1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 31 struct mempolicy; 32 struct anon_vma; 33 struct anon_vma_chain; 34 struct file_ra_state; 35 struct user_struct; 36 struct writeback_control; 37 struct bdi_writeback; 38 39 void init_mm_internals(void); 40 41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42 extern unsigned long max_mapnr; 43 44 static inline void set_max_mapnr(unsigned long limit) 45 { 46 max_mapnr = limit; 47 } 48 #else 49 static inline void set_max_mapnr(unsigned long limit) { } 50 #endif 51 52 extern atomic_long_t _totalram_pages; 53 static inline unsigned long totalram_pages(void) 54 { 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56 } 57 58 static inline void totalram_pages_inc(void) 59 { 60 atomic_long_inc(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_dec(void) 64 { 65 atomic_long_dec(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_add(long count) 69 { 70 atomic_long_add(count, &_totalram_pages); 71 } 72 73 static inline void totalram_pages_set(long val) 74 { 75 atomic_long_set(&_totalram_pages, val); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/pgtable.h> 100 #include <asm/processor.h> 101 102 /* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109 #ifndef untagged_addr 110 #define untagged_addr(addr) (addr) 111 #endif 112 113 #ifndef __pa_symbol 114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115 #endif 116 117 #ifndef page_to_virt 118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119 #endif 120 121 #ifndef lm_alias 122 #define lm_alias(x) __va(__pa_symbol(x)) 123 #endif 124 125 /* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132 #ifndef mm_forbids_zeropage 133 #define mm_forbids_zeropage(X) (0) 134 #endif 135 136 /* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142 #if BITS_PER_LONG == 64 143 /* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150 static inline void __mm_zero_struct_page(struct page *page) 151 { 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175 } 176 #else 177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178 #endif 179 180 /* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196 #define MAPCOUNT_ELF_CORE_MARGIN (5) 197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199 extern int sysctl_max_map_count; 200 201 extern unsigned long sysctl_user_reserve_kbytes; 202 extern unsigned long sysctl_admin_reserve_kbytes; 203 204 extern int sysctl_overcommit_memory; 205 extern int sysctl_overcommit_ratio; 206 extern unsigned long sysctl_overcommit_kbytes; 207 208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215 /* to align the pointer to the (next) page boundary */ 216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223 /* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234 void vm_area_free(struct vm_area_struct *); 235 236 #ifndef CONFIG_MMU 237 extern struct rb_root nommu_region_tree; 238 extern struct rw_semaphore nommu_region_sem; 239 240 extern unsigned int kobjsize(const void *objp); 241 #endif 242 243 /* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247 #define VM_NONE 0x00000000 248 249 #define VM_READ 0x00000001 /* currently active flags */ 250 #define VM_WRITE 0x00000002 251 #define VM_EXEC 0x00000004 252 #define VM_SHARED 0x00000008 253 254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256 #define VM_MAYWRITE 0x00000020 257 #define VM_MAYEXEC 0x00000040 258 #define VM_MAYSHARE 0x00000080 259 260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266 #define VM_LOCKED 0x00002000 267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284 #ifdef CONFIG_MEM_SOFT_DIRTY 285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286 #else 287 # define VM_SOFTDIRTY 0 288 #endif 289 290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308 #ifdef CONFIG_ARCH_HAS_PKEYS 309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314 #ifdef CONFIG_PPC 315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316 #else 317 # define VM_PKEY_BIT4 0 318 #endif 319 #endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321 #if defined(CONFIG_X86) 322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323 #elif defined(CONFIG_PPC) 324 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325 #elif defined(CONFIG_PARISC) 326 # define VM_GROWSUP VM_ARCH_1 327 #elif defined(CONFIG_IA64) 328 # define VM_GROWSUP VM_ARCH_1 329 #elif defined(CONFIG_SPARC64) 330 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331 # define VM_ARCH_CLEAR VM_SPARC_ADI 332 #elif !defined(CONFIG_MMU) 333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334 #endif 335 336 #if defined(CONFIG_X86_INTEL_MPX) 337 /* MPX specific bounds table or bounds directory */ 338 # define VM_MPX VM_HIGH_ARCH_4 339 #else 340 # define VM_MPX VM_NONE 341 #endif 342 343 #ifndef VM_GROWSUP 344 # define VM_GROWSUP VM_NONE 345 #endif 346 347 /* Bits set in the VMA until the stack is in its final location */ 348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352 #endif 353 354 #ifdef CONFIG_STACK_GROWSUP 355 #define VM_STACK VM_GROWSUP 356 #else 357 #define VM_STACK VM_GROWSDOWN 358 #endif 359 360 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362 /* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368 /* This mask defines which mm->def_flags a process can inherit its parent */ 369 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371 /* This mask is used to clear all the VMA flags used by mlock */ 372 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374 /* Arch-specific flags to clear when updating VM flags on protection change */ 375 #ifndef VM_ARCH_CLEAR 376 # define VM_ARCH_CLEAR VM_NONE 377 #endif 378 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380 /* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384 extern pgprot_t protection_map[16]; 385 386 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 392 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396 #define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407 /* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417 struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453 }; 454 455 /* page entry size for vm->huge_fault() */ 456 enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460 }; 461 462 /* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467 struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497 #ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519 #endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527 }; 528 529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530 { 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537 } 538 539 static inline void vma_set_anonymous(struct vm_area_struct *vma) 540 { 541 vma->vm_ops = NULL; 542 } 543 544 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 545 { 546 return !vma->vm_ops; 547 } 548 549 #ifdef CONFIG_SHMEM 550 /* 551 * The vma_is_shmem is not inline because it is used only by slow 552 * paths in userfault. 553 */ 554 bool vma_is_shmem(struct vm_area_struct *vma); 555 #else 556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 557 #endif 558 559 int vma_is_stack_for_current(struct vm_area_struct *vma); 560 561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 563 564 struct mmu_gather; 565 struct inode; 566 567 /* 568 * FIXME: take this include out, include page-flags.h in 569 * files which need it (119 of them) 570 */ 571 #include <linux/page-flags.h> 572 #include <linux/huge_mm.h> 573 574 /* 575 * Methods to modify the page usage count. 576 * 577 * What counts for a page usage: 578 * - cache mapping (page->mapping) 579 * - private data (page->private) 580 * - page mapped in a task's page tables, each mapping 581 * is counted separately 582 * 583 * Also, many kernel routines increase the page count before a critical 584 * routine so they can be sure the page doesn't go away from under them. 585 */ 586 587 /* 588 * Drop a ref, return true if the refcount fell to zero (the page has no users) 589 */ 590 static inline int put_page_testzero(struct page *page) 591 { 592 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 593 return page_ref_dec_and_test(page); 594 } 595 596 /* 597 * Try to grab a ref unless the page has a refcount of zero, return false if 598 * that is the case. 599 * This can be called when MMU is off so it must not access 600 * any of the virtual mappings. 601 */ 602 static inline int get_page_unless_zero(struct page *page) 603 { 604 return page_ref_add_unless(page, 1, 0); 605 } 606 607 extern int page_is_ram(unsigned long pfn); 608 609 enum { 610 REGION_INTERSECTS, 611 REGION_DISJOINT, 612 REGION_MIXED, 613 }; 614 615 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 616 unsigned long desc); 617 618 /* Support for virtually mapped pages */ 619 struct page *vmalloc_to_page(const void *addr); 620 unsigned long vmalloc_to_pfn(const void *addr); 621 622 /* 623 * Determine if an address is within the vmalloc range 624 * 625 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 626 * is no special casing required. 627 */ 628 629 #ifndef is_ioremap_addr 630 #define is_ioremap_addr(x) is_vmalloc_addr(x) 631 #endif 632 633 #ifdef CONFIG_MMU 634 extern bool is_vmalloc_addr(const void *x); 635 extern int is_vmalloc_or_module_addr(const void *x); 636 #else 637 static inline bool is_vmalloc_addr(const void *x) 638 { 639 return false; 640 } 641 static inline int is_vmalloc_or_module_addr(const void *x) 642 { 643 return 0; 644 } 645 #endif 646 647 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 648 static inline void *kvmalloc(size_t size, gfp_t flags) 649 { 650 return kvmalloc_node(size, flags, NUMA_NO_NODE); 651 } 652 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 653 { 654 return kvmalloc_node(size, flags | __GFP_ZERO, node); 655 } 656 static inline void *kvzalloc(size_t size, gfp_t flags) 657 { 658 return kvmalloc(size, flags | __GFP_ZERO); 659 } 660 661 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 662 { 663 size_t bytes; 664 665 if (unlikely(check_mul_overflow(n, size, &bytes))) 666 return NULL; 667 668 return kvmalloc(bytes, flags); 669 } 670 671 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 672 { 673 return kvmalloc_array(n, size, flags | __GFP_ZERO); 674 } 675 676 extern void kvfree(const void *addr); 677 678 static inline int compound_mapcount(struct page *page) 679 { 680 VM_BUG_ON_PAGE(!PageCompound(page), page); 681 page = compound_head(page); 682 return atomic_read(compound_mapcount_ptr(page)) + 1; 683 } 684 685 /* 686 * The atomic page->_mapcount, starts from -1: so that transitions 687 * both from it and to it can be tracked, using atomic_inc_and_test 688 * and atomic_add_negative(-1). 689 */ 690 static inline void page_mapcount_reset(struct page *page) 691 { 692 atomic_set(&(page)->_mapcount, -1); 693 } 694 695 int __page_mapcount(struct page *page); 696 697 static inline int page_mapcount(struct page *page) 698 { 699 VM_BUG_ON_PAGE(PageSlab(page), page); 700 701 if (unlikely(PageCompound(page))) 702 return __page_mapcount(page); 703 return atomic_read(&page->_mapcount) + 1; 704 } 705 706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 707 int total_mapcount(struct page *page); 708 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 709 #else 710 static inline int total_mapcount(struct page *page) 711 { 712 return page_mapcount(page); 713 } 714 static inline int page_trans_huge_mapcount(struct page *page, 715 int *total_mapcount) 716 { 717 int mapcount = page_mapcount(page); 718 if (total_mapcount) 719 *total_mapcount = mapcount; 720 return mapcount; 721 } 722 #endif 723 724 static inline struct page *virt_to_head_page(const void *x) 725 { 726 struct page *page = virt_to_page(x); 727 728 return compound_head(page); 729 } 730 731 void __put_page(struct page *page); 732 733 void put_pages_list(struct list_head *pages); 734 735 void split_page(struct page *page, unsigned int order); 736 737 /* 738 * Compound pages have a destructor function. Provide a 739 * prototype for that function and accessor functions. 740 * These are _only_ valid on the head of a compound page. 741 */ 742 typedef void compound_page_dtor(struct page *); 743 744 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 745 enum compound_dtor_id { 746 NULL_COMPOUND_DTOR, 747 COMPOUND_PAGE_DTOR, 748 #ifdef CONFIG_HUGETLB_PAGE 749 HUGETLB_PAGE_DTOR, 750 #endif 751 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 752 TRANSHUGE_PAGE_DTOR, 753 #endif 754 NR_COMPOUND_DTORS, 755 }; 756 extern compound_page_dtor * const compound_page_dtors[]; 757 758 static inline void set_compound_page_dtor(struct page *page, 759 enum compound_dtor_id compound_dtor) 760 { 761 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 762 page[1].compound_dtor = compound_dtor; 763 } 764 765 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 766 { 767 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 768 return compound_page_dtors[page[1].compound_dtor]; 769 } 770 771 static inline unsigned int compound_order(struct page *page) 772 { 773 if (!PageHead(page)) 774 return 0; 775 return page[1].compound_order; 776 } 777 778 static inline void set_compound_order(struct page *page, unsigned int order) 779 { 780 page[1].compound_order = order; 781 } 782 783 /* Returns the number of pages in this potentially compound page. */ 784 static inline unsigned long compound_nr(struct page *page) 785 { 786 return 1UL << compound_order(page); 787 } 788 789 /* Returns the number of bytes in this potentially compound page. */ 790 static inline unsigned long page_size(struct page *page) 791 { 792 return PAGE_SIZE << compound_order(page); 793 } 794 795 /* Returns the number of bits needed for the number of bytes in a page */ 796 static inline unsigned int page_shift(struct page *page) 797 { 798 return PAGE_SHIFT + compound_order(page); 799 } 800 801 void free_compound_page(struct page *page); 802 803 #ifdef CONFIG_MMU 804 /* 805 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 806 * servicing faults for write access. In the normal case, do always want 807 * pte_mkwrite. But get_user_pages can cause write faults for mappings 808 * that do not have writing enabled, when used by access_process_vm. 809 */ 810 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 811 { 812 if (likely(vma->vm_flags & VM_WRITE)) 813 pte = pte_mkwrite(pte); 814 return pte; 815 } 816 817 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 818 struct page *page); 819 vm_fault_t finish_fault(struct vm_fault *vmf); 820 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 821 #endif 822 823 /* 824 * Multiple processes may "see" the same page. E.g. for untouched 825 * mappings of /dev/null, all processes see the same page full of 826 * zeroes, and text pages of executables and shared libraries have 827 * only one copy in memory, at most, normally. 828 * 829 * For the non-reserved pages, page_count(page) denotes a reference count. 830 * page_count() == 0 means the page is free. page->lru is then used for 831 * freelist management in the buddy allocator. 832 * page_count() > 0 means the page has been allocated. 833 * 834 * Pages are allocated by the slab allocator in order to provide memory 835 * to kmalloc and kmem_cache_alloc. In this case, the management of the 836 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 837 * unless a particular usage is carefully commented. (the responsibility of 838 * freeing the kmalloc memory is the caller's, of course). 839 * 840 * A page may be used by anyone else who does a __get_free_page(). 841 * In this case, page_count still tracks the references, and should only 842 * be used through the normal accessor functions. The top bits of page->flags 843 * and page->virtual store page management information, but all other fields 844 * are unused and could be used privately, carefully. The management of this 845 * page is the responsibility of the one who allocated it, and those who have 846 * subsequently been given references to it. 847 * 848 * The other pages (we may call them "pagecache pages") are completely 849 * managed by the Linux memory manager: I/O, buffers, swapping etc. 850 * The following discussion applies only to them. 851 * 852 * A pagecache page contains an opaque `private' member, which belongs to the 853 * page's address_space. Usually, this is the address of a circular list of 854 * the page's disk buffers. PG_private must be set to tell the VM to call 855 * into the filesystem to release these pages. 856 * 857 * A page may belong to an inode's memory mapping. In this case, page->mapping 858 * is the pointer to the inode, and page->index is the file offset of the page, 859 * in units of PAGE_SIZE. 860 * 861 * If pagecache pages are not associated with an inode, they are said to be 862 * anonymous pages. These may become associated with the swapcache, and in that 863 * case PG_swapcache is set, and page->private is an offset into the swapcache. 864 * 865 * In either case (swapcache or inode backed), the pagecache itself holds one 866 * reference to the page. Setting PG_private should also increment the 867 * refcount. The each user mapping also has a reference to the page. 868 * 869 * The pagecache pages are stored in a per-mapping radix tree, which is 870 * rooted at mapping->i_pages, and indexed by offset. 871 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 872 * lists, we instead now tag pages as dirty/writeback in the radix tree. 873 * 874 * All pagecache pages may be subject to I/O: 875 * - inode pages may need to be read from disk, 876 * - inode pages which have been modified and are MAP_SHARED may need 877 * to be written back to the inode on disk, 878 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 879 * modified may need to be swapped out to swap space and (later) to be read 880 * back into memory. 881 */ 882 883 /* 884 * The zone field is never updated after free_area_init_core() 885 * sets it, so none of the operations on it need to be atomic. 886 */ 887 888 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 889 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 890 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 891 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 892 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 893 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 894 895 /* 896 * Define the bit shifts to access each section. For non-existent 897 * sections we define the shift as 0; that plus a 0 mask ensures 898 * the compiler will optimise away reference to them. 899 */ 900 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 901 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 902 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 903 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 904 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 905 906 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 907 #ifdef NODE_NOT_IN_PAGE_FLAGS 908 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 909 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 910 SECTIONS_PGOFF : ZONES_PGOFF) 911 #else 912 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 913 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 914 NODES_PGOFF : ZONES_PGOFF) 915 #endif 916 917 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 918 919 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 920 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 921 #endif 922 923 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 924 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 925 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 926 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 927 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 928 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 929 930 static inline enum zone_type page_zonenum(const struct page *page) 931 { 932 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 933 } 934 935 #ifdef CONFIG_ZONE_DEVICE 936 static inline bool is_zone_device_page(const struct page *page) 937 { 938 return page_zonenum(page) == ZONE_DEVICE; 939 } 940 extern void memmap_init_zone_device(struct zone *, unsigned long, 941 unsigned long, struct dev_pagemap *); 942 #else 943 static inline bool is_zone_device_page(const struct page *page) 944 { 945 return false; 946 } 947 #endif 948 949 #ifdef CONFIG_DEV_PAGEMAP_OPS 950 void __put_devmap_managed_page(struct page *page); 951 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 952 static inline bool put_devmap_managed_page(struct page *page) 953 { 954 if (!static_branch_unlikely(&devmap_managed_key)) 955 return false; 956 if (!is_zone_device_page(page)) 957 return false; 958 switch (page->pgmap->type) { 959 case MEMORY_DEVICE_PRIVATE: 960 case MEMORY_DEVICE_FS_DAX: 961 __put_devmap_managed_page(page); 962 return true; 963 default: 964 break; 965 } 966 return false; 967 } 968 969 #else /* CONFIG_DEV_PAGEMAP_OPS */ 970 static inline bool put_devmap_managed_page(struct page *page) 971 { 972 return false; 973 } 974 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 975 976 static inline bool is_device_private_page(const struct page *page) 977 { 978 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 979 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 980 is_zone_device_page(page) && 981 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 982 } 983 984 static inline bool is_pci_p2pdma_page(const struct page *page) 985 { 986 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 987 IS_ENABLED(CONFIG_PCI_P2PDMA) && 988 is_zone_device_page(page) && 989 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 990 } 991 992 /* 127: arbitrary random number, small enough to assemble well */ 993 #define page_ref_zero_or_close_to_overflow(page) \ 994 ((unsigned int) page_ref_count(page) + 127u <= 127u) 995 996 static inline void get_page(struct page *page) 997 { 998 page = compound_head(page); 999 /* 1000 * Getting a normal page or the head of a compound page 1001 * requires to already have an elevated page->_refcount. 1002 */ 1003 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1004 page_ref_inc(page); 1005 } 1006 1007 static inline __must_check bool try_get_page(struct page *page) 1008 { 1009 page = compound_head(page); 1010 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1011 return false; 1012 page_ref_inc(page); 1013 return true; 1014 } 1015 1016 static inline void put_page(struct page *page) 1017 { 1018 page = compound_head(page); 1019 1020 /* 1021 * For devmap managed pages we need to catch refcount transition from 1022 * 2 to 1, when refcount reach one it means the page is free and we 1023 * need to inform the device driver through callback. See 1024 * include/linux/memremap.h and HMM for details. 1025 */ 1026 if (put_devmap_managed_page(page)) 1027 return; 1028 1029 if (put_page_testzero(page)) 1030 __put_page(page); 1031 } 1032 1033 /** 1034 * put_user_page() - release a gup-pinned page 1035 * @page: pointer to page to be released 1036 * 1037 * Pages that were pinned via get_user_pages*() must be released via 1038 * either put_user_page(), or one of the put_user_pages*() routines 1039 * below. This is so that eventually, pages that are pinned via 1040 * get_user_pages*() can be separately tracked and uniquely handled. In 1041 * particular, interactions with RDMA and filesystems need special 1042 * handling. 1043 * 1044 * put_user_page() and put_page() are not interchangeable, despite this early 1045 * implementation that makes them look the same. put_user_page() calls must 1046 * be perfectly matched up with get_user_page() calls. 1047 */ 1048 static inline void put_user_page(struct page *page) 1049 { 1050 put_page(page); 1051 } 1052 1053 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1054 bool make_dirty); 1055 1056 void put_user_pages(struct page **pages, unsigned long npages); 1057 1058 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1059 #define SECTION_IN_PAGE_FLAGS 1060 #endif 1061 1062 /* 1063 * The identification function is mainly used by the buddy allocator for 1064 * determining if two pages could be buddies. We are not really identifying 1065 * the zone since we could be using the section number id if we do not have 1066 * node id available in page flags. 1067 * We only guarantee that it will return the same value for two combinable 1068 * pages in a zone. 1069 */ 1070 static inline int page_zone_id(struct page *page) 1071 { 1072 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1073 } 1074 1075 #ifdef NODE_NOT_IN_PAGE_FLAGS 1076 extern int page_to_nid(const struct page *page); 1077 #else 1078 static inline int page_to_nid(const struct page *page) 1079 { 1080 struct page *p = (struct page *)page; 1081 1082 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1083 } 1084 #endif 1085 1086 #ifdef CONFIG_NUMA_BALANCING 1087 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1088 { 1089 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1090 } 1091 1092 static inline int cpupid_to_pid(int cpupid) 1093 { 1094 return cpupid & LAST__PID_MASK; 1095 } 1096 1097 static inline int cpupid_to_cpu(int cpupid) 1098 { 1099 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1100 } 1101 1102 static inline int cpupid_to_nid(int cpupid) 1103 { 1104 return cpu_to_node(cpupid_to_cpu(cpupid)); 1105 } 1106 1107 static inline bool cpupid_pid_unset(int cpupid) 1108 { 1109 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1110 } 1111 1112 static inline bool cpupid_cpu_unset(int cpupid) 1113 { 1114 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1115 } 1116 1117 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1118 { 1119 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1120 } 1121 1122 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1124 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1125 { 1126 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1127 } 1128 1129 static inline int page_cpupid_last(struct page *page) 1130 { 1131 return page->_last_cpupid; 1132 } 1133 static inline void page_cpupid_reset_last(struct page *page) 1134 { 1135 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1136 } 1137 #else 1138 static inline int page_cpupid_last(struct page *page) 1139 { 1140 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1141 } 1142 1143 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1144 1145 static inline void page_cpupid_reset_last(struct page *page) 1146 { 1147 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1148 } 1149 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1150 #else /* !CONFIG_NUMA_BALANCING */ 1151 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1152 { 1153 return page_to_nid(page); /* XXX */ 1154 } 1155 1156 static inline int page_cpupid_last(struct page *page) 1157 { 1158 return page_to_nid(page); /* XXX */ 1159 } 1160 1161 static inline int cpupid_to_nid(int cpupid) 1162 { 1163 return -1; 1164 } 1165 1166 static inline int cpupid_to_pid(int cpupid) 1167 { 1168 return -1; 1169 } 1170 1171 static inline int cpupid_to_cpu(int cpupid) 1172 { 1173 return -1; 1174 } 1175 1176 static inline int cpu_pid_to_cpupid(int nid, int pid) 1177 { 1178 return -1; 1179 } 1180 1181 static inline bool cpupid_pid_unset(int cpupid) 1182 { 1183 return 1; 1184 } 1185 1186 static inline void page_cpupid_reset_last(struct page *page) 1187 { 1188 } 1189 1190 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1191 { 1192 return false; 1193 } 1194 #endif /* CONFIG_NUMA_BALANCING */ 1195 1196 #ifdef CONFIG_KASAN_SW_TAGS 1197 static inline u8 page_kasan_tag(const struct page *page) 1198 { 1199 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1200 } 1201 1202 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1203 { 1204 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1205 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1206 } 1207 1208 static inline void page_kasan_tag_reset(struct page *page) 1209 { 1210 page_kasan_tag_set(page, 0xff); 1211 } 1212 #else 1213 static inline u8 page_kasan_tag(const struct page *page) 1214 { 1215 return 0xff; 1216 } 1217 1218 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1219 static inline void page_kasan_tag_reset(struct page *page) { } 1220 #endif 1221 1222 static inline struct zone *page_zone(const struct page *page) 1223 { 1224 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1225 } 1226 1227 static inline pg_data_t *page_pgdat(const struct page *page) 1228 { 1229 return NODE_DATA(page_to_nid(page)); 1230 } 1231 1232 #ifdef SECTION_IN_PAGE_FLAGS 1233 static inline void set_page_section(struct page *page, unsigned long section) 1234 { 1235 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1236 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1237 } 1238 1239 static inline unsigned long page_to_section(const struct page *page) 1240 { 1241 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1242 } 1243 #endif 1244 1245 static inline void set_page_zone(struct page *page, enum zone_type zone) 1246 { 1247 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1248 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1249 } 1250 1251 static inline void set_page_node(struct page *page, unsigned long node) 1252 { 1253 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1254 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1255 } 1256 1257 static inline void set_page_links(struct page *page, enum zone_type zone, 1258 unsigned long node, unsigned long pfn) 1259 { 1260 set_page_zone(page, zone); 1261 set_page_node(page, node); 1262 #ifdef SECTION_IN_PAGE_FLAGS 1263 set_page_section(page, pfn_to_section_nr(pfn)); 1264 #endif 1265 } 1266 1267 #ifdef CONFIG_MEMCG 1268 static inline struct mem_cgroup *page_memcg(struct page *page) 1269 { 1270 return page->mem_cgroup; 1271 } 1272 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1273 { 1274 WARN_ON_ONCE(!rcu_read_lock_held()); 1275 return READ_ONCE(page->mem_cgroup); 1276 } 1277 #else 1278 static inline struct mem_cgroup *page_memcg(struct page *page) 1279 { 1280 return NULL; 1281 } 1282 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1283 { 1284 WARN_ON_ONCE(!rcu_read_lock_held()); 1285 return NULL; 1286 } 1287 #endif 1288 1289 /* 1290 * Some inline functions in vmstat.h depend on page_zone() 1291 */ 1292 #include <linux/vmstat.h> 1293 1294 static __always_inline void *lowmem_page_address(const struct page *page) 1295 { 1296 return page_to_virt(page); 1297 } 1298 1299 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1300 #define HASHED_PAGE_VIRTUAL 1301 #endif 1302 1303 #if defined(WANT_PAGE_VIRTUAL) 1304 static inline void *page_address(const struct page *page) 1305 { 1306 return page->virtual; 1307 } 1308 static inline void set_page_address(struct page *page, void *address) 1309 { 1310 page->virtual = address; 1311 } 1312 #define page_address_init() do { } while(0) 1313 #endif 1314 1315 #if defined(HASHED_PAGE_VIRTUAL) 1316 void *page_address(const struct page *page); 1317 void set_page_address(struct page *page, void *virtual); 1318 void page_address_init(void); 1319 #endif 1320 1321 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1322 #define page_address(page) lowmem_page_address(page) 1323 #define set_page_address(page, address) do { } while(0) 1324 #define page_address_init() do { } while(0) 1325 #endif 1326 1327 extern void *page_rmapping(struct page *page); 1328 extern struct anon_vma *page_anon_vma(struct page *page); 1329 extern struct address_space *page_mapping(struct page *page); 1330 1331 extern struct address_space *__page_file_mapping(struct page *); 1332 1333 static inline 1334 struct address_space *page_file_mapping(struct page *page) 1335 { 1336 if (unlikely(PageSwapCache(page))) 1337 return __page_file_mapping(page); 1338 1339 return page->mapping; 1340 } 1341 1342 extern pgoff_t __page_file_index(struct page *page); 1343 1344 /* 1345 * Return the pagecache index of the passed page. Regular pagecache pages 1346 * use ->index whereas swapcache pages use swp_offset(->private) 1347 */ 1348 static inline pgoff_t page_index(struct page *page) 1349 { 1350 if (unlikely(PageSwapCache(page))) 1351 return __page_file_index(page); 1352 return page->index; 1353 } 1354 1355 bool page_mapped(struct page *page); 1356 struct address_space *page_mapping(struct page *page); 1357 struct address_space *page_mapping_file(struct page *page); 1358 1359 /* 1360 * Return true only if the page has been allocated with 1361 * ALLOC_NO_WATERMARKS and the low watermark was not 1362 * met implying that the system is under some pressure. 1363 */ 1364 static inline bool page_is_pfmemalloc(struct page *page) 1365 { 1366 /* 1367 * Page index cannot be this large so this must be 1368 * a pfmemalloc page. 1369 */ 1370 return page->index == -1UL; 1371 } 1372 1373 /* 1374 * Only to be called by the page allocator on a freshly allocated 1375 * page. 1376 */ 1377 static inline void set_page_pfmemalloc(struct page *page) 1378 { 1379 page->index = -1UL; 1380 } 1381 1382 static inline void clear_page_pfmemalloc(struct page *page) 1383 { 1384 page->index = 0; 1385 } 1386 1387 /* 1388 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1389 */ 1390 extern void pagefault_out_of_memory(void); 1391 1392 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1393 1394 /* 1395 * Flags passed to show_mem() and show_free_areas() to suppress output in 1396 * various contexts. 1397 */ 1398 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1399 1400 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1401 1402 #ifdef CONFIG_MMU 1403 extern bool can_do_mlock(void); 1404 #else 1405 static inline bool can_do_mlock(void) { return false; } 1406 #endif 1407 extern int user_shm_lock(size_t, struct user_struct *); 1408 extern void user_shm_unlock(size_t, struct user_struct *); 1409 1410 /* 1411 * Parameter block passed down to zap_pte_range in exceptional cases. 1412 */ 1413 struct zap_details { 1414 struct address_space *check_mapping; /* Check page->mapping if set */ 1415 pgoff_t first_index; /* Lowest page->index to unmap */ 1416 pgoff_t last_index; /* Highest page->index to unmap */ 1417 }; 1418 1419 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1420 pte_t pte); 1421 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1422 pmd_t pmd); 1423 1424 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1425 unsigned long size); 1426 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1427 unsigned long size); 1428 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1429 unsigned long start, unsigned long end); 1430 1431 struct mmu_notifier_range; 1432 1433 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1434 unsigned long end, unsigned long floor, unsigned long ceiling); 1435 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1436 struct vm_area_struct *vma); 1437 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1438 struct mmu_notifier_range *range, 1439 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1440 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1441 unsigned long *pfn); 1442 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1443 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1444 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1445 void *buf, int len, int write); 1446 1447 extern void truncate_pagecache(struct inode *inode, loff_t new); 1448 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1449 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1450 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1451 int truncate_inode_page(struct address_space *mapping, struct page *page); 1452 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1453 int invalidate_inode_page(struct page *page); 1454 1455 #ifdef CONFIG_MMU 1456 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1457 unsigned long address, unsigned int flags); 1458 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1459 unsigned long address, unsigned int fault_flags, 1460 bool *unlocked); 1461 void unmap_mapping_pages(struct address_space *mapping, 1462 pgoff_t start, pgoff_t nr, bool even_cows); 1463 void unmap_mapping_range(struct address_space *mapping, 1464 loff_t const holebegin, loff_t const holelen, int even_cows); 1465 #else 1466 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1467 unsigned long address, unsigned int flags) 1468 { 1469 /* should never happen if there's no MMU */ 1470 BUG(); 1471 return VM_FAULT_SIGBUS; 1472 } 1473 static inline int fixup_user_fault(struct task_struct *tsk, 1474 struct mm_struct *mm, unsigned long address, 1475 unsigned int fault_flags, bool *unlocked) 1476 { 1477 /* should never happen if there's no MMU */ 1478 BUG(); 1479 return -EFAULT; 1480 } 1481 static inline void unmap_mapping_pages(struct address_space *mapping, 1482 pgoff_t start, pgoff_t nr, bool even_cows) { } 1483 static inline void unmap_mapping_range(struct address_space *mapping, 1484 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1485 #endif 1486 1487 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1488 loff_t const holebegin, loff_t const holelen) 1489 { 1490 unmap_mapping_range(mapping, holebegin, holelen, 0); 1491 } 1492 1493 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1494 void *buf, int len, unsigned int gup_flags); 1495 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1496 void *buf, int len, unsigned int gup_flags); 1497 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1498 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1499 1500 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1501 unsigned long start, unsigned long nr_pages, 1502 unsigned int gup_flags, struct page **pages, 1503 struct vm_area_struct **vmas, int *locked); 1504 long get_user_pages(unsigned long start, unsigned long nr_pages, 1505 unsigned int gup_flags, struct page **pages, 1506 struct vm_area_struct **vmas); 1507 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1508 unsigned int gup_flags, struct page **pages, int *locked); 1509 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1510 struct page **pages, unsigned int gup_flags); 1511 1512 int get_user_pages_fast(unsigned long start, int nr_pages, 1513 unsigned int gup_flags, struct page **pages); 1514 1515 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1516 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1517 struct task_struct *task, bool bypass_rlim); 1518 1519 /* Container for pinned pfns / pages */ 1520 struct frame_vector { 1521 unsigned int nr_allocated; /* Number of frames we have space for */ 1522 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1523 bool got_ref; /* Did we pin pages by getting page ref? */ 1524 bool is_pfns; /* Does array contain pages or pfns? */ 1525 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1526 * pfns_vector_pages() or pfns_vector_pfns() 1527 * for access */ 1528 }; 1529 1530 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1531 void frame_vector_destroy(struct frame_vector *vec); 1532 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1533 unsigned int gup_flags, struct frame_vector *vec); 1534 void put_vaddr_frames(struct frame_vector *vec); 1535 int frame_vector_to_pages(struct frame_vector *vec); 1536 void frame_vector_to_pfns(struct frame_vector *vec); 1537 1538 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1539 { 1540 return vec->nr_frames; 1541 } 1542 1543 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1544 { 1545 if (vec->is_pfns) { 1546 int err = frame_vector_to_pages(vec); 1547 1548 if (err) 1549 return ERR_PTR(err); 1550 } 1551 return (struct page **)(vec->ptrs); 1552 } 1553 1554 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1555 { 1556 if (!vec->is_pfns) 1557 frame_vector_to_pfns(vec); 1558 return (unsigned long *)(vec->ptrs); 1559 } 1560 1561 struct kvec; 1562 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1563 struct page **pages); 1564 int get_kernel_page(unsigned long start, int write, struct page **pages); 1565 struct page *get_dump_page(unsigned long addr); 1566 1567 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1568 extern void do_invalidatepage(struct page *page, unsigned int offset, 1569 unsigned int length); 1570 1571 void __set_page_dirty(struct page *, struct address_space *, int warn); 1572 int __set_page_dirty_nobuffers(struct page *page); 1573 int __set_page_dirty_no_writeback(struct page *page); 1574 int redirty_page_for_writepage(struct writeback_control *wbc, 1575 struct page *page); 1576 void account_page_dirtied(struct page *page, struct address_space *mapping); 1577 void account_page_cleaned(struct page *page, struct address_space *mapping, 1578 struct bdi_writeback *wb); 1579 int set_page_dirty(struct page *page); 1580 int set_page_dirty_lock(struct page *page); 1581 void __cancel_dirty_page(struct page *page); 1582 static inline void cancel_dirty_page(struct page *page) 1583 { 1584 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1585 if (PageDirty(page)) 1586 __cancel_dirty_page(page); 1587 } 1588 int clear_page_dirty_for_io(struct page *page); 1589 1590 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1591 1592 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1593 unsigned long old_addr, struct vm_area_struct *new_vma, 1594 unsigned long new_addr, unsigned long len, 1595 bool need_rmap_locks); 1596 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1597 unsigned long end, pgprot_t newprot, 1598 int dirty_accountable, int prot_numa); 1599 extern int mprotect_fixup(struct vm_area_struct *vma, 1600 struct vm_area_struct **pprev, unsigned long start, 1601 unsigned long end, unsigned long newflags); 1602 1603 /* 1604 * doesn't attempt to fault and will return short. 1605 */ 1606 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1607 struct page **pages); 1608 /* 1609 * per-process(per-mm_struct) statistics. 1610 */ 1611 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1612 { 1613 long val = atomic_long_read(&mm->rss_stat.count[member]); 1614 1615 #ifdef SPLIT_RSS_COUNTING 1616 /* 1617 * counter is updated in asynchronous manner and may go to minus. 1618 * But it's never be expected number for users. 1619 */ 1620 if (val < 0) 1621 val = 0; 1622 #endif 1623 return (unsigned long)val; 1624 } 1625 1626 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1627 1628 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1629 { 1630 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1631 1632 mm_trace_rss_stat(mm, member, count); 1633 } 1634 1635 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1636 { 1637 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1638 1639 mm_trace_rss_stat(mm, member, count); 1640 } 1641 1642 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1643 { 1644 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1645 1646 mm_trace_rss_stat(mm, member, count); 1647 } 1648 1649 /* Optimized variant when page is already known not to be PageAnon */ 1650 static inline int mm_counter_file(struct page *page) 1651 { 1652 if (PageSwapBacked(page)) 1653 return MM_SHMEMPAGES; 1654 return MM_FILEPAGES; 1655 } 1656 1657 static inline int mm_counter(struct page *page) 1658 { 1659 if (PageAnon(page)) 1660 return MM_ANONPAGES; 1661 return mm_counter_file(page); 1662 } 1663 1664 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1665 { 1666 return get_mm_counter(mm, MM_FILEPAGES) + 1667 get_mm_counter(mm, MM_ANONPAGES) + 1668 get_mm_counter(mm, MM_SHMEMPAGES); 1669 } 1670 1671 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1672 { 1673 return max(mm->hiwater_rss, get_mm_rss(mm)); 1674 } 1675 1676 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1677 { 1678 return max(mm->hiwater_vm, mm->total_vm); 1679 } 1680 1681 static inline void update_hiwater_rss(struct mm_struct *mm) 1682 { 1683 unsigned long _rss = get_mm_rss(mm); 1684 1685 if ((mm)->hiwater_rss < _rss) 1686 (mm)->hiwater_rss = _rss; 1687 } 1688 1689 static inline void update_hiwater_vm(struct mm_struct *mm) 1690 { 1691 if (mm->hiwater_vm < mm->total_vm) 1692 mm->hiwater_vm = mm->total_vm; 1693 } 1694 1695 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1696 { 1697 mm->hiwater_rss = get_mm_rss(mm); 1698 } 1699 1700 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1701 struct mm_struct *mm) 1702 { 1703 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1704 1705 if (*maxrss < hiwater_rss) 1706 *maxrss = hiwater_rss; 1707 } 1708 1709 #if defined(SPLIT_RSS_COUNTING) 1710 void sync_mm_rss(struct mm_struct *mm); 1711 #else 1712 static inline void sync_mm_rss(struct mm_struct *mm) 1713 { 1714 } 1715 #endif 1716 1717 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1718 static inline int pte_devmap(pte_t pte) 1719 { 1720 return 0; 1721 } 1722 #endif 1723 1724 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1725 1726 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1727 spinlock_t **ptl); 1728 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1729 spinlock_t **ptl) 1730 { 1731 pte_t *ptep; 1732 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1733 return ptep; 1734 } 1735 1736 #ifdef __PAGETABLE_P4D_FOLDED 1737 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1738 unsigned long address) 1739 { 1740 return 0; 1741 } 1742 #else 1743 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1744 #endif 1745 1746 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1747 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1748 unsigned long address) 1749 { 1750 return 0; 1751 } 1752 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1753 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1754 1755 #else 1756 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1757 1758 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1759 { 1760 if (mm_pud_folded(mm)) 1761 return; 1762 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1763 } 1764 1765 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1766 { 1767 if (mm_pud_folded(mm)) 1768 return; 1769 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1770 } 1771 #endif 1772 1773 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1774 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1775 unsigned long address) 1776 { 1777 return 0; 1778 } 1779 1780 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1781 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1782 1783 #else 1784 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1785 1786 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1787 { 1788 if (mm_pmd_folded(mm)) 1789 return; 1790 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1791 } 1792 1793 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1794 { 1795 if (mm_pmd_folded(mm)) 1796 return; 1797 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1798 } 1799 #endif 1800 1801 #ifdef CONFIG_MMU 1802 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1803 { 1804 atomic_long_set(&mm->pgtables_bytes, 0); 1805 } 1806 1807 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1808 { 1809 return atomic_long_read(&mm->pgtables_bytes); 1810 } 1811 1812 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1813 { 1814 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1815 } 1816 1817 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1818 { 1819 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1820 } 1821 #else 1822 1823 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1824 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1825 { 1826 return 0; 1827 } 1828 1829 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1830 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1831 #endif 1832 1833 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1834 int __pte_alloc_kernel(pmd_t *pmd); 1835 1836 #if defined(CONFIG_MMU) 1837 1838 /* 1839 * The following ifdef needed to get the 5level-fixup.h header to work. 1840 * Remove it when 5level-fixup.h has been removed. 1841 */ 1842 #ifndef __ARCH_HAS_5LEVEL_HACK 1843 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1844 unsigned long address) 1845 { 1846 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1847 NULL : p4d_offset(pgd, address); 1848 } 1849 1850 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1851 unsigned long address) 1852 { 1853 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1854 NULL : pud_offset(p4d, address); 1855 } 1856 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1857 1858 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1859 { 1860 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1861 NULL: pmd_offset(pud, address); 1862 } 1863 #endif /* CONFIG_MMU */ 1864 1865 #if USE_SPLIT_PTE_PTLOCKS 1866 #if ALLOC_SPLIT_PTLOCKS 1867 void __init ptlock_cache_init(void); 1868 extern bool ptlock_alloc(struct page *page); 1869 extern void ptlock_free(struct page *page); 1870 1871 static inline spinlock_t *ptlock_ptr(struct page *page) 1872 { 1873 return page->ptl; 1874 } 1875 #else /* ALLOC_SPLIT_PTLOCKS */ 1876 static inline void ptlock_cache_init(void) 1877 { 1878 } 1879 1880 static inline bool ptlock_alloc(struct page *page) 1881 { 1882 return true; 1883 } 1884 1885 static inline void ptlock_free(struct page *page) 1886 { 1887 } 1888 1889 static inline spinlock_t *ptlock_ptr(struct page *page) 1890 { 1891 return &page->ptl; 1892 } 1893 #endif /* ALLOC_SPLIT_PTLOCKS */ 1894 1895 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1896 { 1897 return ptlock_ptr(pmd_page(*pmd)); 1898 } 1899 1900 static inline bool ptlock_init(struct page *page) 1901 { 1902 /* 1903 * prep_new_page() initialize page->private (and therefore page->ptl) 1904 * with 0. Make sure nobody took it in use in between. 1905 * 1906 * It can happen if arch try to use slab for page table allocation: 1907 * slab code uses page->slab_cache, which share storage with page->ptl. 1908 */ 1909 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1910 if (!ptlock_alloc(page)) 1911 return false; 1912 spin_lock_init(ptlock_ptr(page)); 1913 return true; 1914 } 1915 1916 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1917 /* 1918 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1919 */ 1920 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1921 { 1922 return &mm->page_table_lock; 1923 } 1924 static inline void ptlock_cache_init(void) {} 1925 static inline bool ptlock_init(struct page *page) { return true; } 1926 static inline void ptlock_free(struct page *page) {} 1927 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1928 1929 static inline void pgtable_init(void) 1930 { 1931 ptlock_cache_init(); 1932 pgtable_cache_init(); 1933 } 1934 1935 static inline bool pgtable_pte_page_ctor(struct page *page) 1936 { 1937 if (!ptlock_init(page)) 1938 return false; 1939 __SetPageTable(page); 1940 inc_zone_page_state(page, NR_PAGETABLE); 1941 return true; 1942 } 1943 1944 static inline void pgtable_pte_page_dtor(struct page *page) 1945 { 1946 ptlock_free(page); 1947 __ClearPageTable(page); 1948 dec_zone_page_state(page, NR_PAGETABLE); 1949 } 1950 1951 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1952 ({ \ 1953 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1954 pte_t *__pte = pte_offset_map(pmd, address); \ 1955 *(ptlp) = __ptl; \ 1956 spin_lock(__ptl); \ 1957 __pte; \ 1958 }) 1959 1960 #define pte_unmap_unlock(pte, ptl) do { \ 1961 spin_unlock(ptl); \ 1962 pte_unmap(pte); \ 1963 } while (0) 1964 1965 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 1966 1967 #define pte_alloc_map(mm, pmd, address) \ 1968 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 1969 1970 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1971 (pte_alloc(mm, pmd) ? \ 1972 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1973 1974 #define pte_alloc_kernel(pmd, address) \ 1975 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 1976 NULL: pte_offset_kernel(pmd, address)) 1977 1978 #if USE_SPLIT_PMD_PTLOCKS 1979 1980 static struct page *pmd_to_page(pmd_t *pmd) 1981 { 1982 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1983 return virt_to_page((void *)((unsigned long) pmd & mask)); 1984 } 1985 1986 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1987 { 1988 return ptlock_ptr(pmd_to_page(pmd)); 1989 } 1990 1991 static inline bool pgtable_pmd_page_ctor(struct page *page) 1992 { 1993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1994 page->pmd_huge_pte = NULL; 1995 #endif 1996 return ptlock_init(page); 1997 } 1998 1999 static inline void pgtable_pmd_page_dtor(struct page *page) 2000 { 2001 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2002 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2003 #endif 2004 ptlock_free(page); 2005 } 2006 2007 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2008 2009 #else 2010 2011 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2012 { 2013 return &mm->page_table_lock; 2014 } 2015 2016 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2017 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2018 2019 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2020 2021 #endif 2022 2023 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2024 { 2025 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2026 spin_lock(ptl); 2027 return ptl; 2028 } 2029 2030 /* 2031 * No scalability reason to split PUD locks yet, but follow the same pattern 2032 * as the PMD locks to make it easier if we decide to. The VM should not be 2033 * considered ready to switch to split PUD locks yet; there may be places 2034 * which need to be converted from page_table_lock. 2035 */ 2036 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2037 { 2038 return &mm->page_table_lock; 2039 } 2040 2041 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2042 { 2043 spinlock_t *ptl = pud_lockptr(mm, pud); 2044 2045 spin_lock(ptl); 2046 return ptl; 2047 } 2048 2049 extern void __init pagecache_init(void); 2050 extern void free_area_init(unsigned long * zones_size); 2051 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2052 unsigned long zone_start_pfn, unsigned long *zholes_size); 2053 extern void free_initmem(void); 2054 2055 /* 2056 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2057 * into the buddy system. The freed pages will be poisoned with pattern 2058 * "poison" if it's within range [0, UCHAR_MAX]. 2059 * Return pages freed into the buddy system. 2060 */ 2061 extern unsigned long free_reserved_area(void *start, void *end, 2062 int poison, const char *s); 2063 2064 #ifdef CONFIG_HIGHMEM 2065 /* 2066 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2067 * and totalram_pages. 2068 */ 2069 extern void free_highmem_page(struct page *page); 2070 #endif 2071 2072 extern void adjust_managed_page_count(struct page *page, long count); 2073 extern void mem_init_print_info(const char *str); 2074 2075 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2076 2077 /* Free the reserved page into the buddy system, so it gets managed. */ 2078 static inline void __free_reserved_page(struct page *page) 2079 { 2080 ClearPageReserved(page); 2081 init_page_count(page); 2082 __free_page(page); 2083 } 2084 2085 static inline void free_reserved_page(struct page *page) 2086 { 2087 __free_reserved_page(page); 2088 adjust_managed_page_count(page, 1); 2089 } 2090 2091 static inline void mark_page_reserved(struct page *page) 2092 { 2093 SetPageReserved(page); 2094 adjust_managed_page_count(page, -1); 2095 } 2096 2097 /* 2098 * Default method to free all the __init memory into the buddy system. 2099 * The freed pages will be poisoned with pattern "poison" if it's within 2100 * range [0, UCHAR_MAX]. 2101 * Return pages freed into the buddy system. 2102 */ 2103 static inline unsigned long free_initmem_default(int poison) 2104 { 2105 extern char __init_begin[], __init_end[]; 2106 2107 return free_reserved_area(&__init_begin, &__init_end, 2108 poison, "unused kernel"); 2109 } 2110 2111 static inline unsigned long get_num_physpages(void) 2112 { 2113 int nid; 2114 unsigned long phys_pages = 0; 2115 2116 for_each_online_node(nid) 2117 phys_pages += node_present_pages(nid); 2118 2119 return phys_pages; 2120 } 2121 2122 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2123 /* 2124 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2125 * zones, allocate the backing mem_map and account for memory holes in a more 2126 * architecture independent manner. This is a substitute for creating the 2127 * zone_sizes[] and zholes_size[] arrays and passing them to 2128 * free_area_init_node() 2129 * 2130 * An architecture is expected to register range of page frames backed by 2131 * physical memory with memblock_add[_node]() before calling 2132 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2133 * usage, an architecture is expected to do something like 2134 * 2135 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2136 * max_highmem_pfn}; 2137 * for_each_valid_physical_page_range() 2138 * memblock_add_node(base, size, nid) 2139 * free_area_init_nodes(max_zone_pfns); 2140 * 2141 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2142 * registered physical page range. Similarly 2143 * sparse_memory_present_with_active_regions() calls memory_present() for 2144 * each range when SPARSEMEM is enabled. 2145 * 2146 * See mm/page_alloc.c for more information on each function exposed by 2147 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2148 */ 2149 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2150 unsigned long node_map_pfn_alignment(void); 2151 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2152 unsigned long end_pfn); 2153 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2154 unsigned long end_pfn); 2155 extern void get_pfn_range_for_nid(unsigned int nid, 2156 unsigned long *start_pfn, unsigned long *end_pfn); 2157 extern unsigned long find_min_pfn_with_active_regions(void); 2158 extern void free_bootmem_with_active_regions(int nid, 2159 unsigned long max_low_pfn); 2160 extern void sparse_memory_present_with_active_regions(int nid); 2161 2162 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2163 2164 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2165 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2166 static inline int __early_pfn_to_nid(unsigned long pfn, 2167 struct mminit_pfnnid_cache *state) 2168 { 2169 return 0; 2170 } 2171 #else 2172 /* please see mm/page_alloc.c */ 2173 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2174 /* there is a per-arch backend function. */ 2175 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2176 struct mminit_pfnnid_cache *state); 2177 #endif 2178 2179 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2180 void zero_resv_unavail(void); 2181 #else 2182 static inline void zero_resv_unavail(void) {} 2183 #endif 2184 2185 extern void set_dma_reserve(unsigned long new_dma_reserve); 2186 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2187 enum memmap_context, struct vmem_altmap *); 2188 extern void setup_per_zone_wmarks(void); 2189 extern int __meminit init_per_zone_wmark_min(void); 2190 extern void mem_init(void); 2191 extern void __init mmap_init(void); 2192 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2193 extern long si_mem_available(void); 2194 extern void si_meminfo(struct sysinfo * val); 2195 extern void si_meminfo_node(struct sysinfo *val, int nid); 2196 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2197 extern unsigned long arch_reserved_kernel_pages(void); 2198 #endif 2199 2200 extern __printf(3, 4) 2201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2202 2203 extern void setup_per_cpu_pageset(void); 2204 2205 /* page_alloc.c */ 2206 extern int min_free_kbytes; 2207 extern int watermark_boost_factor; 2208 extern int watermark_scale_factor; 2209 2210 /* nommu.c */ 2211 extern atomic_long_t mmap_pages_allocated; 2212 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2213 2214 /* interval_tree.c */ 2215 void vma_interval_tree_insert(struct vm_area_struct *node, 2216 struct rb_root_cached *root); 2217 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2218 struct vm_area_struct *prev, 2219 struct rb_root_cached *root); 2220 void vma_interval_tree_remove(struct vm_area_struct *node, 2221 struct rb_root_cached *root); 2222 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2223 unsigned long start, unsigned long last); 2224 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2225 unsigned long start, unsigned long last); 2226 2227 #define vma_interval_tree_foreach(vma, root, start, last) \ 2228 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2229 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2230 2231 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2232 struct rb_root_cached *root); 2233 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2234 struct rb_root_cached *root); 2235 struct anon_vma_chain * 2236 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2237 unsigned long start, unsigned long last); 2238 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2239 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2240 #ifdef CONFIG_DEBUG_VM_RB 2241 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2242 #endif 2243 2244 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2245 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2246 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2247 2248 /* mmap.c */ 2249 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2250 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2251 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2252 struct vm_area_struct *expand); 2253 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2254 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2255 { 2256 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2257 } 2258 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2259 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2260 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2261 struct mempolicy *, struct vm_userfaultfd_ctx); 2262 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2263 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2264 unsigned long addr, int new_below); 2265 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2266 unsigned long addr, int new_below); 2267 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2268 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2269 struct rb_node **, struct rb_node *); 2270 extern void unlink_file_vma(struct vm_area_struct *); 2271 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2272 unsigned long addr, unsigned long len, pgoff_t pgoff, 2273 bool *need_rmap_locks); 2274 extern void exit_mmap(struct mm_struct *); 2275 2276 static inline int check_data_rlimit(unsigned long rlim, 2277 unsigned long new, 2278 unsigned long start, 2279 unsigned long end_data, 2280 unsigned long start_data) 2281 { 2282 if (rlim < RLIM_INFINITY) { 2283 if (((new - start) + (end_data - start_data)) > rlim) 2284 return -ENOSPC; 2285 } 2286 2287 return 0; 2288 } 2289 2290 extern int mm_take_all_locks(struct mm_struct *mm); 2291 extern void mm_drop_all_locks(struct mm_struct *mm); 2292 2293 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2294 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2295 extern struct file *get_task_exe_file(struct task_struct *task); 2296 2297 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2298 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2299 2300 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2301 const struct vm_special_mapping *sm); 2302 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2303 unsigned long addr, unsigned long len, 2304 unsigned long flags, 2305 const struct vm_special_mapping *spec); 2306 /* This is an obsolete alternative to _install_special_mapping. */ 2307 extern int install_special_mapping(struct mm_struct *mm, 2308 unsigned long addr, unsigned long len, 2309 unsigned long flags, struct page **pages); 2310 2311 unsigned long randomize_stack_top(unsigned long stack_top); 2312 2313 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2314 2315 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2316 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2317 struct list_head *uf); 2318 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2319 unsigned long len, unsigned long prot, unsigned long flags, 2320 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2321 struct list_head *uf); 2322 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2323 struct list_head *uf, bool downgrade); 2324 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2325 struct list_head *uf); 2326 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2327 2328 static inline unsigned long 2329 do_mmap_pgoff(struct file *file, unsigned long addr, 2330 unsigned long len, unsigned long prot, unsigned long flags, 2331 unsigned long pgoff, unsigned long *populate, 2332 struct list_head *uf) 2333 { 2334 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2335 } 2336 2337 #ifdef CONFIG_MMU 2338 extern int __mm_populate(unsigned long addr, unsigned long len, 2339 int ignore_errors); 2340 static inline void mm_populate(unsigned long addr, unsigned long len) 2341 { 2342 /* Ignore errors */ 2343 (void) __mm_populate(addr, len, 1); 2344 } 2345 #else 2346 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2347 #endif 2348 2349 /* These take the mm semaphore themselves */ 2350 extern int __must_check vm_brk(unsigned long, unsigned long); 2351 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2352 extern int vm_munmap(unsigned long, size_t); 2353 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2354 unsigned long, unsigned long, 2355 unsigned long, unsigned long); 2356 2357 struct vm_unmapped_area_info { 2358 #define VM_UNMAPPED_AREA_TOPDOWN 1 2359 unsigned long flags; 2360 unsigned long length; 2361 unsigned long low_limit; 2362 unsigned long high_limit; 2363 unsigned long align_mask; 2364 unsigned long align_offset; 2365 }; 2366 2367 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2368 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2369 2370 /* 2371 * Search for an unmapped address range. 2372 * 2373 * We are looking for a range that: 2374 * - does not intersect with any VMA; 2375 * - is contained within the [low_limit, high_limit) interval; 2376 * - is at least the desired size. 2377 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2378 */ 2379 static inline unsigned long 2380 vm_unmapped_area(struct vm_unmapped_area_info *info) 2381 { 2382 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2383 return unmapped_area_topdown(info); 2384 else 2385 return unmapped_area(info); 2386 } 2387 2388 /* truncate.c */ 2389 extern void truncate_inode_pages(struct address_space *, loff_t); 2390 extern void truncate_inode_pages_range(struct address_space *, 2391 loff_t lstart, loff_t lend); 2392 extern void truncate_inode_pages_final(struct address_space *); 2393 2394 /* generic vm_area_ops exported for stackable file systems */ 2395 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2396 extern void filemap_map_pages(struct vm_fault *vmf, 2397 pgoff_t start_pgoff, pgoff_t end_pgoff); 2398 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2399 2400 /* mm/page-writeback.c */ 2401 int __must_check write_one_page(struct page *page); 2402 void task_dirty_inc(struct task_struct *tsk); 2403 2404 /* readahead.c */ 2405 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2406 2407 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2408 pgoff_t offset, unsigned long nr_to_read); 2409 2410 void page_cache_sync_readahead(struct address_space *mapping, 2411 struct file_ra_state *ra, 2412 struct file *filp, 2413 pgoff_t offset, 2414 unsigned long size); 2415 2416 void page_cache_async_readahead(struct address_space *mapping, 2417 struct file_ra_state *ra, 2418 struct file *filp, 2419 struct page *pg, 2420 pgoff_t offset, 2421 unsigned long size); 2422 2423 extern unsigned long stack_guard_gap; 2424 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2425 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2426 2427 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2428 extern int expand_downwards(struct vm_area_struct *vma, 2429 unsigned long address); 2430 #if VM_GROWSUP 2431 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2432 #else 2433 #define expand_upwards(vma, address) (0) 2434 #endif 2435 2436 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2437 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2438 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2439 struct vm_area_struct **pprev); 2440 2441 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2442 NULL if none. Assume start_addr < end_addr. */ 2443 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2444 { 2445 struct vm_area_struct * vma = find_vma(mm,start_addr); 2446 2447 if (vma && end_addr <= vma->vm_start) 2448 vma = NULL; 2449 return vma; 2450 } 2451 2452 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2453 { 2454 unsigned long vm_start = vma->vm_start; 2455 2456 if (vma->vm_flags & VM_GROWSDOWN) { 2457 vm_start -= stack_guard_gap; 2458 if (vm_start > vma->vm_start) 2459 vm_start = 0; 2460 } 2461 return vm_start; 2462 } 2463 2464 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2465 { 2466 unsigned long vm_end = vma->vm_end; 2467 2468 if (vma->vm_flags & VM_GROWSUP) { 2469 vm_end += stack_guard_gap; 2470 if (vm_end < vma->vm_end) 2471 vm_end = -PAGE_SIZE; 2472 } 2473 return vm_end; 2474 } 2475 2476 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2477 { 2478 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2479 } 2480 2481 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2482 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2483 unsigned long vm_start, unsigned long vm_end) 2484 { 2485 struct vm_area_struct *vma = find_vma(mm, vm_start); 2486 2487 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2488 vma = NULL; 2489 2490 return vma; 2491 } 2492 2493 static inline bool range_in_vma(struct vm_area_struct *vma, 2494 unsigned long start, unsigned long end) 2495 { 2496 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2497 } 2498 2499 #ifdef CONFIG_MMU 2500 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2501 void vma_set_page_prot(struct vm_area_struct *vma); 2502 #else 2503 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2504 { 2505 return __pgprot(0); 2506 } 2507 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2508 { 2509 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2510 } 2511 #endif 2512 2513 #ifdef CONFIG_NUMA_BALANCING 2514 unsigned long change_prot_numa(struct vm_area_struct *vma, 2515 unsigned long start, unsigned long end); 2516 #endif 2517 2518 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2519 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2520 unsigned long pfn, unsigned long size, pgprot_t); 2521 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2522 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2523 unsigned long num); 2524 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2525 unsigned long num); 2526 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2527 unsigned long pfn); 2528 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2529 unsigned long pfn, pgprot_t pgprot); 2530 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2531 pfn_t pfn); 2532 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2533 unsigned long addr, pfn_t pfn); 2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2535 2536 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2537 unsigned long addr, struct page *page) 2538 { 2539 int err = vm_insert_page(vma, addr, page); 2540 2541 if (err == -ENOMEM) 2542 return VM_FAULT_OOM; 2543 if (err < 0 && err != -EBUSY) 2544 return VM_FAULT_SIGBUS; 2545 2546 return VM_FAULT_NOPAGE; 2547 } 2548 2549 static inline vm_fault_t vmf_error(int err) 2550 { 2551 if (err == -ENOMEM) 2552 return VM_FAULT_OOM; 2553 return VM_FAULT_SIGBUS; 2554 } 2555 2556 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2557 unsigned int foll_flags); 2558 2559 #define FOLL_WRITE 0x01 /* check pte is writable */ 2560 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2561 #define FOLL_GET 0x04 /* do get_page on page */ 2562 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2563 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2564 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2565 * and return without waiting upon it */ 2566 #define FOLL_POPULATE 0x40 /* fault in page */ 2567 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2568 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2569 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2570 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2571 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2572 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2573 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2574 #define FOLL_COW 0x4000 /* internal GUP flag */ 2575 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2576 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2577 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2578 2579 /* 2580 * NOTE on FOLL_LONGTERM: 2581 * 2582 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2583 * period _often_ under userspace control. This is contrasted with 2584 * iov_iter_get_pages() where usages which are transient. 2585 * 2586 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2587 * lifetime enforced by the filesystem and we need guarantees that longterm 2588 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2589 * the filesystem. Ideas for this coordination include revoking the longterm 2590 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2591 * added after the problem with filesystems was found FS DAX VMAs are 2592 * specifically failed. Filesystem pages are still subject to bugs and use of 2593 * FOLL_LONGTERM should be avoided on those pages. 2594 * 2595 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2596 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2597 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2598 * is due to an incompatibility with the FS DAX check and 2599 * FAULT_FLAG_ALLOW_RETRY 2600 * 2601 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2602 * that region. And so CMA attempts to migrate the page before pinning when 2603 * FOLL_LONGTERM is specified. 2604 */ 2605 2606 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2607 { 2608 if (vm_fault & VM_FAULT_OOM) 2609 return -ENOMEM; 2610 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2611 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2612 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2613 return -EFAULT; 2614 return 0; 2615 } 2616 2617 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2618 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2619 unsigned long size, pte_fn_t fn, void *data); 2620 extern int apply_to_existing_page_range(struct mm_struct *mm, 2621 unsigned long address, unsigned long size, 2622 pte_fn_t fn, void *data); 2623 2624 #ifdef CONFIG_PAGE_POISONING 2625 extern bool page_poisoning_enabled(void); 2626 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2627 #else 2628 static inline bool page_poisoning_enabled(void) { return false; } 2629 static inline void kernel_poison_pages(struct page *page, int numpages, 2630 int enable) { } 2631 #endif 2632 2633 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2634 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2635 #else 2636 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2637 #endif 2638 static inline bool want_init_on_alloc(gfp_t flags) 2639 { 2640 if (static_branch_unlikely(&init_on_alloc) && 2641 !page_poisoning_enabled()) 2642 return true; 2643 return flags & __GFP_ZERO; 2644 } 2645 2646 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2647 DECLARE_STATIC_KEY_TRUE(init_on_free); 2648 #else 2649 DECLARE_STATIC_KEY_FALSE(init_on_free); 2650 #endif 2651 static inline bool want_init_on_free(void) 2652 { 2653 return static_branch_unlikely(&init_on_free) && 2654 !page_poisoning_enabled(); 2655 } 2656 2657 #ifdef CONFIG_DEBUG_PAGEALLOC 2658 extern void init_debug_pagealloc(void); 2659 #else 2660 static inline void init_debug_pagealloc(void) {} 2661 #endif 2662 extern bool _debug_pagealloc_enabled_early; 2663 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2664 2665 static inline bool debug_pagealloc_enabled(void) 2666 { 2667 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2668 _debug_pagealloc_enabled_early; 2669 } 2670 2671 /* 2672 * For use in fast paths after init_debug_pagealloc() has run, or when a 2673 * false negative result is not harmful when called too early. 2674 */ 2675 static inline bool debug_pagealloc_enabled_static(void) 2676 { 2677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2678 return false; 2679 2680 return static_branch_unlikely(&_debug_pagealloc_enabled); 2681 } 2682 2683 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2684 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2685 2686 static inline void 2687 kernel_map_pages(struct page *page, int numpages, int enable) 2688 { 2689 __kernel_map_pages(page, numpages, enable); 2690 } 2691 #ifdef CONFIG_HIBERNATION 2692 extern bool kernel_page_present(struct page *page); 2693 #endif /* CONFIG_HIBERNATION */ 2694 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2695 static inline void 2696 kernel_map_pages(struct page *page, int numpages, int enable) {} 2697 #ifdef CONFIG_HIBERNATION 2698 static inline bool kernel_page_present(struct page *page) { return true; } 2699 #endif /* CONFIG_HIBERNATION */ 2700 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2701 2702 #ifdef __HAVE_ARCH_GATE_AREA 2703 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2704 extern int in_gate_area_no_mm(unsigned long addr); 2705 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2706 #else 2707 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2708 { 2709 return NULL; 2710 } 2711 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2712 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2713 { 2714 return 0; 2715 } 2716 #endif /* __HAVE_ARCH_GATE_AREA */ 2717 2718 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2719 2720 #ifdef CONFIG_SYSCTL 2721 extern int sysctl_drop_caches; 2722 int drop_caches_sysctl_handler(struct ctl_table *, int, 2723 void __user *, size_t *, loff_t *); 2724 #endif 2725 2726 void drop_slab(void); 2727 void drop_slab_node(int nid); 2728 2729 #ifndef CONFIG_MMU 2730 #define randomize_va_space 0 2731 #else 2732 extern int randomize_va_space; 2733 #endif 2734 2735 const char * arch_vma_name(struct vm_area_struct *vma); 2736 #ifdef CONFIG_MMU 2737 void print_vma_addr(char *prefix, unsigned long rip); 2738 #else 2739 static inline void print_vma_addr(char *prefix, unsigned long rip) 2740 { 2741 } 2742 #endif 2743 2744 void *sparse_buffer_alloc(unsigned long size); 2745 struct page * __populate_section_memmap(unsigned long pfn, 2746 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2747 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2748 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2749 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2750 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2751 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2752 void *vmemmap_alloc_block(unsigned long size, int node); 2753 struct vmem_altmap; 2754 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2755 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2756 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2757 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2758 int node); 2759 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2760 struct vmem_altmap *altmap); 2761 void vmemmap_populate_print_last(void); 2762 #ifdef CONFIG_MEMORY_HOTPLUG 2763 void vmemmap_free(unsigned long start, unsigned long end, 2764 struct vmem_altmap *altmap); 2765 #endif 2766 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2767 unsigned long nr_pages); 2768 2769 enum mf_flags { 2770 MF_COUNT_INCREASED = 1 << 0, 2771 MF_ACTION_REQUIRED = 1 << 1, 2772 MF_MUST_KILL = 1 << 2, 2773 MF_SOFT_OFFLINE = 1 << 3, 2774 }; 2775 extern int memory_failure(unsigned long pfn, int flags); 2776 extern void memory_failure_queue(unsigned long pfn, int flags); 2777 extern int unpoison_memory(unsigned long pfn); 2778 extern int get_hwpoison_page(struct page *page); 2779 #define put_hwpoison_page(page) put_page(page) 2780 extern int sysctl_memory_failure_early_kill; 2781 extern int sysctl_memory_failure_recovery; 2782 extern void shake_page(struct page *p, int access); 2783 extern atomic_long_t num_poisoned_pages __read_mostly; 2784 extern int soft_offline_page(unsigned long pfn, int flags); 2785 2786 2787 /* 2788 * Error handlers for various types of pages. 2789 */ 2790 enum mf_result { 2791 MF_IGNORED, /* Error: cannot be handled */ 2792 MF_FAILED, /* Error: handling failed */ 2793 MF_DELAYED, /* Will be handled later */ 2794 MF_RECOVERED, /* Successfully recovered */ 2795 }; 2796 2797 enum mf_action_page_type { 2798 MF_MSG_KERNEL, 2799 MF_MSG_KERNEL_HIGH_ORDER, 2800 MF_MSG_SLAB, 2801 MF_MSG_DIFFERENT_COMPOUND, 2802 MF_MSG_POISONED_HUGE, 2803 MF_MSG_HUGE, 2804 MF_MSG_FREE_HUGE, 2805 MF_MSG_NON_PMD_HUGE, 2806 MF_MSG_UNMAP_FAILED, 2807 MF_MSG_DIRTY_SWAPCACHE, 2808 MF_MSG_CLEAN_SWAPCACHE, 2809 MF_MSG_DIRTY_MLOCKED_LRU, 2810 MF_MSG_CLEAN_MLOCKED_LRU, 2811 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2812 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2813 MF_MSG_DIRTY_LRU, 2814 MF_MSG_CLEAN_LRU, 2815 MF_MSG_TRUNCATED_LRU, 2816 MF_MSG_BUDDY, 2817 MF_MSG_BUDDY_2ND, 2818 MF_MSG_DAX, 2819 MF_MSG_UNKNOWN, 2820 }; 2821 2822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2823 extern void clear_huge_page(struct page *page, 2824 unsigned long addr_hint, 2825 unsigned int pages_per_huge_page); 2826 extern void copy_user_huge_page(struct page *dst, struct page *src, 2827 unsigned long addr_hint, 2828 struct vm_area_struct *vma, 2829 unsigned int pages_per_huge_page); 2830 extern long copy_huge_page_from_user(struct page *dst_page, 2831 const void __user *usr_src, 2832 unsigned int pages_per_huge_page, 2833 bool allow_pagefault); 2834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2835 2836 #ifdef CONFIG_DEBUG_PAGEALLOC 2837 extern unsigned int _debug_guardpage_minorder; 2838 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2839 2840 static inline unsigned int debug_guardpage_minorder(void) 2841 { 2842 return _debug_guardpage_minorder; 2843 } 2844 2845 static inline bool debug_guardpage_enabled(void) 2846 { 2847 return static_branch_unlikely(&_debug_guardpage_enabled); 2848 } 2849 2850 static inline bool page_is_guard(struct page *page) 2851 { 2852 if (!debug_guardpage_enabled()) 2853 return false; 2854 2855 return PageGuard(page); 2856 } 2857 #else 2858 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2859 static inline bool debug_guardpage_enabled(void) { return false; } 2860 static inline bool page_is_guard(struct page *page) { return false; } 2861 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2862 2863 #if MAX_NUMNODES > 1 2864 void __init setup_nr_node_ids(void); 2865 #else 2866 static inline void setup_nr_node_ids(void) {} 2867 #endif 2868 2869 extern int memcmp_pages(struct page *page1, struct page *page2); 2870 2871 static inline int pages_identical(struct page *page1, struct page *page2) 2872 { 2873 return !memcmp_pages(page1, page2); 2874 } 2875 2876 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 2877 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 2878 pgoff_t first_index, pgoff_t nr, 2879 pgoff_t bitmap_pgoff, 2880 unsigned long *bitmap, 2881 pgoff_t *start, 2882 pgoff_t *end); 2883 2884 unsigned long wp_shared_mapping_range(struct address_space *mapping, 2885 pgoff_t first_index, pgoff_t nr); 2886 #endif 2887 2888 #endif /* __KERNEL__ */ 2889 #endif /* _LINUX_MM_H */ 2890