xref: /linux-6.15/include/linux/mm.h (revision 77d1c8eb)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
18 
19 struct mempolicy;
20 struct anon_vma;
21 struct file_ra_state;
22 struct user_struct;
23 struct writeback_control;
24 
25 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
27 #endif
28 
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
33 
34 #ifdef CONFIG_SYSCTL
35 extern int sysctl_legacy_va_layout;
36 #else
37 #define sysctl_legacy_va_layout 0
38 #endif
39 
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
43 
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48 
49 /*
50  * Linux kernel virtual memory manager primitives.
51  * The idea being to have a "virtual" mm in the same way
52  * we have a virtual fs - giving a cleaner interface to the
53  * mm details, and allowing different kinds of memory mappings
54  * (from shared memory to executable loading to arbitrary
55  * mmap() functions).
56  */
57 
58 extern struct kmem_cache *vm_area_cachep;
59 
60 #ifndef CONFIG_MMU
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
63 
64 extern unsigned int kobjsize(const void *objp);
65 #endif
66 
67 /*
68  * vm_flags in vm_area_struct, see mm_types.h.
69  */
70 #define VM_READ		0x00000001	/* currently active flags */
71 #define VM_WRITE	0x00000002
72 #define VM_EXEC		0x00000004
73 #define VM_SHARED	0x00000008
74 
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
77 #define VM_MAYWRITE	0x00000020
78 #define VM_MAYEXEC	0x00000040
79 #define VM_MAYSHARE	0x00000080
80 
81 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP	0x00000200
84 #else
85 #define VM_GROWSUP	0x00000000
86 #define VM_NOHUGEPAGE	0x00000200	/* MADV_NOHUGEPAGE marked this vma */
87 #endif
88 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
90 
91 #define VM_EXECUTABLE	0x00001000
92 #define VM_LOCKED	0x00002000
93 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
94 
95 					/* Used by sys_madvise() */
96 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
97 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
98 
99 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
101 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
102 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
103 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
104 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
105 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
107 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
108 #else
109 #define VM_HUGEPAGE	0x01000000	/* MADV_HUGEPAGE marked this vma */
110 #endif
111 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
112 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
113 
114 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
115 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
116 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
117 #define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
118 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
119 
120 /* Bits set in the VMA until the stack is in its final location */
121 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
122 
123 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125 #endif
126 
127 #ifdef CONFIG_STACK_GROWSUP
128 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129 #else
130 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131 #endif
132 
133 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
134 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
135 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
136 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
137 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
138 
139 /*
140  * special vmas that are non-mergable, non-mlock()able
141  */
142 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
143 
144 /*
145  * mapping from the currently active vm_flags protection bits (the
146  * low four bits) to a page protection mask..
147  */
148 extern pgprot_t protection_map[16];
149 
150 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
151 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
152 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
153 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
154 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
155 
156 /*
157  * This interface is used by x86 PAT code to identify a pfn mapping that is
158  * linear over entire vma. This is to optimize PAT code that deals with
159  * marking the physical region with a particular prot. This is not for generic
160  * mm use. Note also that this check will not work if the pfn mapping is
161  * linear for a vma starting at physical address 0. In which case PAT code
162  * falls back to slow path of reserving physical range page by page.
163  */
164 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
165 {
166 	return (vma->vm_flags & VM_PFN_AT_MMAP);
167 }
168 
169 static inline int is_pfn_mapping(struct vm_area_struct *vma)
170 {
171 	return (vma->vm_flags & VM_PFNMAP);
172 }
173 
174 /*
175  * vm_fault is filled by the the pagefault handler and passed to the vma's
176  * ->fault function. The vma's ->fault is responsible for returning a bitmask
177  * of VM_FAULT_xxx flags that give details about how the fault was handled.
178  *
179  * pgoff should be used in favour of virtual_address, if possible. If pgoff
180  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
181  * mapping support.
182  */
183 struct vm_fault {
184 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
185 	pgoff_t pgoff;			/* Logical page offset based on vma */
186 	void __user *virtual_address;	/* Faulting virtual address */
187 
188 	struct page *page;		/* ->fault handlers should return a
189 					 * page here, unless VM_FAULT_NOPAGE
190 					 * is set (which is also implied by
191 					 * VM_FAULT_ERROR).
192 					 */
193 };
194 
195 /*
196  * These are the virtual MM functions - opening of an area, closing and
197  * unmapping it (needed to keep files on disk up-to-date etc), pointer
198  * to the functions called when a no-page or a wp-page exception occurs.
199  */
200 struct vm_operations_struct {
201 	void (*open)(struct vm_area_struct * area);
202 	void (*close)(struct vm_area_struct * area);
203 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
204 
205 	/* notification that a previously read-only page is about to become
206 	 * writable, if an error is returned it will cause a SIGBUS */
207 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
208 
209 	/* called by access_process_vm when get_user_pages() fails, typically
210 	 * for use by special VMAs that can switch between memory and hardware
211 	 */
212 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
213 		      void *buf, int len, int write);
214 #ifdef CONFIG_NUMA
215 	/*
216 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
217 	 * to hold the policy upon return.  Caller should pass NULL @new to
218 	 * remove a policy and fall back to surrounding context--i.e. do not
219 	 * install a MPOL_DEFAULT policy, nor the task or system default
220 	 * mempolicy.
221 	 */
222 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
223 
224 	/*
225 	 * get_policy() op must add reference [mpol_get()] to any policy at
226 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
227 	 * in mm/mempolicy.c will do this automatically.
228 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
229 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
230 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
231 	 * must return NULL--i.e., do not "fallback" to task or system default
232 	 * policy.
233 	 */
234 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
235 					unsigned long addr);
236 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
237 		const nodemask_t *to, unsigned long flags);
238 #endif
239 };
240 
241 struct mmu_gather;
242 struct inode;
243 
244 #define page_private(page)		((page)->private)
245 #define set_page_private(page, v)	((page)->private = (v))
246 
247 /*
248  * FIXME: take this include out, include page-flags.h in
249  * files which need it (119 of them)
250  */
251 #include <linux/page-flags.h>
252 #include <linux/huge_mm.h>
253 
254 /*
255  * Methods to modify the page usage count.
256  *
257  * What counts for a page usage:
258  * - cache mapping   (page->mapping)
259  * - private data    (page->private)
260  * - page mapped in a task's page tables, each mapping
261  *   is counted separately
262  *
263  * Also, many kernel routines increase the page count before a critical
264  * routine so they can be sure the page doesn't go away from under them.
265  */
266 
267 /*
268  * Drop a ref, return true if the refcount fell to zero (the page has no users)
269  */
270 static inline int put_page_testzero(struct page *page)
271 {
272 	VM_BUG_ON(atomic_read(&page->_count) == 0);
273 	return atomic_dec_and_test(&page->_count);
274 }
275 
276 /*
277  * Try to grab a ref unless the page has a refcount of zero, return false if
278  * that is the case.
279  */
280 static inline int get_page_unless_zero(struct page *page)
281 {
282 	return atomic_inc_not_zero(&page->_count);
283 }
284 
285 extern int page_is_ram(unsigned long pfn);
286 
287 /* Support for virtually mapped pages */
288 struct page *vmalloc_to_page(const void *addr);
289 unsigned long vmalloc_to_pfn(const void *addr);
290 
291 /*
292  * Determine if an address is within the vmalloc range
293  *
294  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
295  * is no special casing required.
296  */
297 static inline int is_vmalloc_addr(const void *x)
298 {
299 #ifdef CONFIG_MMU
300 	unsigned long addr = (unsigned long)x;
301 
302 	return addr >= VMALLOC_START && addr < VMALLOC_END;
303 #else
304 	return 0;
305 #endif
306 }
307 #ifdef CONFIG_MMU
308 extern int is_vmalloc_or_module_addr(const void *x);
309 #else
310 static inline int is_vmalloc_or_module_addr(const void *x)
311 {
312 	return 0;
313 }
314 #endif
315 
316 static inline void compound_lock(struct page *page)
317 {
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 	bit_spin_lock(PG_compound_lock, &page->flags);
320 #endif
321 }
322 
323 static inline void compound_unlock(struct page *page)
324 {
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 	bit_spin_unlock(PG_compound_lock, &page->flags);
327 #endif
328 }
329 
330 static inline unsigned long compound_lock_irqsave(struct page *page)
331 {
332 	unsigned long uninitialized_var(flags);
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 	local_irq_save(flags);
335 	compound_lock(page);
336 #endif
337 	return flags;
338 }
339 
340 static inline void compound_unlock_irqrestore(struct page *page,
341 					      unsigned long flags)
342 {
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 	compound_unlock(page);
345 	local_irq_restore(flags);
346 #endif
347 }
348 
349 static inline struct page *compound_head(struct page *page)
350 {
351 	if (unlikely(PageTail(page)))
352 		return page->first_page;
353 	return page;
354 }
355 
356 static inline int page_count(struct page *page)
357 {
358 	return atomic_read(&compound_head(page)->_count);
359 }
360 
361 static inline void get_page(struct page *page)
362 {
363 	/*
364 	 * Getting a normal page or the head of a compound page
365 	 * requires to already have an elevated page->_count. Only if
366 	 * we're getting a tail page, the elevated page->_count is
367 	 * required only in the head page, so for tail pages the
368 	 * bugcheck only verifies that the page->_count isn't
369 	 * negative.
370 	 */
371 	VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
372 	atomic_inc(&page->_count);
373 	/*
374 	 * Getting a tail page will elevate both the head and tail
375 	 * page->_count(s).
376 	 */
377 	if (unlikely(PageTail(page))) {
378 		/*
379 		 * This is safe only because
380 		 * __split_huge_page_refcount can't run under
381 		 * get_page().
382 		 */
383 		VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
384 		atomic_inc(&page->first_page->_count);
385 	}
386 }
387 
388 static inline struct page *virt_to_head_page(const void *x)
389 {
390 	struct page *page = virt_to_page(x);
391 	return compound_head(page);
392 }
393 
394 /*
395  * Setup the page count before being freed into the page allocator for
396  * the first time (boot or memory hotplug)
397  */
398 static inline void init_page_count(struct page *page)
399 {
400 	atomic_set(&page->_count, 1);
401 }
402 
403 /*
404  * PageBuddy() indicate that the page is free and in the buddy system
405  * (see mm/page_alloc.c).
406  *
407  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
408  * -2 so that an underflow of the page_mapcount() won't be mistaken
409  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
410  * efficiently by most CPU architectures.
411  */
412 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
413 
414 static inline int PageBuddy(struct page *page)
415 {
416 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
417 }
418 
419 static inline void __SetPageBuddy(struct page *page)
420 {
421 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
422 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
423 }
424 
425 static inline void __ClearPageBuddy(struct page *page)
426 {
427 	VM_BUG_ON(!PageBuddy(page));
428 	atomic_set(&page->_mapcount, -1);
429 }
430 
431 void put_page(struct page *page);
432 void put_pages_list(struct list_head *pages);
433 
434 void split_page(struct page *page, unsigned int order);
435 int split_free_page(struct page *page);
436 
437 /*
438  * Compound pages have a destructor function.  Provide a
439  * prototype for that function and accessor functions.
440  * These are _only_ valid on the head of a PG_compound page.
441  */
442 typedef void compound_page_dtor(struct page *);
443 
444 static inline void set_compound_page_dtor(struct page *page,
445 						compound_page_dtor *dtor)
446 {
447 	page[1].lru.next = (void *)dtor;
448 }
449 
450 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
451 {
452 	return (compound_page_dtor *)page[1].lru.next;
453 }
454 
455 static inline int compound_order(struct page *page)
456 {
457 	if (!PageHead(page))
458 		return 0;
459 	return (unsigned long)page[1].lru.prev;
460 }
461 
462 static inline int compound_trans_order(struct page *page)
463 {
464 	int order;
465 	unsigned long flags;
466 
467 	if (!PageHead(page))
468 		return 0;
469 
470 	flags = compound_lock_irqsave(page);
471 	order = compound_order(page);
472 	compound_unlock_irqrestore(page, flags);
473 	return order;
474 }
475 
476 static inline void set_compound_order(struct page *page, unsigned long order)
477 {
478 	page[1].lru.prev = (void *)order;
479 }
480 
481 #ifdef CONFIG_MMU
482 /*
483  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
484  * servicing faults for write access.  In the normal case, do always want
485  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
486  * that do not have writing enabled, when used by access_process_vm.
487  */
488 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
489 {
490 	if (likely(vma->vm_flags & VM_WRITE))
491 		pte = pte_mkwrite(pte);
492 	return pte;
493 }
494 #endif
495 
496 /*
497  * Multiple processes may "see" the same page. E.g. for untouched
498  * mappings of /dev/null, all processes see the same page full of
499  * zeroes, and text pages of executables and shared libraries have
500  * only one copy in memory, at most, normally.
501  *
502  * For the non-reserved pages, page_count(page) denotes a reference count.
503  *   page_count() == 0 means the page is free. page->lru is then used for
504  *   freelist management in the buddy allocator.
505  *   page_count() > 0  means the page has been allocated.
506  *
507  * Pages are allocated by the slab allocator in order to provide memory
508  * to kmalloc and kmem_cache_alloc. In this case, the management of the
509  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
510  * unless a particular usage is carefully commented. (the responsibility of
511  * freeing the kmalloc memory is the caller's, of course).
512  *
513  * A page may be used by anyone else who does a __get_free_page().
514  * In this case, page_count still tracks the references, and should only
515  * be used through the normal accessor functions. The top bits of page->flags
516  * and page->virtual store page management information, but all other fields
517  * are unused and could be used privately, carefully. The management of this
518  * page is the responsibility of the one who allocated it, and those who have
519  * subsequently been given references to it.
520  *
521  * The other pages (we may call them "pagecache pages") are completely
522  * managed by the Linux memory manager: I/O, buffers, swapping etc.
523  * The following discussion applies only to them.
524  *
525  * A pagecache page contains an opaque `private' member, which belongs to the
526  * page's address_space. Usually, this is the address of a circular list of
527  * the page's disk buffers. PG_private must be set to tell the VM to call
528  * into the filesystem to release these pages.
529  *
530  * A page may belong to an inode's memory mapping. In this case, page->mapping
531  * is the pointer to the inode, and page->index is the file offset of the page,
532  * in units of PAGE_CACHE_SIZE.
533  *
534  * If pagecache pages are not associated with an inode, they are said to be
535  * anonymous pages. These may become associated with the swapcache, and in that
536  * case PG_swapcache is set, and page->private is an offset into the swapcache.
537  *
538  * In either case (swapcache or inode backed), the pagecache itself holds one
539  * reference to the page. Setting PG_private should also increment the
540  * refcount. The each user mapping also has a reference to the page.
541  *
542  * The pagecache pages are stored in a per-mapping radix tree, which is
543  * rooted at mapping->page_tree, and indexed by offset.
544  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
545  * lists, we instead now tag pages as dirty/writeback in the radix tree.
546  *
547  * All pagecache pages may be subject to I/O:
548  * - inode pages may need to be read from disk,
549  * - inode pages which have been modified and are MAP_SHARED may need
550  *   to be written back to the inode on disk,
551  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
552  *   modified may need to be swapped out to swap space and (later) to be read
553  *   back into memory.
554  */
555 
556 /*
557  * The zone field is never updated after free_area_init_core()
558  * sets it, so none of the operations on it need to be atomic.
559  */
560 
561 
562 /*
563  * page->flags layout:
564  *
565  * There are three possibilities for how page->flags get
566  * laid out.  The first is for the normal case, without
567  * sparsemem.  The second is for sparsemem when there is
568  * plenty of space for node and section.  The last is when
569  * we have run out of space and have to fall back to an
570  * alternate (slower) way of determining the node.
571  *
572  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
573  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
574  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
575  */
576 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
577 #define SECTIONS_WIDTH		SECTIONS_SHIFT
578 #else
579 #define SECTIONS_WIDTH		0
580 #endif
581 
582 #define ZONES_WIDTH		ZONES_SHIFT
583 
584 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
585 #define NODES_WIDTH		NODES_SHIFT
586 #else
587 #ifdef CONFIG_SPARSEMEM_VMEMMAP
588 #error "Vmemmap: No space for nodes field in page flags"
589 #endif
590 #define NODES_WIDTH		0
591 #endif
592 
593 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
594 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
595 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
596 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
597 
598 /*
599  * We are going to use the flags for the page to node mapping if its in
600  * there.  This includes the case where there is no node, so it is implicit.
601  */
602 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
603 #define NODE_NOT_IN_PAGE_FLAGS
604 #endif
605 
606 #ifndef PFN_SECTION_SHIFT
607 #define PFN_SECTION_SHIFT 0
608 #endif
609 
610 /*
611  * Define the bit shifts to access each section.  For non-existant
612  * sections we define the shift as 0; that plus a 0 mask ensures
613  * the compiler will optimise away reference to them.
614  */
615 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
616 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
617 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
618 
619 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
620 #ifdef NODE_NOT_IN_PAGE_FLAGS
621 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
622 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
623 						SECTIONS_PGOFF : ZONES_PGOFF)
624 #else
625 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
626 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
627 						NODES_PGOFF : ZONES_PGOFF)
628 #endif
629 
630 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
631 
632 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
633 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
634 #endif
635 
636 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
637 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
638 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
639 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
640 
641 static inline enum zone_type page_zonenum(struct page *page)
642 {
643 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
644 }
645 
646 /*
647  * The identification function is only used by the buddy allocator for
648  * determining if two pages could be buddies. We are not really
649  * identifying a zone since we could be using a the section number
650  * id if we have not node id available in page flags.
651  * We guarantee only that it will return the same value for two
652  * combinable pages in a zone.
653  */
654 static inline int page_zone_id(struct page *page)
655 {
656 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
657 }
658 
659 static inline int zone_to_nid(struct zone *zone)
660 {
661 #ifdef CONFIG_NUMA
662 	return zone->node;
663 #else
664 	return 0;
665 #endif
666 }
667 
668 #ifdef NODE_NOT_IN_PAGE_FLAGS
669 extern int page_to_nid(struct page *page);
670 #else
671 static inline int page_to_nid(struct page *page)
672 {
673 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
674 }
675 #endif
676 
677 static inline struct zone *page_zone(struct page *page)
678 {
679 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
680 }
681 
682 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
683 static inline unsigned long page_to_section(struct page *page)
684 {
685 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
686 }
687 #endif
688 
689 static inline void set_page_zone(struct page *page, enum zone_type zone)
690 {
691 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
692 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
693 }
694 
695 static inline void set_page_node(struct page *page, unsigned long node)
696 {
697 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
698 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
699 }
700 
701 static inline void set_page_section(struct page *page, unsigned long section)
702 {
703 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
704 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
705 }
706 
707 static inline void set_page_links(struct page *page, enum zone_type zone,
708 	unsigned long node, unsigned long pfn)
709 {
710 	set_page_zone(page, zone);
711 	set_page_node(page, node);
712 	set_page_section(page, pfn_to_section_nr(pfn));
713 }
714 
715 /*
716  * Some inline functions in vmstat.h depend on page_zone()
717  */
718 #include <linux/vmstat.h>
719 
720 static __always_inline void *lowmem_page_address(struct page *page)
721 {
722 	return __va(PFN_PHYS(page_to_pfn(page)));
723 }
724 
725 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
726 #define HASHED_PAGE_VIRTUAL
727 #endif
728 
729 #if defined(WANT_PAGE_VIRTUAL)
730 #define page_address(page) ((page)->virtual)
731 #define set_page_address(page, address)			\
732 	do {						\
733 		(page)->virtual = (address);		\
734 	} while(0)
735 #define page_address_init()  do { } while(0)
736 #endif
737 
738 #if defined(HASHED_PAGE_VIRTUAL)
739 void *page_address(struct page *page);
740 void set_page_address(struct page *page, void *virtual);
741 void page_address_init(void);
742 #endif
743 
744 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
745 #define page_address(page) lowmem_page_address(page)
746 #define set_page_address(page, address)  do { } while(0)
747 #define page_address_init()  do { } while(0)
748 #endif
749 
750 /*
751  * On an anonymous page mapped into a user virtual memory area,
752  * page->mapping points to its anon_vma, not to a struct address_space;
753  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
754  *
755  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
756  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
757  * and then page->mapping points, not to an anon_vma, but to a private
758  * structure which KSM associates with that merged page.  See ksm.h.
759  *
760  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
761  *
762  * Please note that, confusingly, "page_mapping" refers to the inode
763  * address_space which maps the page from disk; whereas "page_mapped"
764  * refers to user virtual address space into which the page is mapped.
765  */
766 #define PAGE_MAPPING_ANON	1
767 #define PAGE_MAPPING_KSM	2
768 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
769 
770 extern struct address_space swapper_space;
771 static inline struct address_space *page_mapping(struct page *page)
772 {
773 	struct address_space *mapping = page->mapping;
774 
775 	VM_BUG_ON(PageSlab(page));
776 	if (unlikely(PageSwapCache(page)))
777 		mapping = &swapper_space;
778 	else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
779 		mapping = NULL;
780 	return mapping;
781 }
782 
783 /* Neutral page->mapping pointer to address_space or anon_vma or other */
784 static inline void *page_rmapping(struct page *page)
785 {
786 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
787 }
788 
789 static inline int PageAnon(struct page *page)
790 {
791 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
792 }
793 
794 /*
795  * Return the pagecache index of the passed page.  Regular pagecache pages
796  * use ->index whereas swapcache pages use ->private
797  */
798 static inline pgoff_t page_index(struct page *page)
799 {
800 	if (unlikely(PageSwapCache(page)))
801 		return page_private(page);
802 	return page->index;
803 }
804 
805 /*
806  * The atomic page->_mapcount, like _count, starts from -1:
807  * so that transitions both from it and to it can be tracked,
808  * using atomic_inc_and_test and atomic_add_negative(-1).
809  */
810 static inline void reset_page_mapcount(struct page *page)
811 {
812 	atomic_set(&(page)->_mapcount, -1);
813 }
814 
815 static inline int page_mapcount(struct page *page)
816 {
817 	return atomic_read(&(page)->_mapcount) + 1;
818 }
819 
820 /*
821  * Return true if this page is mapped into pagetables.
822  */
823 static inline int page_mapped(struct page *page)
824 {
825 	return atomic_read(&(page)->_mapcount) >= 0;
826 }
827 
828 /*
829  * Different kinds of faults, as returned by handle_mm_fault().
830  * Used to decide whether a process gets delivered SIGBUS or
831  * just gets major/minor fault counters bumped up.
832  */
833 
834 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
835 
836 #define VM_FAULT_OOM	0x0001
837 #define VM_FAULT_SIGBUS	0x0002
838 #define VM_FAULT_MAJOR	0x0004
839 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
840 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
841 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
842 
843 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
844 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
845 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
846 
847 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848 
849 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
850 			 VM_FAULT_HWPOISON_LARGE)
851 
852 /* Encode hstate index for a hwpoisoned large page */
853 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
854 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
855 
856 /*
857  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858  */
859 extern void pagefault_out_of_memory(void);
860 
861 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
862 
863 /*
864  * Flags passed to __show_mem() and __show_free_areas() to suppress output in
865  * various contexts.
866  */
867 #define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */
868 
869 extern void show_free_areas(void);
870 extern void __show_free_areas(unsigned int flags);
871 
872 int shmem_lock(struct file *file, int lock, struct user_struct *user);
873 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
874 int shmem_zero_setup(struct vm_area_struct *);
875 
876 #ifndef CONFIG_MMU
877 extern unsigned long shmem_get_unmapped_area(struct file *file,
878 					     unsigned long addr,
879 					     unsigned long len,
880 					     unsigned long pgoff,
881 					     unsigned long flags);
882 #endif
883 
884 extern int can_do_mlock(void);
885 extern int user_shm_lock(size_t, struct user_struct *);
886 extern void user_shm_unlock(size_t, struct user_struct *);
887 
888 /*
889  * Parameter block passed down to zap_pte_range in exceptional cases.
890  */
891 struct zap_details {
892 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
893 	struct address_space *check_mapping;	/* Check page->mapping if set */
894 	pgoff_t	first_index;			/* Lowest page->index to unmap */
895 	pgoff_t last_index;			/* Highest page->index to unmap */
896 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
897 	unsigned long truncate_count;		/* Compare vm_truncate_count */
898 };
899 
900 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
901 		pte_t pte);
902 
903 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
904 		unsigned long size);
905 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
906 		unsigned long size, struct zap_details *);
907 unsigned long unmap_vmas(struct mmu_gather **tlb,
908 		struct vm_area_struct *start_vma, unsigned long start_addr,
909 		unsigned long end_addr, unsigned long *nr_accounted,
910 		struct zap_details *);
911 
912 /**
913  * mm_walk - callbacks for walk_page_range
914  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
915  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
916  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
917  *	       this handler is required to be able to handle
918  *	       pmd_trans_huge() pmds.  They may simply choose to
919  *	       split_huge_page() instead of handling it explicitly.
920  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
921  * @pte_hole: if set, called for each hole at all levels
922  * @hugetlb_entry: if set, called for each hugetlb entry
923  *
924  * (see walk_page_range for more details)
925  */
926 struct mm_walk {
927 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
928 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
929 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
930 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
931 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
932 	int (*hugetlb_entry)(pte_t *, unsigned long,
933 			     unsigned long, unsigned long, struct mm_walk *);
934 	struct mm_struct *mm;
935 	void *private;
936 };
937 
938 int walk_page_range(unsigned long addr, unsigned long end,
939 		struct mm_walk *walk);
940 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
941 		unsigned long end, unsigned long floor, unsigned long ceiling);
942 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
943 			struct vm_area_struct *vma);
944 void unmap_mapping_range(struct address_space *mapping,
945 		loff_t const holebegin, loff_t const holelen, int even_cows);
946 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
947 	unsigned long *pfn);
948 int follow_phys(struct vm_area_struct *vma, unsigned long address,
949 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
950 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
951 			void *buf, int len, int write);
952 
953 static inline void unmap_shared_mapping_range(struct address_space *mapping,
954 		loff_t const holebegin, loff_t const holelen)
955 {
956 	unmap_mapping_range(mapping, holebegin, holelen, 0);
957 }
958 
959 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
960 extern void truncate_setsize(struct inode *inode, loff_t newsize);
961 extern int vmtruncate(struct inode *inode, loff_t offset);
962 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
963 
964 int truncate_inode_page(struct address_space *mapping, struct page *page);
965 int generic_error_remove_page(struct address_space *mapping, struct page *page);
966 
967 int invalidate_inode_page(struct page *page);
968 
969 #ifdef CONFIG_MMU
970 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
971 			unsigned long address, unsigned int flags);
972 #else
973 static inline int handle_mm_fault(struct mm_struct *mm,
974 			struct vm_area_struct *vma, unsigned long address,
975 			unsigned int flags)
976 {
977 	/* should never happen if there's no MMU */
978 	BUG();
979 	return VM_FAULT_SIGBUS;
980 }
981 #endif
982 
983 extern int make_pages_present(unsigned long addr, unsigned long end);
984 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
985 
986 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
987 		     unsigned long start, int len, unsigned int foll_flags,
988 		     struct page **pages, struct vm_area_struct **vmas,
989 		     int *nonblocking);
990 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
991 			unsigned long start, int nr_pages, int write, int force,
992 			struct page **pages, struct vm_area_struct **vmas);
993 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
994 			struct page **pages);
995 struct page *get_dump_page(unsigned long addr);
996 
997 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
998 extern void do_invalidatepage(struct page *page, unsigned long offset);
999 
1000 int __set_page_dirty_nobuffers(struct page *page);
1001 int __set_page_dirty_no_writeback(struct page *page);
1002 int redirty_page_for_writepage(struct writeback_control *wbc,
1003 				struct page *page);
1004 void account_page_dirtied(struct page *page, struct address_space *mapping);
1005 void account_page_writeback(struct page *page);
1006 int set_page_dirty(struct page *page);
1007 int set_page_dirty_lock(struct page *page);
1008 int clear_page_dirty_for_io(struct page *page);
1009 
1010 /* Is the vma a continuation of the stack vma above it? */
1011 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
1012 {
1013 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1014 }
1015 
1016 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1017 		unsigned long old_addr, struct vm_area_struct *new_vma,
1018 		unsigned long new_addr, unsigned long len);
1019 extern unsigned long do_mremap(unsigned long addr,
1020 			       unsigned long old_len, unsigned long new_len,
1021 			       unsigned long flags, unsigned long new_addr);
1022 extern int mprotect_fixup(struct vm_area_struct *vma,
1023 			  struct vm_area_struct **pprev, unsigned long start,
1024 			  unsigned long end, unsigned long newflags);
1025 
1026 /*
1027  * doesn't attempt to fault and will return short.
1028  */
1029 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1030 			  struct page **pages);
1031 /*
1032  * per-process(per-mm_struct) statistics.
1033  */
1034 #if defined(SPLIT_RSS_COUNTING)
1035 /*
1036  * The mm counters are not protected by its page_table_lock,
1037  * so must be incremented atomically.
1038  */
1039 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1040 {
1041 	atomic_long_set(&mm->rss_stat.count[member], value);
1042 }
1043 
1044 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1045 
1046 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1047 {
1048 	atomic_long_add(value, &mm->rss_stat.count[member]);
1049 }
1050 
1051 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1052 {
1053 	atomic_long_inc(&mm->rss_stat.count[member]);
1054 }
1055 
1056 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1057 {
1058 	atomic_long_dec(&mm->rss_stat.count[member]);
1059 }
1060 
1061 #else  /* !USE_SPLIT_PTLOCKS */
1062 /*
1063  * The mm counters are protected by its page_table_lock,
1064  * so can be incremented directly.
1065  */
1066 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1067 {
1068 	mm->rss_stat.count[member] = value;
1069 }
1070 
1071 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1072 {
1073 	return mm->rss_stat.count[member];
1074 }
1075 
1076 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1077 {
1078 	mm->rss_stat.count[member] += value;
1079 }
1080 
1081 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1082 {
1083 	mm->rss_stat.count[member]++;
1084 }
1085 
1086 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1087 {
1088 	mm->rss_stat.count[member]--;
1089 }
1090 
1091 #endif /* !USE_SPLIT_PTLOCKS */
1092 
1093 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1094 {
1095 	return get_mm_counter(mm, MM_FILEPAGES) +
1096 		get_mm_counter(mm, MM_ANONPAGES);
1097 }
1098 
1099 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1100 {
1101 	return max(mm->hiwater_rss, get_mm_rss(mm));
1102 }
1103 
1104 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1105 {
1106 	return max(mm->hiwater_vm, mm->total_vm);
1107 }
1108 
1109 static inline void update_hiwater_rss(struct mm_struct *mm)
1110 {
1111 	unsigned long _rss = get_mm_rss(mm);
1112 
1113 	if ((mm)->hiwater_rss < _rss)
1114 		(mm)->hiwater_rss = _rss;
1115 }
1116 
1117 static inline void update_hiwater_vm(struct mm_struct *mm)
1118 {
1119 	if (mm->hiwater_vm < mm->total_vm)
1120 		mm->hiwater_vm = mm->total_vm;
1121 }
1122 
1123 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1124 					 struct mm_struct *mm)
1125 {
1126 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1127 
1128 	if (*maxrss < hiwater_rss)
1129 		*maxrss = hiwater_rss;
1130 }
1131 
1132 #if defined(SPLIT_RSS_COUNTING)
1133 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1134 #else
1135 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1136 {
1137 }
1138 #endif
1139 
1140 /*
1141  * A callback you can register to apply pressure to ageable caches.
1142  *
1143  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
1144  * look through the least-recently-used 'nr_to_scan' entries and
1145  * attempt to free them up.  It should return the number of objects
1146  * which remain in the cache.  If it returns -1, it means it cannot do
1147  * any scanning at this time (eg. there is a risk of deadlock).
1148  *
1149  * The 'gfpmask' refers to the allocation we are currently trying to
1150  * fulfil.
1151  *
1152  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1153  * querying the cache size, so a fastpath for that case is appropriate.
1154  */
1155 struct shrinker {
1156 	int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1157 	int seeks;	/* seeks to recreate an obj */
1158 
1159 	/* These are for internal use */
1160 	struct list_head list;
1161 	long nr;	/* objs pending delete */
1162 };
1163 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1164 extern void register_shrinker(struct shrinker *);
1165 extern void unregister_shrinker(struct shrinker *);
1166 
1167 int vma_wants_writenotify(struct vm_area_struct *vma);
1168 
1169 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1170 			       spinlock_t **ptl);
1171 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1172 				    spinlock_t **ptl)
1173 {
1174 	pte_t *ptep;
1175 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1176 	return ptep;
1177 }
1178 
1179 #ifdef __PAGETABLE_PUD_FOLDED
1180 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1181 						unsigned long address)
1182 {
1183 	return 0;
1184 }
1185 #else
1186 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1187 #endif
1188 
1189 #ifdef __PAGETABLE_PMD_FOLDED
1190 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1191 						unsigned long address)
1192 {
1193 	return 0;
1194 }
1195 #else
1196 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1197 #endif
1198 
1199 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1200 		pmd_t *pmd, unsigned long address);
1201 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1202 
1203 /*
1204  * The following ifdef needed to get the 4level-fixup.h header to work.
1205  * Remove it when 4level-fixup.h has been removed.
1206  */
1207 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1208 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1209 {
1210 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1211 		NULL: pud_offset(pgd, address);
1212 }
1213 
1214 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1215 {
1216 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1217 		NULL: pmd_offset(pud, address);
1218 }
1219 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1220 
1221 #if USE_SPLIT_PTLOCKS
1222 /*
1223  * We tuck a spinlock to guard each pagetable page into its struct page,
1224  * at page->private, with BUILD_BUG_ON to make sure that this will not
1225  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1226  * When freeing, reset page->mapping so free_pages_check won't complain.
1227  */
1228 #define __pte_lockptr(page)	&((page)->ptl)
1229 #define pte_lock_init(_page)	do {					\
1230 	spin_lock_init(__pte_lockptr(_page));				\
1231 } while (0)
1232 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1233 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1234 #else	/* !USE_SPLIT_PTLOCKS */
1235 /*
1236  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1237  */
1238 #define pte_lock_init(page)	do {} while (0)
1239 #define pte_lock_deinit(page)	do {} while (0)
1240 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1241 #endif /* USE_SPLIT_PTLOCKS */
1242 
1243 static inline void pgtable_page_ctor(struct page *page)
1244 {
1245 	pte_lock_init(page);
1246 	inc_zone_page_state(page, NR_PAGETABLE);
1247 }
1248 
1249 static inline void pgtable_page_dtor(struct page *page)
1250 {
1251 	pte_lock_deinit(page);
1252 	dec_zone_page_state(page, NR_PAGETABLE);
1253 }
1254 
1255 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1256 ({							\
1257 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1258 	pte_t *__pte = pte_offset_map(pmd, address);	\
1259 	*(ptlp) = __ptl;				\
1260 	spin_lock(__ptl);				\
1261 	__pte;						\
1262 })
1263 
1264 #define pte_unmap_unlock(pte, ptl)	do {		\
1265 	spin_unlock(ptl);				\
1266 	pte_unmap(pte);					\
1267 } while (0)
1268 
1269 #define pte_alloc_map(mm, vma, pmd, address)				\
1270 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1271 							pmd, address))?	\
1272 	 NULL: pte_offset_map(pmd, address))
1273 
1274 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1275 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1276 							pmd, address))?	\
1277 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1278 
1279 #define pte_alloc_kernel(pmd, address)			\
1280 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1281 		NULL: pte_offset_kernel(pmd, address))
1282 
1283 extern void free_area_init(unsigned long * zones_size);
1284 extern void free_area_init_node(int nid, unsigned long * zones_size,
1285 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1286 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1287 /*
1288  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1289  * zones, allocate the backing mem_map and account for memory holes in a more
1290  * architecture independent manner. This is a substitute for creating the
1291  * zone_sizes[] and zholes_size[] arrays and passing them to
1292  * free_area_init_node()
1293  *
1294  * An architecture is expected to register range of page frames backed by
1295  * physical memory with add_active_range() before calling
1296  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1297  * usage, an architecture is expected to do something like
1298  *
1299  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1300  * 							 max_highmem_pfn};
1301  * for_each_valid_physical_page_range()
1302  * 	add_active_range(node_id, start_pfn, end_pfn)
1303  * free_area_init_nodes(max_zone_pfns);
1304  *
1305  * If the architecture guarantees that there are no holes in the ranges
1306  * registered with add_active_range(), free_bootmem_active_regions()
1307  * will call free_bootmem_node() for each registered physical page range.
1308  * Similarly sparse_memory_present_with_active_regions() calls
1309  * memory_present() for each range when SPARSEMEM is enabled.
1310  *
1311  * See mm/page_alloc.c for more information on each function exposed by
1312  * CONFIG_ARCH_POPULATES_NODE_MAP
1313  */
1314 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1315 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1316 					unsigned long end_pfn);
1317 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1318 					unsigned long end_pfn);
1319 extern void remove_all_active_ranges(void);
1320 void sort_node_map(void);
1321 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1322 						unsigned long end_pfn);
1323 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1324 						unsigned long end_pfn);
1325 extern void get_pfn_range_for_nid(unsigned int nid,
1326 			unsigned long *start_pfn, unsigned long *end_pfn);
1327 extern unsigned long find_min_pfn_with_active_regions(void);
1328 extern void free_bootmem_with_active_regions(int nid,
1329 						unsigned long max_low_pfn);
1330 int add_from_early_node_map(struct range *range, int az,
1331 				   int nr_range, int nid);
1332 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1333 					u64 goal, u64 limit);
1334 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1335 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1336 extern void sparse_memory_present_with_active_regions(int nid);
1337 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1338 
1339 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1340     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1341 static inline int __early_pfn_to_nid(unsigned long pfn)
1342 {
1343 	return 0;
1344 }
1345 #else
1346 /* please see mm/page_alloc.c */
1347 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1348 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1349 /* there is a per-arch backend function. */
1350 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1351 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1352 #endif
1353 
1354 extern void set_dma_reserve(unsigned long new_dma_reserve);
1355 extern void memmap_init_zone(unsigned long, int, unsigned long,
1356 				unsigned long, enum memmap_context);
1357 extern void setup_per_zone_wmarks(void);
1358 extern void calculate_zone_inactive_ratio(struct zone *zone);
1359 extern void mem_init(void);
1360 extern void __init mmap_init(void);
1361 extern void show_mem(void);
1362 extern void __show_mem(unsigned int flags);
1363 extern void si_meminfo(struct sysinfo * val);
1364 extern void si_meminfo_node(struct sysinfo *val, int nid);
1365 extern int after_bootmem;
1366 
1367 extern void setup_per_cpu_pageset(void);
1368 
1369 extern void zone_pcp_update(struct zone *zone);
1370 
1371 /* nommu.c */
1372 extern atomic_long_t mmap_pages_allocated;
1373 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1374 
1375 /* prio_tree.c */
1376 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1377 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1378 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1379 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1380 	struct prio_tree_iter *iter);
1381 
1382 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1383 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1384 		(vma = vma_prio_tree_next(vma, iter)); )
1385 
1386 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1387 					struct list_head *list)
1388 {
1389 	vma->shared.vm_set.parent = NULL;
1390 	list_add_tail(&vma->shared.vm_set.list, list);
1391 }
1392 
1393 /* mmap.c */
1394 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1395 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1396 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1397 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1398 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1399 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1400 	struct mempolicy *);
1401 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1402 extern int split_vma(struct mm_struct *,
1403 	struct vm_area_struct *, unsigned long addr, int new_below);
1404 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1405 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1406 	struct rb_node **, struct rb_node *);
1407 extern void unlink_file_vma(struct vm_area_struct *);
1408 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1409 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1410 extern void exit_mmap(struct mm_struct *);
1411 
1412 extern int mm_take_all_locks(struct mm_struct *mm);
1413 extern void mm_drop_all_locks(struct mm_struct *mm);
1414 
1415 #ifdef CONFIG_PROC_FS
1416 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1417 extern void added_exe_file_vma(struct mm_struct *mm);
1418 extern void removed_exe_file_vma(struct mm_struct *mm);
1419 #else
1420 static inline void added_exe_file_vma(struct mm_struct *mm)
1421 {}
1422 
1423 static inline void removed_exe_file_vma(struct mm_struct *mm)
1424 {}
1425 #endif /* CONFIG_PROC_FS */
1426 
1427 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1428 extern int install_special_mapping(struct mm_struct *mm,
1429 				   unsigned long addr, unsigned long len,
1430 				   unsigned long flags, struct page **pages);
1431 
1432 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1433 
1434 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1435 	unsigned long len, unsigned long prot,
1436 	unsigned long flag, unsigned long pgoff);
1437 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1438 	unsigned long len, unsigned long flags,
1439 	unsigned int vm_flags, unsigned long pgoff);
1440 
1441 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1442 	unsigned long len, unsigned long prot,
1443 	unsigned long flag, unsigned long offset)
1444 {
1445 	unsigned long ret = -EINVAL;
1446 	if ((offset + PAGE_ALIGN(len)) < offset)
1447 		goto out;
1448 	if (!(offset & ~PAGE_MASK))
1449 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1450 out:
1451 	return ret;
1452 }
1453 
1454 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1455 
1456 extern unsigned long do_brk(unsigned long, unsigned long);
1457 
1458 /* filemap.c */
1459 extern unsigned long page_unuse(struct page *);
1460 extern void truncate_inode_pages(struct address_space *, loff_t);
1461 extern void truncate_inode_pages_range(struct address_space *,
1462 				       loff_t lstart, loff_t lend);
1463 
1464 /* generic vm_area_ops exported for stackable file systems */
1465 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1466 
1467 /* mm/page-writeback.c */
1468 int write_one_page(struct page *page, int wait);
1469 void task_dirty_inc(struct task_struct *tsk);
1470 
1471 /* readahead.c */
1472 #define VM_MAX_READAHEAD	128	/* kbytes */
1473 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1474 
1475 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1476 			pgoff_t offset, unsigned long nr_to_read);
1477 
1478 void page_cache_sync_readahead(struct address_space *mapping,
1479 			       struct file_ra_state *ra,
1480 			       struct file *filp,
1481 			       pgoff_t offset,
1482 			       unsigned long size);
1483 
1484 void page_cache_async_readahead(struct address_space *mapping,
1485 				struct file_ra_state *ra,
1486 				struct file *filp,
1487 				struct page *pg,
1488 				pgoff_t offset,
1489 				unsigned long size);
1490 
1491 unsigned long max_sane_readahead(unsigned long nr);
1492 unsigned long ra_submit(struct file_ra_state *ra,
1493 			struct address_space *mapping,
1494 			struct file *filp);
1495 
1496 /* Do stack extension */
1497 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1498 #if VM_GROWSUP
1499 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1500 #else
1501   #define expand_upwards(vma, address) do { } while (0)
1502 #endif
1503 extern int expand_stack_downwards(struct vm_area_struct *vma,
1504 				  unsigned long address);
1505 
1506 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1507 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1508 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1509 					     struct vm_area_struct **pprev);
1510 
1511 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1512    NULL if none.  Assume start_addr < end_addr. */
1513 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1514 {
1515 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1516 
1517 	if (vma && end_addr <= vma->vm_start)
1518 		vma = NULL;
1519 	return vma;
1520 }
1521 
1522 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1523 {
1524 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1525 }
1526 
1527 #ifdef CONFIG_MMU
1528 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1529 #else
1530 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1531 {
1532 	return __pgprot(0);
1533 }
1534 #endif
1535 
1536 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1537 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1538 			unsigned long pfn, unsigned long size, pgprot_t);
1539 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1540 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1541 			unsigned long pfn);
1542 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1543 			unsigned long pfn);
1544 
1545 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1546 			unsigned int foll_flags);
1547 #define FOLL_WRITE	0x01	/* check pte is writable */
1548 #define FOLL_TOUCH	0x02	/* mark page accessed */
1549 #define FOLL_GET	0x04	/* do get_page on page */
1550 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1551 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1552 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1553 				 * and return without waiting upon it */
1554 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1555 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1556 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1557 
1558 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1559 			void *data);
1560 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1561 			       unsigned long size, pte_fn_t fn, void *data);
1562 
1563 #ifdef CONFIG_PROC_FS
1564 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1565 #else
1566 static inline void vm_stat_account(struct mm_struct *mm,
1567 			unsigned long flags, struct file *file, long pages)
1568 {
1569 }
1570 #endif /* CONFIG_PROC_FS */
1571 
1572 #ifdef CONFIG_DEBUG_PAGEALLOC
1573 extern int debug_pagealloc_enabled;
1574 
1575 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1576 
1577 static inline void enable_debug_pagealloc(void)
1578 {
1579 	debug_pagealloc_enabled = 1;
1580 }
1581 #ifdef CONFIG_HIBERNATION
1582 extern bool kernel_page_present(struct page *page);
1583 #endif /* CONFIG_HIBERNATION */
1584 #else
1585 static inline void
1586 kernel_map_pages(struct page *page, int numpages, int enable) {}
1587 static inline void enable_debug_pagealloc(void)
1588 {
1589 }
1590 #ifdef CONFIG_HIBERNATION
1591 static inline bool kernel_page_present(struct page *page) { return true; }
1592 #endif /* CONFIG_HIBERNATION */
1593 #endif
1594 
1595 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1596 #ifdef	__HAVE_ARCH_GATE_AREA
1597 int in_gate_area_no_task(unsigned long addr);
1598 int in_gate_area(struct task_struct *task, unsigned long addr);
1599 #else
1600 int in_gate_area_no_task(unsigned long addr);
1601 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1602 #endif	/* __HAVE_ARCH_GATE_AREA */
1603 
1604 int drop_caches_sysctl_handler(struct ctl_table *, int,
1605 					void __user *, size_t *, loff_t *);
1606 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1607 			unsigned long lru_pages);
1608 
1609 #ifndef CONFIG_MMU
1610 #define randomize_va_space 0
1611 #else
1612 extern int randomize_va_space;
1613 #endif
1614 
1615 const char * arch_vma_name(struct vm_area_struct *vma);
1616 void print_vma_addr(char *prefix, unsigned long rip);
1617 
1618 void sparse_mem_maps_populate_node(struct page **map_map,
1619 				   unsigned long pnum_begin,
1620 				   unsigned long pnum_end,
1621 				   unsigned long map_count,
1622 				   int nodeid);
1623 
1624 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1625 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1626 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1627 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1628 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1629 void *vmemmap_alloc_block(unsigned long size, int node);
1630 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1631 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1632 int vmemmap_populate_basepages(struct page *start_page,
1633 						unsigned long pages, int node);
1634 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1635 void vmemmap_populate_print_last(void);
1636 
1637 
1638 enum mf_flags {
1639 	MF_COUNT_INCREASED = 1 << 0,
1640 };
1641 extern void memory_failure(unsigned long pfn, int trapno);
1642 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1643 extern int unpoison_memory(unsigned long pfn);
1644 extern int sysctl_memory_failure_early_kill;
1645 extern int sysctl_memory_failure_recovery;
1646 extern void shake_page(struct page *p, int access);
1647 extern atomic_long_t mce_bad_pages;
1648 extern int soft_offline_page(struct page *page, int flags);
1649 
1650 extern void dump_page(struct page *page);
1651 
1652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1653 extern void clear_huge_page(struct page *page,
1654 			    unsigned long addr,
1655 			    unsigned int pages_per_huge_page);
1656 extern void copy_user_huge_page(struct page *dst, struct page *src,
1657 				unsigned long addr, struct vm_area_struct *vma,
1658 				unsigned int pages_per_huge_page);
1659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1660 
1661 #endif /* __KERNEL__ */
1662 #endif /* _LINUX_MM_H */
1663