1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/prio_tree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 22 struct mempolicy; 23 struct anon_vma; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 #endif 31 32 extern unsigned long num_physpages; 33 extern unsigned long totalram_pages; 34 extern void * high_memory; 35 extern int page_cluster; 36 37 #ifdef CONFIG_SYSCTL 38 extern int sysctl_legacy_va_layout; 39 #else 40 #define sysctl_legacy_va_layout 0 41 #endif 42 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/processor.h> 46 47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49 /* to align the pointer to the (next) page boundary */ 50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52 /* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61 extern struct kmem_cache *vm_area_cachep; 62 63 #ifndef CONFIG_MMU 64 extern struct rb_root nommu_region_tree; 65 extern struct rw_semaphore nommu_region_sem; 66 67 extern unsigned int kobjsize(const void *objp); 68 #endif 69 70 /* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73 #define VM_READ 0x00000001 /* currently active flags */ 74 #define VM_WRITE 0x00000002 75 #define VM_EXEC 0x00000004 76 #define VM_SHARED 0x00000008 77 78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 79 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 80 #define VM_MAYWRITE 0x00000020 81 #define VM_MAYEXEC 0x00000040 82 #define VM_MAYSHARE 0x00000080 83 84 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 85 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 86 #define VM_GROWSUP 0x00000200 87 #else 88 #define VM_GROWSUP 0x00000000 89 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 90 #endif 91 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 92 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 93 94 #define VM_EXECUTABLE 0x00001000 95 #define VM_LOCKED 0x00002000 96 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 97 98 /* Used by sys_madvise() */ 99 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 100 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 101 102 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 103 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 104 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 105 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 106 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 107 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 108 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 109 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 110 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 111 #else 112 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 113 #endif 114 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 115 #define VM_NODUMP 0x04000000 /* Do not include in the core dump */ 116 117 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 118 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 119 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 120 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 121 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 122 123 /* Bits set in the VMA until the stack is in its final location */ 124 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 125 126 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 127 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 128 #endif 129 130 #ifdef CONFIG_STACK_GROWSUP 131 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 132 #else 133 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 134 #endif 135 136 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 137 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 138 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 139 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 140 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 141 142 /* 143 * Special vmas that are non-mergable, non-mlock()able. 144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 145 */ 146 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 147 148 /* 149 * mapping from the currently active vm_flags protection bits (the 150 * low four bits) to a page protection mask.. 151 */ 152 extern pgprot_t protection_map[16]; 153 154 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 155 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 156 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 157 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 158 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 159 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 160 161 /* 162 * This interface is used by x86 PAT code to identify a pfn mapping that is 163 * linear over entire vma. This is to optimize PAT code that deals with 164 * marking the physical region with a particular prot. This is not for generic 165 * mm use. Note also that this check will not work if the pfn mapping is 166 * linear for a vma starting at physical address 0. In which case PAT code 167 * falls back to slow path of reserving physical range page by page. 168 */ 169 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 170 { 171 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 172 } 173 174 static inline int is_pfn_mapping(struct vm_area_struct *vma) 175 { 176 return !!(vma->vm_flags & VM_PFNMAP); 177 } 178 179 /* 180 * vm_fault is filled by the the pagefault handler and passed to the vma's 181 * ->fault function. The vma's ->fault is responsible for returning a bitmask 182 * of VM_FAULT_xxx flags that give details about how the fault was handled. 183 * 184 * pgoff should be used in favour of virtual_address, if possible. If pgoff 185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 186 * mapping support. 187 */ 188 struct vm_fault { 189 unsigned int flags; /* FAULT_FLAG_xxx flags */ 190 pgoff_t pgoff; /* Logical page offset based on vma */ 191 void __user *virtual_address; /* Faulting virtual address */ 192 193 struct page *page; /* ->fault handlers should return a 194 * page here, unless VM_FAULT_NOPAGE 195 * is set (which is also implied by 196 * VM_FAULT_ERROR). 197 */ 198 }; 199 200 /* 201 * These are the virtual MM functions - opening of an area, closing and 202 * unmapping it (needed to keep files on disk up-to-date etc), pointer 203 * to the functions called when a no-page or a wp-page exception occurs. 204 */ 205 struct vm_operations_struct { 206 void (*open)(struct vm_area_struct * area); 207 void (*close)(struct vm_area_struct * area); 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 209 210 /* notification that a previously read-only page is about to become 211 * writable, if an error is returned it will cause a SIGBUS */ 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 213 214 /* called by access_process_vm when get_user_pages() fails, typically 215 * for use by special VMAs that can switch between memory and hardware 216 */ 217 int (*access)(struct vm_area_struct *vma, unsigned long addr, 218 void *buf, int len, int write); 219 #ifdef CONFIG_NUMA 220 /* 221 * set_policy() op must add a reference to any non-NULL @new mempolicy 222 * to hold the policy upon return. Caller should pass NULL @new to 223 * remove a policy and fall back to surrounding context--i.e. do not 224 * install a MPOL_DEFAULT policy, nor the task or system default 225 * mempolicy. 226 */ 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 228 229 /* 230 * get_policy() op must add reference [mpol_get()] to any policy at 231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 232 * in mm/mempolicy.c will do this automatically. 233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 236 * must return NULL--i.e., do not "fallback" to task or system default 237 * policy. 238 */ 239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 240 unsigned long addr); 241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 242 const nodemask_t *to, unsigned long flags); 243 #endif 244 }; 245 246 struct mmu_gather; 247 struct inode; 248 249 #define page_private(page) ((page)->private) 250 #define set_page_private(page, v) ((page)->private = (v)) 251 252 /* 253 * FIXME: take this include out, include page-flags.h in 254 * files which need it (119 of them) 255 */ 256 #include <linux/page-flags.h> 257 #include <linux/huge_mm.h> 258 259 /* 260 * Methods to modify the page usage count. 261 * 262 * What counts for a page usage: 263 * - cache mapping (page->mapping) 264 * - private data (page->private) 265 * - page mapped in a task's page tables, each mapping 266 * is counted separately 267 * 268 * Also, many kernel routines increase the page count before a critical 269 * routine so they can be sure the page doesn't go away from under them. 270 */ 271 272 /* 273 * Drop a ref, return true if the refcount fell to zero (the page has no users) 274 */ 275 static inline int put_page_testzero(struct page *page) 276 { 277 VM_BUG_ON(atomic_read(&page->_count) == 0); 278 return atomic_dec_and_test(&page->_count); 279 } 280 281 /* 282 * Try to grab a ref unless the page has a refcount of zero, return false if 283 * that is the case. 284 */ 285 static inline int get_page_unless_zero(struct page *page) 286 { 287 return atomic_inc_not_zero(&page->_count); 288 } 289 290 extern int page_is_ram(unsigned long pfn); 291 292 /* Support for virtually mapped pages */ 293 struct page *vmalloc_to_page(const void *addr); 294 unsigned long vmalloc_to_pfn(const void *addr); 295 296 /* 297 * Determine if an address is within the vmalloc range 298 * 299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 300 * is no special casing required. 301 */ 302 static inline int is_vmalloc_addr(const void *x) 303 { 304 #ifdef CONFIG_MMU 305 unsigned long addr = (unsigned long)x; 306 307 return addr >= VMALLOC_START && addr < VMALLOC_END; 308 #else 309 return 0; 310 #endif 311 } 312 #ifdef CONFIG_MMU 313 extern int is_vmalloc_or_module_addr(const void *x); 314 #else 315 static inline int is_vmalloc_or_module_addr(const void *x) 316 { 317 return 0; 318 } 319 #endif 320 321 static inline void compound_lock(struct page *page) 322 { 323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 324 bit_spin_lock(PG_compound_lock, &page->flags); 325 #endif 326 } 327 328 static inline void compound_unlock(struct page *page) 329 { 330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 331 bit_spin_unlock(PG_compound_lock, &page->flags); 332 #endif 333 } 334 335 static inline unsigned long compound_lock_irqsave(struct page *page) 336 { 337 unsigned long uninitialized_var(flags); 338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 339 local_irq_save(flags); 340 compound_lock(page); 341 #endif 342 return flags; 343 } 344 345 static inline void compound_unlock_irqrestore(struct page *page, 346 unsigned long flags) 347 { 348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 349 compound_unlock(page); 350 local_irq_restore(flags); 351 #endif 352 } 353 354 static inline struct page *compound_head(struct page *page) 355 { 356 if (unlikely(PageTail(page))) 357 return page->first_page; 358 return page; 359 } 360 361 /* 362 * The atomic page->_mapcount, starts from -1: so that transitions 363 * both from it and to it can be tracked, using atomic_inc_and_test 364 * and atomic_add_negative(-1). 365 */ 366 static inline void reset_page_mapcount(struct page *page) 367 { 368 atomic_set(&(page)->_mapcount, -1); 369 } 370 371 static inline int page_mapcount(struct page *page) 372 { 373 return atomic_read(&(page)->_mapcount) + 1; 374 } 375 376 static inline int page_count(struct page *page) 377 { 378 return atomic_read(&compound_head(page)->_count); 379 } 380 381 static inline void get_huge_page_tail(struct page *page) 382 { 383 /* 384 * __split_huge_page_refcount() cannot run 385 * from under us. 386 */ 387 VM_BUG_ON(page_mapcount(page) < 0); 388 VM_BUG_ON(atomic_read(&page->_count) != 0); 389 atomic_inc(&page->_mapcount); 390 } 391 392 extern bool __get_page_tail(struct page *page); 393 394 static inline void get_page(struct page *page) 395 { 396 if (unlikely(PageTail(page))) 397 if (likely(__get_page_tail(page))) 398 return; 399 /* 400 * Getting a normal page or the head of a compound page 401 * requires to already have an elevated page->_count. 402 */ 403 VM_BUG_ON(atomic_read(&page->_count) <= 0); 404 atomic_inc(&page->_count); 405 } 406 407 static inline struct page *virt_to_head_page(const void *x) 408 { 409 struct page *page = virt_to_page(x); 410 return compound_head(page); 411 } 412 413 /* 414 * Setup the page count before being freed into the page allocator for 415 * the first time (boot or memory hotplug) 416 */ 417 static inline void init_page_count(struct page *page) 418 { 419 atomic_set(&page->_count, 1); 420 } 421 422 /* 423 * PageBuddy() indicate that the page is free and in the buddy system 424 * (see mm/page_alloc.c). 425 * 426 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 427 * -2 so that an underflow of the page_mapcount() won't be mistaken 428 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 429 * efficiently by most CPU architectures. 430 */ 431 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 432 433 static inline int PageBuddy(struct page *page) 434 { 435 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 436 } 437 438 static inline void __SetPageBuddy(struct page *page) 439 { 440 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 441 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 442 } 443 444 static inline void __ClearPageBuddy(struct page *page) 445 { 446 VM_BUG_ON(!PageBuddy(page)); 447 atomic_set(&page->_mapcount, -1); 448 } 449 450 void put_page(struct page *page); 451 void put_pages_list(struct list_head *pages); 452 453 void split_page(struct page *page, unsigned int order); 454 int split_free_page(struct page *page); 455 456 /* 457 * Compound pages have a destructor function. Provide a 458 * prototype for that function and accessor functions. 459 * These are _only_ valid on the head of a PG_compound page. 460 */ 461 typedef void compound_page_dtor(struct page *); 462 463 static inline void set_compound_page_dtor(struct page *page, 464 compound_page_dtor *dtor) 465 { 466 page[1].lru.next = (void *)dtor; 467 } 468 469 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 470 { 471 return (compound_page_dtor *)page[1].lru.next; 472 } 473 474 static inline int compound_order(struct page *page) 475 { 476 if (!PageHead(page)) 477 return 0; 478 return (unsigned long)page[1].lru.prev; 479 } 480 481 static inline int compound_trans_order(struct page *page) 482 { 483 int order; 484 unsigned long flags; 485 486 if (!PageHead(page)) 487 return 0; 488 489 flags = compound_lock_irqsave(page); 490 order = compound_order(page); 491 compound_unlock_irqrestore(page, flags); 492 return order; 493 } 494 495 static inline void set_compound_order(struct page *page, unsigned long order) 496 { 497 page[1].lru.prev = (void *)order; 498 } 499 500 #ifdef CONFIG_MMU 501 /* 502 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 503 * servicing faults for write access. In the normal case, do always want 504 * pte_mkwrite. But get_user_pages can cause write faults for mappings 505 * that do not have writing enabled, when used by access_process_vm. 506 */ 507 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 508 { 509 if (likely(vma->vm_flags & VM_WRITE)) 510 pte = pte_mkwrite(pte); 511 return pte; 512 } 513 #endif 514 515 /* 516 * Multiple processes may "see" the same page. E.g. for untouched 517 * mappings of /dev/null, all processes see the same page full of 518 * zeroes, and text pages of executables and shared libraries have 519 * only one copy in memory, at most, normally. 520 * 521 * For the non-reserved pages, page_count(page) denotes a reference count. 522 * page_count() == 0 means the page is free. page->lru is then used for 523 * freelist management in the buddy allocator. 524 * page_count() > 0 means the page has been allocated. 525 * 526 * Pages are allocated by the slab allocator in order to provide memory 527 * to kmalloc and kmem_cache_alloc. In this case, the management of the 528 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 529 * unless a particular usage is carefully commented. (the responsibility of 530 * freeing the kmalloc memory is the caller's, of course). 531 * 532 * A page may be used by anyone else who does a __get_free_page(). 533 * In this case, page_count still tracks the references, and should only 534 * be used through the normal accessor functions. The top bits of page->flags 535 * and page->virtual store page management information, but all other fields 536 * are unused and could be used privately, carefully. The management of this 537 * page is the responsibility of the one who allocated it, and those who have 538 * subsequently been given references to it. 539 * 540 * The other pages (we may call them "pagecache pages") are completely 541 * managed by the Linux memory manager: I/O, buffers, swapping etc. 542 * The following discussion applies only to them. 543 * 544 * A pagecache page contains an opaque `private' member, which belongs to the 545 * page's address_space. Usually, this is the address of a circular list of 546 * the page's disk buffers. PG_private must be set to tell the VM to call 547 * into the filesystem to release these pages. 548 * 549 * A page may belong to an inode's memory mapping. In this case, page->mapping 550 * is the pointer to the inode, and page->index is the file offset of the page, 551 * in units of PAGE_CACHE_SIZE. 552 * 553 * If pagecache pages are not associated with an inode, they are said to be 554 * anonymous pages. These may become associated with the swapcache, and in that 555 * case PG_swapcache is set, and page->private is an offset into the swapcache. 556 * 557 * In either case (swapcache or inode backed), the pagecache itself holds one 558 * reference to the page. Setting PG_private should also increment the 559 * refcount. The each user mapping also has a reference to the page. 560 * 561 * The pagecache pages are stored in a per-mapping radix tree, which is 562 * rooted at mapping->page_tree, and indexed by offset. 563 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 564 * lists, we instead now tag pages as dirty/writeback in the radix tree. 565 * 566 * All pagecache pages may be subject to I/O: 567 * - inode pages may need to be read from disk, 568 * - inode pages which have been modified and are MAP_SHARED may need 569 * to be written back to the inode on disk, 570 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 571 * modified may need to be swapped out to swap space and (later) to be read 572 * back into memory. 573 */ 574 575 /* 576 * The zone field is never updated after free_area_init_core() 577 * sets it, so none of the operations on it need to be atomic. 578 */ 579 580 581 /* 582 * page->flags layout: 583 * 584 * There are three possibilities for how page->flags get 585 * laid out. The first is for the normal case, without 586 * sparsemem. The second is for sparsemem when there is 587 * plenty of space for node and section. The last is when 588 * we have run out of space and have to fall back to an 589 * alternate (slower) way of determining the node. 590 * 591 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 592 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 593 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 594 */ 595 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 596 #define SECTIONS_WIDTH SECTIONS_SHIFT 597 #else 598 #define SECTIONS_WIDTH 0 599 #endif 600 601 #define ZONES_WIDTH ZONES_SHIFT 602 603 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 604 #define NODES_WIDTH NODES_SHIFT 605 #else 606 #ifdef CONFIG_SPARSEMEM_VMEMMAP 607 #error "Vmemmap: No space for nodes field in page flags" 608 #endif 609 #define NODES_WIDTH 0 610 #endif 611 612 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 613 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 614 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 615 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 616 617 /* 618 * We are going to use the flags for the page to node mapping if its in 619 * there. This includes the case where there is no node, so it is implicit. 620 */ 621 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 622 #define NODE_NOT_IN_PAGE_FLAGS 623 #endif 624 625 /* 626 * Define the bit shifts to access each section. For non-existent 627 * sections we define the shift as 0; that plus a 0 mask ensures 628 * the compiler will optimise away reference to them. 629 */ 630 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 631 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 632 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 633 634 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 635 #ifdef NODE_NOT_IN_PAGE_FLAGS 636 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 637 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 638 SECTIONS_PGOFF : ZONES_PGOFF) 639 #else 640 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 641 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 642 NODES_PGOFF : ZONES_PGOFF) 643 #endif 644 645 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 646 647 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 648 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 649 #endif 650 651 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 652 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 653 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 654 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 655 656 static inline enum zone_type page_zonenum(const struct page *page) 657 { 658 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 659 } 660 661 /* 662 * The identification function is only used by the buddy allocator for 663 * determining if two pages could be buddies. We are not really 664 * identifying a zone since we could be using a the section number 665 * id if we have not node id available in page flags. 666 * We guarantee only that it will return the same value for two 667 * combinable pages in a zone. 668 */ 669 static inline int page_zone_id(struct page *page) 670 { 671 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 672 } 673 674 static inline int zone_to_nid(struct zone *zone) 675 { 676 #ifdef CONFIG_NUMA 677 return zone->node; 678 #else 679 return 0; 680 #endif 681 } 682 683 #ifdef NODE_NOT_IN_PAGE_FLAGS 684 extern int page_to_nid(const struct page *page); 685 #else 686 static inline int page_to_nid(const struct page *page) 687 { 688 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 689 } 690 #endif 691 692 static inline struct zone *page_zone(const struct page *page) 693 { 694 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 695 } 696 697 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 698 static inline void set_page_section(struct page *page, unsigned long section) 699 { 700 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 701 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 702 } 703 704 static inline unsigned long page_to_section(const struct page *page) 705 { 706 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 707 } 708 #endif 709 710 static inline void set_page_zone(struct page *page, enum zone_type zone) 711 { 712 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 713 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 714 } 715 716 static inline void set_page_node(struct page *page, unsigned long node) 717 { 718 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 719 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 720 } 721 722 static inline void set_page_links(struct page *page, enum zone_type zone, 723 unsigned long node, unsigned long pfn) 724 { 725 set_page_zone(page, zone); 726 set_page_node(page, node); 727 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 728 set_page_section(page, pfn_to_section_nr(pfn)); 729 #endif 730 } 731 732 /* 733 * Some inline functions in vmstat.h depend on page_zone() 734 */ 735 #include <linux/vmstat.h> 736 737 static __always_inline void *lowmem_page_address(const struct page *page) 738 { 739 return __va(PFN_PHYS(page_to_pfn(page))); 740 } 741 742 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 743 #define HASHED_PAGE_VIRTUAL 744 #endif 745 746 #if defined(WANT_PAGE_VIRTUAL) 747 #define page_address(page) ((page)->virtual) 748 #define set_page_address(page, address) \ 749 do { \ 750 (page)->virtual = (address); \ 751 } while(0) 752 #define page_address_init() do { } while(0) 753 #endif 754 755 #if defined(HASHED_PAGE_VIRTUAL) 756 void *page_address(const struct page *page); 757 void set_page_address(struct page *page, void *virtual); 758 void page_address_init(void); 759 #endif 760 761 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 762 #define page_address(page) lowmem_page_address(page) 763 #define set_page_address(page, address) do { } while(0) 764 #define page_address_init() do { } while(0) 765 #endif 766 767 /* 768 * On an anonymous page mapped into a user virtual memory area, 769 * page->mapping points to its anon_vma, not to a struct address_space; 770 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 771 * 772 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 773 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 774 * and then page->mapping points, not to an anon_vma, but to a private 775 * structure which KSM associates with that merged page. See ksm.h. 776 * 777 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 778 * 779 * Please note that, confusingly, "page_mapping" refers to the inode 780 * address_space which maps the page from disk; whereas "page_mapped" 781 * refers to user virtual address space into which the page is mapped. 782 */ 783 #define PAGE_MAPPING_ANON 1 784 #define PAGE_MAPPING_KSM 2 785 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 786 787 extern struct address_space swapper_space; 788 static inline struct address_space *page_mapping(struct page *page) 789 { 790 struct address_space *mapping = page->mapping; 791 792 VM_BUG_ON(PageSlab(page)); 793 if (unlikely(PageSwapCache(page))) 794 mapping = &swapper_space; 795 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 796 mapping = NULL; 797 return mapping; 798 } 799 800 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 801 static inline void *page_rmapping(struct page *page) 802 { 803 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 804 } 805 806 static inline int PageAnon(struct page *page) 807 { 808 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 809 } 810 811 /* 812 * Return the pagecache index of the passed page. Regular pagecache pages 813 * use ->index whereas swapcache pages use ->private 814 */ 815 static inline pgoff_t page_index(struct page *page) 816 { 817 if (unlikely(PageSwapCache(page))) 818 return page_private(page); 819 return page->index; 820 } 821 822 /* 823 * Return true if this page is mapped into pagetables. 824 */ 825 static inline int page_mapped(struct page *page) 826 { 827 return atomic_read(&(page)->_mapcount) >= 0; 828 } 829 830 /* 831 * Different kinds of faults, as returned by handle_mm_fault(). 832 * Used to decide whether a process gets delivered SIGBUS or 833 * just gets major/minor fault counters bumped up. 834 */ 835 836 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 837 838 #define VM_FAULT_OOM 0x0001 839 #define VM_FAULT_SIGBUS 0x0002 840 #define VM_FAULT_MAJOR 0x0004 841 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 842 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 843 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 844 845 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 846 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 847 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 848 849 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 850 851 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 852 VM_FAULT_HWPOISON_LARGE) 853 854 /* Encode hstate index for a hwpoisoned large page */ 855 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 856 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 857 858 /* 859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 860 */ 861 extern void pagefault_out_of_memory(void); 862 863 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 864 865 /* 866 * Flags passed to show_mem() and show_free_areas() to suppress output in 867 * various contexts. 868 */ 869 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 870 871 extern void show_free_areas(unsigned int flags); 872 extern bool skip_free_areas_node(unsigned int flags, int nid); 873 874 int shmem_lock(struct file *file, int lock, struct user_struct *user); 875 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 876 int shmem_zero_setup(struct vm_area_struct *); 877 878 extern int can_do_mlock(void); 879 extern int user_shm_lock(size_t, struct user_struct *); 880 extern void user_shm_unlock(size_t, struct user_struct *); 881 882 /* 883 * Parameter block passed down to zap_pte_range in exceptional cases. 884 */ 885 struct zap_details { 886 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 887 struct address_space *check_mapping; /* Check page->mapping if set */ 888 pgoff_t first_index; /* Lowest page->index to unmap */ 889 pgoff_t last_index; /* Highest page->index to unmap */ 890 }; 891 892 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 893 pte_t pte); 894 895 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 896 unsigned long size); 897 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 898 unsigned long size, struct zap_details *); 899 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 900 unsigned long start, unsigned long end); 901 902 /** 903 * mm_walk - callbacks for walk_page_range 904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 907 * this handler is required to be able to handle 908 * pmd_trans_huge() pmds. They may simply choose to 909 * split_huge_page() instead of handling it explicitly. 910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 911 * @pte_hole: if set, called for each hole at all levels 912 * @hugetlb_entry: if set, called for each hugetlb entry 913 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 914 * is used. 915 * 916 * (see walk_page_range for more details) 917 */ 918 struct mm_walk { 919 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 920 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 921 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 922 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 923 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 924 int (*hugetlb_entry)(pte_t *, unsigned long, 925 unsigned long, unsigned long, struct mm_walk *); 926 struct mm_struct *mm; 927 void *private; 928 }; 929 930 int walk_page_range(unsigned long addr, unsigned long end, 931 struct mm_walk *walk); 932 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 933 unsigned long end, unsigned long floor, unsigned long ceiling); 934 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 935 struct vm_area_struct *vma); 936 void unmap_mapping_range(struct address_space *mapping, 937 loff_t const holebegin, loff_t const holelen, int even_cows); 938 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 939 unsigned long *pfn); 940 int follow_phys(struct vm_area_struct *vma, unsigned long address, 941 unsigned int flags, unsigned long *prot, resource_size_t *phys); 942 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 943 void *buf, int len, int write); 944 945 static inline void unmap_shared_mapping_range(struct address_space *mapping, 946 loff_t const holebegin, loff_t const holelen) 947 { 948 unmap_mapping_range(mapping, holebegin, holelen, 0); 949 } 950 951 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 952 extern void truncate_setsize(struct inode *inode, loff_t newsize); 953 extern int vmtruncate(struct inode *inode, loff_t offset); 954 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 955 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 956 int truncate_inode_page(struct address_space *mapping, struct page *page); 957 int generic_error_remove_page(struct address_space *mapping, struct page *page); 958 959 int invalidate_inode_page(struct page *page); 960 961 #ifdef CONFIG_MMU 962 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 963 unsigned long address, unsigned int flags); 964 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 965 unsigned long address, unsigned int fault_flags); 966 #else 967 static inline int handle_mm_fault(struct mm_struct *mm, 968 struct vm_area_struct *vma, unsigned long address, 969 unsigned int flags) 970 { 971 /* should never happen if there's no MMU */ 972 BUG(); 973 return VM_FAULT_SIGBUS; 974 } 975 static inline int fixup_user_fault(struct task_struct *tsk, 976 struct mm_struct *mm, unsigned long address, 977 unsigned int fault_flags) 978 { 979 /* should never happen if there's no MMU */ 980 BUG(); 981 return -EFAULT; 982 } 983 #endif 984 985 extern int make_pages_present(unsigned long addr, unsigned long end); 986 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 987 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 988 void *buf, int len, int write); 989 990 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 991 unsigned long start, int len, unsigned int foll_flags, 992 struct page **pages, struct vm_area_struct **vmas, 993 int *nonblocking); 994 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 995 unsigned long start, int nr_pages, int write, int force, 996 struct page **pages, struct vm_area_struct **vmas); 997 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 998 struct page **pages); 999 struct page *get_dump_page(unsigned long addr); 1000 1001 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1002 extern void do_invalidatepage(struct page *page, unsigned long offset); 1003 1004 int __set_page_dirty_nobuffers(struct page *page); 1005 int __set_page_dirty_no_writeback(struct page *page); 1006 int redirty_page_for_writepage(struct writeback_control *wbc, 1007 struct page *page); 1008 void account_page_dirtied(struct page *page, struct address_space *mapping); 1009 void account_page_writeback(struct page *page); 1010 int set_page_dirty(struct page *page); 1011 int set_page_dirty_lock(struct page *page); 1012 int clear_page_dirty_for_io(struct page *page); 1013 1014 /* Is the vma a continuation of the stack vma above it? */ 1015 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1016 { 1017 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1018 } 1019 1020 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1021 unsigned long addr) 1022 { 1023 return (vma->vm_flags & VM_GROWSDOWN) && 1024 (vma->vm_start == addr) && 1025 !vma_growsdown(vma->vm_prev, addr); 1026 } 1027 1028 /* Is the vma a continuation of the stack vma below it? */ 1029 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1030 { 1031 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1032 } 1033 1034 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1035 unsigned long addr) 1036 { 1037 return (vma->vm_flags & VM_GROWSUP) && 1038 (vma->vm_end == addr) && 1039 !vma_growsup(vma->vm_next, addr); 1040 } 1041 1042 extern pid_t 1043 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1044 1045 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1046 unsigned long old_addr, struct vm_area_struct *new_vma, 1047 unsigned long new_addr, unsigned long len); 1048 extern unsigned long do_mremap(unsigned long addr, 1049 unsigned long old_len, unsigned long new_len, 1050 unsigned long flags, unsigned long new_addr); 1051 extern int mprotect_fixup(struct vm_area_struct *vma, 1052 struct vm_area_struct **pprev, unsigned long start, 1053 unsigned long end, unsigned long newflags); 1054 1055 /* 1056 * doesn't attempt to fault and will return short. 1057 */ 1058 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1059 struct page **pages); 1060 /* 1061 * per-process(per-mm_struct) statistics. 1062 */ 1063 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1064 { 1065 long val = atomic_long_read(&mm->rss_stat.count[member]); 1066 1067 #ifdef SPLIT_RSS_COUNTING 1068 /* 1069 * counter is updated in asynchronous manner and may go to minus. 1070 * But it's never be expected number for users. 1071 */ 1072 if (val < 0) 1073 val = 0; 1074 #endif 1075 return (unsigned long)val; 1076 } 1077 1078 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1079 { 1080 atomic_long_add(value, &mm->rss_stat.count[member]); 1081 } 1082 1083 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1084 { 1085 atomic_long_inc(&mm->rss_stat.count[member]); 1086 } 1087 1088 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1089 { 1090 atomic_long_dec(&mm->rss_stat.count[member]); 1091 } 1092 1093 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1094 { 1095 return get_mm_counter(mm, MM_FILEPAGES) + 1096 get_mm_counter(mm, MM_ANONPAGES); 1097 } 1098 1099 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1100 { 1101 return max(mm->hiwater_rss, get_mm_rss(mm)); 1102 } 1103 1104 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1105 { 1106 return max(mm->hiwater_vm, mm->total_vm); 1107 } 1108 1109 static inline void update_hiwater_rss(struct mm_struct *mm) 1110 { 1111 unsigned long _rss = get_mm_rss(mm); 1112 1113 if ((mm)->hiwater_rss < _rss) 1114 (mm)->hiwater_rss = _rss; 1115 } 1116 1117 static inline void update_hiwater_vm(struct mm_struct *mm) 1118 { 1119 if (mm->hiwater_vm < mm->total_vm) 1120 mm->hiwater_vm = mm->total_vm; 1121 } 1122 1123 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1124 struct mm_struct *mm) 1125 { 1126 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1127 1128 if (*maxrss < hiwater_rss) 1129 *maxrss = hiwater_rss; 1130 } 1131 1132 #if defined(SPLIT_RSS_COUNTING) 1133 void sync_mm_rss(struct mm_struct *mm); 1134 #else 1135 static inline void sync_mm_rss(struct mm_struct *mm) 1136 { 1137 } 1138 #endif 1139 1140 int vma_wants_writenotify(struct vm_area_struct *vma); 1141 1142 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1143 spinlock_t **ptl); 1144 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1145 spinlock_t **ptl) 1146 { 1147 pte_t *ptep; 1148 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1149 return ptep; 1150 } 1151 1152 #ifdef __PAGETABLE_PUD_FOLDED 1153 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1154 unsigned long address) 1155 { 1156 return 0; 1157 } 1158 #else 1159 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1160 #endif 1161 1162 #ifdef __PAGETABLE_PMD_FOLDED 1163 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1164 unsigned long address) 1165 { 1166 return 0; 1167 } 1168 #else 1169 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1170 #endif 1171 1172 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1173 pmd_t *pmd, unsigned long address); 1174 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1175 1176 /* 1177 * The following ifdef needed to get the 4level-fixup.h header to work. 1178 * Remove it when 4level-fixup.h has been removed. 1179 */ 1180 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1181 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1182 { 1183 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1184 NULL: pud_offset(pgd, address); 1185 } 1186 1187 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1188 { 1189 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1190 NULL: pmd_offset(pud, address); 1191 } 1192 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1193 1194 #if USE_SPLIT_PTLOCKS 1195 /* 1196 * We tuck a spinlock to guard each pagetable page into its struct page, 1197 * at page->private, with BUILD_BUG_ON to make sure that this will not 1198 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1199 * When freeing, reset page->mapping so free_pages_check won't complain. 1200 */ 1201 #define __pte_lockptr(page) &((page)->ptl) 1202 #define pte_lock_init(_page) do { \ 1203 spin_lock_init(__pte_lockptr(_page)); \ 1204 } while (0) 1205 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1206 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1207 #else /* !USE_SPLIT_PTLOCKS */ 1208 /* 1209 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1210 */ 1211 #define pte_lock_init(page) do {} while (0) 1212 #define pte_lock_deinit(page) do {} while (0) 1213 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1214 #endif /* USE_SPLIT_PTLOCKS */ 1215 1216 static inline void pgtable_page_ctor(struct page *page) 1217 { 1218 pte_lock_init(page); 1219 inc_zone_page_state(page, NR_PAGETABLE); 1220 } 1221 1222 static inline void pgtable_page_dtor(struct page *page) 1223 { 1224 pte_lock_deinit(page); 1225 dec_zone_page_state(page, NR_PAGETABLE); 1226 } 1227 1228 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1229 ({ \ 1230 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1231 pte_t *__pte = pte_offset_map(pmd, address); \ 1232 *(ptlp) = __ptl; \ 1233 spin_lock(__ptl); \ 1234 __pte; \ 1235 }) 1236 1237 #define pte_unmap_unlock(pte, ptl) do { \ 1238 spin_unlock(ptl); \ 1239 pte_unmap(pte); \ 1240 } while (0) 1241 1242 #define pte_alloc_map(mm, vma, pmd, address) \ 1243 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1244 pmd, address))? \ 1245 NULL: pte_offset_map(pmd, address)) 1246 1247 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1248 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1249 pmd, address))? \ 1250 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1251 1252 #define pte_alloc_kernel(pmd, address) \ 1253 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1254 NULL: pte_offset_kernel(pmd, address)) 1255 1256 extern void free_area_init(unsigned long * zones_size); 1257 extern void free_area_init_node(int nid, unsigned long * zones_size, 1258 unsigned long zone_start_pfn, unsigned long *zholes_size); 1259 extern void free_initmem(void); 1260 1261 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1262 /* 1263 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1264 * zones, allocate the backing mem_map and account for memory holes in a more 1265 * architecture independent manner. This is a substitute for creating the 1266 * zone_sizes[] and zholes_size[] arrays and passing them to 1267 * free_area_init_node() 1268 * 1269 * An architecture is expected to register range of page frames backed by 1270 * physical memory with memblock_add[_node]() before calling 1271 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1272 * usage, an architecture is expected to do something like 1273 * 1274 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1275 * max_highmem_pfn}; 1276 * for_each_valid_physical_page_range() 1277 * memblock_add_node(base, size, nid) 1278 * free_area_init_nodes(max_zone_pfns); 1279 * 1280 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1281 * registered physical page range. Similarly 1282 * sparse_memory_present_with_active_regions() calls memory_present() for 1283 * each range when SPARSEMEM is enabled. 1284 * 1285 * See mm/page_alloc.c for more information on each function exposed by 1286 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1287 */ 1288 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1289 unsigned long node_map_pfn_alignment(void); 1290 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1291 unsigned long end_pfn); 1292 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1293 unsigned long end_pfn); 1294 extern void get_pfn_range_for_nid(unsigned int nid, 1295 unsigned long *start_pfn, unsigned long *end_pfn); 1296 extern unsigned long find_min_pfn_with_active_regions(void); 1297 extern void free_bootmem_with_active_regions(int nid, 1298 unsigned long max_low_pfn); 1299 extern void sparse_memory_present_with_active_regions(int nid); 1300 1301 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1302 1303 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1304 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1305 static inline int __early_pfn_to_nid(unsigned long pfn) 1306 { 1307 return 0; 1308 } 1309 #else 1310 /* please see mm/page_alloc.c */ 1311 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1312 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1313 /* there is a per-arch backend function. */ 1314 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1315 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1316 #endif 1317 1318 extern void set_dma_reserve(unsigned long new_dma_reserve); 1319 extern void memmap_init_zone(unsigned long, int, unsigned long, 1320 unsigned long, enum memmap_context); 1321 extern void setup_per_zone_wmarks(void); 1322 extern int __meminit init_per_zone_wmark_min(void); 1323 extern void mem_init(void); 1324 extern void __init mmap_init(void); 1325 extern void show_mem(unsigned int flags); 1326 extern void si_meminfo(struct sysinfo * val); 1327 extern void si_meminfo_node(struct sysinfo *val, int nid); 1328 extern int after_bootmem; 1329 1330 extern __printf(3, 4) 1331 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1332 1333 extern void setup_per_cpu_pageset(void); 1334 1335 extern void zone_pcp_update(struct zone *zone); 1336 1337 /* nommu.c */ 1338 extern atomic_long_t mmap_pages_allocated; 1339 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1340 1341 /* prio_tree.c */ 1342 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1343 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1344 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1345 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1346 struct prio_tree_iter *iter); 1347 1348 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1349 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1350 (vma = vma_prio_tree_next(vma, iter)); ) 1351 1352 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1353 struct list_head *list) 1354 { 1355 vma->shared.vm_set.parent = NULL; 1356 list_add_tail(&vma->shared.vm_set.list, list); 1357 } 1358 1359 /* mmap.c */ 1360 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1361 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1362 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1363 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1364 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1365 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1366 struct mempolicy *); 1367 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1368 extern int split_vma(struct mm_struct *, 1369 struct vm_area_struct *, unsigned long addr, int new_below); 1370 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1371 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1372 struct rb_node **, struct rb_node *); 1373 extern void unlink_file_vma(struct vm_area_struct *); 1374 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1375 unsigned long addr, unsigned long len, pgoff_t pgoff); 1376 extern void exit_mmap(struct mm_struct *); 1377 1378 extern int mm_take_all_locks(struct mm_struct *mm); 1379 extern void mm_drop_all_locks(struct mm_struct *mm); 1380 1381 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1382 extern void added_exe_file_vma(struct mm_struct *mm); 1383 extern void removed_exe_file_vma(struct mm_struct *mm); 1384 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1385 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1386 1387 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1388 extern int install_special_mapping(struct mm_struct *mm, 1389 unsigned long addr, unsigned long len, 1390 unsigned long flags, struct page **pages); 1391 1392 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1393 1394 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1395 unsigned long len, unsigned long flags, 1396 vm_flags_t vm_flags, unsigned long pgoff); 1397 extern unsigned long do_mmap(struct file *, unsigned long, 1398 unsigned long, unsigned long, 1399 unsigned long, unsigned long); 1400 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1401 1402 /* These take the mm semaphore themselves */ 1403 extern unsigned long vm_brk(unsigned long, unsigned long); 1404 extern int vm_munmap(unsigned long, size_t); 1405 extern unsigned long vm_mmap(struct file *, unsigned long, 1406 unsigned long, unsigned long, 1407 unsigned long, unsigned long); 1408 1409 /* truncate.c */ 1410 extern void truncate_inode_pages(struct address_space *, loff_t); 1411 extern void truncate_inode_pages_range(struct address_space *, 1412 loff_t lstart, loff_t lend); 1413 1414 /* generic vm_area_ops exported for stackable file systems */ 1415 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1416 1417 /* mm/page-writeback.c */ 1418 int write_one_page(struct page *page, int wait); 1419 void task_dirty_inc(struct task_struct *tsk); 1420 1421 /* readahead.c */ 1422 #define VM_MAX_READAHEAD 128 /* kbytes */ 1423 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1424 1425 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1426 pgoff_t offset, unsigned long nr_to_read); 1427 1428 void page_cache_sync_readahead(struct address_space *mapping, 1429 struct file_ra_state *ra, 1430 struct file *filp, 1431 pgoff_t offset, 1432 unsigned long size); 1433 1434 void page_cache_async_readahead(struct address_space *mapping, 1435 struct file_ra_state *ra, 1436 struct file *filp, 1437 struct page *pg, 1438 pgoff_t offset, 1439 unsigned long size); 1440 1441 unsigned long max_sane_readahead(unsigned long nr); 1442 unsigned long ra_submit(struct file_ra_state *ra, 1443 struct address_space *mapping, 1444 struct file *filp); 1445 1446 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1447 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1448 1449 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1450 extern int expand_downwards(struct vm_area_struct *vma, 1451 unsigned long address); 1452 #if VM_GROWSUP 1453 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1454 #else 1455 #define expand_upwards(vma, address) do { } while (0) 1456 #endif 1457 1458 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1459 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1460 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1461 struct vm_area_struct **pprev); 1462 1463 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1464 NULL if none. Assume start_addr < end_addr. */ 1465 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1466 { 1467 struct vm_area_struct * vma = find_vma(mm,start_addr); 1468 1469 if (vma && end_addr <= vma->vm_start) 1470 vma = NULL; 1471 return vma; 1472 } 1473 1474 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1475 { 1476 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1477 } 1478 1479 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1480 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1481 unsigned long vm_start, unsigned long vm_end) 1482 { 1483 struct vm_area_struct *vma = find_vma(mm, vm_start); 1484 1485 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1486 vma = NULL; 1487 1488 return vma; 1489 } 1490 1491 #ifdef CONFIG_MMU 1492 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1493 #else 1494 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1495 { 1496 return __pgprot(0); 1497 } 1498 #endif 1499 1500 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1501 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1502 unsigned long pfn, unsigned long size, pgprot_t); 1503 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1504 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1505 unsigned long pfn); 1506 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1507 unsigned long pfn); 1508 1509 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1510 unsigned int foll_flags); 1511 #define FOLL_WRITE 0x01 /* check pte is writable */ 1512 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1513 #define FOLL_GET 0x04 /* do get_page on page */ 1514 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1515 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1516 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1517 * and return without waiting upon it */ 1518 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1519 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1520 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1521 1522 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1523 void *data); 1524 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1525 unsigned long size, pte_fn_t fn, void *data); 1526 1527 #ifdef CONFIG_PROC_FS 1528 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1529 #else 1530 static inline void vm_stat_account(struct mm_struct *mm, 1531 unsigned long flags, struct file *file, long pages) 1532 { 1533 } 1534 #endif /* CONFIG_PROC_FS */ 1535 1536 #ifdef CONFIG_DEBUG_PAGEALLOC 1537 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1538 #ifdef CONFIG_HIBERNATION 1539 extern bool kernel_page_present(struct page *page); 1540 #endif /* CONFIG_HIBERNATION */ 1541 #else 1542 static inline void 1543 kernel_map_pages(struct page *page, int numpages, int enable) {} 1544 #ifdef CONFIG_HIBERNATION 1545 static inline bool kernel_page_present(struct page *page) { return true; } 1546 #endif /* CONFIG_HIBERNATION */ 1547 #endif 1548 1549 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1550 #ifdef __HAVE_ARCH_GATE_AREA 1551 int in_gate_area_no_mm(unsigned long addr); 1552 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1553 #else 1554 int in_gate_area_no_mm(unsigned long addr); 1555 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1556 #endif /* __HAVE_ARCH_GATE_AREA */ 1557 1558 int drop_caches_sysctl_handler(struct ctl_table *, int, 1559 void __user *, size_t *, loff_t *); 1560 unsigned long shrink_slab(struct shrink_control *shrink, 1561 unsigned long nr_pages_scanned, 1562 unsigned long lru_pages); 1563 1564 #ifndef CONFIG_MMU 1565 #define randomize_va_space 0 1566 #else 1567 extern int randomize_va_space; 1568 #endif 1569 1570 const char * arch_vma_name(struct vm_area_struct *vma); 1571 void print_vma_addr(char *prefix, unsigned long rip); 1572 1573 void sparse_mem_maps_populate_node(struct page **map_map, 1574 unsigned long pnum_begin, 1575 unsigned long pnum_end, 1576 unsigned long map_count, 1577 int nodeid); 1578 1579 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1580 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1581 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1582 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1583 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1584 void *vmemmap_alloc_block(unsigned long size, int node); 1585 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1586 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1587 int vmemmap_populate_basepages(struct page *start_page, 1588 unsigned long pages, int node); 1589 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1590 void vmemmap_populate_print_last(void); 1591 1592 1593 enum mf_flags { 1594 MF_COUNT_INCREASED = 1 << 0, 1595 MF_ACTION_REQUIRED = 1 << 1, 1596 }; 1597 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1598 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1599 extern int unpoison_memory(unsigned long pfn); 1600 extern int sysctl_memory_failure_early_kill; 1601 extern int sysctl_memory_failure_recovery; 1602 extern void shake_page(struct page *p, int access); 1603 extern atomic_long_t mce_bad_pages; 1604 extern int soft_offline_page(struct page *page, int flags); 1605 1606 extern void dump_page(struct page *page); 1607 1608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1609 extern void clear_huge_page(struct page *page, 1610 unsigned long addr, 1611 unsigned int pages_per_huge_page); 1612 extern void copy_user_huge_page(struct page *dst, struct page *src, 1613 unsigned long addr, struct vm_area_struct *vma, 1614 unsigned int pages_per_huge_page); 1615 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1616 1617 #ifdef CONFIG_DEBUG_PAGEALLOC 1618 extern unsigned int _debug_guardpage_minorder; 1619 1620 static inline unsigned int debug_guardpage_minorder(void) 1621 { 1622 return _debug_guardpage_minorder; 1623 } 1624 1625 static inline bool page_is_guard(struct page *page) 1626 { 1627 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1628 } 1629 #else 1630 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1631 static inline bool page_is_guard(struct page *page) { return false; } 1632 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1633 1634 #endif /* __KERNEL__ */ 1635 #endif /* _LINUX_MM_H */ 1636