1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/range.h> 16 #include <linux/pfn.h> 17 #include <linux/bit_spinlock.h> 18 19 struct mempolicy; 20 struct anon_vma; 21 struct file_ra_state; 22 struct user_struct; 23 struct writeback_control; 24 25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 26 extern unsigned long max_mapnr; 27 #endif 28 29 extern unsigned long num_physpages; 30 extern unsigned long totalram_pages; 31 extern void * high_memory; 32 extern int page_cluster; 33 34 #ifdef CONFIG_SYSCTL 35 extern int sysctl_legacy_va_layout; 36 #else 37 #define sysctl_legacy_va_layout 0 38 #endif 39 40 #include <asm/page.h> 41 #include <asm/pgtable.h> 42 #include <asm/processor.h> 43 44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 45 46 /* to align the pointer to the (next) page boundary */ 47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 48 49 /* 50 * Linux kernel virtual memory manager primitives. 51 * The idea being to have a "virtual" mm in the same way 52 * we have a virtual fs - giving a cleaner interface to the 53 * mm details, and allowing different kinds of memory mappings 54 * (from shared memory to executable loading to arbitrary 55 * mmap() functions). 56 */ 57 58 extern struct kmem_cache *vm_area_cachep; 59 60 #ifndef CONFIG_MMU 61 extern struct rb_root nommu_region_tree; 62 extern struct rw_semaphore nommu_region_sem; 63 64 extern unsigned int kobjsize(const void *objp); 65 #endif 66 67 /* 68 * vm_flags in vm_area_struct, see mm_types.h. 69 */ 70 #define VM_READ 0x00000001 /* currently active flags */ 71 #define VM_WRITE 0x00000002 72 #define VM_EXEC 0x00000004 73 #define VM_SHARED 0x00000008 74 75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 77 #define VM_MAYWRITE 0x00000020 78 #define VM_MAYEXEC 0x00000040 79 #define VM_MAYSHARE 0x00000080 80 81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 83 #define VM_GROWSUP 0x00000200 84 #else 85 #define VM_GROWSUP 0x00000000 86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 87 #endif 88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91 #define VM_EXECUTABLE 0x00001000 92 #define VM_LOCKED 0x00002000 93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 108 #else 109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 110 #endif 111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 119 120 /* Bits set in the VMA until the stack is in its final location */ 121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 122 123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 125 #endif 126 127 #ifdef CONFIG_STACK_GROWSUP 128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 129 #else 130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 131 #endif 132 133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 138 139 /* 140 * special vmas that are non-mergable, non-mlock()able 141 */ 142 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 143 144 /* 145 * mapping from the currently active vm_flags protection bits (the 146 * low four bits) to a page protection mask.. 147 */ 148 extern pgprot_t protection_map[16]; 149 150 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 151 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 152 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 153 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 154 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 155 156 /* 157 * This interface is used by x86 PAT code to identify a pfn mapping that is 158 * linear over entire vma. This is to optimize PAT code that deals with 159 * marking the physical region with a particular prot. This is not for generic 160 * mm use. Note also that this check will not work if the pfn mapping is 161 * linear for a vma starting at physical address 0. In which case PAT code 162 * falls back to slow path of reserving physical range page by page. 163 */ 164 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 165 { 166 return (vma->vm_flags & VM_PFN_AT_MMAP); 167 } 168 169 static inline int is_pfn_mapping(struct vm_area_struct *vma) 170 { 171 return (vma->vm_flags & VM_PFNMAP); 172 } 173 174 /* 175 * vm_fault is filled by the the pagefault handler and passed to the vma's 176 * ->fault function. The vma's ->fault is responsible for returning a bitmask 177 * of VM_FAULT_xxx flags that give details about how the fault was handled. 178 * 179 * pgoff should be used in favour of virtual_address, if possible. If pgoff 180 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 181 * mapping support. 182 */ 183 struct vm_fault { 184 unsigned int flags; /* FAULT_FLAG_xxx flags */ 185 pgoff_t pgoff; /* Logical page offset based on vma */ 186 void __user *virtual_address; /* Faulting virtual address */ 187 188 struct page *page; /* ->fault handlers should return a 189 * page here, unless VM_FAULT_NOPAGE 190 * is set (which is also implied by 191 * VM_FAULT_ERROR). 192 */ 193 }; 194 195 /* 196 * These are the virtual MM functions - opening of an area, closing and 197 * unmapping it (needed to keep files on disk up-to-date etc), pointer 198 * to the functions called when a no-page or a wp-page exception occurs. 199 */ 200 struct vm_operations_struct { 201 void (*open)(struct vm_area_struct * area); 202 void (*close)(struct vm_area_struct * area); 203 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 204 205 /* notification that a previously read-only page is about to become 206 * writable, if an error is returned it will cause a SIGBUS */ 207 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 208 209 /* called by access_process_vm when get_user_pages() fails, typically 210 * for use by special VMAs that can switch between memory and hardware 211 */ 212 int (*access)(struct vm_area_struct *vma, unsigned long addr, 213 void *buf, int len, int write); 214 #ifdef CONFIG_NUMA 215 /* 216 * set_policy() op must add a reference to any non-NULL @new mempolicy 217 * to hold the policy upon return. Caller should pass NULL @new to 218 * remove a policy and fall back to surrounding context--i.e. do not 219 * install a MPOL_DEFAULT policy, nor the task or system default 220 * mempolicy. 221 */ 222 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 223 224 /* 225 * get_policy() op must add reference [mpol_get()] to any policy at 226 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 227 * in mm/mempolicy.c will do this automatically. 228 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 229 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 230 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 231 * must return NULL--i.e., do not "fallback" to task or system default 232 * policy. 233 */ 234 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 235 unsigned long addr); 236 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 237 const nodemask_t *to, unsigned long flags); 238 #endif 239 }; 240 241 struct mmu_gather; 242 struct inode; 243 244 #define page_private(page) ((page)->private) 245 #define set_page_private(page, v) ((page)->private = (v)) 246 247 /* 248 * FIXME: take this include out, include page-flags.h in 249 * files which need it (119 of them) 250 */ 251 #include <linux/page-flags.h> 252 #include <linux/huge_mm.h> 253 254 /* 255 * Methods to modify the page usage count. 256 * 257 * What counts for a page usage: 258 * - cache mapping (page->mapping) 259 * - private data (page->private) 260 * - page mapped in a task's page tables, each mapping 261 * is counted separately 262 * 263 * Also, many kernel routines increase the page count before a critical 264 * routine so they can be sure the page doesn't go away from under them. 265 */ 266 267 /* 268 * Drop a ref, return true if the refcount fell to zero (the page has no users) 269 */ 270 static inline int put_page_testzero(struct page *page) 271 { 272 VM_BUG_ON(atomic_read(&page->_count) == 0); 273 return atomic_dec_and_test(&page->_count); 274 } 275 276 /* 277 * Try to grab a ref unless the page has a refcount of zero, return false if 278 * that is the case. 279 */ 280 static inline int get_page_unless_zero(struct page *page) 281 { 282 return atomic_inc_not_zero(&page->_count); 283 } 284 285 extern int page_is_ram(unsigned long pfn); 286 287 /* Support for virtually mapped pages */ 288 struct page *vmalloc_to_page(const void *addr); 289 unsigned long vmalloc_to_pfn(const void *addr); 290 291 /* 292 * Determine if an address is within the vmalloc range 293 * 294 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 295 * is no special casing required. 296 */ 297 static inline int is_vmalloc_addr(const void *x) 298 { 299 #ifdef CONFIG_MMU 300 unsigned long addr = (unsigned long)x; 301 302 return addr >= VMALLOC_START && addr < VMALLOC_END; 303 #else 304 return 0; 305 #endif 306 } 307 #ifdef CONFIG_MMU 308 extern int is_vmalloc_or_module_addr(const void *x); 309 #else 310 static inline int is_vmalloc_or_module_addr(const void *x) 311 { 312 return 0; 313 } 314 #endif 315 316 static inline void compound_lock(struct page *page) 317 { 318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 319 bit_spin_lock(PG_compound_lock, &page->flags); 320 #endif 321 } 322 323 static inline void compound_unlock(struct page *page) 324 { 325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 326 bit_spin_unlock(PG_compound_lock, &page->flags); 327 #endif 328 } 329 330 static inline unsigned long compound_lock_irqsave(struct page *page) 331 { 332 unsigned long uninitialized_var(flags); 333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 334 local_irq_save(flags); 335 compound_lock(page); 336 #endif 337 return flags; 338 } 339 340 static inline void compound_unlock_irqrestore(struct page *page, 341 unsigned long flags) 342 { 343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 344 compound_unlock(page); 345 local_irq_restore(flags); 346 #endif 347 } 348 349 static inline struct page *compound_head(struct page *page) 350 { 351 if (unlikely(PageTail(page))) 352 return page->first_page; 353 return page; 354 } 355 356 static inline int page_count(struct page *page) 357 { 358 return atomic_read(&compound_head(page)->_count); 359 } 360 361 static inline void get_page(struct page *page) 362 { 363 /* 364 * Getting a normal page or the head of a compound page 365 * requires to already have an elevated page->_count. Only if 366 * we're getting a tail page, the elevated page->_count is 367 * required only in the head page, so for tail pages the 368 * bugcheck only verifies that the page->_count isn't 369 * negative. 370 */ 371 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); 372 atomic_inc(&page->_count); 373 /* 374 * Getting a tail page will elevate both the head and tail 375 * page->_count(s). 376 */ 377 if (unlikely(PageTail(page))) { 378 /* 379 * This is safe only because 380 * __split_huge_page_refcount can't run under 381 * get_page(). 382 */ 383 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); 384 atomic_inc(&page->first_page->_count); 385 } 386 } 387 388 static inline struct page *virt_to_head_page(const void *x) 389 { 390 struct page *page = virt_to_page(x); 391 return compound_head(page); 392 } 393 394 /* 395 * Setup the page count before being freed into the page allocator for 396 * the first time (boot or memory hotplug) 397 */ 398 static inline void init_page_count(struct page *page) 399 { 400 atomic_set(&page->_count, 1); 401 } 402 403 /* 404 * PageBuddy() indicate that the page is free and in the buddy system 405 * (see mm/page_alloc.c). 406 * 407 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 408 * -2 so that an underflow of the page_mapcount() won't be mistaken 409 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 410 * efficiently by most CPU architectures. 411 */ 412 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 413 414 static inline int PageBuddy(struct page *page) 415 { 416 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 417 } 418 419 static inline void __SetPageBuddy(struct page *page) 420 { 421 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 422 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 423 } 424 425 static inline void __ClearPageBuddy(struct page *page) 426 { 427 VM_BUG_ON(!PageBuddy(page)); 428 atomic_set(&page->_mapcount, -1); 429 } 430 431 void put_page(struct page *page); 432 void put_pages_list(struct list_head *pages); 433 434 void split_page(struct page *page, unsigned int order); 435 int split_free_page(struct page *page); 436 437 /* 438 * Compound pages have a destructor function. Provide a 439 * prototype for that function and accessor functions. 440 * These are _only_ valid on the head of a PG_compound page. 441 */ 442 typedef void compound_page_dtor(struct page *); 443 444 static inline void set_compound_page_dtor(struct page *page, 445 compound_page_dtor *dtor) 446 { 447 page[1].lru.next = (void *)dtor; 448 } 449 450 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 451 { 452 return (compound_page_dtor *)page[1].lru.next; 453 } 454 455 static inline int compound_order(struct page *page) 456 { 457 if (!PageHead(page)) 458 return 0; 459 return (unsigned long)page[1].lru.prev; 460 } 461 462 static inline int compound_trans_order(struct page *page) 463 { 464 int order; 465 unsigned long flags; 466 467 if (!PageHead(page)) 468 return 0; 469 470 flags = compound_lock_irqsave(page); 471 order = compound_order(page); 472 compound_unlock_irqrestore(page, flags); 473 return order; 474 } 475 476 static inline void set_compound_order(struct page *page, unsigned long order) 477 { 478 page[1].lru.prev = (void *)order; 479 } 480 481 #ifdef CONFIG_MMU 482 /* 483 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 484 * servicing faults for write access. In the normal case, do always want 485 * pte_mkwrite. But get_user_pages can cause write faults for mappings 486 * that do not have writing enabled, when used by access_process_vm. 487 */ 488 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 489 { 490 if (likely(vma->vm_flags & VM_WRITE)) 491 pte = pte_mkwrite(pte); 492 return pte; 493 } 494 #endif 495 496 /* 497 * Multiple processes may "see" the same page. E.g. for untouched 498 * mappings of /dev/null, all processes see the same page full of 499 * zeroes, and text pages of executables and shared libraries have 500 * only one copy in memory, at most, normally. 501 * 502 * For the non-reserved pages, page_count(page) denotes a reference count. 503 * page_count() == 0 means the page is free. page->lru is then used for 504 * freelist management in the buddy allocator. 505 * page_count() > 0 means the page has been allocated. 506 * 507 * Pages are allocated by the slab allocator in order to provide memory 508 * to kmalloc and kmem_cache_alloc. In this case, the management of the 509 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 510 * unless a particular usage is carefully commented. (the responsibility of 511 * freeing the kmalloc memory is the caller's, of course). 512 * 513 * A page may be used by anyone else who does a __get_free_page(). 514 * In this case, page_count still tracks the references, and should only 515 * be used through the normal accessor functions. The top bits of page->flags 516 * and page->virtual store page management information, but all other fields 517 * are unused and could be used privately, carefully. The management of this 518 * page is the responsibility of the one who allocated it, and those who have 519 * subsequently been given references to it. 520 * 521 * The other pages (we may call them "pagecache pages") are completely 522 * managed by the Linux memory manager: I/O, buffers, swapping etc. 523 * The following discussion applies only to them. 524 * 525 * A pagecache page contains an opaque `private' member, which belongs to the 526 * page's address_space. Usually, this is the address of a circular list of 527 * the page's disk buffers. PG_private must be set to tell the VM to call 528 * into the filesystem to release these pages. 529 * 530 * A page may belong to an inode's memory mapping. In this case, page->mapping 531 * is the pointer to the inode, and page->index is the file offset of the page, 532 * in units of PAGE_CACHE_SIZE. 533 * 534 * If pagecache pages are not associated with an inode, they are said to be 535 * anonymous pages. These may become associated with the swapcache, and in that 536 * case PG_swapcache is set, and page->private is an offset into the swapcache. 537 * 538 * In either case (swapcache or inode backed), the pagecache itself holds one 539 * reference to the page. Setting PG_private should also increment the 540 * refcount. The each user mapping also has a reference to the page. 541 * 542 * The pagecache pages are stored in a per-mapping radix tree, which is 543 * rooted at mapping->page_tree, and indexed by offset. 544 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 545 * lists, we instead now tag pages as dirty/writeback in the radix tree. 546 * 547 * All pagecache pages may be subject to I/O: 548 * - inode pages may need to be read from disk, 549 * - inode pages which have been modified and are MAP_SHARED may need 550 * to be written back to the inode on disk, 551 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 552 * modified may need to be swapped out to swap space and (later) to be read 553 * back into memory. 554 */ 555 556 /* 557 * The zone field is never updated after free_area_init_core() 558 * sets it, so none of the operations on it need to be atomic. 559 */ 560 561 562 /* 563 * page->flags layout: 564 * 565 * There are three possibilities for how page->flags get 566 * laid out. The first is for the normal case, without 567 * sparsemem. The second is for sparsemem when there is 568 * plenty of space for node and section. The last is when 569 * we have run out of space and have to fall back to an 570 * alternate (slower) way of determining the node. 571 * 572 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 573 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 574 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 575 */ 576 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 577 #define SECTIONS_WIDTH SECTIONS_SHIFT 578 #else 579 #define SECTIONS_WIDTH 0 580 #endif 581 582 #define ZONES_WIDTH ZONES_SHIFT 583 584 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 585 #define NODES_WIDTH NODES_SHIFT 586 #else 587 #ifdef CONFIG_SPARSEMEM_VMEMMAP 588 #error "Vmemmap: No space for nodes field in page flags" 589 #endif 590 #define NODES_WIDTH 0 591 #endif 592 593 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 594 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 595 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 596 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 597 598 /* 599 * We are going to use the flags for the page to node mapping if its in 600 * there. This includes the case where there is no node, so it is implicit. 601 */ 602 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 603 #define NODE_NOT_IN_PAGE_FLAGS 604 #endif 605 606 #ifndef PFN_SECTION_SHIFT 607 #define PFN_SECTION_SHIFT 0 608 #endif 609 610 /* 611 * Define the bit shifts to access each section. For non-existant 612 * sections we define the shift as 0; that plus a 0 mask ensures 613 * the compiler will optimise away reference to them. 614 */ 615 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 616 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 617 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 618 619 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 620 #ifdef NODE_NOT_IN_PAGE_FLAGS 621 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 622 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 623 SECTIONS_PGOFF : ZONES_PGOFF) 624 #else 625 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 626 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 627 NODES_PGOFF : ZONES_PGOFF) 628 #endif 629 630 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 631 632 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 633 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 634 #endif 635 636 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 637 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 638 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 639 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 640 641 static inline enum zone_type page_zonenum(struct page *page) 642 { 643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 644 } 645 646 /* 647 * The identification function is only used by the buddy allocator for 648 * determining if two pages could be buddies. We are not really 649 * identifying a zone since we could be using a the section number 650 * id if we have not node id available in page flags. 651 * We guarantee only that it will return the same value for two 652 * combinable pages in a zone. 653 */ 654 static inline int page_zone_id(struct page *page) 655 { 656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 657 } 658 659 static inline int zone_to_nid(struct zone *zone) 660 { 661 #ifdef CONFIG_NUMA 662 return zone->node; 663 #else 664 return 0; 665 #endif 666 } 667 668 #ifdef NODE_NOT_IN_PAGE_FLAGS 669 extern int page_to_nid(struct page *page); 670 #else 671 static inline int page_to_nid(struct page *page) 672 { 673 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 674 } 675 #endif 676 677 static inline struct zone *page_zone(struct page *page) 678 { 679 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 680 } 681 682 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 683 static inline unsigned long page_to_section(struct page *page) 684 { 685 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 686 } 687 #endif 688 689 static inline void set_page_zone(struct page *page, enum zone_type zone) 690 { 691 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 692 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 693 } 694 695 static inline void set_page_node(struct page *page, unsigned long node) 696 { 697 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 698 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 699 } 700 701 static inline void set_page_section(struct page *page, unsigned long section) 702 { 703 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 704 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 705 } 706 707 static inline void set_page_links(struct page *page, enum zone_type zone, 708 unsigned long node, unsigned long pfn) 709 { 710 set_page_zone(page, zone); 711 set_page_node(page, node); 712 set_page_section(page, pfn_to_section_nr(pfn)); 713 } 714 715 /* 716 * Some inline functions in vmstat.h depend on page_zone() 717 */ 718 #include <linux/vmstat.h> 719 720 static __always_inline void *lowmem_page_address(struct page *page) 721 { 722 return __va(PFN_PHYS(page_to_pfn(page))); 723 } 724 725 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 726 #define HASHED_PAGE_VIRTUAL 727 #endif 728 729 #if defined(WANT_PAGE_VIRTUAL) 730 #define page_address(page) ((page)->virtual) 731 #define set_page_address(page, address) \ 732 do { \ 733 (page)->virtual = (address); \ 734 } while(0) 735 #define page_address_init() do { } while(0) 736 #endif 737 738 #if defined(HASHED_PAGE_VIRTUAL) 739 void *page_address(struct page *page); 740 void set_page_address(struct page *page, void *virtual); 741 void page_address_init(void); 742 #endif 743 744 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 745 #define page_address(page) lowmem_page_address(page) 746 #define set_page_address(page, address) do { } while(0) 747 #define page_address_init() do { } while(0) 748 #endif 749 750 /* 751 * On an anonymous page mapped into a user virtual memory area, 752 * page->mapping points to its anon_vma, not to a struct address_space; 753 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 754 * 755 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 756 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 757 * and then page->mapping points, not to an anon_vma, but to a private 758 * structure which KSM associates with that merged page. See ksm.h. 759 * 760 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 761 * 762 * Please note that, confusingly, "page_mapping" refers to the inode 763 * address_space which maps the page from disk; whereas "page_mapped" 764 * refers to user virtual address space into which the page is mapped. 765 */ 766 #define PAGE_MAPPING_ANON 1 767 #define PAGE_MAPPING_KSM 2 768 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 769 770 extern struct address_space swapper_space; 771 static inline struct address_space *page_mapping(struct page *page) 772 { 773 struct address_space *mapping = page->mapping; 774 775 VM_BUG_ON(PageSlab(page)); 776 if (unlikely(PageSwapCache(page))) 777 mapping = &swapper_space; 778 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 779 mapping = NULL; 780 return mapping; 781 } 782 783 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 784 static inline void *page_rmapping(struct page *page) 785 { 786 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 787 } 788 789 static inline int PageAnon(struct page *page) 790 { 791 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 792 } 793 794 /* 795 * Return the pagecache index of the passed page. Regular pagecache pages 796 * use ->index whereas swapcache pages use ->private 797 */ 798 static inline pgoff_t page_index(struct page *page) 799 { 800 if (unlikely(PageSwapCache(page))) 801 return page_private(page); 802 return page->index; 803 } 804 805 /* 806 * The atomic page->_mapcount, like _count, starts from -1: 807 * so that transitions both from it and to it can be tracked, 808 * using atomic_inc_and_test and atomic_add_negative(-1). 809 */ 810 static inline void reset_page_mapcount(struct page *page) 811 { 812 atomic_set(&(page)->_mapcount, -1); 813 } 814 815 static inline int page_mapcount(struct page *page) 816 { 817 return atomic_read(&(page)->_mapcount) + 1; 818 } 819 820 /* 821 * Return true if this page is mapped into pagetables. 822 */ 823 static inline int page_mapped(struct page *page) 824 { 825 return atomic_read(&(page)->_mapcount) >= 0; 826 } 827 828 /* 829 * Different kinds of faults, as returned by handle_mm_fault(). 830 * Used to decide whether a process gets delivered SIGBUS or 831 * just gets major/minor fault counters bumped up. 832 */ 833 834 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 835 836 #define VM_FAULT_OOM 0x0001 837 #define VM_FAULT_SIGBUS 0x0002 838 #define VM_FAULT_MAJOR 0x0004 839 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 840 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 841 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 842 843 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 844 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 845 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 846 847 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 848 849 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 850 VM_FAULT_HWPOISON_LARGE) 851 852 /* Encode hstate index for a hwpoisoned large page */ 853 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 854 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 855 856 /* 857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 858 */ 859 extern void pagefault_out_of_memory(void); 860 861 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 862 863 /* 864 * Flags passed to __show_mem() and __show_free_areas() to suppress output in 865 * various contexts. 866 */ 867 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 868 869 extern void show_free_areas(void); 870 extern void __show_free_areas(unsigned int flags); 871 872 int shmem_lock(struct file *file, int lock, struct user_struct *user); 873 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 874 int shmem_zero_setup(struct vm_area_struct *); 875 876 #ifndef CONFIG_MMU 877 extern unsigned long shmem_get_unmapped_area(struct file *file, 878 unsigned long addr, 879 unsigned long len, 880 unsigned long pgoff, 881 unsigned long flags); 882 #endif 883 884 extern int can_do_mlock(void); 885 extern int user_shm_lock(size_t, struct user_struct *); 886 extern void user_shm_unlock(size_t, struct user_struct *); 887 888 /* 889 * Parameter block passed down to zap_pte_range in exceptional cases. 890 */ 891 struct zap_details { 892 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 893 struct address_space *check_mapping; /* Check page->mapping if set */ 894 pgoff_t first_index; /* Lowest page->index to unmap */ 895 pgoff_t last_index; /* Highest page->index to unmap */ 896 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 897 unsigned long truncate_count; /* Compare vm_truncate_count */ 898 }; 899 900 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 901 pte_t pte); 902 903 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 904 unsigned long size); 905 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 906 unsigned long size, struct zap_details *); 907 unsigned long unmap_vmas(struct mmu_gather **tlb, 908 struct vm_area_struct *start_vma, unsigned long start_addr, 909 unsigned long end_addr, unsigned long *nr_accounted, 910 struct zap_details *); 911 912 /** 913 * mm_walk - callbacks for walk_page_range 914 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 915 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 916 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 917 * this handler is required to be able to handle 918 * pmd_trans_huge() pmds. They may simply choose to 919 * split_huge_page() instead of handling it explicitly. 920 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 921 * @pte_hole: if set, called for each hole at all levels 922 * @hugetlb_entry: if set, called for each hugetlb entry 923 * 924 * (see walk_page_range for more details) 925 */ 926 struct mm_walk { 927 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 928 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 929 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 930 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 931 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 932 int (*hugetlb_entry)(pte_t *, unsigned long, 933 unsigned long, unsigned long, struct mm_walk *); 934 struct mm_struct *mm; 935 void *private; 936 }; 937 938 int walk_page_range(unsigned long addr, unsigned long end, 939 struct mm_walk *walk); 940 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 941 unsigned long end, unsigned long floor, unsigned long ceiling); 942 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 943 struct vm_area_struct *vma); 944 void unmap_mapping_range(struct address_space *mapping, 945 loff_t const holebegin, loff_t const holelen, int even_cows); 946 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 947 unsigned long *pfn); 948 int follow_phys(struct vm_area_struct *vma, unsigned long address, 949 unsigned int flags, unsigned long *prot, resource_size_t *phys); 950 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 951 void *buf, int len, int write); 952 953 static inline void unmap_shared_mapping_range(struct address_space *mapping, 954 loff_t const holebegin, loff_t const holelen) 955 { 956 unmap_mapping_range(mapping, holebegin, holelen, 0); 957 } 958 959 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 960 extern void truncate_setsize(struct inode *inode, loff_t newsize); 961 extern int vmtruncate(struct inode *inode, loff_t offset); 962 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 963 964 int truncate_inode_page(struct address_space *mapping, struct page *page); 965 int generic_error_remove_page(struct address_space *mapping, struct page *page); 966 967 int invalidate_inode_page(struct page *page); 968 969 #ifdef CONFIG_MMU 970 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 971 unsigned long address, unsigned int flags); 972 #else 973 static inline int handle_mm_fault(struct mm_struct *mm, 974 struct vm_area_struct *vma, unsigned long address, 975 unsigned int flags) 976 { 977 /* should never happen if there's no MMU */ 978 BUG(); 979 return VM_FAULT_SIGBUS; 980 } 981 #endif 982 983 extern int make_pages_present(unsigned long addr, unsigned long end); 984 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 985 986 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 987 unsigned long start, int len, unsigned int foll_flags, 988 struct page **pages, struct vm_area_struct **vmas, 989 int *nonblocking); 990 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 991 unsigned long start, int nr_pages, int write, int force, 992 struct page **pages, struct vm_area_struct **vmas); 993 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 994 struct page **pages); 995 struct page *get_dump_page(unsigned long addr); 996 997 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 998 extern void do_invalidatepage(struct page *page, unsigned long offset); 999 1000 int __set_page_dirty_nobuffers(struct page *page); 1001 int __set_page_dirty_no_writeback(struct page *page); 1002 int redirty_page_for_writepage(struct writeback_control *wbc, 1003 struct page *page); 1004 void account_page_dirtied(struct page *page, struct address_space *mapping); 1005 void account_page_writeback(struct page *page); 1006 int set_page_dirty(struct page *page); 1007 int set_page_dirty_lock(struct page *page); 1008 int clear_page_dirty_for_io(struct page *page); 1009 1010 /* Is the vma a continuation of the stack vma above it? */ 1011 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) 1012 { 1013 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1014 } 1015 1016 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1017 unsigned long old_addr, struct vm_area_struct *new_vma, 1018 unsigned long new_addr, unsigned long len); 1019 extern unsigned long do_mremap(unsigned long addr, 1020 unsigned long old_len, unsigned long new_len, 1021 unsigned long flags, unsigned long new_addr); 1022 extern int mprotect_fixup(struct vm_area_struct *vma, 1023 struct vm_area_struct **pprev, unsigned long start, 1024 unsigned long end, unsigned long newflags); 1025 1026 /* 1027 * doesn't attempt to fault and will return short. 1028 */ 1029 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1030 struct page **pages); 1031 /* 1032 * per-process(per-mm_struct) statistics. 1033 */ 1034 #if defined(SPLIT_RSS_COUNTING) 1035 /* 1036 * The mm counters are not protected by its page_table_lock, 1037 * so must be incremented atomically. 1038 */ 1039 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1040 { 1041 atomic_long_set(&mm->rss_stat.count[member], value); 1042 } 1043 1044 unsigned long get_mm_counter(struct mm_struct *mm, int member); 1045 1046 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1047 { 1048 atomic_long_add(value, &mm->rss_stat.count[member]); 1049 } 1050 1051 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1052 { 1053 atomic_long_inc(&mm->rss_stat.count[member]); 1054 } 1055 1056 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1057 { 1058 atomic_long_dec(&mm->rss_stat.count[member]); 1059 } 1060 1061 #else /* !USE_SPLIT_PTLOCKS */ 1062 /* 1063 * The mm counters are protected by its page_table_lock, 1064 * so can be incremented directly. 1065 */ 1066 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1067 { 1068 mm->rss_stat.count[member] = value; 1069 } 1070 1071 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1072 { 1073 return mm->rss_stat.count[member]; 1074 } 1075 1076 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1077 { 1078 mm->rss_stat.count[member] += value; 1079 } 1080 1081 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1082 { 1083 mm->rss_stat.count[member]++; 1084 } 1085 1086 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1087 { 1088 mm->rss_stat.count[member]--; 1089 } 1090 1091 #endif /* !USE_SPLIT_PTLOCKS */ 1092 1093 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1094 { 1095 return get_mm_counter(mm, MM_FILEPAGES) + 1096 get_mm_counter(mm, MM_ANONPAGES); 1097 } 1098 1099 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1100 { 1101 return max(mm->hiwater_rss, get_mm_rss(mm)); 1102 } 1103 1104 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1105 { 1106 return max(mm->hiwater_vm, mm->total_vm); 1107 } 1108 1109 static inline void update_hiwater_rss(struct mm_struct *mm) 1110 { 1111 unsigned long _rss = get_mm_rss(mm); 1112 1113 if ((mm)->hiwater_rss < _rss) 1114 (mm)->hiwater_rss = _rss; 1115 } 1116 1117 static inline void update_hiwater_vm(struct mm_struct *mm) 1118 { 1119 if (mm->hiwater_vm < mm->total_vm) 1120 mm->hiwater_vm = mm->total_vm; 1121 } 1122 1123 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1124 struct mm_struct *mm) 1125 { 1126 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1127 1128 if (*maxrss < hiwater_rss) 1129 *maxrss = hiwater_rss; 1130 } 1131 1132 #if defined(SPLIT_RSS_COUNTING) 1133 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1134 #else 1135 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1136 { 1137 } 1138 #endif 1139 1140 /* 1141 * A callback you can register to apply pressure to ageable caches. 1142 * 1143 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 1144 * look through the least-recently-used 'nr_to_scan' entries and 1145 * attempt to free them up. It should return the number of objects 1146 * which remain in the cache. If it returns -1, it means it cannot do 1147 * any scanning at this time (eg. there is a risk of deadlock). 1148 * 1149 * The 'gfpmask' refers to the allocation we are currently trying to 1150 * fulfil. 1151 * 1152 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1153 * querying the cache size, so a fastpath for that case is appropriate. 1154 */ 1155 struct shrinker { 1156 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); 1157 int seeks; /* seeks to recreate an obj */ 1158 1159 /* These are for internal use */ 1160 struct list_head list; 1161 long nr; /* objs pending delete */ 1162 }; 1163 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1164 extern void register_shrinker(struct shrinker *); 1165 extern void unregister_shrinker(struct shrinker *); 1166 1167 int vma_wants_writenotify(struct vm_area_struct *vma); 1168 1169 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1170 spinlock_t **ptl); 1171 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1172 spinlock_t **ptl) 1173 { 1174 pte_t *ptep; 1175 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1176 return ptep; 1177 } 1178 1179 #ifdef __PAGETABLE_PUD_FOLDED 1180 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1181 unsigned long address) 1182 { 1183 return 0; 1184 } 1185 #else 1186 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1187 #endif 1188 1189 #ifdef __PAGETABLE_PMD_FOLDED 1190 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1191 unsigned long address) 1192 { 1193 return 0; 1194 } 1195 #else 1196 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1197 #endif 1198 1199 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1200 pmd_t *pmd, unsigned long address); 1201 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1202 1203 /* 1204 * The following ifdef needed to get the 4level-fixup.h header to work. 1205 * Remove it when 4level-fixup.h has been removed. 1206 */ 1207 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1208 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1209 { 1210 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1211 NULL: pud_offset(pgd, address); 1212 } 1213 1214 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1215 { 1216 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1217 NULL: pmd_offset(pud, address); 1218 } 1219 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1220 1221 #if USE_SPLIT_PTLOCKS 1222 /* 1223 * We tuck a spinlock to guard each pagetable page into its struct page, 1224 * at page->private, with BUILD_BUG_ON to make sure that this will not 1225 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1226 * When freeing, reset page->mapping so free_pages_check won't complain. 1227 */ 1228 #define __pte_lockptr(page) &((page)->ptl) 1229 #define pte_lock_init(_page) do { \ 1230 spin_lock_init(__pte_lockptr(_page)); \ 1231 } while (0) 1232 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1233 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1234 #else /* !USE_SPLIT_PTLOCKS */ 1235 /* 1236 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1237 */ 1238 #define pte_lock_init(page) do {} while (0) 1239 #define pte_lock_deinit(page) do {} while (0) 1240 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1241 #endif /* USE_SPLIT_PTLOCKS */ 1242 1243 static inline void pgtable_page_ctor(struct page *page) 1244 { 1245 pte_lock_init(page); 1246 inc_zone_page_state(page, NR_PAGETABLE); 1247 } 1248 1249 static inline void pgtable_page_dtor(struct page *page) 1250 { 1251 pte_lock_deinit(page); 1252 dec_zone_page_state(page, NR_PAGETABLE); 1253 } 1254 1255 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1256 ({ \ 1257 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1258 pte_t *__pte = pte_offset_map(pmd, address); \ 1259 *(ptlp) = __ptl; \ 1260 spin_lock(__ptl); \ 1261 __pte; \ 1262 }) 1263 1264 #define pte_unmap_unlock(pte, ptl) do { \ 1265 spin_unlock(ptl); \ 1266 pte_unmap(pte); \ 1267 } while (0) 1268 1269 #define pte_alloc_map(mm, vma, pmd, address) \ 1270 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1271 pmd, address))? \ 1272 NULL: pte_offset_map(pmd, address)) 1273 1274 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1275 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1276 pmd, address))? \ 1277 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1278 1279 #define pte_alloc_kernel(pmd, address) \ 1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1281 NULL: pte_offset_kernel(pmd, address)) 1282 1283 extern void free_area_init(unsigned long * zones_size); 1284 extern void free_area_init_node(int nid, unsigned long * zones_size, 1285 unsigned long zone_start_pfn, unsigned long *zholes_size); 1286 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1287 /* 1288 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1289 * zones, allocate the backing mem_map and account for memory holes in a more 1290 * architecture independent manner. This is a substitute for creating the 1291 * zone_sizes[] and zholes_size[] arrays and passing them to 1292 * free_area_init_node() 1293 * 1294 * An architecture is expected to register range of page frames backed by 1295 * physical memory with add_active_range() before calling 1296 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1297 * usage, an architecture is expected to do something like 1298 * 1299 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1300 * max_highmem_pfn}; 1301 * for_each_valid_physical_page_range() 1302 * add_active_range(node_id, start_pfn, end_pfn) 1303 * free_area_init_nodes(max_zone_pfns); 1304 * 1305 * If the architecture guarantees that there are no holes in the ranges 1306 * registered with add_active_range(), free_bootmem_active_regions() 1307 * will call free_bootmem_node() for each registered physical page range. 1308 * Similarly sparse_memory_present_with_active_regions() calls 1309 * memory_present() for each range when SPARSEMEM is enabled. 1310 * 1311 * See mm/page_alloc.c for more information on each function exposed by 1312 * CONFIG_ARCH_POPULATES_NODE_MAP 1313 */ 1314 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1315 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1316 unsigned long end_pfn); 1317 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1318 unsigned long end_pfn); 1319 extern void remove_all_active_ranges(void); 1320 void sort_node_map(void); 1321 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1322 unsigned long end_pfn); 1323 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1324 unsigned long end_pfn); 1325 extern void get_pfn_range_for_nid(unsigned int nid, 1326 unsigned long *start_pfn, unsigned long *end_pfn); 1327 extern unsigned long find_min_pfn_with_active_regions(void); 1328 extern void free_bootmem_with_active_regions(int nid, 1329 unsigned long max_low_pfn); 1330 int add_from_early_node_map(struct range *range, int az, 1331 int nr_range, int nid); 1332 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1333 u64 goal, u64 limit); 1334 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1335 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1336 extern void sparse_memory_present_with_active_regions(int nid); 1337 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1338 1339 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1340 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1341 static inline int __early_pfn_to_nid(unsigned long pfn) 1342 { 1343 return 0; 1344 } 1345 #else 1346 /* please see mm/page_alloc.c */ 1347 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1348 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1349 /* there is a per-arch backend function. */ 1350 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1351 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1352 #endif 1353 1354 extern void set_dma_reserve(unsigned long new_dma_reserve); 1355 extern void memmap_init_zone(unsigned long, int, unsigned long, 1356 unsigned long, enum memmap_context); 1357 extern void setup_per_zone_wmarks(void); 1358 extern void calculate_zone_inactive_ratio(struct zone *zone); 1359 extern void mem_init(void); 1360 extern void __init mmap_init(void); 1361 extern void show_mem(void); 1362 extern void __show_mem(unsigned int flags); 1363 extern void si_meminfo(struct sysinfo * val); 1364 extern void si_meminfo_node(struct sysinfo *val, int nid); 1365 extern int after_bootmem; 1366 1367 extern void setup_per_cpu_pageset(void); 1368 1369 extern void zone_pcp_update(struct zone *zone); 1370 1371 /* nommu.c */ 1372 extern atomic_long_t mmap_pages_allocated; 1373 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1374 1375 /* prio_tree.c */ 1376 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1377 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1378 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1379 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1380 struct prio_tree_iter *iter); 1381 1382 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1383 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1384 (vma = vma_prio_tree_next(vma, iter)); ) 1385 1386 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1387 struct list_head *list) 1388 { 1389 vma->shared.vm_set.parent = NULL; 1390 list_add_tail(&vma->shared.vm_set.list, list); 1391 } 1392 1393 /* mmap.c */ 1394 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1395 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1396 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1397 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1398 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1399 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1400 struct mempolicy *); 1401 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1402 extern int split_vma(struct mm_struct *, 1403 struct vm_area_struct *, unsigned long addr, int new_below); 1404 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1405 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1406 struct rb_node **, struct rb_node *); 1407 extern void unlink_file_vma(struct vm_area_struct *); 1408 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1409 unsigned long addr, unsigned long len, pgoff_t pgoff); 1410 extern void exit_mmap(struct mm_struct *); 1411 1412 extern int mm_take_all_locks(struct mm_struct *mm); 1413 extern void mm_drop_all_locks(struct mm_struct *mm); 1414 1415 #ifdef CONFIG_PROC_FS 1416 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1417 extern void added_exe_file_vma(struct mm_struct *mm); 1418 extern void removed_exe_file_vma(struct mm_struct *mm); 1419 #else 1420 static inline void added_exe_file_vma(struct mm_struct *mm) 1421 {} 1422 1423 static inline void removed_exe_file_vma(struct mm_struct *mm) 1424 {} 1425 #endif /* CONFIG_PROC_FS */ 1426 1427 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1428 extern int install_special_mapping(struct mm_struct *mm, 1429 unsigned long addr, unsigned long len, 1430 unsigned long flags, struct page **pages); 1431 1432 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1433 1434 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1435 unsigned long len, unsigned long prot, 1436 unsigned long flag, unsigned long pgoff); 1437 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1438 unsigned long len, unsigned long flags, 1439 unsigned int vm_flags, unsigned long pgoff); 1440 1441 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1442 unsigned long len, unsigned long prot, 1443 unsigned long flag, unsigned long offset) 1444 { 1445 unsigned long ret = -EINVAL; 1446 if ((offset + PAGE_ALIGN(len)) < offset) 1447 goto out; 1448 if (!(offset & ~PAGE_MASK)) 1449 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1450 out: 1451 return ret; 1452 } 1453 1454 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1455 1456 extern unsigned long do_brk(unsigned long, unsigned long); 1457 1458 /* filemap.c */ 1459 extern unsigned long page_unuse(struct page *); 1460 extern void truncate_inode_pages(struct address_space *, loff_t); 1461 extern void truncate_inode_pages_range(struct address_space *, 1462 loff_t lstart, loff_t lend); 1463 1464 /* generic vm_area_ops exported for stackable file systems */ 1465 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1466 1467 /* mm/page-writeback.c */ 1468 int write_one_page(struct page *page, int wait); 1469 void task_dirty_inc(struct task_struct *tsk); 1470 1471 /* readahead.c */ 1472 #define VM_MAX_READAHEAD 128 /* kbytes */ 1473 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1474 1475 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1476 pgoff_t offset, unsigned long nr_to_read); 1477 1478 void page_cache_sync_readahead(struct address_space *mapping, 1479 struct file_ra_state *ra, 1480 struct file *filp, 1481 pgoff_t offset, 1482 unsigned long size); 1483 1484 void page_cache_async_readahead(struct address_space *mapping, 1485 struct file_ra_state *ra, 1486 struct file *filp, 1487 struct page *pg, 1488 pgoff_t offset, 1489 unsigned long size); 1490 1491 unsigned long max_sane_readahead(unsigned long nr); 1492 unsigned long ra_submit(struct file_ra_state *ra, 1493 struct address_space *mapping, 1494 struct file *filp); 1495 1496 /* Do stack extension */ 1497 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1498 #if VM_GROWSUP 1499 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1500 #else 1501 #define expand_upwards(vma, address) do { } while (0) 1502 #endif 1503 extern int expand_stack_downwards(struct vm_area_struct *vma, 1504 unsigned long address); 1505 1506 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1507 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1508 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1509 struct vm_area_struct **pprev); 1510 1511 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1512 NULL if none. Assume start_addr < end_addr. */ 1513 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1514 { 1515 struct vm_area_struct * vma = find_vma(mm,start_addr); 1516 1517 if (vma && end_addr <= vma->vm_start) 1518 vma = NULL; 1519 return vma; 1520 } 1521 1522 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1523 { 1524 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1525 } 1526 1527 #ifdef CONFIG_MMU 1528 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1529 #else 1530 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1531 { 1532 return __pgprot(0); 1533 } 1534 #endif 1535 1536 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1537 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1538 unsigned long pfn, unsigned long size, pgprot_t); 1539 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1540 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1541 unsigned long pfn); 1542 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1543 unsigned long pfn); 1544 1545 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1546 unsigned int foll_flags); 1547 #define FOLL_WRITE 0x01 /* check pte is writable */ 1548 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1549 #define FOLL_GET 0x04 /* do get_page on page */ 1550 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1551 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1552 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1553 * and return without waiting upon it */ 1554 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1555 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1556 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1557 1558 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1559 void *data); 1560 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1561 unsigned long size, pte_fn_t fn, void *data); 1562 1563 #ifdef CONFIG_PROC_FS 1564 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1565 #else 1566 static inline void vm_stat_account(struct mm_struct *mm, 1567 unsigned long flags, struct file *file, long pages) 1568 { 1569 } 1570 #endif /* CONFIG_PROC_FS */ 1571 1572 #ifdef CONFIG_DEBUG_PAGEALLOC 1573 extern int debug_pagealloc_enabled; 1574 1575 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1576 1577 static inline void enable_debug_pagealloc(void) 1578 { 1579 debug_pagealloc_enabled = 1; 1580 } 1581 #ifdef CONFIG_HIBERNATION 1582 extern bool kernel_page_present(struct page *page); 1583 #endif /* CONFIG_HIBERNATION */ 1584 #else 1585 static inline void 1586 kernel_map_pages(struct page *page, int numpages, int enable) {} 1587 static inline void enable_debug_pagealloc(void) 1588 { 1589 } 1590 #ifdef CONFIG_HIBERNATION 1591 static inline bool kernel_page_present(struct page *page) { return true; } 1592 #endif /* CONFIG_HIBERNATION */ 1593 #endif 1594 1595 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1596 #ifdef __HAVE_ARCH_GATE_AREA 1597 int in_gate_area_no_task(unsigned long addr); 1598 int in_gate_area(struct task_struct *task, unsigned long addr); 1599 #else 1600 int in_gate_area_no_task(unsigned long addr); 1601 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1602 #endif /* __HAVE_ARCH_GATE_AREA */ 1603 1604 int drop_caches_sysctl_handler(struct ctl_table *, int, 1605 void __user *, size_t *, loff_t *); 1606 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1607 unsigned long lru_pages); 1608 1609 #ifndef CONFIG_MMU 1610 #define randomize_va_space 0 1611 #else 1612 extern int randomize_va_space; 1613 #endif 1614 1615 const char * arch_vma_name(struct vm_area_struct *vma); 1616 void print_vma_addr(char *prefix, unsigned long rip); 1617 1618 void sparse_mem_maps_populate_node(struct page **map_map, 1619 unsigned long pnum_begin, 1620 unsigned long pnum_end, 1621 unsigned long map_count, 1622 int nodeid); 1623 1624 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1625 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1626 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1627 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1628 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1629 void *vmemmap_alloc_block(unsigned long size, int node); 1630 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1631 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1632 int vmemmap_populate_basepages(struct page *start_page, 1633 unsigned long pages, int node); 1634 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1635 void vmemmap_populate_print_last(void); 1636 1637 1638 enum mf_flags { 1639 MF_COUNT_INCREASED = 1 << 0, 1640 }; 1641 extern void memory_failure(unsigned long pfn, int trapno); 1642 extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1643 extern int unpoison_memory(unsigned long pfn); 1644 extern int sysctl_memory_failure_early_kill; 1645 extern int sysctl_memory_failure_recovery; 1646 extern void shake_page(struct page *p, int access); 1647 extern atomic_long_t mce_bad_pages; 1648 extern int soft_offline_page(struct page *page, int flags); 1649 1650 extern void dump_page(struct page *page); 1651 1652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1653 extern void clear_huge_page(struct page *page, 1654 unsigned long addr, 1655 unsigned int pages_per_huge_page); 1656 extern void copy_user_huge_page(struct page *dst, struct page *src, 1657 unsigned long addr, struct vm_area_struct *vma, 1658 unsigned int pages_per_huge_page); 1659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1660 1661 #endif /* __KERNEL__ */ 1662 #endif /* _LINUX_MM_H */ 1663