443 		loff_t const holebegin, loff_t const holelen)
2444 {
2445 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2446 }
2447 
2448 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2449 						unsigned long addr);
2450 
2451 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2452 		void *buf, int len, unsigned int gup_flags);
2453 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2454 		void *buf, int len, unsigned int gup_flags);
2455 
2456 long get_user_pages_remote(struct mm_struct *mm,
2457 			   unsigned long start, unsigned long nr_pages,
2458 			   unsigned int gup_flags, struct page **pages,
2459 			   int *locked);
2460 long pin_user_pages_remote(struct mm_struct *mm,
2461 			   unsigned long start, unsigned long nr_pages,
2462 			   unsigned int gup_flags, struct page **pages,
2463 			   int *locked);
2464 
2465 /*
2466  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2467  */
2468 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2469 						    unsigned long addr,
2470 						    int gup_flags,
2471 						    struct vm_area_struct **vmap)
2472 {
2473 	struct page *page;
2474 	struct vm_area_struct *vma;
2475 	int got;
2476 
2477 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2478 		return ERR_PTR(-EINVAL);
2479 
2480 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2481 
2482 	if (got < 0)
2483 		return ERR_PTR(got);
2484 
2485 	vma = vma_lookup(mm, addr);
2486 	if (WARN_ON_ONCE(!vma)) {
2487 		put_page(page);
2488 		return ERR_PTR(-EINVAL);
2489 	}
2490 
2491 	*vmap = vma;
2492 	return page;
2493 }
2494 
2495 long get_user_pages(unsigned long start, unsigned long nr_pages,
2496 		    unsigned int gup_flags, struct page **pages);
2497 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2498 		    unsigned int gup_flags, struct page **pages);
2499 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2500 		    struct page **pages, unsigned int gup_flags);
2501 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2502 		    struct page **pages, unsigned int gup_flags);
2503 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2504 		      struct folio **folios, unsigned int max_folios,
2505 		      pgoff_t *offset);
2506 
2507 int get_user_pages_fast(unsigned long start, int nr_pages,
2508 			unsigned int gup_flags, struct page **pages);
2509 int pin_user_pages_fast(unsigned long start, int nr_pages,
2510 			unsigned int gup_flags, struct page **pages);
2511 void folio_add_pin(struct folio *folio);
2512 
2513 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2514 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2515 			struct task_struct *task, bool bypass_rlim);
2516 
2517 struct kvec;
2518 struct page *get_dump_page(unsigned long addr);
2519 
2520 bool folio_mark_dirty(struct folio *folio);
2521 bool set_page_dirty(struct page *page);
2522 int set_page_dirty_lock(struct page *page);
2523 
2524 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2525 
2526 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2527 		unsigned long old_addr, struct vm_area_struct *new_vma,
2528 		unsigned long new_addr, unsigned long len,
2529 		bool need_rmap_locks, bool for_stack);
2530 
2531 /*
2532  * Flags used by change_protection().  For now we make it a bitmap so
2533  * that we can pass in multiple flags just like parameters.  However
2534  * for now all the callers are only use one of the flags at the same
2535  * time.
2536  */
2537 /*
2538  * Whether we should manually check if we can map individual PTEs writable,
2539  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2540  * PTEs automatically in a writable mapping.
2541  */
2542 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2543 /* Whether this protection change is for NUMA hints */
2544 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2545 /* Whether this change is for write protecting */
2546 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2547 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2548 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2549 					    MM_CP_UFFD_WP_RESOLVE)
2550 
2551 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2552 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2553 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2554 {
2555 	/*
2556 	 * We want to check manually if we can change individual PTEs writable
2557 	 * if we can't do that automatically for all PTEs in a mapping. For
2558 	 * private mappings, that's always the case when we have write
2559 	 * permissions as we properly have to handle COW.
2560 	 */
2561 	if (vma->vm_flags & VM_SHARED)
2562 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2563 	return !!(vma->vm_flags & VM_WRITE);
2564 
2565 }
2566 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2567 			     pte_t pte);
2568 extern long change_protection(struct mmu_gather *tlb,
2569 			      struct vm_area_struct *vma, unsigned long start,
2570 			      unsigned long end, unsigned long cp_flags);
2571 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2572 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2573 	  unsigned long start, unsigned long end, unsigned long newflags);
2574 
2575 /*
2576  * doesn't attempt to fault and will return short.
2577  */
2578 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2579 			     unsigned int gup_flags, struct page **pages);
2580 
2581 static inline bool get_user_page_fast_only(unsigned long addr,
2582 			unsigned int gup_flags, struct page **pagep)
2583 {
2584 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2585 }
2586 /*
2587  * per-process(per-mm_struct) statistics.
2588  */
2589 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2590 {
2591 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2592 }
2593 
2594 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2595 
2596 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2597 {
2598 	percpu_counter_add(&mm->rss_stat[member], value);
2599 
2600 	mm_trace_rss_stat(mm, member);
2601 }
2602 
2603 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2604 {
2605 	percpu_counter_inc(&mm->rss_stat[member]);
2606 
2607 	mm_trace_rss_stat(mm, member);
2608 }
2609 
2610 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2611 {
2612 	percpu_counter_dec(&mm->rss_stat[member]);
2613 
2614 	mm_trace_rss_stat(mm, member);
2615 }
2616 
2617 /* Optimized variant when folio is already known not to be anon */
2618 static inline int mm_counter_file(struct folio *folio)
2619 {
2620 	if (folio_test_swapbacked(folio))
2621 		return MM_SHMEMPAGES;
2622 	return MM_FILEPAGES;
2623 }
2624 
2625 static inline int mm_counter(struct folio *folio)
2626 {
2627 	if (folio_test_anon(folio))
2628 		return MM_ANONPAGES;
2629 	return mm_counter_file(folio);
2630 }
2631 
2632 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2633 {
2634 	return get_mm_counter(mm, MM_FILEPAGES) +
2635 		get_mm_counter(mm, MM_ANONPAGES) +
2636 		get_mm_counter(mm, MM_SHMEMPAGES);
2637 }
2638 
2639 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2640 {
2641 	return max(mm->hiwater_rss, get_mm_rss(mm));
2642 }
2643 
2644 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2645 {
2646 	return max(mm->hiwater_vm, mm->total_vm);
2647 }
2648 
2649 static inline void update_hiwater_rss(struct mm_struct *mm)
2650 {
2651 	unsigned long _rss = get_mm_rss(mm);
2652 
2653 	if ((mm)->hiwater_rss < _rss)
2654 		(mm)->hiwater_rss = _rss;
2655 }
2656 
2657 static inline void update_hiwater_vm(struct mm_struct *mm)
2658 {
2659 	if (mm->hiwater_vm < mm->total_vm)
2660 		mm->hiwater_vm = mm->total_vm;
2661 }
2662 
2663 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2664 {
2665 	mm->hiwater_rss = get_mm_rss(mm);
2666 }
2667 
2668 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2669 					 struct mm_struct *mm)
2670 {
2671 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2672 
2673 	if (*maxrss < hiwater_rss)
2674 		*maxrss = hiwater_rss;
2675 }
2676 
2677 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2678 static inline int pte_special(pte_t pte)
2679 {
2680 	return 0;
2681 }
2682 
2683 static inline pte_t pte_mkspecial(pte_t pte)
2684 {
2685 	return pte;
2686 }
2687 #endif
2688 
2689 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2690 static inline int pte_devmap(pte_t pte)
2691 {
2692 	return 0;
2693 }
2694 #endif
2695 
2696 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2697 			       spinlock_t **ptl);
2698 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2699 				    spinlock_t **ptl)
2700 {
2701 	pte_t *ptep;
2702 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2703 	return ptep;
2704 }
2705 
2706 #ifdef __PAGETABLE_P4D_FOLDED
2707 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2708 						unsigned long address)
2709 {
2710 	return 0;
2711 }
2712 #else
2713 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2714 #endif
2715 
2716 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2717 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2718 						unsigned long address)
2719 {
2720 	return 0;
2721 }
2722 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2723 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2724 
2725 #else
2726 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2727 
2728 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2729 {
2730 	if (mm_pud_folded(mm))
2731 		return;
2732 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2733 }
2734 
2735 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2736 {
2737 	if (mm_pud_folded(mm))
2738 		return;
2739 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2740 }
2741 #endif
2742 
2743 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2744 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2745 						unsigned long address)
2746 {
2747 	return 0;
2748 }
2749 
2750 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2751 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2752 
2753 #else
2754 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2755 
2756 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2757 {
2758 	if (mm_pmd_folded(mm))
2759 		return;
2760 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2761 }
2762 
2763 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2764 {
2765 	if (mm_pmd_folded(mm))
2766 		return;
2767 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2768 }
2769 #endif
2770 
2771 #ifdef CONFIG_MMU
2772 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2773 {
2774 	atomic_long_set(&mm->pgtables_bytes, 0);
2775 }
2776 
2777 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2778 {
2779 	return atomic_long_read(&mm->pgtables_bytes);
2780 }
2781 
2782 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2783 {
2784 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2785 }
2786 
2787 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2788 {
2789 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2790 }
2791 #else
2792 
2793 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2794 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2795 {
2796 	return 0;
2797 }
2798 
2799 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2800 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2801 #endif
2802 
2803 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2804 int __pte_alloc_kernel(pmd_t *pmd);
2805 
2806 #if defined(CONFIG_MMU)
2807 
2808 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2809 		unsigned long address)
2810 {
2811 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2812 		NULL : p4d_offset(pgd, address);
2813 }
2814 
2815 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2816 		unsigned long address)
2817 {
2818 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2819 		NULL : pud_offset(p4d, address);
2820 }
2821 
2822 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2823 {
2824 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2825 		NULL: pmd_offset(pud, address);
2826 }
2827 #endif /* CONFIG_MMU */
2828 
2829 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2830 {
2831 	return page_ptdesc(virt_to_page(x));
2832 }
2833 
2834 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2835 {
2836 	return page_to_virt(ptdesc_page(pt));
2837 }
2838 
2839 static inline void *ptdesc_address(const struct ptdesc *pt)
2840 {
2841 	return folio_address(ptdesc_folio(pt));
2842 }
2843 
2844 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2845 {
2846 	return folio_test_reserved(ptdesc_folio(pt));
2847 }
2848 
2849 /**
2850  * pagetable_alloc - Allocate pagetables
2851  * @gfp:    GFP flags
2852  * @order:  desired pagetable order
2853  *
2854  * pagetable_alloc allocates memory for page tables as well as a page table
2855  * descriptor to describe that memory.
2856  *
2857  * Return: The ptdesc describing the allocated page tables.
2858  */
2859 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2860 {
2861 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2862 
2863 	return page_ptdesc(page);
2864 }
2865 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2866 
2867 /**
2868  * pagetable_free - Free pagetables
2869  * @pt:	The page table descriptor
2870  *
2871  * pagetable_free frees the memory of all page tables described by a page
2872  * table descriptor and the memory for the descriptor itself.
2873  */
2874 static inline void pagetable_free(struct ptdesc *pt)
2875 {
2876 	struct page *page = ptdesc_page(pt);
2877 
2878 	__free_pages(page, compound_order(page));
2879 }
2880 
2881 #if USE_SPLIT_PTE_PTLOCKS
2882 #if ALLOC_SPLIT_PTLOCKS
2883 void __init ptlock_cache_init(void);
2884 bool ptlock_alloc(struct ptdesc *ptdesc);
2885 void ptlock_free(struct ptdesc *ptdesc);
2886 
2887 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2888 {
2889 	return ptdesc->ptl;
2890 }
2891 #else /* ALLOC_SPLIT_PTLOCKS */
2892 static inline void ptlock_cache_init(void)
2893 {
2894 }
2895 
2896 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2897 {
2898 	return true;
2899 }
2900 
2901 static inline void ptlock_free(struct ptdesc *ptdesc)
2902 {
2903 }
2904 
2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2906 {
2907 	return &ptdesc->ptl;
2908 }
2909 #endif /* ALLOC_SPLIT_PTLOCKS */
2910 
2911 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2912 {
2913 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2914 }
2915 
2916 static inline bool ptlock_init(struct ptdesc *ptdesc)
2917 {
2918 	/*
2919 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2920 	 * with 0. Make sure nobody took it in use in between.
2921 	 *
2922 	 * It can happen if arch try to use slab for page table allocation:
2923 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2924 	 */
2925 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2926 	if (!ptlock_alloc(ptdesc))
2927 		return false;
2928 	spin_lock_init(ptlock_ptr(ptdesc));
2929 	return true;
2930 }
2931 
2932 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2933 /*
2934  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2935  */
2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2937 {
2938 	return &mm->page_table_lock;
2939 }
2940 static inline void ptlock_cache_init(void) {}
2941 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2942 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2943 #endif /* USE_SPLIT_PTE_PTLOCKS */
2944 
2945 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2946 {
2947 	struct folio *folio = ptdesc_folio(ptdesc);
2948 
2949 	if (!ptlock_init(ptdesc))
2950 		return false;
2951 	__folio_set_pgtable(folio);
2952 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2953 	return true;
2954 }
2955 
2956 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2957 {
2958 	struct folio *folio = ptdesc_folio(ptdesc);
2959 
2960 	ptlock_free(ptdesc);
2961 	__folio_clear_pgtable(folio);
2962 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2963 }
2964 
2965 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2966 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2967 {
2968 	return __pte_offset_map(pmd, addr, NULL);
2969 }
2970 
2971 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2972 			unsigned long addr, spinlock_t **ptlp);
2973 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2974 			unsigned long addr, spinlock_t **ptlp)
2975 {
2976 	pte_t *pte;
2977 
2978 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2979 	return pte;
2980 }
2981 
2982 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2983 			unsigned long addr, spinlock_t **ptlp);
2984 
2985 #define pte_unmap_unlock(pte, ptl)	do {		\
2986 	spin_unlock(ptl);				\
2987 	pte_unmap(pte);					\
2988 } while (0)
2989 
2990 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2991 
2992 #define pte_alloc_map(mm, pmd, address)			\
2993 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2994 
2995 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2996 	(pte_alloc(mm, pmd) ?			\
2997 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2998 
2999 #define pte_alloc_kernel(pmd, address)			\
3000 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3001 		NULL: pte_offset_kernel(pmd, address))
3002 
3003 #if USE_SPLIT_PMD_PTLOCKS
3004 
3005 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3006 {
3007 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3008 	return virt_to_page((void *)((unsigned long) pmd & mask));
3009 }
3010 
3011 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3012 {
3013 	return page_ptdesc(pmd_pgtable_page(pmd));
3014 }
3015 
3016 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3017 {
3018 	return ptlock_ptr(pmd_ptdesc(pmd));
3019 }
3020 
3021 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3022 {
3023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3024 	ptdesc->pmd_huge_pte = NULL;
3025 #endif
3026 	return ptlock_init(ptdesc);
3027 }
3028 
3029 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3030 {
3031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3032 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3033 #endif
3034 	ptlock_free(ptdesc);
3035 }
3036 
3037 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3038 
3039 #else
3040 
3041 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3042 {
3043 	return &mm->page_table_lock;
3044 }
3045 
3046 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3047 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3048 
3049 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3050 
3051 #endif
3052 
3053 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3054 {
3055 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3056 	spin_lock(ptl);
3057 	return ptl;
3058 }
3059 
3060 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3061 {
3062 	struct folio *folio = ptdesc_folio(ptdesc);
3063 
3064 	if (!pmd_ptlock_init(ptdesc))
3065 		return false;
3066 	__folio_set_pgtable(folio);
3067 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3068 	return true;
3069 }
3070 
3071 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3072 {
3073 	struct folio *folio = ptdesc_folio(ptdesc);
3074 
3075 	pmd_ptlock_free(ptdesc);
3076 	__folio_clear_pgtable(folio);
3077 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3078 }
3079 
3080 /*
3081  * No scalability reason to split PUD locks yet, but follow the same pattern
3082  * as the PMD locks to make it easier if we decide to.  The VM should not be
3083  * considered ready to switch to split PUD locks yet; there may be places
3084  * which need to be converted from page_table_lock.
3085  */
3086 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3087 {
3088 	return &mm->page_table_lock;
3089 }
3090 
3091 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3092 {
3093 	spinlock_t *ptl = pud_lockptr(mm, pud);
3094 
3095 	spin_lock(ptl);
3096 	return ptl;
3097 }
3098 
3099 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3100 {
3101 	struct folio *folio = ptdesc_folio(ptdesc);
3102 
3103 	__folio_set_pgtable(folio);
3104 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3105 }
3106 
3107 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3108 {
3109 	struct folio *folio = ptdesc_folio(ptdesc);
3110 
3111 	__folio_clear_pgtable(folio);
3112 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3113 }
3114 
3115 extern void __init pagecache_init(void);
3116 extern void free_initmem(void);
3117 
3118 /*
3119  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3120  * into the buddy system. The freed pages will be poisoned with pattern
3121  * "poison" if it's within range [0, UCHAR_MAX].
3122  * Return pages freed into the buddy system.
3123  */
3124 extern unsigned long free_reserved_area(void *start, void *end,
3125 					int poison, const char *s);
3126 
3127 extern void adjust_managed_page_count(struct page *page, long count);
3128 
3129 extern void reserve_bootmem_region(phys_addr_t start,
3130 				   phys_addr_t end, int nid);
3131 
3132 /* Free the reserved page into the buddy system, so it gets managed. */
3133 static inline void free_reserved_page(struct page *page)
3134 {
3135 	if (mem_alloc_profiling_enabled()) {
3136 		union codetag_ref *ref = get_page_tag_ref(page);
3137 
3138 		if (ref) {
3139 			set_codetag_empty(ref);
3140 			put_page_tag_ref(ref);
3141 		}
3142 	}
3143 	ClearPageReserved(page);
3144 	init_page_count(page);
3145 	__free_page(page);
3146 	adjust_managed_page_count(page, 1);
3147 }
3148 #define free_highmem_page(page) free_reserved_page(page)
3149 
3150 static inline void mark_page_reserved(struct page *page)
3151 {
3152 	SetPageReserved(page);
3153 	adjust_managed_page_count(page, -1);
3154 }
3155 
3156 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3157 {
3158 	free_reserved_page(ptdesc_page(pt));
3159 }
3160 
3161 /*
3162  * Default method to free all the __init memory into the buddy system.
3163  * The freed pages will be poisoned with pattern "poison" if it's within
3164  * range [0, UCHAR_MAX].
3165  * Return pages freed into the buddy system.
3166  */
3167 static inline unsigned long free_initmem_default(int poison)
3168 {
3169 	extern char __init_begin[], __init_end[];
3170 
3171 	return free_reserved_area(&__init_begin, &__init_end,
3172 				  poison, "unused kernel image (initmem)");
3173 }
3174 
3175 static inline unsigned long get_num_physpages(void)
3176 {
3177 	int nid;
3178 	unsigned long phys_pages = 0;
3179 
3180 	for_each_online_node(nid)
3181 		phys_pages += node_present_pages(nid);
3182 
3183 	return phys_pages;
3184 }
3185 
3186 /*
3187  * Using memblock node mappings, an architecture may initialise its
3188  * zones, allocate the backing mem_map and account for memory holes in an
3189  * architecture independent manner.
3190  *
3191  * An architecture is expected to register range of page frames backed by
3192  * physical memory with memblock_add[_node]() before calling
3193  * free_area_init() passing in the PFN each zone ends at. At a basic
3194  * usage, an architecture is expected to do something like
3195  *
3196  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3197  * 							 max_highmem_pfn};
3198  * for_each_valid_physical_page_range()
3199  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3200  * free_area_init(max_zone_pfns);
3201  */
3202 void free_area_init(unsigned long *max_zone_pfn);
3203 unsigned long node_map_pfn_alignment(void);
3204 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3205 						unsigned long end_pfn);
3206 extern void get_pfn_range_for_nid(unsigned int nid,
3207 			unsigned long *start_pfn, unsigned long *end_pfn);
3208 
3209 #ifndef CONFIG_NUMA
3210 static inline int early_pfn_to_nid(unsigned long pfn)
3211 {
3212 	return 0;
3213 }
3214 #else
3215 /* please see mm/page_alloc.c */
3216 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3217 #endif
3218 
3219 extern void mem_init(void);
3220 extern void __init mmap_init(void);
3221 
3222 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3223 static inline void show_mem(void)
3224 {
3225 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3226 }
3227 extern long si_mem_available(void);
3228 extern void si_meminfo(struct sysinfo * val);
3229 extern void si_meminfo_node(struct sysinfo *val, int nid);
3230 
3231 extern __printf(3, 4)
3232 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3233 
3234 extern void setup_per_cpu_pageset(void);
3235 
3236 /* nommu.c */
3237 extern atomic_long_t mmap_pages_allocated;
3238 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3239 
3240 /* interval_tree.c */
3241 void vma_interval_tree_insert(struct vm_area_struct *node,
3242 			      struct rb_root_cached *root);
3243 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3244 				    struct vm_area_struct *prev,
3245 				    struct rb_root_cached *root);
3246 void vma_interval_tree_remove(struct vm_area_struct *node,
3247 			      struct rb_root_cached *root);
3248 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3249 				unsigned long start, unsigned long last);
3250 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3251 				unsigned long start, unsigned long last);
3252 
3253 #define vma_interval_tree_foreach(vma, root, start, last)		\
3254 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3255 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3256 
3257 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3258 				   struct rb_root_cached *root);
3259 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3260 				   struct rb_root_cached *root);
3261 struct anon_vma_chain *
3262 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3263 				  unsigned long start, unsigned long last);
3264 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3265 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3266 #ifdef CONFIG_DEBUG_VM_RB
3267 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3268 #endif
3269 
3270 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3271 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3272 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3273 
3274 /* mmap.c */
3275 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3276 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3277 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3278 		      struct vm_area_struct *next);
3279 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3280 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3281 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3283 extern void unlink_file_vma(struct vm_area_struct *);
3284 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3285 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3286 	bool *need_rmap_locks);
3287 extern void exit_mmap(struct mm_struct *);
3288 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3289 				  struct vm_area_struct *prev,
3290 				  struct vm_area_struct *vma,
3291 				  unsigned long start, unsigned long end,
3292 				  unsigned long vm_flags,
3293 				  struct mempolicy *policy,
3294 				  struct vm_userfaultfd_ctx uffd_ctx,
3295 				  struct anon_vma_name *anon_name);
3296 
3297 /* We are about to modify the VMA's flags. */
3298 static inline struct vm_area_struct
3299 *vma_modify_flags(struct vma_iterator *vmi,
3300 		  struct vm_area_struct *prev,
3301 		  struct vm_area_struct *vma,
3302 		  unsigned long start, unsigned long end,
3303 		  unsigned long new_flags)
3304 {
3305 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3306 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3307 			  anon_vma_name(vma));
3308 }
3309 
3310 /* We are about to modify the VMA's flags and/or anon_name. */
3311 static inline struct vm_area_struct
3312 *vma_modify_flags_name(struct vma_iterator *vmi,
3313 		       struct vm_area_struct *prev,
3314 		       struct vm_area_struct *vma,
3315 		       unsigned long start,
3316 		       unsigned long end,
3317 		       unsigned long new_flags,
3318 		       struct anon_vma_name *new_name)
3319 {
3320 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3321 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3322 }
3323 
3324 /* We are about to modify the VMA's memory policy. */
3325 static inline struct vm_area_struct
3326 *vma_modify_policy(struct vma_iterator *vmi,
3327 		   struct vm_area_struct *prev,
3328 		   struct vm_area_struct *vma,
3329 		   unsigned long start, unsigned long end,
3330 		   struct mempolicy *new_pol)
3331 {
3332 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3333 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3334 }
3335 
3336 /* We are about to modify the VMA's flags and/or uffd context. */
3337 static inline struct vm_area_struct
3338 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3339 		       struct vm_area_struct *prev,
3340 		       struct vm_area_struct *vma,
3341 		       unsigned long start, unsigned long end,
3342 		       unsigned long new_flags,
3343 		       struct vm_userfaultfd_ctx new_ctx)
3344 {
3345 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3346 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3347 }
3348 
3349 static inline int check_data_rlimit(unsigned long rlim,
3350 				    unsigned long new,
3351 				    unsigned long start,
3352 				    unsigned long end_data,
3353 				    unsigned long start_data)
3354 {
3355 	if (rlim < RLIM_INFINITY) {
3356 		if (((new - start) + (end_data - start_data)) > rlim)
3357 			return -ENOSPC;
3358 	}
3359 
3360 	return 0;
3361 }
3362 
3363 extern int mm_take_all_locks(struct mm_struct *mm);
3364 extern void mm_drop_all_locks(struct mm_struct *mm);
3365 
3366 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3367 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3368 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3369 extern struct file *get_task_exe_file(struct task_struct *task);
3370 
3371 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3372 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3373 
3374 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3375 				   const struct vm_special_mapping *sm);
3376 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3377 				   unsigned long addr, unsigned long len,
3378 				   unsigned long flags,
3379 				   const struct vm_special_mapping *spec);
3380 /* This is an obsolete alternative to _install_special_mapping. */
3381 extern int install_special_mapping(struct mm_struct *mm,
3382 				   unsigned long addr, unsigned long len,
3383 				   unsigned long flags, struct page **pages);
3384 
3385 unsigned long randomize_stack_top(unsigned long stack_top);
3386 unsigned long randomize_page(unsigned long start, unsigned long range);
3387 
3388 unsigned long
3389 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3390 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3391 
3392 static inline unsigned long
3393 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3394 		  unsigned long pgoff, unsigned long flags)
3395 {
3396 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3397 }
3398 
3399 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3400 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3401 	struct list_head *uf);
3402 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3403 	unsigned long len, unsigned long prot, unsigned long flags,
3404 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3405 	struct list_head *uf);
3406 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3407 			 unsigned long start, size_t len, struct list_head *uf,
3408 			 bool unlock);
3409 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3410 		     struct list_head *uf);
3411 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3412 
3413 #ifdef CONFIG_MMU
3414 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3415 			 unsigned long start, unsigned long end,
3416 			 struct list_head *uf, bool unlock);
3417 extern int __mm_populate(unsigned long addr, unsigned long len,
3418 			 int ignore_errors);
3419 static inline void mm_populate(unsigned long addr, unsigned long len)
3420 {
3421 	/* Ignore errors */
3422 	(void) __mm_populate(addr, len, 1);
3423 }
3424 #else
3425 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3426 #endif
3427 
3428 /* This takes the mm semaphore itself */
3429 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3430 extern int vm_munmap(unsigned long, size_t);
3431 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3432         unsigned long, unsigned long,
3433         unsigned long, unsigned long);
3434 
3435 struct vm_unmapped_area_info {
3436 #define VM_UNMAPPED_AREA_TOPDOWN 1
3437 	unsigned long flags;
3438 	unsigned long length;
3439 	unsigned long low_limit;
3440 	unsigned long high_limit;
3441 	unsigned long align_mask;
3442 	unsigned long align_offset;
3443 	unsigned long start_gap;
3444 };
3445 
3446 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3447 
3448 /* truncate.c */
3449 extern void truncate_inode_pages(struct address_space *, loff_t);
3450 extern void truncate_inode_pages_range(struct address_space *,
3451 				       loff_t lstart, loff_t lend);
3452 extern void truncate_inode_pages_final(struct address_space *);
3453 
3454 /* generic vm_area_ops exported for stackable file systems */
3455 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3456 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3457 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3458 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3459 
3460 extern unsigned long stack_guard_gap;
3461 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3462 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3463 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3464 
3465 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3466 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3467 
3468 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3469 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3470 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3471 					     struct vm_area_struct **pprev);
3472 
3473 /*
3474  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3475  * NULL if none.  Assume start_addr < end_addr.
3476  */
3477 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3478 			unsigned long start_addr, unsigned long end_addr);
3479 
3480 /**
3481  * vma_lookup() - Find a VMA at a specific address
3482  * @mm: The process address space.
3483  * @addr: The user address.
3484  *
3485  * Return: The vm_area_struct at the given address, %NULL otherwise.
3486  */
3487 static inline
3488 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3489 {
3490 	return mtree_load(&mm->mm_mt, addr);
3491 }
3492 
3493 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3494 {
3495 	if (vma->vm_flags & VM_GROWSDOWN)
3496 		return stack_guard_gap;
3497 
3498 	/* See reasoning around the VM_SHADOW_STACK definition */
3499 	if (vma->vm_flags & VM_SHADOW_STACK)
3500 		return PAGE_SIZE;
3501 
3502 	return 0;
3503 }
3504 
3505 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3506 {
3507 	unsigned long gap = stack_guard_start_gap(vma);
3508 	unsigned long vm_start = vma->vm_start;
3509 
3510 	vm_start -= gap;
3511 	if (vm_start > vma->vm_start)
3512 		vm_start = 0;
3513 	return vm_start;
3514 }
3515 
3516 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3517 {
3518 	unsigned long vm_end = vma->vm_end;
3519 
3520 	if (vma->vm_flags & VM_GROWSUP) {
3521 		vm_end += stack_guard_gap;
3522 		if (vm_end < vma->vm_end)
3523 			vm_end = -PAGE_SIZE;
3524 	}
3525 	return vm_end;
3526 }
3527 
3528 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3529 {
3530 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3531 }
3532 
3533 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3534 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3535 				unsigned long vm_start, unsigned long vm_end)
3536 {
3537 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3538 
3539 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3540 		vma = NULL;
3541 
3542 	return vma;
3543 }
3544 
3545 static inline bool range_in_vma(struct vm_area_struct *vma,
3546 				unsigned long start, unsigned long end)
3547 {
3548 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3549 }
3550 
3551 #ifdef CONFIG_MMU
3552 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3553 void vma_set_page_prot(struct vm_area_struct *vma);
3554 #else
3555 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3556 {
3557 	return __pgprot(0);
3558 }
3559 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3560 {
3561 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3562 }
3563 #endif
3564 
3565 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3566 
3567 #ifdef CONFIG_NUMA_BALANCING
3568 unsigned long change_prot_numa(struct vm_area_struct *vma,
3569 			unsigned long start, unsigned long end);
3570 #endif
3571 
3572 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3573 		unsigned long addr);
3574 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3575 			unsigned long pfn, unsigned long size, pgprot_t);
3576 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3577 		unsigned long pfn, unsigned long size, pgprot_t prot);
3578 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3579 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3580 			struct page **pages, unsigned long *num);
3581 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3582 				unsigned long num);
3583 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3584 				unsigned long num);
3585 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3586 			unsigned long pfn);
3587 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3588 			unsigned long pfn, pgprot_t pgprot);
3589 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3590 			pfn_t pfn);
3591 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3592 		unsigned long addr, pfn_t pfn);
3593 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3594 
3595 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3596 				unsigned long addr, struct page *page)
3597 {
3598 	int err = vm_insert_page(vma, addr, page);
3599 
3600 	if (err == -ENOMEM)
3601 		return VM_FAULT_OOM;
3602 	if (err < 0 && err != -EBUSY)
3603 		return VM_FAULT_SIGBUS;
3604 
3605 	return VM_FAULT_NOPAGE;
3606 }
3607 
3608 #ifndef io_remap_pfn_range
3609 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3610 				     unsigned long addr, unsigned long pfn,
3611 				     unsigned long size, pgprot_t prot)
3612 {
3613 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3614 }
3615 #endif
3616 
3617 static inline vm_fault_t vmf_error(int err)
3618 {
3619 	if (err == -ENOMEM)
3620 		return VM_FAULT_OOM;
3621 	else if (err == -EHWPOISON)
3622 		return VM_FAULT_HWPOISON;
3623 	return VM_FAULT_SIGBUS;
3624 }
3625 
3626 /*
3627  * Convert errno to return value for ->page_mkwrite() calls.
3628  *
3629  * This should eventually be merged with vmf_error() above, but will need a
3630  * careful audit of all vmf_error() callers.
3631  */
3632 static inline vm_fault_t vmf_fs_error(int err)
3633 {
3634 	if (err == 0)
3635 		return VM_FAULT_LOCKED;
3636 	if (err == -EFAULT || err == -EAGAIN)
3637 		return VM_FAULT_NOPAGE;
3638 	if (err == -ENOMEM)
3639 		return VM_FAULT_OOM;
3640 	/* -ENOSPC, -EDQUOT, -EIO ... */
3641 	return VM_FAULT_SIGBUS;
3642 }
3643 
3644 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3645 			 unsigned int foll_flags);
3646 
3647 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3648 {
3649 	if (vm_fault & VM_FAULT_OOM)
3650 		return -ENOMEM;
3651 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3652 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3653 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3654 		return -EFAULT;
3655 	return 0;
3656 }
3657 
3658 /*
3659  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3660  * a (NUMA hinting) fault is required.
3661  */
3662 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3663 					   unsigned int flags)
3664 {
3665 	/*
3666 	 * If callers don't want to honor NUMA hinting faults, no need to
3667 	 * determine if we would actually have to trigger a NUMA hinting fault.
3668 	 */
3669 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3670 		return true;
3671 
3672 	/*
3673 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3674 	 *
3675 	 * Requiring a fault here even for inaccessible VMAs would mean that
3676 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3677 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3678 	 */
3679 	return !vma_is_accessible(vma);
3680 }
3681 
3682 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3683 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3684 			       unsigned long size, pte_fn_t fn, void *data);
3685 extern int apply_to_existing_page_range(struct mm_struct *mm,
3686 				   unsigned long address, unsigned long size,
3687 				   pte_fn_t fn, void *data);
3688 
3689 #ifdef CONFIG_PAGE_POISONING
3690 extern void __kernel_poison_pages(struct page *page, int numpages);
3691 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3692 extern bool _page_poisoning_enabled_early;
3693 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3694 static inline bool page_poisoning_enabled(void)
3695 {
3696 	return _page_poisoning_enabled_early;
3697 }
3698 /*
3699  * For use in fast paths after init_mem_debugging() has run, or when a
3700  * false negative result is not harmful when called too early.
3701  */
3702 static inline bool page_poisoning_enabled_static(void)
3703 {
3704 	return static_branch_unlikely(&_page_poisoning_enabled);
3705 }
3706 static inline void kernel_poison_pages(struct page *page, int numpages)
3707 {
3708 	if (page_poisoning_enabled_static())
3709 		__kernel_poison_pages(page, numpages);
3710 }
3711 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3712 {
3713 	if (page_poisoning_enabled_static())
3714 		__kernel_unpoison_pages(page, numpages);
3715 }
3716 #else
3717 static inline bool page_poisoning_enabled(void) { return false; }
3718 static inline bool page_poisoning_enabled_static(void) { return false; }
3719 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3720 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3721 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3722 #endif
3723 
3724 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3725 static inline bool want_init_on_alloc(gfp_t flags)
3726 {
3727 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3728 				&init_on_alloc))
3729 		return true;
3730 	return flags & __GFP_ZERO;
3731 }
3732 
3733 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3734 static inline bool want_init_on_free(void)
3735 {
3736 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3737 				   &init_on_free);
3738 }
3739 
3740 extern bool _debug_pagealloc_enabled_early;
3741 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3742 
3743 static inline bool debug_pagealloc_enabled(void)
3744 {
3745 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3746 		_debug_pagealloc_enabled_early;
3747 }
3748 
3749 /*
3750  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3751  * or when a false negative result is not harmful when called too early.
3752  */
3753 static inline bool debug_pagealloc_enabled_static(void)
3754 {
3755 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3756 		return false;
3757 
3758 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3759 }
3760 
3761 /*
3762  * To support DEBUG_PAGEALLOC architecture must ensure that
3763  * __kernel_map_pages() never fails
3764  */
3765 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3766 #ifdef CONFIG_DEBUG_PAGEALLOC
3767 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3768 {
3769 	if (debug_pagealloc_enabled_static())
3770 		__kernel_map_pages(page, numpages, 1);
3771 }
3772 
3773 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3774 {
3775 	if (debug_pagealloc_enabled_static())
3776 		__kernel_map_pages(page, numpages, 0);
3777 }
3778 
3779 extern unsigned int _debug_guardpage_minorder;
3780 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3781 
3782 static inline unsigned int debug_guardpage_minorder(void)
3783 {
3784 	return _debug_guardpage_minorder;
3785 }
3786 
3787 static inline bool debug_guardpage_enabled(void)
3788 {
3789 	return static_branch_unlikely(&_debug_guardpage_enabled);
3790 }
3791 
3792 static inline bool page_is_guard(struct page *page)
3793 {
3794 	if (!debug_guardpage_enabled())
3795 		return false;
3796 
3797 	return PageGuard(page);
3798 }
3799 
3800 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3801 static inline bool set_page_guard(struct zone *zone, struct page *page,
3802 				  unsigned int order)
3803 {
3804 	if (!debug_guardpage_enabled())
3805 		return false;
3806 	return __set_page_guard(zone, page, order);
3807 }
3808 
3809 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3810 static inline void clear_page_guard(struct zone *zone, struct page *page,
3811 				    unsigned int order)
3812 {
3813 	if (!debug_guardpage_enabled())
3814 		return;
3815 	__clear_page_guard(zone, page, order);
3816 }
3817 
3818 #else	/* CONFIG_DEBUG_PAGEALLOC */
3819 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3820 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3821 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3822 static inline bool debug_guardpage_enabled(void) { return false; }
3823 static inline bool page_is_guard(struct page *page) { return false; }
3824 static inline bool set_page_guard(struct zone *zone, struct page *page,
3825 			unsigned int order) { return false; }
3826 static inline void clear_page_guard(struct zone *zone, struct page *page,
3827 				unsigned int order) {}
3828 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3829 
3830 #ifdef __HAVE_ARCH_GATE_AREA
3831 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3832 extern int in_gate_area_no_mm(unsigned long addr);
3833 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3834 #else
3835 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3836 {
3837 	return NULL;
3838 }
3839 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3840 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3841 {
3842 	return 0;
3843 }
3844 #endif	/* __HAVE_ARCH_GATE_AREA */
3845 
3846 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3847 
3848 #ifdef CONFIG_SYSCTL
3849 extern int sysctl_drop_caches;
3850 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3851 		loff_t *);
3852 #endif
3853 
3854 void drop_slab(void);
3855 
3856 #ifndef CONFIG_MMU
3857 #define randomize_va_space 0
3858 #else
3859 extern int randomize_va_space;
3860 #endif
3861 
3862 const char * arch_vma_name(struct vm_area_struct *vma);
3863 #ifdef CONFIG_MMU
3864 void print_vma_addr(char *prefix, unsigned long rip);
3865 #else
3866 static inline void print_vma_addr(char *prefix, unsigned long rip)
3867 {
3868 }
3869 #endif
3870 
3871 void *sparse_buffer_alloc(unsigned long size);
3872 struct page * __populate_section_memmap(unsigned long pfn,
3873 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3874 		struct dev_pagemap *pgmap);
3875 void pmd_init(void *addr);
3876 void pud_init(void *addr);
3877 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3878 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3879 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3880 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3881 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3882 			    struct vmem_altmap *altmap, struct page *reuse);
3883 void *vmemmap_alloc_block(unsigned long size, int node);
3884 struct vmem_altmap;
3885 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3886 			      struct vmem_altmap *altmap);
3887 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3888 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3889 		     unsigned long addr, unsigned long next);
3890 int vmemmap_check_pmd(pmd_t *pmd, int node,
3891 		      unsigned long addr, unsigned long next);
3892 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3893 			       int node, struct vmem_altmap *altmap);
3894 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3895 			       int node, struct vmem_altmap *altmap);
3896 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3897 		struct vmem_altmap *altmap);
3898 void vmemmap_populate_print_last(void);
3899 #ifdef CONFIG_MEMORY_HOTPLUG
3900 void vmemmap_free(unsigned long start, unsigned long end,
3901 		struct vmem_altmap *altmap);
3902 #endif
3903 
3904 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3905 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3906 {
3907 	/* number of pfns from base where pfn_to_page() is valid */
3908 	if (altmap)
3909 		return altmap->reserve + altmap->free;
3910 	return 0;
3911 }
3912 
3913 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3914 				    unsigned long nr_pfns)
3915 {
3916 	altmap->alloc -= nr_pfns;
3917 }
3918 #else
3919 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3920 {
3921 	return 0;
3922 }
3923 
3924 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3925 				    unsigned long nr_pfns)
3926 {
3927 }
3928 #endif
3929 
3930 #define VMEMMAP_RESERVE_NR	2
3931 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3932 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3933 					  struct dev_pagemap *pgmap)
3934 {
3935 	unsigned long nr_pages;
3936 	unsigned long nr_vmemmap_pages;
3937 
3938 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3939 		return false;
3940 
3941 	nr_pages = pgmap_vmemmap_nr(pgmap);
3942 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3943 	/*
3944 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3945 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3946 	 */
3947 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3948 }
3949 /*
3950  * If we don't have an architecture override, use the generic rule
3951  */
3952 #ifndef vmemmap_can_optimize
3953 #define vmemmap_can_optimize __vmemmap_can_optimize
3954 #endif
3955 
3956 #else
3957 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3958 					   struct dev_pagemap *pgmap)
3959 {
3960 	return false;
3961 }
3962 #endif
3963 
3964 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3965 				  unsigned long nr_pages);
3966 
3967 enum mf_flags {
3968 	MF_COUNT_INCREASED = 1 << 0,
3969 	MF_ACTION_REQUIRED = 1 << 1,
3970 	MF_MUST_KILL = 1 << 2,
3971 	MF_SOFT_OFFLINE = 1 << 3,
3972 	MF_UNPOISON = 1 << 4,
3973 	MF_SW_SIMULATED = 1 << 5,
3974 	MF_NO_RETRY = 1 << 6,
3975 	MF_MEM_PRE_REMOVE = 1 << 7,
3976 };
3977 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3978 		      unsigned long count, int mf_flags);
3979 extern int memory_failure(unsigned long pfn, int flags);
3980 extern void memory_failure_queue_kick(int cpu);
3981 extern int unpoison_memory(unsigned long pfn);
3982 extern atomic_long_t num_poisoned_pages __read_mostly;
3983 extern int soft_offline_page(unsigned long pfn, int flags);
3984 #ifdef CONFIG_MEMORY_FAILURE
3985 /*
3986  * Sysfs entries for memory failure handling statistics.
3987  */
3988 extern const struct attribute_group memory_failure_attr_group;
3989 extern void memory_failure_queue(unsigned long pfn, int flags);
3990 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3991 					bool *migratable_cleared);
3992 void num_poisoned_pages_inc(unsigned long pfn);
3993 void num_poisoned_pages_sub(unsigned long pfn, long i);
3994 #else
3995 static inline void memory_failure_queue(unsigned long pfn, int flags)
3996 {
3997 }
3998 
3999 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4000 					bool *migratable_cleared)
4001 {
4002 	return 0;
4003 }
4004 
4005 static inline void num_poisoned_pages_inc(unsigned long pfn)
4006 {
4007 }
4008 
4009 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4010 {
4011 }
4012 #endif
4013 
4014 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4015 extern void memblk_nr_poison_inc(unsigned long pfn);
4016 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4017 #else
4018 static inline void memblk_nr_poison_inc(unsigned long pfn)
4019 {
4020 }
4021 
4022 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4023 {
4024 }
4025 #endif
4026 
4027 #ifndef arch_memory_failure
4028 static inline int arch_memory_failure(unsigned long pfn, int flags)
4029 {
4030 	return -ENXIO;
4031 }
4032 #endif
4033 
4034 #ifndef arch_is_platform_page
4035 static inline bool arch_is_platform_page(u64 paddr)
4036 {
4037 	return false;
4038 }
4039 #endif
4040 
4041 /*
4042  * Error handlers for various types of pages.
4043  */
4044 enum mf_result {
4045 	MF_IGNORED,	/* Error: cannot be handled */
4046 	MF_FAILED,	/* Error: handling failed */
4047 	MF_DELAYED,	/* Will be handled later */
4048 	MF_RECOVERED,	/* Successfully recovered */
4049 };
4050 
4051 enum mf_action_page_type {
4052 	MF_MSG_KERNEL,
4053 	MF_MSG_KERNEL_HIGH_ORDER,
4054 	MF_MSG_DIFFERENT_COMPOUND,
4055 	MF_MSG_HUGE,
4056 	MF_MSG_FREE_HUGE,
4057 	MF_MSG_GET_HWPOISON,
4058 	MF_MSG_UNMAP_FAILED,
4059 	MF_MSG_DIRTY_SWAPCACHE,
4060 	MF_MSG_CLEAN_SWAPCACHE,
4061 	MF_MSG_DIRTY_MLOCKED_LRU,
4062 	MF_MSG_CLEAN_MLOCKED_LRU,
4063 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4064 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4065 	MF_MSG_DIRTY_LRU,
4066 	MF_MSG_CLEAN_LRU,
4067 	MF_MSG_TRUNCATED_LRU,
4068 	MF_MSG_BUDDY,
4069 	MF_MSG_DAX,
4070 	MF_MSG_UNSPLIT_THP,
4071 	MF_MSG_ALREADY_POISONED,
4072 	MF_MSG_UNKNOWN,
4073 };
4074 
4075 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4076 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4077 int copy_user_large_folio(struct folio *dst, struct folio *src,
4078 			  unsigned long addr_hint,
4079 			  struct vm_area_struct *vma);
4080 long copy_folio_from_user(struct folio *dst_folio,
4081 			   const void __user *usr_src,
4082 			   bool allow_pagefault);
4083 
4084 /**
4085  * vma_is_special_huge - Are transhuge page-table entries considered special?
4086  * @vma: Pointer to the struct vm_area_struct to consider
4087  *
4088  * Whether transhuge page-table entries are considered "special" following
4089  * the definition in vm_normal_page().
4090  *
4091  * Return: true if transhuge page-table entries should be considered special,
4092  * false otherwise.
4093  */
4094 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4095 {
4096 	return vma_is_dax(vma) || (vma->vm_file &&
4097 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4098 }
4099 
4100 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4101 
4102 #if MAX_NUMNODES > 1
4103 void __init setup_nr_node_ids(void);
4104 #else
4105 static inline void setup_nr_node_ids(void) {}
4106 #endif
4107 
4108 extern int memcmp_pages(struct page *page1, struct page *page2);
4109 
4110 static inline int pages_identical(struct page *page1, struct page *page2)
4111 {
4112 	return !memcmp_pages(page1, page2);
4113 }
4114 
4115 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4116 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4117 						pgoff_t first_index, pgoff_t nr,
4118 						pgoff_t bitmap_pgoff,
4119 						unsigned long *bitmap,
4120 						pgoff_t *start,
4121 						pgoff_t *end);
4122 
4123 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4124 				      pgoff_t first_index, pgoff_t nr);
4125 #endif
4126 
4127 extern int sysctl_nr_trim_pages;
4128 
4129 #ifdef CONFIG_PRINTK
4130 void mem_dump_obj(void *object);
4131 #else
4132 static inline void mem_dump_obj(void *object) {}
4133 #endif
4134 
4135 /**
4136  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4137  *                    handle them.
4138  * @seals: the seals to check
4139  * @vma: the vma to operate on
4140  *
4141  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4142  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4143  */
4144 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4145 {
4146 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4147 		/*
4148 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4149 		 * write seals are active.
4150 		 */
4151 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4152 			return -EPERM;
4153 
4154 		/*
4155 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4156 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4157 		 * revert protections on such mappings. Do this only for shared
4158 		 * mappings. For private mappings, don't need to mask
4159 		 * VM_MAYWRITE as we still want them to be COW-writable.
4160 		 */
4161 		if (vma->vm_flags & VM_SHARED)
4162 			vm_flags_clear(vma, VM_MAYWRITE);
4163 	}
4164 
4165 	return 0;
4166 }
4167 
4168 #ifdef CONFIG_ANON_VMA_NAME
4169 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4170 			  unsigned long len_in,
4171 			  struct anon_vma_name *anon_name);
4172 #else
4173 static inline int
4174 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4175 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4176 	return 0;
4177 }
4178 #endif
4179 
4180 #ifdef CONFIG_UNACCEPTED_MEMORY
4181 
4182 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4183 void accept_memory(phys_addr_t start, phys_addr_t end);
4184 
4185 #else
4186 
4187 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4188 						    phys_addr_t end)
4189 {
4190 	return false;
4191 }
4192 
4193 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4194 {
4195 }
4196 
4197 #endif
4198 
4199 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4200 {
4201 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4202 
4203 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4204 }
4205 
4206 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4207 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4208 
4209 #endif /* _LINUX_MM_H */
4210