xref: /linux-6.15/include/linux/mm.h (revision 7145fcff)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 /*
103  * Architectures that support memory tagging (assigning tags to memory regions,
104  * embedding these tags into addresses that point to these memory regions, and
105  * checking that the memory and the pointer tags match on memory accesses)
106  * redefine this macro to strip tags from pointers.
107  * It's defined as noop for arcitectures that don't support memory tagging.
108  */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statments if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 80);
158 
159 	switch (sizeof(struct page)) {
160 	case 80:
161 		_pp[9] = 0;	/* fallthrough */
162 	case 72:
163 		_pp[8] = 0;	/* fallthrough */
164 	case 64:
165 		_pp[7] = 0;	/* fallthrough */
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 				    size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 				    size_t *, loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP	VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR	VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX		VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX		VM_NONE
341 #endif
342 
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP	VM_NONE
345 #endif
346 
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
349 
350 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353 
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK	VM_GROWSUP
356 #else
357 #define VM_STACK	VM_GROWSDOWN
358 #endif
359 
360 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361 
362 /*
363  * Special vmas that are non-mergable, non-mlock()able.
364  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365  */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367 
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
370 
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
373 
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR	VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379 
380 /*
381  * mapping from the currently active vm_flags protection bits (the
382  * low four bits) to a page protection mask..
383  */
384 extern pgprot_t protection_map[16];
385 
386 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED	0x20	/* Second try */
392 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
395 
396 #define FAULT_FLAG_TRACE \
397 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
398 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
399 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
400 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
401 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
402 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
403 	{ FAULT_FLAG_USER,		"USER" }, \
404 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
405 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
406 
407 /*
408  * vm_fault is filled by the the pagefault handler and passed to the vma's
409  * ->fault function. The vma's ->fault is responsible for returning a bitmask
410  * of VM_FAULT_xxx flags that give details about how the fault was handled.
411  *
412  * MM layer fills up gfp_mask for page allocations but fault handler might
413  * alter it if its implementation requires a different allocation context.
414  *
415  * pgoff should be used in favour of virtual_address, if possible.
416  */
417 struct vm_fault {
418 	struct vm_area_struct *vma;	/* Target VMA */
419 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
420 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
421 	pgoff_t pgoff;			/* Logical page offset based on vma */
422 	unsigned long address;		/* Faulting virtual address */
423 	pmd_t *pmd;			/* Pointer to pmd entry matching
424 					 * the 'address' */
425 	pud_t *pud;			/* Pointer to pud entry matching
426 					 * the 'address'
427 					 */
428 	pte_t orig_pte;			/* Value of PTE at the time of fault */
429 
430 	struct page *cow_page;		/* Page handler may use for COW fault */
431 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
432 	struct page *page;		/* ->fault handlers should return a
433 					 * page here, unless VM_FAULT_NOPAGE
434 					 * is set (which is also implied by
435 					 * VM_FAULT_ERROR).
436 					 */
437 	/* These three entries are valid only while holding ptl lock */
438 	pte_t *pte;			/* Pointer to pte entry matching
439 					 * the 'address'. NULL if the page
440 					 * table hasn't been allocated.
441 					 */
442 	spinlock_t *ptl;		/* Page table lock.
443 					 * Protects pte page table if 'pte'
444 					 * is not NULL, otherwise pmd.
445 					 */
446 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
447 					 * vm_ops->map_pages() calls
448 					 * alloc_set_pte() from atomic context.
449 					 * do_fault_around() pre-allocates
450 					 * page table to avoid allocation from
451 					 * atomic context.
452 					 */
453 };
454 
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 	PE_SIZE_PTE = 0,
458 	PE_SIZE_PMD,
459 	PE_SIZE_PUD,
460 };
461 
462 /*
463  * These are the virtual MM functions - opening of an area, closing and
464  * unmapping it (needed to keep files on disk up-to-date etc), pointer
465  * to the functions called when a no-page or a wp-page exception occurs.
466  */
467 struct vm_operations_struct {
468 	void (*open)(struct vm_area_struct * area);
469 	void (*close)(struct vm_area_struct * area);
470 	int (*split)(struct vm_area_struct * area, unsigned long addr);
471 	int (*mremap)(struct vm_area_struct * area);
472 	vm_fault_t (*fault)(struct vm_fault *vmf);
473 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 			enum page_entry_size pe_size);
475 	void (*map_pages)(struct vm_fault *vmf,
476 			pgoff_t start_pgoff, pgoff_t end_pgoff);
477 	unsigned long (*pagesize)(struct vm_area_struct * area);
478 
479 	/* notification that a previously read-only page is about to become
480 	 * writable, if an error is returned it will cause a SIGBUS */
481 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482 
483 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485 
486 	/* called by access_process_vm when get_user_pages() fails, typically
487 	 * for use by special VMAs that can switch between memory and hardware
488 	 */
489 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 		      void *buf, int len, int write);
491 
492 	/* Called by the /proc/PID/maps code to ask the vma whether it
493 	 * has a special name.  Returning non-NULL will also cause this
494 	 * vma to be dumped unconditionally. */
495 	const char *(*name)(struct vm_area_struct *vma);
496 
497 #ifdef CONFIG_NUMA
498 	/*
499 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 	 * to hold the policy upon return.  Caller should pass NULL @new to
501 	 * remove a policy and fall back to surrounding context--i.e. do not
502 	 * install a MPOL_DEFAULT policy, nor the task or system default
503 	 * mempolicy.
504 	 */
505 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506 
507 	/*
508 	 * get_policy() op must add reference [mpol_get()] to any policy at
509 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
510 	 * in mm/mempolicy.c will do this automatically.
511 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 	 * must return NULL--i.e., do not "fallback" to task or system default
515 	 * policy.
516 	 */
517 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 					unsigned long addr);
519 #endif
520 	/*
521 	 * Called by vm_normal_page() for special PTEs to find the
522 	 * page for @addr.  This is useful if the default behavior
523 	 * (using pte_page()) would not find the correct page.
524 	 */
525 	struct page *(*find_special_page)(struct vm_area_struct *vma,
526 					  unsigned long addr);
527 };
528 
529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 	static const struct vm_operations_struct dummy_vm_ops = {};
532 
533 	memset(vma, 0, sizeof(*vma));
534 	vma->vm_mm = mm;
535 	vma->vm_ops = &dummy_vm_ops;
536 	INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538 
539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 	vma->vm_ops = NULL;
542 }
543 
544 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545 {
546 	return !vma->vm_ops;
547 }
548 
549 #ifdef CONFIG_SHMEM
550 /*
551  * The vma_is_shmem is not inline because it is used only by slow
552  * paths in userfault.
553  */
554 bool vma_is_shmem(struct vm_area_struct *vma);
555 #else
556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557 #endif
558 
559 int vma_is_stack_for_current(struct vm_area_struct *vma);
560 
561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563 
564 struct mmu_gather;
565 struct inode;
566 
567 /*
568  * FIXME: take this include out, include page-flags.h in
569  * files which need it (119 of them)
570  */
571 #include <linux/page-flags.h>
572 #include <linux/huge_mm.h>
573 
574 /*
575  * Methods to modify the page usage count.
576  *
577  * What counts for a page usage:
578  * - cache mapping   (page->mapping)
579  * - private data    (page->private)
580  * - page mapped in a task's page tables, each mapping
581  *   is counted separately
582  *
583  * Also, many kernel routines increase the page count before a critical
584  * routine so they can be sure the page doesn't go away from under them.
585  */
586 
587 /*
588  * Drop a ref, return true if the refcount fell to zero (the page has no users)
589  */
590 static inline int put_page_testzero(struct page *page)
591 {
592 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
593 	return page_ref_dec_and_test(page);
594 }
595 
596 /*
597  * Try to grab a ref unless the page has a refcount of zero, return false if
598  * that is the case.
599  * This can be called when MMU is off so it must not access
600  * any of the virtual mappings.
601  */
602 static inline int get_page_unless_zero(struct page *page)
603 {
604 	return page_ref_add_unless(page, 1, 0);
605 }
606 
607 extern int page_is_ram(unsigned long pfn);
608 
609 enum {
610 	REGION_INTERSECTS,
611 	REGION_DISJOINT,
612 	REGION_MIXED,
613 };
614 
615 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
616 		      unsigned long desc);
617 
618 /* Support for virtually mapped pages */
619 struct page *vmalloc_to_page(const void *addr);
620 unsigned long vmalloc_to_pfn(const void *addr);
621 
622 /*
623  * Determine if an address is within the vmalloc range
624  *
625  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
626  * is no special casing required.
627  */
628 
629 #ifndef is_ioremap_addr
630 #define is_ioremap_addr(x) is_vmalloc_addr(x)
631 #endif
632 
633 #ifdef CONFIG_MMU
634 extern bool is_vmalloc_addr(const void *x);
635 extern int is_vmalloc_or_module_addr(const void *x);
636 #else
637 static inline bool is_vmalloc_addr(const void *x)
638 {
639 	return false;
640 }
641 static inline int is_vmalloc_or_module_addr(const void *x)
642 {
643 	return 0;
644 }
645 #endif
646 
647 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
648 static inline void *kvmalloc(size_t size, gfp_t flags)
649 {
650 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
651 }
652 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
653 {
654 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
655 }
656 static inline void *kvzalloc(size_t size, gfp_t flags)
657 {
658 	return kvmalloc(size, flags | __GFP_ZERO);
659 }
660 
661 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
662 {
663 	size_t bytes;
664 
665 	if (unlikely(check_mul_overflow(n, size, &bytes)))
666 		return NULL;
667 
668 	return kvmalloc(bytes, flags);
669 }
670 
671 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
672 {
673 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
674 }
675 
676 extern void kvfree(const void *addr);
677 
678 static inline int compound_mapcount(struct page *page)
679 {
680 	VM_BUG_ON_PAGE(!PageCompound(page), page);
681 	page = compound_head(page);
682 	return atomic_read(compound_mapcount_ptr(page)) + 1;
683 }
684 
685 /*
686  * The atomic page->_mapcount, starts from -1: so that transitions
687  * both from it and to it can be tracked, using atomic_inc_and_test
688  * and atomic_add_negative(-1).
689  */
690 static inline void page_mapcount_reset(struct page *page)
691 {
692 	atomic_set(&(page)->_mapcount, -1);
693 }
694 
695 int __page_mapcount(struct page *page);
696 
697 static inline int page_mapcount(struct page *page)
698 {
699 	VM_BUG_ON_PAGE(PageSlab(page), page);
700 
701 	if (unlikely(PageCompound(page)))
702 		return __page_mapcount(page);
703 	return atomic_read(&page->_mapcount) + 1;
704 }
705 
706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 int total_mapcount(struct page *page);
708 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
709 #else
710 static inline int total_mapcount(struct page *page)
711 {
712 	return page_mapcount(page);
713 }
714 static inline int page_trans_huge_mapcount(struct page *page,
715 					   int *total_mapcount)
716 {
717 	int mapcount = page_mapcount(page);
718 	if (total_mapcount)
719 		*total_mapcount = mapcount;
720 	return mapcount;
721 }
722 #endif
723 
724 static inline struct page *virt_to_head_page(const void *x)
725 {
726 	struct page *page = virt_to_page(x);
727 
728 	return compound_head(page);
729 }
730 
731 void __put_page(struct page *page);
732 
733 void put_pages_list(struct list_head *pages);
734 
735 void split_page(struct page *page, unsigned int order);
736 
737 /*
738  * Compound pages have a destructor function.  Provide a
739  * prototype for that function and accessor functions.
740  * These are _only_ valid on the head of a compound page.
741  */
742 typedef void compound_page_dtor(struct page *);
743 
744 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
745 enum compound_dtor_id {
746 	NULL_COMPOUND_DTOR,
747 	COMPOUND_PAGE_DTOR,
748 #ifdef CONFIG_HUGETLB_PAGE
749 	HUGETLB_PAGE_DTOR,
750 #endif
751 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
752 	TRANSHUGE_PAGE_DTOR,
753 #endif
754 	NR_COMPOUND_DTORS,
755 };
756 extern compound_page_dtor * const compound_page_dtors[];
757 
758 static inline void set_compound_page_dtor(struct page *page,
759 		enum compound_dtor_id compound_dtor)
760 {
761 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
762 	page[1].compound_dtor = compound_dtor;
763 }
764 
765 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
766 {
767 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
768 	return compound_page_dtors[page[1].compound_dtor];
769 }
770 
771 static inline unsigned int compound_order(struct page *page)
772 {
773 	if (!PageHead(page))
774 		return 0;
775 	return page[1].compound_order;
776 }
777 
778 static inline void set_compound_order(struct page *page, unsigned int order)
779 {
780 	page[1].compound_order = order;
781 }
782 
783 /* Returns the number of pages in this potentially compound page. */
784 static inline unsigned long compound_nr(struct page *page)
785 {
786 	return 1UL << compound_order(page);
787 }
788 
789 /* Returns the number of bytes in this potentially compound page. */
790 static inline unsigned long page_size(struct page *page)
791 {
792 	return PAGE_SIZE << compound_order(page);
793 }
794 
795 /* Returns the number of bits needed for the number of bytes in a page */
796 static inline unsigned int page_shift(struct page *page)
797 {
798 	return PAGE_SHIFT + compound_order(page);
799 }
800 
801 void free_compound_page(struct page *page);
802 
803 #ifdef CONFIG_MMU
804 /*
805  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
806  * servicing faults for write access.  In the normal case, do always want
807  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
808  * that do not have writing enabled, when used by access_process_vm.
809  */
810 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
811 {
812 	if (likely(vma->vm_flags & VM_WRITE))
813 		pte = pte_mkwrite(pte);
814 	return pte;
815 }
816 
817 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
818 		struct page *page);
819 vm_fault_t finish_fault(struct vm_fault *vmf);
820 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
821 #endif
822 
823 /*
824  * Multiple processes may "see" the same page. E.g. for untouched
825  * mappings of /dev/null, all processes see the same page full of
826  * zeroes, and text pages of executables and shared libraries have
827  * only one copy in memory, at most, normally.
828  *
829  * For the non-reserved pages, page_count(page) denotes a reference count.
830  *   page_count() == 0 means the page is free. page->lru is then used for
831  *   freelist management in the buddy allocator.
832  *   page_count() > 0  means the page has been allocated.
833  *
834  * Pages are allocated by the slab allocator in order to provide memory
835  * to kmalloc and kmem_cache_alloc. In this case, the management of the
836  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
837  * unless a particular usage is carefully commented. (the responsibility of
838  * freeing the kmalloc memory is the caller's, of course).
839  *
840  * A page may be used by anyone else who does a __get_free_page().
841  * In this case, page_count still tracks the references, and should only
842  * be used through the normal accessor functions. The top bits of page->flags
843  * and page->virtual store page management information, but all other fields
844  * are unused and could be used privately, carefully. The management of this
845  * page is the responsibility of the one who allocated it, and those who have
846  * subsequently been given references to it.
847  *
848  * The other pages (we may call them "pagecache pages") are completely
849  * managed by the Linux memory manager: I/O, buffers, swapping etc.
850  * The following discussion applies only to them.
851  *
852  * A pagecache page contains an opaque `private' member, which belongs to the
853  * page's address_space. Usually, this is the address of a circular list of
854  * the page's disk buffers. PG_private must be set to tell the VM to call
855  * into the filesystem to release these pages.
856  *
857  * A page may belong to an inode's memory mapping. In this case, page->mapping
858  * is the pointer to the inode, and page->index is the file offset of the page,
859  * in units of PAGE_SIZE.
860  *
861  * If pagecache pages are not associated with an inode, they are said to be
862  * anonymous pages. These may become associated with the swapcache, and in that
863  * case PG_swapcache is set, and page->private is an offset into the swapcache.
864  *
865  * In either case (swapcache or inode backed), the pagecache itself holds one
866  * reference to the page. Setting PG_private should also increment the
867  * refcount. The each user mapping also has a reference to the page.
868  *
869  * The pagecache pages are stored in a per-mapping radix tree, which is
870  * rooted at mapping->i_pages, and indexed by offset.
871  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
872  * lists, we instead now tag pages as dirty/writeback in the radix tree.
873  *
874  * All pagecache pages may be subject to I/O:
875  * - inode pages may need to be read from disk,
876  * - inode pages which have been modified and are MAP_SHARED may need
877  *   to be written back to the inode on disk,
878  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
879  *   modified may need to be swapped out to swap space and (later) to be read
880  *   back into memory.
881  */
882 
883 /*
884  * The zone field is never updated after free_area_init_core()
885  * sets it, so none of the operations on it need to be atomic.
886  */
887 
888 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
889 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
890 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
891 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
892 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
893 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
894 
895 /*
896  * Define the bit shifts to access each section.  For non-existent
897  * sections we define the shift as 0; that plus a 0 mask ensures
898  * the compiler will optimise away reference to them.
899  */
900 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
901 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
902 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
903 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
904 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
905 
906 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
907 #ifdef NODE_NOT_IN_PAGE_FLAGS
908 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
909 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
910 						SECTIONS_PGOFF : ZONES_PGOFF)
911 #else
912 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
913 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
914 						NODES_PGOFF : ZONES_PGOFF)
915 #endif
916 
917 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
918 
919 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
920 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
921 #endif
922 
923 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
924 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
925 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
926 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
927 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
928 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
929 
930 static inline enum zone_type page_zonenum(const struct page *page)
931 {
932 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
933 }
934 
935 #ifdef CONFIG_ZONE_DEVICE
936 static inline bool is_zone_device_page(const struct page *page)
937 {
938 	return page_zonenum(page) == ZONE_DEVICE;
939 }
940 extern void memmap_init_zone_device(struct zone *, unsigned long,
941 				    unsigned long, struct dev_pagemap *);
942 #else
943 static inline bool is_zone_device_page(const struct page *page)
944 {
945 	return false;
946 }
947 #endif
948 
949 #ifdef CONFIG_DEV_PAGEMAP_OPS
950 void __put_devmap_managed_page(struct page *page);
951 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
952 static inline bool put_devmap_managed_page(struct page *page)
953 {
954 	if (!static_branch_unlikely(&devmap_managed_key))
955 		return false;
956 	if (!is_zone_device_page(page))
957 		return false;
958 	switch (page->pgmap->type) {
959 	case MEMORY_DEVICE_PRIVATE:
960 	case MEMORY_DEVICE_FS_DAX:
961 		__put_devmap_managed_page(page);
962 		return true;
963 	default:
964 		break;
965 	}
966 	return false;
967 }
968 
969 #else /* CONFIG_DEV_PAGEMAP_OPS */
970 static inline bool put_devmap_managed_page(struct page *page)
971 {
972 	return false;
973 }
974 #endif /* CONFIG_DEV_PAGEMAP_OPS */
975 
976 static inline bool is_device_private_page(const struct page *page)
977 {
978 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
979 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
980 		is_zone_device_page(page) &&
981 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
982 }
983 
984 static inline bool is_pci_p2pdma_page(const struct page *page)
985 {
986 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
987 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
988 		is_zone_device_page(page) &&
989 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
990 }
991 
992 /* 127: arbitrary random number, small enough to assemble well */
993 #define page_ref_zero_or_close_to_overflow(page) \
994 	((unsigned int) page_ref_count(page) + 127u <= 127u)
995 
996 static inline void get_page(struct page *page)
997 {
998 	page = compound_head(page);
999 	/*
1000 	 * Getting a normal page or the head of a compound page
1001 	 * requires to already have an elevated page->_refcount.
1002 	 */
1003 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1004 	page_ref_inc(page);
1005 }
1006 
1007 static inline __must_check bool try_get_page(struct page *page)
1008 {
1009 	page = compound_head(page);
1010 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1011 		return false;
1012 	page_ref_inc(page);
1013 	return true;
1014 }
1015 
1016 static inline void put_page(struct page *page)
1017 {
1018 	page = compound_head(page);
1019 
1020 	/*
1021 	 * For devmap managed pages we need to catch refcount transition from
1022 	 * 2 to 1, when refcount reach one it means the page is free and we
1023 	 * need to inform the device driver through callback. See
1024 	 * include/linux/memremap.h and HMM for details.
1025 	 */
1026 	if (put_devmap_managed_page(page))
1027 		return;
1028 
1029 	if (put_page_testzero(page))
1030 		__put_page(page);
1031 }
1032 
1033 /**
1034  * put_user_page() - release a gup-pinned page
1035  * @page:            pointer to page to be released
1036  *
1037  * Pages that were pinned via get_user_pages*() must be released via
1038  * either put_user_page(), or one of the put_user_pages*() routines
1039  * below. This is so that eventually, pages that are pinned via
1040  * get_user_pages*() can be separately tracked and uniquely handled. In
1041  * particular, interactions with RDMA and filesystems need special
1042  * handling.
1043  *
1044  * put_user_page() and put_page() are not interchangeable, despite this early
1045  * implementation that makes them look the same. put_user_page() calls must
1046  * be perfectly matched up with get_user_page() calls.
1047  */
1048 static inline void put_user_page(struct page *page)
1049 {
1050 	put_page(page);
1051 }
1052 
1053 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1054 			       bool make_dirty);
1055 
1056 void put_user_pages(struct page **pages, unsigned long npages);
1057 
1058 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1059 #define SECTION_IN_PAGE_FLAGS
1060 #endif
1061 
1062 /*
1063  * The identification function is mainly used by the buddy allocator for
1064  * determining if two pages could be buddies. We are not really identifying
1065  * the zone since we could be using the section number id if we do not have
1066  * node id available in page flags.
1067  * We only guarantee that it will return the same value for two combinable
1068  * pages in a zone.
1069  */
1070 static inline int page_zone_id(struct page *page)
1071 {
1072 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1073 }
1074 
1075 #ifdef NODE_NOT_IN_PAGE_FLAGS
1076 extern int page_to_nid(const struct page *page);
1077 #else
1078 static inline int page_to_nid(const struct page *page)
1079 {
1080 	struct page *p = (struct page *)page;
1081 
1082 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1083 }
1084 #endif
1085 
1086 #ifdef CONFIG_NUMA_BALANCING
1087 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1088 {
1089 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1090 }
1091 
1092 static inline int cpupid_to_pid(int cpupid)
1093 {
1094 	return cpupid & LAST__PID_MASK;
1095 }
1096 
1097 static inline int cpupid_to_cpu(int cpupid)
1098 {
1099 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1100 }
1101 
1102 static inline int cpupid_to_nid(int cpupid)
1103 {
1104 	return cpu_to_node(cpupid_to_cpu(cpupid));
1105 }
1106 
1107 static inline bool cpupid_pid_unset(int cpupid)
1108 {
1109 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1110 }
1111 
1112 static inline bool cpupid_cpu_unset(int cpupid)
1113 {
1114 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1115 }
1116 
1117 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1118 {
1119 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1120 }
1121 
1122 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1124 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1125 {
1126 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1127 }
1128 
1129 static inline int page_cpupid_last(struct page *page)
1130 {
1131 	return page->_last_cpupid;
1132 }
1133 static inline void page_cpupid_reset_last(struct page *page)
1134 {
1135 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1136 }
1137 #else
1138 static inline int page_cpupid_last(struct page *page)
1139 {
1140 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1141 }
1142 
1143 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1144 
1145 static inline void page_cpupid_reset_last(struct page *page)
1146 {
1147 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1148 }
1149 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1150 #else /* !CONFIG_NUMA_BALANCING */
1151 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1152 {
1153 	return page_to_nid(page); /* XXX */
1154 }
1155 
1156 static inline int page_cpupid_last(struct page *page)
1157 {
1158 	return page_to_nid(page); /* XXX */
1159 }
1160 
1161 static inline int cpupid_to_nid(int cpupid)
1162 {
1163 	return -1;
1164 }
1165 
1166 static inline int cpupid_to_pid(int cpupid)
1167 {
1168 	return -1;
1169 }
1170 
1171 static inline int cpupid_to_cpu(int cpupid)
1172 {
1173 	return -1;
1174 }
1175 
1176 static inline int cpu_pid_to_cpupid(int nid, int pid)
1177 {
1178 	return -1;
1179 }
1180 
1181 static inline bool cpupid_pid_unset(int cpupid)
1182 {
1183 	return 1;
1184 }
1185 
1186 static inline void page_cpupid_reset_last(struct page *page)
1187 {
1188 }
1189 
1190 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1191 {
1192 	return false;
1193 }
1194 #endif /* CONFIG_NUMA_BALANCING */
1195 
1196 #ifdef CONFIG_KASAN_SW_TAGS
1197 static inline u8 page_kasan_tag(const struct page *page)
1198 {
1199 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1200 }
1201 
1202 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1203 {
1204 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1205 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1206 }
1207 
1208 static inline void page_kasan_tag_reset(struct page *page)
1209 {
1210 	page_kasan_tag_set(page, 0xff);
1211 }
1212 #else
1213 static inline u8 page_kasan_tag(const struct page *page)
1214 {
1215 	return 0xff;
1216 }
1217 
1218 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1219 static inline void page_kasan_tag_reset(struct page *page) { }
1220 #endif
1221 
1222 static inline struct zone *page_zone(const struct page *page)
1223 {
1224 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1225 }
1226 
1227 static inline pg_data_t *page_pgdat(const struct page *page)
1228 {
1229 	return NODE_DATA(page_to_nid(page));
1230 }
1231 
1232 #ifdef SECTION_IN_PAGE_FLAGS
1233 static inline void set_page_section(struct page *page, unsigned long section)
1234 {
1235 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1236 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1237 }
1238 
1239 static inline unsigned long page_to_section(const struct page *page)
1240 {
1241 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1242 }
1243 #endif
1244 
1245 static inline void set_page_zone(struct page *page, enum zone_type zone)
1246 {
1247 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1248 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1249 }
1250 
1251 static inline void set_page_node(struct page *page, unsigned long node)
1252 {
1253 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1254 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1255 }
1256 
1257 static inline void set_page_links(struct page *page, enum zone_type zone,
1258 	unsigned long node, unsigned long pfn)
1259 {
1260 	set_page_zone(page, zone);
1261 	set_page_node(page, node);
1262 #ifdef SECTION_IN_PAGE_FLAGS
1263 	set_page_section(page, pfn_to_section_nr(pfn));
1264 #endif
1265 }
1266 
1267 #ifdef CONFIG_MEMCG
1268 static inline struct mem_cgroup *page_memcg(struct page *page)
1269 {
1270 	return page->mem_cgroup;
1271 }
1272 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1273 {
1274 	WARN_ON_ONCE(!rcu_read_lock_held());
1275 	return READ_ONCE(page->mem_cgroup);
1276 }
1277 #else
1278 static inline struct mem_cgroup *page_memcg(struct page *page)
1279 {
1280 	return NULL;
1281 }
1282 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1283 {
1284 	WARN_ON_ONCE(!rcu_read_lock_held());
1285 	return NULL;
1286 }
1287 #endif
1288 
1289 /*
1290  * Some inline functions in vmstat.h depend on page_zone()
1291  */
1292 #include <linux/vmstat.h>
1293 
1294 static __always_inline void *lowmem_page_address(const struct page *page)
1295 {
1296 	return page_to_virt(page);
1297 }
1298 
1299 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1300 #define HASHED_PAGE_VIRTUAL
1301 #endif
1302 
1303 #if defined(WANT_PAGE_VIRTUAL)
1304 static inline void *page_address(const struct page *page)
1305 {
1306 	return page->virtual;
1307 }
1308 static inline void set_page_address(struct page *page, void *address)
1309 {
1310 	page->virtual = address;
1311 }
1312 #define page_address_init()  do { } while(0)
1313 #endif
1314 
1315 #if defined(HASHED_PAGE_VIRTUAL)
1316 void *page_address(const struct page *page);
1317 void set_page_address(struct page *page, void *virtual);
1318 void page_address_init(void);
1319 #endif
1320 
1321 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1322 #define page_address(page) lowmem_page_address(page)
1323 #define set_page_address(page, address)  do { } while(0)
1324 #define page_address_init()  do { } while(0)
1325 #endif
1326 
1327 extern void *page_rmapping(struct page *page);
1328 extern struct anon_vma *page_anon_vma(struct page *page);
1329 extern struct address_space *page_mapping(struct page *page);
1330 
1331 extern struct address_space *__page_file_mapping(struct page *);
1332 
1333 static inline
1334 struct address_space *page_file_mapping(struct page *page)
1335 {
1336 	if (unlikely(PageSwapCache(page)))
1337 		return __page_file_mapping(page);
1338 
1339 	return page->mapping;
1340 }
1341 
1342 extern pgoff_t __page_file_index(struct page *page);
1343 
1344 /*
1345  * Return the pagecache index of the passed page.  Regular pagecache pages
1346  * use ->index whereas swapcache pages use swp_offset(->private)
1347  */
1348 static inline pgoff_t page_index(struct page *page)
1349 {
1350 	if (unlikely(PageSwapCache(page)))
1351 		return __page_file_index(page);
1352 	return page->index;
1353 }
1354 
1355 bool page_mapped(struct page *page);
1356 struct address_space *page_mapping(struct page *page);
1357 struct address_space *page_mapping_file(struct page *page);
1358 
1359 /*
1360  * Return true only if the page has been allocated with
1361  * ALLOC_NO_WATERMARKS and the low watermark was not
1362  * met implying that the system is under some pressure.
1363  */
1364 static inline bool page_is_pfmemalloc(struct page *page)
1365 {
1366 	/*
1367 	 * Page index cannot be this large so this must be
1368 	 * a pfmemalloc page.
1369 	 */
1370 	return page->index == -1UL;
1371 }
1372 
1373 /*
1374  * Only to be called by the page allocator on a freshly allocated
1375  * page.
1376  */
1377 static inline void set_page_pfmemalloc(struct page *page)
1378 {
1379 	page->index = -1UL;
1380 }
1381 
1382 static inline void clear_page_pfmemalloc(struct page *page)
1383 {
1384 	page->index = 0;
1385 }
1386 
1387 /*
1388  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1389  */
1390 extern void pagefault_out_of_memory(void);
1391 
1392 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1393 
1394 /*
1395  * Flags passed to show_mem() and show_free_areas() to suppress output in
1396  * various contexts.
1397  */
1398 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1399 
1400 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1401 
1402 #ifdef CONFIG_MMU
1403 extern bool can_do_mlock(void);
1404 #else
1405 static inline bool can_do_mlock(void) { return false; }
1406 #endif
1407 extern int user_shm_lock(size_t, struct user_struct *);
1408 extern void user_shm_unlock(size_t, struct user_struct *);
1409 
1410 /*
1411  * Parameter block passed down to zap_pte_range in exceptional cases.
1412  */
1413 struct zap_details {
1414 	struct address_space *check_mapping;	/* Check page->mapping if set */
1415 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1416 	pgoff_t last_index;			/* Highest page->index to unmap */
1417 };
1418 
1419 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1420 			     pte_t pte);
1421 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1422 				pmd_t pmd);
1423 
1424 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1425 		  unsigned long size);
1426 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1427 		    unsigned long size);
1428 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1429 		unsigned long start, unsigned long end);
1430 
1431 struct mmu_notifier_range;
1432 
1433 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1434 		unsigned long end, unsigned long floor, unsigned long ceiling);
1435 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1436 			struct vm_area_struct *vma);
1437 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1438 		   struct mmu_notifier_range *range,
1439 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1440 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1441 	unsigned long *pfn);
1442 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1443 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1444 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1445 			void *buf, int len, int write);
1446 
1447 extern void truncate_pagecache(struct inode *inode, loff_t new);
1448 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1449 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1450 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1451 int truncate_inode_page(struct address_space *mapping, struct page *page);
1452 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1453 int invalidate_inode_page(struct page *page);
1454 
1455 #ifdef CONFIG_MMU
1456 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1457 			unsigned long address, unsigned int flags);
1458 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1459 			    unsigned long address, unsigned int fault_flags,
1460 			    bool *unlocked);
1461 void unmap_mapping_pages(struct address_space *mapping,
1462 		pgoff_t start, pgoff_t nr, bool even_cows);
1463 void unmap_mapping_range(struct address_space *mapping,
1464 		loff_t const holebegin, loff_t const holelen, int even_cows);
1465 #else
1466 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1467 		unsigned long address, unsigned int flags)
1468 {
1469 	/* should never happen if there's no MMU */
1470 	BUG();
1471 	return VM_FAULT_SIGBUS;
1472 }
1473 static inline int fixup_user_fault(struct task_struct *tsk,
1474 		struct mm_struct *mm, unsigned long address,
1475 		unsigned int fault_flags, bool *unlocked)
1476 {
1477 	/* should never happen if there's no MMU */
1478 	BUG();
1479 	return -EFAULT;
1480 }
1481 static inline void unmap_mapping_pages(struct address_space *mapping,
1482 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1483 static inline void unmap_mapping_range(struct address_space *mapping,
1484 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1485 #endif
1486 
1487 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1488 		loff_t const holebegin, loff_t const holelen)
1489 {
1490 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1491 }
1492 
1493 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1494 		void *buf, int len, unsigned int gup_flags);
1495 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1496 		void *buf, int len, unsigned int gup_flags);
1497 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1498 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1499 
1500 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1501 			    unsigned long start, unsigned long nr_pages,
1502 			    unsigned int gup_flags, struct page **pages,
1503 			    struct vm_area_struct **vmas, int *locked);
1504 long get_user_pages(unsigned long start, unsigned long nr_pages,
1505 			    unsigned int gup_flags, struct page **pages,
1506 			    struct vm_area_struct **vmas);
1507 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1508 		    unsigned int gup_flags, struct page **pages, int *locked);
1509 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1510 		    struct page **pages, unsigned int gup_flags);
1511 
1512 int get_user_pages_fast(unsigned long start, int nr_pages,
1513 			unsigned int gup_flags, struct page **pages);
1514 
1515 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1516 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1517 			struct task_struct *task, bool bypass_rlim);
1518 
1519 /* Container for pinned pfns / pages */
1520 struct frame_vector {
1521 	unsigned int nr_allocated;	/* Number of frames we have space for */
1522 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1523 	bool got_ref;		/* Did we pin pages by getting page ref? */
1524 	bool is_pfns;		/* Does array contain pages or pfns? */
1525 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1526 				 * pfns_vector_pages() or pfns_vector_pfns()
1527 				 * for access */
1528 };
1529 
1530 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1531 void frame_vector_destroy(struct frame_vector *vec);
1532 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1533 		     unsigned int gup_flags, struct frame_vector *vec);
1534 void put_vaddr_frames(struct frame_vector *vec);
1535 int frame_vector_to_pages(struct frame_vector *vec);
1536 void frame_vector_to_pfns(struct frame_vector *vec);
1537 
1538 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1539 {
1540 	return vec->nr_frames;
1541 }
1542 
1543 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1544 {
1545 	if (vec->is_pfns) {
1546 		int err = frame_vector_to_pages(vec);
1547 
1548 		if (err)
1549 			return ERR_PTR(err);
1550 	}
1551 	return (struct page **)(vec->ptrs);
1552 }
1553 
1554 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1555 {
1556 	if (!vec->is_pfns)
1557 		frame_vector_to_pfns(vec);
1558 	return (unsigned long *)(vec->ptrs);
1559 }
1560 
1561 struct kvec;
1562 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1563 			struct page **pages);
1564 int get_kernel_page(unsigned long start, int write, struct page **pages);
1565 struct page *get_dump_page(unsigned long addr);
1566 
1567 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1568 extern void do_invalidatepage(struct page *page, unsigned int offset,
1569 			      unsigned int length);
1570 
1571 void __set_page_dirty(struct page *, struct address_space *, int warn);
1572 int __set_page_dirty_nobuffers(struct page *page);
1573 int __set_page_dirty_no_writeback(struct page *page);
1574 int redirty_page_for_writepage(struct writeback_control *wbc,
1575 				struct page *page);
1576 void account_page_dirtied(struct page *page, struct address_space *mapping);
1577 void account_page_cleaned(struct page *page, struct address_space *mapping,
1578 			  struct bdi_writeback *wb);
1579 int set_page_dirty(struct page *page);
1580 int set_page_dirty_lock(struct page *page);
1581 void __cancel_dirty_page(struct page *page);
1582 static inline void cancel_dirty_page(struct page *page)
1583 {
1584 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1585 	if (PageDirty(page))
1586 		__cancel_dirty_page(page);
1587 }
1588 int clear_page_dirty_for_io(struct page *page);
1589 
1590 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1591 
1592 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1593 		unsigned long old_addr, struct vm_area_struct *new_vma,
1594 		unsigned long new_addr, unsigned long len,
1595 		bool need_rmap_locks);
1596 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1597 			      unsigned long end, pgprot_t newprot,
1598 			      int dirty_accountable, int prot_numa);
1599 extern int mprotect_fixup(struct vm_area_struct *vma,
1600 			  struct vm_area_struct **pprev, unsigned long start,
1601 			  unsigned long end, unsigned long newflags);
1602 
1603 /*
1604  * doesn't attempt to fault and will return short.
1605  */
1606 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1607 			  struct page **pages);
1608 /*
1609  * per-process(per-mm_struct) statistics.
1610  */
1611 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1612 {
1613 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1614 
1615 #ifdef SPLIT_RSS_COUNTING
1616 	/*
1617 	 * counter is updated in asynchronous manner and may go to minus.
1618 	 * But it's never be expected number for users.
1619 	 */
1620 	if (val < 0)
1621 		val = 0;
1622 #endif
1623 	return (unsigned long)val;
1624 }
1625 
1626 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1627 
1628 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1629 {
1630 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1631 
1632 	mm_trace_rss_stat(mm, member, count);
1633 }
1634 
1635 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1636 {
1637 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1638 
1639 	mm_trace_rss_stat(mm, member, count);
1640 }
1641 
1642 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1643 {
1644 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1645 
1646 	mm_trace_rss_stat(mm, member, count);
1647 }
1648 
1649 /* Optimized variant when page is already known not to be PageAnon */
1650 static inline int mm_counter_file(struct page *page)
1651 {
1652 	if (PageSwapBacked(page))
1653 		return MM_SHMEMPAGES;
1654 	return MM_FILEPAGES;
1655 }
1656 
1657 static inline int mm_counter(struct page *page)
1658 {
1659 	if (PageAnon(page))
1660 		return MM_ANONPAGES;
1661 	return mm_counter_file(page);
1662 }
1663 
1664 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1665 {
1666 	return get_mm_counter(mm, MM_FILEPAGES) +
1667 		get_mm_counter(mm, MM_ANONPAGES) +
1668 		get_mm_counter(mm, MM_SHMEMPAGES);
1669 }
1670 
1671 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1672 {
1673 	return max(mm->hiwater_rss, get_mm_rss(mm));
1674 }
1675 
1676 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1677 {
1678 	return max(mm->hiwater_vm, mm->total_vm);
1679 }
1680 
1681 static inline void update_hiwater_rss(struct mm_struct *mm)
1682 {
1683 	unsigned long _rss = get_mm_rss(mm);
1684 
1685 	if ((mm)->hiwater_rss < _rss)
1686 		(mm)->hiwater_rss = _rss;
1687 }
1688 
1689 static inline void update_hiwater_vm(struct mm_struct *mm)
1690 {
1691 	if (mm->hiwater_vm < mm->total_vm)
1692 		mm->hiwater_vm = mm->total_vm;
1693 }
1694 
1695 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1696 {
1697 	mm->hiwater_rss = get_mm_rss(mm);
1698 }
1699 
1700 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1701 					 struct mm_struct *mm)
1702 {
1703 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1704 
1705 	if (*maxrss < hiwater_rss)
1706 		*maxrss = hiwater_rss;
1707 }
1708 
1709 #if defined(SPLIT_RSS_COUNTING)
1710 void sync_mm_rss(struct mm_struct *mm);
1711 #else
1712 static inline void sync_mm_rss(struct mm_struct *mm)
1713 {
1714 }
1715 #endif
1716 
1717 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1718 static inline int pte_devmap(pte_t pte)
1719 {
1720 	return 0;
1721 }
1722 #endif
1723 
1724 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1725 
1726 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1727 			       spinlock_t **ptl);
1728 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1729 				    spinlock_t **ptl)
1730 {
1731 	pte_t *ptep;
1732 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1733 	return ptep;
1734 }
1735 
1736 #ifdef __PAGETABLE_P4D_FOLDED
1737 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1738 						unsigned long address)
1739 {
1740 	return 0;
1741 }
1742 #else
1743 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1744 #endif
1745 
1746 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1747 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1748 						unsigned long address)
1749 {
1750 	return 0;
1751 }
1752 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1753 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1754 
1755 #else
1756 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1757 
1758 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1759 {
1760 	if (mm_pud_folded(mm))
1761 		return;
1762 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1763 }
1764 
1765 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1766 {
1767 	if (mm_pud_folded(mm))
1768 		return;
1769 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1770 }
1771 #endif
1772 
1773 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1774 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1775 						unsigned long address)
1776 {
1777 	return 0;
1778 }
1779 
1780 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1781 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1782 
1783 #else
1784 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1785 
1786 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1787 {
1788 	if (mm_pmd_folded(mm))
1789 		return;
1790 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1791 }
1792 
1793 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1794 {
1795 	if (mm_pmd_folded(mm))
1796 		return;
1797 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1798 }
1799 #endif
1800 
1801 #ifdef CONFIG_MMU
1802 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1803 {
1804 	atomic_long_set(&mm->pgtables_bytes, 0);
1805 }
1806 
1807 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1808 {
1809 	return atomic_long_read(&mm->pgtables_bytes);
1810 }
1811 
1812 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1813 {
1814 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1815 }
1816 
1817 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1818 {
1819 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1820 }
1821 #else
1822 
1823 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1824 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1825 {
1826 	return 0;
1827 }
1828 
1829 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1830 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1831 #endif
1832 
1833 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1834 int __pte_alloc_kernel(pmd_t *pmd);
1835 
1836 #if defined(CONFIG_MMU)
1837 
1838 /*
1839  * The following ifdef needed to get the 5level-fixup.h header to work.
1840  * Remove it when 5level-fixup.h has been removed.
1841  */
1842 #ifndef __ARCH_HAS_5LEVEL_HACK
1843 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1844 		unsigned long address)
1845 {
1846 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1847 		NULL : p4d_offset(pgd, address);
1848 }
1849 
1850 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1851 		unsigned long address)
1852 {
1853 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1854 		NULL : pud_offset(p4d, address);
1855 }
1856 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1857 
1858 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1859 {
1860 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1861 		NULL: pmd_offset(pud, address);
1862 }
1863 #endif /* CONFIG_MMU */
1864 
1865 #if USE_SPLIT_PTE_PTLOCKS
1866 #if ALLOC_SPLIT_PTLOCKS
1867 void __init ptlock_cache_init(void);
1868 extern bool ptlock_alloc(struct page *page);
1869 extern void ptlock_free(struct page *page);
1870 
1871 static inline spinlock_t *ptlock_ptr(struct page *page)
1872 {
1873 	return page->ptl;
1874 }
1875 #else /* ALLOC_SPLIT_PTLOCKS */
1876 static inline void ptlock_cache_init(void)
1877 {
1878 }
1879 
1880 static inline bool ptlock_alloc(struct page *page)
1881 {
1882 	return true;
1883 }
1884 
1885 static inline void ptlock_free(struct page *page)
1886 {
1887 }
1888 
1889 static inline spinlock_t *ptlock_ptr(struct page *page)
1890 {
1891 	return &page->ptl;
1892 }
1893 #endif /* ALLOC_SPLIT_PTLOCKS */
1894 
1895 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1896 {
1897 	return ptlock_ptr(pmd_page(*pmd));
1898 }
1899 
1900 static inline bool ptlock_init(struct page *page)
1901 {
1902 	/*
1903 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1904 	 * with 0. Make sure nobody took it in use in between.
1905 	 *
1906 	 * It can happen if arch try to use slab for page table allocation:
1907 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1908 	 */
1909 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1910 	if (!ptlock_alloc(page))
1911 		return false;
1912 	spin_lock_init(ptlock_ptr(page));
1913 	return true;
1914 }
1915 
1916 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1917 /*
1918  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1919  */
1920 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1921 {
1922 	return &mm->page_table_lock;
1923 }
1924 static inline void ptlock_cache_init(void) {}
1925 static inline bool ptlock_init(struct page *page) { return true; }
1926 static inline void ptlock_free(struct page *page) {}
1927 #endif /* USE_SPLIT_PTE_PTLOCKS */
1928 
1929 static inline void pgtable_init(void)
1930 {
1931 	ptlock_cache_init();
1932 	pgtable_cache_init();
1933 }
1934 
1935 static inline bool pgtable_pte_page_ctor(struct page *page)
1936 {
1937 	if (!ptlock_init(page))
1938 		return false;
1939 	__SetPageTable(page);
1940 	inc_zone_page_state(page, NR_PAGETABLE);
1941 	return true;
1942 }
1943 
1944 static inline void pgtable_pte_page_dtor(struct page *page)
1945 {
1946 	ptlock_free(page);
1947 	__ClearPageTable(page);
1948 	dec_zone_page_state(page, NR_PAGETABLE);
1949 }
1950 
1951 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1952 ({							\
1953 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1954 	pte_t *__pte = pte_offset_map(pmd, address);	\
1955 	*(ptlp) = __ptl;				\
1956 	spin_lock(__ptl);				\
1957 	__pte;						\
1958 })
1959 
1960 #define pte_unmap_unlock(pte, ptl)	do {		\
1961 	spin_unlock(ptl);				\
1962 	pte_unmap(pte);					\
1963 } while (0)
1964 
1965 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1966 
1967 #define pte_alloc_map(mm, pmd, address)			\
1968 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1969 
1970 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1971 	(pte_alloc(mm, pmd) ?			\
1972 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1973 
1974 #define pte_alloc_kernel(pmd, address)			\
1975 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1976 		NULL: pte_offset_kernel(pmd, address))
1977 
1978 #if USE_SPLIT_PMD_PTLOCKS
1979 
1980 static struct page *pmd_to_page(pmd_t *pmd)
1981 {
1982 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1983 	return virt_to_page((void *)((unsigned long) pmd & mask));
1984 }
1985 
1986 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1987 {
1988 	return ptlock_ptr(pmd_to_page(pmd));
1989 }
1990 
1991 static inline bool pgtable_pmd_page_ctor(struct page *page)
1992 {
1993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1994 	page->pmd_huge_pte = NULL;
1995 #endif
1996 	return ptlock_init(page);
1997 }
1998 
1999 static inline void pgtable_pmd_page_dtor(struct page *page)
2000 {
2001 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2002 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2003 #endif
2004 	ptlock_free(page);
2005 }
2006 
2007 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2008 
2009 #else
2010 
2011 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2012 {
2013 	return &mm->page_table_lock;
2014 }
2015 
2016 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2017 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2018 
2019 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2020 
2021 #endif
2022 
2023 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2024 {
2025 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2026 	spin_lock(ptl);
2027 	return ptl;
2028 }
2029 
2030 /*
2031  * No scalability reason to split PUD locks yet, but follow the same pattern
2032  * as the PMD locks to make it easier if we decide to.  The VM should not be
2033  * considered ready to switch to split PUD locks yet; there may be places
2034  * which need to be converted from page_table_lock.
2035  */
2036 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2037 {
2038 	return &mm->page_table_lock;
2039 }
2040 
2041 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2042 {
2043 	spinlock_t *ptl = pud_lockptr(mm, pud);
2044 
2045 	spin_lock(ptl);
2046 	return ptl;
2047 }
2048 
2049 extern void __init pagecache_init(void);
2050 extern void free_area_init(unsigned long * zones_size);
2051 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2052 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2053 extern void free_initmem(void);
2054 
2055 /*
2056  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2057  * into the buddy system. The freed pages will be poisoned with pattern
2058  * "poison" if it's within range [0, UCHAR_MAX].
2059  * Return pages freed into the buddy system.
2060  */
2061 extern unsigned long free_reserved_area(void *start, void *end,
2062 					int poison, const char *s);
2063 
2064 #ifdef	CONFIG_HIGHMEM
2065 /*
2066  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2067  * and totalram_pages.
2068  */
2069 extern void free_highmem_page(struct page *page);
2070 #endif
2071 
2072 extern void adjust_managed_page_count(struct page *page, long count);
2073 extern void mem_init_print_info(const char *str);
2074 
2075 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2076 
2077 /* Free the reserved page into the buddy system, so it gets managed. */
2078 static inline void __free_reserved_page(struct page *page)
2079 {
2080 	ClearPageReserved(page);
2081 	init_page_count(page);
2082 	__free_page(page);
2083 }
2084 
2085 static inline void free_reserved_page(struct page *page)
2086 {
2087 	__free_reserved_page(page);
2088 	adjust_managed_page_count(page, 1);
2089 }
2090 
2091 static inline void mark_page_reserved(struct page *page)
2092 {
2093 	SetPageReserved(page);
2094 	adjust_managed_page_count(page, -1);
2095 }
2096 
2097 /*
2098  * Default method to free all the __init memory into the buddy system.
2099  * The freed pages will be poisoned with pattern "poison" if it's within
2100  * range [0, UCHAR_MAX].
2101  * Return pages freed into the buddy system.
2102  */
2103 static inline unsigned long free_initmem_default(int poison)
2104 {
2105 	extern char __init_begin[], __init_end[];
2106 
2107 	return free_reserved_area(&__init_begin, &__init_end,
2108 				  poison, "unused kernel");
2109 }
2110 
2111 static inline unsigned long get_num_physpages(void)
2112 {
2113 	int nid;
2114 	unsigned long phys_pages = 0;
2115 
2116 	for_each_online_node(nid)
2117 		phys_pages += node_present_pages(nid);
2118 
2119 	return phys_pages;
2120 }
2121 
2122 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2123 /*
2124  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2125  * zones, allocate the backing mem_map and account for memory holes in a more
2126  * architecture independent manner. This is a substitute for creating the
2127  * zone_sizes[] and zholes_size[] arrays and passing them to
2128  * free_area_init_node()
2129  *
2130  * An architecture is expected to register range of page frames backed by
2131  * physical memory with memblock_add[_node]() before calling
2132  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2133  * usage, an architecture is expected to do something like
2134  *
2135  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2136  * 							 max_highmem_pfn};
2137  * for_each_valid_physical_page_range()
2138  * 	memblock_add_node(base, size, nid)
2139  * free_area_init_nodes(max_zone_pfns);
2140  *
2141  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2142  * registered physical page range.  Similarly
2143  * sparse_memory_present_with_active_regions() calls memory_present() for
2144  * each range when SPARSEMEM is enabled.
2145  *
2146  * See mm/page_alloc.c for more information on each function exposed by
2147  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2148  */
2149 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2150 unsigned long node_map_pfn_alignment(void);
2151 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2152 						unsigned long end_pfn);
2153 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2154 						unsigned long end_pfn);
2155 extern void get_pfn_range_for_nid(unsigned int nid,
2156 			unsigned long *start_pfn, unsigned long *end_pfn);
2157 extern unsigned long find_min_pfn_with_active_regions(void);
2158 extern void free_bootmem_with_active_regions(int nid,
2159 						unsigned long max_low_pfn);
2160 extern void sparse_memory_present_with_active_regions(int nid);
2161 
2162 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2163 
2164 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2165     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2166 static inline int __early_pfn_to_nid(unsigned long pfn,
2167 					struct mminit_pfnnid_cache *state)
2168 {
2169 	return 0;
2170 }
2171 #else
2172 /* please see mm/page_alloc.c */
2173 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2174 /* there is a per-arch backend function. */
2175 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2176 					struct mminit_pfnnid_cache *state);
2177 #endif
2178 
2179 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2180 void zero_resv_unavail(void);
2181 #else
2182 static inline void zero_resv_unavail(void) {}
2183 #endif
2184 
2185 extern void set_dma_reserve(unsigned long new_dma_reserve);
2186 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2187 		enum memmap_context, struct vmem_altmap *);
2188 extern void setup_per_zone_wmarks(void);
2189 extern int __meminit init_per_zone_wmark_min(void);
2190 extern void mem_init(void);
2191 extern void __init mmap_init(void);
2192 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2193 extern long si_mem_available(void);
2194 extern void si_meminfo(struct sysinfo * val);
2195 extern void si_meminfo_node(struct sysinfo *val, int nid);
2196 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2197 extern unsigned long arch_reserved_kernel_pages(void);
2198 #endif
2199 
2200 extern __printf(3, 4)
2201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2202 
2203 extern void setup_per_cpu_pageset(void);
2204 
2205 /* page_alloc.c */
2206 extern int min_free_kbytes;
2207 extern int watermark_boost_factor;
2208 extern int watermark_scale_factor;
2209 
2210 /* nommu.c */
2211 extern atomic_long_t mmap_pages_allocated;
2212 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2213 
2214 /* interval_tree.c */
2215 void vma_interval_tree_insert(struct vm_area_struct *node,
2216 			      struct rb_root_cached *root);
2217 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2218 				    struct vm_area_struct *prev,
2219 				    struct rb_root_cached *root);
2220 void vma_interval_tree_remove(struct vm_area_struct *node,
2221 			      struct rb_root_cached *root);
2222 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2223 				unsigned long start, unsigned long last);
2224 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2225 				unsigned long start, unsigned long last);
2226 
2227 #define vma_interval_tree_foreach(vma, root, start, last)		\
2228 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2229 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2230 
2231 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2232 				   struct rb_root_cached *root);
2233 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2234 				   struct rb_root_cached *root);
2235 struct anon_vma_chain *
2236 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2237 				  unsigned long start, unsigned long last);
2238 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2239 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2240 #ifdef CONFIG_DEBUG_VM_RB
2241 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2242 #endif
2243 
2244 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2245 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2246 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2247 
2248 /* mmap.c */
2249 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2250 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2251 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2252 	struct vm_area_struct *expand);
2253 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2254 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2255 {
2256 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2257 }
2258 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2259 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2260 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2261 	struct mempolicy *, struct vm_userfaultfd_ctx);
2262 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2263 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2264 	unsigned long addr, int new_below);
2265 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2266 	unsigned long addr, int new_below);
2267 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2268 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2269 	struct rb_node **, struct rb_node *);
2270 extern void unlink_file_vma(struct vm_area_struct *);
2271 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2272 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2273 	bool *need_rmap_locks);
2274 extern void exit_mmap(struct mm_struct *);
2275 
2276 static inline int check_data_rlimit(unsigned long rlim,
2277 				    unsigned long new,
2278 				    unsigned long start,
2279 				    unsigned long end_data,
2280 				    unsigned long start_data)
2281 {
2282 	if (rlim < RLIM_INFINITY) {
2283 		if (((new - start) + (end_data - start_data)) > rlim)
2284 			return -ENOSPC;
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 extern int mm_take_all_locks(struct mm_struct *mm);
2291 extern void mm_drop_all_locks(struct mm_struct *mm);
2292 
2293 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2294 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2295 extern struct file *get_task_exe_file(struct task_struct *task);
2296 
2297 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2298 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2299 
2300 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2301 				   const struct vm_special_mapping *sm);
2302 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2303 				   unsigned long addr, unsigned long len,
2304 				   unsigned long flags,
2305 				   const struct vm_special_mapping *spec);
2306 /* This is an obsolete alternative to _install_special_mapping. */
2307 extern int install_special_mapping(struct mm_struct *mm,
2308 				   unsigned long addr, unsigned long len,
2309 				   unsigned long flags, struct page **pages);
2310 
2311 unsigned long randomize_stack_top(unsigned long stack_top);
2312 
2313 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2314 
2315 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2316 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2317 	struct list_head *uf);
2318 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2319 	unsigned long len, unsigned long prot, unsigned long flags,
2320 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2321 	struct list_head *uf);
2322 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2323 		       struct list_head *uf, bool downgrade);
2324 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2325 		     struct list_head *uf);
2326 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2327 
2328 static inline unsigned long
2329 do_mmap_pgoff(struct file *file, unsigned long addr,
2330 	unsigned long len, unsigned long prot, unsigned long flags,
2331 	unsigned long pgoff, unsigned long *populate,
2332 	struct list_head *uf)
2333 {
2334 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2335 }
2336 
2337 #ifdef CONFIG_MMU
2338 extern int __mm_populate(unsigned long addr, unsigned long len,
2339 			 int ignore_errors);
2340 static inline void mm_populate(unsigned long addr, unsigned long len)
2341 {
2342 	/* Ignore errors */
2343 	(void) __mm_populate(addr, len, 1);
2344 }
2345 #else
2346 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2347 #endif
2348 
2349 /* These take the mm semaphore themselves */
2350 extern int __must_check vm_brk(unsigned long, unsigned long);
2351 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2352 extern int vm_munmap(unsigned long, size_t);
2353 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2354         unsigned long, unsigned long,
2355         unsigned long, unsigned long);
2356 
2357 struct vm_unmapped_area_info {
2358 #define VM_UNMAPPED_AREA_TOPDOWN 1
2359 	unsigned long flags;
2360 	unsigned long length;
2361 	unsigned long low_limit;
2362 	unsigned long high_limit;
2363 	unsigned long align_mask;
2364 	unsigned long align_offset;
2365 };
2366 
2367 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2368 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2369 
2370 /*
2371  * Search for an unmapped address range.
2372  *
2373  * We are looking for a range that:
2374  * - does not intersect with any VMA;
2375  * - is contained within the [low_limit, high_limit) interval;
2376  * - is at least the desired size.
2377  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2378  */
2379 static inline unsigned long
2380 vm_unmapped_area(struct vm_unmapped_area_info *info)
2381 {
2382 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2383 		return unmapped_area_topdown(info);
2384 	else
2385 		return unmapped_area(info);
2386 }
2387 
2388 /* truncate.c */
2389 extern void truncate_inode_pages(struct address_space *, loff_t);
2390 extern void truncate_inode_pages_range(struct address_space *,
2391 				       loff_t lstart, loff_t lend);
2392 extern void truncate_inode_pages_final(struct address_space *);
2393 
2394 /* generic vm_area_ops exported for stackable file systems */
2395 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2396 extern void filemap_map_pages(struct vm_fault *vmf,
2397 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2398 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2399 
2400 /* mm/page-writeback.c */
2401 int __must_check write_one_page(struct page *page);
2402 void task_dirty_inc(struct task_struct *tsk);
2403 
2404 /* readahead.c */
2405 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2406 
2407 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2408 			pgoff_t offset, unsigned long nr_to_read);
2409 
2410 void page_cache_sync_readahead(struct address_space *mapping,
2411 			       struct file_ra_state *ra,
2412 			       struct file *filp,
2413 			       pgoff_t offset,
2414 			       unsigned long size);
2415 
2416 void page_cache_async_readahead(struct address_space *mapping,
2417 				struct file_ra_state *ra,
2418 				struct file *filp,
2419 				struct page *pg,
2420 				pgoff_t offset,
2421 				unsigned long size);
2422 
2423 extern unsigned long stack_guard_gap;
2424 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2425 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2426 
2427 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2428 extern int expand_downwards(struct vm_area_struct *vma,
2429 		unsigned long address);
2430 #if VM_GROWSUP
2431 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2432 #else
2433   #define expand_upwards(vma, address) (0)
2434 #endif
2435 
2436 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2437 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2438 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2439 					     struct vm_area_struct **pprev);
2440 
2441 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2442    NULL if none.  Assume start_addr < end_addr. */
2443 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2444 {
2445 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2446 
2447 	if (vma && end_addr <= vma->vm_start)
2448 		vma = NULL;
2449 	return vma;
2450 }
2451 
2452 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2453 {
2454 	unsigned long vm_start = vma->vm_start;
2455 
2456 	if (vma->vm_flags & VM_GROWSDOWN) {
2457 		vm_start -= stack_guard_gap;
2458 		if (vm_start > vma->vm_start)
2459 			vm_start = 0;
2460 	}
2461 	return vm_start;
2462 }
2463 
2464 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2465 {
2466 	unsigned long vm_end = vma->vm_end;
2467 
2468 	if (vma->vm_flags & VM_GROWSUP) {
2469 		vm_end += stack_guard_gap;
2470 		if (vm_end < vma->vm_end)
2471 			vm_end = -PAGE_SIZE;
2472 	}
2473 	return vm_end;
2474 }
2475 
2476 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2477 {
2478 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2479 }
2480 
2481 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2482 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2483 				unsigned long vm_start, unsigned long vm_end)
2484 {
2485 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2486 
2487 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2488 		vma = NULL;
2489 
2490 	return vma;
2491 }
2492 
2493 static inline bool range_in_vma(struct vm_area_struct *vma,
2494 				unsigned long start, unsigned long end)
2495 {
2496 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2497 }
2498 
2499 #ifdef CONFIG_MMU
2500 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2501 void vma_set_page_prot(struct vm_area_struct *vma);
2502 #else
2503 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2504 {
2505 	return __pgprot(0);
2506 }
2507 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2508 {
2509 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2510 }
2511 #endif
2512 
2513 #ifdef CONFIG_NUMA_BALANCING
2514 unsigned long change_prot_numa(struct vm_area_struct *vma,
2515 			unsigned long start, unsigned long end);
2516 #endif
2517 
2518 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2519 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2520 			unsigned long pfn, unsigned long size, pgprot_t);
2521 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2522 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2523 				unsigned long num);
2524 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2525 				unsigned long num);
2526 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2527 			unsigned long pfn);
2528 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2529 			unsigned long pfn, pgprot_t pgprot);
2530 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2531 			pfn_t pfn);
2532 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2533 		unsigned long addr, pfn_t pfn);
2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2535 
2536 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2537 				unsigned long addr, struct page *page)
2538 {
2539 	int err = vm_insert_page(vma, addr, page);
2540 
2541 	if (err == -ENOMEM)
2542 		return VM_FAULT_OOM;
2543 	if (err < 0 && err != -EBUSY)
2544 		return VM_FAULT_SIGBUS;
2545 
2546 	return VM_FAULT_NOPAGE;
2547 }
2548 
2549 static inline vm_fault_t vmf_error(int err)
2550 {
2551 	if (err == -ENOMEM)
2552 		return VM_FAULT_OOM;
2553 	return VM_FAULT_SIGBUS;
2554 }
2555 
2556 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2557 			 unsigned int foll_flags);
2558 
2559 #define FOLL_WRITE	0x01	/* check pte is writable */
2560 #define FOLL_TOUCH	0x02	/* mark page accessed */
2561 #define FOLL_GET	0x04	/* do get_page on page */
2562 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2563 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2564 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2565 				 * and return without waiting upon it */
2566 #define FOLL_POPULATE	0x40	/* fault in page */
2567 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2568 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2569 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2570 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2571 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2572 #define FOLL_MLOCK	0x1000	/* lock present pages */
2573 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2574 #define FOLL_COW	0x4000	/* internal GUP flag */
2575 #define FOLL_ANON	0x8000	/* don't do file mappings */
2576 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2577 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2578 
2579 /*
2580  * NOTE on FOLL_LONGTERM:
2581  *
2582  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2583  * period _often_ under userspace control.  This is contrasted with
2584  * iov_iter_get_pages() where usages which are transient.
2585  *
2586  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2587  * lifetime enforced by the filesystem and we need guarantees that longterm
2588  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2589  * the filesystem.  Ideas for this coordination include revoking the longterm
2590  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2591  * added after the problem with filesystems was found FS DAX VMAs are
2592  * specifically failed.  Filesystem pages are still subject to bugs and use of
2593  * FOLL_LONGTERM should be avoided on those pages.
2594  *
2595  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2596  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2597  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2598  * is due to an incompatibility with the FS DAX check and
2599  * FAULT_FLAG_ALLOW_RETRY
2600  *
2601  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2602  * that region.  And so CMA attempts to migrate the page before pinning when
2603  * FOLL_LONGTERM is specified.
2604  */
2605 
2606 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2607 {
2608 	if (vm_fault & VM_FAULT_OOM)
2609 		return -ENOMEM;
2610 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2611 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2612 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2613 		return -EFAULT;
2614 	return 0;
2615 }
2616 
2617 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2618 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2619 			       unsigned long size, pte_fn_t fn, void *data);
2620 extern int apply_to_existing_page_range(struct mm_struct *mm,
2621 				   unsigned long address, unsigned long size,
2622 				   pte_fn_t fn, void *data);
2623 
2624 #ifdef CONFIG_PAGE_POISONING
2625 extern bool page_poisoning_enabled(void);
2626 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2627 #else
2628 static inline bool page_poisoning_enabled(void) { return false; }
2629 static inline void kernel_poison_pages(struct page *page, int numpages,
2630 					int enable) { }
2631 #endif
2632 
2633 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2634 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2635 #else
2636 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2637 #endif
2638 static inline bool want_init_on_alloc(gfp_t flags)
2639 {
2640 	if (static_branch_unlikely(&init_on_alloc) &&
2641 	    !page_poisoning_enabled())
2642 		return true;
2643 	return flags & __GFP_ZERO;
2644 }
2645 
2646 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2647 DECLARE_STATIC_KEY_TRUE(init_on_free);
2648 #else
2649 DECLARE_STATIC_KEY_FALSE(init_on_free);
2650 #endif
2651 static inline bool want_init_on_free(void)
2652 {
2653 	return static_branch_unlikely(&init_on_free) &&
2654 	       !page_poisoning_enabled();
2655 }
2656 
2657 #ifdef CONFIG_DEBUG_PAGEALLOC
2658 extern void init_debug_pagealloc(void);
2659 #else
2660 static inline void init_debug_pagealloc(void) {}
2661 #endif
2662 extern bool _debug_pagealloc_enabled_early;
2663 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2664 
2665 static inline bool debug_pagealloc_enabled(void)
2666 {
2667 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2668 		_debug_pagealloc_enabled_early;
2669 }
2670 
2671 /*
2672  * For use in fast paths after init_debug_pagealloc() has run, or when a
2673  * false negative result is not harmful when called too early.
2674  */
2675 static inline bool debug_pagealloc_enabled_static(void)
2676 {
2677 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2678 		return false;
2679 
2680 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2681 }
2682 
2683 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2684 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2685 
2686 static inline void
2687 kernel_map_pages(struct page *page, int numpages, int enable)
2688 {
2689 	__kernel_map_pages(page, numpages, enable);
2690 }
2691 #ifdef CONFIG_HIBERNATION
2692 extern bool kernel_page_present(struct page *page);
2693 #endif	/* CONFIG_HIBERNATION */
2694 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2695 static inline void
2696 kernel_map_pages(struct page *page, int numpages, int enable) {}
2697 #ifdef CONFIG_HIBERNATION
2698 static inline bool kernel_page_present(struct page *page) { return true; }
2699 #endif	/* CONFIG_HIBERNATION */
2700 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2701 
2702 #ifdef __HAVE_ARCH_GATE_AREA
2703 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2704 extern int in_gate_area_no_mm(unsigned long addr);
2705 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2706 #else
2707 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2708 {
2709 	return NULL;
2710 }
2711 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2712 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2713 {
2714 	return 0;
2715 }
2716 #endif	/* __HAVE_ARCH_GATE_AREA */
2717 
2718 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2719 
2720 #ifdef CONFIG_SYSCTL
2721 extern int sysctl_drop_caches;
2722 int drop_caches_sysctl_handler(struct ctl_table *, int,
2723 					void __user *, size_t *, loff_t *);
2724 #endif
2725 
2726 void drop_slab(void);
2727 void drop_slab_node(int nid);
2728 
2729 #ifndef CONFIG_MMU
2730 #define randomize_va_space 0
2731 #else
2732 extern int randomize_va_space;
2733 #endif
2734 
2735 const char * arch_vma_name(struct vm_area_struct *vma);
2736 #ifdef CONFIG_MMU
2737 void print_vma_addr(char *prefix, unsigned long rip);
2738 #else
2739 static inline void print_vma_addr(char *prefix, unsigned long rip)
2740 {
2741 }
2742 #endif
2743 
2744 void *sparse_buffer_alloc(unsigned long size);
2745 struct page * __populate_section_memmap(unsigned long pfn,
2746 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2747 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2748 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2749 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2750 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2751 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2752 void *vmemmap_alloc_block(unsigned long size, int node);
2753 struct vmem_altmap;
2754 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2755 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2756 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2757 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2758 			       int node);
2759 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2760 		struct vmem_altmap *altmap);
2761 void vmemmap_populate_print_last(void);
2762 #ifdef CONFIG_MEMORY_HOTPLUG
2763 void vmemmap_free(unsigned long start, unsigned long end,
2764 		struct vmem_altmap *altmap);
2765 #endif
2766 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2767 				  unsigned long nr_pages);
2768 
2769 enum mf_flags {
2770 	MF_COUNT_INCREASED = 1 << 0,
2771 	MF_ACTION_REQUIRED = 1 << 1,
2772 	MF_MUST_KILL = 1 << 2,
2773 	MF_SOFT_OFFLINE = 1 << 3,
2774 };
2775 extern int memory_failure(unsigned long pfn, int flags);
2776 extern void memory_failure_queue(unsigned long pfn, int flags);
2777 extern int unpoison_memory(unsigned long pfn);
2778 extern int get_hwpoison_page(struct page *page);
2779 #define put_hwpoison_page(page)	put_page(page)
2780 extern int sysctl_memory_failure_early_kill;
2781 extern int sysctl_memory_failure_recovery;
2782 extern void shake_page(struct page *p, int access);
2783 extern atomic_long_t num_poisoned_pages __read_mostly;
2784 extern int soft_offline_page(unsigned long pfn, int flags);
2785 
2786 
2787 /*
2788  * Error handlers for various types of pages.
2789  */
2790 enum mf_result {
2791 	MF_IGNORED,	/* Error: cannot be handled */
2792 	MF_FAILED,	/* Error: handling failed */
2793 	MF_DELAYED,	/* Will be handled later */
2794 	MF_RECOVERED,	/* Successfully recovered */
2795 };
2796 
2797 enum mf_action_page_type {
2798 	MF_MSG_KERNEL,
2799 	MF_MSG_KERNEL_HIGH_ORDER,
2800 	MF_MSG_SLAB,
2801 	MF_MSG_DIFFERENT_COMPOUND,
2802 	MF_MSG_POISONED_HUGE,
2803 	MF_MSG_HUGE,
2804 	MF_MSG_FREE_HUGE,
2805 	MF_MSG_NON_PMD_HUGE,
2806 	MF_MSG_UNMAP_FAILED,
2807 	MF_MSG_DIRTY_SWAPCACHE,
2808 	MF_MSG_CLEAN_SWAPCACHE,
2809 	MF_MSG_DIRTY_MLOCKED_LRU,
2810 	MF_MSG_CLEAN_MLOCKED_LRU,
2811 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2812 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2813 	MF_MSG_DIRTY_LRU,
2814 	MF_MSG_CLEAN_LRU,
2815 	MF_MSG_TRUNCATED_LRU,
2816 	MF_MSG_BUDDY,
2817 	MF_MSG_BUDDY_2ND,
2818 	MF_MSG_DAX,
2819 	MF_MSG_UNKNOWN,
2820 };
2821 
2822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2823 extern void clear_huge_page(struct page *page,
2824 			    unsigned long addr_hint,
2825 			    unsigned int pages_per_huge_page);
2826 extern void copy_user_huge_page(struct page *dst, struct page *src,
2827 				unsigned long addr_hint,
2828 				struct vm_area_struct *vma,
2829 				unsigned int pages_per_huge_page);
2830 extern long copy_huge_page_from_user(struct page *dst_page,
2831 				const void __user *usr_src,
2832 				unsigned int pages_per_huge_page,
2833 				bool allow_pagefault);
2834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2835 
2836 #ifdef CONFIG_DEBUG_PAGEALLOC
2837 extern unsigned int _debug_guardpage_minorder;
2838 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2839 
2840 static inline unsigned int debug_guardpage_minorder(void)
2841 {
2842 	return _debug_guardpage_minorder;
2843 }
2844 
2845 static inline bool debug_guardpage_enabled(void)
2846 {
2847 	return static_branch_unlikely(&_debug_guardpage_enabled);
2848 }
2849 
2850 static inline bool page_is_guard(struct page *page)
2851 {
2852 	if (!debug_guardpage_enabled())
2853 		return false;
2854 
2855 	return PageGuard(page);
2856 }
2857 #else
2858 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2859 static inline bool debug_guardpage_enabled(void) { return false; }
2860 static inline bool page_is_guard(struct page *page) { return false; }
2861 #endif /* CONFIG_DEBUG_PAGEALLOC */
2862 
2863 #if MAX_NUMNODES > 1
2864 void __init setup_nr_node_ids(void);
2865 #else
2866 static inline void setup_nr_node_ids(void) {}
2867 #endif
2868 
2869 extern int memcmp_pages(struct page *page1, struct page *page2);
2870 
2871 static inline int pages_identical(struct page *page1, struct page *page2)
2872 {
2873 	return !memcmp_pages(page1, page2);
2874 }
2875 
2876 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
2877 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
2878 						pgoff_t first_index, pgoff_t nr,
2879 						pgoff_t bitmap_pgoff,
2880 						unsigned long *bitmap,
2881 						pgoff_t *start,
2882 						pgoff_t *end);
2883 
2884 unsigned long wp_shared_mapping_range(struct address_space *mapping,
2885 				      pgoff_t first_index, pgoff_t nr);
2886 #endif
2887 
2888 #endif /* __KERNEL__ */
2889 #endif /* _LINUX_MM_H */
2890