xref: /linux-6.15/include/linux/mm.h (revision 8afa901c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 #include <linux/rcuwait.h>
36 
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct user_struct;
41 struct pt_regs;
42 struct folio_batch;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void arch_mm_preinit(void);
47 void mm_core_init(void);
48 void init_mm_internals(void);
49 
50 extern atomic_long_t _totalram_pages;
51 static inline unsigned long totalram_pages(void)
52 {
53 	return (unsigned long)atomic_long_read(&_totalram_pages);
54 }
55 
56 static inline void totalram_pages_inc(void)
57 {
58 	atomic_long_inc(&_totalram_pages);
59 }
60 
61 static inline void totalram_pages_dec(void)
62 {
63 	atomic_long_dec(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_add(long count)
67 {
68 	atomic_long_add(count, &_totalram_pages);
69 }
70 
71 extern void * high_memory;
72 extern int page_cluster;
73 extern const int page_cluster_max;
74 
75 #ifdef CONFIG_SYSCTL
76 extern int sysctl_legacy_va_layout;
77 #else
78 #define sysctl_legacy_va_layout 0
79 #endif
80 
81 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
82 extern const int mmap_rnd_bits_min;
83 extern int mmap_rnd_bits_max __ro_after_init;
84 extern int mmap_rnd_bits __read_mostly;
85 #endif
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
87 extern const int mmap_rnd_compat_bits_min;
88 extern const int mmap_rnd_compat_bits_max;
89 extern int mmap_rnd_compat_bits __read_mostly;
90 #endif
91 
92 #ifndef DIRECT_MAP_PHYSMEM_END
93 # ifdef MAX_PHYSMEM_BITS
94 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
95 # else
96 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
97 # endif
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 
252 #ifndef CONFIG_MMU
253 extern struct rb_root nommu_region_tree;
254 extern struct rw_semaphore nommu_region_sem;
255 
256 extern unsigned int kobjsize(const void *objp);
257 #endif
258 
259 /*
260  * vm_flags in vm_area_struct, see mm_types.h.
261  * When changing, update also include/trace/events/mmflags.h
262  */
263 #define VM_NONE		0x00000000
264 
265 #define VM_READ		0x00000001	/* currently active flags */
266 #define VM_WRITE	0x00000002
267 #define VM_EXEC		0x00000004
268 #define VM_SHARED	0x00000008
269 
270 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
271 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
272 #define VM_MAYWRITE	0x00000020
273 #define VM_MAYEXEC	0x00000040
274 #define VM_MAYSHARE	0x00000080
275 
276 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
277 #ifdef CONFIG_MMU
278 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
279 #else /* CONFIG_MMU */
280 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
281 #define VM_UFFD_MISSING	0
282 #endif /* CONFIG_MMU */
283 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
284 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
285 
286 #define VM_LOCKED	0x00002000
287 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
288 
289 					/* Used by sys_madvise() */
290 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
291 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
292 
293 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
294 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
295 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
296 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
297 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
298 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
299 #define VM_SYNC		0x00800000	/* Synchronous page faults */
300 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
301 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
302 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
303 
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
306 #else
307 # define VM_SOFTDIRTY	0
308 #endif
309 
310 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
311 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
312 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
313 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
314 
315 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
316 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
329 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
335 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
336 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
337 #if CONFIG_ARCH_PKEY_BITS > 3
338 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
339 #else
340 # define VM_PKEY_BIT3  0
341 #endif
342 #if CONFIG_ARCH_PKEY_BITS > 4
343 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
344 #else
345 # define VM_PKEY_BIT4  0
346 #endif
347 #endif /* CONFIG_ARCH_HAS_PKEYS */
348 
349 #ifdef CONFIG_X86_USER_SHADOW_STACK
350 /*
351  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
352  * support core mm.
353  *
354  * These VMAs will get a single end guard page. This helps userspace protect
355  * itself from attacks. A single page is enough for current shadow stack archs
356  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
357  * for more details on the guard size.
358  */
359 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
360 #endif
361 
362 #if defined(CONFIG_ARM64_GCS)
363 /*
364  * arm64's Guarded Control Stack implements similar functionality and
365  * has similar constraints to shadow stacks.
366  */
367 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
368 #endif
369 
370 #ifndef VM_SHADOW_STACK
371 # define VM_SHADOW_STACK	VM_NONE
372 #endif
373 
374 #if defined(CONFIG_X86)
375 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
376 #elif defined(CONFIG_PPC64)
377 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
378 #elif defined(CONFIG_PARISC)
379 # define VM_GROWSUP	VM_ARCH_1
380 #elif defined(CONFIG_SPARC64)
381 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
382 # define VM_ARCH_CLEAR	VM_SPARC_ADI
383 #elif defined(CONFIG_ARM64)
384 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
385 # define VM_ARCH_CLEAR	VM_ARM64_BTI
386 #elif !defined(CONFIG_MMU)
387 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
388 #endif
389 
390 #if defined(CONFIG_ARM64_MTE)
391 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
392 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
393 #else
394 # define VM_MTE		VM_NONE
395 # define VM_MTE_ALLOWED	VM_NONE
396 #endif
397 
398 #ifndef VM_GROWSUP
399 # define VM_GROWSUP	VM_NONE
400 #endif
401 
402 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
403 # define VM_UFFD_MINOR_BIT	38
404 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
405 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
406 # define VM_UFFD_MINOR		VM_NONE
407 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
408 
409 /*
410  * This flag is used to connect VFIO to arch specific KVM code. It
411  * indicates that the memory under this VMA is safe for use with any
412  * non-cachable memory type inside KVM. Some VFIO devices, on some
413  * platforms, are thought to be unsafe and can cause machine crashes
414  * if KVM does not lock down the memory type.
415  */
416 #ifdef CONFIG_64BIT
417 #define VM_ALLOW_ANY_UNCACHED_BIT	39
418 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
419 #else
420 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
421 #endif
422 
423 #ifdef CONFIG_64BIT
424 #define VM_DROPPABLE_BIT	40
425 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
426 #elif defined(CONFIG_PPC32)
427 #define VM_DROPPABLE		VM_ARCH_1
428 #else
429 #define VM_DROPPABLE		VM_NONE
430 #endif
431 
432 #ifdef CONFIG_64BIT
433 /* VM is sealed, in vm_flags */
434 #define VM_SEALED	_BITUL(63)
435 #endif
436 
437 /* Bits set in the VMA until the stack is in its final location */
438 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
439 
440 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
441 
442 /* Common data flag combinations */
443 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
444 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
445 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
446 				 VM_MAYWRITE | VM_MAYEXEC)
447 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
448 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
449 
450 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
451 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
452 #endif
453 
454 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
455 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
456 #endif
457 
458 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
459 
460 #ifdef CONFIG_STACK_GROWSUP
461 #define VM_STACK	VM_GROWSUP
462 #define VM_STACK_EARLY	VM_GROWSDOWN
463 #else
464 #define VM_STACK	VM_GROWSDOWN
465 #define VM_STACK_EARLY	0
466 #endif
467 
468 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
469 
470 /* VMA basic access permission flags */
471 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
472 
473 
474 /*
475  * Special vmas that are non-mergable, non-mlock()able.
476  */
477 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
478 
479 /* This mask prevents VMA from being scanned with khugepaged */
480 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
481 
482 /* This mask defines which mm->def_flags a process can inherit its parent */
483 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
484 
485 /* This mask represents all the VMA flag bits used by mlock */
486 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
487 
488 /* Arch-specific flags to clear when updating VM flags on protection change */
489 #ifndef VM_ARCH_CLEAR
490 # define VM_ARCH_CLEAR	VM_NONE
491 #endif
492 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
493 
494 /*
495  * mapping from the currently active vm_flags protection bits (the
496  * low four bits) to a page protection mask..
497  */
498 
499 /*
500  * The default fault flags that should be used by most of the
501  * arch-specific page fault handlers.
502  */
503 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
504 			     FAULT_FLAG_KILLABLE | \
505 			     FAULT_FLAG_INTERRUPTIBLE)
506 
507 /**
508  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
509  * @flags: Fault flags.
510  *
511  * This is mostly used for places where we want to try to avoid taking
512  * the mmap_lock for too long a time when waiting for another condition
513  * to change, in which case we can try to be polite to release the
514  * mmap_lock in the first round to avoid potential starvation of other
515  * processes that would also want the mmap_lock.
516  *
517  * Return: true if the page fault allows retry and this is the first
518  * attempt of the fault handling; false otherwise.
519  */
520 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
521 {
522 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
523 	    (!(flags & FAULT_FLAG_TRIED));
524 }
525 
526 #define FAULT_FLAG_TRACE \
527 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
528 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
529 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
530 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
531 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
532 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
533 	{ FAULT_FLAG_USER,		"USER" }, \
534 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
535 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
536 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
537 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
538 
539 /*
540  * vm_fault is filled by the pagefault handler and passed to the vma's
541  * ->fault function. The vma's ->fault is responsible for returning a bitmask
542  * of VM_FAULT_xxx flags that give details about how the fault was handled.
543  *
544  * MM layer fills up gfp_mask for page allocations but fault handler might
545  * alter it if its implementation requires a different allocation context.
546  *
547  * pgoff should be used in favour of virtual_address, if possible.
548  */
549 struct vm_fault {
550 	const struct {
551 		struct vm_area_struct *vma;	/* Target VMA */
552 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
553 		pgoff_t pgoff;			/* Logical page offset based on vma */
554 		unsigned long address;		/* Faulting virtual address - masked */
555 		unsigned long real_address;	/* Faulting virtual address - unmasked */
556 	};
557 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
558 					 * XXX: should really be 'const' */
559 	pmd_t *pmd;			/* Pointer to pmd entry matching
560 					 * the 'address' */
561 	pud_t *pud;			/* Pointer to pud entry matching
562 					 * the 'address'
563 					 */
564 	union {
565 		pte_t orig_pte;		/* Value of PTE at the time of fault */
566 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
567 					 * used by PMD fault only.
568 					 */
569 	};
570 
571 	struct page *cow_page;		/* Page handler may use for COW fault */
572 	struct page *page;		/* ->fault handlers should return a
573 					 * page here, unless VM_FAULT_NOPAGE
574 					 * is set (which is also implied by
575 					 * VM_FAULT_ERROR).
576 					 */
577 	/* These three entries are valid only while holding ptl lock */
578 	pte_t *pte;			/* Pointer to pte entry matching
579 					 * the 'address'. NULL if the page
580 					 * table hasn't been allocated.
581 					 */
582 	spinlock_t *ptl;		/* Page table lock.
583 					 * Protects pte page table if 'pte'
584 					 * is not NULL, otherwise pmd.
585 					 */
586 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
587 					 * vm_ops->map_pages() sets up a page
588 					 * table from atomic context.
589 					 * do_fault_around() pre-allocates
590 					 * page table to avoid allocation from
591 					 * atomic context.
592 					 */
593 };
594 
595 /*
596  * These are the virtual MM functions - opening of an area, closing and
597  * unmapping it (needed to keep files on disk up-to-date etc), pointer
598  * to the functions called when a no-page or a wp-page exception occurs.
599  */
600 struct vm_operations_struct {
601 	void (*open)(struct vm_area_struct * area);
602 	/**
603 	 * @close: Called when the VMA is being removed from the MM.
604 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
605 	 */
606 	void (*close)(struct vm_area_struct * area);
607 	/* Called any time before splitting to check if it's allowed */
608 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
609 	int (*mremap)(struct vm_area_struct *area);
610 	/*
611 	 * Called by mprotect() to make driver-specific permission
612 	 * checks before mprotect() is finalised.   The VMA must not
613 	 * be modified.  Returns 0 if mprotect() can proceed.
614 	 */
615 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
616 			unsigned long end, unsigned long newflags);
617 	vm_fault_t (*fault)(struct vm_fault *vmf);
618 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
619 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
620 			pgoff_t start_pgoff, pgoff_t end_pgoff);
621 	unsigned long (*pagesize)(struct vm_area_struct * area);
622 
623 	/* notification that a previously read-only page is about to become
624 	 * writable, if an error is returned it will cause a SIGBUS */
625 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
626 
627 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
628 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
629 
630 	/* called by access_process_vm when get_user_pages() fails, typically
631 	 * for use by special VMAs. See also generic_access_phys() for a generic
632 	 * implementation useful for any iomem mapping.
633 	 */
634 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
635 		      void *buf, int len, int write);
636 
637 	/* Called by the /proc/PID/maps code to ask the vma whether it
638 	 * has a special name.  Returning non-NULL will also cause this
639 	 * vma to be dumped unconditionally. */
640 	const char *(*name)(struct vm_area_struct *vma);
641 
642 #ifdef CONFIG_NUMA
643 	/*
644 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
645 	 * to hold the policy upon return.  Caller should pass NULL @new to
646 	 * remove a policy and fall back to surrounding context--i.e. do not
647 	 * install a MPOL_DEFAULT policy, nor the task or system default
648 	 * mempolicy.
649 	 */
650 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
651 
652 	/*
653 	 * get_policy() op must add reference [mpol_get()] to any policy at
654 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
655 	 * in mm/mempolicy.c will do this automatically.
656 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
657 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
658 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
659 	 * must return NULL--i.e., do not "fallback" to task or system default
660 	 * policy.
661 	 */
662 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
663 					unsigned long addr, pgoff_t *ilx);
664 #endif
665 	/*
666 	 * Called by vm_normal_page() for special PTEs to find the
667 	 * page for @addr.  This is useful if the default behavior
668 	 * (using pte_page()) would not find the correct page.
669 	 */
670 	struct page *(*find_special_page)(struct vm_area_struct *vma,
671 					  unsigned long addr);
672 };
673 
674 #ifdef CONFIG_NUMA_BALANCING
675 static inline void vma_numab_state_init(struct vm_area_struct *vma)
676 {
677 	vma->numab_state = NULL;
678 }
679 static inline void vma_numab_state_free(struct vm_area_struct *vma)
680 {
681 	kfree(vma->numab_state);
682 }
683 #else
684 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
685 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
686 #endif /* CONFIG_NUMA_BALANCING */
687 
688 #ifdef CONFIG_PER_VMA_LOCK
689 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
690 {
691 #ifdef CONFIG_DEBUG_LOCK_ALLOC
692 	static struct lock_class_key lockdep_key;
693 
694 	lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0);
695 #endif
696 	if (reset_refcnt)
697 		refcount_set(&vma->vm_refcnt, 0);
698 	vma->vm_lock_seq = UINT_MAX;
699 }
700 
701 static inline bool is_vma_writer_only(int refcnt)
702 {
703 	/*
704 	 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma
705 	 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on
706 	 * a detached vma happens only in vma_mark_detached() and is a rare
707 	 * case, therefore most of the time there will be no unnecessary wakeup.
708 	 */
709 	return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1;
710 }
711 
712 static inline void vma_refcount_put(struct vm_area_struct *vma)
713 {
714 	/* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */
715 	struct mm_struct *mm = vma->vm_mm;
716 	int oldcnt;
717 
718 	rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
719 	if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) {
720 
721 		if (is_vma_writer_only(oldcnt - 1))
722 			rcuwait_wake_up(&mm->vma_writer_wait);
723 	}
724 }
725 
726 /*
727  * Try to read-lock a vma. The function is allowed to occasionally yield false
728  * locked result to avoid performance overhead, in which case we fall back to
729  * using mmap_lock. The function should never yield false unlocked result.
730  * False locked result is possible if mm_lock_seq overflows or if vma gets
731  * reused and attached to a different mm before we lock it.
732  * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got
733  * detached.
734  */
735 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
736 						    struct vm_area_struct *vma)
737 {
738 	int oldcnt;
739 
740 	/*
741 	 * Check before locking. A race might cause false locked result.
742 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
743 	 * ACQUIRE semantics, because this is just a lockless check whose result
744 	 * we don't rely on for anything - the mm_lock_seq read against which we
745 	 * need ordering is below.
746 	 */
747 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence))
748 		return NULL;
749 
750 	/*
751 	 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire()
752 	 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET.
753 	 * Acquire fence is required here to avoid reordering against later
754 	 * vm_lock_seq check and checks inside lock_vma_under_rcu().
755 	 */
756 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
757 							      VMA_REF_LIMIT))) {
758 		/* return EAGAIN if vma got detached from under us */
759 		return oldcnt ? NULL : ERR_PTR(-EAGAIN);
760 	}
761 
762 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
763 	/*
764 	 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result.
765 	 * False unlocked result is impossible because we modify and check
766 	 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq
767 	 * modification invalidates all existing locks.
768 	 *
769 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
770 	 * racing with vma_end_write_all(), we only start reading from the VMA
771 	 * after it has been unlocked.
772 	 * This pairs with RELEASE semantics in vma_end_write_all().
773 	 */
774 	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) {
775 		vma_refcount_put(vma);
776 		return NULL;
777 	}
778 
779 	return vma;
780 }
781 
782 /*
783  * Use only while holding mmap read lock which guarantees that locking will not
784  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
785  * not be used in such cases because it might fail due to mm_lock_seq overflow.
786  * This functionality is used to obtain vma read lock and drop the mmap read lock.
787  */
788 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass)
789 {
790 	int oldcnt;
791 
792 	mmap_assert_locked(vma->vm_mm);
793 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
794 							      VMA_REF_LIMIT)))
795 		return false;
796 
797 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
798 	return true;
799 }
800 
801 /*
802  * Use only while holding mmap read lock which guarantees that locking will not
803  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
804  * not be used in such cases because it might fail due to mm_lock_seq overflow.
805  * This functionality is used to obtain vma read lock and drop the mmap read lock.
806  */
807 static inline bool vma_start_read_locked(struct vm_area_struct *vma)
808 {
809 	return vma_start_read_locked_nested(vma, 0);
810 }
811 
812 static inline void vma_end_read(struct vm_area_struct *vma)
813 {
814 	vma_refcount_put(vma);
815 }
816 
817 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
818 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
819 {
820 	mmap_assert_write_locked(vma->vm_mm);
821 
822 	/*
823 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
824 	 * mm->mm_lock_seq can't be concurrently modified.
825 	 */
826 	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
827 	return (vma->vm_lock_seq == *mm_lock_seq);
828 }
829 
830 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq);
831 
832 /*
833  * Begin writing to a VMA.
834  * Exclude concurrent readers under the per-VMA lock until the currently
835  * write-locked mmap_lock is dropped or downgraded.
836  */
837 static inline void vma_start_write(struct vm_area_struct *vma)
838 {
839 	unsigned int mm_lock_seq;
840 
841 	if (__is_vma_write_locked(vma, &mm_lock_seq))
842 		return;
843 
844 	__vma_start_write(vma, mm_lock_seq);
845 }
846 
847 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
848 {
849 	unsigned int mm_lock_seq;
850 
851 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
852 }
853 
854 static inline void vma_assert_locked(struct vm_area_struct *vma)
855 {
856 	unsigned int mm_lock_seq;
857 
858 	VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 &&
859 		      !__is_vma_write_locked(vma, &mm_lock_seq), vma);
860 }
861 
862 /*
863  * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
864  * assertions should be made either under mmap_write_lock or when the object
865  * has been isolated under mmap_write_lock, ensuring no competing writers.
866  */
867 static inline void vma_assert_attached(struct vm_area_struct *vma)
868 {
869 	WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
870 }
871 
872 static inline void vma_assert_detached(struct vm_area_struct *vma)
873 {
874 	WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
875 }
876 
877 static inline void vma_mark_attached(struct vm_area_struct *vma)
878 {
879 	vma_assert_write_locked(vma);
880 	vma_assert_detached(vma);
881 	refcount_set_release(&vma->vm_refcnt, 1);
882 }
883 
884 void vma_mark_detached(struct vm_area_struct *vma);
885 
886 static inline void release_fault_lock(struct vm_fault *vmf)
887 {
888 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
889 		vma_end_read(vmf->vma);
890 	else
891 		mmap_read_unlock(vmf->vma->vm_mm);
892 }
893 
894 static inline void assert_fault_locked(struct vm_fault *vmf)
895 {
896 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
897 		vma_assert_locked(vmf->vma);
898 	else
899 		mmap_assert_locked(vmf->vma->vm_mm);
900 }
901 
902 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
903 					  unsigned long address);
904 
905 #else /* CONFIG_PER_VMA_LOCK */
906 
907 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {}
908 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
909 						    struct vm_area_struct *vma)
910 		{ return NULL; }
911 static inline void vma_end_read(struct vm_area_struct *vma) {}
912 static inline void vma_start_write(struct vm_area_struct *vma) {}
913 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
914 		{ mmap_assert_write_locked(vma->vm_mm); }
915 static inline void vma_assert_attached(struct vm_area_struct *vma) {}
916 static inline void vma_assert_detached(struct vm_area_struct *vma) {}
917 static inline void vma_mark_attached(struct vm_area_struct *vma) {}
918 static inline void vma_mark_detached(struct vm_area_struct *vma) {}
919 
920 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
921 		unsigned long address)
922 {
923 	return NULL;
924 }
925 
926 static inline void vma_assert_locked(struct vm_area_struct *vma)
927 {
928 	mmap_assert_locked(vma->vm_mm);
929 }
930 
931 static inline void release_fault_lock(struct vm_fault *vmf)
932 {
933 	mmap_read_unlock(vmf->vma->vm_mm);
934 }
935 
936 static inline void assert_fault_locked(struct vm_fault *vmf)
937 {
938 	mmap_assert_locked(vmf->vma->vm_mm);
939 }
940 
941 #endif /* CONFIG_PER_VMA_LOCK */
942 
943 extern const struct vm_operations_struct vma_dummy_vm_ops;
944 
945 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
946 {
947 	memset(vma, 0, sizeof(*vma));
948 	vma->vm_mm = mm;
949 	vma->vm_ops = &vma_dummy_vm_ops;
950 	INIT_LIST_HEAD(&vma->anon_vma_chain);
951 	vma_lock_init(vma, false);
952 }
953 
954 /* Use when VMA is not part of the VMA tree and needs no locking */
955 static inline void vm_flags_init(struct vm_area_struct *vma,
956 				 vm_flags_t flags)
957 {
958 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
959 }
960 
961 /*
962  * Use when VMA is part of the VMA tree and modifications need coordination
963  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
964  * it should be locked explicitly beforehand.
965  */
966 static inline void vm_flags_reset(struct vm_area_struct *vma,
967 				  vm_flags_t flags)
968 {
969 	vma_assert_write_locked(vma);
970 	vm_flags_init(vma, flags);
971 }
972 
973 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
974 				       vm_flags_t flags)
975 {
976 	vma_assert_write_locked(vma);
977 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
978 }
979 
980 static inline void vm_flags_set(struct vm_area_struct *vma,
981 				vm_flags_t flags)
982 {
983 	vma_start_write(vma);
984 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
985 }
986 
987 static inline void vm_flags_clear(struct vm_area_struct *vma,
988 				  vm_flags_t flags)
989 {
990 	vma_start_write(vma);
991 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
992 }
993 
994 /*
995  * Use only if VMA is not part of the VMA tree or has no other users and
996  * therefore needs no locking.
997  */
998 static inline void __vm_flags_mod(struct vm_area_struct *vma,
999 				  vm_flags_t set, vm_flags_t clear)
1000 {
1001 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
1002 }
1003 
1004 /*
1005  * Use only when the order of set/clear operations is unimportant, otherwise
1006  * use vm_flags_{set|clear} explicitly.
1007  */
1008 static inline void vm_flags_mod(struct vm_area_struct *vma,
1009 				vm_flags_t set, vm_flags_t clear)
1010 {
1011 	vma_start_write(vma);
1012 	__vm_flags_mod(vma, set, clear);
1013 }
1014 
1015 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1016 {
1017 	vma->vm_ops = NULL;
1018 }
1019 
1020 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1021 {
1022 	return !vma->vm_ops;
1023 }
1024 
1025 /*
1026  * Indicate if the VMA is a heap for the given task; for
1027  * /proc/PID/maps that is the heap of the main task.
1028  */
1029 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1030 {
1031 	return vma->vm_start < vma->vm_mm->brk &&
1032 		vma->vm_end > vma->vm_mm->start_brk;
1033 }
1034 
1035 /*
1036  * Indicate if the VMA is a stack for the given task; for
1037  * /proc/PID/maps that is the stack of the main task.
1038  */
1039 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1040 {
1041 	/*
1042 	 * We make no effort to guess what a given thread considers to be
1043 	 * its "stack".  It's not even well-defined for programs written
1044 	 * languages like Go.
1045 	 */
1046 	return vma->vm_start <= vma->vm_mm->start_stack &&
1047 		vma->vm_end >= vma->vm_mm->start_stack;
1048 }
1049 
1050 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
1051 {
1052 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1053 
1054 	if (!maybe_stack)
1055 		return false;
1056 
1057 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1058 						VM_STACK_INCOMPLETE_SETUP)
1059 		return true;
1060 
1061 	return false;
1062 }
1063 
1064 static inline bool vma_is_foreign(struct vm_area_struct *vma)
1065 {
1066 	if (!current->mm)
1067 		return true;
1068 
1069 	if (current->mm != vma->vm_mm)
1070 		return true;
1071 
1072 	return false;
1073 }
1074 
1075 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1076 {
1077 	return vma->vm_flags & VM_ACCESS_FLAGS;
1078 }
1079 
1080 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1081 {
1082 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1083 		(VM_SHARED | VM_MAYWRITE);
1084 }
1085 
1086 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1087 {
1088 	return is_shared_maywrite(vma->vm_flags);
1089 }
1090 
1091 static inline
1092 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1093 {
1094 	return mas_find(&vmi->mas, max - 1);
1095 }
1096 
1097 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1098 {
1099 	/*
1100 	 * Uses mas_find() to get the first VMA when the iterator starts.
1101 	 * Calling mas_next() could skip the first entry.
1102 	 */
1103 	return mas_find(&vmi->mas, ULONG_MAX);
1104 }
1105 
1106 static inline
1107 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1108 {
1109 	return mas_next_range(&vmi->mas, ULONG_MAX);
1110 }
1111 
1112 
1113 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1114 {
1115 	return mas_prev(&vmi->mas, 0);
1116 }
1117 
1118 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1119 			unsigned long start, unsigned long end, gfp_t gfp)
1120 {
1121 	__mas_set_range(&vmi->mas, start, end - 1);
1122 	mas_store_gfp(&vmi->mas, NULL, gfp);
1123 	if (unlikely(mas_is_err(&vmi->mas)))
1124 		return -ENOMEM;
1125 
1126 	return 0;
1127 }
1128 
1129 /* Free any unused preallocations */
1130 static inline void vma_iter_free(struct vma_iterator *vmi)
1131 {
1132 	mas_destroy(&vmi->mas);
1133 }
1134 
1135 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1136 				      struct vm_area_struct *vma)
1137 {
1138 	vmi->mas.index = vma->vm_start;
1139 	vmi->mas.last = vma->vm_end - 1;
1140 	mas_store(&vmi->mas, vma);
1141 	if (unlikely(mas_is_err(&vmi->mas)))
1142 		return -ENOMEM;
1143 
1144 	vma_mark_attached(vma);
1145 	return 0;
1146 }
1147 
1148 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1149 {
1150 	mas_pause(&vmi->mas);
1151 }
1152 
1153 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1154 {
1155 	mas_set(&vmi->mas, addr);
1156 }
1157 
1158 #define for_each_vma(__vmi, __vma)					\
1159 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1160 
1161 /* The MM code likes to work with exclusive end addresses */
1162 #define for_each_vma_range(__vmi, __vma, __end)				\
1163 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1164 
1165 #ifdef CONFIG_SHMEM
1166 /*
1167  * The vma_is_shmem is not inline because it is used only by slow
1168  * paths in userfault.
1169  */
1170 bool vma_is_shmem(struct vm_area_struct *vma);
1171 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1172 #else
1173 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1174 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1175 #endif
1176 
1177 int vma_is_stack_for_current(struct vm_area_struct *vma);
1178 
1179 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1180 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1181 
1182 struct mmu_gather;
1183 struct inode;
1184 
1185 extern void prep_compound_page(struct page *page, unsigned int order);
1186 
1187 static inline unsigned int folio_large_order(const struct folio *folio)
1188 {
1189 	return folio->_flags_1 & 0xff;
1190 }
1191 
1192 #ifdef NR_PAGES_IN_LARGE_FOLIO
1193 static inline long folio_large_nr_pages(const struct folio *folio)
1194 {
1195 	return folio->_nr_pages;
1196 }
1197 #else
1198 static inline long folio_large_nr_pages(const struct folio *folio)
1199 {
1200 	return 1L << folio_large_order(folio);
1201 }
1202 #endif
1203 
1204 /*
1205  * compound_order() can be called without holding a reference, which means
1206  * that niceties like page_folio() don't work.  These callers should be
1207  * prepared to handle wild return values.  For example, PG_head may be
1208  * set before the order is initialised, or this may be a tail page.
1209  * See compaction.c for some good examples.
1210  */
1211 static inline unsigned int compound_order(struct page *page)
1212 {
1213 	struct folio *folio = (struct folio *)page;
1214 
1215 	if (!test_bit(PG_head, &folio->flags))
1216 		return 0;
1217 	return folio_large_order(folio);
1218 }
1219 
1220 /**
1221  * folio_order - The allocation order of a folio.
1222  * @folio: The folio.
1223  *
1224  * A folio is composed of 2^order pages.  See get_order() for the definition
1225  * of order.
1226  *
1227  * Return: The order of the folio.
1228  */
1229 static inline unsigned int folio_order(const struct folio *folio)
1230 {
1231 	if (!folio_test_large(folio))
1232 		return 0;
1233 	return folio_large_order(folio);
1234 }
1235 
1236 #include <linux/huge_mm.h>
1237 
1238 /*
1239  * Methods to modify the page usage count.
1240  *
1241  * What counts for a page usage:
1242  * - cache mapping   (page->mapping)
1243  * - private data    (page->private)
1244  * - page mapped in a task's page tables, each mapping
1245  *   is counted separately
1246  *
1247  * Also, many kernel routines increase the page count before a critical
1248  * routine so they can be sure the page doesn't go away from under them.
1249  */
1250 
1251 /*
1252  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1253  */
1254 static inline int put_page_testzero(struct page *page)
1255 {
1256 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1257 	return page_ref_dec_and_test(page);
1258 }
1259 
1260 static inline int folio_put_testzero(struct folio *folio)
1261 {
1262 	return put_page_testzero(&folio->page);
1263 }
1264 
1265 /*
1266  * Try to grab a ref unless the page has a refcount of zero, return false if
1267  * that is the case.
1268  * This can be called when MMU is off so it must not access
1269  * any of the virtual mappings.
1270  */
1271 static inline bool get_page_unless_zero(struct page *page)
1272 {
1273 	return page_ref_add_unless(page, 1, 0);
1274 }
1275 
1276 static inline struct folio *folio_get_nontail_page(struct page *page)
1277 {
1278 	if (unlikely(!get_page_unless_zero(page)))
1279 		return NULL;
1280 	return (struct folio *)page;
1281 }
1282 
1283 extern int page_is_ram(unsigned long pfn);
1284 
1285 enum {
1286 	REGION_INTERSECTS,
1287 	REGION_DISJOINT,
1288 	REGION_MIXED,
1289 };
1290 
1291 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1292 		      unsigned long desc);
1293 
1294 /* Support for virtually mapped pages */
1295 struct page *vmalloc_to_page(const void *addr);
1296 unsigned long vmalloc_to_pfn(const void *addr);
1297 
1298 /*
1299  * Determine if an address is within the vmalloc range
1300  *
1301  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1302  * is no special casing required.
1303  */
1304 #ifdef CONFIG_MMU
1305 extern bool is_vmalloc_addr(const void *x);
1306 extern int is_vmalloc_or_module_addr(const void *x);
1307 #else
1308 static inline bool is_vmalloc_addr(const void *x)
1309 {
1310 	return false;
1311 }
1312 static inline int is_vmalloc_or_module_addr(const void *x)
1313 {
1314 	return 0;
1315 }
1316 #endif
1317 
1318 /*
1319  * How many times the entire folio is mapped as a single unit (eg by a
1320  * PMD or PUD entry).  This is probably not what you want, except for
1321  * debugging purposes or implementation of other core folio_*() primitives.
1322  */
1323 static inline int folio_entire_mapcount(const struct folio *folio)
1324 {
1325 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1326 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1327 		return 0;
1328 	return atomic_read(&folio->_entire_mapcount) + 1;
1329 }
1330 
1331 static inline int folio_large_mapcount(const struct folio *folio)
1332 {
1333 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1334 	return atomic_read(&folio->_large_mapcount) + 1;
1335 }
1336 
1337 /**
1338  * folio_mapcount() - Number of mappings of this folio.
1339  * @folio: The folio.
1340  *
1341  * The folio mapcount corresponds to the number of present user page table
1342  * entries that reference any part of a folio. Each such present user page
1343  * table entry must be paired with exactly on folio reference.
1344  *
1345  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1346  * exactly once.
1347  *
1348  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1349  * references the entire folio counts exactly once, even when such special
1350  * page table entries are comprised of multiple ordinary page table entries.
1351  *
1352  * Will report 0 for pages which cannot be mapped into userspace, such as
1353  * slab, page tables and similar.
1354  *
1355  * Return: The number of times this folio is mapped.
1356  */
1357 static inline int folio_mapcount(const struct folio *folio)
1358 {
1359 	int mapcount;
1360 
1361 	if (likely(!folio_test_large(folio))) {
1362 		mapcount = atomic_read(&folio->_mapcount) + 1;
1363 		if (page_mapcount_is_type(mapcount))
1364 			mapcount = 0;
1365 		return mapcount;
1366 	}
1367 	return folio_large_mapcount(folio);
1368 }
1369 
1370 /**
1371  * folio_mapped - Is this folio mapped into userspace?
1372  * @folio: The folio.
1373  *
1374  * Return: True if any page in this folio is referenced by user page tables.
1375  */
1376 static inline bool folio_mapped(const struct folio *folio)
1377 {
1378 	return folio_mapcount(folio) >= 1;
1379 }
1380 
1381 /*
1382  * Return true if this page is mapped into pagetables.
1383  * For compound page it returns true if any sub-page of compound page is mapped,
1384  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1385  */
1386 static inline bool page_mapped(const struct page *page)
1387 {
1388 	return folio_mapped(page_folio(page));
1389 }
1390 
1391 static inline struct page *virt_to_head_page(const void *x)
1392 {
1393 	struct page *page = virt_to_page(x);
1394 
1395 	return compound_head(page);
1396 }
1397 
1398 static inline struct folio *virt_to_folio(const void *x)
1399 {
1400 	struct page *page = virt_to_page(x);
1401 
1402 	return page_folio(page);
1403 }
1404 
1405 void __folio_put(struct folio *folio);
1406 
1407 void split_page(struct page *page, unsigned int order);
1408 void folio_copy(struct folio *dst, struct folio *src);
1409 int folio_mc_copy(struct folio *dst, struct folio *src);
1410 
1411 unsigned long nr_free_buffer_pages(void);
1412 
1413 /* Returns the number of bytes in this potentially compound page. */
1414 static inline unsigned long page_size(struct page *page)
1415 {
1416 	return PAGE_SIZE << compound_order(page);
1417 }
1418 
1419 /* Returns the number of bits needed for the number of bytes in a page */
1420 static inline unsigned int page_shift(struct page *page)
1421 {
1422 	return PAGE_SHIFT + compound_order(page);
1423 }
1424 
1425 /**
1426  * thp_order - Order of a transparent huge page.
1427  * @page: Head page of a transparent huge page.
1428  */
1429 static inline unsigned int thp_order(struct page *page)
1430 {
1431 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1432 	return compound_order(page);
1433 }
1434 
1435 /**
1436  * thp_size - Size of a transparent huge page.
1437  * @page: Head page of a transparent huge page.
1438  *
1439  * Return: Number of bytes in this page.
1440  */
1441 static inline unsigned long thp_size(struct page *page)
1442 {
1443 	return PAGE_SIZE << thp_order(page);
1444 }
1445 
1446 #ifdef CONFIG_MMU
1447 /*
1448  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1449  * servicing faults for write access.  In the normal case, do always want
1450  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1451  * that do not have writing enabled, when used by access_process_vm.
1452  */
1453 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1454 {
1455 	if (likely(vma->vm_flags & VM_WRITE))
1456 		pte = pte_mkwrite(pte, vma);
1457 	return pte;
1458 }
1459 
1460 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1461 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1462 		struct page *page, unsigned int nr, unsigned long addr);
1463 
1464 vm_fault_t finish_fault(struct vm_fault *vmf);
1465 #endif
1466 
1467 /*
1468  * Multiple processes may "see" the same page. E.g. for untouched
1469  * mappings of /dev/null, all processes see the same page full of
1470  * zeroes, and text pages of executables and shared libraries have
1471  * only one copy in memory, at most, normally.
1472  *
1473  * For the non-reserved pages, page_count(page) denotes a reference count.
1474  *   page_count() == 0 means the page is free. page->lru is then used for
1475  *   freelist management in the buddy allocator.
1476  *   page_count() > 0  means the page has been allocated.
1477  *
1478  * Pages are allocated by the slab allocator in order to provide memory
1479  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1480  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1481  * unless a particular usage is carefully commented. (the responsibility of
1482  * freeing the kmalloc memory is the caller's, of course).
1483  *
1484  * A page may be used by anyone else who does a __get_free_page().
1485  * In this case, page_count still tracks the references, and should only
1486  * be used through the normal accessor functions. The top bits of page->flags
1487  * and page->virtual store page management information, but all other fields
1488  * are unused and could be used privately, carefully. The management of this
1489  * page is the responsibility of the one who allocated it, and those who have
1490  * subsequently been given references to it.
1491  *
1492  * The other pages (we may call them "pagecache pages") are completely
1493  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1494  * The following discussion applies only to them.
1495  *
1496  * A pagecache page contains an opaque `private' member, which belongs to the
1497  * page's address_space. Usually, this is the address of a circular list of
1498  * the page's disk buffers. PG_private must be set to tell the VM to call
1499  * into the filesystem to release these pages.
1500  *
1501  * A page may belong to an inode's memory mapping. In this case, page->mapping
1502  * is the pointer to the inode, and page->index is the file offset of the page,
1503  * in units of PAGE_SIZE.
1504  *
1505  * If pagecache pages are not associated with an inode, they are said to be
1506  * anonymous pages. These may become associated with the swapcache, and in that
1507  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1508  *
1509  * In either case (swapcache or inode backed), the pagecache itself holds one
1510  * reference to the page. Setting PG_private should also increment the
1511  * refcount. The each user mapping also has a reference to the page.
1512  *
1513  * The pagecache pages are stored in a per-mapping radix tree, which is
1514  * rooted at mapping->i_pages, and indexed by offset.
1515  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1516  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1517  *
1518  * All pagecache pages may be subject to I/O:
1519  * - inode pages may need to be read from disk,
1520  * - inode pages which have been modified and are MAP_SHARED may need
1521  *   to be written back to the inode on disk,
1522  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1523  *   modified may need to be swapped out to swap space and (later) to be read
1524  *   back into memory.
1525  */
1526 
1527 /* 127: arbitrary random number, small enough to assemble well */
1528 #define folio_ref_zero_or_close_to_overflow(folio) \
1529 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1530 
1531 /**
1532  * folio_get - Increment the reference count on a folio.
1533  * @folio: The folio.
1534  *
1535  * Context: May be called in any context, as long as you know that
1536  * you have a refcount on the folio.  If you do not already have one,
1537  * folio_try_get() may be the right interface for you to use.
1538  */
1539 static inline void folio_get(struct folio *folio)
1540 {
1541 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1542 	folio_ref_inc(folio);
1543 }
1544 
1545 static inline void get_page(struct page *page)
1546 {
1547 	struct folio *folio = page_folio(page);
1548 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1549 		return;
1550 	folio_get(folio);
1551 }
1552 
1553 static inline __must_check bool try_get_page(struct page *page)
1554 {
1555 	page = compound_head(page);
1556 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1557 		return false;
1558 	page_ref_inc(page);
1559 	return true;
1560 }
1561 
1562 /**
1563  * folio_put - Decrement the reference count on a folio.
1564  * @folio: The folio.
1565  *
1566  * If the folio's reference count reaches zero, the memory will be
1567  * released back to the page allocator and may be used by another
1568  * allocation immediately.  Do not access the memory or the struct folio
1569  * after calling folio_put() unless you can be sure that it wasn't the
1570  * last reference.
1571  *
1572  * Context: May be called in process or interrupt context, but not in NMI
1573  * context.  May be called while holding a spinlock.
1574  */
1575 static inline void folio_put(struct folio *folio)
1576 {
1577 	if (folio_put_testzero(folio))
1578 		__folio_put(folio);
1579 }
1580 
1581 /**
1582  * folio_put_refs - Reduce the reference count on a folio.
1583  * @folio: The folio.
1584  * @refs: The amount to subtract from the folio's reference count.
1585  *
1586  * If the folio's reference count reaches zero, the memory will be
1587  * released back to the page allocator and may be used by another
1588  * allocation immediately.  Do not access the memory or the struct folio
1589  * after calling folio_put_refs() unless you can be sure that these weren't
1590  * the last references.
1591  *
1592  * Context: May be called in process or interrupt context, but not in NMI
1593  * context.  May be called while holding a spinlock.
1594  */
1595 static inline void folio_put_refs(struct folio *folio, int refs)
1596 {
1597 	if (folio_ref_sub_and_test(folio, refs))
1598 		__folio_put(folio);
1599 }
1600 
1601 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1602 
1603 /*
1604  * union release_pages_arg - an array of pages or folios
1605  *
1606  * release_pages() releases a simple array of multiple pages, and
1607  * accepts various different forms of said page array: either
1608  * a regular old boring array of pages, an array of folios, or
1609  * an array of encoded page pointers.
1610  *
1611  * The transparent union syntax for this kind of "any of these
1612  * argument types" is all kinds of ugly, so look away.
1613  */
1614 typedef union {
1615 	struct page **pages;
1616 	struct folio **folios;
1617 	struct encoded_page **encoded_pages;
1618 } release_pages_arg __attribute__ ((__transparent_union__));
1619 
1620 void release_pages(release_pages_arg, int nr);
1621 
1622 /**
1623  * folios_put - Decrement the reference count on an array of folios.
1624  * @folios: The folios.
1625  *
1626  * Like folio_put(), but for a batch of folios.  This is more efficient
1627  * than writing the loop yourself as it will optimise the locks which need
1628  * to be taken if the folios are freed.  The folios batch is returned
1629  * empty and ready to be reused for another batch; there is no need to
1630  * reinitialise it.
1631  *
1632  * Context: May be called in process or interrupt context, but not in NMI
1633  * context.  May be called while holding a spinlock.
1634  */
1635 static inline void folios_put(struct folio_batch *folios)
1636 {
1637 	folios_put_refs(folios, NULL);
1638 }
1639 
1640 static inline void put_page(struct page *page)
1641 {
1642 	struct folio *folio = page_folio(page);
1643 
1644 	if (folio_test_slab(folio))
1645 		return;
1646 
1647 	folio_put(folio);
1648 }
1649 
1650 /*
1651  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1652  * the page's refcount so that two separate items are tracked: the original page
1653  * reference count, and also a new count of how many pin_user_pages() calls were
1654  * made against the page. ("gup-pinned" is another term for the latter).
1655  *
1656  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1657  * distinct from normal pages. As such, the unpin_user_page() call (and its
1658  * variants) must be used in order to release gup-pinned pages.
1659  *
1660  * Choice of value:
1661  *
1662  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1663  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1664  * simpler, due to the fact that adding an even power of two to the page
1665  * refcount has the effect of using only the upper N bits, for the code that
1666  * counts up using the bias value. This means that the lower bits are left for
1667  * the exclusive use of the original code that increments and decrements by one
1668  * (or at least, by much smaller values than the bias value).
1669  *
1670  * Of course, once the lower bits overflow into the upper bits (and this is
1671  * OK, because subtraction recovers the original values), then visual inspection
1672  * no longer suffices to directly view the separate counts. However, for normal
1673  * applications that don't have huge page reference counts, this won't be an
1674  * issue.
1675  *
1676  * Locking: the lockless algorithm described in folio_try_get_rcu()
1677  * provides safe operation for get_user_pages(), folio_mkclean() and
1678  * other calls that race to set up page table entries.
1679  */
1680 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1681 
1682 void unpin_user_page(struct page *page);
1683 void unpin_folio(struct folio *folio);
1684 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1685 				 bool make_dirty);
1686 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1687 				      bool make_dirty);
1688 void unpin_user_pages(struct page **pages, unsigned long npages);
1689 void unpin_user_folio(struct folio *folio, unsigned long npages);
1690 void unpin_folios(struct folio **folios, unsigned long nfolios);
1691 
1692 static inline bool is_cow_mapping(vm_flags_t flags)
1693 {
1694 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1695 }
1696 
1697 #ifndef CONFIG_MMU
1698 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1699 {
1700 	/*
1701 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1702 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1703 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1704 	 * underlying memory if ptrace is active, so this is only possible if
1705 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1706 	 * write permissions later.
1707 	 */
1708 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1709 }
1710 #endif
1711 
1712 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1713 #define SECTION_IN_PAGE_FLAGS
1714 #endif
1715 
1716 /*
1717  * The identification function is mainly used by the buddy allocator for
1718  * determining if two pages could be buddies. We are not really identifying
1719  * the zone since we could be using the section number id if we do not have
1720  * node id available in page flags.
1721  * We only guarantee that it will return the same value for two combinable
1722  * pages in a zone.
1723  */
1724 static inline int page_zone_id(struct page *page)
1725 {
1726 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1727 }
1728 
1729 #ifdef NODE_NOT_IN_PAGE_FLAGS
1730 int page_to_nid(const struct page *page);
1731 #else
1732 static inline int page_to_nid(const struct page *page)
1733 {
1734 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1735 }
1736 #endif
1737 
1738 static inline int folio_nid(const struct folio *folio)
1739 {
1740 	return page_to_nid(&folio->page);
1741 }
1742 
1743 #ifdef CONFIG_NUMA_BALANCING
1744 /* page access time bits needs to hold at least 4 seconds */
1745 #define PAGE_ACCESS_TIME_MIN_BITS	12
1746 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1747 #define PAGE_ACCESS_TIME_BUCKETS				\
1748 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1749 #else
1750 #define PAGE_ACCESS_TIME_BUCKETS	0
1751 #endif
1752 
1753 #define PAGE_ACCESS_TIME_MASK				\
1754 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1755 
1756 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1757 {
1758 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1759 }
1760 
1761 static inline int cpupid_to_pid(int cpupid)
1762 {
1763 	return cpupid & LAST__PID_MASK;
1764 }
1765 
1766 static inline int cpupid_to_cpu(int cpupid)
1767 {
1768 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1769 }
1770 
1771 static inline int cpupid_to_nid(int cpupid)
1772 {
1773 	return cpu_to_node(cpupid_to_cpu(cpupid));
1774 }
1775 
1776 static inline bool cpupid_pid_unset(int cpupid)
1777 {
1778 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1779 }
1780 
1781 static inline bool cpupid_cpu_unset(int cpupid)
1782 {
1783 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1784 }
1785 
1786 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1787 {
1788 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1789 }
1790 
1791 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1792 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1793 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1794 {
1795 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1796 }
1797 
1798 static inline int folio_last_cpupid(struct folio *folio)
1799 {
1800 	return folio->_last_cpupid;
1801 }
1802 static inline void page_cpupid_reset_last(struct page *page)
1803 {
1804 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1805 }
1806 #else
1807 static inline int folio_last_cpupid(struct folio *folio)
1808 {
1809 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1810 }
1811 
1812 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1813 
1814 static inline void page_cpupid_reset_last(struct page *page)
1815 {
1816 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1817 }
1818 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1819 
1820 static inline int folio_xchg_access_time(struct folio *folio, int time)
1821 {
1822 	int last_time;
1823 
1824 	last_time = folio_xchg_last_cpupid(folio,
1825 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1826 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1827 }
1828 
1829 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1830 {
1831 	unsigned int pid_bit;
1832 
1833 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1834 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1835 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1836 	}
1837 }
1838 
1839 bool folio_use_access_time(struct folio *folio);
1840 #else /* !CONFIG_NUMA_BALANCING */
1841 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1842 {
1843 	return folio_nid(folio); /* XXX */
1844 }
1845 
1846 static inline int folio_xchg_access_time(struct folio *folio, int time)
1847 {
1848 	return 0;
1849 }
1850 
1851 static inline int folio_last_cpupid(struct folio *folio)
1852 {
1853 	return folio_nid(folio); /* XXX */
1854 }
1855 
1856 static inline int cpupid_to_nid(int cpupid)
1857 {
1858 	return -1;
1859 }
1860 
1861 static inline int cpupid_to_pid(int cpupid)
1862 {
1863 	return -1;
1864 }
1865 
1866 static inline int cpupid_to_cpu(int cpupid)
1867 {
1868 	return -1;
1869 }
1870 
1871 static inline int cpu_pid_to_cpupid(int nid, int pid)
1872 {
1873 	return -1;
1874 }
1875 
1876 static inline bool cpupid_pid_unset(int cpupid)
1877 {
1878 	return true;
1879 }
1880 
1881 static inline void page_cpupid_reset_last(struct page *page)
1882 {
1883 }
1884 
1885 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1886 {
1887 	return false;
1888 }
1889 
1890 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1891 {
1892 }
1893 static inline bool folio_use_access_time(struct folio *folio)
1894 {
1895 	return false;
1896 }
1897 #endif /* CONFIG_NUMA_BALANCING */
1898 
1899 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1900 
1901 /*
1902  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1903  * setting tags for all pages to native kernel tag value 0xff, as the default
1904  * value 0x00 maps to 0xff.
1905  */
1906 
1907 static inline u8 page_kasan_tag(const struct page *page)
1908 {
1909 	u8 tag = KASAN_TAG_KERNEL;
1910 
1911 	if (kasan_enabled()) {
1912 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1913 		tag ^= 0xff;
1914 	}
1915 
1916 	return tag;
1917 }
1918 
1919 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1920 {
1921 	unsigned long old_flags, flags;
1922 
1923 	if (!kasan_enabled())
1924 		return;
1925 
1926 	tag ^= 0xff;
1927 	old_flags = READ_ONCE(page->flags);
1928 	do {
1929 		flags = old_flags;
1930 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1931 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1932 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1933 }
1934 
1935 static inline void page_kasan_tag_reset(struct page *page)
1936 {
1937 	if (kasan_enabled())
1938 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1939 }
1940 
1941 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1942 
1943 static inline u8 page_kasan_tag(const struct page *page)
1944 {
1945 	return 0xff;
1946 }
1947 
1948 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1949 static inline void page_kasan_tag_reset(struct page *page) { }
1950 
1951 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1952 
1953 static inline struct zone *page_zone(const struct page *page)
1954 {
1955 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1956 }
1957 
1958 static inline pg_data_t *page_pgdat(const struct page *page)
1959 {
1960 	return NODE_DATA(page_to_nid(page));
1961 }
1962 
1963 static inline struct zone *folio_zone(const struct folio *folio)
1964 {
1965 	return page_zone(&folio->page);
1966 }
1967 
1968 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1969 {
1970 	return page_pgdat(&folio->page);
1971 }
1972 
1973 #ifdef SECTION_IN_PAGE_FLAGS
1974 static inline void set_page_section(struct page *page, unsigned long section)
1975 {
1976 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1977 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1978 }
1979 
1980 static inline unsigned long page_to_section(const struct page *page)
1981 {
1982 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1983 }
1984 #endif
1985 
1986 /**
1987  * folio_pfn - Return the Page Frame Number of a folio.
1988  * @folio: The folio.
1989  *
1990  * A folio may contain multiple pages.  The pages have consecutive
1991  * Page Frame Numbers.
1992  *
1993  * Return: The Page Frame Number of the first page in the folio.
1994  */
1995 static inline unsigned long folio_pfn(const struct folio *folio)
1996 {
1997 	return page_to_pfn(&folio->page);
1998 }
1999 
2000 static inline struct folio *pfn_folio(unsigned long pfn)
2001 {
2002 	return page_folio(pfn_to_page(pfn));
2003 }
2004 
2005 static inline bool folio_has_pincount(const struct folio *folio)
2006 {
2007 	if (IS_ENABLED(CONFIG_64BIT))
2008 		return folio_test_large(folio);
2009 	return folio_order(folio) > 1;
2010 }
2011 
2012 /**
2013  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2014  * @folio: The folio.
2015  *
2016  * This function checks if a folio has been pinned via a call to
2017  * a function in the pin_user_pages() family.
2018  *
2019  * For small folios, the return value is partially fuzzy: false is not fuzzy,
2020  * because it means "definitely not pinned for DMA", but true means "probably
2021  * pinned for DMA, but possibly a false positive due to having at least
2022  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2023  *
2024  * False positives are OK, because: a) it's unlikely for a folio to
2025  * get that many refcounts, and b) all the callers of this routine are
2026  * expected to be able to deal gracefully with a false positive.
2027  *
2028  * For most large folios, the result will be exactly correct. That's because
2029  * we have more tracking data available: the _pincount field is used
2030  * instead of the GUP_PIN_COUNTING_BIAS scheme.
2031  *
2032  * For more information, please see Documentation/core-api/pin_user_pages.rst.
2033  *
2034  * Return: True, if it is likely that the folio has been "dma-pinned".
2035  * False, if the folio is definitely not dma-pinned.
2036  */
2037 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2038 {
2039 	if (folio_has_pincount(folio))
2040 		return atomic_read(&folio->_pincount) > 0;
2041 
2042 	/*
2043 	 * folio_ref_count() is signed. If that refcount overflows, then
2044 	 * folio_ref_count() returns a negative value, and callers will avoid
2045 	 * further incrementing the refcount.
2046 	 *
2047 	 * Here, for that overflow case, use the sign bit to count a little
2048 	 * bit higher via unsigned math, and thus still get an accurate result.
2049 	 */
2050 	return ((unsigned int)folio_ref_count(folio)) >=
2051 		GUP_PIN_COUNTING_BIAS;
2052 }
2053 
2054 /*
2055  * This should most likely only be called during fork() to see whether we
2056  * should break the cow immediately for an anon page on the src mm.
2057  *
2058  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2059  */
2060 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2061 					  struct folio *folio)
2062 {
2063 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2064 
2065 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
2066 		return false;
2067 
2068 	return folio_maybe_dma_pinned(folio);
2069 }
2070 
2071 /**
2072  * is_zero_page - Query if a page is a zero page
2073  * @page: The page to query
2074  *
2075  * This returns true if @page is one of the permanent zero pages.
2076  */
2077 static inline bool is_zero_page(const struct page *page)
2078 {
2079 	return is_zero_pfn(page_to_pfn(page));
2080 }
2081 
2082 /**
2083  * is_zero_folio - Query if a folio is a zero page
2084  * @folio: The folio to query
2085  *
2086  * This returns true if @folio is one of the permanent zero pages.
2087  */
2088 static inline bool is_zero_folio(const struct folio *folio)
2089 {
2090 	return is_zero_page(&folio->page);
2091 }
2092 
2093 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2094 #ifdef CONFIG_MIGRATION
2095 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2096 {
2097 #ifdef CONFIG_CMA
2098 	int mt = folio_migratetype(folio);
2099 
2100 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2101 		return false;
2102 #endif
2103 	/* The zero page can be "pinned" but gets special handling. */
2104 	if (is_zero_folio(folio))
2105 		return true;
2106 
2107 	/* Coherent device memory must always allow eviction. */
2108 	if (folio_is_device_coherent(folio))
2109 		return false;
2110 
2111 	/*
2112 	 * Filesystems can only tolerate transient delays to truncate and
2113 	 * hole-punch operations
2114 	 */
2115 	if (folio_is_fsdax(folio))
2116 		return false;
2117 
2118 	/* Otherwise, non-movable zone folios can be pinned. */
2119 	return !folio_is_zone_movable(folio);
2120 
2121 }
2122 #else
2123 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2124 {
2125 	return true;
2126 }
2127 #endif
2128 
2129 static inline void set_page_zone(struct page *page, enum zone_type zone)
2130 {
2131 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2132 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2133 }
2134 
2135 static inline void set_page_node(struct page *page, unsigned long node)
2136 {
2137 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2138 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2139 }
2140 
2141 static inline void set_page_links(struct page *page, enum zone_type zone,
2142 	unsigned long node, unsigned long pfn)
2143 {
2144 	set_page_zone(page, zone);
2145 	set_page_node(page, node);
2146 #ifdef SECTION_IN_PAGE_FLAGS
2147 	set_page_section(page, pfn_to_section_nr(pfn));
2148 #endif
2149 }
2150 
2151 /**
2152  * folio_nr_pages - The number of pages in the folio.
2153  * @folio: The folio.
2154  *
2155  * Return: A positive power of two.
2156  */
2157 static inline long folio_nr_pages(const struct folio *folio)
2158 {
2159 	if (!folio_test_large(folio))
2160 		return 1;
2161 	return folio_large_nr_pages(folio);
2162 }
2163 
2164 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2165 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2166 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2167 #else
2168 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2169 #endif
2170 
2171 /*
2172  * compound_nr() returns the number of pages in this potentially compound
2173  * page.  compound_nr() can be called on a tail page, and is defined to
2174  * return 1 in that case.
2175  */
2176 static inline long compound_nr(struct page *page)
2177 {
2178 	struct folio *folio = (struct folio *)page;
2179 
2180 	if (!test_bit(PG_head, &folio->flags))
2181 		return 1;
2182 	return folio_large_nr_pages(folio);
2183 }
2184 
2185 /**
2186  * thp_nr_pages - The number of regular pages in this huge page.
2187  * @page: The head page of a huge page.
2188  */
2189 static inline long thp_nr_pages(struct page *page)
2190 {
2191 	return folio_nr_pages((struct folio *)page);
2192 }
2193 
2194 /**
2195  * folio_next - Move to the next physical folio.
2196  * @folio: The folio we're currently operating on.
2197  *
2198  * If you have physically contiguous memory which may span more than
2199  * one folio (eg a &struct bio_vec), use this function to move from one
2200  * folio to the next.  Do not use it if the memory is only virtually
2201  * contiguous as the folios are almost certainly not adjacent to each
2202  * other.  This is the folio equivalent to writing ``page++``.
2203  *
2204  * Context: We assume that the folios are refcounted and/or locked at a
2205  * higher level and do not adjust the reference counts.
2206  * Return: The next struct folio.
2207  */
2208 static inline struct folio *folio_next(struct folio *folio)
2209 {
2210 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2211 }
2212 
2213 /**
2214  * folio_shift - The size of the memory described by this folio.
2215  * @folio: The folio.
2216  *
2217  * A folio represents a number of bytes which is a power-of-two in size.
2218  * This function tells you which power-of-two the folio is.  See also
2219  * folio_size() and folio_order().
2220  *
2221  * Context: The caller should have a reference on the folio to prevent
2222  * it from being split.  It is not necessary for the folio to be locked.
2223  * Return: The base-2 logarithm of the size of this folio.
2224  */
2225 static inline unsigned int folio_shift(const struct folio *folio)
2226 {
2227 	return PAGE_SHIFT + folio_order(folio);
2228 }
2229 
2230 /**
2231  * folio_size - The number of bytes in a folio.
2232  * @folio: The folio.
2233  *
2234  * Context: The caller should have a reference on the folio to prevent
2235  * it from being split.  It is not necessary for the folio to be locked.
2236  * Return: The number of bytes in this folio.
2237  */
2238 static inline size_t folio_size(const struct folio *folio)
2239 {
2240 	return PAGE_SIZE << folio_order(folio);
2241 }
2242 
2243 /**
2244  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2245  *			       tables of more than one MM
2246  * @folio: The folio.
2247  *
2248  * This function checks if the folio maybe currently mapped into more than one
2249  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2250  * MM ("mapped exclusively").
2251  *
2252  * For KSM folios, this function also returns "mapped shared" when a folio is
2253  * mapped multiple times into the same MM, because the individual page mappings
2254  * are independent.
2255  *
2256  * For small anonymous folios and anonymous hugetlb folios, the return
2257  * value will be exactly correct: non-KSM folios can only be mapped at most once
2258  * into an MM, and they cannot be partially mapped. KSM folios are
2259  * considered shared even if mapped multiple times into the same MM.
2260  *
2261  * For other folios, the result can be fuzzy:
2262  *    #. For partially-mappable large folios (THP), the return value can wrongly
2263  *       indicate "mapped shared" (false positive) if a folio was mapped by
2264  *       more than two MMs at one point in time.
2265  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2266  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2267  *       cover the same file range.
2268  *
2269  * Further, this function only considers current page table mappings that
2270  * are tracked using the folio mapcount(s).
2271  *
2272  * This function does not consider:
2273  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2274  *       pagecache, temporary unmapping for migration).
2275  *    #. If the folio is mapped differently (VM_PFNMAP).
2276  *    #. If hugetlb page table sharing applies. Callers might want to check
2277  *       hugetlb_pmd_shared().
2278  *
2279  * Return: Whether the folio is estimated to be mapped into more than one MM.
2280  */
2281 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2282 {
2283 	int mapcount = folio_mapcount(folio);
2284 
2285 	/* Only partially-mappable folios require more care. */
2286 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2287 		return mapcount > 1;
2288 
2289 	/*
2290 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2291 	 * simply assume "mapped shared", nobody should really care
2292 	 * about this for arbitrary kernel allocations.
2293 	 */
2294 	if (!IS_ENABLED(CONFIG_MM_ID))
2295 		return true;
2296 
2297 	/*
2298 	 * A single mapping implies "mapped exclusively", even if the
2299 	 * folio flag says something different: it's easier to handle this
2300 	 * case here instead of on the RMAP hot path.
2301 	 */
2302 	if (mapcount <= 1)
2303 		return false;
2304 	return folio_test_large_maybe_mapped_shared(folio);
2305 }
2306 
2307 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2308 static inline int arch_make_folio_accessible(struct folio *folio)
2309 {
2310 	return 0;
2311 }
2312 #endif
2313 
2314 /*
2315  * Some inline functions in vmstat.h depend on page_zone()
2316  */
2317 #include <linux/vmstat.h>
2318 
2319 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2320 #define HASHED_PAGE_VIRTUAL
2321 #endif
2322 
2323 #if defined(WANT_PAGE_VIRTUAL)
2324 static inline void *page_address(const struct page *page)
2325 {
2326 	return page->virtual;
2327 }
2328 static inline void set_page_address(struct page *page, void *address)
2329 {
2330 	page->virtual = address;
2331 }
2332 #define page_address_init()  do { } while(0)
2333 #endif
2334 
2335 #if defined(HASHED_PAGE_VIRTUAL)
2336 void *page_address(const struct page *page);
2337 void set_page_address(struct page *page, void *virtual);
2338 void page_address_init(void);
2339 #endif
2340 
2341 static __always_inline void *lowmem_page_address(const struct page *page)
2342 {
2343 	return page_to_virt(page);
2344 }
2345 
2346 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2347 #define page_address(page) lowmem_page_address(page)
2348 #define set_page_address(page, address)  do { } while(0)
2349 #define page_address_init()  do { } while(0)
2350 #endif
2351 
2352 static inline void *folio_address(const struct folio *folio)
2353 {
2354 	return page_address(&folio->page);
2355 }
2356 
2357 /*
2358  * Return true only if the page has been allocated with
2359  * ALLOC_NO_WATERMARKS and the low watermark was not
2360  * met implying that the system is under some pressure.
2361  */
2362 static inline bool page_is_pfmemalloc(const struct page *page)
2363 {
2364 	/*
2365 	 * lru.next has bit 1 set if the page is allocated from the
2366 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2367 	 * they do not need to preserve that information.
2368 	 */
2369 	return (uintptr_t)page->lru.next & BIT(1);
2370 }
2371 
2372 /*
2373  * Return true only if the folio has been allocated with
2374  * ALLOC_NO_WATERMARKS and the low watermark was not
2375  * met implying that the system is under some pressure.
2376  */
2377 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2378 {
2379 	/*
2380 	 * lru.next has bit 1 set if the page is allocated from the
2381 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2382 	 * they do not need to preserve that information.
2383 	 */
2384 	return (uintptr_t)folio->lru.next & BIT(1);
2385 }
2386 
2387 /*
2388  * Only to be called by the page allocator on a freshly allocated
2389  * page.
2390  */
2391 static inline void set_page_pfmemalloc(struct page *page)
2392 {
2393 	page->lru.next = (void *)BIT(1);
2394 }
2395 
2396 static inline void clear_page_pfmemalloc(struct page *page)
2397 {
2398 	page->lru.next = NULL;
2399 }
2400 
2401 /*
2402  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2403  */
2404 extern void pagefault_out_of_memory(void);
2405 
2406 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2407 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2408 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2409 
2410 /*
2411  * Parameter block passed down to zap_pte_range in exceptional cases.
2412  */
2413 struct zap_details {
2414 	struct folio *single_folio;	/* Locked folio to be unmapped */
2415 	bool even_cows;			/* Zap COWed private pages too? */
2416 	bool reclaim_pt;		/* Need reclaim page tables? */
2417 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2418 };
2419 
2420 /*
2421  * Whether to drop the pte markers, for example, the uffd-wp information for
2422  * file-backed memory.  This should only be specified when we will completely
2423  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2424  * default, the flag is not set.
2425  */
2426 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2427 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2428 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2429 
2430 #ifdef CONFIG_SCHED_MM_CID
2431 void sched_mm_cid_before_execve(struct task_struct *t);
2432 void sched_mm_cid_after_execve(struct task_struct *t);
2433 void sched_mm_cid_fork(struct task_struct *t);
2434 void sched_mm_cid_exit_signals(struct task_struct *t);
2435 static inline int task_mm_cid(struct task_struct *t)
2436 {
2437 	return t->mm_cid;
2438 }
2439 #else
2440 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2441 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2442 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2443 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2444 static inline int task_mm_cid(struct task_struct *t)
2445 {
2446 	/*
2447 	 * Use the processor id as a fall-back when the mm cid feature is
2448 	 * disabled. This provides functional per-cpu data structure accesses
2449 	 * in user-space, althrough it won't provide the memory usage benefits.
2450 	 */
2451 	return raw_smp_processor_id();
2452 }
2453 #endif
2454 
2455 #ifdef CONFIG_MMU
2456 extern bool can_do_mlock(void);
2457 #else
2458 static inline bool can_do_mlock(void) { return false; }
2459 #endif
2460 extern int user_shm_lock(size_t, struct ucounts *);
2461 extern void user_shm_unlock(size_t, struct ucounts *);
2462 
2463 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2464 			     pte_t pte);
2465 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2466 			     pte_t pte);
2467 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2468 				  unsigned long addr, pmd_t pmd);
2469 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2470 				pmd_t pmd);
2471 
2472 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2473 		  unsigned long size);
2474 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2475 			   unsigned long size, struct zap_details *details);
2476 static inline void zap_vma_pages(struct vm_area_struct *vma)
2477 {
2478 	zap_page_range_single(vma, vma->vm_start,
2479 			      vma->vm_end - vma->vm_start, NULL);
2480 }
2481 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2482 		struct vm_area_struct *start_vma, unsigned long start,
2483 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2484 
2485 struct mmu_notifier_range;
2486 
2487 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2488 		unsigned long end, unsigned long floor, unsigned long ceiling);
2489 int
2490 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2491 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2492 			void *buf, int len, int write);
2493 
2494 struct follow_pfnmap_args {
2495 	/**
2496 	 * Inputs:
2497 	 * @vma: Pointer to @vm_area_struct struct
2498 	 * @address: the virtual address to walk
2499 	 */
2500 	struct vm_area_struct *vma;
2501 	unsigned long address;
2502 	/**
2503 	 * Internals:
2504 	 *
2505 	 * The caller shouldn't touch any of these.
2506 	 */
2507 	spinlock_t *lock;
2508 	pte_t *ptep;
2509 	/**
2510 	 * Outputs:
2511 	 *
2512 	 * @pfn: the PFN of the address
2513 	 * @pgprot: the pgprot_t of the mapping
2514 	 * @writable: whether the mapping is writable
2515 	 * @special: whether the mapping is a special mapping (real PFN maps)
2516 	 */
2517 	unsigned long pfn;
2518 	pgprot_t pgprot;
2519 	bool writable;
2520 	bool special;
2521 };
2522 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2523 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2524 
2525 extern void truncate_pagecache(struct inode *inode, loff_t new);
2526 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2527 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2528 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2529 int generic_error_remove_folio(struct address_space *mapping,
2530 		struct folio *folio);
2531 
2532 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2533 		unsigned long address, struct pt_regs *regs);
2534 
2535 #ifdef CONFIG_MMU
2536 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2537 				  unsigned long address, unsigned int flags,
2538 				  struct pt_regs *regs);
2539 extern int fixup_user_fault(struct mm_struct *mm,
2540 			    unsigned long address, unsigned int fault_flags,
2541 			    bool *unlocked);
2542 void unmap_mapping_pages(struct address_space *mapping,
2543 		pgoff_t start, pgoff_t nr, bool even_cows);
2544 void unmap_mapping_range(struct address_space *mapping,
2545 		loff_t const holebegin, loff_t const holelen, int even_cows);
2546 #else
2547 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2548 					 unsigned long address, unsigned int flags,
2549 					 struct pt_regs *regs)
2550 {
2551 	/* should never happen if there's no MMU */
2552 	BUG();
2553 	return VM_FAULT_SIGBUS;
2554 }
2555 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2556 		unsigned int fault_flags, bool *unlocked)
2557 {
2558 	/* should never happen if there's no MMU */
2559 	BUG();
2560 	return -EFAULT;
2561 }
2562 static inline void unmap_mapping_pages(struct address_space *mapping,
2563 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2564 static inline void unmap_mapping_range(struct address_space *mapping,
2565 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2566 #endif
2567 
2568 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2569 		loff_t const holebegin, loff_t const holelen)
2570 {
2571 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2572 }
2573 
2574 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2575 						unsigned long addr);
2576 
2577 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2578 		void *buf, int len, unsigned int gup_flags);
2579 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2580 		void *buf, int len, unsigned int gup_flags);
2581 
2582 long get_user_pages_remote(struct mm_struct *mm,
2583 			   unsigned long start, unsigned long nr_pages,
2584 			   unsigned int gup_flags, struct page **pages,
2585 			   int *locked);
2586 long pin_user_pages_remote(struct mm_struct *mm,
2587 			   unsigned long start, unsigned long nr_pages,
2588 			   unsigned int gup_flags, struct page **pages,
2589 			   int *locked);
2590 
2591 /*
2592  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2593  */
2594 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2595 						    unsigned long addr,
2596 						    int gup_flags,
2597 						    struct vm_area_struct **vmap)
2598 {
2599 	struct page *page;
2600 	struct vm_area_struct *vma;
2601 	int got;
2602 
2603 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2604 		return ERR_PTR(-EINVAL);
2605 
2606 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2607 
2608 	if (got < 0)
2609 		return ERR_PTR(got);
2610 
2611 	vma = vma_lookup(mm, addr);
2612 	if (WARN_ON_ONCE(!vma)) {
2613 		put_page(page);
2614 		return ERR_PTR(-EINVAL);
2615 	}
2616 
2617 	*vmap = vma;
2618 	return page;
2619 }
2620 
2621 long get_user_pages(unsigned long start, unsigned long nr_pages,
2622 		    unsigned int gup_flags, struct page **pages);
2623 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2624 		    unsigned int gup_flags, struct page **pages);
2625 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2626 		    struct page **pages, unsigned int gup_flags);
2627 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2628 		    struct page **pages, unsigned int gup_flags);
2629 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2630 		      struct folio **folios, unsigned int max_folios,
2631 		      pgoff_t *offset);
2632 int folio_add_pins(struct folio *folio, unsigned int pins);
2633 
2634 int get_user_pages_fast(unsigned long start, int nr_pages,
2635 			unsigned int gup_flags, struct page **pages);
2636 int pin_user_pages_fast(unsigned long start, int nr_pages,
2637 			unsigned int gup_flags, struct page **pages);
2638 void folio_add_pin(struct folio *folio);
2639 
2640 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2641 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2642 			struct task_struct *task, bool bypass_rlim);
2643 
2644 struct kvec;
2645 struct page *get_dump_page(unsigned long addr);
2646 
2647 bool folio_mark_dirty(struct folio *folio);
2648 bool folio_mark_dirty_lock(struct folio *folio);
2649 bool set_page_dirty(struct page *page);
2650 int set_page_dirty_lock(struct page *page);
2651 
2652 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2653 
2654 /*
2655  * Flags used by change_protection().  For now we make it a bitmap so
2656  * that we can pass in multiple flags just like parameters.  However
2657  * for now all the callers are only use one of the flags at the same
2658  * time.
2659  */
2660 /*
2661  * Whether we should manually check if we can map individual PTEs writable,
2662  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2663  * PTEs automatically in a writable mapping.
2664  */
2665 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2666 /* Whether this protection change is for NUMA hints */
2667 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2668 /* Whether this change is for write protecting */
2669 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2670 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2671 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2672 					    MM_CP_UFFD_WP_RESOLVE)
2673 
2674 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2675 			     pte_t pte);
2676 extern long change_protection(struct mmu_gather *tlb,
2677 			      struct vm_area_struct *vma, unsigned long start,
2678 			      unsigned long end, unsigned long cp_flags);
2679 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2680 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2681 	  unsigned long start, unsigned long end, unsigned long newflags);
2682 
2683 /*
2684  * doesn't attempt to fault and will return short.
2685  */
2686 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2687 			     unsigned int gup_flags, struct page **pages);
2688 
2689 static inline bool get_user_page_fast_only(unsigned long addr,
2690 			unsigned int gup_flags, struct page **pagep)
2691 {
2692 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2693 }
2694 /*
2695  * per-process(per-mm_struct) statistics.
2696  */
2697 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2698 {
2699 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2700 }
2701 
2702 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2703 
2704 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2705 {
2706 	percpu_counter_add(&mm->rss_stat[member], value);
2707 
2708 	mm_trace_rss_stat(mm, member);
2709 }
2710 
2711 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2712 {
2713 	percpu_counter_inc(&mm->rss_stat[member]);
2714 
2715 	mm_trace_rss_stat(mm, member);
2716 }
2717 
2718 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2719 {
2720 	percpu_counter_dec(&mm->rss_stat[member]);
2721 
2722 	mm_trace_rss_stat(mm, member);
2723 }
2724 
2725 /* Optimized variant when folio is already known not to be anon */
2726 static inline int mm_counter_file(struct folio *folio)
2727 {
2728 	if (folio_test_swapbacked(folio))
2729 		return MM_SHMEMPAGES;
2730 	return MM_FILEPAGES;
2731 }
2732 
2733 static inline int mm_counter(struct folio *folio)
2734 {
2735 	if (folio_test_anon(folio))
2736 		return MM_ANONPAGES;
2737 	return mm_counter_file(folio);
2738 }
2739 
2740 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2741 {
2742 	return get_mm_counter(mm, MM_FILEPAGES) +
2743 		get_mm_counter(mm, MM_ANONPAGES) +
2744 		get_mm_counter(mm, MM_SHMEMPAGES);
2745 }
2746 
2747 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2748 {
2749 	return max(mm->hiwater_rss, get_mm_rss(mm));
2750 }
2751 
2752 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2753 {
2754 	return max(mm->hiwater_vm, mm->total_vm);
2755 }
2756 
2757 static inline void update_hiwater_rss(struct mm_struct *mm)
2758 {
2759 	unsigned long _rss = get_mm_rss(mm);
2760 
2761 	if ((mm)->hiwater_rss < _rss)
2762 		(mm)->hiwater_rss = _rss;
2763 }
2764 
2765 static inline void update_hiwater_vm(struct mm_struct *mm)
2766 {
2767 	if (mm->hiwater_vm < mm->total_vm)
2768 		mm->hiwater_vm = mm->total_vm;
2769 }
2770 
2771 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2772 {
2773 	mm->hiwater_rss = get_mm_rss(mm);
2774 }
2775 
2776 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2777 					 struct mm_struct *mm)
2778 {
2779 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2780 
2781 	if (*maxrss < hiwater_rss)
2782 		*maxrss = hiwater_rss;
2783 }
2784 
2785 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2786 static inline int pte_special(pte_t pte)
2787 {
2788 	return 0;
2789 }
2790 
2791 static inline pte_t pte_mkspecial(pte_t pte)
2792 {
2793 	return pte;
2794 }
2795 #endif
2796 
2797 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2798 static inline bool pmd_special(pmd_t pmd)
2799 {
2800 	return false;
2801 }
2802 
2803 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2804 {
2805 	return pmd;
2806 }
2807 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2808 
2809 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2810 static inline bool pud_special(pud_t pud)
2811 {
2812 	return false;
2813 }
2814 
2815 static inline pud_t pud_mkspecial(pud_t pud)
2816 {
2817 	return pud;
2818 }
2819 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2820 
2821 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2822 static inline int pte_devmap(pte_t pte)
2823 {
2824 	return 0;
2825 }
2826 #endif
2827 
2828 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2829 			       spinlock_t **ptl);
2830 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2831 				    spinlock_t **ptl)
2832 {
2833 	pte_t *ptep;
2834 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2835 	return ptep;
2836 }
2837 
2838 #ifdef __PAGETABLE_P4D_FOLDED
2839 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2840 						unsigned long address)
2841 {
2842 	return 0;
2843 }
2844 #else
2845 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2846 #endif
2847 
2848 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2849 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2850 						unsigned long address)
2851 {
2852 	return 0;
2853 }
2854 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2855 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2856 
2857 #else
2858 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2859 
2860 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2861 {
2862 	if (mm_pud_folded(mm))
2863 		return;
2864 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2865 }
2866 
2867 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2868 {
2869 	if (mm_pud_folded(mm))
2870 		return;
2871 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2872 }
2873 #endif
2874 
2875 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2876 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2877 						unsigned long address)
2878 {
2879 	return 0;
2880 }
2881 
2882 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2883 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2884 
2885 #else
2886 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2887 
2888 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2889 {
2890 	if (mm_pmd_folded(mm))
2891 		return;
2892 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2893 }
2894 
2895 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2896 {
2897 	if (mm_pmd_folded(mm))
2898 		return;
2899 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2900 }
2901 #endif
2902 
2903 #ifdef CONFIG_MMU
2904 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2905 {
2906 	atomic_long_set(&mm->pgtables_bytes, 0);
2907 }
2908 
2909 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2910 {
2911 	return atomic_long_read(&mm->pgtables_bytes);
2912 }
2913 
2914 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2915 {
2916 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2917 }
2918 
2919 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2920 {
2921 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2922 }
2923 #else
2924 
2925 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2926 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2927 {
2928 	return 0;
2929 }
2930 
2931 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2932 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2933 #endif
2934 
2935 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2936 int __pte_alloc_kernel(pmd_t *pmd);
2937 
2938 #if defined(CONFIG_MMU)
2939 
2940 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2941 		unsigned long address)
2942 {
2943 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2944 		NULL : p4d_offset(pgd, address);
2945 }
2946 
2947 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2948 		unsigned long address)
2949 {
2950 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2951 		NULL : pud_offset(p4d, address);
2952 }
2953 
2954 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2955 {
2956 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2957 		NULL: pmd_offset(pud, address);
2958 }
2959 #endif /* CONFIG_MMU */
2960 
2961 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2962 {
2963 	return page_ptdesc(virt_to_page(x));
2964 }
2965 
2966 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2967 {
2968 	return page_to_virt(ptdesc_page(pt));
2969 }
2970 
2971 static inline void *ptdesc_address(const struct ptdesc *pt)
2972 {
2973 	return folio_address(ptdesc_folio(pt));
2974 }
2975 
2976 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2977 {
2978 	return folio_test_reserved(ptdesc_folio(pt));
2979 }
2980 
2981 /**
2982  * pagetable_alloc - Allocate pagetables
2983  * @gfp:    GFP flags
2984  * @order:  desired pagetable order
2985  *
2986  * pagetable_alloc allocates memory for page tables as well as a page table
2987  * descriptor to describe that memory.
2988  *
2989  * Return: The ptdesc describing the allocated page tables.
2990  */
2991 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2992 {
2993 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2994 
2995 	return page_ptdesc(page);
2996 }
2997 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2998 
2999 /**
3000  * pagetable_free - Free pagetables
3001  * @pt:	The page table descriptor
3002  *
3003  * pagetable_free frees the memory of all page tables described by a page
3004  * table descriptor and the memory for the descriptor itself.
3005  */
3006 static inline void pagetable_free(struct ptdesc *pt)
3007 {
3008 	struct page *page = ptdesc_page(pt);
3009 
3010 	__free_pages(page, compound_order(page));
3011 }
3012 
3013 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3014 #if ALLOC_SPLIT_PTLOCKS
3015 void __init ptlock_cache_init(void);
3016 bool ptlock_alloc(struct ptdesc *ptdesc);
3017 void ptlock_free(struct ptdesc *ptdesc);
3018 
3019 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3020 {
3021 	return ptdesc->ptl;
3022 }
3023 #else /* ALLOC_SPLIT_PTLOCKS */
3024 static inline void ptlock_cache_init(void)
3025 {
3026 }
3027 
3028 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3029 {
3030 	return true;
3031 }
3032 
3033 static inline void ptlock_free(struct ptdesc *ptdesc)
3034 {
3035 }
3036 
3037 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3038 {
3039 	return &ptdesc->ptl;
3040 }
3041 #endif /* ALLOC_SPLIT_PTLOCKS */
3042 
3043 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3044 {
3045 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3046 }
3047 
3048 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3049 {
3050 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3051 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3052 	return ptlock_ptr(virt_to_ptdesc(pte));
3053 }
3054 
3055 static inline bool ptlock_init(struct ptdesc *ptdesc)
3056 {
3057 	/*
3058 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3059 	 * with 0. Make sure nobody took it in use in between.
3060 	 *
3061 	 * It can happen if arch try to use slab for page table allocation:
3062 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3063 	 */
3064 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3065 	if (!ptlock_alloc(ptdesc))
3066 		return false;
3067 	spin_lock_init(ptlock_ptr(ptdesc));
3068 	return true;
3069 }
3070 
3071 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3072 /*
3073  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3074  */
3075 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3076 {
3077 	return &mm->page_table_lock;
3078 }
3079 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3080 {
3081 	return &mm->page_table_lock;
3082 }
3083 static inline void ptlock_cache_init(void) {}
3084 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
3085 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3086 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3087 
3088 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3089 {
3090 	struct folio *folio = ptdesc_folio(ptdesc);
3091 
3092 	__folio_set_pgtable(folio);
3093 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3094 }
3095 
3096 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3097 {
3098 	struct folio *folio = ptdesc_folio(ptdesc);
3099 
3100 	ptlock_free(ptdesc);
3101 	__folio_clear_pgtable(folio);
3102 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3103 }
3104 
3105 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3106 {
3107 	pagetable_dtor(ptdesc);
3108 	pagetable_free(ptdesc);
3109 }
3110 
3111 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3112 {
3113 	if (!ptlock_init(ptdesc))
3114 		return false;
3115 	__pagetable_ctor(ptdesc);
3116 	return true;
3117 }
3118 
3119 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3120 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3121 			pmd_t *pmdvalp)
3122 {
3123 	pte_t *pte;
3124 
3125 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3126 	return pte;
3127 }
3128 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3129 {
3130 	return __pte_offset_map(pmd, addr, NULL);
3131 }
3132 
3133 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3134 			unsigned long addr, spinlock_t **ptlp);
3135 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3136 			unsigned long addr, spinlock_t **ptlp)
3137 {
3138 	pte_t *pte;
3139 
3140 	__cond_lock(RCU, __cond_lock(*ptlp,
3141 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3142 	return pte;
3143 }
3144 
3145 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3146 				unsigned long addr, spinlock_t **ptlp);
3147 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3148 				unsigned long addr, pmd_t *pmdvalp,
3149 				spinlock_t **ptlp);
3150 
3151 #define pte_unmap_unlock(pte, ptl)	do {		\
3152 	spin_unlock(ptl);				\
3153 	pte_unmap(pte);					\
3154 } while (0)
3155 
3156 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3157 
3158 #define pte_alloc_map(mm, pmd, address)			\
3159 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3160 
3161 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3162 	(pte_alloc(mm, pmd) ?			\
3163 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3164 
3165 #define pte_alloc_kernel(pmd, address)			\
3166 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3167 		NULL: pte_offset_kernel(pmd, address))
3168 
3169 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3170 
3171 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3172 {
3173 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3174 	return virt_to_page((void *)((unsigned long) pmd & mask));
3175 }
3176 
3177 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3178 {
3179 	return page_ptdesc(pmd_pgtable_page(pmd));
3180 }
3181 
3182 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3183 {
3184 	return ptlock_ptr(pmd_ptdesc(pmd));
3185 }
3186 
3187 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3188 {
3189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3190 	ptdesc->pmd_huge_pte = NULL;
3191 #endif
3192 	return ptlock_init(ptdesc);
3193 }
3194 
3195 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3196 
3197 #else
3198 
3199 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3200 {
3201 	return &mm->page_table_lock;
3202 }
3203 
3204 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3205 
3206 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3207 
3208 #endif
3209 
3210 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3211 {
3212 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3213 	spin_lock(ptl);
3214 	return ptl;
3215 }
3216 
3217 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3218 {
3219 	if (!pmd_ptlock_init(ptdesc))
3220 		return false;
3221 	ptdesc_pmd_pts_init(ptdesc);
3222 	__pagetable_ctor(ptdesc);
3223 	return true;
3224 }
3225 
3226 /*
3227  * No scalability reason to split PUD locks yet, but follow the same pattern
3228  * as the PMD locks to make it easier if we decide to.  The VM should not be
3229  * considered ready to switch to split PUD locks yet; there may be places
3230  * which need to be converted from page_table_lock.
3231  */
3232 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3233 {
3234 	return &mm->page_table_lock;
3235 }
3236 
3237 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3238 {
3239 	spinlock_t *ptl = pud_lockptr(mm, pud);
3240 
3241 	spin_lock(ptl);
3242 	return ptl;
3243 }
3244 
3245 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3246 {
3247 	__pagetable_ctor(ptdesc);
3248 }
3249 
3250 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3251 {
3252 	__pagetable_ctor(ptdesc);
3253 }
3254 
3255 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3256 {
3257 	__pagetable_ctor(ptdesc);
3258 }
3259 
3260 extern void __init pagecache_init(void);
3261 extern void free_initmem(void);
3262 
3263 /*
3264  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3265  * into the buddy system. The freed pages will be poisoned with pattern
3266  * "poison" if it's within range [0, UCHAR_MAX].
3267  * Return pages freed into the buddy system.
3268  */
3269 extern unsigned long free_reserved_area(void *start, void *end,
3270 					int poison, const char *s);
3271 
3272 extern void adjust_managed_page_count(struct page *page, long count);
3273 
3274 extern void reserve_bootmem_region(phys_addr_t start,
3275 				   phys_addr_t end, int nid);
3276 
3277 /* Free the reserved page into the buddy system, so it gets managed. */
3278 void free_reserved_page(struct page *page);
3279 
3280 static inline void mark_page_reserved(struct page *page)
3281 {
3282 	SetPageReserved(page);
3283 	adjust_managed_page_count(page, -1);
3284 }
3285 
3286 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3287 {
3288 	free_reserved_page(ptdesc_page(pt));
3289 }
3290 
3291 /*
3292  * Default method to free all the __init memory into the buddy system.
3293  * The freed pages will be poisoned with pattern "poison" if it's within
3294  * range [0, UCHAR_MAX].
3295  * Return pages freed into the buddy system.
3296  */
3297 static inline unsigned long free_initmem_default(int poison)
3298 {
3299 	extern char __init_begin[], __init_end[];
3300 
3301 	return free_reserved_area(&__init_begin, &__init_end,
3302 				  poison, "unused kernel image (initmem)");
3303 }
3304 
3305 static inline unsigned long get_num_physpages(void)
3306 {
3307 	int nid;
3308 	unsigned long phys_pages = 0;
3309 
3310 	for_each_online_node(nid)
3311 		phys_pages += node_present_pages(nid);
3312 
3313 	return phys_pages;
3314 }
3315 
3316 /*
3317  * Using memblock node mappings, an architecture may initialise its
3318  * zones, allocate the backing mem_map and account for memory holes in an
3319  * architecture independent manner.
3320  *
3321  * An architecture is expected to register range of page frames backed by
3322  * physical memory with memblock_add[_node]() before calling
3323  * free_area_init() passing in the PFN each zone ends at. At a basic
3324  * usage, an architecture is expected to do something like
3325  *
3326  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3327  * 							 max_highmem_pfn};
3328  * for_each_valid_physical_page_range()
3329  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3330  * free_area_init(max_zone_pfns);
3331  */
3332 void free_area_init(unsigned long *max_zone_pfn);
3333 unsigned long node_map_pfn_alignment(void);
3334 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3335 						unsigned long end_pfn);
3336 extern void get_pfn_range_for_nid(unsigned int nid,
3337 			unsigned long *start_pfn, unsigned long *end_pfn);
3338 
3339 #ifndef CONFIG_NUMA
3340 static inline int early_pfn_to_nid(unsigned long pfn)
3341 {
3342 	return 0;
3343 }
3344 #else
3345 /* please see mm/page_alloc.c */
3346 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3347 #endif
3348 
3349 extern void mem_init(void);
3350 extern void __init mmap_init(void);
3351 
3352 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3353 static inline void show_mem(void)
3354 {
3355 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3356 }
3357 extern long si_mem_available(void);
3358 extern void si_meminfo(struct sysinfo * val);
3359 extern void si_meminfo_node(struct sysinfo *val, int nid);
3360 
3361 extern __printf(3, 4)
3362 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3363 
3364 extern void setup_per_cpu_pageset(void);
3365 
3366 /* nommu.c */
3367 extern atomic_long_t mmap_pages_allocated;
3368 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3369 
3370 /* interval_tree.c */
3371 void vma_interval_tree_insert(struct vm_area_struct *node,
3372 			      struct rb_root_cached *root);
3373 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3374 				    struct vm_area_struct *prev,
3375 				    struct rb_root_cached *root);
3376 void vma_interval_tree_remove(struct vm_area_struct *node,
3377 			      struct rb_root_cached *root);
3378 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3379 				unsigned long start, unsigned long last);
3380 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3381 				unsigned long start, unsigned long last);
3382 
3383 #define vma_interval_tree_foreach(vma, root, start, last)		\
3384 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3385 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3386 
3387 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3388 				   struct rb_root_cached *root);
3389 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3390 				   struct rb_root_cached *root);
3391 struct anon_vma_chain *
3392 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3393 				  unsigned long start, unsigned long last);
3394 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3395 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3396 #ifdef CONFIG_DEBUG_VM_RB
3397 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3398 #endif
3399 
3400 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3401 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3402 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3403 
3404 /* mmap.c */
3405 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3406 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3407 extern void exit_mmap(struct mm_struct *);
3408 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3409 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3410 				 unsigned long addr, bool write);
3411 
3412 static inline int check_data_rlimit(unsigned long rlim,
3413 				    unsigned long new,
3414 				    unsigned long start,
3415 				    unsigned long end_data,
3416 				    unsigned long start_data)
3417 {
3418 	if (rlim < RLIM_INFINITY) {
3419 		if (((new - start) + (end_data - start_data)) > rlim)
3420 			return -ENOSPC;
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 extern int mm_take_all_locks(struct mm_struct *mm);
3427 extern void mm_drop_all_locks(struct mm_struct *mm);
3428 
3429 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3430 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3431 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3432 extern struct file *get_task_exe_file(struct task_struct *task);
3433 
3434 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3435 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3436 
3437 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3438 				   const struct vm_special_mapping *sm);
3439 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3440 				   unsigned long addr, unsigned long len,
3441 				   unsigned long flags,
3442 				   const struct vm_special_mapping *spec);
3443 
3444 unsigned long randomize_stack_top(unsigned long stack_top);
3445 unsigned long randomize_page(unsigned long start, unsigned long range);
3446 
3447 unsigned long
3448 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3449 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3450 
3451 static inline unsigned long
3452 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3453 		  unsigned long pgoff, unsigned long flags)
3454 {
3455 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3456 }
3457 
3458 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3459 	unsigned long len, unsigned long prot, unsigned long flags,
3460 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3461 	struct list_head *uf);
3462 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3463 			 unsigned long start, size_t len, struct list_head *uf,
3464 			 bool unlock);
3465 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3466 		    struct mm_struct *mm, unsigned long start,
3467 		    unsigned long end, struct list_head *uf, bool unlock);
3468 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3469 		     struct list_head *uf);
3470 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3471 
3472 #ifdef CONFIG_MMU
3473 extern int __mm_populate(unsigned long addr, unsigned long len,
3474 			 int ignore_errors);
3475 static inline void mm_populate(unsigned long addr, unsigned long len)
3476 {
3477 	/* Ignore errors */
3478 	(void) __mm_populate(addr, len, 1);
3479 }
3480 #else
3481 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3482 #endif
3483 
3484 /* This takes the mm semaphore itself */
3485 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3486 extern int vm_munmap(unsigned long, size_t);
3487 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3488         unsigned long, unsigned long,
3489         unsigned long, unsigned long);
3490 
3491 struct vm_unmapped_area_info {
3492 #define VM_UNMAPPED_AREA_TOPDOWN 1
3493 	unsigned long flags;
3494 	unsigned long length;
3495 	unsigned long low_limit;
3496 	unsigned long high_limit;
3497 	unsigned long align_mask;
3498 	unsigned long align_offset;
3499 	unsigned long start_gap;
3500 };
3501 
3502 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3503 
3504 /* truncate.c */
3505 extern void truncate_inode_pages(struct address_space *, loff_t);
3506 extern void truncate_inode_pages_range(struct address_space *,
3507 				       loff_t lstart, loff_t lend);
3508 extern void truncate_inode_pages_final(struct address_space *);
3509 
3510 /* generic vm_area_ops exported for stackable file systems */
3511 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3512 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3513 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3514 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3515 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf);
3516 
3517 extern unsigned long stack_guard_gap;
3518 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3519 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3520 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3521 
3522 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3523 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3524 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3525 					     struct vm_area_struct **pprev);
3526 
3527 /*
3528  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3529  * NULL if none.  Assume start_addr < end_addr.
3530  */
3531 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3532 			unsigned long start_addr, unsigned long end_addr);
3533 
3534 /**
3535  * vma_lookup() - Find a VMA at a specific address
3536  * @mm: The process address space.
3537  * @addr: The user address.
3538  *
3539  * Return: The vm_area_struct at the given address, %NULL otherwise.
3540  */
3541 static inline
3542 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3543 {
3544 	return mtree_load(&mm->mm_mt, addr);
3545 }
3546 
3547 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3548 {
3549 	if (vma->vm_flags & VM_GROWSDOWN)
3550 		return stack_guard_gap;
3551 
3552 	/* See reasoning around the VM_SHADOW_STACK definition */
3553 	if (vma->vm_flags & VM_SHADOW_STACK)
3554 		return PAGE_SIZE;
3555 
3556 	return 0;
3557 }
3558 
3559 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3560 {
3561 	unsigned long gap = stack_guard_start_gap(vma);
3562 	unsigned long vm_start = vma->vm_start;
3563 
3564 	vm_start -= gap;
3565 	if (vm_start > vma->vm_start)
3566 		vm_start = 0;
3567 	return vm_start;
3568 }
3569 
3570 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3571 {
3572 	unsigned long vm_end = vma->vm_end;
3573 
3574 	if (vma->vm_flags & VM_GROWSUP) {
3575 		vm_end += stack_guard_gap;
3576 		if (vm_end < vma->vm_end)
3577 			vm_end = -PAGE_SIZE;
3578 	}
3579 	return vm_end;
3580 }
3581 
3582 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3583 {
3584 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3585 }
3586 
3587 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3588 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3589 				unsigned long vm_start, unsigned long vm_end)
3590 {
3591 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3592 
3593 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3594 		vma = NULL;
3595 
3596 	return vma;
3597 }
3598 
3599 static inline bool range_in_vma(struct vm_area_struct *vma,
3600 				unsigned long start, unsigned long end)
3601 {
3602 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3603 }
3604 
3605 #ifdef CONFIG_MMU
3606 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3607 void vma_set_page_prot(struct vm_area_struct *vma);
3608 #else
3609 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3610 {
3611 	return __pgprot(0);
3612 }
3613 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3614 {
3615 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3616 }
3617 #endif
3618 
3619 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3620 
3621 #ifdef CONFIG_NUMA_BALANCING
3622 unsigned long change_prot_numa(struct vm_area_struct *vma,
3623 			unsigned long start, unsigned long end);
3624 #endif
3625 
3626 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3627 		unsigned long addr);
3628 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3629 			unsigned long pfn, unsigned long size, pgprot_t);
3630 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3631 		unsigned long pfn, unsigned long size, pgprot_t prot);
3632 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3633 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3634 			struct page **pages, unsigned long *num);
3635 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3636 				unsigned long num);
3637 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3638 				unsigned long num);
3639 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3640 			bool write);
3641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3642 			unsigned long pfn);
3643 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3644 			unsigned long pfn, pgprot_t pgprot);
3645 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3646 			pfn_t pfn);
3647 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3648 		unsigned long addr, pfn_t pfn);
3649 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3650 
3651 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3652 				unsigned long addr, struct page *page)
3653 {
3654 	int err = vm_insert_page(vma, addr, page);
3655 
3656 	if (err == -ENOMEM)
3657 		return VM_FAULT_OOM;
3658 	if (err < 0 && err != -EBUSY)
3659 		return VM_FAULT_SIGBUS;
3660 
3661 	return VM_FAULT_NOPAGE;
3662 }
3663 
3664 #ifndef io_remap_pfn_range
3665 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3666 				     unsigned long addr, unsigned long pfn,
3667 				     unsigned long size, pgprot_t prot)
3668 {
3669 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3670 }
3671 #endif
3672 
3673 static inline vm_fault_t vmf_error(int err)
3674 {
3675 	if (err == -ENOMEM)
3676 		return VM_FAULT_OOM;
3677 	else if (err == -EHWPOISON)
3678 		return VM_FAULT_HWPOISON;
3679 	return VM_FAULT_SIGBUS;
3680 }
3681 
3682 /*
3683  * Convert errno to return value for ->page_mkwrite() calls.
3684  *
3685  * This should eventually be merged with vmf_error() above, but will need a
3686  * careful audit of all vmf_error() callers.
3687  */
3688 static inline vm_fault_t vmf_fs_error(int err)
3689 {
3690 	if (err == 0)
3691 		return VM_FAULT_LOCKED;
3692 	if (err == -EFAULT || err == -EAGAIN)
3693 		return VM_FAULT_NOPAGE;
3694 	if (err == -ENOMEM)
3695 		return VM_FAULT_OOM;
3696 	/* -ENOSPC, -EDQUOT, -EIO ... */
3697 	return VM_FAULT_SIGBUS;
3698 }
3699 
3700 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3701 {
3702 	if (vm_fault & VM_FAULT_OOM)
3703 		return -ENOMEM;
3704 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3705 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3706 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3707 		return -EFAULT;
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3713  * a (NUMA hinting) fault is required.
3714  */
3715 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3716 					   unsigned int flags)
3717 {
3718 	/*
3719 	 * If callers don't want to honor NUMA hinting faults, no need to
3720 	 * determine if we would actually have to trigger a NUMA hinting fault.
3721 	 */
3722 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3723 		return true;
3724 
3725 	/*
3726 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3727 	 *
3728 	 * Requiring a fault here even for inaccessible VMAs would mean that
3729 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3730 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3731 	 */
3732 	return !vma_is_accessible(vma);
3733 }
3734 
3735 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3736 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3737 			       unsigned long size, pte_fn_t fn, void *data);
3738 extern int apply_to_existing_page_range(struct mm_struct *mm,
3739 				   unsigned long address, unsigned long size,
3740 				   pte_fn_t fn, void *data);
3741 
3742 #ifdef CONFIG_PAGE_POISONING
3743 extern void __kernel_poison_pages(struct page *page, int numpages);
3744 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3745 extern bool _page_poisoning_enabled_early;
3746 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3747 static inline bool page_poisoning_enabled(void)
3748 {
3749 	return _page_poisoning_enabled_early;
3750 }
3751 /*
3752  * For use in fast paths after init_mem_debugging() has run, or when a
3753  * false negative result is not harmful when called too early.
3754  */
3755 static inline bool page_poisoning_enabled_static(void)
3756 {
3757 	return static_branch_unlikely(&_page_poisoning_enabled);
3758 }
3759 static inline void kernel_poison_pages(struct page *page, int numpages)
3760 {
3761 	if (page_poisoning_enabled_static())
3762 		__kernel_poison_pages(page, numpages);
3763 }
3764 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3765 {
3766 	if (page_poisoning_enabled_static())
3767 		__kernel_unpoison_pages(page, numpages);
3768 }
3769 #else
3770 static inline bool page_poisoning_enabled(void) { return false; }
3771 static inline bool page_poisoning_enabled_static(void) { return false; }
3772 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3773 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3774 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3775 #endif
3776 
3777 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3778 static inline bool want_init_on_alloc(gfp_t flags)
3779 {
3780 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3781 				&init_on_alloc))
3782 		return true;
3783 	return flags & __GFP_ZERO;
3784 }
3785 
3786 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3787 static inline bool want_init_on_free(void)
3788 {
3789 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3790 				   &init_on_free);
3791 }
3792 
3793 extern bool _debug_pagealloc_enabled_early;
3794 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3795 
3796 static inline bool debug_pagealloc_enabled(void)
3797 {
3798 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3799 		_debug_pagealloc_enabled_early;
3800 }
3801 
3802 /*
3803  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3804  * or when a false negative result is not harmful when called too early.
3805  */
3806 static inline bool debug_pagealloc_enabled_static(void)
3807 {
3808 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3809 		return false;
3810 
3811 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3812 }
3813 
3814 /*
3815  * To support DEBUG_PAGEALLOC architecture must ensure that
3816  * __kernel_map_pages() never fails
3817  */
3818 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3819 #ifdef CONFIG_DEBUG_PAGEALLOC
3820 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3821 {
3822 	if (debug_pagealloc_enabled_static())
3823 		__kernel_map_pages(page, numpages, 1);
3824 }
3825 
3826 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3827 {
3828 	if (debug_pagealloc_enabled_static())
3829 		__kernel_map_pages(page, numpages, 0);
3830 }
3831 
3832 extern unsigned int _debug_guardpage_minorder;
3833 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3834 
3835 static inline unsigned int debug_guardpage_minorder(void)
3836 {
3837 	return _debug_guardpage_minorder;
3838 }
3839 
3840 static inline bool debug_guardpage_enabled(void)
3841 {
3842 	return static_branch_unlikely(&_debug_guardpage_enabled);
3843 }
3844 
3845 static inline bool page_is_guard(struct page *page)
3846 {
3847 	if (!debug_guardpage_enabled())
3848 		return false;
3849 
3850 	return PageGuard(page);
3851 }
3852 
3853 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3854 static inline bool set_page_guard(struct zone *zone, struct page *page,
3855 				  unsigned int order)
3856 {
3857 	if (!debug_guardpage_enabled())
3858 		return false;
3859 	return __set_page_guard(zone, page, order);
3860 }
3861 
3862 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3863 static inline void clear_page_guard(struct zone *zone, struct page *page,
3864 				    unsigned int order)
3865 {
3866 	if (!debug_guardpage_enabled())
3867 		return;
3868 	__clear_page_guard(zone, page, order);
3869 }
3870 
3871 #else	/* CONFIG_DEBUG_PAGEALLOC */
3872 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3873 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3874 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3875 static inline bool debug_guardpage_enabled(void) { return false; }
3876 static inline bool page_is_guard(struct page *page) { return false; }
3877 static inline bool set_page_guard(struct zone *zone, struct page *page,
3878 			unsigned int order) { return false; }
3879 static inline void clear_page_guard(struct zone *zone, struct page *page,
3880 				unsigned int order) {}
3881 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3882 
3883 #ifdef __HAVE_ARCH_GATE_AREA
3884 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3885 extern int in_gate_area_no_mm(unsigned long addr);
3886 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3887 #else
3888 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3889 {
3890 	return NULL;
3891 }
3892 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3893 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3894 {
3895 	return 0;
3896 }
3897 #endif	/* __HAVE_ARCH_GATE_AREA */
3898 
3899 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3900 
3901 #ifdef CONFIG_SYSCTL
3902 extern int sysctl_drop_caches;
3903 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3904 		loff_t *);
3905 #endif
3906 
3907 void drop_slab(void);
3908 
3909 #ifndef CONFIG_MMU
3910 #define randomize_va_space 0
3911 #else
3912 extern int randomize_va_space;
3913 #endif
3914 
3915 const char * arch_vma_name(struct vm_area_struct *vma);
3916 #ifdef CONFIG_MMU
3917 void print_vma_addr(char *prefix, unsigned long rip);
3918 #else
3919 static inline void print_vma_addr(char *prefix, unsigned long rip)
3920 {
3921 }
3922 #endif
3923 
3924 void *sparse_buffer_alloc(unsigned long size);
3925 unsigned long section_map_size(void);
3926 struct page * __populate_section_memmap(unsigned long pfn,
3927 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3928 		struct dev_pagemap *pgmap);
3929 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3930 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3931 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3932 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3933 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3934 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3935 			    unsigned long flags);
3936 void *vmemmap_alloc_block(unsigned long size, int node);
3937 struct vmem_altmap;
3938 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3939 			      struct vmem_altmap *altmap);
3940 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3941 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3942 		     unsigned long addr, unsigned long next);
3943 int vmemmap_check_pmd(pmd_t *pmd, int node,
3944 		      unsigned long addr, unsigned long next);
3945 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3946 			       int node, struct vmem_altmap *altmap);
3947 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3948 			       int node, struct vmem_altmap *altmap);
3949 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3950 		struct vmem_altmap *altmap);
3951 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3952 			 unsigned long headsize);
3953 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3954 		     unsigned long headsize);
3955 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3956 			  unsigned long headsize);
3957 void vmemmap_populate_print_last(void);
3958 #ifdef CONFIG_MEMORY_HOTPLUG
3959 void vmemmap_free(unsigned long start, unsigned long end,
3960 		struct vmem_altmap *altmap);
3961 #endif
3962 
3963 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3964 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3965 {
3966 	/* number of pfns from base where pfn_to_page() is valid */
3967 	if (altmap)
3968 		return altmap->reserve + altmap->free;
3969 	return 0;
3970 }
3971 
3972 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3973 				    unsigned long nr_pfns)
3974 {
3975 	altmap->alloc -= nr_pfns;
3976 }
3977 #else
3978 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3979 {
3980 	return 0;
3981 }
3982 
3983 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3984 				    unsigned long nr_pfns)
3985 {
3986 }
3987 #endif
3988 
3989 #define VMEMMAP_RESERVE_NR	2
3990 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3991 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3992 					  struct dev_pagemap *pgmap)
3993 {
3994 	unsigned long nr_pages;
3995 	unsigned long nr_vmemmap_pages;
3996 
3997 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3998 		return false;
3999 
4000 	nr_pages = pgmap_vmemmap_nr(pgmap);
4001 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4002 	/*
4003 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4004 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4005 	 */
4006 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4007 }
4008 /*
4009  * If we don't have an architecture override, use the generic rule
4010  */
4011 #ifndef vmemmap_can_optimize
4012 #define vmemmap_can_optimize __vmemmap_can_optimize
4013 #endif
4014 
4015 #else
4016 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4017 					   struct dev_pagemap *pgmap)
4018 {
4019 	return false;
4020 }
4021 #endif
4022 
4023 enum mf_flags {
4024 	MF_COUNT_INCREASED = 1 << 0,
4025 	MF_ACTION_REQUIRED = 1 << 1,
4026 	MF_MUST_KILL = 1 << 2,
4027 	MF_SOFT_OFFLINE = 1 << 3,
4028 	MF_UNPOISON = 1 << 4,
4029 	MF_SW_SIMULATED = 1 << 5,
4030 	MF_NO_RETRY = 1 << 6,
4031 	MF_MEM_PRE_REMOVE = 1 << 7,
4032 };
4033 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4034 		      unsigned long count, int mf_flags);
4035 extern int memory_failure(unsigned long pfn, int flags);
4036 extern void memory_failure_queue_kick(int cpu);
4037 extern int unpoison_memory(unsigned long pfn);
4038 extern atomic_long_t num_poisoned_pages __read_mostly;
4039 extern int soft_offline_page(unsigned long pfn, int flags);
4040 #ifdef CONFIG_MEMORY_FAILURE
4041 /*
4042  * Sysfs entries for memory failure handling statistics.
4043  */
4044 extern const struct attribute_group memory_failure_attr_group;
4045 extern void memory_failure_queue(unsigned long pfn, int flags);
4046 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4047 					bool *migratable_cleared);
4048 void num_poisoned_pages_inc(unsigned long pfn);
4049 void num_poisoned_pages_sub(unsigned long pfn, long i);
4050 #else
4051 static inline void memory_failure_queue(unsigned long pfn, int flags)
4052 {
4053 }
4054 
4055 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4056 					bool *migratable_cleared)
4057 {
4058 	return 0;
4059 }
4060 
4061 static inline void num_poisoned_pages_inc(unsigned long pfn)
4062 {
4063 }
4064 
4065 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4066 {
4067 }
4068 #endif
4069 
4070 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4071 extern void memblk_nr_poison_inc(unsigned long pfn);
4072 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4073 #else
4074 static inline void memblk_nr_poison_inc(unsigned long pfn)
4075 {
4076 }
4077 
4078 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4079 {
4080 }
4081 #endif
4082 
4083 #ifndef arch_memory_failure
4084 static inline int arch_memory_failure(unsigned long pfn, int flags)
4085 {
4086 	return -ENXIO;
4087 }
4088 #endif
4089 
4090 #ifndef arch_is_platform_page
4091 static inline bool arch_is_platform_page(u64 paddr)
4092 {
4093 	return false;
4094 }
4095 #endif
4096 
4097 /*
4098  * Error handlers for various types of pages.
4099  */
4100 enum mf_result {
4101 	MF_IGNORED,	/* Error: cannot be handled */
4102 	MF_FAILED,	/* Error: handling failed */
4103 	MF_DELAYED,	/* Will be handled later */
4104 	MF_RECOVERED,	/* Successfully recovered */
4105 };
4106 
4107 enum mf_action_page_type {
4108 	MF_MSG_KERNEL,
4109 	MF_MSG_KERNEL_HIGH_ORDER,
4110 	MF_MSG_DIFFERENT_COMPOUND,
4111 	MF_MSG_HUGE,
4112 	MF_MSG_FREE_HUGE,
4113 	MF_MSG_GET_HWPOISON,
4114 	MF_MSG_UNMAP_FAILED,
4115 	MF_MSG_DIRTY_SWAPCACHE,
4116 	MF_MSG_CLEAN_SWAPCACHE,
4117 	MF_MSG_DIRTY_MLOCKED_LRU,
4118 	MF_MSG_CLEAN_MLOCKED_LRU,
4119 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4120 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4121 	MF_MSG_DIRTY_LRU,
4122 	MF_MSG_CLEAN_LRU,
4123 	MF_MSG_TRUNCATED_LRU,
4124 	MF_MSG_BUDDY,
4125 	MF_MSG_DAX,
4126 	MF_MSG_UNSPLIT_THP,
4127 	MF_MSG_ALREADY_POISONED,
4128 	MF_MSG_UNKNOWN,
4129 };
4130 
4131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4132 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4133 int copy_user_large_folio(struct folio *dst, struct folio *src,
4134 			  unsigned long addr_hint,
4135 			  struct vm_area_struct *vma);
4136 long copy_folio_from_user(struct folio *dst_folio,
4137 			   const void __user *usr_src,
4138 			   bool allow_pagefault);
4139 
4140 /**
4141  * vma_is_special_huge - Are transhuge page-table entries considered special?
4142  * @vma: Pointer to the struct vm_area_struct to consider
4143  *
4144  * Whether transhuge page-table entries are considered "special" following
4145  * the definition in vm_normal_page().
4146  *
4147  * Return: true if transhuge page-table entries should be considered special,
4148  * false otherwise.
4149  */
4150 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4151 {
4152 	return vma_is_dax(vma) || (vma->vm_file &&
4153 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4154 }
4155 
4156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4157 
4158 #if MAX_NUMNODES > 1
4159 void __init setup_nr_node_ids(void);
4160 #else
4161 static inline void setup_nr_node_ids(void) {}
4162 #endif
4163 
4164 extern int memcmp_pages(struct page *page1, struct page *page2);
4165 
4166 static inline int pages_identical(struct page *page1, struct page *page2)
4167 {
4168 	return !memcmp_pages(page1, page2);
4169 }
4170 
4171 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4172 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4173 						pgoff_t first_index, pgoff_t nr,
4174 						pgoff_t bitmap_pgoff,
4175 						unsigned long *bitmap,
4176 						pgoff_t *start,
4177 						pgoff_t *end);
4178 
4179 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4180 				      pgoff_t first_index, pgoff_t nr);
4181 #endif
4182 
4183 extern int sysctl_nr_trim_pages;
4184 
4185 #ifdef CONFIG_ANON_VMA_NAME
4186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4187 			  unsigned long len_in,
4188 			  struct anon_vma_name *anon_name);
4189 #else
4190 static inline int
4191 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4192 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4193 	return 0;
4194 }
4195 #endif
4196 
4197 #ifdef CONFIG_UNACCEPTED_MEMORY
4198 
4199 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4200 void accept_memory(phys_addr_t start, unsigned long size);
4201 
4202 #else
4203 
4204 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4205 						    unsigned long size)
4206 {
4207 	return false;
4208 }
4209 
4210 static inline void accept_memory(phys_addr_t start, unsigned long size)
4211 {
4212 }
4213 
4214 #endif
4215 
4216 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4217 {
4218 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4219 }
4220 
4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4222 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4223 
4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4225 
4226 #ifdef CONFIG_64BIT
4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4228 #else
4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4230 {
4231 	/* noop on 32 bit */
4232 	return 0;
4233 }
4234 #endif
4235 
4236 /*
4237  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4238  * be zeroed or not.
4239  */
4240 static inline bool user_alloc_needs_zeroing(void)
4241 {
4242 	/*
4243 	 * for user folios, arch with cache aliasing requires cache flush and
4244 	 * arc changes folio->flags to make icache coherent with dcache, so
4245 	 * always return false to make caller use
4246 	 * clear_user_page()/clear_user_highpage().
4247 	 */
4248 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4249 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4250 				   &init_on_alloc);
4251 }
4252 
4253 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4254 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4255 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4256 
4257 #endif /* _LINUX_MM_H */
4258