1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 #include <linux/sched.h> 31 32 struct mempolicy; 33 struct anon_vma; 34 struct anon_vma_chain; 35 struct file_ra_state; 36 struct user_struct; 37 struct writeback_control; 38 struct bdi_writeback; 39 40 void init_mm_internals(void); 41 42 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 43 extern unsigned long max_mapnr; 44 45 static inline void set_max_mapnr(unsigned long limit) 46 { 47 max_mapnr = limit; 48 } 49 #else 50 static inline void set_max_mapnr(unsigned long limit) { } 51 #endif 52 53 extern atomic_long_t _totalram_pages; 54 static inline unsigned long totalram_pages(void) 55 { 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_inc(void) 60 { 61 atomic_long_inc(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_dec(void) 65 { 66 atomic_long_dec(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_add(long count) 70 { 71 atomic_long_add(count, &_totalram_pages); 72 } 73 74 extern void * high_memory; 75 extern int page_cluster; 76 77 #ifdef CONFIG_SYSCTL 78 extern int sysctl_legacy_va_layout; 79 #else 80 #define sysctl_legacy_va_layout 0 81 #endif 82 83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84 extern const int mmap_rnd_bits_min; 85 extern const int mmap_rnd_bits_max; 86 extern int mmap_rnd_bits __read_mostly; 87 #endif 88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89 extern const int mmap_rnd_compat_bits_min; 90 extern const int mmap_rnd_compat_bits_max; 91 extern int mmap_rnd_compat_bits __read_mostly; 92 #endif 93 94 #include <asm/page.h> 95 #include <asm/pgtable.h> 96 #include <asm/processor.h> 97 98 /* 99 * Architectures that support memory tagging (assigning tags to memory regions, 100 * embedding these tags into addresses that point to these memory regions, and 101 * checking that the memory and the pointer tags match on memory accesses) 102 * redefine this macro to strip tags from pointers. 103 * It's defined as noop for arcitectures that don't support memory tagging. 104 */ 105 #ifndef untagged_addr 106 #define untagged_addr(addr) (addr) 107 #endif 108 109 #ifndef __pa_symbol 110 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 111 #endif 112 113 #ifndef page_to_virt 114 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 115 #endif 116 117 #ifndef lm_alias 118 #define lm_alias(x) __va(__pa_symbol(x)) 119 #endif 120 121 /* 122 * To prevent common memory management code establishing 123 * a zero page mapping on a read fault. 124 * This macro should be defined within <asm/pgtable.h>. 125 * s390 does this to prevent multiplexing of hardware bits 126 * related to the physical page in case of virtualization. 127 */ 128 #ifndef mm_forbids_zeropage 129 #define mm_forbids_zeropage(X) (0) 130 #endif 131 132 /* 133 * On some architectures it is expensive to call memset() for small sizes. 134 * If an architecture decides to implement their own version of 135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 136 * define their own version of this macro in <asm/pgtable.h> 137 */ 138 #if BITS_PER_LONG == 64 139 /* This function must be updated when the size of struct page grows above 80 140 * or reduces below 56. The idea that compiler optimizes out switch() 141 * statement, and only leaves move/store instructions. Also the compiler can 142 * combine write statments if they are both assignments and can be reordered, 143 * this can result in several of the writes here being dropped. 144 */ 145 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 146 static inline void __mm_zero_struct_page(struct page *page) 147 { 148 unsigned long *_pp = (void *)page; 149 150 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 151 BUILD_BUG_ON(sizeof(struct page) & 7); 152 BUILD_BUG_ON(sizeof(struct page) < 56); 153 BUILD_BUG_ON(sizeof(struct page) > 80); 154 155 switch (sizeof(struct page)) { 156 case 80: 157 _pp[9] = 0; /* fallthrough */ 158 case 72: 159 _pp[8] = 0; /* fallthrough */ 160 case 64: 161 _pp[7] = 0; /* fallthrough */ 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171 } 172 #else 173 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174 #endif 175 176 /* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192 #define MAPCOUNT_ELF_CORE_MARGIN (5) 193 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195 extern int sysctl_max_map_count; 196 197 extern unsigned long sysctl_user_reserve_kbytes; 198 extern unsigned long sysctl_admin_reserve_kbytes; 199 200 extern int sysctl_overcommit_memory; 201 extern int sysctl_overcommit_ratio; 202 extern unsigned long sysctl_overcommit_kbytes; 203 204 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 205 size_t *, loff_t *); 206 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 207 size_t *, loff_t *); 208 209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 210 211 /* to align the pointer to the (next) page boundary */ 212 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 213 214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 218 219 /* 220 * Linux kernel virtual memory manager primitives. 221 * The idea being to have a "virtual" mm in the same way 222 * we have a virtual fs - giving a cleaner interface to the 223 * mm details, and allowing different kinds of memory mappings 224 * (from shared memory to executable loading to arbitrary 225 * mmap() functions). 226 */ 227 228 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 229 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 230 void vm_area_free(struct vm_area_struct *); 231 232 #ifndef CONFIG_MMU 233 extern struct rb_root nommu_region_tree; 234 extern struct rw_semaphore nommu_region_sem; 235 236 extern unsigned int kobjsize(const void *objp); 237 #endif 238 239 /* 240 * vm_flags in vm_area_struct, see mm_types.h. 241 * When changing, update also include/trace/events/mmflags.h 242 */ 243 #define VM_NONE 0x00000000 244 245 #define VM_READ 0x00000001 /* currently active flags */ 246 #define VM_WRITE 0x00000002 247 #define VM_EXEC 0x00000004 248 #define VM_SHARED 0x00000008 249 250 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 251 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 252 #define VM_MAYWRITE 0x00000020 253 #define VM_MAYEXEC 0x00000040 254 #define VM_MAYSHARE 0x00000080 255 256 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 257 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 258 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 259 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 260 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 261 262 #define VM_LOCKED 0x00002000 263 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 264 265 /* Used by sys_madvise() */ 266 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 267 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 268 269 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 270 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 271 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 272 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 273 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 274 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 275 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 276 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 277 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 278 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 279 280 #ifdef CONFIG_MEM_SOFT_DIRTY 281 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 282 #else 283 # define VM_SOFTDIRTY 0 284 #endif 285 286 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 287 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 288 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 289 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 290 291 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 292 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 293 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 294 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 295 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 296 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 298 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 299 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 300 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 301 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 302 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 303 304 #ifdef CONFIG_ARCH_HAS_PKEYS 305 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 306 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 307 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 308 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 309 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 310 #ifdef CONFIG_PPC 311 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 312 #else 313 # define VM_PKEY_BIT4 0 314 #endif 315 #endif /* CONFIG_ARCH_HAS_PKEYS */ 316 317 #if defined(CONFIG_X86) 318 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 319 #elif defined(CONFIG_PPC) 320 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 321 #elif defined(CONFIG_PARISC) 322 # define VM_GROWSUP VM_ARCH_1 323 #elif defined(CONFIG_IA64) 324 # define VM_GROWSUP VM_ARCH_1 325 #elif defined(CONFIG_SPARC64) 326 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 327 # define VM_ARCH_CLEAR VM_SPARC_ADI 328 #elif !defined(CONFIG_MMU) 329 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 330 #endif 331 332 #if defined(CONFIG_X86_INTEL_MPX) 333 /* MPX specific bounds table or bounds directory */ 334 # define VM_MPX VM_HIGH_ARCH_4 335 #else 336 # define VM_MPX VM_NONE 337 #endif 338 339 #ifndef VM_GROWSUP 340 # define VM_GROWSUP VM_NONE 341 #endif 342 343 /* Bits set in the VMA until the stack is in its final location */ 344 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 345 346 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 347 348 /* Common data flag combinations */ 349 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 351 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 352 VM_MAYWRITE | VM_MAYEXEC) 353 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 354 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 355 356 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 357 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 358 #endif 359 360 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 361 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 362 #endif 363 364 #ifdef CONFIG_STACK_GROWSUP 365 #define VM_STACK VM_GROWSUP 366 #else 367 #define VM_STACK VM_GROWSDOWN 368 #endif 369 370 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 371 372 /* VMA basic access permission flags */ 373 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 374 375 376 /* 377 * Special vmas that are non-mergable, non-mlock()able. 378 */ 379 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 380 381 /* This mask prevents VMA from being scanned with khugepaged */ 382 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 383 384 /* This mask defines which mm->def_flags a process can inherit its parent */ 385 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 386 387 /* This mask is used to clear all the VMA flags used by mlock */ 388 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 389 390 /* Arch-specific flags to clear when updating VM flags on protection change */ 391 #ifndef VM_ARCH_CLEAR 392 # define VM_ARCH_CLEAR VM_NONE 393 #endif 394 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 395 396 /* 397 * mapping from the currently active vm_flags protection bits (the 398 * low four bits) to a page protection mask.. 399 */ 400 extern pgprot_t protection_map[16]; 401 402 /** 403 * Fault flag definitions. 404 * 405 * @FAULT_FLAG_WRITE: Fault was a write fault. 406 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 407 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 408 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying. 409 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 410 * @FAULT_FLAG_TRIED: The fault has been tried once. 411 * @FAULT_FLAG_USER: The fault originated in userspace. 412 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 413 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 414 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 415 * 416 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 417 * whether we would allow page faults to retry by specifying these two 418 * fault flags correctly. Currently there can be three legal combinations: 419 * 420 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 421 * this is the first try 422 * 423 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 424 * we've already tried at least once 425 * 426 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 427 * 428 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 429 * be used. Note that page faults can be allowed to retry for multiple times, 430 * in which case we'll have an initial fault with flags (a) then later on 431 * continuous faults with flags (b). We should always try to detect pending 432 * signals before a retry to make sure the continuous page faults can still be 433 * interrupted if necessary. 434 */ 435 #define FAULT_FLAG_WRITE 0x01 436 #define FAULT_FLAG_MKWRITE 0x02 437 #define FAULT_FLAG_ALLOW_RETRY 0x04 438 #define FAULT_FLAG_RETRY_NOWAIT 0x08 439 #define FAULT_FLAG_KILLABLE 0x10 440 #define FAULT_FLAG_TRIED 0x20 441 #define FAULT_FLAG_USER 0x40 442 #define FAULT_FLAG_REMOTE 0x80 443 #define FAULT_FLAG_INSTRUCTION 0x100 444 #define FAULT_FLAG_INTERRUPTIBLE 0x200 445 446 /* 447 * The default fault flags that should be used by most of the 448 * arch-specific page fault handlers. 449 */ 450 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 451 FAULT_FLAG_KILLABLE | \ 452 FAULT_FLAG_INTERRUPTIBLE) 453 454 /** 455 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 456 * 457 * This is mostly used for places where we want to try to avoid taking 458 * the mmap_sem for too long a time when waiting for another condition 459 * to change, in which case we can try to be polite to release the 460 * mmap_sem in the first round to avoid potential starvation of other 461 * processes that would also want the mmap_sem. 462 * 463 * Return: true if the page fault allows retry and this is the first 464 * attempt of the fault handling; false otherwise. 465 */ 466 static inline bool fault_flag_allow_retry_first(unsigned int flags) 467 { 468 return (flags & FAULT_FLAG_ALLOW_RETRY) && 469 (!(flags & FAULT_FLAG_TRIED)); 470 } 471 472 #define FAULT_FLAG_TRACE \ 473 { FAULT_FLAG_WRITE, "WRITE" }, \ 474 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 475 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 476 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 477 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 478 { FAULT_FLAG_TRIED, "TRIED" }, \ 479 { FAULT_FLAG_USER, "USER" }, \ 480 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 481 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 482 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 483 484 /* 485 * vm_fault is filled by the the pagefault handler and passed to the vma's 486 * ->fault function. The vma's ->fault is responsible for returning a bitmask 487 * of VM_FAULT_xxx flags that give details about how the fault was handled. 488 * 489 * MM layer fills up gfp_mask for page allocations but fault handler might 490 * alter it if its implementation requires a different allocation context. 491 * 492 * pgoff should be used in favour of virtual_address, if possible. 493 */ 494 struct vm_fault { 495 struct vm_area_struct *vma; /* Target VMA */ 496 unsigned int flags; /* FAULT_FLAG_xxx flags */ 497 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 498 pgoff_t pgoff; /* Logical page offset based on vma */ 499 unsigned long address; /* Faulting virtual address */ 500 pmd_t *pmd; /* Pointer to pmd entry matching 501 * the 'address' */ 502 pud_t *pud; /* Pointer to pud entry matching 503 * the 'address' 504 */ 505 pte_t orig_pte; /* Value of PTE at the time of fault */ 506 507 struct page *cow_page; /* Page handler may use for COW fault */ 508 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 509 struct page *page; /* ->fault handlers should return a 510 * page here, unless VM_FAULT_NOPAGE 511 * is set (which is also implied by 512 * VM_FAULT_ERROR). 513 */ 514 /* These three entries are valid only while holding ptl lock */ 515 pte_t *pte; /* Pointer to pte entry matching 516 * the 'address'. NULL if the page 517 * table hasn't been allocated. 518 */ 519 spinlock_t *ptl; /* Page table lock. 520 * Protects pte page table if 'pte' 521 * is not NULL, otherwise pmd. 522 */ 523 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 524 * vm_ops->map_pages() calls 525 * alloc_set_pte() from atomic context. 526 * do_fault_around() pre-allocates 527 * page table to avoid allocation from 528 * atomic context. 529 */ 530 }; 531 532 /* page entry size for vm->huge_fault() */ 533 enum page_entry_size { 534 PE_SIZE_PTE = 0, 535 PE_SIZE_PMD, 536 PE_SIZE_PUD, 537 }; 538 539 /* 540 * These are the virtual MM functions - opening of an area, closing and 541 * unmapping it (needed to keep files on disk up-to-date etc), pointer 542 * to the functions called when a no-page or a wp-page exception occurs. 543 */ 544 struct vm_operations_struct { 545 void (*open)(struct vm_area_struct * area); 546 void (*close)(struct vm_area_struct * area); 547 int (*split)(struct vm_area_struct * area, unsigned long addr); 548 int (*mremap)(struct vm_area_struct * area); 549 vm_fault_t (*fault)(struct vm_fault *vmf); 550 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 551 enum page_entry_size pe_size); 552 void (*map_pages)(struct vm_fault *vmf, 553 pgoff_t start_pgoff, pgoff_t end_pgoff); 554 unsigned long (*pagesize)(struct vm_area_struct * area); 555 556 /* notification that a previously read-only page is about to become 557 * writable, if an error is returned it will cause a SIGBUS */ 558 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 559 560 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 561 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 562 563 /* called by access_process_vm when get_user_pages() fails, typically 564 * for use by special VMAs that can switch between memory and hardware 565 */ 566 int (*access)(struct vm_area_struct *vma, unsigned long addr, 567 void *buf, int len, int write); 568 569 /* Called by the /proc/PID/maps code to ask the vma whether it 570 * has a special name. Returning non-NULL will also cause this 571 * vma to be dumped unconditionally. */ 572 const char *(*name)(struct vm_area_struct *vma); 573 574 #ifdef CONFIG_NUMA 575 /* 576 * set_policy() op must add a reference to any non-NULL @new mempolicy 577 * to hold the policy upon return. Caller should pass NULL @new to 578 * remove a policy and fall back to surrounding context--i.e. do not 579 * install a MPOL_DEFAULT policy, nor the task or system default 580 * mempolicy. 581 */ 582 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 583 584 /* 585 * get_policy() op must add reference [mpol_get()] to any policy at 586 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 587 * in mm/mempolicy.c will do this automatically. 588 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 589 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 590 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 591 * must return NULL--i.e., do not "fallback" to task or system default 592 * policy. 593 */ 594 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 595 unsigned long addr); 596 #endif 597 /* 598 * Called by vm_normal_page() for special PTEs to find the 599 * page for @addr. This is useful if the default behavior 600 * (using pte_page()) would not find the correct page. 601 */ 602 struct page *(*find_special_page)(struct vm_area_struct *vma, 603 unsigned long addr); 604 }; 605 606 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 607 { 608 static const struct vm_operations_struct dummy_vm_ops = {}; 609 610 memset(vma, 0, sizeof(*vma)); 611 vma->vm_mm = mm; 612 vma->vm_ops = &dummy_vm_ops; 613 INIT_LIST_HEAD(&vma->anon_vma_chain); 614 } 615 616 static inline void vma_set_anonymous(struct vm_area_struct *vma) 617 { 618 vma->vm_ops = NULL; 619 } 620 621 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 622 { 623 return !vma->vm_ops; 624 } 625 626 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 627 { 628 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 629 630 if (!maybe_stack) 631 return false; 632 633 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 634 VM_STACK_INCOMPLETE_SETUP) 635 return true; 636 637 return false; 638 } 639 640 static inline bool vma_is_foreign(struct vm_area_struct *vma) 641 { 642 if (!current->mm) 643 return true; 644 645 if (current->mm != vma->vm_mm) 646 return true; 647 648 return false; 649 } 650 651 static inline bool vma_is_accessible(struct vm_area_struct *vma) 652 { 653 return vma->vm_flags & VM_ACCESS_FLAGS; 654 } 655 656 #ifdef CONFIG_SHMEM 657 /* 658 * The vma_is_shmem is not inline because it is used only by slow 659 * paths in userfault. 660 */ 661 bool vma_is_shmem(struct vm_area_struct *vma); 662 #else 663 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 664 #endif 665 666 int vma_is_stack_for_current(struct vm_area_struct *vma); 667 668 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 669 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 670 671 struct mmu_gather; 672 struct inode; 673 674 /* 675 * FIXME: take this include out, include page-flags.h in 676 * files which need it (119 of them) 677 */ 678 #include <linux/page-flags.h> 679 #include <linux/huge_mm.h> 680 681 /* 682 * Methods to modify the page usage count. 683 * 684 * What counts for a page usage: 685 * - cache mapping (page->mapping) 686 * - private data (page->private) 687 * - page mapped in a task's page tables, each mapping 688 * is counted separately 689 * 690 * Also, many kernel routines increase the page count before a critical 691 * routine so they can be sure the page doesn't go away from under them. 692 */ 693 694 /* 695 * Drop a ref, return true if the refcount fell to zero (the page has no users) 696 */ 697 static inline int put_page_testzero(struct page *page) 698 { 699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 700 return page_ref_dec_and_test(page); 701 } 702 703 /* 704 * Try to grab a ref unless the page has a refcount of zero, return false if 705 * that is the case. 706 * This can be called when MMU is off so it must not access 707 * any of the virtual mappings. 708 */ 709 static inline int get_page_unless_zero(struct page *page) 710 { 711 return page_ref_add_unless(page, 1, 0); 712 } 713 714 extern int page_is_ram(unsigned long pfn); 715 716 enum { 717 REGION_INTERSECTS, 718 REGION_DISJOINT, 719 REGION_MIXED, 720 }; 721 722 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 723 unsigned long desc); 724 725 /* Support for virtually mapped pages */ 726 struct page *vmalloc_to_page(const void *addr); 727 unsigned long vmalloc_to_pfn(const void *addr); 728 729 /* 730 * Determine if an address is within the vmalloc range 731 * 732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 733 * is no special casing required. 734 */ 735 736 #ifndef is_ioremap_addr 737 #define is_ioremap_addr(x) is_vmalloc_addr(x) 738 #endif 739 740 #ifdef CONFIG_MMU 741 extern bool is_vmalloc_addr(const void *x); 742 extern int is_vmalloc_or_module_addr(const void *x); 743 #else 744 static inline bool is_vmalloc_addr(const void *x) 745 { 746 return false; 747 } 748 static inline int is_vmalloc_or_module_addr(const void *x) 749 { 750 return 0; 751 } 752 #endif 753 754 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 755 static inline void *kvmalloc(size_t size, gfp_t flags) 756 { 757 return kvmalloc_node(size, flags, NUMA_NO_NODE); 758 } 759 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 760 { 761 return kvmalloc_node(size, flags | __GFP_ZERO, node); 762 } 763 static inline void *kvzalloc(size_t size, gfp_t flags) 764 { 765 return kvmalloc(size, flags | __GFP_ZERO); 766 } 767 768 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 769 { 770 size_t bytes; 771 772 if (unlikely(check_mul_overflow(n, size, &bytes))) 773 return NULL; 774 775 return kvmalloc(bytes, flags); 776 } 777 778 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 779 { 780 return kvmalloc_array(n, size, flags | __GFP_ZERO); 781 } 782 783 extern void kvfree(const void *addr); 784 785 static inline int compound_mapcount(struct page *page) 786 { 787 VM_BUG_ON_PAGE(!PageCompound(page), page); 788 page = compound_head(page); 789 return atomic_read(compound_mapcount_ptr(page)) + 1; 790 } 791 792 /* 793 * The atomic page->_mapcount, starts from -1: so that transitions 794 * both from it and to it can be tracked, using atomic_inc_and_test 795 * and atomic_add_negative(-1). 796 */ 797 static inline void page_mapcount_reset(struct page *page) 798 { 799 atomic_set(&(page)->_mapcount, -1); 800 } 801 802 int __page_mapcount(struct page *page); 803 804 static inline int page_mapcount(struct page *page) 805 { 806 VM_BUG_ON_PAGE(PageSlab(page), page); 807 808 if (unlikely(PageCompound(page))) 809 return __page_mapcount(page); 810 return atomic_read(&page->_mapcount) + 1; 811 } 812 813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 814 int total_mapcount(struct page *page); 815 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 816 #else 817 static inline int total_mapcount(struct page *page) 818 { 819 return page_mapcount(page); 820 } 821 static inline int page_trans_huge_mapcount(struct page *page, 822 int *total_mapcount) 823 { 824 int mapcount = page_mapcount(page); 825 if (total_mapcount) 826 *total_mapcount = mapcount; 827 return mapcount; 828 } 829 #endif 830 831 static inline struct page *virt_to_head_page(const void *x) 832 { 833 struct page *page = virt_to_page(x); 834 835 return compound_head(page); 836 } 837 838 void __put_page(struct page *page); 839 840 void put_pages_list(struct list_head *pages); 841 842 void split_page(struct page *page, unsigned int order); 843 844 /* 845 * Compound pages have a destructor function. Provide a 846 * prototype for that function and accessor functions. 847 * These are _only_ valid on the head of a compound page. 848 */ 849 typedef void compound_page_dtor(struct page *); 850 851 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 852 enum compound_dtor_id { 853 NULL_COMPOUND_DTOR, 854 COMPOUND_PAGE_DTOR, 855 #ifdef CONFIG_HUGETLB_PAGE 856 HUGETLB_PAGE_DTOR, 857 #endif 858 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 859 TRANSHUGE_PAGE_DTOR, 860 #endif 861 NR_COMPOUND_DTORS, 862 }; 863 extern compound_page_dtor * const compound_page_dtors[]; 864 865 static inline void set_compound_page_dtor(struct page *page, 866 enum compound_dtor_id compound_dtor) 867 { 868 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 869 page[1].compound_dtor = compound_dtor; 870 } 871 872 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 873 { 874 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 875 return compound_page_dtors[page[1].compound_dtor]; 876 } 877 878 static inline unsigned int compound_order(struct page *page) 879 { 880 if (!PageHead(page)) 881 return 0; 882 return page[1].compound_order; 883 } 884 885 static inline bool hpage_pincount_available(struct page *page) 886 { 887 /* 888 * Can the page->hpage_pinned_refcount field be used? That field is in 889 * the 3rd page of the compound page, so the smallest (2-page) compound 890 * pages cannot support it. 891 */ 892 page = compound_head(page); 893 return PageCompound(page) && compound_order(page) > 1; 894 } 895 896 static inline int compound_pincount(struct page *page) 897 { 898 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 899 page = compound_head(page); 900 return atomic_read(compound_pincount_ptr(page)); 901 } 902 903 static inline void set_compound_order(struct page *page, unsigned int order) 904 { 905 page[1].compound_order = order; 906 } 907 908 /* Returns the number of pages in this potentially compound page. */ 909 static inline unsigned long compound_nr(struct page *page) 910 { 911 return 1UL << compound_order(page); 912 } 913 914 /* Returns the number of bytes in this potentially compound page. */ 915 static inline unsigned long page_size(struct page *page) 916 { 917 return PAGE_SIZE << compound_order(page); 918 } 919 920 /* Returns the number of bits needed for the number of bytes in a page */ 921 static inline unsigned int page_shift(struct page *page) 922 { 923 return PAGE_SHIFT + compound_order(page); 924 } 925 926 void free_compound_page(struct page *page); 927 928 #ifdef CONFIG_MMU 929 /* 930 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 931 * servicing faults for write access. In the normal case, do always want 932 * pte_mkwrite. But get_user_pages can cause write faults for mappings 933 * that do not have writing enabled, when used by access_process_vm. 934 */ 935 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 936 { 937 if (likely(vma->vm_flags & VM_WRITE)) 938 pte = pte_mkwrite(pte); 939 return pte; 940 } 941 942 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 943 struct page *page); 944 vm_fault_t finish_fault(struct vm_fault *vmf); 945 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 946 #endif 947 948 /* 949 * Multiple processes may "see" the same page. E.g. for untouched 950 * mappings of /dev/null, all processes see the same page full of 951 * zeroes, and text pages of executables and shared libraries have 952 * only one copy in memory, at most, normally. 953 * 954 * For the non-reserved pages, page_count(page) denotes a reference count. 955 * page_count() == 0 means the page is free. page->lru is then used for 956 * freelist management in the buddy allocator. 957 * page_count() > 0 means the page has been allocated. 958 * 959 * Pages are allocated by the slab allocator in order to provide memory 960 * to kmalloc and kmem_cache_alloc. In this case, the management of the 961 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 962 * unless a particular usage is carefully commented. (the responsibility of 963 * freeing the kmalloc memory is the caller's, of course). 964 * 965 * A page may be used by anyone else who does a __get_free_page(). 966 * In this case, page_count still tracks the references, and should only 967 * be used through the normal accessor functions. The top bits of page->flags 968 * and page->virtual store page management information, but all other fields 969 * are unused and could be used privately, carefully. The management of this 970 * page is the responsibility of the one who allocated it, and those who have 971 * subsequently been given references to it. 972 * 973 * The other pages (we may call them "pagecache pages") are completely 974 * managed by the Linux memory manager: I/O, buffers, swapping etc. 975 * The following discussion applies only to them. 976 * 977 * A pagecache page contains an opaque `private' member, which belongs to the 978 * page's address_space. Usually, this is the address of a circular list of 979 * the page's disk buffers. PG_private must be set to tell the VM to call 980 * into the filesystem to release these pages. 981 * 982 * A page may belong to an inode's memory mapping. In this case, page->mapping 983 * is the pointer to the inode, and page->index is the file offset of the page, 984 * in units of PAGE_SIZE. 985 * 986 * If pagecache pages are not associated with an inode, they are said to be 987 * anonymous pages. These may become associated with the swapcache, and in that 988 * case PG_swapcache is set, and page->private is an offset into the swapcache. 989 * 990 * In either case (swapcache or inode backed), the pagecache itself holds one 991 * reference to the page. Setting PG_private should also increment the 992 * refcount. The each user mapping also has a reference to the page. 993 * 994 * The pagecache pages are stored in a per-mapping radix tree, which is 995 * rooted at mapping->i_pages, and indexed by offset. 996 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 997 * lists, we instead now tag pages as dirty/writeback in the radix tree. 998 * 999 * All pagecache pages may be subject to I/O: 1000 * - inode pages may need to be read from disk, 1001 * - inode pages which have been modified and are MAP_SHARED may need 1002 * to be written back to the inode on disk, 1003 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1004 * modified may need to be swapped out to swap space and (later) to be read 1005 * back into memory. 1006 */ 1007 1008 /* 1009 * The zone field is never updated after free_area_init_core() 1010 * sets it, so none of the operations on it need to be atomic. 1011 */ 1012 1013 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1014 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1015 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1016 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1017 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1018 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1019 1020 /* 1021 * Define the bit shifts to access each section. For non-existent 1022 * sections we define the shift as 0; that plus a 0 mask ensures 1023 * the compiler will optimise away reference to them. 1024 */ 1025 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1026 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1027 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1028 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1029 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1030 1031 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1032 #ifdef NODE_NOT_IN_PAGE_FLAGS 1033 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1034 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1035 SECTIONS_PGOFF : ZONES_PGOFF) 1036 #else 1037 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1038 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1039 NODES_PGOFF : ZONES_PGOFF) 1040 #endif 1041 1042 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1043 1044 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1045 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1046 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1047 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1048 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1049 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1050 1051 static inline enum zone_type page_zonenum(const struct page *page) 1052 { 1053 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1054 } 1055 1056 #ifdef CONFIG_ZONE_DEVICE 1057 static inline bool is_zone_device_page(const struct page *page) 1058 { 1059 return page_zonenum(page) == ZONE_DEVICE; 1060 } 1061 extern void memmap_init_zone_device(struct zone *, unsigned long, 1062 unsigned long, struct dev_pagemap *); 1063 #else 1064 static inline bool is_zone_device_page(const struct page *page) 1065 { 1066 return false; 1067 } 1068 #endif 1069 1070 #ifdef CONFIG_DEV_PAGEMAP_OPS 1071 void free_devmap_managed_page(struct page *page); 1072 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1073 1074 static inline bool page_is_devmap_managed(struct page *page) 1075 { 1076 if (!static_branch_unlikely(&devmap_managed_key)) 1077 return false; 1078 if (!is_zone_device_page(page)) 1079 return false; 1080 switch (page->pgmap->type) { 1081 case MEMORY_DEVICE_PRIVATE: 1082 case MEMORY_DEVICE_FS_DAX: 1083 return true; 1084 default: 1085 break; 1086 } 1087 return false; 1088 } 1089 1090 void put_devmap_managed_page(struct page *page); 1091 1092 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1093 static inline bool page_is_devmap_managed(struct page *page) 1094 { 1095 return false; 1096 } 1097 1098 static inline void put_devmap_managed_page(struct page *page) 1099 { 1100 } 1101 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1102 1103 static inline bool is_device_private_page(const struct page *page) 1104 { 1105 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1106 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1107 is_zone_device_page(page) && 1108 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1109 } 1110 1111 static inline bool is_pci_p2pdma_page(const struct page *page) 1112 { 1113 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1114 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1115 is_zone_device_page(page) && 1116 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1117 } 1118 1119 /* 127: arbitrary random number, small enough to assemble well */ 1120 #define page_ref_zero_or_close_to_overflow(page) \ 1121 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1122 1123 static inline void get_page(struct page *page) 1124 { 1125 page = compound_head(page); 1126 /* 1127 * Getting a normal page or the head of a compound page 1128 * requires to already have an elevated page->_refcount. 1129 */ 1130 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1131 page_ref_inc(page); 1132 } 1133 1134 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1135 1136 static inline __must_check bool try_get_page(struct page *page) 1137 { 1138 page = compound_head(page); 1139 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1140 return false; 1141 page_ref_inc(page); 1142 return true; 1143 } 1144 1145 static inline void put_page(struct page *page) 1146 { 1147 page = compound_head(page); 1148 1149 /* 1150 * For devmap managed pages we need to catch refcount transition from 1151 * 2 to 1, when refcount reach one it means the page is free and we 1152 * need to inform the device driver through callback. See 1153 * include/linux/memremap.h and HMM for details. 1154 */ 1155 if (page_is_devmap_managed(page)) { 1156 put_devmap_managed_page(page); 1157 return; 1158 } 1159 1160 if (put_page_testzero(page)) 1161 __put_page(page); 1162 } 1163 1164 /* 1165 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1166 * the page's refcount so that two separate items are tracked: the original page 1167 * reference count, and also a new count of how many pin_user_pages() calls were 1168 * made against the page. ("gup-pinned" is another term for the latter). 1169 * 1170 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1171 * distinct from normal pages. As such, the unpin_user_page() call (and its 1172 * variants) must be used in order to release gup-pinned pages. 1173 * 1174 * Choice of value: 1175 * 1176 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1177 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1178 * simpler, due to the fact that adding an even power of two to the page 1179 * refcount has the effect of using only the upper N bits, for the code that 1180 * counts up using the bias value. This means that the lower bits are left for 1181 * the exclusive use of the original code that increments and decrements by one 1182 * (or at least, by much smaller values than the bias value). 1183 * 1184 * Of course, once the lower bits overflow into the upper bits (and this is 1185 * OK, because subtraction recovers the original values), then visual inspection 1186 * no longer suffices to directly view the separate counts. However, for normal 1187 * applications that don't have huge page reference counts, this won't be an 1188 * issue. 1189 * 1190 * Locking: the lockless algorithm described in page_cache_get_speculative() 1191 * and page_cache_gup_pin_speculative() provides safe operation for 1192 * get_user_pages and page_mkclean and other calls that race to set up page 1193 * table entries. 1194 */ 1195 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1196 1197 void unpin_user_page(struct page *page); 1198 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1199 bool make_dirty); 1200 void unpin_user_pages(struct page **pages, unsigned long npages); 1201 1202 /** 1203 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1204 * 1205 * This function checks if a page has been pinned via a call to 1206 * pin_user_pages*(). 1207 * 1208 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1209 * because it means "definitely not pinned for DMA", but true means "probably 1210 * pinned for DMA, but possibly a false positive due to having at least 1211 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1212 * 1213 * False positives are OK, because: a) it's unlikely for a page to get that many 1214 * refcounts, and b) all the callers of this routine are expected to be able to 1215 * deal gracefully with a false positive. 1216 * 1217 * For huge pages, the result will be exactly correct. That's because we have 1218 * more tracking data available: the 3rd struct page in the compound page is 1219 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1220 * scheme). 1221 * 1222 * For more information, please see Documentation/vm/pin_user_pages.rst. 1223 * 1224 * @page: pointer to page to be queried. 1225 * @Return: True, if it is likely that the page has been "dma-pinned". 1226 * False, if the page is definitely not dma-pinned. 1227 */ 1228 static inline bool page_maybe_dma_pinned(struct page *page) 1229 { 1230 if (hpage_pincount_available(page)) 1231 return compound_pincount(page) > 0; 1232 1233 /* 1234 * page_ref_count() is signed. If that refcount overflows, then 1235 * page_ref_count() returns a negative value, and callers will avoid 1236 * further incrementing the refcount. 1237 * 1238 * Here, for that overflow case, use the signed bit to count a little 1239 * bit higher via unsigned math, and thus still get an accurate result. 1240 */ 1241 return ((unsigned int)page_ref_count(compound_head(page))) >= 1242 GUP_PIN_COUNTING_BIAS; 1243 } 1244 1245 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1246 #define SECTION_IN_PAGE_FLAGS 1247 #endif 1248 1249 /* 1250 * The identification function is mainly used by the buddy allocator for 1251 * determining if two pages could be buddies. We are not really identifying 1252 * the zone since we could be using the section number id if we do not have 1253 * node id available in page flags. 1254 * We only guarantee that it will return the same value for two combinable 1255 * pages in a zone. 1256 */ 1257 static inline int page_zone_id(struct page *page) 1258 { 1259 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1260 } 1261 1262 #ifdef NODE_NOT_IN_PAGE_FLAGS 1263 extern int page_to_nid(const struct page *page); 1264 #else 1265 static inline int page_to_nid(const struct page *page) 1266 { 1267 struct page *p = (struct page *)page; 1268 1269 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1270 } 1271 #endif 1272 1273 #ifdef CONFIG_NUMA_BALANCING 1274 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1275 { 1276 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1277 } 1278 1279 static inline int cpupid_to_pid(int cpupid) 1280 { 1281 return cpupid & LAST__PID_MASK; 1282 } 1283 1284 static inline int cpupid_to_cpu(int cpupid) 1285 { 1286 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1287 } 1288 1289 static inline int cpupid_to_nid(int cpupid) 1290 { 1291 return cpu_to_node(cpupid_to_cpu(cpupid)); 1292 } 1293 1294 static inline bool cpupid_pid_unset(int cpupid) 1295 { 1296 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1297 } 1298 1299 static inline bool cpupid_cpu_unset(int cpupid) 1300 { 1301 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1302 } 1303 1304 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1305 { 1306 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1307 } 1308 1309 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1310 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1311 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1312 { 1313 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1314 } 1315 1316 static inline int page_cpupid_last(struct page *page) 1317 { 1318 return page->_last_cpupid; 1319 } 1320 static inline void page_cpupid_reset_last(struct page *page) 1321 { 1322 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1323 } 1324 #else 1325 static inline int page_cpupid_last(struct page *page) 1326 { 1327 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1328 } 1329 1330 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1331 1332 static inline void page_cpupid_reset_last(struct page *page) 1333 { 1334 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1335 } 1336 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1337 #else /* !CONFIG_NUMA_BALANCING */ 1338 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1339 { 1340 return page_to_nid(page); /* XXX */ 1341 } 1342 1343 static inline int page_cpupid_last(struct page *page) 1344 { 1345 return page_to_nid(page); /* XXX */ 1346 } 1347 1348 static inline int cpupid_to_nid(int cpupid) 1349 { 1350 return -1; 1351 } 1352 1353 static inline int cpupid_to_pid(int cpupid) 1354 { 1355 return -1; 1356 } 1357 1358 static inline int cpupid_to_cpu(int cpupid) 1359 { 1360 return -1; 1361 } 1362 1363 static inline int cpu_pid_to_cpupid(int nid, int pid) 1364 { 1365 return -1; 1366 } 1367 1368 static inline bool cpupid_pid_unset(int cpupid) 1369 { 1370 return 1; 1371 } 1372 1373 static inline void page_cpupid_reset_last(struct page *page) 1374 { 1375 } 1376 1377 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1378 { 1379 return false; 1380 } 1381 #endif /* CONFIG_NUMA_BALANCING */ 1382 1383 #ifdef CONFIG_KASAN_SW_TAGS 1384 static inline u8 page_kasan_tag(const struct page *page) 1385 { 1386 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1387 } 1388 1389 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1390 { 1391 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1392 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1393 } 1394 1395 static inline void page_kasan_tag_reset(struct page *page) 1396 { 1397 page_kasan_tag_set(page, 0xff); 1398 } 1399 #else 1400 static inline u8 page_kasan_tag(const struct page *page) 1401 { 1402 return 0xff; 1403 } 1404 1405 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1406 static inline void page_kasan_tag_reset(struct page *page) { } 1407 #endif 1408 1409 static inline struct zone *page_zone(const struct page *page) 1410 { 1411 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1412 } 1413 1414 static inline pg_data_t *page_pgdat(const struct page *page) 1415 { 1416 return NODE_DATA(page_to_nid(page)); 1417 } 1418 1419 #ifdef SECTION_IN_PAGE_FLAGS 1420 static inline void set_page_section(struct page *page, unsigned long section) 1421 { 1422 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1423 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1424 } 1425 1426 static inline unsigned long page_to_section(const struct page *page) 1427 { 1428 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1429 } 1430 #endif 1431 1432 static inline void set_page_zone(struct page *page, enum zone_type zone) 1433 { 1434 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1435 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1436 } 1437 1438 static inline void set_page_node(struct page *page, unsigned long node) 1439 { 1440 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1441 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1442 } 1443 1444 static inline void set_page_links(struct page *page, enum zone_type zone, 1445 unsigned long node, unsigned long pfn) 1446 { 1447 set_page_zone(page, zone); 1448 set_page_node(page, node); 1449 #ifdef SECTION_IN_PAGE_FLAGS 1450 set_page_section(page, pfn_to_section_nr(pfn)); 1451 #endif 1452 } 1453 1454 #ifdef CONFIG_MEMCG 1455 static inline struct mem_cgroup *page_memcg(struct page *page) 1456 { 1457 return page->mem_cgroup; 1458 } 1459 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1460 { 1461 WARN_ON_ONCE(!rcu_read_lock_held()); 1462 return READ_ONCE(page->mem_cgroup); 1463 } 1464 #else 1465 static inline struct mem_cgroup *page_memcg(struct page *page) 1466 { 1467 return NULL; 1468 } 1469 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1470 { 1471 WARN_ON_ONCE(!rcu_read_lock_held()); 1472 return NULL; 1473 } 1474 #endif 1475 1476 /* 1477 * Some inline functions in vmstat.h depend on page_zone() 1478 */ 1479 #include <linux/vmstat.h> 1480 1481 static __always_inline void *lowmem_page_address(const struct page *page) 1482 { 1483 return page_to_virt(page); 1484 } 1485 1486 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1487 #define HASHED_PAGE_VIRTUAL 1488 #endif 1489 1490 #if defined(WANT_PAGE_VIRTUAL) 1491 static inline void *page_address(const struct page *page) 1492 { 1493 return page->virtual; 1494 } 1495 static inline void set_page_address(struct page *page, void *address) 1496 { 1497 page->virtual = address; 1498 } 1499 #define page_address_init() do { } while(0) 1500 #endif 1501 1502 #if defined(HASHED_PAGE_VIRTUAL) 1503 void *page_address(const struct page *page); 1504 void set_page_address(struct page *page, void *virtual); 1505 void page_address_init(void); 1506 #endif 1507 1508 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1509 #define page_address(page) lowmem_page_address(page) 1510 #define set_page_address(page, address) do { } while(0) 1511 #define page_address_init() do { } while(0) 1512 #endif 1513 1514 extern void *page_rmapping(struct page *page); 1515 extern struct anon_vma *page_anon_vma(struct page *page); 1516 extern struct address_space *page_mapping(struct page *page); 1517 1518 extern struct address_space *__page_file_mapping(struct page *); 1519 1520 static inline 1521 struct address_space *page_file_mapping(struct page *page) 1522 { 1523 if (unlikely(PageSwapCache(page))) 1524 return __page_file_mapping(page); 1525 1526 return page->mapping; 1527 } 1528 1529 extern pgoff_t __page_file_index(struct page *page); 1530 1531 /* 1532 * Return the pagecache index of the passed page. Regular pagecache pages 1533 * use ->index whereas swapcache pages use swp_offset(->private) 1534 */ 1535 static inline pgoff_t page_index(struct page *page) 1536 { 1537 if (unlikely(PageSwapCache(page))) 1538 return __page_file_index(page); 1539 return page->index; 1540 } 1541 1542 bool page_mapped(struct page *page); 1543 struct address_space *page_mapping(struct page *page); 1544 struct address_space *page_mapping_file(struct page *page); 1545 1546 /* 1547 * Return true only if the page has been allocated with 1548 * ALLOC_NO_WATERMARKS and the low watermark was not 1549 * met implying that the system is under some pressure. 1550 */ 1551 static inline bool page_is_pfmemalloc(struct page *page) 1552 { 1553 /* 1554 * Page index cannot be this large so this must be 1555 * a pfmemalloc page. 1556 */ 1557 return page->index == -1UL; 1558 } 1559 1560 /* 1561 * Only to be called by the page allocator on a freshly allocated 1562 * page. 1563 */ 1564 static inline void set_page_pfmemalloc(struct page *page) 1565 { 1566 page->index = -1UL; 1567 } 1568 1569 static inline void clear_page_pfmemalloc(struct page *page) 1570 { 1571 page->index = 0; 1572 } 1573 1574 /* 1575 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1576 */ 1577 extern void pagefault_out_of_memory(void); 1578 1579 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1580 1581 /* 1582 * Flags passed to show_mem() and show_free_areas() to suppress output in 1583 * various contexts. 1584 */ 1585 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1586 1587 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1588 1589 #ifdef CONFIG_MMU 1590 extern bool can_do_mlock(void); 1591 #else 1592 static inline bool can_do_mlock(void) { return false; } 1593 #endif 1594 extern int user_shm_lock(size_t, struct user_struct *); 1595 extern void user_shm_unlock(size_t, struct user_struct *); 1596 1597 /* 1598 * Parameter block passed down to zap_pte_range in exceptional cases. 1599 */ 1600 struct zap_details { 1601 struct address_space *check_mapping; /* Check page->mapping if set */ 1602 pgoff_t first_index; /* Lowest page->index to unmap */ 1603 pgoff_t last_index; /* Highest page->index to unmap */ 1604 }; 1605 1606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1607 pte_t pte); 1608 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1609 pmd_t pmd); 1610 1611 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1612 unsigned long size); 1613 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1614 unsigned long size); 1615 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1616 unsigned long start, unsigned long end); 1617 1618 struct mmu_notifier_range; 1619 1620 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1621 unsigned long end, unsigned long floor, unsigned long ceiling); 1622 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1623 struct vm_area_struct *vma); 1624 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1625 struct mmu_notifier_range *range, 1626 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1627 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1628 unsigned long *pfn); 1629 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1630 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1631 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1632 void *buf, int len, int write); 1633 1634 extern void truncate_pagecache(struct inode *inode, loff_t new); 1635 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1636 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1637 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1638 int truncate_inode_page(struct address_space *mapping, struct page *page); 1639 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1640 int invalidate_inode_page(struct page *page); 1641 1642 #ifdef CONFIG_MMU 1643 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1644 unsigned long address, unsigned int flags); 1645 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1646 unsigned long address, unsigned int fault_flags, 1647 bool *unlocked); 1648 void unmap_mapping_pages(struct address_space *mapping, 1649 pgoff_t start, pgoff_t nr, bool even_cows); 1650 void unmap_mapping_range(struct address_space *mapping, 1651 loff_t const holebegin, loff_t const holelen, int even_cows); 1652 #else 1653 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1654 unsigned long address, unsigned int flags) 1655 { 1656 /* should never happen if there's no MMU */ 1657 BUG(); 1658 return VM_FAULT_SIGBUS; 1659 } 1660 static inline int fixup_user_fault(struct task_struct *tsk, 1661 struct mm_struct *mm, unsigned long address, 1662 unsigned int fault_flags, bool *unlocked) 1663 { 1664 /* should never happen if there's no MMU */ 1665 BUG(); 1666 return -EFAULT; 1667 } 1668 static inline void unmap_mapping_pages(struct address_space *mapping, 1669 pgoff_t start, pgoff_t nr, bool even_cows) { } 1670 static inline void unmap_mapping_range(struct address_space *mapping, 1671 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1672 #endif 1673 1674 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1675 loff_t const holebegin, loff_t const holelen) 1676 { 1677 unmap_mapping_range(mapping, holebegin, holelen, 0); 1678 } 1679 1680 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1681 void *buf, int len, unsigned int gup_flags); 1682 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1683 void *buf, int len, unsigned int gup_flags); 1684 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1685 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1686 1687 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1688 unsigned long start, unsigned long nr_pages, 1689 unsigned int gup_flags, struct page **pages, 1690 struct vm_area_struct **vmas, int *locked); 1691 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1692 unsigned long start, unsigned long nr_pages, 1693 unsigned int gup_flags, struct page **pages, 1694 struct vm_area_struct **vmas, int *locked); 1695 long get_user_pages(unsigned long start, unsigned long nr_pages, 1696 unsigned int gup_flags, struct page **pages, 1697 struct vm_area_struct **vmas); 1698 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1699 unsigned int gup_flags, struct page **pages, 1700 struct vm_area_struct **vmas); 1701 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1702 unsigned int gup_flags, struct page **pages, int *locked); 1703 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1704 struct page **pages, unsigned int gup_flags); 1705 1706 int get_user_pages_fast(unsigned long start, int nr_pages, 1707 unsigned int gup_flags, struct page **pages); 1708 int pin_user_pages_fast(unsigned long start, int nr_pages, 1709 unsigned int gup_flags, struct page **pages); 1710 1711 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1712 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1713 struct task_struct *task, bool bypass_rlim); 1714 1715 /* Container for pinned pfns / pages */ 1716 struct frame_vector { 1717 unsigned int nr_allocated; /* Number of frames we have space for */ 1718 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1719 bool got_ref; /* Did we pin pages by getting page ref? */ 1720 bool is_pfns; /* Does array contain pages or pfns? */ 1721 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1722 * pfns_vector_pages() or pfns_vector_pfns() 1723 * for access */ 1724 }; 1725 1726 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1727 void frame_vector_destroy(struct frame_vector *vec); 1728 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1729 unsigned int gup_flags, struct frame_vector *vec); 1730 void put_vaddr_frames(struct frame_vector *vec); 1731 int frame_vector_to_pages(struct frame_vector *vec); 1732 void frame_vector_to_pfns(struct frame_vector *vec); 1733 1734 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1735 { 1736 return vec->nr_frames; 1737 } 1738 1739 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1740 { 1741 if (vec->is_pfns) { 1742 int err = frame_vector_to_pages(vec); 1743 1744 if (err) 1745 return ERR_PTR(err); 1746 } 1747 return (struct page **)(vec->ptrs); 1748 } 1749 1750 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1751 { 1752 if (!vec->is_pfns) 1753 frame_vector_to_pfns(vec); 1754 return (unsigned long *)(vec->ptrs); 1755 } 1756 1757 struct kvec; 1758 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1759 struct page **pages); 1760 int get_kernel_page(unsigned long start, int write, struct page **pages); 1761 struct page *get_dump_page(unsigned long addr); 1762 1763 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1764 extern void do_invalidatepage(struct page *page, unsigned int offset, 1765 unsigned int length); 1766 1767 void __set_page_dirty(struct page *, struct address_space *, int warn); 1768 int __set_page_dirty_nobuffers(struct page *page); 1769 int __set_page_dirty_no_writeback(struct page *page); 1770 int redirty_page_for_writepage(struct writeback_control *wbc, 1771 struct page *page); 1772 void account_page_dirtied(struct page *page, struct address_space *mapping); 1773 void account_page_cleaned(struct page *page, struct address_space *mapping, 1774 struct bdi_writeback *wb); 1775 int set_page_dirty(struct page *page); 1776 int set_page_dirty_lock(struct page *page); 1777 void __cancel_dirty_page(struct page *page); 1778 static inline void cancel_dirty_page(struct page *page) 1779 { 1780 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1781 if (PageDirty(page)) 1782 __cancel_dirty_page(page); 1783 } 1784 int clear_page_dirty_for_io(struct page *page); 1785 1786 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1787 1788 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1789 unsigned long old_addr, struct vm_area_struct *new_vma, 1790 unsigned long new_addr, unsigned long len, 1791 bool need_rmap_locks); 1792 1793 /* 1794 * Flags used by change_protection(). For now we make it a bitmap so 1795 * that we can pass in multiple flags just like parameters. However 1796 * for now all the callers are only use one of the flags at the same 1797 * time. 1798 */ 1799 /* Whether we should allow dirty bit accounting */ 1800 #define MM_CP_DIRTY_ACCT (1UL << 0) 1801 /* Whether this protection change is for NUMA hints */ 1802 #define MM_CP_PROT_NUMA (1UL << 1) 1803 /* Whether this change is for write protecting */ 1804 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1805 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1806 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1807 MM_CP_UFFD_WP_RESOLVE) 1808 1809 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1810 unsigned long end, pgprot_t newprot, 1811 unsigned long cp_flags); 1812 extern int mprotect_fixup(struct vm_area_struct *vma, 1813 struct vm_area_struct **pprev, unsigned long start, 1814 unsigned long end, unsigned long newflags); 1815 1816 /* 1817 * doesn't attempt to fault and will return short. 1818 */ 1819 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1820 struct page **pages); 1821 /* 1822 * per-process(per-mm_struct) statistics. 1823 */ 1824 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1825 { 1826 long val = atomic_long_read(&mm->rss_stat.count[member]); 1827 1828 #ifdef SPLIT_RSS_COUNTING 1829 /* 1830 * counter is updated in asynchronous manner and may go to minus. 1831 * But it's never be expected number for users. 1832 */ 1833 if (val < 0) 1834 val = 0; 1835 #endif 1836 return (unsigned long)val; 1837 } 1838 1839 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1840 1841 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1842 { 1843 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1844 1845 mm_trace_rss_stat(mm, member, count); 1846 } 1847 1848 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1849 { 1850 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1851 1852 mm_trace_rss_stat(mm, member, count); 1853 } 1854 1855 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1856 { 1857 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1858 1859 mm_trace_rss_stat(mm, member, count); 1860 } 1861 1862 /* Optimized variant when page is already known not to be PageAnon */ 1863 static inline int mm_counter_file(struct page *page) 1864 { 1865 if (PageSwapBacked(page)) 1866 return MM_SHMEMPAGES; 1867 return MM_FILEPAGES; 1868 } 1869 1870 static inline int mm_counter(struct page *page) 1871 { 1872 if (PageAnon(page)) 1873 return MM_ANONPAGES; 1874 return mm_counter_file(page); 1875 } 1876 1877 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1878 { 1879 return get_mm_counter(mm, MM_FILEPAGES) + 1880 get_mm_counter(mm, MM_ANONPAGES) + 1881 get_mm_counter(mm, MM_SHMEMPAGES); 1882 } 1883 1884 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1885 { 1886 return max(mm->hiwater_rss, get_mm_rss(mm)); 1887 } 1888 1889 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1890 { 1891 return max(mm->hiwater_vm, mm->total_vm); 1892 } 1893 1894 static inline void update_hiwater_rss(struct mm_struct *mm) 1895 { 1896 unsigned long _rss = get_mm_rss(mm); 1897 1898 if ((mm)->hiwater_rss < _rss) 1899 (mm)->hiwater_rss = _rss; 1900 } 1901 1902 static inline void update_hiwater_vm(struct mm_struct *mm) 1903 { 1904 if (mm->hiwater_vm < mm->total_vm) 1905 mm->hiwater_vm = mm->total_vm; 1906 } 1907 1908 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1909 { 1910 mm->hiwater_rss = get_mm_rss(mm); 1911 } 1912 1913 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1914 struct mm_struct *mm) 1915 { 1916 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1917 1918 if (*maxrss < hiwater_rss) 1919 *maxrss = hiwater_rss; 1920 } 1921 1922 #if defined(SPLIT_RSS_COUNTING) 1923 void sync_mm_rss(struct mm_struct *mm); 1924 #else 1925 static inline void sync_mm_rss(struct mm_struct *mm) 1926 { 1927 } 1928 #endif 1929 1930 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1931 static inline int pte_special(pte_t pte) 1932 { 1933 return 0; 1934 } 1935 1936 static inline pte_t pte_mkspecial(pte_t pte) 1937 { 1938 return pte; 1939 } 1940 #endif 1941 1942 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1943 static inline int pte_devmap(pte_t pte) 1944 { 1945 return 0; 1946 } 1947 #endif 1948 1949 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1950 1951 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1952 spinlock_t **ptl); 1953 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1954 spinlock_t **ptl) 1955 { 1956 pte_t *ptep; 1957 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1958 return ptep; 1959 } 1960 1961 #ifdef __PAGETABLE_P4D_FOLDED 1962 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1963 unsigned long address) 1964 { 1965 return 0; 1966 } 1967 #else 1968 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1969 #endif 1970 1971 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1972 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1973 unsigned long address) 1974 { 1975 return 0; 1976 } 1977 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1978 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1979 1980 #else 1981 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1982 1983 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1984 { 1985 if (mm_pud_folded(mm)) 1986 return; 1987 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1988 } 1989 1990 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1991 { 1992 if (mm_pud_folded(mm)) 1993 return; 1994 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1995 } 1996 #endif 1997 1998 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1999 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2000 unsigned long address) 2001 { 2002 return 0; 2003 } 2004 2005 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2006 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2007 2008 #else 2009 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2010 2011 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2012 { 2013 if (mm_pmd_folded(mm)) 2014 return; 2015 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2016 } 2017 2018 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2019 { 2020 if (mm_pmd_folded(mm)) 2021 return; 2022 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2023 } 2024 #endif 2025 2026 #ifdef CONFIG_MMU 2027 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2028 { 2029 atomic_long_set(&mm->pgtables_bytes, 0); 2030 } 2031 2032 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2033 { 2034 return atomic_long_read(&mm->pgtables_bytes); 2035 } 2036 2037 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2038 { 2039 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2040 } 2041 2042 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2043 { 2044 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2045 } 2046 #else 2047 2048 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2049 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2050 { 2051 return 0; 2052 } 2053 2054 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2055 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2056 #endif 2057 2058 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2059 int __pte_alloc_kernel(pmd_t *pmd); 2060 2061 #if defined(CONFIG_MMU) 2062 2063 /* 2064 * The following ifdef needed to get the 5level-fixup.h header to work. 2065 * Remove it when 5level-fixup.h has been removed. 2066 */ 2067 #ifndef __ARCH_HAS_5LEVEL_HACK 2068 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2069 unsigned long address) 2070 { 2071 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2072 NULL : p4d_offset(pgd, address); 2073 } 2074 2075 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2076 unsigned long address) 2077 { 2078 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2079 NULL : pud_offset(p4d, address); 2080 } 2081 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 2082 2083 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2084 { 2085 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2086 NULL: pmd_offset(pud, address); 2087 } 2088 #endif /* CONFIG_MMU */ 2089 2090 #if USE_SPLIT_PTE_PTLOCKS 2091 #if ALLOC_SPLIT_PTLOCKS 2092 void __init ptlock_cache_init(void); 2093 extern bool ptlock_alloc(struct page *page); 2094 extern void ptlock_free(struct page *page); 2095 2096 static inline spinlock_t *ptlock_ptr(struct page *page) 2097 { 2098 return page->ptl; 2099 } 2100 #else /* ALLOC_SPLIT_PTLOCKS */ 2101 static inline void ptlock_cache_init(void) 2102 { 2103 } 2104 2105 static inline bool ptlock_alloc(struct page *page) 2106 { 2107 return true; 2108 } 2109 2110 static inline void ptlock_free(struct page *page) 2111 { 2112 } 2113 2114 static inline spinlock_t *ptlock_ptr(struct page *page) 2115 { 2116 return &page->ptl; 2117 } 2118 #endif /* ALLOC_SPLIT_PTLOCKS */ 2119 2120 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2121 { 2122 return ptlock_ptr(pmd_page(*pmd)); 2123 } 2124 2125 static inline bool ptlock_init(struct page *page) 2126 { 2127 /* 2128 * prep_new_page() initialize page->private (and therefore page->ptl) 2129 * with 0. Make sure nobody took it in use in between. 2130 * 2131 * It can happen if arch try to use slab for page table allocation: 2132 * slab code uses page->slab_cache, which share storage with page->ptl. 2133 */ 2134 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2135 if (!ptlock_alloc(page)) 2136 return false; 2137 spin_lock_init(ptlock_ptr(page)); 2138 return true; 2139 } 2140 2141 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2142 /* 2143 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2144 */ 2145 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2146 { 2147 return &mm->page_table_lock; 2148 } 2149 static inline void ptlock_cache_init(void) {} 2150 static inline bool ptlock_init(struct page *page) { return true; } 2151 static inline void ptlock_free(struct page *page) {} 2152 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2153 2154 static inline void pgtable_init(void) 2155 { 2156 ptlock_cache_init(); 2157 pgtable_cache_init(); 2158 } 2159 2160 static inline bool pgtable_pte_page_ctor(struct page *page) 2161 { 2162 if (!ptlock_init(page)) 2163 return false; 2164 __SetPageTable(page); 2165 inc_zone_page_state(page, NR_PAGETABLE); 2166 return true; 2167 } 2168 2169 static inline void pgtable_pte_page_dtor(struct page *page) 2170 { 2171 ptlock_free(page); 2172 __ClearPageTable(page); 2173 dec_zone_page_state(page, NR_PAGETABLE); 2174 } 2175 2176 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2177 ({ \ 2178 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2179 pte_t *__pte = pte_offset_map(pmd, address); \ 2180 *(ptlp) = __ptl; \ 2181 spin_lock(__ptl); \ 2182 __pte; \ 2183 }) 2184 2185 #define pte_unmap_unlock(pte, ptl) do { \ 2186 spin_unlock(ptl); \ 2187 pte_unmap(pte); \ 2188 } while (0) 2189 2190 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2191 2192 #define pte_alloc_map(mm, pmd, address) \ 2193 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2194 2195 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2196 (pte_alloc(mm, pmd) ? \ 2197 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2198 2199 #define pte_alloc_kernel(pmd, address) \ 2200 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2201 NULL: pte_offset_kernel(pmd, address)) 2202 2203 #if USE_SPLIT_PMD_PTLOCKS 2204 2205 static struct page *pmd_to_page(pmd_t *pmd) 2206 { 2207 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2208 return virt_to_page((void *)((unsigned long) pmd & mask)); 2209 } 2210 2211 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2212 { 2213 return ptlock_ptr(pmd_to_page(pmd)); 2214 } 2215 2216 static inline bool pgtable_pmd_page_ctor(struct page *page) 2217 { 2218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2219 page->pmd_huge_pte = NULL; 2220 #endif 2221 return ptlock_init(page); 2222 } 2223 2224 static inline void pgtable_pmd_page_dtor(struct page *page) 2225 { 2226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2227 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2228 #endif 2229 ptlock_free(page); 2230 } 2231 2232 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2233 2234 #else 2235 2236 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2237 { 2238 return &mm->page_table_lock; 2239 } 2240 2241 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2242 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2243 2244 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2245 2246 #endif 2247 2248 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2249 { 2250 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2251 spin_lock(ptl); 2252 return ptl; 2253 } 2254 2255 /* 2256 * No scalability reason to split PUD locks yet, but follow the same pattern 2257 * as the PMD locks to make it easier if we decide to. The VM should not be 2258 * considered ready to switch to split PUD locks yet; there may be places 2259 * which need to be converted from page_table_lock. 2260 */ 2261 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2262 { 2263 return &mm->page_table_lock; 2264 } 2265 2266 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2267 { 2268 spinlock_t *ptl = pud_lockptr(mm, pud); 2269 2270 spin_lock(ptl); 2271 return ptl; 2272 } 2273 2274 extern void __init pagecache_init(void); 2275 extern void free_area_init(unsigned long * zones_size); 2276 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2277 unsigned long zone_start_pfn, unsigned long *zholes_size); 2278 extern void free_initmem(void); 2279 2280 /* 2281 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2282 * into the buddy system. The freed pages will be poisoned with pattern 2283 * "poison" if it's within range [0, UCHAR_MAX]. 2284 * Return pages freed into the buddy system. 2285 */ 2286 extern unsigned long free_reserved_area(void *start, void *end, 2287 int poison, const char *s); 2288 2289 #ifdef CONFIG_HIGHMEM 2290 /* 2291 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2292 * and totalram_pages. 2293 */ 2294 extern void free_highmem_page(struct page *page); 2295 #endif 2296 2297 extern void adjust_managed_page_count(struct page *page, long count); 2298 extern void mem_init_print_info(const char *str); 2299 2300 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2301 2302 /* Free the reserved page into the buddy system, so it gets managed. */ 2303 static inline void __free_reserved_page(struct page *page) 2304 { 2305 ClearPageReserved(page); 2306 init_page_count(page); 2307 __free_page(page); 2308 } 2309 2310 static inline void free_reserved_page(struct page *page) 2311 { 2312 __free_reserved_page(page); 2313 adjust_managed_page_count(page, 1); 2314 } 2315 2316 static inline void mark_page_reserved(struct page *page) 2317 { 2318 SetPageReserved(page); 2319 adjust_managed_page_count(page, -1); 2320 } 2321 2322 /* 2323 * Default method to free all the __init memory into the buddy system. 2324 * The freed pages will be poisoned with pattern "poison" if it's within 2325 * range [0, UCHAR_MAX]. 2326 * Return pages freed into the buddy system. 2327 */ 2328 static inline unsigned long free_initmem_default(int poison) 2329 { 2330 extern char __init_begin[], __init_end[]; 2331 2332 return free_reserved_area(&__init_begin, &__init_end, 2333 poison, "unused kernel"); 2334 } 2335 2336 static inline unsigned long get_num_physpages(void) 2337 { 2338 int nid; 2339 unsigned long phys_pages = 0; 2340 2341 for_each_online_node(nid) 2342 phys_pages += node_present_pages(nid); 2343 2344 return phys_pages; 2345 } 2346 2347 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2348 /* 2349 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2350 * zones, allocate the backing mem_map and account for memory holes in a more 2351 * architecture independent manner. This is a substitute for creating the 2352 * zone_sizes[] and zholes_size[] arrays and passing them to 2353 * free_area_init_node() 2354 * 2355 * An architecture is expected to register range of page frames backed by 2356 * physical memory with memblock_add[_node]() before calling 2357 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2358 * usage, an architecture is expected to do something like 2359 * 2360 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2361 * max_highmem_pfn}; 2362 * for_each_valid_physical_page_range() 2363 * memblock_add_node(base, size, nid) 2364 * free_area_init_nodes(max_zone_pfns); 2365 * 2366 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2367 * registered physical page range. Similarly 2368 * sparse_memory_present_with_active_regions() calls memory_present() for 2369 * each range when SPARSEMEM is enabled. 2370 * 2371 * See mm/page_alloc.c for more information on each function exposed by 2372 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2373 */ 2374 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2375 unsigned long node_map_pfn_alignment(void); 2376 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2377 unsigned long end_pfn); 2378 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2379 unsigned long end_pfn); 2380 extern void get_pfn_range_for_nid(unsigned int nid, 2381 unsigned long *start_pfn, unsigned long *end_pfn); 2382 extern unsigned long find_min_pfn_with_active_regions(void); 2383 extern void free_bootmem_with_active_regions(int nid, 2384 unsigned long max_low_pfn); 2385 extern void sparse_memory_present_with_active_regions(int nid); 2386 2387 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2388 2389 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2390 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2391 static inline int __early_pfn_to_nid(unsigned long pfn, 2392 struct mminit_pfnnid_cache *state) 2393 { 2394 return 0; 2395 } 2396 #else 2397 /* please see mm/page_alloc.c */ 2398 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2399 /* there is a per-arch backend function. */ 2400 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2401 struct mminit_pfnnid_cache *state); 2402 #endif 2403 2404 extern void set_dma_reserve(unsigned long new_dma_reserve); 2405 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2406 enum memmap_context, struct vmem_altmap *); 2407 extern void setup_per_zone_wmarks(void); 2408 extern int __meminit init_per_zone_wmark_min(void); 2409 extern void mem_init(void); 2410 extern void __init mmap_init(void); 2411 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2412 extern long si_mem_available(void); 2413 extern void si_meminfo(struct sysinfo * val); 2414 extern void si_meminfo_node(struct sysinfo *val, int nid); 2415 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2416 extern unsigned long arch_reserved_kernel_pages(void); 2417 #endif 2418 2419 extern __printf(3, 4) 2420 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2421 2422 extern void setup_per_cpu_pageset(void); 2423 2424 /* page_alloc.c */ 2425 extern int min_free_kbytes; 2426 extern int watermark_boost_factor; 2427 extern int watermark_scale_factor; 2428 2429 /* nommu.c */ 2430 extern atomic_long_t mmap_pages_allocated; 2431 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2432 2433 /* interval_tree.c */ 2434 void vma_interval_tree_insert(struct vm_area_struct *node, 2435 struct rb_root_cached *root); 2436 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2437 struct vm_area_struct *prev, 2438 struct rb_root_cached *root); 2439 void vma_interval_tree_remove(struct vm_area_struct *node, 2440 struct rb_root_cached *root); 2441 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2442 unsigned long start, unsigned long last); 2443 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2444 unsigned long start, unsigned long last); 2445 2446 #define vma_interval_tree_foreach(vma, root, start, last) \ 2447 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2448 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2449 2450 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2451 struct rb_root_cached *root); 2452 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2453 struct rb_root_cached *root); 2454 struct anon_vma_chain * 2455 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2456 unsigned long start, unsigned long last); 2457 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2458 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2459 #ifdef CONFIG_DEBUG_VM_RB 2460 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2461 #endif 2462 2463 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2464 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2465 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2466 2467 /* mmap.c */ 2468 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2469 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2470 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2471 struct vm_area_struct *expand); 2472 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2473 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2474 { 2475 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2476 } 2477 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2478 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2479 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2480 struct mempolicy *, struct vm_userfaultfd_ctx); 2481 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2482 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2483 unsigned long addr, int new_below); 2484 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2485 unsigned long addr, int new_below); 2486 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2487 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2488 struct rb_node **, struct rb_node *); 2489 extern void unlink_file_vma(struct vm_area_struct *); 2490 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2491 unsigned long addr, unsigned long len, pgoff_t pgoff, 2492 bool *need_rmap_locks); 2493 extern void exit_mmap(struct mm_struct *); 2494 2495 static inline int check_data_rlimit(unsigned long rlim, 2496 unsigned long new, 2497 unsigned long start, 2498 unsigned long end_data, 2499 unsigned long start_data) 2500 { 2501 if (rlim < RLIM_INFINITY) { 2502 if (((new - start) + (end_data - start_data)) > rlim) 2503 return -ENOSPC; 2504 } 2505 2506 return 0; 2507 } 2508 2509 extern int mm_take_all_locks(struct mm_struct *mm); 2510 extern void mm_drop_all_locks(struct mm_struct *mm); 2511 2512 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2513 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2514 extern struct file *get_task_exe_file(struct task_struct *task); 2515 2516 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2517 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2518 2519 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2520 const struct vm_special_mapping *sm); 2521 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2522 unsigned long addr, unsigned long len, 2523 unsigned long flags, 2524 const struct vm_special_mapping *spec); 2525 /* This is an obsolete alternative to _install_special_mapping. */ 2526 extern int install_special_mapping(struct mm_struct *mm, 2527 unsigned long addr, unsigned long len, 2528 unsigned long flags, struct page **pages); 2529 2530 unsigned long randomize_stack_top(unsigned long stack_top); 2531 2532 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2533 2534 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2535 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2536 struct list_head *uf); 2537 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2538 unsigned long len, unsigned long prot, unsigned long flags, 2539 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2540 struct list_head *uf); 2541 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2542 struct list_head *uf, bool downgrade); 2543 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2544 struct list_head *uf); 2545 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2546 2547 static inline unsigned long 2548 do_mmap_pgoff(struct file *file, unsigned long addr, 2549 unsigned long len, unsigned long prot, unsigned long flags, 2550 unsigned long pgoff, unsigned long *populate, 2551 struct list_head *uf) 2552 { 2553 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2554 } 2555 2556 #ifdef CONFIG_MMU 2557 extern int __mm_populate(unsigned long addr, unsigned long len, 2558 int ignore_errors); 2559 static inline void mm_populate(unsigned long addr, unsigned long len) 2560 { 2561 /* Ignore errors */ 2562 (void) __mm_populate(addr, len, 1); 2563 } 2564 #else 2565 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2566 #endif 2567 2568 /* These take the mm semaphore themselves */ 2569 extern int __must_check vm_brk(unsigned long, unsigned long); 2570 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2571 extern int vm_munmap(unsigned long, size_t); 2572 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2573 unsigned long, unsigned long, 2574 unsigned long, unsigned long); 2575 2576 struct vm_unmapped_area_info { 2577 #define VM_UNMAPPED_AREA_TOPDOWN 1 2578 unsigned long flags; 2579 unsigned long length; 2580 unsigned long low_limit; 2581 unsigned long high_limit; 2582 unsigned long align_mask; 2583 unsigned long align_offset; 2584 }; 2585 2586 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2587 2588 /* truncate.c */ 2589 extern void truncate_inode_pages(struct address_space *, loff_t); 2590 extern void truncate_inode_pages_range(struct address_space *, 2591 loff_t lstart, loff_t lend); 2592 extern void truncate_inode_pages_final(struct address_space *); 2593 2594 /* generic vm_area_ops exported for stackable file systems */ 2595 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2596 extern void filemap_map_pages(struct vm_fault *vmf, 2597 pgoff_t start_pgoff, pgoff_t end_pgoff); 2598 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2599 2600 /* mm/page-writeback.c */ 2601 int __must_check write_one_page(struct page *page); 2602 void task_dirty_inc(struct task_struct *tsk); 2603 2604 /* readahead.c */ 2605 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2606 2607 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2608 pgoff_t offset, unsigned long nr_to_read); 2609 2610 void page_cache_sync_readahead(struct address_space *mapping, 2611 struct file_ra_state *ra, 2612 struct file *filp, 2613 pgoff_t offset, 2614 unsigned long size); 2615 2616 void page_cache_async_readahead(struct address_space *mapping, 2617 struct file_ra_state *ra, 2618 struct file *filp, 2619 struct page *pg, 2620 pgoff_t offset, 2621 unsigned long size); 2622 2623 extern unsigned long stack_guard_gap; 2624 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2625 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2626 2627 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2628 extern int expand_downwards(struct vm_area_struct *vma, 2629 unsigned long address); 2630 #if VM_GROWSUP 2631 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2632 #else 2633 #define expand_upwards(vma, address) (0) 2634 #endif 2635 2636 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2637 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2638 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2639 struct vm_area_struct **pprev); 2640 2641 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2642 NULL if none. Assume start_addr < end_addr. */ 2643 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2644 { 2645 struct vm_area_struct * vma = find_vma(mm,start_addr); 2646 2647 if (vma && end_addr <= vma->vm_start) 2648 vma = NULL; 2649 return vma; 2650 } 2651 2652 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2653 { 2654 unsigned long vm_start = vma->vm_start; 2655 2656 if (vma->vm_flags & VM_GROWSDOWN) { 2657 vm_start -= stack_guard_gap; 2658 if (vm_start > vma->vm_start) 2659 vm_start = 0; 2660 } 2661 return vm_start; 2662 } 2663 2664 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2665 { 2666 unsigned long vm_end = vma->vm_end; 2667 2668 if (vma->vm_flags & VM_GROWSUP) { 2669 vm_end += stack_guard_gap; 2670 if (vm_end < vma->vm_end) 2671 vm_end = -PAGE_SIZE; 2672 } 2673 return vm_end; 2674 } 2675 2676 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2677 { 2678 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2679 } 2680 2681 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2682 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2683 unsigned long vm_start, unsigned long vm_end) 2684 { 2685 struct vm_area_struct *vma = find_vma(mm, vm_start); 2686 2687 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2688 vma = NULL; 2689 2690 return vma; 2691 } 2692 2693 static inline bool range_in_vma(struct vm_area_struct *vma, 2694 unsigned long start, unsigned long end) 2695 { 2696 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2697 } 2698 2699 #ifdef CONFIG_MMU 2700 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2701 void vma_set_page_prot(struct vm_area_struct *vma); 2702 #else 2703 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2704 { 2705 return __pgprot(0); 2706 } 2707 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2708 { 2709 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2710 } 2711 #endif 2712 2713 #ifdef CONFIG_NUMA_BALANCING 2714 unsigned long change_prot_numa(struct vm_area_struct *vma, 2715 unsigned long start, unsigned long end); 2716 #endif 2717 2718 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2719 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2720 unsigned long pfn, unsigned long size, pgprot_t); 2721 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2722 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2723 struct page **pages, unsigned long *num); 2724 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2725 unsigned long num); 2726 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2727 unsigned long num); 2728 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2729 unsigned long pfn); 2730 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2731 unsigned long pfn, pgprot_t pgprot); 2732 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2733 pfn_t pfn); 2734 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2735 pfn_t pfn, pgprot_t pgprot); 2736 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2737 unsigned long addr, pfn_t pfn); 2738 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2739 2740 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2741 unsigned long addr, struct page *page) 2742 { 2743 int err = vm_insert_page(vma, addr, page); 2744 2745 if (err == -ENOMEM) 2746 return VM_FAULT_OOM; 2747 if (err < 0 && err != -EBUSY) 2748 return VM_FAULT_SIGBUS; 2749 2750 return VM_FAULT_NOPAGE; 2751 } 2752 2753 static inline vm_fault_t vmf_error(int err) 2754 { 2755 if (err == -ENOMEM) 2756 return VM_FAULT_OOM; 2757 return VM_FAULT_SIGBUS; 2758 } 2759 2760 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2761 unsigned int foll_flags); 2762 2763 #define FOLL_WRITE 0x01 /* check pte is writable */ 2764 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2765 #define FOLL_GET 0x04 /* do get_page on page */ 2766 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2767 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2768 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2769 * and return without waiting upon it */ 2770 #define FOLL_POPULATE 0x40 /* fault in page */ 2771 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2772 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2773 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2774 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2775 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2776 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2777 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2778 #define FOLL_COW 0x4000 /* internal GUP flag */ 2779 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2780 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2781 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2782 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2783 2784 /* 2785 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2786 * other. Here is what they mean, and how to use them: 2787 * 2788 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2789 * period _often_ under userspace control. This is in contrast to 2790 * iov_iter_get_pages(), whose usages are transient. 2791 * 2792 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2793 * lifetime enforced by the filesystem and we need guarantees that longterm 2794 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2795 * the filesystem. Ideas for this coordination include revoking the longterm 2796 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2797 * added after the problem with filesystems was found FS DAX VMAs are 2798 * specifically failed. Filesystem pages are still subject to bugs and use of 2799 * FOLL_LONGTERM should be avoided on those pages. 2800 * 2801 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2802 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2803 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2804 * is due to an incompatibility with the FS DAX check and 2805 * FAULT_FLAG_ALLOW_RETRY. 2806 * 2807 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2808 * that region. And so, CMA attempts to migrate the page before pinning, when 2809 * FOLL_LONGTERM is specified. 2810 * 2811 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2812 * but an additional pin counting system) will be invoked. This is intended for 2813 * anything that gets a page reference and then touches page data (for example, 2814 * Direct IO). This lets the filesystem know that some non-file-system entity is 2815 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2816 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2817 * a call to unpin_user_page(). 2818 * 2819 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2820 * and separate refcounting mechanisms, however, and that means that each has 2821 * its own acquire and release mechanisms: 2822 * 2823 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2824 * 2825 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2826 * 2827 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2828 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2829 * calls applied to them, and that's perfectly OK. This is a constraint on the 2830 * callers, not on the pages.) 2831 * 2832 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2833 * directly by the caller. That's in order to help avoid mismatches when 2834 * releasing pages: get_user_pages*() pages must be released via put_page(), 2835 * while pin_user_pages*() pages must be released via unpin_user_page(). 2836 * 2837 * Please see Documentation/vm/pin_user_pages.rst for more information. 2838 */ 2839 2840 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2841 { 2842 if (vm_fault & VM_FAULT_OOM) 2843 return -ENOMEM; 2844 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2845 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2846 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2847 return -EFAULT; 2848 return 0; 2849 } 2850 2851 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2852 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2853 unsigned long size, pte_fn_t fn, void *data); 2854 extern int apply_to_existing_page_range(struct mm_struct *mm, 2855 unsigned long address, unsigned long size, 2856 pte_fn_t fn, void *data); 2857 2858 #ifdef CONFIG_PAGE_POISONING 2859 extern bool page_poisoning_enabled(void); 2860 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2861 #else 2862 static inline bool page_poisoning_enabled(void) { return false; } 2863 static inline void kernel_poison_pages(struct page *page, int numpages, 2864 int enable) { } 2865 #endif 2866 2867 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2868 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2869 #else 2870 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2871 #endif 2872 static inline bool want_init_on_alloc(gfp_t flags) 2873 { 2874 if (static_branch_unlikely(&init_on_alloc) && 2875 !page_poisoning_enabled()) 2876 return true; 2877 return flags & __GFP_ZERO; 2878 } 2879 2880 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2881 DECLARE_STATIC_KEY_TRUE(init_on_free); 2882 #else 2883 DECLARE_STATIC_KEY_FALSE(init_on_free); 2884 #endif 2885 static inline bool want_init_on_free(void) 2886 { 2887 return static_branch_unlikely(&init_on_free) && 2888 !page_poisoning_enabled(); 2889 } 2890 2891 #ifdef CONFIG_DEBUG_PAGEALLOC 2892 extern void init_debug_pagealloc(void); 2893 #else 2894 static inline void init_debug_pagealloc(void) {} 2895 #endif 2896 extern bool _debug_pagealloc_enabled_early; 2897 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2898 2899 static inline bool debug_pagealloc_enabled(void) 2900 { 2901 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2902 _debug_pagealloc_enabled_early; 2903 } 2904 2905 /* 2906 * For use in fast paths after init_debug_pagealloc() has run, or when a 2907 * false negative result is not harmful when called too early. 2908 */ 2909 static inline bool debug_pagealloc_enabled_static(void) 2910 { 2911 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2912 return false; 2913 2914 return static_branch_unlikely(&_debug_pagealloc_enabled); 2915 } 2916 2917 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2918 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2919 2920 /* 2921 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2922 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2923 */ 2924 static inline void 2925 kernel_map_pages(struct page *page, int numpages, int enable) 2926 { 2927 __kernel_map_pages(page, numpages, enable); 2928 } 2929 #ifdef CONFIG_HIBERNATION 2930 extern bool kernel_page_present(struct page *page); 2931 #endif /* CONFIG_HIBERNATION */ 2932 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2933 static inline void 2934 kernel_map_pages(struct page *page, int numpages, int enable) {} 2935 #ifdef CONFIG_HIBERNATION 2936 static inline bool kernel_page_present(struct page *page) { return true; } 2937 #endif /* CONFIG_HIBERNATION */ 2938 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2939 2940 #ifdef __HAVE_ARCH_GATE_AREA 2941 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2942 extern int in_gate_area_no_mm(unsigned long addr); 2943 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2944 #else 2945 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2946 { 2947 return NULL; 2948 } 2949 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2950 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2951 { 2952 return 0; 2953 } 2954 #endif /* __HAVE_ARCH_GATE_AREA */ 2955 2956 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2957 2958 #ifdef CONFIG_SYSCTL 2959 extern int sysctl_drop_caches; 2960 int drop_caches_sysctl_handler(struct ctl_table *, int, 2961 void __user *, size_t *, loff_t *); 2962 #endif 2963 2964 void drop_slab(void); 2965 void drop_slab_node(int nid); 2966 2967 #ifndef CONFIG_MMU 2968 #define randomize_va_space 0 2969 #else 2970 extern int randomize_va_space; 2971 #endif 2972 2973 const char * arch_vma_name(struct vm_area_struct *vma); 2974 #ifdef CONFIG_MMU 2975 void print_vma_addr(char *prefix, unsigned long rip); 2976 #else 2977 static inline void print_vma_addr(char *prefix, unsigned long rip) 2978 { 2979 } 2980 #endif 2981 2982 void *sparse_buffer_alloc(unsigned long size); 2983 struct page * __populate_section_memmap(unsigned long pfn, 2984 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2985 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2986 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2987 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2988 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2989 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2990 void *vmemmap_alloc_block(unsigned long size, int node); 2991 struct vmem_altmap; 2992 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2993 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2994 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2995 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2996 int node); 2997 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2998 struct vmem_altmap *altmap); 2999 void vmemmap_populate_print_last(void); 3000 #ifdef CONFIG_MEMORY_HOTPLUG 3001 void vmemmap_free(unsigned long start, unsigned long end, 3002 struct vmem_altmap *altmap); 3003 #endif 3004 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3005 unsigned long nr_pages); 3006 3007 enum mf_flags { 3008 MF_COUNT_INCREASED = 1 << 0, 3009 MF_ACTION_REQUIRED = 1 << 1, 3010 MF_MUST_KILL = 1 << 2, 3011 MF_SOFT_OFFLINE = 1 << 3, 3012 }; 3013 extern int memory_failure(unsigned long pfn, int flags); 3014 extern void memory_failure_queue(unsigned long pfn, int flags); 3015 extern int unpoison_memory(unsigned long pfn); 3016 extern int get_hwpoison_page(struct page *page); 3017 #define put_hwpoison_page(page) put_page(page) 3018 extern int sysctl_memory_failure_early_kill; 3019 extern int sysctl_memory_failure_recovery; 3020 extern void shake_page(struct page *p, int access); 3021 extern atomic_long_t num_poisoned_pages __read_mostly; 3022 extern int soft_offline_page(unsigned long pfn, int flags); 3023 3024 3025 /* 3026 * Error handlers for various types of pages. 3027 */ 3028 enum mf_result { 3029 MF_IGNORED, /* Error: cannot be handled */ 3030 MF_FAILED, /* Error: handling failed */ 3031 MF_DELAYED, /* Will be handled later */ 3032 MF_RECOVERED, /* Successfully recovered */ 3033 }; 3034 3035 enum mf_action_page_type { 3036 MF_MSG_KERNEL, 3037 MF_MSG_KERNEL_HIGH_ORDER, 3038 MF_MSG_SLAB, 3039 MF_MSG_DIFFERENT_COMPOUND, 3040 MF_MSG_POISONED_HUGE, 3041 MF_MSG_HUGE, 3042 MF_MSG_FREE_HUGE, 3043 MF_MSG_NON_PMD_HUGE, 3044 MF_MSG_UNMAP_FAILED, 3045 MF_MSG_DIRTY_SWAPCACHE, 3046 MF_MSG_CLEAN_SWAPCACHE, 3047 MF_MSG_DIRTY_MLOCKED_LRU, 3048 MF_MSG_CLEAN_MLOCKED_LRU, 3049 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3050 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3051 MF_MSG_DIRTY_LRU, 3052 MF_MSG_CLEAN_LRU, 3053 MF_MSG_TRUNCATED_LRU, 3054 MF_MSG_BUDDY, 3055 MF_MSG_BUDDY_2ND, 3056 MF_MSG_DAX, 3057 MF_MSG_UNKNOWN, 3058 }; 3059 3060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3061 extern void clear_huge_page(struct page *page, 3062 unsigned long addr_hint, 3063 unsigned int pages_per_huge_page); 3064 extern void copy_user_huge_page(struct page *dst, struct page *src, 3065 unsigned long addr_hint, 3066 struct vm_area_struct *vma, 3067 unsigned int pages_per_huge_page); 3068 extern long copy_huge_page_from_user(struct page *dst_page, 3069 const void __user *usr_src, 3070 unsigned int pages_per_huge_page, 3071 bool allow_pagefault); 3072 3073 /** 3074 * vma_is_special_huge - Are transhuge page-table entries considered special? 3075 * @vma: Pointer to the struct vm_area_struct to consider 3076 * 3077 * Whether transhuge page-table entries are considered "special" following 3078 * the definition in vm_normal_page(). 3079 * 3080 * Return: true if transhuge page-table entries should be considered special, 3081 * false otherwise. 3082 */ 3083 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3084 { 3085 return vma_is_dax(vma) || (vma->vm_file && 3086 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3087 } 3088 3089 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3090 3091 #ifdef CONFIG_DEBUG_PAGEALLOC 3092 extern unsigned int _debug_guardpage_minorder; 3093 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3094 3095 static inline unsigned int debug_guardpage_minorder(void) 3096 { 3097 return _debug_guardpage_minorder; 3098 } 3099 3100 static inline bool debug_guardpage_enabled(void) 3101 { 3102 return static_branch_unlikely(&_debug_guardpage_enabled); 3103 } 3104 3105 static inline bool page_is_guard(struct page *page) 3106 { 3107 if (!debug_guardpage_enabled()) 3108 return false; 3109 3110 return PageGuard(page); 3111 } 3112 #else 3113 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3114 static inline bool debug_guardpage_enabled(void) { return false; } 3115 static inline bool page_is_guard(struct page *page) { return false; } 3116 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3117 3118 #if MAX_NUMNODES > 1 3119 void __init setup_nr_node_ids(void); 3120 #else 3121 static inline void setup_nr_node_ids(void) {} 3122 #endif 3123 3124 extern int memcmp_pages(struct page *page1, struct page *page2); 3125 3126 static inline int pages_identical(struct page *page1, struct page *page2) 3127 { 3128 return !memcmp_pages(page1, page2); 3129 } 3130 3131 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3132 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3133 pgoff_t first_index, pgoff_t nr, 3134 pgoff_t bitmap_pgoff, 3135 unsigned long *bitmap, 3136 pgoff_t *start, 3137 pgoff_t *end); 3138 3139 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3140 pgoff_t first_index, pgoff_t nr); 3141 #endif 3142 3143 #endif /* __KERNEL__ */ 3144 #endif /* _LINUX_MM_H */ 3145