1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/sched.h> 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/config.h> 10 #include <linux/gfp.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/prio_tree.h> 15 #include <linux/fs.h> 16 17 struct mempolicy; 18 struct anon_vma; 19 20 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 21 extern unsigned long max_mapnr; 22 #endif 23 24 extern unsigned long num_physpages; 25 extern void * high_memory; 26 extern unsigned long vmalloc_earlyreserve; 27 extern int page_cluster; 28 29 #ifdef CONFIG_SYSCTL 30 extern int sysctl_legacy_va_layout; 31 #else 32 #define sysctl_legacy_va_layout 0 33 #endif 34 35 #include <asm/page.h> 36 #include <asm/pgtable.h> 37 #include <asm/processor.h> 38 #include <asm/atomic.h> 39 40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 41 42 /* 43 * Linux kernel virtual memory manager primitives. 44 * The idea being to have a "virtual" mm in the same way 45 * we have a virtual fs - giving a cleaner interface to the 46 * mm details, and allowing different kinds of memory mappings 47 * (from shared memory to executable loading to arbitrary 48 * mmap() functions). 49 */ 50 51 /* 52 * This struct defines a memory VMM memory area. There is one of these 53 * per VM-area/task. A VM area is any part of the process virtual memory 54 * space that has a special rule for the page-fault handlers (ie a shared 55 * library, the executable area etc). 56 */ 57 struct vm_area_struct { 58 struct mm_struct * vm_mm; /* The address space we belong to. */ 59 unsigned long vm_start; /* Our start address within vm_mm. */ 60 unsigned long vm_end; /* The first byte after our end address 61 within vm_mm. */ 62 63 /* linked list of VM areas per task, sorted by address */ 64 struct vm_area_struct *vm_next; 65 66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 67 unsigned long vm_flags; /* Flags, listed below. */ 68 69 struct rb_node vm_rb; 70 71 /* 72 * For areas with an address space and backing store, 73 * linkage into the address_space->i_mmap prio tree, or 74 * linkage to the list of like vmas hanging off its node, or 75 * linkage of vma in the address_space->i_mmap_nonlinear list. 76 */ 77 union { 78 struct { 79 struct list_head list; 80 void *parent; /* aligns with prio_tree_node parent */ 81 struct vm_area_struct *head; 82 } vm_set; 83 84 struct raw_prio_tree_node prio_tree_node; 85 } shared; 86 87 /* 88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 89 * list, after a COW of one of the file pages. A MAP_SHARED vma 90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 91 * or brk vma (with NULL file) can only be in an anon_vma list. 92 */ 93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 95 96 /* Function pointers to deal with this struct. */ 97 struct vm_operations_struct * vm_ops; 98 99 /* Information about our backing store: */ 100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 101 units, *not* PAGE_CACHE_SIZE */ 102 struct file * vm_file; /* File we map to (can be NULL). */ 103 void * vm_private_data; /* was vm_pte (shared mem) */ 104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 105 106 #ifndef CONFIG_MMU 107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 108 #endif 109 #ifdef CONFIG_NUMA 110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 111 #endif 112 }; 113 114 /* 115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 116 * disabled, then there's a single shared list of VMAs maintained by the 117 * system, and mm's subscribe to these individually 118 */ 119 struct vm_list_struct { 120 struct vm_list_struct *next; 121 struct vm_area_struct *vma; 122 }; 123 124 #ifndef CONFIG_MMU 125 extern struct rb_root nommu_vma_tree; 126 extern struct rw_semaphore nommu_vma_sem; 127 128 extern unsigned int kobjsize(const void *objp); 129 #endif 130 131 /* 132 * vm_flags.. 133 */ 134 #define VM_READ 0x00000001 /* currently active flags */ 135 #define VM_WRITE 0x00000002 136 #define VM_EXEC 0x00000004 137 #define VM_SHARED 0x00000008 138 139 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 140 #define VM_MAYWRITE 0x00000020 141 #define VM_MAYEXEC 0x00000040 142 #define VM_MAYSHARE 0x00000080 143 144 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 145 #define VM_GROWSUP 0x00000200 146 #define VM_SHM 0x00000400 /* shared memory area, don't swap out */ 147 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 148 149 #define VM_EXECUTABLE 0x00001000 150 #define VM_LOCKED 0x00002000 151 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 152 153 /* Used by sys_madvise() */ 154 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 155 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 156 157 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 158 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 159 #define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */ 160 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 161 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 162 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 163 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 164 165 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 166 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 167 #endif 168 169 #ifdef CONFIG_STACK_GROWSUP 170 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 171 #else 172 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 173 #endif 174 175 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 176 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 177 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 178 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 179 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 180 181 /* 182 * mapping from the currently active vm_flags protection bits (the 183 * low four bits) to a page protection mask.. 184 */ 185 extern pgprot_t protection_map[16]; 186 187 188 /* 189 * These are the virtual MM functions - opening of an area, closing and 190 * unmapping it (needed to keep files on disk up-to-date etc), pointer 191 * to the functions called when a no-page or a wp-page exception occurs. 192 */ 193 struct vm_operations_struct { 194 void (*open)(struct vm_area_struct * area); 195 void (*close)(struct vm_area_struct * area); 196 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 197 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 198 #ifdef CONFIG_NUMA 199 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 200 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 201 unsigned long addr); 202 #endif 203 }; 204 205 struct mmu_gather; 206 struct inode; 207 208 #ifdef ARCH_HAS_ATOMIC_UNSIGNED 209 typedef unsigned page_flags_t; 210 #else 211 typedef unsigned long page_flags_t; 212 #endif 213 214 /* 215 * Each physical page in the system has a struct page associated with 216 * it to keep track of whatever it is we are using the page for at the 217 * moment. Note that we have no way to track which tasks are using 218 * a page. 219 */ 220 struct page { 221 page_flags_t flags; /* Atomic flags, some possibly 222 * updated asynchronously */ 223 atomic_t _count; /* Usage count, see below. */ 224 atomic_t _mapcount; /* Count of ptes mapped in mms, 225 * to show when page is mapped 226 * & limit reverse map searches. 227 */ 228 unsigned long private; /* Mapping-private opaque data: 229 * usually used for buffer_heads 230 * if PagePrivate set; used for 231 * swp_entry_t if PageSwapCache 232 * When page is free, this indicates 233 * order in the buddy system. 234 */ 235 struct address_space *mapping; /* If low bit clear, points to 236 * inode address_space, or NULL. 237 * If page mapped as anonymous 238 * memory, low bit is set, and 239 * it points to anon_vma object: 240 * see PAGE_MAPPING_ANON below. 241 */ 242 pgoff_t index; /* Our offset within mapping. */ 243 struct list_head lru; /* Pageout list, eg. active_list 244 * protected by zone->lru_lock ! 245 */ 246 /* 247 * On machines where all RAM is mapped into kernel address space, 248 * we can simply calculate the virtual address. On machines with 249 * highmem some memory is mapped into kernel virtual memory 250 * dynamically, so we need a place to store that address. 251 * Note that this field could be 16 bits on x86 ... ;) 252 * 253 * Architectures with slow multiplication can define 254 * WANT_PAGE_VIRTUAL in asm/page.h 255 */ 256 #if defined(WANT_PAGE_VIRTUAL) 257 void *virtual; /* Kernel virtual address (NULL if 258 not kmapped, ie. highmem) */ 259 #endif /* WANT_PAGE_VIRTUAL */ 260 }; 261 262 /* 263 * FIXME: take this include out, include page-flags.h in 264 * files which need it (119 of them) 265 */ 266 #include <linux/page-flags.h> 267 268 /* 269 * Methods to modify the page usage count. 270 * 271 * What counts for a page usage: 272 * - cache mapping (page->mapping) 273 * - private data (page->private) 274 * - page mapped in a task's page tables, each mapping 275 * is counted separately 276 * 277 * Also, many kernel routines increase the page count before a critical 278 * routine so they can be sure the page doesn't go away from under them. 279 * 280 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we 281 * can use atomic_add_negative(-1, page->_count) to detect when the page 282 * becomes free and so that we can also use atomic_inc_and_test to atomically 283 * detect when we just tried to grab a ref on a page which some other CPU has 284 * already deemed to be freeable. 285 * 286 * NO code should make assumptions about this internal detail! Use the provided 287 * macros which retain the old rules: page_count(page) == 0 is a free page. 288 */ 289 290 /* 291 * Drop a ref, return true if the logical refcount fell to zero (the page has 292 * no users) 293 */ 294 #define put_page_testzero(p) \ 295 ({ \ 296 BUG_ON(page_count(p) == 0); \ 297 atomic_add_negative(-1, &(p)->_count); \ 298 }) 299 300 /* 301 * Grab a ref, return true if the page previously had a logical refcount of 302 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page 303 */ 304 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count) 305 306 #define set_page_count(p,v) atomic_set(&(p)->_count, v - 1) 307 #define __put_page(p) atomic_dec(&(p)->_count) 308 309 extern void FASTCALL(__page_cache_release(struct page *)); 310 311 #ifdef CONFIG_HUGETLB_PAGE 312 313 static inline int page_count(struct page *p) 314 { 315 if (PageCompound(p)) 316 p = (struct page *)p->private; 317 return atomic_read(&(p)->_count) + 1; 318 } 319 320 static inline void get_page(struct page *page) 321 { 322 if (unlikely(PageCompound(page))) 323 page = (struct page *)page->private; 324 atomic_inc(&page->_count); 325 } 326 327 void put_page(struct page *page); 328 329 #else /* CONFIG_HUGETLB_PAGE */ 330 331 #define page_count(p) (atomic_read(&(p)->_count) + 1) 332 333 static inline void get_page(struct page *page) 334 { 335 atomic_inc(&page->_count); 336 } 337 338 static inline void put_page(struct page *page) 339 { 340 if (!PageReserved(page) && put_page_testzero(page)) 341 __page_cache_release(page); 342 } 343 344 #endif /* CONFIG_HUGETLB_PAGE */ 345 346 /* 347 * Multiple processes may "see" the same page. E.g. for untouched 348 * mappings of /dev/null, all processes see the same page full of 349 * zeroes, and text pages of executables and shared libraries have 350 * only one copy in memory, at most, normally. 351 * 352 * For the non-reserved pages, page_count(page) denotes a reference count. 353 * page_count() == 0 means the page is free. 354 * page_count() == 1 means the page is used for exactly one purpose 355 * (e.g. a private data page of one process). 356 * 357 * A page may be used for kmalloc() or anyone else who does a 358 * __get_free_page(). In this case the page_count() is at least 1, and 359 * all other fields are unused but should be 0 or NULL. The 360 * management of this page is the responsibility of the one who uses 361 * it. 362 * 363 * The other pages (we may call them "process pages") are completely 364 * managed by the Linux memory manager: I/O, buffers, swapping etc. 365 * The following discussion applies only to them. 366 * 367 * A page may belong to an inode's memory mapping. In this case, 368 * page->mapping is the pointer to the inode, and page->index is the 369 * file offset of the page, in units of PAGE_CACHE_SIZE. 370 * 371 * A page contains an opaque `private' member, which belongs to the 372 * page's address_space. Usually, this is the address of a circular 373 * list of the page's disk buffers. 374 * 375 * For pages belonging to inodes, the page_count() is the number of 376 * attaches, plus 1 if `private' contains something, plus one for 377 * the page cache itself. 378 * 379 * All pages belonging to an inode are in these doubly linked lists: 380 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages; 381 * using the page->list list_head. These fields are also used for 382 * freelist managemet (when page_count()==0). 383 * 384 * There is also a per-mapping radix tree mapping index to the page 385 * in memory if present. The tree is rooted at mapping->root. 386 * 387 * All process pages can do I/O: 388 * - inode pages may need to be read from disk, 389 * - inode pages which have been modified and are MAP_SHARED may need 390 * to be written to disk, 391 * - private pages which have been modified may need to be swapped out 392 * to swap space and (later) to be read back into memory. 393 */ 394 395 /* 396 * The zone field is never updated after free_area_init_core() 397 * sets it, so none of the operations on it need to be atomic. 398 * We'll have up to (MAX_NUMNODES * MAX_NR_ZONES) zones total, 399 * so we use (MAX_NODES_SHIFT + MAX_ZONES_SHIFT) here to get enough bits. 400 */ 401 #define NODEZONE_SHIFT (sizeof(page_flags_t)*8 - MAX_NODES_SHIFT - MAX_ZONES_SHIFT) 402 #define NODEZONE(node, zone) ((node << ZONES_SHIFT) | zone) 403 404 static inline unsigned long page_zonenum(struct page *page) 405 { 406 return (page->flags >> NODEZONE_SHIFT) & (~(~0UL << ZONES_SHIFT)); 407 } 408 static inline unsigned long page_to_nid(struct page *page) 409 { 410 return (page->flags >> (NODEZONE_SHIFT + ZONES_SHIFT)); 411 } 412 413 struct zone; 414 extern struct zone *zone_table[]; 415 416 static inline struct zone *page_zone(struct page *page) 417 { 418 return zone_table[page->flags >> NODEZONE_SHIFT]; 419 } 420 421 static inline void set_page_zone(struct page *page, unsigned long nodezone_num) 422 { 423 page->flags &= ~(~0UL << NODEZONE_SHIFT); 424 page->flags |= nodezone_num << NODEZONE_SHIFT; 425 } 426 427 #ifndef CONFIG_DISCONTIGMEM 428 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 429 extern struct page *mem_map; 430 #endif 431 432 static inline void *lowmem_page_address(struct page *page) 433 { 434 return __va(page_to_pfn(page) << PAGE_SHIFT); 435 } 436 437 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 438 #define HASHED_PAGE_VIRTUAL 439 #endif 440 441 #if defined(WANT_PAGE_VIRTUAL) 442 #define page_address(page) ((page)->virtual) 443 #define set_page_address(page, address) \ 444 do { \ 445 (page)->virtual = (address); \ 446 } while(0) 447 #define page_address_init() do { } while(0) 448 #endif 449 450 #if defined(HASHED_PAGE_VIRTUAL) 451 void *page_address(struct page *page); 452 void set_page_address(struct page *page, void *virtual); 453 void page_address_init(void); 454 #endif 455 456 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 457 #define page_address(page) lowmem_page_address(page) 458 #define set_page_address(page, address) do { } while(0) 459 #define page_address_init() do { } while(0) 460 #endif 461 462 /* 463 * On an anonymous page mapped into a user virtual memory area, 464 * page->mapping points to its anon_vma, not to a struct address_space; 465 * with the PAGE_MAPPING_ANON bit set to distinguish it. 466 * 467 * Please note that, confusingly, "page_mapping" refers to the inode 468 * address_space which maps the page from disk; whereas "page_mapped" 469 * refers to user virtual address space into which the page is mapped. 470 */ 471 #define PAGE_MAPPING_ANON 1 472 473 extern struct address_space swapper_space; 474 static inline struct address_space *page_mapping(struct page *page) 475 { 476 struct address_space *mapping = page->mapping; 477 478 if (unlikely(PageSwapCache(page))) 479 mapping = &swapper_space; 480 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 481 mapping = NULL; 482 return mapping; 483 } 484 485 static inline int PageAnon(struct page *page) 486 { 487 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 488 } 489 490 /* 491 * Return the pagecache index of the passed page. Regular pagecache pages 492 * use ->index whereas swapcache pages use ->private 493 */ 494 static inline pgoff_t page_index(struct page *page) 495 { 496 if (unlikely(PageSwapCache(page))) 497 return page->private; 498 return page->index; 499 } 500 501 /* 502 * The atomic page->_mapcount, like _count, starts from -1: 503 * so that transitions both from it and to it can be tracked, 504 * using atomic_inc_and_test and atomic_add_negative(-1). 505 */ 506 static inline void reset_page_mapcount(struct page *page) 507 { 508 atomic_set(&(page)->_mapcount, -1); 509 } 510 511 static inline int page_mapcount(struct page *page) 512 { 513 return atomic_read(&(page)->_mapcount) + 1; 514 } 515 516 /* 517 * Return true if this page is mapped into pagetables. 518 */ 519 static inline int page_mapped(struct page *page) 520 { 521 return atomic_read(&(page)->_mapcount) >= 0; 522 } 523 524 /* 525 * Error return values for the *_nopage functions 526 */ 527 #define NOPAGE_SIGBUS (NULL) 528 #define NOPAGE_OOM ((struct page *) (-1)) 529 530 /* 531 * Different kinds of faults, as returned by handle_mm_fault(). 532 * Used to decide whether a process gets delivered SIGBUS or 533 * just gets major/minor fault counters bumped up. 534 */ 535 #define VM_FAULT_OOM (-1) 536 #define VM_FAULT_SIGBUS 0 537 #define VM_FAULT_MINOR 1 538 #define VM_FAULT_MAJOR 2 539 540 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 541 542 extern void show_free_areas(void); 543 544 #ifdef CONFIG_SHMEM 545 struct page *shmem_nopage(struct vm_area_struct *vma, 546 unsigned long address, int *type); 547 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 548 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 549 unsigned long addr); 550 int shmem_lock(struct file *file, int lock, struct user_struct *user); 551 #else 552 #define shmem_nopage filemap_nopage 553 #define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */ 554 #define shmem_set_policy(a, b) (0) 555 #define shmem_get_policy(a, b) (NULL) 556 #endif 557 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 558 559 int shmem_zero_setup(struct vm_area_struct *); 560 561 static inline int can_do_mlock(void) 562 { 563 if (capable(CAP_IPC_LOCK)) 564 return 1; 565 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 566 return 1; 567 return 0; 568 } 569 extern int user_shm_lock(size_t, struct user_struct *); 570 extern void user_shm_unlock(size_t, struct user_struct *); 571 572 /* 573 * Parameter block passed down to zap_pte_range in exceptional cases. 574 */ 575 struct zap_details { 576 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 577 struct address_space *check_mapping; /* Check page->mapping if set */ 578 pgoff_t first_index; /* Lowest page->index to unmap */ 579 pgoff_t last_index; /* Highest page->index to unmap */ 580 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 581 unsigned long truncate_count; /* Compare vm_truncate_count */ 582 }; 583 584 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 585 unsigned long size, struct zap_details *); 586 unsigned long unmap_vmas(struct mmu_gather **tlb, struct mm_struct *mm, 587 struct vm_area_struct *start_vma, unsigned long start_addr, 588 unsigned long end_addr, unsigned long *nr_accounted, 589 struct zap_details *); 590 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 591 unsigned long end, unsigned long floor, unsigned long ceiling); 592 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 593 unsigned long floor, unsigned long ceiling); 594 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 595 struct vm_area_struct *vma); 596 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 597 unsigned long size, pgprot_t prot); 598 void unmap_mapping_range(struct address_space *mapping, 599 loff_t const holebegin, loff_t const holelen, int even_cows); 600 601 static inline void unmap_shared_mapping_range(struct address_space *mapping, 602 loff_t const holebegin, loff_t const holelen) 603 { 604 unmap_mapping_range(mapping, holebegin, holelen, 0); 605 } 606 607 extern int vmtruncate(struct inode * inode, loff_t offset); 608 extern pud_t *FASTCALL(__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)); 609 extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)); 610 extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); 611 extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); 612 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 613 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 614 extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access); 615 extern int make_pages_present(unsigned long addr, unsigned long end); 616 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 617 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 618 619 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 620 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 621 622 int __set_page_dirty_buffers(struct page *page); 623 int __set_page_dirty_nobuffers(struct page *page); 624 int redirty_page_for_writepage(struct writeback_control *wbc, 625 struct page *page); 626 int FASTCALL(set_page_dirty(struct page *page)); 627 int set_page_dirty_lock(struct page *page); 628 int clear_page_dirty_for_io(struct page *page); 629 630 extern unsigned long do_mremap(unsigned long addr, 631 unsigned long old_len, unsigned long new_len, 632 unsigned long flags, unsigned long new_addr); 633 634 /* 635 * Prototype to add a shrinker callback for ageable caches. 636 * 637 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 638 * scan `nr_to_scan' objects, attempting to free them. 639 * 640 * The callback must the number of objects which remain in the cache. 641 * 642 * The callback will be passes nr_to_scan == 0 when the VM is querying the 643 * cache size, so a fastpath for that case is appropriate. 644 */ 645 typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask); 646 647 /* 648 * Add an aging callback. The int is the number of 'seeks' it takes 649 * to recreate one of the objects that these functions age. 650 */ 651 652 #define DEFAULT_SEEKS 2 653 struct shrinker; 654 extern struct shrinker *set_shrinker(int, shrinker_t); 655 extern void remove_shrinker(struct shrinker *shrinker); 656 657 /* 658 * On a two-level or three-level page table, this ends up being trivial. Thus 659 * the inlining and the symmetry break with pte_alloc_map() that does all 660 * of this out-of-line. 661 */ 662 /* 663 * The following ifdef needed to get the 4level-fixup.h header to work. 664 * Remove it when 4level-fixup.h has been removed. 665 */ 666 #ifdef CONFIG_MMU 667 #ifndef __ARCH_HAS_4LEVEL_HACK 668 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 669 { 670 if (pgd_none(*pgd)) 671 return __pud_alloc(mm, pgd, address); 672 return pud_offset(pgd, address); 673 } 674 675 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 676 { 677 if (pud_none(*pud)) 678 return __pmd_alloc(mm, pud, address); 679 return pmd_offset(pud, address); 680 } 681 #endif 682 #endif /* CONFIG_MMU */ 683 684 extern void free_area_init(unsigned long * zones_size); 685 extern void free_area_init_node(int nid, pg_data_t *pgdat, 686 unsigned long * zones_size, unsigned long zone_start_pfn, 687 unsigned long *zholes_size); 688 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 689 extern void mem_init(void); 690 extern void show_mem(void); 691 extern void si_meminfo(struct sysinfo * val); 692 extern void si_meminfo_node(struct sysinfo *val, int nid); 693 694 /* prio_tree.c */ 695 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 696 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 697 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 698 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 699 struct prio_tree_iter *iter); 700 701 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 702 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 703 (vma = vma_prio_tree_next(vma, iter)); ) 704 705 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 706 struct list_head *list) 707 { 708 vma->shared.vm_set.parent = NULL; 709 list_add_tail(&vma->shared.vm_set.list, list); 710 } 711 712 /* mmap.c */ 713 extern int __vm_enough_memory(long pages, int cap_sys_admin); 714 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 715 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 716 extern struct vm_area_struct *vma_merge(struct mm_struct *, 717 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 718 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 719 struct mempolicy *); 720 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 721 extern int split_vma(struct mm_struct *, 722 struct vm_area_struct *, unsigned long addr, int new_below); 723 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 724 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 725 struct rb_node **, struct rb_node *); 726 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 727 unsigned long addr, unsigned long len, pgoff_t pgoff); 728 extern void exit_mmap(struct mm_struct *); 729 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 730 731 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 732 733 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 734 unsigned long len, unsigned long prot, 735 unsigned long flag, unsigned long pgoff); 736 737 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 738 unsigned long len, unsigned long prot, 739 unsigned long flag, unsigned long offset) 740 { 741 unsigned long ret = -EINVAL; 742 if ((offset + PAGE_ALIGN(len)) < offset) 743 goto out; 744 if (!(offset & ~PAGE_MASK)) 745 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 746 out: 747 return ret; 748 } 749 750 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 751 752 extern unsigned long do_brk(unsigned long, unsigned long); 753 754 /* filemap.c */ 755 extern unsigned long page_unuse(struct page *); 756 extern void truncate_inode_pages(struct address_space *, loff_t); 757 758 /* generic vm_area_ops exported for stackable file systems */ 759 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 760 extern int filemap_populate(struct vm_area_struct *, unsigned long, 761 unsigned long, pgprot_t, unsigned long, int); 762 763 /* mm/page-writeback.c */ 764 int write_one_page(struct page *page, int wait); 765 766 /* readahead.c */ 767 #define VM_MAX_READAHEAD 128 /* kbytes */ 768 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 769 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 770 * turning readahead off */ 771 772 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 773 unsigned long offset, unsigned long nr_to_read); 774 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 775 unsigned long offset, unsigned long nr_to_read); 776 unsigned long page_cache_readahead(struct address_space *mapping, 777 struct file_ra_state *ra, 778 struct file *filp, 779 unsigned long offset, 780 unsigned long size); 781 void handle_ra_miss(struct address_space *mapping, 782 struct file_ra_state *ra, pgoff_t offset); 783 unsigned long max_sane_readahead(unsigned long nr); 784 785 /* Do stack extension */ 786 extern int expand_stack(struct vm_area_struct * vma, unsigned long address); 787 788 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 789 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 790 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 791 struct vm_area_struct **pprev); 792 793 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 794 NULL if none. Assume start_addr < end_addr. */ 795 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 796 { 797 struct vm_area_struct * vma = find_vma(mm,start_addr); 798 799 if (vma && end_addr <= vma->vm_start) 800 vma = NULL; 801 return vma; 802 } 803 804 static inline unsigned long vma_pages(struct vm_area_struct *vma) 805 { 806 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 807 } 808 809 extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr); 810 811 extern struct page * vmalloc_to_page(void *addr); 812 extern unsigned long vmalloc_to_pfn(void *addr); 813 extern struct page * follow_page(struct mm_struct *mm, unsigned long address, 814 int write); 815 extern int check_user_page_readable(struct mm_struct *mm, unsigned long address); 816 int remap_pfn_range(struct vm_area_struct *, unsigned long, 817 unsigned long, unsigned long, pgprot_t); 818 819 #ifdef CONFIG_PROC_FS 820 void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 821 #else 822 static inline void __vm_stat_account(struct mm_struct *mm, 823 unsigned long flags, struct file *file, long pages) 824 { 825 } 826 #endif /* CONFIG_PROC_FS */ 827 828 static inline void vm_stat_account(struct vm_area_struct *vma) 829 { 830 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, 831 vma_pages(vma)); 832 } 833 834 static inline void vm_stat_unaccount(struct vm_area_struct *vma) 835 { 836 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, 837 -vma_pages(vma)); 838 } 839 840 /* update per process rss and vm hiwater data */ 841 extern void update_mem_hiwater(struct task_struct *tsk); 842 843 #ifndef CONFIG_DEBUG_PAGEALLOC 844 static inline void 845 kernel_map_pages(struct page *page, int numpages, int enable) 846 { 847 } 848 #endif 849 850 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 851 #ifdef __HAVE_ARCH_GATE_AREA 852 int in_gate_area_no_task(unsigned long addr); 853 int in_gate_area(struct task_struct *task, unsigned long addr); 854 #else 855 int in_gate_area_no_task(unsigned long addr); 856 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 857 #endif /* __HAVE_ARCH_GATE_AREA */ 858 859 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 860 #define OOM_DISABLE -17 861 862 #endif /* __KERNEL__ */ 863 #endif /* _LINUX_MM_H */ 864