1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 #include <linux/rcuwait.h> 36 37 struct mempolicy; 38 struct anon_vma; 39 struct anon_vma_chain; 40 struct user_struct; 41 struct pt_regs; 42 struct folio_batch; 43 44 extern int sysctl_page_lock_unfairness; 45 46 void arch_mm_preinit(void); 47 void mm_core_init(void); 48 void init_mm_internals(void); 49 50 extern atomic_long_t _totalram_pages; 51 static inline unsigned long totalram_pages(void) 52 { 53 return (unsigned long)atomic_long_read(&_totalram_pages); 54 } 55 56 static inline void totalram_pages_inc(void) 57 { 58 atomic_long_inc(&_totalram_pages); 59 } 60 61 static inline void totalram_pages_dec(void) 62 { 63 atomic_long_dec(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_add(long count) 67 { 68 atomic_long_add(count, &_totalram_pages); 69 } 70 71 extern void * high_memory; 72 extern int page_cluster; 73 extern const int page_cluster_max; 74 75 #ifdef CONFIG_SYSCTL 76 extern int sysctl_legacy_va_layout; 77 #else 78 #define sysctl_legacy_va_layout 0 79 #endif 80 81 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 82 extern const int mmap_rnd_bits_min; 83 extern int mmap_rnd_bits_max __ro_after_init; 84 extern int mmap_rnd_bits __read_mostly; 85 #endif 86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 87 extern const int mmap_rnd_compat_bits_min; 88 extern const int mmap_rnd_compat_bits_max; 89 extern int mmap_rnd_compat_bits __read_mostly; 90 #endif 91 92 #ifndef DIRECT_MAP_PHYSMEM_END 93 # ifdef MAX_PHYSMEM_BITS 94 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 95 # else 96 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 97 # endif 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 252 #ifndef CONFIG_MMU 253 extern struct rb_root nommu_region_tree; 254 extern struct rw_semaphore nommu_region_sem; 255 256 extern unsigned int kobjsize(const void *objp); 257 #endif 258 259 /* 260 * vm_flags in vm_area_struct, see mm_types.h. 261 * When changing, update also include/trace/events/mmflags.h 262 */ 263 #define VM_NONE 0x00000000 264 265 #define VM_READ 0x00000001 /* currently active flags */ 266 #define VM_WRITE 0x00000002 267 #define VM_EXEC 0x00000004 268 #define VM_SHARED 0x00000008 269 270 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 271 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 272 #define VM_MAYWRITE 0x00000020 273 #define VM_MAYEXEC 0x00000040 274 #define VM_MAYSHARE 0x00000080 275 276 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 277 #ifdef CONFIG_MMU 278 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 279 #else /* CONFIG_MMU */ 280 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 281 #define VM_UFFD_MISSING 0 282 #endif /* CONFIG_MMU */ 283 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 284 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 285 286 #define VM_LOCKED 0x00002000 287 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 288 289 /* Used by sys_madvise() */ 290 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 291 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 292 293 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 294 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 295 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 296 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 297 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 298 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 299 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 300 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 301 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 302 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 303 304 #ifdef CONFIG_MEM_SOFT_DIRTY 305 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 306 #else 307 # define VM_SOFTDIRTY 0 308 #endif 309 310 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 311 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 312 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 313 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 314 315 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 316 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 317 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 #if CONFIG_ARCH_PKEY_BITS > 3 338 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 339 #else 340 # define VM_PKEY_BIT3 0 341 #endif 342 #if CONFIG_ARCH_PKEY_BITS > 4 343 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 344 #else 345 # define VM_PKEY_BIT4 0 346 #endif 347 #endif /* CONFIG_ARCH_HAS_PKEYS */ 348 349 #ifdef CONFIG_X86_USER_SHADOW_STACK 350 /* 351 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 352 * support core mm. 353 * 354 * These VMAs will get a single end guard page. This helps userspace protect 355 * itself from attacks. A single page is enough for current shadow stack archs 356 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 357 * for more details on the guard size. 358 */ 359 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 360 #endif 361 362 #if defined(CONFIG_ARM64_GCS) 363 /* 364 * arm64's Guarded Control Stack implements similar functionality and 365 * has similar constraints to shadow stacks. 366 */ 367 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 368 #endif 369 370 #ifndef VM_SHADOW_STACK 371 # define VM_SHADOW_STACK VM_NONE 372 #endif 373 374 #if defined(CONFIG_X86) 375 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 376 #elif defined(CONFIG_PPC64) 377 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 378 #elif defined(CONFIG_PARISC) 379 # define VM_GROWSUP VM_ARCH_1 380 #elif defined(CONFIG_SPARC64) 381 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 382 # define VM_ARCH_CLEAR VM_SPARC_ADI 383 #elif defined(CONFIG_ARM64) 384 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 385 # define VM_ARCH_CLEAR VM_ARM64_BTI 386 #elif !defined(CONFIG_MMU) 387 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 388 #endif 389 390 #if defined(CONFIG_ARM64_MTE) 391 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 392 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 393 #else 394 # define VM_MTE VM_NONE 395 # define VM_MTE_ALLOWED VM_NONE 396 #endif 397 398 #ifndef VM_GROWSUP 399 # define VM_GROWSUP VM_NONE 400 #endif 401 402 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 403 # define VM_UFFD_MINOR_BIT 38 404 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 405 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 406 # define VM_UFFD_MINOR VM_NONE 407 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 408 409 /* 410 * This flag is used to connect VFIO to arch specific KVM code. It 411 * indicates that the memory under this VMA is safe for use with any 412 * non-cachable memory type inside KVM. Some VFIO devices, on some 413 * platforms, are thought to be unsafe and can cause machine crashes 414 * if KVM does not lock down the memory type. 415 */ 416 #ifdef CONFIG_64BIT 417 #define VM_ALLOW_ANY_UNCACHED_BIT 39 418 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 419 #else 420 #define VM_ALLOW_ANY_UNCACHED VM_NONE 421 #endif 422 423 #ifdef CONFIG_64BIT 424 #define VM_DROPPABLE_BIT 40 425 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 426 #elif defined(CONFIG_PPC32) 427 #define VM_DROPPABLE VM_ARCH_1 428 #else 429 #define VM_DROPPABLE VM_NONE 430 #endif 431 432 #ifdef CONFIG_64BIT 433 /* VM is sealed, in vm_flags */ 434 #define VM_SEALED _BITUL(63) 435 #endif 436 437 /* Bits set in the VMA until the stack is in its final location */ 438 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 439 440 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 441 442 /* Common data flag combinations */ 443 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 444 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 445 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 446 VM_MAYWRITE | VM_MAYEXEC) 447 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 448 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 449 450 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 451 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 452 #endif 453 454 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 455 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 456 #endif 457 458 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 459 460 #ifdef CONFIG_STACK_GROWSUP 461 #define VM_STACK VM_GROWSUP 462 #define VM_STACK_EARLY VM_GROWSDOWN 463 #else 464 #define VM_STACK VM_GROWSDOWN 465 #define VM_STACK_EARLY 0 466 #endif 467 468 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 469 470 /* VMA basic access permission flags */ 471 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 472 473 474 /* 475 * Special vmas that are non-mergable, non-mlock()able. 476 */ 477 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 478 479 /* This mask prevents VMA from being scanned with khugepaged */ 480 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 481 482 /* This mask defines which mm->def_flags a process can inherit its parent */ 483 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 484 485 /* This mask represents all the VMA flag bits used by mlock */ 486 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 487 488 /* Arch-specific flags to clear when updating VM flags on protection change */ 489 #ifndef VM_ARCH_CLEAR 490 # define VM_ARCH_CLEAR VM_NONE 491 #endif 492 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 493 494 /* 495 * mapping from the currently active vm_flags protection bits (the 496 * low four bits) to a page protection mask.. 497 */ 498 499 /* 500 * The default fault flags that should be used by most of the 501 * arch-specific page fault handlers. 502 */ 503 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 504 FAULT_FLAG_KILLABLE | \ 505 FAULT_FLAG_INTERRUPTIBLE) 506 507 /** 508 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 509 * @flags: Fault flags. 510 * 511 * This is mostly used for places where we want to try to avoid taking 512 * the mmap_lock for too long a time when waiting for another condition 513 * to change, in which case we can try to be polite to release the 514 * mmap_lock in the first round to avoid potential starvation of other 515 * processes that would also want the mmap_lock. 516 * 517 * Return: true if the page fault allows retry and this is the first 518 * attempt of the fault handling; false otherwise. 519 */ 520 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 521 { 522 return (flags & FAULT_FLAG_ALLOW_RETRY) && 523 (!(flags & FAULT_FLAG_TRIED)); 524 } 525 526 #define FAULT_FLAG_TRACE \ 527 { FAULT_FLAG_WRITE, "WRITE" }, \ 528 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 529 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 530 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 531 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 532 { FAULT_FLAG_TRIED, "TRIED" }, \ 533 { FAULT_FLAG_USER, "USER" }, \ 534 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 535 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 536 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 537 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 538 539 /* 540 * vm_fault is filled by the pagefault handler and passed to the vma's 541 * ->fault function. The vma's ->fault is responsible for returning a bitmask 542 * of VM_FAULT_xxx flags that give details about how the fault was handled. 543 * 544 * MM layer fills up gfp_mask for page allocations but fault handler might 545 * alter it if its implementation requires a different allocation context. 546 * 547 * pgoff should be used in favour of virtual_address, if possible. 548 */ 549 struct vm_fault { 550 const struct { 551 struct vm_area_struct *vma; /* Target VMA */ 552 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 553 pgoff_t pgoff; /* Logical page offset based on vma */ 554 unsigned long address; /* Faulting virtual address - masked */ 555 unsigned long real_address; /* Faulting virtual address - unmasked */ 556 }; 557 enum fault_flag flags; /* FAULT_FLAG_xxx flags 558 * XXX: should really be 'const' */ 559 pmd_t *pmd; /* Pointer to pmd entry matching 560 * the 'address' */ 561 pud_t *pud; /* Pointer to pud entry matching 562 * the 'address' 563 */ 564 union { 565 pte_t orig_pte; /* Value of PTE at the time of fault */ 566 pmd_t orig_pmd; /* Value of PMD at the time of fault, 567 * used by PMD fault only. 568 */ 569 }; 570 571 struct page *cow_page; /* Page handler may use for COW fault */ 572 struct page *page; /* ->fault handlers should return a 573 * page here, unless VM_FAULT_NOPAGE 574 * is set (which is also implied by 575 * VM_FAULT_ERROR). 576 */ 577 /* These three entries are valid only while holding ptl lock */ 578 pte_t *pte; /* Pointer to pte entry matching 579 * the 'address'. NULL if the page 580 * table hasn't been allocated. 581 */ 582 spinlock_t *ptl; /* Page table lock. 583 * Protects pte page table if 'pte' 584 * is not NULL, otherwise pmd. 585 */ 586 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 587 * vm_ops->map_pages() sets up a page 588 * table from atomic context. 589 * do_fault_around() pre-allocates 590 * page table to avoid allocation from 591 * atomic context. 592 */ 593 }; 594 595 /* 596 * These are the virtual MM functions - opening of an area, closing and 597 * unmapping it (needed to keep files on disk up-to-date etc), pointer 598 * to the functions called when a no-page or a wp-page exception occurs. 599 */ 600 struct vm_operations_struct { 601 void (*open)(struct vm_area_struct * area); 602 /** 603 * @close: Called when the VMA is being removed from the MM. 604 * Context: User context. May sleep. Caller holds mmap_lock. 605 */ 606 void (*close)(struct vm_area_struct * area); 607 /* Called any time before splitting to check if it's allowed */ 608 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 609 int (*mremap)(struct vm_area_struct *area); 610 /* 611 * Called by mprotect() to make driver-specific permission 612 * checks before mprotect() is finalised. The VMA must not 613 * be modified. Returns 0 if mprotect() can proceed. 614 */ 615 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 616 unsigned long end, unsigned long newflags); 617 vm_fault_t (*fault)(struct vm_fault *vmf); 618 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 619 vm_fault_t (*map_pages)(struct vm_fault *vmf, 620 pgoff_t start_pgoff, pgoff_t end_pgoff); 621 unsigned long (*pagesize)(struct vm_area_struct * area); 622 623 /* notification that a previously read-only page is about to become 624 * writable, if an error is returned it will cause a SIGBUS */ 625 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 626 627 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 628 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 629 630 /* called by access_process_vm when get_user_pages() fails, typically 631 * for use by special VMAs. See also generic_access_phys() for a generic 632 * implementation useful for any iomem mapping. 633 */ 634 int (*access)(struct vm_area_struct *vma, unsigned long addr, 635 void *buf, int len, int write); 636 637 /* Called by the /proc/PID/maps code to ask the vma whether it 638 * has a special name. Returning non-NULL will also cause this 639 * vma to be dumped unconditionally. */ 640 const char *(*name)(struct vm_area_struct *vma); 641 642 #ifdef CONFIG_NUMA 643 /* 644 * set_policy() op must add a reference to any non-NULL @new mempolicy 645 * to hold the policy upon return. Caller should pass NULL @new to 646 * remove a policy and fall back to surrounding context--i.e. do not 647 * install a MPOL_DEFAULT policy, nor the task or system default 648 * mempolicy. 649 */ 650 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 651 652 /* 653 * get_policy() op must add reference [mpol_get()] to any policy at 654 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 655 * in mm/mempolicy.c will do this automatically. 656 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 657 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 658 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 659 * must return NULL--i.e., do not "fallback" to task or system default 660 * policy. 661 */ 662 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 663 unsigned long addr, pgoff_t *ilx); 664 #endif 665 /* 666 * Called by vm_normal_page() for special PTEs to find the 667 * page for @addr. This is useful if the default behavior 668 * (using pte_page()) would not find the correct page. 669 */ 670 struct page *(*find_special_page)(struct vm_area_struct *vma, 671 unsigned long addr); 672 }; 673 674 #ifdef CONFIG_NUMA_BALANCING 675 static inline void vma_numab_state_init(struct vm_area_struct *vma) 676 { 677 vma->numab_state = NULL; 678 } 679 static inline void vma_numab_state_free(struct vm_area_struct *vma) 680 { 681 kfree(vma->numab_state); 682 } 683 #else 684 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 685 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 686 #endif /* CONFIG_NUMA_BALANCING */ 687 688 #ifdef CONFIG_PER_VMA_LOCK 689 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 690 { 691 #ifdef CONFIG_DEBUG_LOCK_ALLOC 692 static struct lock_class_key lockdep_key; 693 694 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); 695 #endif 696 if (reset_refcnt) 697 refcount_set(&vma->vm_refcnt, 0); 698 vma->vm_lock_seq = UINT_MAX; 699 } 700 701 static inline bool is_vma_writer_only(int refcnt) 702 { 703 /* 704 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma 705 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on 706 * a detached vma happens only in vma_mark_detached() and is a rare 707 * case, therefore most of the time there will be no unnecessary wakeup. 708 */ 709 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; 710 } 711 712 static inline void vma_refcount_put(struct vm_area_struct *vma) 713 { 714 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ 715 struct mm_struct *mm = vma->vm_mm; 716 int oldcnt; 717 718 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 719 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { 720 721 if (is_vma_writer_only(oldcnt - 1)) 722 rcuwait_wake_up(&mm->vma_writer_wait); 723 } 724 } 725 726 /* 727 * Try to read-lock a vma. The function is allowed to occasionally yield false 728 * locked result to avoid performance overhead, in which case we fall back to 729 * using mmap_lock. The function should never yield false unlocked result. 730 * False locked result is possible if mm_lock_seq overflows or if vma gets 731 * reused and attached to a different mm before we lock it. 732 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got 733 * detached. 734 */ 735 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 736 struct vm_area_struct *vma) 737 { 738 int oldcnt; 739 740 /* 741 * Check before locking. A race might cause false locked result. 742 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 743 * ACQUIRE semantics, because this is just a lockless check whose result 744 * we don't rely on for anything - the mm_lock_seq read against which we 745 * need ordering is below. 746 */ 747 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) 748 return NULL; 749 750 /* 751 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() 752 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. 753 * Acquire fence is required here to avoid reordering against later 754 * vm_lock_seq check and checks inside lock_vma_under_rcu(). 755 */ 756 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 757 VMA_REF_LIMIT))) { 758 /* return EAGAIN if vma got detached from under us */ 759 return oldcnt ? NULL : ERR_PTR(-EAGAIN); 760 } 761 762 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 763 /* 764 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. 765 * False unlocked result is impossible because we modify and check 766 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq 767 * modification invalidates all existing locks. 768 * 769 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 770 * racing with vma_end_write_all(), we only start reading from the VMA 771 * after it has been unlocked. 772 * This pairs with RELEASE semantics in vma_end_write_all(). 773 */ 774 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { 775 vma_refcount_put(vma); 776 return NULL; 777 } 778 779 return vma; 780 } 781 782 /* 783 * Use only while holding mmap read lock which guarantees that locking will not 784 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 785 * not be used in such cases because it might fail due to mm_lock_seq overflow. 786 * This functionality is used to obtain vma read lock and drop the mmap read lock. 787 */ 788 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) 789 { 790 int oldcnt; 791 792 mmap_assert_locked(vma->vm_mm); 793 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 794 VMA_REF_LIMIT))) 795 return false; 796 797 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 798 return true; 799 } 800 801 /* 802 * Use only while holding mmap read lock which guarantees that locking will not 803 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 804 * not be used in such cases because it might fail due to mm_lock_seq overflow. 805 * This functionality is used to obtain vma read lock and drop the mmap read lock. 806 */ 807 static inline bool vma_start_read_locked(struct vm_area_struct *vma) 808 { 809 return vma_start_read_locked_nested(vma, 0); 810 } 811 812 static inline void vma_end_read(struct vm_area_struct *vma) 813 { 814 vma_refcount_put(vma); 815 } 816 817 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 818 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 819 { 820 mmap_assert_write_locked(vma->vm_mm); 821 822 /* 823 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 824 * mm->mm_lock_seq can't be concurrently modified. 825 */ 826 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 827 return (vma->vm_lock_seq == *mm_lock_seq); 828 } 829 830 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); 831 832 /* 833 * Begin writing to a VMA. 834 * Exclude concurrent readers under the per-VMA lock until the currently 835 * write-locked mmap_lock is dropped or downgraded. 836 */ 837 static inline void vma_start_write(struct vm_area_struct *vma) 838 { 839 unsigned int mm_lock_seq; 840 841 if (__is_vma_write_locked(vma, &mm_lock_seq)) 842 return; 843 844 __vma_start_write(vma, mm_lock_seq); 845 } 846 847 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 848 { 849 unsigned int mm_lock_seq; 850 851 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 852 } 853 854 static inline void vma_assert_locked(struct vm_area_struct *vma) 855 { 856 unsigned int mm_lock_seq; 857 858 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && 859 !__is_vma_write_locked(vma, &mm_lock_seq), vma); 860 } 861 862 /* 863 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 864 * assertions should be made either under mmap_write_lock or when the object 865 * has been isolated under mmap_write_lock, ensuring no competing writers. 866 */ 867 static inline void vma_assert_attached(struct vm_area_struct *vma) 868 { 869 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 870 } 871 872 static inline void vma_assert_detached(struct vm_area_struct *vma) 873 { 874 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 875 } 876 877 static inline void vma_mark_attached(struct vm_area_struct *vma) 878 { 879 vma_assert_write_locked(vma); 880 vma_assert_detached(vma); 881 refcount_set_release(&vma->vm_refcnt, 1); 882 } 883 884 void vma_mark_detached(struct vm_area_struct *vma); 885 886 static inline void release_fault_lock(struct vm_fault *vmf) 887 { 888 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 889 vma_end_read(vmf->vma); 890 else 891 mmap_read_unlock(vmf->vma->vm_mm); 892 } 893 894 static inline void assert_fault_locked(struct vm_fault *vmf) 895 { 896 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 897 vma_assert_locked(vmf->vma); 898 else 899 mmap_assert_locked(vmf->vma->vm_mm); 900 } 901 902 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 903 unsigned long address); 904 905 #else /* CONFIG_PER_VMA_LOCK */ 906 907 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} 908 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 909 struct vm_area_struct *vma) 910 { return NULL; } 911 static inline void vma_end_read(struct vm_area_struct *vma) {} 912 static inline void vma_start_write(struct vm_area_struct *vma) {} 913 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 914 { mmap_assert_write_locked(vma->vm_mm); } 915 static inline void vma_assert_attached(struct vm_area_struct *vma) {} 916 static inline void vma_assert_detached(struct vm_area_struct *vma) {} 917 static inline void vma_mark_attached(struct vm_area_struct *vma) {} 918 static inline void vma_mark_detached(struct vm_area_struct *vma) {} 919 920 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 921 unsigned long address) 922 { 923 return NULL; 924 } 925 926 static inline void vma_assert_locked(struct vm_area_struct *vma) 927 { 928 mmap_assert_locked(vma->vm_mm); 929 } 930 931 static inline void release_fault_lock(struct vm_fault *vmf) 932 { 933 mmap_read_unlock(vmf->vma->vm_mm); 934 } 935 936 static inline void assert_fault_locked(struct vm_fault *vmf) 937 { 938 mmap_assert_locked(vmf->vma->vm_mm); 939 } 940 941 #endif /* CONFIG_PER_VMA_LOCK */ 942 943 extern const struct vm_operations_struct vma_dummy_vm_ops; 944 945 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 946 { 947 memset(vma, 0, sizeof(*vma)); 948 vma->vm_mm = mm; 949 vma->vm_ops = &vma_dummy_vm_ops; 950 INIT_LIST_HEAD(&vma->anon_vma_chain); 951 vma_lock_init(vma, false); 952 } 953 954 /* Use when VMA is not part of the VMA tree and needs no locking */ 955 static inline void vm_flags_init(struct vm_area_struct *vma, 956 vm_flags_t flags) 957 { 958 ACCESS_PRIVATE(vma, __vm_flags) = flags; 959 } 960 961 /* 962 * Use when VMA is part of the VMA tree and modifications need coordination 963 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 964 * it should be locked explicitly beforehand. 965 */ 966 static inline void vm_flags_reset(struct vm_area_struct *vma, 967 vm_flags_t flags) 968 { 969 vma_assert_write_locked(vma); 970 vm_flags_init(vma, flags); 971 } 972 973 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 974 vm_flags_t flags) 975 { 976 vma_assert_write_locked(vma); 977 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 978 } 979 980 static inline void vm_flags_set(struct vm_area_struct *vma, 981 vm_flags_t flags) 982 { 983 vma_start_write(vma); 984 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 985 } 986 987 static inline void vm_flags_clear(struct vm_area_struct *vma, 988 vm_flags_t flags) 989 { 990 vma_start_write(vma); 991 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 992 } 993 994 /* 995 * Use only if VMA is not part of the VMA tree or has no other users and 996 * therefore needs no locking. 997 */ 998 static inline void __vm_flags_mod(struct vm_area_struct *vma, 999 vm_flags_t set, vm_flags_t clear) 1000 { 1001 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 1002 } 1003 1004 /* 1005 * Use only when the order of set/clear operations is unimportant, otherwise 1006 * use vm_flags_{set|clear} explicitly. 1007 */ 1008 static inline void vm_flags_mod(struct vm_area_struct *vma, 1009 vm_flags_t set, vm_flags_t clear) 1010 { 1011 vma_start_write(vma); 1012 __vm_flags_mod(vma, set, clear); 1013 } 1014 1015 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1016 { 1017 vma->vm_ops = NULL; 1018 } 1019 1020 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1021 { 1022 return !vma->vm_ops; 1023 } 1024 1025 /* 1026 * Indicate if the VMA is a heap for the given task; for 1027 * /proc/PID/maps that is the heap of the main task. 1028 */ 1029 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1030 { 1031 return vma->vm_start < vma->vm_mm->brk && 1032 vma->vm_end > vma->vm_mm->start_brk; 1033 } 1034 1035 /* 1036 * Indicate if the VMA is a stack for the given task; for 1037 * /proc/PID/maps that is the stack of the main task. 1038 */ 1039 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1040 { 1041 /* 1042 * We make no effort to guess what a given thread considers to be 1043 * its "stack". It's not even well-defined for programs written 1044 * languages like Go. 1045 */ 1046 return vma->vm_start <= vma->vm_mm->start_stack && 1047 vma->vm_end >= vma->vm_mm->start_stack; 1048 } 1049 1050 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 1051 { 1052 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1053 1054 if (!maybe_stack) 1055 return false; 1056 1057 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1058 VM_STACK_INCOMPLETE_SETUP) 1059 return true; 1060 1061 return false; 1062 } 1063 1064 static inline bool vma_is_foreign(struct vm_area_struct *vma) 1065 { 1066 if (!current->mm) 1067 return true; 1068 1069 if (current->mm != vma->vm_mm) 1070 return true; 1071 1072 return false; 1073 } 1074 1075 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1076 { 1077 return vma->vm_flags & VM_ACCESS_FLAGS; 1078 } 1079 1080 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1081 { 1082 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1083 (VM_SHARED | VM_MAYWRITE); 1084 } 1085 1086 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1087 { 1088 return is_shared_maywrite(vma->vm_flags); 1089 } 1090 1091 static inline 1092 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1093 { 1094 return mas_find(&vmi->mas, max - 1); 1095 } 1096 1097 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1098 { 1099 /* 1100 * Uses mas_find() to get the first VMA when the iterator starts. 1101 * Calling mas_next() could skip the first entry. 1102 */ 1103 return mas_find(&vmi->mas, ULONG_MAX); 1104 } 1105 1106 static inline 1107 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1108 { 1109 return mas_next_range(&vmi->mas, ULONG_MAX); 1110 } 1111 1112 1113 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1114 { 1115 return mas_prev(&vmi->mas, 0); 1116 } 1117 1118 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1119 unsigned long start, unsigned long end, gfp_t gfp) 1120 { 1121 __mas_set_range(&vmi->mas, start, end - 1); 1122 mas_store_gfp(&vmi->mas, NULL, gfp); 1123 if (unlikely(mas_is_err(&vmi->mas))) 1124 return -ENOMEM; 1125 1126 return 0; 1127 } 1128 1129 /* Free any unused preallocations */ 1130 static inline void vma_iter_free(struct vma_iterator *vmi) 1131 { 1132 mas_destroy(&vmi->mas); 1133 } 1134 1135 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1136 struct vm_area_struct *vma) 1137 { 1138 vmi->mas.index = vma->vm_start; 1139 vmi->mas.last = vma->vm_end - 1; 1140 mas_store(&vmi->mas, vma); 1141 if (unlikely(mas_is_err(&vmi->mas))) 1142 return -ENOMEM; 1143 1144 vma_mark_attached(vma); 1145 return 0; 1146 } 1147 1148 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1149 { 1150 mas_pause(&vmi->mas); 1151 } 1152 1153 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1154 { 1155 mas_set(&vmi->mas, addr); 1156 } 1157 1158 #define for_each_vma(__vmi, __vma) \ 1159 while (((__vma) = vma_next(&(__vmi))) != NULL) 1160 1161 /* The MM code likes to work with exclusive end addresses */ 1162 #define for_each_vma_range(__vmi, __vma, __end) \ 1163 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1164 1165 #ifdef CONFIG_SHMEM 1166 /* 1167 * The vma_is_shmem is not inline because it is used only by slow 1168 * paths in userfault. 1169 */ 1170 bool vma_is_shmem(struct vm_area_struct *vma); 1171 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1172 #else 1173 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1174 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1175 #endif 1176 1177 int vma_is_stack_for_current(struct vm_area_struct *vma); 1178 1179 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1180 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1181 1182 struct mmu_gather; 1183 struct inode; 1184 1185 extern void prep_compound_page(struct page *page, unsigned int order); 1186 1187 static inline unsigned int folio_large_order(const struct folio *folio) 1188 { 1189 return folio->_flags_1 & 0xff; 1190 } 1191 1192 #ifdef NR_PAGES_IN_LARGE_FOLIO 1193 static inline long folio_large_nr_pages(const struct folio *folio) 1194 { 1195 return folio->_nr_pages; 1196 } 1197 #else 1198 static inline long folio_large_nr_pages(const struct folio *folio) 1199 { 1200 return 1L << folio_large_order(folio); 1201 } 1202 #endif 1203 1204 /* 1205 * compound_order() can be called without holding a reference, which means 1206 * that niceties like page_folio() don't work. These callers should be 1207 * prepared to handle wild return values. For example, PG_head may be 1208 * set before the order is initialised, or this may be a tail page. 1209 * See compaction.c for some good examples. 1210 */ 1211 static inline unsigned int compound_order(struct page *page) 1212 { 1213 struct folio *folio = (struct folio *)page; 1214 1215 if (!test_bit(PG_head, &folio->flags)) 1216 return 0; 1217 return folio_large_order(folio); 1218 } 1219 1220 /** 1221 * folio_order - The allocation order of a folio. 1222 * @folio: The folio. 1223 * 1224 * A folio is composed of 2^order pages. See get_order() for the definition 1225 * of order. 1226 * 1227 * Return: The order of the folio. 1228 */ 1229 static inline unsigned int folio_order(const struct folio *folio) 1230 { 1231 if (!folio_test_large(folio)) 1232 return 0; 1233 return folio_large_order(folio); 1234 } 1235 1236 #include <linux/huge_mm.h> 1237 1238 /* 1239 * Methods to modify the page usage count. 1240 * 1241 * What counts for a page usage: 1242 * - cache mapping (page->mapping) 1243 * - private data (page->private) 1244 * - page mapped in a task's page tables, each mapping 1245 * is counted separately 1246 * 1247 * Also, many kernel routines increase the page count before a critical 1248 * routine so they can be sure the page doesn't go away from under them. 1249 */ 1250 1251 /* 1252 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1253 */ 1254 static inline int put_page_testzero(struct page *page) 1255 { 1256 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1257 return page_ref_dec_and_test(page); 1258 } 1259 1260 static inline int folio_put_testzero(struct folio *folio) 1261 { 1262 return put_page_testzero(&folio->page); 1263 } 1264 1265 /* 1266 * Try to grab a ref unless the page has a refcount of zero, return false if 1267 * that is the case. 1268 * This can be called when MMU is off so it must not access 1269 * any of the virtual mappings. 1270 */ 1271 static inline bool get_page_unless_zero(struct page *page) 1272 { 1273 return page_ref_add_unless(page, 1, 0); 1274 } 1275 1276 static inline struct folio *folio_get_nontail_page(struct page *page) 1277 { 1278 if (unlikely(!get_page_unless_zero(page))) 1279 return NULL; 1280 return (struct folio *)page; 1281 } 1282 1283 extern int page_is_ram(unsigned long pfn); 1284 1285 enum { 1286 REGION_INTERSECTS, 1287 REGION_DISJOINT, 1288 REGION_MIXED, 1289 }; 1290 1291 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1292 unsigned long desc); 1293 1294 /* Support for virtually mapped pages */ 1295 struct page *vmalloc_to_page(const void *addr); 1296 unsigned long vmalloc_to_pfn(const void *addr); 1297 1298 /* 1299 * Determine if an address is within the vmalloc range 1300 * 1301 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1302 * is no special casing required. 1303 */ 1304 #ifdef CONFIG_MMU 1305 extern bool is_vmalloc_addr(const void *x); 1306 extern int is_vmalloc_or_module_addr(const void *x); 1307 #else 1308 static inline bool is_vmalloc_addr(const void *x) 1309 { 1310 return false; 1311 } 1312 static inline int is_vmalloc_or_module_addr(const void *x) 1313 { 1314 return 0; 1315 } 1316 #endif 1317 1318 /* 1319 * How many times the entire folio is mapped as a single unit (eg by a 1320 * PMD or PUD entry). This is probably not what you want, except for 1321 * debugging purposes or implementation of other core folio_*() primitives. 1322 */ 1323 static inline int folio_entire_mapcount(const struct folio *folio) 1324 { 1325 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1326 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1327 return 0; 1328 return atomic_read(&folio->_entire_mapcount) + 1; 1329 } 1330 1331 static inline int folio_large_mapcount(const struct folio *folio) 1332 { 1333 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1334 return atomic_read(&folio->_large_mapcount) + 1; 1335 } 1336 1337 /** 1338 * folio_mapcount() - Number of mappings of this folio. 1339 * @folio: The folio. 1340 * 1341 * The folio mapcount corresponds to the number of present user page table 1342 * entries that reference any part of a folio. Each such present user page 1343 * table entry must be paired with exactly on folio reference. 1344 * 1345 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1346 * exactly once. 1347 * 1348 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1349 * references the entire folio counts exactly once, even when such special 1350 * page table entries are comprised of multiple ordinary page table entries. 1351 * 1352 * Will report 0 for pages which cannot be mapped into userspace, such as 1353 * slab, page tables and similar. 1354 * 1355 * Return: The number of times this folio is mapped. 1356 */ 1357 static inline int folio_mapcount(const struct folio *folio) 1358 { 1359 int mapcount; 1360 1361 if (likely(!folio_test_large(folio))) { 1362 mapcount = atomic_read(&folio->_mapcount) + 1; 1363 if (page_mapcount_is_type(mapcount)) 1364 mapcount = 0; 1365 return mapcount; 1366 } 1367 return folio_large_mapcount(folio); 1368 } 1369 1370 /** 1371 * folio_mapped - Is this folio mapped into userspace? 1372 * @folio: The folio. 1373 * 1374 * Return: True if any page in this folio is referenced by user page tables. 1375 */ 1376 static inline bool folio_mapped(const struct folio *folio) 1377 { 1378 return folio_mapcount(folio) >= 1; 1379 } 1380 1381 /* 1382 * Return true if this page is mapped into pagetables. 1383 * For compound page it returns true if any sub-page of compound page is mapped, 1384 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1385 */ 1386 static inline bool page_mapped(const struct page *page) 1387 { 1388 return folio_mapped(page_folio(page)); 1389 } 1390 1391 static inline struct page *virt_to_head_page(const void *x) 1392 { 1393 struct page *page = virt_to_page(x); 1394 1395 return compound_head(page); 1396 } 1397 1398 static inline struct folio *virt_to_folio(const void *x) 1399 { 1400 struct page *page = virt_to_page(x); 1401 1402 return page_folio(page); 1403 } 1404 1405 void __folio_put(struct folio *folio); 1406 1407 void split_page(struct page *page, unsigned int order); 1408 void folio_copy(struct folio *dst, struct folio *src); 1409 int folio_mc_copy(struct folio *dst, struct folio *src); 1410 1411 unsigned long nr_free_buffer_pages(void); 1412 1413 /* Returns the number of bytes in this potentially compound page. */ 1414 static inline unsigned long page_size(struct page *page) 1415 { 1416 return PAGE_SIZE << compound_order(page); 1417 } 1418 1419 /* Returns the number of bits needed for the number of bytes in a page */ 1420 static inline unsigned int page_shift(struct page *page) 1421 { 1422 return PAGE_SHIFT + compound_order(page); 1423 } 1424 1425 /** 1426 * thp_order - Order of a transparent huge page. 1427 * @page: Head page of a transparent huge page. 1428 */ 1429 static inline unsigned int thp_order(struct page *page) 1430 { 1431 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1432 return compound_order(page); 1433 } 1434 1435 /** 1436 * thp_size - Size of a transparent huge page. 1437 * @page: Head page of a transparent huge page. 1438 * 1439 * Return: Number of bytes in this page. 1440 */ 1441 static inline unsigned long thp_size(struct page *page) 1442 { 1443 return PAGE_SIZE << thp_order(page); 1444 } 1445 1446 #ifdef CONFIG_MMU 1447 /* 1448 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1449 * servicing faults for write access. In the normal case, do always want 1450 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1451 * that do not have writing enabled, when used by access_process_vm. 1452 */ 1453 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1454 { 1455 if (likely(vma->vm_flags & VM_WRITE)) 1456 pte = pte_mkwrite(pte, vma); 1457 return pte; 1458 } 1459 1460 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1461 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1462 struct page *page, unsigned int nr, unsigned long addr); 1463 1464 vm_fault_t finish_fault(struct vm_fault *vmf); 1465 #endif 1466 1467 /* 1468 * Multiple processes may "see" the same page. E.g. for untouched 1469 * mappings of /dev/null, all processes see the same page full of 1470 * zeroes, and text pages of executables and shared libraries have 1471 * only one copy in memory, at most, normally. 1472 * 1473 * For the non-reserved pages, page_count(page) denotes a reference count. 1474 * page_count() == 0 means the page is free. page->lru is then used for 1475 * freelist management in the buddy allocator. 1476 * page_count() > 0 means the page has been allocated. 1477 * 1478 * Pages are allocated by the slab allocator in order to provide memory 1479 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1480 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1481 * unless a particular usage is carefully commented. (the responsibility of 1482 * freeing the kmalloc memory is the caller's, of course). 1483 * 1484 * A page may be used by anyone else who does a __get_free_page(). 1485 * In this case, page_count still tracks the references, and should only 1486 * be used through the normal accessor functions. The top bits of page->flags 1487 * and page->virtual store page management information, but all other fields 1488 * are unused and could be used privately, carefully. The management of this 1489 * page is the responsibility of the one who allocated it, and those who have 1490 * subsequently been given references to it. 1491 * 1492 * The other pages (we may call them "pagecache pages") are completely 1493 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1494 * The following discussion applies only to them. 1495 * 1496 * A pagecache page contains an opaque `private' member, which belongs to the 1497 * page's address_space. Usually, this is the address of a circular list of 1498 * the page's disk buffers. PG_private must be set to tell the VM to call 1499 * into the filesystem to release these pages. 1500 * 1501 * A page may belong to an inode's memory mapping. In this case, page->mapping 1502 * is the pointer to the inode, and page->index is the file offset of the page, 1503 * in units of PAGE_SIZE. 1504 * 1505 * If pagecache pages are not associated with an inode, they are said to be 1506 * anonymous pages. These may become associated with the swapcache, and in that 1507 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1508 * 1509 * In either case (swapcache or inode backed), the pagecache itself holds one 1510 * reference to the page. Setting PG_private should also increment the 1511 * refcount. The each user mapping also has a reference to the page. 1512 * 1513 * The pagecache pages are stored in a per-mapping radix tree, which is 1514 * rooted at mapping->i_pages, and indexed by offset. 1515 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1516 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1517 * 1518 * All pagecache pages may be subject to I/O: 1519 * - inode pages may need to be read from disk, 1520 * - inode pages which have been modified and are MAP_SHARED may need 1521 * to be written back to the inode on disk, 1522 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1523 * modified may need to be swapped out to swap space and (later) to be read 1524 * back into memory. 1525 */ 1526 1527 /* 127: arbitrary random number, small enough to assemble well */ 1528 #define folio_ref_zero_or_close_to_overflow(folio) \ 1529 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1530 1531 /** 1532 * folio_get - Increment the reference count on a folio. 1533 * @folio: The folio. 1534 * 1535 * Context: May be called in any context, as long as you know that 1536 * you have a refcount on the folio. If you do not already have one, 1537 * folio_try_get() may be the right interface for you to use. 1538 */ 1539 static inline void folio_get(struct folio *folio) 1540 { 1541 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1542 folio_ref_inc(folio); 1543 } 1544 1545 static inline void get_page(struct page *page) 1546 { 1547 struct folio *folio = page_folio(page); 1548 if (WARN_ON_ONCE(folio_test_slab(folio))) 1549 return; 1550 folio_get(folio); 1551 } 1552 1553 static inline __must_check bool try_get_page(struct page *page) 1554 { 1555 page = compound_head(page); 1556 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1557 return false; 1558 page_ref_inc(page); 1559 return true; 1560 } 1561 1562 /** 1563 * folio_put - Decrement the reference count on a folio. 1564 * @folio: The folio. 1565 * 1566 * If the folio's reference count reaches zero, the memory will be 1567 * released back to the page allocator and may be used by another 1568 * allocation immediately. Do not access the memory or the struct folio 1569 * after calling folio_put() unless you can be sure that it wasn't the 1570 * last reference. 1571 * 1572 * Context: May be called in process or interrupt context, but not in NMI 1573 * context. May be called while holding a spinlock. 1574 */ 1575 static inline void folio_put(struct folio *folio) 1576 { 1577 if (folio_put_testzero(folio)) 1578 __folio_put(folio); 1579 } 1580 1581 /** 1582 * folio_put_refs - Reduce the reference count on a folio. 1583 * @folio: The folio. 1584 * @refs: The amount to subtract from the folio's reference count. 1585 * 1586 * If the folio's reference count reaches zero, the memory will be 1587 * released back to the page allocator and may be used by another 1588 * allocation immediately. Do not access the memory or the struct folio 1589 * after calling folio_put_refs() unless you can be sure that these weren't 1590 * the last references. 1591 * 1592 * Context: May be called in process or interrupt context, but not in NMI 1593 * context. May be called while holding a spinlock. 1594 */ 1595 static inline void folio_put_refs(struct folio *folio, int refs) 1596 { 1597 if (folio_ref_sub_and_test(folio, refs)) 1598 __folio_put(folio); 1599 } 1600 1601 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1602 1603 /* 1604 * union release_pages_arg - an array of pages or folios 1605 * 1606 * release_pages() releases a simple array of multiple pages, and 1607 * accepts various different forms of said page array: either 1608 * a regular old boring array of pages, an array of folios, or 1609 * an array of encoded page pointers. 1610 * 1611 * The transparent union syntax for this kind of "any of these 1612 * argument types" is all kinds of ugly, so look away. 1613 */ 1614 typedef union { 1615 struct page **pages; 1616 struct folio **folios; 1617 struct encoded_page **encoded_pages; 1618 } release_pages_arg __attribute__ ((__transparent_union__)); 1619 1620 void release_pages(release_pages_arg, int nr); 1621 1622 /** 1623 * folios_put - Decrement the reference count on an array of folios. 1624 * @folios: The folios. 1625 * 1626 * Like folio_put(), but for a batch of folios. This is more efficient 1627 * than writing the loop yourself as it will optimise the locks which need 1628 * to be taken if the folios are freed. The folios batch is returned 1629 * empty and ready to be reused for another batch; there is no need to 1630 * reinitialise it. 1631 * 1632 * Context: May be called in process or interrupt context, but not in NMI 1633 * context. May be called while holding a spinlock. 1634 */ 1635 static inline void folios_put(struct folio_batch *folios) 1636 { 1637 folios_put_refs(folios, NULL); 1638 } 1639 1640 static inline void put_page(struct page *page) 1641 { 1642 struct folio *folio = page_folio(page); 1643 1644 if (folio_test_slab(folio)) 1645 return; 1646 1647 folio_put(folio); 1648 } 1649 1650 /* 1651 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1652 * the page's refcount so that two separate items are tracked: the original page 1653 * reference count, and also a new count of how many pin_user_pages() calls were 1654 * made against the page. ("gup-pinned" is another term for the latter). 1655 * 1656 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1657 * distinct from normal pages. As such, the unpin_user_page() call (and its 1658 * variants) must be used in order to release gup-pinned pages. 1659 * 1660 * Choice of value: 1661 * 1662 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1663 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1664 * simpler, due to the fact that adding an even power of two to the page 1665 * refcount has the effect of using only the upper N bits, for the code that 1666 * counts up using the bias value. This means that the lower bits are left for 1667 * the exclusive use of the original code that increments and decrements by one 1668 * (or at least, by much smaller values than the bias value). 1669 * 1670 * Of course, once the lower bits overflow into the upper bits (and this is 1671 * OK, because subtraction recovers the original values), then visual inspection 1672 * no longer suffices to directly view the separate counts. However, for normal 1673 * applications that don't have huge page reference counts, this won't be an 1674 * issue. 1675 * 1676 * Locking: the lockless algorithm described in folio_try_get_rcu() 1677 * provides safe operation for get_user_pages(), folio_mkclean() and 1678 * other calls that race to set up page table entries. 1679 */ 1680 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1681 1682 void unpin_user_page(struct page *page); 1683 void unpin_folio(struct folio *folio); 1684 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1685 bool make_dirty); 1686 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1687 bool make_dirty); 1688 void unpin_user_pages(struct page **pages, unsigned long npages); 1689 void unpin_user_folio(struct folio *folio, unsigned long npages); 1690 void unpin_folios(struct folio **folios, unsigned long nfolios); 1691 1692 static inline bool is_cow_mapping(vm_flags_t flags) 1693 { 1694 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1695 } 1696 1697 #ifndef CONFIG_MMU 1698 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1699 { 1700 /* 1701 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1702 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1703 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1704 * underlying memory if ptrace is active, so this is only possible if 1705 * ptrace does not apply. Note that there is no mprotect() to upgrade 1706 * write permissions later. 1707 */ 1708 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1709 } 1710 #endif 1711 1712 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1713 #define SECTION_IN_PAGE_FLAGS 1714 #endif 1715 1716 /* 1717 * The identification function is mainly used by the buddy allocator for 1718 * determining if two pages could be buddies. We are not really identifying 1719 * the zone since we could be using the section number id if we do not have 1720 * node id available in page flags. 1721 * We only guarantee that it will return the same value for two combinable 1722 * pages in a zone. 1723 */ 1724 static inline int page_zone_id(struct page *page) 1725 { 1726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1727 } 1728 1729 #ifdef NODE_NOT_IN_PAGE_FLAGS 1730 int page_to_nid(const struct page *page); 1731 #else 1732 static inline int page_to_nid(const struct page *page) 1733 { 1734 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1735 } 1736 #endif 1737 1738 static inline int folio_nid(const struct folio *folio) 1739 { 1740 return page_to_nid(&folio->page); 1741 } 1742 1743 #ifdef CONFIG_NUMA_BALANCING 1744 /* page access time bits needs to hold at least 4 seconds */ 1745 #define PAGE_ACCESS_TIME_MIN_BITS 12 1746 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1747 #define PAGE_ACCESS_TIME_BUCKETS \ 1748 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1749 #else 1750 #define PAGE_ACCESS_TIME_BUCKETS 0 1751 #endif 1752 1753 #define PAGE_ACCESS_TIME_MASK \ 1754 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1755 1756 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1757 { 1758 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1759 } 1760 1761 static inline int cpupid_to_pid(int cpupid) 1762 { 1763 return cpupid & LAST__PID_MASK; 1764 } 1765 1766 static inline int cpupid_to_cpu(int cpupid) 1767 { 1768 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1769 } 1770 1771 static inline int cpupid_to_nid(int cpupid) 1772 { 1773 return cpu_to_node(cpupid_to_cpu(cpupid)); 1774 } 1775 1776 static inline bool cpupid_pid_unset(int cpupid) 1777 { 1778 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1779 } 1780 1781 static inline bool cpupid_cpu_unset(int cpupid) 1782 { 1783 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1784 } 1785 1786 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1787 { 1788 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1789 } 1790 1791 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1792 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1793 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1794 { 1795 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1796 } 1797 1798 static inline int folio_last_cpupid(struct folio *folio) 1799 { 1800 return folio->_last_cpupid; 1801 } 1802 static inline void page_cpupid_reset_last(struct page *page) 1803 { 1804 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1805 } 1806 #else 1807 static inline int folio_last_cpupid(struct folio *folio) 1808 { 1809 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1810 } 1811 1812 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1813 1814 static inline void page_cpupid_reset_last(struct page *page) 1815 { 1816 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1817 } 1818 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1819 1820 static inline int folio_xchg_access_time(struct folio *folio, int time) 1821 { 1822 int last_time; 1823 1824 last_time = folio_xchg_last_cpupid(folio, 1825 time >> PAGE_ACCESS_TIME_BUCKETS); 1826 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1827 } 1828 1829 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1830 { 1831 unsigned int pid_bit; 1832 1833 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1834 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1835 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1836 } 1837 } 1838 1839 bool folio_use_access_time(struct folio *folio); 1840 #else /* !CONFIG_NUMA_BALANCING */ 1841 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1842 { 1843 return folio_nid(folio); /* XXX */ 1844 } 1845 1846 static inline int folio_xchg_access_time(struct folio *folio, int time) 1847 { 1848 return 0; 1849 } 1850 1851 static inline int folio_last_cpupid(struct folio *folio) 1852 { 1853 return folio_nid(folio); /* XXX */ 1854 } 1855 1856 static inline int cpupid_to_nid(int cpupid) 1857 { 1858 return -1; 1859 } 1860 1861 static inline int cpupid_to_pid(int cpupid) 1862 { 1863 return -1; 1864 } 1865 1866 static inline int cpupid_to_cpu(int cpupid) 1867 { 1868 return -1; 1869 } 1870 1871 static inline int cpu_pid_to_cpupid(int nid, int pid) 1872 { 1873 return -1; 1874 } 1875 1876 static inline bool cpupid_pid_unset(int cpupid) 1877 { 1878 return true; 1879 } 1880 1881 static inline void page_cpupid_reset_last(struct page *page) 1882 { 1883 } 1884 1885 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1886 { 1887 return false; 1888 } 1889 1890 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1891 { 1892 } 1893 static inline bool folio_use_access_time(struct folio *folio) 1894 { 1895 return false; 1896 } 1897 #endif /* CONFIG_NUMA_BALANCING */ 1898 1899 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1900 1901 /* 1902 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1903 * setting tags for all pages to native kernel tag value 0xff, as the default 1904 * value 0x00 maps to 0xff. 1905 */ 1906 1907 static inline u8 page_kasan_tag(const struct page *page) 1908 { 1909 u8 tag = KASAN_TAG_KERNEL; 1910 1911 if (kasan_enabled()) { 1912 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1913 tag ^= 0xff; 1914 } 1915 1916 return tag; 1917 } 1918 1919 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1920 { 1921 unsigned long old_flags, flags; 1922 1923 if (!kasan_enabled()) 1924 return; 1925 1926 tag ^= 0xff; 1927 old_flags = READ_ONCE(page->flags); 1928 do { 1929 flags = old_flags; 1930 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1931 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1932 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1933 } 1934 1935 static inline void page_kasan_tag_reset(struct page *page) 1936 { 1937 if (kasan_enabled()) 1938 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1939 } 1940 1941 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1942 1943 static inline u8 page_kasan_tag(const struct page *page) 1944 { 1945 return 0xff; 1946 } 1947 1948 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1949 static inline void page_kasan_tag_reset(struct page *page) { } 1950 1951 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1952 1953 static inline struct zone *page_zone(const struct page *page) 1954 { 1955 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1956 } 1957 1958 static inline pg_data_t *page_pgdat(const struct page *page) 1959 { 1960 return NODE_DATA(page_to_nid(page)); 1961 } 1962 1963 static inline struct zone *folio_zone(const struct folio *folio) 1964 { 1965 return page_zone(&folio->page); 1966 } 1967 1968 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1969 { 1970 return page_pgdat(&folio->page); 1971 } 1972 1973 #ifdef SECTION_IN_PAGE_FLAGS 1974 static inline void set_page_section(struct page *page, unsigned long section) 1975 { 1976 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1977 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1978 } 1979 1980 static inline unsigned long page_to_section(const struct page *page) 1981 { 1982 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1983 } 1984 #endif 1985 1986 /** 1987 * folio_pfn - Return the Page Frame Number of a folio. 1988 * @folio: The folio. 1989 * 1990 * A folio may contain multiple pages. The pages have consecutive 1991 * Page Frame Numbers. 1992 * 1993 * Return: The Page Frame Number of the first page in the folio. 1994 */ 1995 static inline unsigned long folio_pfn(const struct folio *folio) 1996 { 1997 return page_to_pfn(&folio->page); 1998 } 1999 2000 static inline struct folio *pfn_folio(unsigned long pfn) 2001 { 2002 return page_folio(pfn_to_page(pfn)); 2003 } 2004 2005 static inline bool folio_has_pincount(const struct folio *folio) 2006 { 2007 if (IS_ENABLED(CONFIG_64BIT)) 2008 return folio_test_large(folio); 2009 return folio_order(folio) > 1; 2010 } 2011 2012 /** 2013 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2014 * @folio: The folio. 2015 * 2016 * This function checks if a folio has been pinned via a call to 2017 * a function in the pin_user_pages() family. 2018 * 2019 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2020 * because it means "definitely not pinned for DMA", but true means "probably 2021 * pinned for DMA, but possibly a false positive due to having at least 2022 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2023 * 2024 * False positives are OK, because: a) it's unlikely for a folio to 2025 * get that many refcounts, and b) all the callers of this routine are 2026 * expected to be able to deal gracefully with a false positive. 2027 * 2028 * For most large folios, the result will be exactly correct. That's because 2029 * we have more tracking data available: the _pincount field is used 2030 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2031 * 2032 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2033 * 2034 * Return: True, if it is likely that the folio has been "dma-pinned". 2035 * False, if the folio is definitely not dma-pinned. 2036 */ 2037 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2038 { 2039 if (folio_has_pincount(folio)) 2040 return atomic_read(&folio->_pincount) > 0; 2041 2042 /* 2043 * folio_ref_count() is signed. If that refcount overflows, then 2044 * folio_ref_count() returns a negative value, and callers will avoid 2045 * further incrementing the refcount. 2046 * 2047 * Here, for that overflow case, use the sign bit to count a little 2048 * bit higher via unsigned math, and thus still get an accurate result. 2049 */ 2050 return ((unsigned int)folio_ref_count(folio)) >= 2051 GUP_PIN_COUNTING_BIAS; 2052 } 2053 2054 /* 2055 * This should most likely only be called during fork() to see whether we 2056 * should break the cow immediately for an anon page on the src mm. 2057 * 2058 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2059 */ 2060 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2061 struct folio *folio) 2062 { 2063 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2064 2065 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 2066 return false; 2067 2068 return folio_maybe_dma_pinned(folio); 2069 } 2070 2071 /** 2072 * is_zero_page - Query if a page is a zero page 2073 * @page: The page to query 2074 * 2075 * This returns true if @page is one of the permanent zero pages. 2076 */ 2077 static inline bool is_zero_page(const struct page *page) 2078 { 2079 return is_zero_pfn(page_to_pfn(page)); 2080 } 2081 2082 /** 2083 * is_zero_folio - Query if a folio is a zero page 2084 * @folio: The folio to query 2085 * 2086 * This returns true if @folio is one of the permanent zero pages. 2087 */ 2088 static inline bool is_zero_folio(const struct folio *folio) 2089 { 2090 return is_zero_page(&folio->page); 2091 } 2092 2093 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2094 #ifdef CONFIG_MIGRATION 2095 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2096 { 2097 #ifdef CONFIG_CMA 2098 int mt = folio_migratetype(folio); 2099 2100 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2101 return false; 2102 #endif 2103 /* The zero page can be "pinned" but gets special handling. */ 2104 if (is_zero_folio(folio)) 2105 return true; 2106 2107 /* Coherent device memory must always allow eviction. */ 2108 if (folio_is_device_coherent(folio)) 2109 return false; 2110 2111 /* 2112 * Filesystems can only tolerate transient delays to truncate and 2113 * hole-punch operations 2114 */ 2115 if (folio_is_fsdax(folio)) 2116 return false; 2117 2118 /* Otherwise, non-movable zone folios can be pinned. */ 2119 return !folio_is_zone_movable(folio); 2120 2121 } 2122 #else 2123 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2124 { 2125 return true; 2126 } 2127 #endif 2128 2129 static inline void set_page_zone(struct page *page, enum zone_type zone) 2130 { 2131 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2132 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2133 } 2134 2135 static inline void set_page_node(struct page *page, unsigned long node) 2136 { 2137 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2138 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2139 } 2140 2141 static inline void set_page_links(struct page *page, enum zone_type zone, 2142 unsigned long node, unsigned long pfn) 2143 { 2144 set_page_zone(page, zone); 2145 set_page_node(page, node); 2146 #ifdef SECTION_IN_PAGE_FLAGS 2147 set_page_section(page, pfn_to_section_nr(pfn)); 2148 #endif 2149 } 2150 2151 /** 2152 * folio_nr_pages - The number of pages in the folio. 2153 * @folio: The folio. 2154 * 2155 * Return: A positive power of two. 2156 */ 2157 static inline long folio_nr_pages(const struct folio *folio) 2158 { 2159 if (!folio_test_large(folio)) 2160 return 1; 2161 return folio_large_nr_pages(folio); 2162 } 2163 2164 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2165 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2166 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2167 #else 2168 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2169 #endif 2170 2171 /* 2172 * compound_nr() returns the number of pages in this potentially compound 2173 * page. compound_nr() can be called on a tail page, and is defined to 2174 * return 1 in that case. 2175 */ 2176 static inline long compound_nr(struct page *page) 2177 { 2178 struct folio *folio = (struct folio *)page; 2179 2180 if (!test_bit(PG_head, &folio->flags)) 2181 return 1; 2182 return folio_large_nr_pages(folio); 2183 } 2184 2185 /** 2186 * thp_nr_pages - The number of regular pages in this huge page. 2187 * @page: The head page of a huge page. 2188 */ 2189 static inline long thp_nr_pages(struct page *page) 2190 { 2191 return folio_nr_pages((struct folio *)page); 2192 } 2193 2194 /** 2195 * folio_next - Move to the next physical folio. 2196 * @folio: The folio we're currently operating on. 2197 * 2198 * If you have physically contiguous memory which may span more than 2199 * one folio (eg a &struct bio_vec), use this function to move from one 2200 * folio to the next. Do not use it if the memory is only virtually 2201 * contiguous as the folios are almost certainly not adjacent to each 2202 * other. This is the folio equivalent to writing ``page++``. 2203 * 2204 * Context: We assume that the folios are refcounted and/or locked at a 2205 * higher level and do not adjust the reference counts. 2206 * Return: The next struct folio. 2207 */ 2208 static inline struct folio *folio_next(struct folio *folio) 2209 { 2210 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2211 } 2212 2213 /** 2214 * folio_shift - The size of the memory described by this folio. 2215 * @folio: The folio. 2216 * 2217 * A folio represents a number of bytes which is a power-of-two in size. 2218 * This function tells you which power-of-two the folio is. See also 2219 * folio_size() and folio_order(). 2220 * 2221 * Context: The caller should have a reference on the folio to prevent 2222 * it from being split. It is not necessary for the folio to be locked. 2223 * Return: The base-2 logarithm of the size of this folio. 2224 */ 2225 static inline unsigned int folio_shift(const struct folio *folio) 2226 { 2227 return PAGE_SHIFT + folio_order(folio); 2228 } 2229 2230 /** 2231 * folio_size - The number of bytes in a folio. 2232 * @folio: The folio. 2233 * 2234 * Context: The caller should have a reference on the folio to prevent 2235 * it from being split. It is not necessary for the folio to be locked. 2236 * Return: The number of bytes in this folio. 2237 */ 2238 static inline size_t folio_size(const struct folio *folio) 2239 { 2240 return PAGE_SIZE << folio_order(folio); 2241 } 2242 2243 /** 2244 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2245 * tables of more than one MM 2246 * @folio: The folio. 2247 * 2248 * This function checks if the folio maybe currently mapped into more than one 2249 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2250 * MM ("mapped exclusively"). 2251 * 2252 * For KSM folios, this function also returns "mapped shared" when a folio is 2253 * mapped multiple times into the same MM, because the individual page mappings 2254 * are independent. 2255 * 2256 * For small anonymous folios and anonymous hugetlb folios, the return 2257 * value will be exactly correct: non-KSM folios can only be mapped at most once 2258 * into an MM, and they cannot be partially mapped. KSM folios are 2259 * considered shared even if mapped multiple times into the same MM. 2260 * 2261 * For other folios, the result can be fuzzy: 2262 * #. For partially-mappable large folios (THP), the return value can wrongly 2263 * indicate "mapped shared" (false positive) if a folio was mapped by 2264 * more than two MMs at one point in time. 2265 * #. For pagecache folios (including hugetlb), the return value can wrongly 2266 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2267 * cover the same file range. 2268 * 2269 * Further, this function only considers current page table mappings that 2270 * are tracked using the folio mapcount(s). 2271 * 2272 * This function does not consider: 2273 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2274 * pagecache, temporary unmapping for migration). 2275 * #. If the folio is mapped differently (VM_PFNMAP). 2276 * #. If hugetlb page table sharing applies. Callers might want to check 2277 * hugetlb_pmd_shared(). 2278 * 2279 * Return: Whether the folio is estimated to be mapped into more than one MM. 2280 */ 2281 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2282 { 2283 int mapcount = folio_mapcount(folio); 2284 2285 /* Only partially-mappable folios require more care. */ 2286 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2287 return mapcount > 1; 2288 2289 /* 2290 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2291 * simply assume "mapped shared", nobody should really care 2292 * about this for arbitrary kernel allocations. 2293 */ 2294 if (!IS_ENABLED(CONFIG_MM_ID)) 2295 return true; 2296 2297 /* 2298 * A single mapping implies "mapped exclusively", even if the 2299 * folio flag says something different: it's easier to handle this 2300 * case here instead of on the RMAP hot path. 2301 */ 2302 if (mapcount <= 1) 2303 return false; 2304 return folio_test_large_maybe_mapped_shared(folio); 2305 } 2306 2307 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2308 static inline int arch_make_folio_accessible(struct folio *folio) 2309 { 2310 return 0; 2311 } 2312 #endif 2313 2314 /* 2315 * Some inline functions in vmstat.h depend on page_zone() 2316 */ 2317 #include <linux/vmstat.h> 2318 2319 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2320 #define HASHED_PAGE_VIRTUAL 2321 #endif 2322 2323 #if defined(WANT_PAGE_VIRTUAL) 2324 static inline void *page_address(const struct page *page) 2325 { 2326 return page->virtual; 2327 } 2328 static inline void set_page_address(struct page *page, void *address) 2329 { 2330 page->virtual = address; 2331 } 2332 #define page_address_init() do { } while(0) 2333 #endif 2334 2335 #if defined(HASHED_PAGE_VIRTUAL) 2336 void *page_address(const struct page *page); 2337 void set_page_address(struct page *page, void *virtual); 2338 void page_address_init(void); 2339 #endif 2340 2341 static __always_inline void *lowmem_page_address(const struct page *page) 2342 { 2343 return page_to_virt(page); 2344 } 2345 2346 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2347 #define page_address(page) lowmem_page_address(page) 2348 #define set_page_address(page, address) do { } while(0) 2349 #define page_address_init() do { } while(0) 2350 #endif 2351 2352 static inline void *folio_address(const struct folio *folio) 2353 { 2354 return page_address(&folio->page); 2355 } 2356 2357 /* 2358 * Return true only if the page has been allocated with 2359 * ALLOC_NO_WATERMARKS and the low watermark was not 2360 * met implying that the system is under some pressure. 2361 */ 2362 static inline bool page_is_pfmemalloc(const struct page *page) 2363 { 2364 /* 2365 * lru.next has bit 1 set if the page is allocated from the 2366 * pfmemalloc reserves. Callers may simply overwrite it if 2367 * they do not need to preserve that information. 2368 */ 2369 return (uintptr_t)page->lru.next & BIT(1); 2370 } 2371 2372 /* 2373 * Return true only if the folio has been allocated with 2374 * ALLOC_NO_WATERMARKS and the low watermark was not 2375 * met implying that the system is under some pressure. 2376 */ 2377 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2378 { 2379 /* 2380 * lru.next has bit 1 set if the page is allocated from the 2381 * pfmemalloc reserves. Callers may simply overwrite it if 2382 * they do not need to preserve that information. 2383 */ 2384 return (uintptr_t)folio->lru.next & BIT(1); 2385 } 2386 2387 /* 2388 * Only to be called by the page allocator on a freshly allocated 2389 * page. 2390 */ 2391 static inline void set_page_pfmemalloc(struct page *page) 2392 { 2393 page->lru.next = (void *)BIT(1); 2394 } 2395 2396 static inline void clear_page_pfmemalloc(struct page *page) 2397 { 2398 page->lru.next = NULL; 2399 } 2400 2401 /* 2402 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2403 */ 2404 extern void pagefault_out_of_memory(void); 2405 2406 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2407 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2408 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2409 2410 /* 2411 * Parameter block passed down to zap_pte_range in exceptional cases. 2412 */ 2413 struct zap_details { 2414 struct folio *single_folio; /* Locked folio to be unmapped */ 2415 bool even_cows; /* Zap COWed private pages too? */ 2416 bool reclaim_pt; /* Need reclaim page tables? */ 2417 zap_flags_t zap_flags; /* Extra flags for zapping */ 2418 }; 2419 2420 /* 2421 * Whether to drop the pte markers, for example, the uffd-wp information for 2422 * file-backed memory. This should only be specified when we will completely 2423 * drop the page in the mm, either by truncation or unmapping of the vma. By 2424 * default, the flag is not set. 2425 */ 2426 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2427 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2428 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2429 2430 #ifdef CONFIG_SCHED_MM_CID 2431 void sched_mm_cid_before_execve(struct task_struct *t); 2432 void sched_mm_cid_after_execve(struct task_struct *t); 2433 void sched_mm_cid_fork(struct task_struct *t); 2434 void sched_mm_cid_exit_signals(struct task_struct *t); 2435 static inline int task_mm_cid(struct task_struct *t) 2436 { 2437 return t->mm_cid; 2438 } 2439 #else 2440 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2441 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2442 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2443 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2444 static inline int task_mm_cid(struct task_struct *t) 2445 { 2446 /* 2447 * Use the processor id as a fall-back when the mm cid feature is 2448 * disabled. This provides functional per-cpu data structure accesses 2449 * in user-space, althrough it won't provide the memory usage benefits. 2450 */ 2451 return raw_smp_processor_id(); 2452 } 2453 #endif 2454 2455 #ifdef CONFIG_MMU 2456 extern bool can_do_mlock(void); 2457 #else 2458 static inline bool can_do_mlock(void) { return false; } 2459 #endif 2460 extern int user_shm_lock(size_t, struct ucounts *); 2461 extern void user_shm_unlock(size_t, struct ucounts *); 2462 2463 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2464 pte_t pte); 2465 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2466 pte_t pte); 2467 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2468 unsigned long addr, pmd_t pmd); 2469 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2470 pmd_t pmd); 2471 2472 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2473 unsigned long size); 2474 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2475 unsigned long size, struct zap_details *details); 2476 static inline void zap_vma_pages(struct vm_area_struct *vma) 2477 { 2478 zap_page_range_single(vma, vma->vm_start, 2479 vma->vm_end - vma->vm_start, NULL); 2480 } 2481 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2482 struct vm_area_struct *start_vma, unsigned long start, 2483 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2484 2485 struct mmu_notifier_range; 2486 2487 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2488 unsigned long end, unsigned long floor, unsigned long ceiling); 2489 int 2490 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2491 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2492 void *buf, int len, int write); 2493 2494 struct follow_pfnmap_args { 2495 /** 2496 * Inputs: 2497 * @vma: Pointer to @vm_area_struct struct 2498 * @address: the virtual address to walk 2499 */ 2500 struct vm_area_struct *vma; 2501 unsigned long address; 2502 /** 2503 * Internals: 2504 * 2505 * The caller shouldn't touch any of these. 2506 */ 2507 spinlock_t *lock; 2508 pte_t *ptep; 2509 /** 2510 * Outputs: 2511 * 2512 * @pfn: the PFN of the address 2513 * @pgprot: the pgprot_t of the mapping 2514 * @writable: whether the mapping is writable 2515 * @special: whether the mapping is a special mapping (real PFN maps) 2516 */ 2517 unsigned long pfn; 2518 pgprot_t pgprot; 2519 bool writable; 2520 bool special; 2521 }; 2522 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2523 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2524 2525 extern void truncate_pagecache(struct inode *inode, loff_t new); 2526 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2527 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2528 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2529 int generic_error_remove_folio(struct address_space *mapping, 2530 struct folio *folio); 2531 2532 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2533 unsigned long address, struct pt_regs *regs); 2534 2535 #ifdef CONFIG_MMU 2536 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2537 unsigned long address, unsigned int flags, 2538 struct pt_regs *regs); 2539 extern int fixup_user_fault(struct mm_struct *mm, 2540 unsigned long address, unsigned int fault_flags, 2541 bool *unlocked); 2542 void unmap_mapping_pages(struct address_space *mapping, 2543 pgoff_t start, pgoff_t nr, bool even_cows); 2544 void unmap_mapping_range(struct address_space *mapping, 2545 loff_t const holebegin, loff_t const holelen, int even_cows); 2546 #else 2547 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2548 unsigned long address, unsigned int flags, 2549 struct pt_regs *regs) 2550 { 2551 /* should never happen if there's no MMU */ 2552 BUG(); 2553 return VM_FAULT_SIGBUS; 2554 } 2555 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2556 unsigned int fault_flags, bool *unlocked) 2557 { 2558 /* should never happen if there's no MMU */ 2559 BUG(); 2560 return -EFAULT; 2561 } 2562 static inline void unmap_mapping_pages(struct address_space *mapping, 2563 pgoff_t start, pgoff_t nr, bool even_cows) { } 2564 static inline void unmap_mapping_range(struct address_space *mapping, 2565 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2566 #endif 2567 2568 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2569 loff_t const holebegin, loff_t const holelen) 2570 { 2571 unmap_mapping_range(mapping, holebegin, holelen, 0); 2572 } 2573 2574 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2575 unsigned long addr); 2576 2577 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2578 void *buf, int len, unsigned int gup_flags); 2579 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2580 void *buf, int len, unsigned int gup_flags); 2581 2582 long get_user_pages_remote(struct mm_struct *mm, 2583 unsigned long start, unsigned long nr_pages, 2584 unsigned int gup_flags, struct page **pages, 2585 int *locked); 2586 long pin_user_pages_remote(struct mm_struct *mm, 2587 unsigned long start, unsigned long nr_pages, 2588 unsigned int gup_flags, struct page **pages, 2589 int *locked); 2590 2591 /* 2592 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2593 */ 2594 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2595 unsigned long addr, 2596 int gup_flags, 2597 struct vm_area_struct **vmap) 2598 { 2599 struct page *page; 2600 struct vm_area_struct *vma; 2601 int got; 2602 2603 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2604 return ERR_PTR(-EINVAL); 2605 2606 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2607 2608 if (got < 0) 2609 return ERR_PTR(got); 2610 2611 vma = vma_lookup(mm, addr); 2612 if (WARN_ON_ONCE(!vma)) { 2613 put_page(page); 2614 return ERR_PTR(-EINVAL); 2615 } 2616 2617 *vmap = vma; 2618 return page; 2619 } 2620 2621 long get_user_pages(unsigned long start, unsigned long nr_pages, 2622 unsigned int gup_flags, struct page **pages); 2623 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2624 unsigned int gup_flags, struct page **pages); 2625 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2626 struct page **pages, unsigned int gup_flags); 2627 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2628 struct page **pages, unsigned int gup_flags); 2629 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2630 struct folio **folios, unsigned int max_folios, 2631 pgoff_t *offset); 2632 int folio_add_pins(struct folio *folio, unsigned int pins); 2633 2634 int get_user_pages_fast(unsigned long start, int nr_pages, 2635 unsigned int gup_flags, struct page **pages); 2636 int pin_user_pages_fast(unsigned long start, int nr_pages, 2637 unsigned int gup_flags, struct page **pages); 2638 void folio_add_pin(struct folio *folio); 2639 2640 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2641 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2642 struct task_struct *task, bool bypass_rlim); 2643 2644 struct kvec; 2645 struct page *get_dump_page(unsigned long addr); 2646 2647 bool folio_mark_dirty(struct folio *folio); 2648 bool folio_mark_dirty_lock(struct folio *folio); 2649 bool set_page_dirty(struct page *page); 2650 int set_page_dirty_lock(struct page *page); 2651 2652 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2653 2654 /* 2655 * Flags used by change_protection(). For now we make it a bitmap so 2656 * that we can pass in multiple flags just like parameters. However 2657 * for now all the callers are only use one of the flags at the same 2658 * time. 2659 */ 2660 /* 2661 * Whether we should manually check if we can map individual PTEs writable, 2662 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2663 * PTEs automatically in a writable mapping. 2664 */ 2665 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2666 /* Whether this protection change is for NUMA hints */ 2667 #define MM_CP_PROT_NUMA (1UL << 1) 2668 /* Whether this change is for write protecting */ 2669 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2670 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2671 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2672 MM_CP_UFFD_WP_RESOLVE) 2673 2674 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2675 pte_t pte); 2676 extern long change_protection(struct mmu_gather *tlb, 2677 struct vm_area_struct *vma, unsigned long start, 2678 unsigned long end, unsigned long cp_flags); 2679 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2680 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2681 unsigned long start, unsigned long end, unsigned long newflags); 2682 2683 /* 2684 * doesn't attempt to fault and will return short. 2685 */ 2686 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2687 unsigned int gup_flags, struct page **pages); 2688 2689 static inline bool get_user_page_fast_only(unsigned long addr, 2690 unsigned int gup_flags, struct page **pagep) 2691 { 2692 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2693 } 2694 /* 2695 * per-process(per-mm_struct) statistics. 2696 */ 2697 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2698 { 2699 return percpu_counter_read_positive(&mm->rss_stat[member]); 2700 } 2701 2702 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2703 2704 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2705 { 2706 percpu_counter_add(&mm->rss_stat[member], value); 2707 2708 mm_trace_rss_stat(mm, member); 2709 } 2710 2711 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2712 { 2713 percpu_counter_inc(&mm->rss_stat[member]); 2714 2715 mm_trace_rss_stat(mm, member); 2716 } 2717 2718 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2719 { 2720 percpu_counter_dec(&mm->rss_stat[member]); 2721 2722 mm_trace_rss_stat(mm, member); 2723 } 2724 2725 /* Optimized variant when folio is already known not to be anon */ 2726 static inline int mm_counter_file(struct folio *folio) 2727 { 2728 if (folio_test_swapbacked(folio)) 2729 return MM_SHMEMPAGES; 2730 return MM_FILEPAGES; 2731 } 2732 2733 static inline int mm_counter(struct folio *folio) 2734 { 2735 if (folio_test_anon(folio)) 2736 return MM_ANONPAGES; 2737 return mm_counter_file(folio); 2738 } 2739 2740 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2741 { 2742 return get_mm_counter(mm, MM_FILEPAGES) + 2743 get_mm_counter(mm, MM_ANONPAGES) + 2744 get_mm_counter(mm, MM_SHMEMPAGES); 2745 } 2746 2747 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2748 { 2749 return max(mm->hiwater_rss, get_mm_rss(mm)); 2750 } 2751 2752 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2753 { 2754 return max(mm->hiwater_vm, mm->total_vm); 2755 } 2756 2757 static inline void update_hiwater_rss(struct mm_struct *mm) 2758 { 2759 unsigned long _rss = get_mm_rss(mm); 2760 2761 if ((mm)->hiwater_rss < _rss) 2762 (mm)->hiwater_rss = _rss; 2763 } 2764 2765 static inline void update_hiwater_vm(struct mm_struct *mm) 2766 { 2767 if (mm->hiwater_vm < mm->total_vm) 2768 mm->hiwater_vm = mm->total_vm; 2769 } 2770 2771 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2772 { 2773 mm->hiwater_rss = get_mm_rss(mm); 2774 } 2775 2776 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2777 struct mm_struct *mm) 2778 { 2779 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2780 2781 if (*maxrss < hiwater_rss) 2782 *maxrss = hiwater_rss; 2783 } 2784 2785 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2786 static inline int pte_special(pte_t pte) 2787 { 2788 return 0; 2789 } 2790 2791 static inline pte_t pte_mkspecial(pte_t pte) 2792 { 2793 return pte; 2794 } 2795 #endif 2796 2797 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2798 static inline bool pmd_special(pmd_t pmd) 2799 { 2800 return false; 2801 } 2802 2803 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2804 { 2805 return pmd; 2806 } 2807 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2808 2809 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2810 static inline bool pud_special(pud_t pud) 2811 { 2812 return false; 2813 } 2814 2815 static inline pud_t pud_mkspecial(pud_t pud) 2816 { 2817 return pud; 2818 } 2819 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2820 2821 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2822 static inline int pte_devmap(pte_t pte) 2823 { 2824 return 0; 2825 } 2826 #endif 2827 2828 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2829 spinlock_t **ptl); 2830 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2831 spinlock_t **ptl) 2832 { 2833 pte_t *ptep; 2834 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2835 return ptep; 2836 } 2837 2838 #ifdef __PAGETABLE_P4D_FOLDED 2839 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2840 unsigned long address) 2841 { 2842 return 0; 2843 } 2844 #else 2845 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2846 #endif 2847 2848 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2849 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2850 unsigned long address) 2851 { 2852 return 0; 2853 } 2854 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2855 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2856 2857 #else 2858 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2859 2860 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2861 { 2862 if (mm_pud_folded(mm)) 2863 return; 2864 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2865 } 2866 2867 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2868 { 2869 if (mm_pud_folded(mm)) 2870 return; 2871 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2872 } 2873 #endif 2874 2875 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2876 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2877 unsigned long address) 2878 { 2879 return 0; 2880 } 2881 2882 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2883 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2884 2885 #else 2886 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2887 2888 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2889 { 2890 if (mm_pmd_folded(mm)) 2891 return; 2892 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2893 } 2894 2895 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2896 { 2897 if (mm_pmd_folded(mm)) 2898 return; 2899 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2900 } 2901 #endif 2902 2903 #ifdef CONFIG_MMU 2904 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2905 { 2906 atomic_long_set(&mm->pgtables_bytes, 0); 2907 } 2908 2909 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2910 { 2911 return atomic_long_read(&mm->pgtables_bytes); 2912 } 2913 2914 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2915 { 2916 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2917 } 2918 2919 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2920 { 2921 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2922 } 2923 #else 2924 2925 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2926 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2927 { 2928 return 0; 2929 } 2930 2931 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2932 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2933 #endif 2934 2935 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2936 int __pte_alloc_kernel(pmd_t *pmd); 2937 2938 #if defined(CONFIG_MMU) 2939 2940 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2941 unsigned long address) 2942 { 2943 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2944 NULL : p4d_offset(pgd, address); 2945 } 2946 2947 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2948 unsigned long address) 2949 { 2950 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2951 NULL : pud_offset(p4d, address); 2952 } 2953 2954 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2955 { 2956 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2957 NULL: pmd_offset(pud, address); 2958 } 2959 #endif /* CONFIG_MMU */ 2960 2961 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2962 { 2963 return page_ptdesc(virt_to_page(x)); 2964 } 2965 2966 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2967 { 2968 return page_to_virt(ptdesc_page(pt)); 2969 } 2970 2971 static inline void *ptdesc_address(const struct ptdesc *pt) 2972 { 2973 return folio_address(ptdesc_folio(pt)); 2974 } 2975 2976 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2977 { 2978 return folio_test_reserved(ptdesc_folio(pt)); 2979 } 2980 2981 /** 2982 * pagetable_alloc - Allocate pagetables 2983 * @gfp: GFP flags 2984 * @order: desired pagetable order 2985 * 2986 * pagetable_alloc allocates memory for page tables as well as a page table 2987 * descriptor to describe that memory. 2988 * 2989 * Return: The ptdesc describing the allocated page tables. 2990 */ 2991 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2992 { 2993 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2994 2995 return page_ptdesc(page); 2996 } 2997 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2998 2999 /** 3000 * pagetable_free - Free pagetables 3001 * @pt: The page table descriptor 3002 * 3003 * pagetable_free frees the memory of all page tables described by a page 3004 * table descriptor and the memory for the descriptor itself. 3005 */ 3006 static inline void pagetable_free(struct ptdesc *pt) 3007 { 3008 struct page *page = ptdesc_page(pt); 3009 3010 __free_pages(page, compound_order(page)); 3011 } 3012 3013 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3014 #if ALLOC_SPLIT_PTLOCKS 3015 void __init ptlock_cache_init(void); 3016 bool ptlock_alloc(struct ptdesc *ptdesc); 3017 void ptlock_free(struct ptdesc *ptdesc); 3018 3019 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3020 { 3021 return ptdesc->ptl; 3022 } 3023 #else /* ALLOC_SPLIT_PTLOCKS */ 3024 static inline void ptlock_cache_init(void) 3025 { 3026 } 3027 3028 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3029 { 3030 return true; 3031 } 3032 3033 static inline void ptlock_free(struct ptdesc *ptdesc) 3034 { 3035 } 3036 3037 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3038 { 3039 return &ptdesc->ptl; 3040 } 3041 #endif /* ALLOC_SPLIT_PTLOCKS */ 3042 3043 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3044 { 3045 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3046 } 3047 3048 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3049 { 3050 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3051 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3052 return ptlock_ptr(virt_to_ptdesc(pte)); 3053 } 3054 3055 static inline bool ptlock_init(struct ptdesc *ptdesc) 3056 { 3057 /* 3058 * prep_new_page() initialize page->private (and therefore page->ptl) 3059 * with 0. Make sure nobody took it in use in between. 3060 * 3061 * It can happen if arch try to use slab for page table allocation: 3062 * slab code uses page->slab_cache, which share storage with page->ptl. 3063 */ 3064 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3065 if (!ptlock_alloc(ptdesc)) 3066 return false; 3067 spin_lock_init(ptlock_ptr(ptdesc)); 3068 return true; 3069 } 3070 3071 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3072 /* 3073 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3074 */ 3075 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3076 { 3077 return &mm->page_table_lock; 3078 } 3079 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3080 { 3081 return &mm->page_table_lock; 3082 } 3083 static inline void ptlock_cache_init(void) {} 3084 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3085 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3086 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3087 3088 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3089 { 3090 struct folio *folio = ptdesc_folio(ptdesc); 3091 3092 __folio_set_pgtable(folio); 3093 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3094 } 3095 3096 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3097 { 3098 struct folio *folio = ptdesc_folio(ptdesc); 3099 3100 ptlock_free(ptdesc); 3101 __folio_clear_pgtable(folio); 3102 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3103 } 3104 3105 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3106 { 3107 pagetable_dtor(ptdesc); 3108 pagetable_free(ptdesc); 3109 } 3110 3111 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3112 { 3113 if (!ptlock_init(ptdesc)) 3114 return false; 3115 __pagetable_ctor(ptdesc); 3116 return true; 3117 } 3118 3119 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3120 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3121 pmd_t *pmdvalp) 3122 { 3123 pte_t *pte; 3124 3125 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3126 return pte; 3127 } 3128 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3129 { 3130 return __pte_offset_map(pmd, addr, NULL); 3131 } 3132 3133 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3134 unsigned long addr, spinlock_t **ptlp); 3135 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3136 unsigned long addr, spinlock_t **ptlp) 3137 { 3138 pte_t *pte; 3139 3140 __cond_lock(RCU, __cond_lock(*ptlp, 3141 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3142 return pte; 3143 } 3144 3145 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3146 unsigned long addr, spinlock_t **ptlp); 3147 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3148 unsigned long addr, pmd_t *pmdvalp, 3149 spinlock_t **ptlp); 3150 3151 #define pte_unmap_unlock(pte, ptl) do { \ 3152 spin_unlock(ptl); \ 3153 pte_unmap(pte); \ 3154 } while (0) 3155 3156 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3157 3158 #define pte_alloc_map(mm, pmd, address) \ 3159 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3160 3161 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3162 (pte_alloc(mm, pmd) ? \ 3163 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3164 3165 #define pte_alloc_kernel(pmd, address) \ 3166 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3167 NULL: pte_offset_kernel(pmd, address)) 3168 3169 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3170 3171 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3172 { 3173 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3174 return virt_to_page((void *)((unsigned long) pmd & mask)); 3175 } 3176 3177 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3178 { 3179 return page_ptdesc(pmd_pgtable_page(pmd)); 3180 } 3181 3182 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3183 { 3184 return ptlock_ptr(pmd_ptdesc(pmd)); 3185 } 3186 3187 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3188 { 3189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3190 ptdesc->pmd_huge_pte = NULL; 3191 #endif 3192 return ptlock_init(ptdesc); 3193 } 3194 3195 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3196 3197 #else 3198 3199 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3200 { 3201 return &mm->page_table_lock; 3202 } 3203 3204 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3205 3206 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3207 3208 #endif 3209 3210 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3211 { 3212 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3213 spin_lock(ptl); 3214 return ptl; 3215 } 3216 3217 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3218 { 3219 if (!pmd_ptlock_init(ptdesc)) 3220 return false; 3221 ptdesc_pmd_pts_init(ptdesc); 3222 __pagetable_ctor(ptdesc); 3223 return true; 3224 } 3225 3226 /* 3227 * No scalability reason to split PUD locks yet, but follow the same pattern 3228 * as the PMD locks to make it easier if we decide to. The VM should not be 3229 * considered ready to switch to split PUD locks yet; there may be places 3230 * which need to be converted from page_table_lock. 3231 */ 3232 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3233 { 3234 return &mm->page_table_lock; 3235 } 3236 3237 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3238 { 3239 spinlock_t *ptl = pud_lockptr(mm, pud); 3240 3241 spin_lock(ptl); 3242 return ptl; 3243 } 3244 3245 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3246 { 3247 __pagetable_ctor(ptdesc); 3248 } 3249 3250 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3251 { 3252 __pagetable_ctor(ptdesc); 3253 } 3254 3255 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3256 { 3257 __pagetable_ctor(ptdesc); 3258 } 3259 3260 extern void __init pagecache_init(void); 3261 extern void free_initmem(void); 3262 3263 /* 3264 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3265 * into the buddy system. The freed pages will be poisoned with pattern 3266 * "poison" if it's within range [0, UCHAR_MAX]. 3267 * Return pages freed into the buddy system. 3268 */ 3269 extern unsigned long free_reserved_area(void *start, void *end, 3270 int poison, const char *s); 3271 3272 extern void adjust_managed_page_count(struct page *page, long count); 3273 3274 extern void reserve_bootmem_region(phys_addr_t start, 3275 phys_addr_t end, int nid); 3276 3277 /* Free the reserved page into the buddy system, so it gets managed. */ 3278 void free_reserved_page(struct page *page); 3279 3280 static inline void mark_page_reserved(struct page *page) 3281 { 3282 SetPageReserved(page); 3283 adjust_managed_page_count(page, -1); 3284 } 3285 3286 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3287 { 3288 free_reserved_page(ptdesc_page(pt)); 3289 } 3290 3291 /* 3292 * Default method to free all the __init memory into the buddy system. 3293 * The freed pages will be poisoned with pattern "poison" if it's within 3294 * range [0, UCHAR_MAX]. 3295 * Return pages freed into the buddy system. 3296 */ 3297 static inline unsigned long free_initmem_default(int poison) 3298 { 3299 extern char __init_begin[], __init_end[]; 3300 3301 return free_reserved_area(&__init_begin, &__init_end, 3302 poison, "unused kernel image (initmem)"); 3303 } 3304 3305 static inline unsigned long get_num_physpages(void) 3306 { 3307 int nid; 3308 unsigned long phys_pages = 0; 3309 3310 for_each_online_node(nid) 3311 phys_pages += node_present_pages(nid); 3312 3313 return phys_pages; 3314 } 3315 3316 /* 3317 * Using memblock node mappings, an architecture may initialise its 3318 * zones, allocate the backing mem_map and account for memory holes in an 3319 * architecture independent manner. 3320 * 3321 * An architecture is expected to register range of page frames backed by 3322 * physical memory with memblock_add[_node]() before calling 3323 * free_area_init() passing in the PFN each zone ends at. At a basic 3324 * usage, an architecture is expected to do something like 3325 * 3326 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3327 * max_highmem_pfn}; 3328 * for_each_valid_physical_page_range() 3329 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3330 * free_area_init(max_zone_pfns); 3331 */ 3332 void free_area_init(unsigned long *max_zone_pfn); 3333 unsigned long node_map_pfn_alignment(void); 3334 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3335 unsigned long end_pfn); 3336 extern void get_pfn_range_for_nid(unsigned int nid, 3337 unsigned long *start_pfn, unsigned long *end_pfn); 3338 3339 #ifndef CONFIG_NUMA 3340 static inline int early_pfn_to_nid(unsigned long pfn) 3341 { 3342 return 0; 3343 } 3344 #else 3345 /* please see mm/page_alloc.c */ 3346 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3347 #endif 3348 3349 extern void mem_init(void); 3350 extern void __init mmap_init(void); 3351 3352 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3353 static inline void show_mem(void) 3354 { 3355 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3356 } 3357 extern long si_mem_available(void); 3358 extern void si_meminfo(struct sysinfo * val); 3359 extern void si_meminfo_node(struct sysinfo *val, int nid); 3360 3361 extern __printf(3, 4) 3362 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3363 3364 extern void setup_per_cpu_pageset(void); 3365 3366 /* nommu.c */ 3367 extern atomic_long_t mmap_pages_allocated; 3368 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3369 3370 /* interval_tree.c */ 3371 void vma_interval_tree_insert(struct vm_area_struct *node, 3372 struct rb_root_cached *root); 3373 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3374 struct vm_area_struct *prev, 3375 struct rb_root_cached *root); 3376 void vma_interval_tree_remove(struct vm_area_struct *node, 3377 struct rb_root_cached *root); 3378 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3379 unsigned long start, unsigned long last); 3380 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3381 unsigned long start, unsigned long last); 3382 3383 #define vma_interval_tree_foreach(vma, root, start, last) \ 3384 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3385 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3386 3387 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3388 struct rb_root_cached *root); 3389 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3390 struct rb_root_cached *root); 3391 struct anon_vma_chain * 3392 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3393 unsigned long start, unsigned long last); 3394 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3395 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3396 #ifdef CONFIG_DEBUG_VM_RB 3397 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3398 #endif 3399 3400 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3401 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3402 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3403 3404 /* mmap.c */ 3405 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3406 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3407 extern void exit_mmap(struct mm_struct *); 3408 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3409 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3410 unsigned long addr, bool write); 3411 3412 static inline int check_data_rlimit(unsigned long rlim, 3413 unsigned long new, 3414 unsigned long start, 3415 unsigned long end_data, 3416 unsigned long start_data) 3417 { 3418 if (rlim < RLIM_INFINITY) { 3419 if (((new - start) + (end_data - start_data)) > rlim) 3420 return -ENOSPC; 3421 } 3422 3423 return 0; 3424 } 3425 3426 extern int mm_take_all_locks(struct mm_struct *mm); 3427 extern void mm_drop_all_locks(struct mm_struct *mm); 3428 3429 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3430 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3431 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3432 extern struct file *get_task_exe_file(struct task_struct *task); 3433 3434 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3435 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3436 3437 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3438 const struct vm_special_mapping *sm); 3439 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3440 unsigned long addr, unsigned long len, 3441 unsigned long flags, 3442 const struct vm_special_mapping *spec); 3443 3444 unsigned long randomize_stack_top(unsigned long stack_top); 3445 unsigned long randomize_page(unsigned long start, unsigned long range); 3446 3447 unsigned long 3448 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3449 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3450 3451 static inline unsigned long 3452 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3453 unsigned long pgoff, unsigned long flags) 3454 { 3455 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3456 } 3457 3458 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3459 unsigned long len, unsigned long prot, unsigned long flags, 3460 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3461 struct list_head *uf); 3462 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3463 unsigned long start, size_t len, struct list_head *uf, 3464 bool unlock); 3465 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3466 struct mm_struct *mm, unsigned long start, 3467 unsigned long end, struct list_head *uf, bool unlock); 3468 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3469 struct list_head *uf); 3470 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3471 3472 #ifdef CONFIG_MMU 3473 extern int __mm_populate(unsigned long addr, unsigned long len, 3474 int ignore_errors); 3475 static inline void mm_populate(unsigned long addr, unsigned long len) 3476 { 3477 /* Ignore errors */ 3478 (void) __mm_populate(addr, len, 1); 3479 } 3480 #else 3481 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3482 #endif 3483 3484 /* This takes the mm semaphore itself */ 3485 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3486 extern int vm_munmap(unsigned long, size_t); 3487 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3488 unsigned long, unsigned long, 3489 unsigned long, unsigned long); 3490 3491 struct vm_unmapped_area_info { 3492 #define VM_UNMAPPED_AREA_TOPDOWN 1 3493 unsigned long flags; 3494 unsigned long length; 3495 unsigned long low_limit; 3496 unsigned long high_limit; 3497 unsigned long align_mask; 3498 unsigned long align_offset; 3499 unsigned long start_gap; 3500 }; 3501 3502 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3503 3504 /* truncate.c */ 3505 extern void truncate_inode_pages(struct address_space *, loff_t); 3506 extern void truncate_inode_pages_range(struct address_space *, 3507 loff_t lstart, loff_t lend); 3508 extern void truncate_inode_pages_final(struct address_space *); 3509 3510 /* generic vm_area_ops exported for stackable file systems */ 3511 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3512 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3513 pgoff_t start_pgoff, pgoff_t end_pgoff); 3514 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3515 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf); 3516 3517 extern unsigned long stack_guard_gap; 3518 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3519 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3520 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3521 3522 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3523 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3524 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3525 struct vm_area_struct **pprev); 3526 3527 /* 3528 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3529 * NULL if none. Assume start_addr < end_addr. 3530 */ 3531 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3532 unsigned long start_addr, unsigned long end_addr); 3533 3534 /** 3535 * vma_lookup() - Find a VMA at a specific address 3536 * @mm: The process address space. 3537 * @addr: The user address. 3538 * 3539 * Return: The vm_area_struct at the given address, %NULL otherwise. 3540 */ 3541 static inline 3542 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3543 { 3544 return mtree_load(&mm->mm_mt, addr); 3545 } 3546 3547 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3548 { 3549 if (vma->vm_flags & VM_GROWSDOWN) 3550 return stack_guard_gap; 3551 3552 /* See reasoning around the VM_SHADOW_STACK definition */ 3553 if (vma->vm_flags & VM_SHADOW_STACK) 3554 return PAGE_SIZE; 3555 3556 return 0; 3557 } 3558 3559 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3560 { 3561 unsigned long gap = stack_guard_start_gap(vma); 3562 unsigned long vm_start = vma->vm_start; 3563 3564 vm_start -= gap; 3565 if (vm_start > vma->vm_start) 3566 vm_start = 0; 3567 return vm_start; 3568 } 3569 3570 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3571 { 3572 unsigned long vm_end = vma->vm_end; 3573 3574 if (vma->vm_flags & VM_GROWSUP) { 3575 vm_end += stack_guard_gap; 3576 if (vm_end < vma->vm_end) 3577 vm_end = -PAGE_SIZE; 3578 } 3579 return vm_end; 3580 } 3581 3582 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3583 { 3584 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3585 } 3586 3587 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3588 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3589 unsigned long vm_start, unsigned long vm_end) 3590 { 3591 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3592 3593 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3594 vma = NULL; 3595 3596 return vma; 3597 } 3598 3599 static inline bool range_in_vma(struct vm_area_struct *vma, 3600 unsigned long start, unsigned long end) 3601 { 3602 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3603 } 3604 3605 #ifdef CONFIG_MMU 3606 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3607 void vma_set_page_prot(struct vm_area_struct *vma); 3608 #else 3609 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3610 { 3611 return __pgprot(0); 3612 } 3613 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3614 { 3615 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3616 } 3617 #endif 3618 3619 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3620 3621 #ifdef CONFIG_NUMA_BALANCING 3622 unsigned long change_prot_numa(struct vm_area_struct *vma, 3623 unsigned long start, unsigned long end); 3624 #endif 3625 3626 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3627 unsigned long addr); 3628 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3629 unsigned long pfn, unsigned long size, pgprot_t); 3630 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3631 unsigned long pfn, unsigned long size, pgprot_t prot); 3632 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3633 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3634 struct page **pages, unsigned long *num); 3635 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3636 unsigned long num); 3637 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3638 unsigned long num); 3639 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3640 bool write); 3641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3642 unsigned long pfn); 3643 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3644 unsigned long pfn, pgprot_t pgprot); 3645 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3646 pfn_t pfn); 3647 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3648 unsigned long addr, pfn_t pfn); 3649 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3650 3651 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3652 unsigned long addr, struct page *page) 3653 { 3654 int err = vm_insert_page(vma, addr, page); 3655 3656 if (err == -ENOMEM) 3657 return VM_FAULT_OOM; 3658 if (err < 0 && err != -EBUSY) 3659 return VM_FAULT_SIGBUS; 3660 3661 return VM_FAULT_NOPAGE; 3662 } 3663 3664 #ifndef io_remap_pfn_range 3665 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3666 unsigned long addr, unsigned long pfn, 3667 unsigned long size, pgprot_t prot) 3668 { 3669 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3670 } 3671 #endif 3672 3673 static inline vm_fault_t vmf_error(int err) 3674 { 3675 if (err == -ENOMEM) 3676 return VM_FAULT_OOM; 3677 else if (err == -EHWPOISON) 3678 return VM_FAULT_HWPOISON; 3679 return VM_FAULT_SIGBUS; 3680 } 3681 3682 /* 3683 * Convert errno to return value for ->page_mkwrite() calls. 3684 * 3685 * This should eventually be merged with vmf_error() above, but will need a 3686 * careful audit of all vmf_error() callers. 3687 */ 3688 static inline vm_fault_t vmf_fs_error(int err) 3689 { 3690 if (err == 0) 3691 return VM_FAULT_LOCKED; 3692 if (err == -EFAULT || err == -EAGAIN) 3693 return VM_FAULT_NOPAGE; 3694 if (err == -ENOMEM) 3695 return VM_FAULT_OOM; 3696 /* -ENOSPC, -EDQUOT, -EIO ... */ 3697 return VM_FAULT_SIGBUS; 3698 } 3699 3700 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3701 { 3702 if (vm_fault & VM_FAULT_OOM) 3703 return -ENOMEM; 3704 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3705 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3706 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3707 return -EFAULT; 3708 return 0; 3709 } 3710 3711 /* 3712 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3713 * a (NUMA hinting) fault is required. 3714 */ 3715 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3716 unsigned int flags) 3717 { 3718 /* 3719 * If callers don't want to honor NUMA hinting faults, no need to 3720 * determine if we would actually have to trigger a NUMA hinting fault. 3721 */ 3722 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3723 return true; 3724 3725 /* 3726 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3727 * 3728 * Requiring a fault here even for inaccessible VMAs would mean that 3729 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3730 * refuses to process NUMA hinting faults in inaccessible VMAs. 3731 */ 3732 return !vma_is_accessible(vma); 3733 } 3734 3735 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3736 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3737 unsigned long size, pte_fn_t fn, void *data); 3738 extern int apply_to_existing_page_range(struct mm_struct *mm, 3739 unsigned long address, unsigned long size, 3740 pte_fn_t fn, void *data); 3741 3742 #ifdef CONFIG_PAGE_POISONING 3743 extern void __kernel_poison_pages(struct page *page, int numpages); 3744 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3745 extern bool _page_poisoning_enabled_early; 3746 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3747 static inline bool page_poisoning_enabled(void) 3748 { 3749 return _page_poisoning_enabled_early; 3750 } 3751 /* 3752 * For use in fast paths after init_mem_debugging() has run, or when a 3753 * false negative result is not harmful when called too early. 3754 */ 3755 static inline bool page_poisoning_enabled_static(void) 3756 { 3757 return static_branch_unlikely(&_page_poisoning_enabled); 3758 } 3759 static inline void kernel_poison_pages(struct page *page, int numpages) 3760 { 3761 if (page_poisoning_enabled_static()) 3762 __kernel_poison_pages(page, numpages); 3763 } 3764 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3765 { 3766 if (page_poisoning_enabled_static()) 3767 __kernel_unpoison_pages(page, numpages); 3768 } 3769 #else 3770 static inline bool page_poisoning_enabled(void) { return false; } 3771 static inline bool page_poisoning_enabled_static(void) { return false; } 3772 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3773 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3774 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3775 #endif 3776 3777 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3778 static inline bool want_init_on_alloc(gfp_t flags) 3779 { 3780 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3781 &init_on_alloc)) 3782 return true; 3783 return flags & __GFP_ZERO; 3784 } 3785 3786 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3787 static inline bool want_init_on_free(void) 3788 { 3789 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3790 &init_on_free); 3791 } 3792 3793 extern bool _debug_pagealloc_enabled_early; 3794 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3795 3796 static inline bool debug_pagealloc_enabled(void) 3797 { 3798 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3799 _debug_pagealloc_enabled_early; 3800 } 3801 3802 /* 3803 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3804 * or when a false negative result is not harmful when called too early. 3805 */ 3806 static inline bool debug_pagealloc_enabled_static(void) 3807 { 3808 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3809 return false; 3810 3811 return static_branch_unlikely(&_debug_pagealloc_enabled); 3812 } 3813 3814 /* 3815 * To support DEBUG_PAGEALLOC architecture must ensure that 3816 * __kernel_map_pages() never fails 3817 */ 3818 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3819 #ifdef CONFIG_DEBUG_PAGEALLOC 3820 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3821 { 3822 if (debug_pagealloc_enabled_static()) 3823 __kernel_map_pages(page, numpages, 1); 3824 } 3825 3826 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3827 { 3828 if (debug_pagealloc_enabled_static()) 3829 __kernel_map_pages(page, numpages, 0); 3830 } 3831 3832 extern unsigned int _debug_guardpage_minorder; 3833 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3834 3835 static inline unsigned int debug_guardpage_minorder(void) 3836 { 3837 return _debug_guardpage_minorder; 3838 } 3839 3840 static inline bool debug_guardpage_enabled(void) 3841 { 3842 return static_branch_unlikely(&_debug_guardpage_enabled); 3843 } 3844 3845 static inline bool page_is_guard(struct page *page) 3846 { 3847 if (!debug_guardpage_enabled()) 3848 return false; 3849 3850 return PageGuard(page); 3851 } 3852 3853 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3854 static inline bool set_page_guard(struct zone *zone, struct page *page, 3855 unsigned int order) 3856 { 3857 if (!debug_guardpage_enabled()) 3858 return false; 3859 return __set_page_guard(zone, page, order); 3860 } 3861 3862 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3863 static inline void clear_page_guard(struct zone *zone, struct page *page, 3864 unsigned int order) 3865 { 3866 if (!debug_guardpage_enabled()) 3867 return; 3868 __clear_page_guard(zone, page, order); 3869 } 3870 3871 #else /* CONFIG_DEBUG_PAGEALLOC */ 3872 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3873 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3874 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3875 static inline bool debug_guardpage_enabled(void) { return false; } 3876 static inline bool page_is_guard(struct page *page) { return false; } 3877 static inline bool set_page_guard(struct zone *zone, struct page *page, 3878 unsigned int order) { return false; } 3879 static inline void clear_page_guard(struct zone *zone, struct page *page, 3880 unsigned int order) {} 3881 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3882 3883 #ifdef __HAVE_ARCH_GATE_AREA 3884 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3885 extern int in_gate_area_no_mm(unsigned long addr); 3886 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3887 #else 3888 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3889 { 3890 return NULL; 3891 } 3892 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3893 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3894 { 3895 return 0; 3896 } 3897 #endif /* __HAVE_ARCH_GATE_AREA */ 3898 3899 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3900 3901 #ifdef CONFIG_SYSCTL 3902 extern int sysctl_drop_caches; 3903 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3904 loff_t *); 3905 #endif 3906 3907 void drop_slab(void); 3908 3909 #ifndef CONFIG_MMU 3910 #define randomize_va_space 0 3911 #else 3912 extern int randomize_va_space; 3913 #endif 3914 3915 const char * arch_vma_name(struct vm_area_struct *vma); 3916 #ifdef CONFIG_MMU 3917 void print_vma_addr(char *prefix, unsigned long rip); 3918 #else 3919 static inline void print_vma_addr(char *prefix, unsigned long rip) 3920 { 3921 } 3922 #endif 3923 3924 void *sparse_buffer_alloc(unsigned long size); 3925 unsigned long section_map_size(void); 3926 struct page * __populate_section_memmap(unsigned long pfn, 3927 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3928 struct dev_pagemap *pgmap); 3929 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3930 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3931 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3932 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3933 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3934 struct vmem_altmap *altmap, unsigned long ptpfn, 3935 unsigned long flags); 3936 void *vmemmap_alloc_block(unsigned long size, int node); 3937 struct vmem_altmap; 3938 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3939 struct vmem_altmap *altmap); 3940 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3941 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3942 unsigned long addr, unsigned long next); 3943 int vmemmap_check_pmd(pmd_t *pmd, int node, 3944 unsigned long addr, unsigned long next); 3945 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3946 int node, struct vmem_altmap *altmap); 3947 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3948 int node, struct vmem_altmap *altmap); 3949 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3950 struct vmem_altmap *altmap); 3951 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3952 unsigned long headsize); 3953 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3954 unsigned long headsize); 3955 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3956 unsigned long headsize); 3957 void vmemmap_populate_print_last(void); 3958 #ifdef CONFIG_MEMORY_HOTPLUG 3959 void vmemmap_free(unsigned long start, unsigned long end, 3960 struct vmem_altmap *altmap); 3961 #endif 3962 3963 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3964 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3965 { 3966 /* number of pfns from base where pfn_to_page() is valid */ 3967 if (altmap) 3968 return altmap->reserve + altmap->free; 3969 return 0; 3970 } 3971 3972 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3973 unsigned long nr_pfns) 3974 { 3975 altmap->alloc -= nr_pfns; 3976 } 3977 #else 3978 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3979 { 3980 return 0; 3981 } 3982 3983 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3984 unsigned long nr_pfns) 3985 { 3986 } 3987 #endif 3988 3989 #define VMEMMAP_RESERVE_NR 2 3990 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3991 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3992 struct dev_pagemap *pgmap) 3993 { 3994 unsigned long nr_pages; 3995 unsigned long nr_vmemmap_pages; 3996 3997 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3998 return false; 3999 4000 nr_pages = pgmap_vmemmap_nr(pgmap); 4001 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4002 /* 4003 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4004 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4005 */ 4006 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4007 } 4008 /* 4009 * If we don't have an architecture override, use the generic rule 4010 */ 4011 #ifndef vmemmap_can_optimize 4012 #define vmemmap_can_optimize __vmemmap_can_optimize 4013 #endif 4014 4015 #else 4016 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4017 struct dev_pagemap *pgmap) 4018 { 4019 return false; 4020 } 4021 #endif 4022 4023 enum mf_flags { 4024 MF_COUNT_INCREASED = 1 << 0, 4025 MF_ACTION_REQUIRED = 1 << 1, 4026 MF_MUST_KILL = 1 << 2, 4027 MF_SOFT_OFFLINE = 1 << 3, 4028 MF_UNPOISON = 1 << 4, 4029 MF_SW_SIMULATED = 1 << 5, 4030 MF_NO_RETRY = 1 << 6, 4031 MF_MEM_PRE_REMOVE = 1 << 7, 4032 }; 4033 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4034 unsigned long count, int mf_flags); 4035 extern int memory_failure(unsigned long pfn, int flags); 4036 extern void memory_failure_queue_kick(int cpu); 4037 extern int unpoison_memory(unsigned long pfn); 4038 extern atomic_long_t num_poisoned_pages __read_mostly; 4039 extern int soft_offline_page(unsigned long pfn, int flags); 4040 #ifdef CONFIG_MEMORY_FAILURE 4041 /* 4042 * Sysfs entries for memory failure handling statistics. 4043 */ 4044 extern const struct attribute_group memory_failure_attr_group; 4045 extern void memory_failure_queue(unsigned long pfn, int flags); 4046 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4047 bool *migratable_cleared); 4048 void num_poisoned_pages_inc(unsigned long pfn); 4049 void num_poisoned_pages_sub(unsigned long pfn, long i); 4050 #else 4051 static inline void memory_failure_queue(unsigned long pfn, int flags) 4052 { 4053 } 4054 4055 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4056 bool *migratable_cleared) 4057 { 4058 return 0; 4059 } 4060 4061 static inline void num_poisoned_pages_inc(unsigned long pfn) 4062 { 4063 } 4064 4065 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4066 { 4067 } 4068 #endif 4069 4070 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4071 extern void memblk_nr_poison_inc(unsigned long pfn); 4072 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4073 #else 4074 static inline void memblk_nr_poison_inc(unsigned long pfn) 4075 { 4076 } 4077 4078 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4079 { 4080 } 4081 #endif 4082 4083 #ifndef arch_memory_failure 4084 static inline int arch_memory_failure(unsigned long pfn, int flags) 4085 { 4086 return -ENXIO; 4087 } 4088 #endif 4089 4090 #ifndef arch_is_platform_page 4091 static inline bool arch_is_platform_page(u64 paddr) 4092 { 4093 return false; 4094 } 4095 #endif 4096 4097 /* 4098 * Error handlers for various types of pages. 4099 */ 4100 enum mf_result { 4101 MF_IGNORED, /* Error: cannot be handled */ 4102 MF_FAILED, /* Error: handling failed */ 4103 MF_DELAYED, /* Will be handled later */ 4104 MF_RECOVERED, /* Successfully recovered */ 4105 }; 4106 4107 enum mf_action_page_type { 4108 MF_MSG_KERNEL, 4109 MF_MSG_KERNEL_HIGH_ORDER, 4110 MF_MSG_DIFFERENT_COMPOUND, 4111 MF_MSG_HUGE, 4112 MF_MSG_FREE_HUGE, 4113 MF_MSG_GET_HWPOISON, 4114 MF_MSG_UNMAP_FAILED, 4115 MF_MSG_DIRTY_SWAPCACHE, 4116 MF_MSG_CLEAN_SWAPCACHE, 4117 MF_MSG_DIRTY_MLOCKED_LRU, 4118 MF_MSG_CLEAN_MLOCKED_LRU, 4119 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4120 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4121 MF_MSG_DIRTY_LRU, 4122 MF_MSG_CLEAN_LRU, 4123 MF_MSG_TRUNCATED_LRU, 4124 MF_MSG_BUDDY, 4125 MF_MSG_DAX, 4126 MF_MSG_UNSPLIT_THP, 4127 MF_MSG_ALREADY_POISONED, 4128 MF_MSG_UNKNOWN, 4129 }; 4130 4131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4132 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4133 int copy_user_large_folio(struct folio *dst, struct folio *src, 4134 unsigned long addr_hint, 4135 struct vm_area_struct *vma); 4136 long copy_folio_from_user(struct folio *dst_folio, 4137 const void __user *usr_src, 4138 bool allow_pagefault); 4139 4140 /** 4141 * vma_is_special_huge - Are transhuge page-table entries considered special? 4142 * @vma: Pointer to the struct vm_area_struct to consider 4143 * 4144 * Whether transhuge page-table entries are considered "special" following 4145 * the definition in vm_normal_page(). 4146 * 4147 * Return: true if transhuge page-table entries should be considered special, 4148 * false otherwise. 4149 */ 4150 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4151 { 4152 return vma_is_dax(vma) || (vma->vm_file && 4153 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4154 } 4155 4156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4157 4158 #if MAX_NUMNODES > 1 4159 void __init setup_nr_node_ids(void); 4160 #else 4161 static inline void setup_nr_node_ids(void) {} 4162 #endif 4163 4164 extern int memcmp_pages(struct page *page1, struct page *page2); 4165 4166 static inline int pages_identical(struct page *page1, struct page *page2) 4167 { 4168 return !memcmp_pages(page1, page2); 4169 } 4170 4171 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4172 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4173 pgoff_t first_index, pgoff_t nr, 4174 pgoff_t bitmap_pgoff, 4175 unsigned long *bitmap, 4176 pgoff_t *start, 4177 pgoff_t *end); 4178 4179 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4180 pgoff_t first_index, pgoff_t nr); 4181 #endif 4182 4183 extern int sysctl_nr_trim_pages; 4184 4185 #ifdef CONFIG_ANON_VMA_NAME 4186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4187 unsigned long len_in, 4188 struct anon_vma_name *anon_name); 4189 #else 4190 static inline int 4191 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4192 unsigned long len_in, struct anon_vma_name *anon_name) { 4193 return 0; 4194 } 4195 #endif 4196 4197 #ifdef CONFIG_UNACCEPTED_MEMORY 4198 4199 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4200 void accept_memory(phys_addr_t start, unsigned long size); 4201 4202 #else 4203 4204 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4205 unsigned long size) 4206 { 4207 return false; 4208 } 4209 4210 static inline void accept_memory(phys_addr_t start, unsigned long size) 4211 { 4212 } 4213 4214 #endif 4215 4216 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4217 { 4218 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4219 } 4220 4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4222 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4223 4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4225 4226 #ifdef CONFIG_64BIT 4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4228 #else 4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4230 { 4231 /* noop on 32 bit */ 4232 return 0; 4233 } 4234 #endif 4235 4236 /* 4237 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4238 * be zeroed or not. 4239 */ 4240 static inline bool user_alloc_needs_zeroing(void) 4241 { 4242 /* 4243 * for user folios, arch with cache aliasing requires cache flush and 4244 * arc changes folio->flags to make icache coherent with dcache, so 4245 * always return false to make caller use 4246 * clear_user_page()/clear_user_highpage(). 4247 */ 4248 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4249 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4250 &init_on_alloc); 4251 } 4252 4253 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4254 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4255 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4256 4257 #endif /* _LINUX_MM_H */ 4258