xref: /linux-6.15/include/linux/mm.h (revision 6fcd5f2c)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 
22 struct mempolicy;
23 struct anon_vma;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31 
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36 
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42 
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46 
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48 
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51 
52 /*
53  * Linux kernel virtual memory manager primitives.
54  * The idea being to have a "virtual" mm in the same way
55  * we have a virtual fs - giving a cleaner interface to the
56  * mm details, and allowing different kinds of memory mappings
57  * (from shared memory to executable loading to arbitrary
58  * mmap() functions).
59  */
60 
61 extern struct kmem_cache *vm_area_cachep;
62 
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66 
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69 
70 /*
71  * vm_flags in vm_area_struct, see mm_types.h.
72  */
73 #define VM_READ		0x00000001	/* currently active flags */
74 #define VM_WRITE	0x00000002
75 #define VM_EXEC		0x00000004
76 #define VM_SHARED	0x00000008
77 
78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
79 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
80 #define VM_MAYWRITE	0x00000020
81 #define VM_MAYEXEC	0x00000040
82 #define VM_MAYSHARE	0x00000080
83 
84 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
85 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
86 #define VM_GROWSUP	0x00000200
87 #else
88 #define VM_GROWSUP	0x00000000
89 #define VM_NOHUGEPAGE	0x00000200	/* MADV_NOHUGEPAGE marked this vma */
90 #endif
91 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
92 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
93 
94 #define VM_EXECUTABLE	0x00001000
95 #define VM_LOCKED	0x00002000
96 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
97 
98 					/* Used by sys_madvise() */
99 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
100 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
101 
102 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
103 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
104 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
105 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
106 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
107 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
108 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
109 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
110 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
111 #else
112 #define VM_HUGEPAGE	0x01000000	/* MADV_HUGEPAGE marked this vma */
113 #endif
114 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
115 #define VM_NODUMP	0x04000000	/* Do not include in the core dump */
116 
117 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
118 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
119 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
120 #define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
121 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
122 
123 /* Bits set in the VMA until the stack is in its final location */
124 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
125 
126 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
127 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
128 #endif
129 
130 #ifdef CONFIG_STACK_GROWSUP
131 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132 #else
133 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
134 #endif
135 
136 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
137 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
138 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
139 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
140 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
141 
142 /*
143  * Special vmas that are non-mergable, non-mlock()able.
144  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
145  */
146 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
147 
148 /*
149  * mapping from the currently active vm_flags protection bits (the
150  * low four bits) to a page protection mask..
151  */
152 extern pgprot_t protection_map[16];
153 
154 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
155 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
156 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
157 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
158 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
159 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
160 
161 /*
162  * This interface is used by x86 PAT code to identify a pfn mapping that is
163  * linear over entire vma. This is to optimize PAT code that deals with
164  * marking the physical region with a particular prot. This is not for generic
165  * mm use. Note also that this check will not work if the pfn mapping is
166  * linear for a vma starting at physical address 0. In which case PAT code
167  * falls back to slow path of reserving physical range page by page.
168  */
169 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
170 {
171 	return !!(vma->vm_flags & VM_PFN_AT_MMAP);
172 }
173 
174 static inline int is_pfn_mapping(struct vm_area_struct *vma)
175 {
176 	return !!(vma->vm_flags & VM_PFNMAP);
177 }
178 
179 /*
180  * vm_fault is filled by the the pagefault handler and passed to the vma's
181  * ->fault function. The vma's ->fault is responsible for returning a bitmask
182  * of VM_FAULT_xxx flags that give details about how the fault was handled.
183  *
184  * pgoff should be used in favour of virtual_address, if possible. If pgoff
185  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
186  * mapping support.
187  */
188 struct vm_fault {
189 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
190 	pgoff_t pgoff;			/* Logical page offset based on vma */
191 	void __user *virtual_address;	/* Faulting virtual address */
192 
193 	struct page *page;		/* ->fault handlers should return a
194 					 * page here, unless VM_FAULT_NOPAGE
195 					 * is set (which is also implied by
196 					 * VM_FAULT_ERROR).
197 					 */
198 };
199 
200 /*
201  * These are the virtual MM functions - opening of an area, closing and
202  * unmapping it (needed to keep files on disk up-to-date etc), pointer
203  * to the functions called when a no-page or a wp-page exception occurs.
204  */
205 struct vm_operations_struct {
206 	void (*open)(struct vm_area_struct * area);
207 	void (*close)(struct vm_area_struct * area);
208 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
209 
210 	/* notification that a previously read-only page is about to become
211 	 * writable, if an error is returned it will cause a SIGBUS */
212 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
213 
214 	/* called by access_process_vm when get_user_pages() fails, typically
215 	 * for use by special VMAs that can switch between memory and hardware
216 	 */
217 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
218 		      void *buf, int len, int write);
219 #ifdef CONFIG_NUMA
220 	/*
221 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
222 	 * to hold the policy upon return.  Caller should pass NULL @new to
223 	 * remove a policy and fall back to surrounding context--i.e. do not
224 	 * install a MPOL_DEFAULT policy, nor the task or system default
225 	 * mempolicy.
226 	 */
227 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
228 
229 	/*
230 	 * get_policy() op must add reference [mpol_get()] to any policy at
231 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
232 	 * in mm/mempolicy.c will do this automatically.
233 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
234 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
235 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
236 	 * must return NULL--i.e., do not "fallback" to task or system default
237 	 * policy.
238 	 */
239 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 					unsigned long addr);
241 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 		const nodemask_t *to, unsigned long flags);
243 #endif
244 };
245 
246 struct mmu_gather;
247 struct inode;
248 
249 #define page_private(page)		((page)->private)
250 #define set_page_private(page, v)	((page)->private = (v))
251 
252 /*
253  * FIXME: take this include out, include page-flags.h in
254  * files which need it (119 of them)
255  */
256 #include <linux/page-flags.h>
257 #include <linux/huge_mm.h>
258 
259 /*
260  * Methods to modify the page usage count.
261  *
262  * What counts for a page usage:
263  * - cache mapping   (page->mapping)
264  * - private data    (page->private)
265  * - page mapped in a task's page tables, each mapping
266  *   is counted separately
267  *
268  * Also, many kernel routines increase the page count before a critical
269  * routine so they can be sure the page doesn't go away from under them.
270  */
271 
272 /*
273  * Drop a ref, return true if the refcount fell to zero (the page has no users)
274  */
275 static inline int put_page_testzero(struct page *page)
276 {
277 	VM_BUG_ON(atomic_read(&page->_count) == 0);
278 	return atomic_dec_and_test(&page->_count);
279 }
280 
281 /*
282  * Try to grab a ref unless the page has a refcount of zero, return false if
283  * that is the case.
284  */
285 static inline int get_page_unless_zero(struct page *page)
286 {
287 	return atomic_inc_not_zero(&page->_count);
288 }
289 
290 extern int page_is_ram(unsigned long pfn);
291 
292 /* Support for virtually mapped pages */
293 struct page *vmalloc_to_page(const void *addr);
294 unsigned long vmalloc_to_pfn(const void *addr);
295 
296 /*
297  * Determine if an address is within the vmalloc range
298  *
299  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300  * is no special casing required.
301  */
302 static inline int is_vmalloc_addr(const void *x)
303 {
304 #ifdef CONFIG_MMU
305 	unsigned long addr = (unsigned long)x;
306 
307 	return addr >= VMALLOC_START && addr < VMALLOC_END;
308 #else
309 	return 0;
310 #endif
311 }
312 #ifdef CONFIG_MMU
313 extern int is_vmalloc_or_module_addr(const void *x);
314 #else
315 static inline int is_vmalloc_or_module_addr(const void *x)
316 {
317 	return 0;
318 }
319 #endif
320 
321 static inline void compound_lock(struct page *page)
322 {
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 	VM_BUG_ON(PageSlab(page));
325 	bit_spin_lock(PG_compound_lock, &page->flags);
326 #endif
327 }
328 
329 static inline void compound_unlock(struct page *page)
330 {
331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
332 	VM_BUG_ON(PageSlab(page));
333 	bit_spin_unlock(PG_compound_lock, &page->flags);
334 #endif
335 }
336 
337 static inline unsigned long compound_lock_irqsave(struct page *page)
338 {
339 	unsigned long uninitialized_var(flags);
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 	local_irq_save(flags);
342 	compound_lock(page);
343 #endif
344 	return flags;
345 }
346 
347 static inline void compound_unlock_irqrestore(struct page *page,
348 					      unsigned long flags)
349 {
350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 	compound_unlock(page);
352 	local_irq_restore(flags);
353 #endif
354 }
355 
356 static inline struct page *compound_head(struct page *page)
357 {
358 	if (unlikely(PageTail(page)))
359 		return page->first_page;
360 	return page;
361 }
362 
363 /*
364  * The atomic page->_mapcount, starts from -1: so that transitions
365  * both from it and to it can be tracked, using atomic_inc_and_test
366  * and atomic_add_negative(-1).
367  */
368 static inline void reset_page_mapcount(struct page *page)
369 {
370 	atomic_set(&(page)->_mapcount, -1);
371 }
372 
373 static inline int page_mapcount(struct page *page)
374 {
375 	return atomic_read(&(page)->_mapcount) + 1;
376 }
377 
378 static inline int page_count(struct page *page)
379 {
380 	return atomic_read(&compound_head(page)->_count);
381 }
382 
383 static inline void get_huge_page_tail(struct page *page)
384 {
385 	/*
386 	 * __split_huge_page_refcount() cannot run
387 	 * from under us.
388 	 */
389 	VM_BUG_ON(page_mapcount(page) < 0);
390 	VM_BUG_ON(atomic_read(&page->_count) != 0);
391 	atomic_inc(&page->_mapcount);
392 }
393 
394 extern bool __get_page_tail(struct page *page);
395 
396 static inline void get_page(struct page *page)
397 {
398 	if (unlikely(PageTail(page)))
399 		if (likely(__get_page_tail(page)))
400 			return;
401 	/*
402 	 * Getting a normal page or the head of a compound page
403 	 * requires to already have an elevated page->_count.
404 	 */
405 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
406 	atomic_inc(&page->_count);
407 }
408 
409 static inline struct page *virt_to_head_page(const void *x)
410 {
411 	struct page *page = virt_to_page(x);
412 	return compound_head(page);
413 }
414 
415 /*
416  * Setup the page count before being freed into the page allocator for
417  * the first time (boot or memory hotplug)
418  */
419 static inline void init_page_count(struct page *page)
420 {
421 	atomic_set(&page->_count, 1);
422 }
423 
424 /*
425  * PageBuddy() indicate that the page is free and in the buddy system
426  * (see mm/page_alloc.c).
427  *
428  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
429  * -2 so that an underflow of the page_mapcount() won't be mistaken
430  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
431  * efficiently by most CPU architectures.
432  */
433 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
434 
435 static inline int PageBuddy(struct page *page)
436 {
437 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
438 }
439 
440 static inline void __SetPageBuddy(struct page *page)
441 {
442 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
443 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
444 }
445 
446 static inline void __ClearPageBuddy(struct page *page)
447 {
448 	VM_BUG_ON(!PageBuddy(page));
449 	atomic_set(&page->_mapcount, -1);
450 }
451 
452 void put_page(struct page *page);
453 void put_pages_list(struct list_head *pages);
454 
455 void split_page(struct page *page, unsigned int order);
456 int split_free_page(struct page *page);
457 
458 /*
459  * Compound pages have a destructor function.  Provide a
460  * prototype for that function and accessor functions.
461  * These are _only_ valid on the head of a PG_compound page.
462  */
463 typedef void compound_page_dtor(struct page *);
464 
465 static inline void set_compound_page_dtor(struct page *page,
466 						compound_page_dtor *dtor)
467 {
468 	page[1].lru.next = (void *)dtor;
469 }
470 
471 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
472 {
473 	return (compound_page_dtor *)page[1].lru.next;
474 }
475 
476 static inline int compound_order(struct page *page)
477 {
478 	if (!PageHead(page))
479 		return 0;
480 	return (unsigned long)page[1].lru.prev;
481 }
482 
483 static inline int compound_trans_order(struct page *page)
484 {
485 	int order;
486 	unsigned long flags;
487 
488 	if (!PageHead(page))
489 		return 0;
490 
491 	flags = compound_lock_irqsave(page);
492 	order = compound_order(page);
493 	compound_unlock_irqrestore(page, flags);
494 	return order;
495 }
496 
497 static inline void set_compound_order(struct page *page, unsigned long order)
498 {
499 	page[1].lru.prev = (void *)order;
500 }
501 
502 #ifdef CONFIG_MMU
503 /*
504  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
505  * servicing faults for write access.  In the normal case, do always want
506  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
507  * that do not have writing enabled, when used by access_process_vm.
508  */
509 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
510 {
511 	if (likely(vma->vm_flags & VM_WRITE))
512 		pte = pte_mkwrite(pte);
513 	return pte;
514 }
515 #endif
516 
517 /*
518  * Multiple processes may "see" the same page. E.g. for untouched
519  * mappings of /dev/null, all processes see the same page full of
520  * zeroes, and text pages of executables and shared libraries have
521  * only one copy in memory, at most, normally.
522  *
523  * For the non-reserved pages, page_count(page) denotes a reference count.
524  *   page_count() == 0 means the page is free. page->lru is then used for
525  *   freelist management in the buddy allocator.
526  *   page_count() > 0  means the page has been allocated.
527  *
528  * Pages are allocated by the slab allocator in order to provide memory
529  * to kmalloc and kmem_cache_alloc. In this case, the management of the
530  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
531  * unless a particular usage is carefully commented. (the responsibility of
532  * freeing the kmalloc memory is the caller's, of course).
533  *
534  * A page may be used by anyone else who does a __get_free_page().
535  * In this case, page_count still tracks the references, and should only
536  * be used through the normal accessor functions. The top bits of page->flags
537  * and page->virtual store page management information, but all other fields
538  * are unused and could be used privately, carefully. The management of this
539  * page is the responsibility of the one who allocated it, and those who have
540  * subsequently been given references to it.
541  *
542  * The other pages (we may call them "pagecache pages") are completely
543  * managed by the Linux memory manager: I/O, buffers, swapping etc.
544  * The following discussion applies only to them.
545  *
546  * A pagecache page contains an opaque `private' member, which belongs to the
547  * page's address_space. Usually, this is the address of a circular list of
548  * the page's disk buffers. PG_private must be set to tell the VM to call
549  * into the filesystem to release these pages.
550  *
551  * A page may belong to an inode's memory mapping. In this case, page->mapping
552  * is the pointer to the inode, and page->index is the file offset of the page,
553  * in units of PAGE_CACHE_SIZE.
554  *
555  * If pagecache pages are not associated with an inode, they are said to be
556  * anonymous pages. These may become associated with the swapcache, and in that
557  * case PG_swapcache is set, and page->private is an offset into the swapcache.
558  *
559  * In either case (swapcache or inode backed), the pagecache itself holds one
560  * reference to the page. Setting PG_private should also increment the
561  * refcount. The each user mapping also has a reference to the page.
562  *
563  * The pagecache pages are stored in a per-mapping radix tree, which is
564  * rooted at mapping->page_tree, and indexed by offset.
565  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
566  * lists, we instead now tag pages as dirty/writeback in the radix tree.
567  *
568  * All pagecache pages may be subject to I/O:
569  * - inode pages may need to be read from disk,
570  * - inode pages which have been modified and are MAP_SHARED may need
571  *   to be written back to the inode on disk,
572  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
573  *   modified may need to be swapped out to swap space and (later) to be read
574  *   back into memory.
575  */
576 
577 /*
578  * The zone field is never updated after free_area_init_core()
579  * sets it, so none of the operations on it need to be atomic.
580  */
581 
582 
583 /*
584  * page->flags layout:
585  *
586  * There are three possibilities for how page->flags get
587  * laid out.  The first is for the normal case, without
588  * sparsemem.  The second is for sparsemem when there is
589  * plenty of space for node and section.  The last is when
590  * we have run out of space and have to fall back to an
591  * alternate (slower) way of determining the node.
592  *
593  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
594  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
595  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
596  */
597 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
598 #define SECTIONS_WIDTH		SECTIONS_SHIFT
599 #else
600 #define SECTIONS_WIDTH		0
601 #endif
602 
603 #define ZONES_WIDTH		ZONES_SHIFT
604 
605 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
606 #define NODES_WIDTH		NODES_SHIFT
607 #else
608 #ifdef CONFIG_SPARSEMEM_VMEMMAP
609 #error "Vmemmap: No space for nodes field in page flags"
610 #endif
611 #define NODES_WIDTH		0
612 #endif
613 
614 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
615 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
616 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
617 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
618 
619 /*
620  * We are going to use the flags for the page to node mapping if its in
621  * there.  This includes the case where there is no node, so it is implicit.
622  */
623 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
624 #define NODE_NOT_IN_PAGE_FLAGS
625 #endif
626 
627 /*
628  * Define the bit shifts to access each section.  For non-existent
629  * sections we define the shift as 0; that plus a 0 mask ensures
630  * the compiler will optimise away reference to them.
631  */
632 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
633 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
634 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
635 
636 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
637 #ifdef NODE_NOT_IN_PAGE_FLAGS
638 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
639 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
640 						SECTIONS_PGOFF : ZONES_PGOFF)
641 #else
642 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
643 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
644 						NODES_PGOFF : ZONES_PGOFF)
645 #endif
646 
647 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
648 
649 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
650 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
651 #endif
652 
653 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
654 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
655 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
656 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
657 
658 static inline enum zone_type page_zonenum(const struct page *page)
659 {
660 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
661 }
662 
663 /*
664  * The identification function is only used by the buddy allocator for
665  * determining if two pages could be buddies. We are not really
666  * identifying a zone since we could be using a the section number
667  * id if we have not node id available in page flags.
668  * We guarantee only that it will return the same value for two
669  * combinable pages in a zone.
670  */
671 static inline int page_zone_id(struct page *page)
672 {
673 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
674 }
675 
676 static inline int zone_to_nid(struct zone *zone)
677 {
678 #ifdef CONFIG_NUMA
679 	return zone->node;
680 #else
681 	return 0;
682 #endif
683 }
684 
685 #ifdef NODE_NOT_IN_PAGE_FLAGS
686 extern int page_to_nid(const struct page *page);
687 #else
688 static inline int page_to_nid(const struct page *page)
689 {
690 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
691 }
692 #endif
693 
694 static inline struct zone *page_zone(const struct page *page)
695 {
696 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
697 }
698 
699 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
700 static inline void set_page_section(struct page *page, unsigned long section)
701 {
702 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
703 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
704 }
705 
706 static inline unsigned long page_to_section(const struct page *page)
707 {
708 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
709 }
710 #endif
711 
712 static inline void set_page_zone(struct page *page, enum zone_type zone)
713 {
714 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
715 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
716 }
717 
718 static inline void set_page_node(struct page *page, unsigned long node)
719 {
720 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
721 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
722 }
723 
724 static inline void set_page_links(struct page *page, enum zone_type zone,
725 	unsigned long node, unsigned long pfn)
726 {
727 	set_page_zone(page, zone);
728 	set_page_node(page, node);
729 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
730 	set_page_section(page, pfn_to_section_nr(pfn));
731 #endif
732 }
733 
734 /*
735  * Some inline functions in vmstat.h depend on page_zone()
736  */
737 #include <linux/vmstat.h>
738 
739 static __always_inline void *lowmem_page_address(const struct page *page)
740 {
741 	return __va(PFN_PHYS(page_to_pfn(page)));
742 }
743 
744 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
745 #define HASHED_PAGE_VIRTUAL
746 #endif
747 
748 #if defined(WANT_PAGE_VIRTUAL)
749 #define page_address(page) ((page)->virtual)
750 #define set_page_address(page, address)			\
751 	do {						\
752 		(page)->virtual = (address);		\
753 	} while(0)
754 #define page_address_init()  do { } while(0)
755 #endif
756 
757 #if defined(HASHED_PAGE_VIRTUAL)
758 void *page_address(const struct page *page);
759 void set_page_address(struct page *page, void *virtual);
760 void page_address_init(void);
761 #endif
762 
763 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
764 #define page_address(page) lowmem_page_address(page)
765 #define set_page_address(page, address)  do { } while(0)
766 #define page_address_init()  do { } while(0)
767 #endif
768 
769 /*
770  * On an anonymous page mapped into a user virtual memory area,
771  * page->mapping points to its anon_vma, not to a struct address_space;
772  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
773  *
774  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
775  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
776  * and then page->mapping points, not to an anon_vma, but to a private
777  * structure which KSM associates with that merged page.  See ksm.h.
778  *
779  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
780  *
781  * Please note that, confusingly, "page_mapping" refers to the inode
782  * address_space which maps the page from disk; whereas "page_mapped"
783  * refers to user virtual address space into which the page is mapped.
784  */
785 #define PAGE_MAPPING_ANON	1
786 #define PAGE_MAPPING_KSM	2
787 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
788 
789 extern struct address_space swapper_space;
790 static inline struct address_space *page_mapping(struct page *page)
791 {
792 	struct address_space *mapping = page->mapping;
793 
794 	VM_BUG_ON(PageSlab(page));
795 	if (unlikely(PageSwapCache(page)))
796 		mapping = &swapper_space;
797 	else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
798 		mapping = NULL;
799 	return mapping;
800 }
801 
802 /* Neutral page->mapping pointer to address_space or anon_vma or other */
803 static inline void *page_rmapping(struct page *page)
804 {
805 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
806 }
807 
808 static inline int PageAnon(struct page *page)
809 {
810 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
811 }
812 
813 /*
814  * Return the pagecache index of the passed page.  Regular pagecache pages
815  * use ->index whereas swapcache pages use ->private
816  */
817 static inline pgoff_t page_index(struct page *page)
818 {
819 	if (unlikely(PageSwapCache(page)))
820 		return page_private(page);
821 	return page->index;
822 }
823 
824 /*
825  * Return true if this page is mapped into pagetables.
826  */
827 static inline int page_mapped(struct page *page)
828 {
829 	return atomic_read(&(page)->_mapcount) >= 0;
830 }
831 
832 /*
833  * Different kinds of faults, as returned by handle_mm_fault().
834  * Used to decide whether a process gets delivered SIGBUS or
835  * just gets major/minor fault counters bumped up.
836  */
837 
838 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
839 
840 #define VM_FAULT_OOM	0x0001
841 #define VM_FAULT_SIGBUS	0x0002
842 #define VM_FAULT_MAJOR	0x0004
843 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
844 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
845 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
846 
847 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
848 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
849 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
850 
851 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
852 
853 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
854 			 VM_FAULT_HWPOISON_LARGE)
855 
856 /* Encode hstate index for a hwpoisoned large page */
857 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
858 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
859 
860 /*
861  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
862  */
863 extern void pagefault_out_of_memory(void);
864 
865 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
866 
867 /*
868  * Flags passed to show_mem() and show_free_areas() to suppress output in
869  * various contexts.
870  */
871 #define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */
872 
873 extern void show_free_areas(unsigned int flags);
874 extern bool skip_free_areas_node(unsigned int flags, int nid);
875 
876 int shmem_zero_setup(struct vm_area_struct *);
877 
878 extern int can_do_mlock(void);
879 extern int user_shm_lock(size_t, struct user_struct *);
880 extern void user_shm_unlock(size_t, struct user_struct *);
881 
882 /*
883  * Parameter block passed down to zap_pte_range in exceptional cases.
884  */
885 struct zap_details {
886 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
887 	struct address_space *check_mapping;	/* Check page->mapping if set */
888 	pgoff_t	first_index;			/* Lowest page->index to unmap */
889 	pgoff_t last_index;			/* Highest page->index to unmap */
890 };
891 
892 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
893 		pte_t pte);
894 
895 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
896 		unsigned long size);
897 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
898 		unsigned long size, struct zap_details *);
899 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
900 		unsigned long start, unsigned long end);
901 
902 /**
903  * mm_walk - callbacks for walk_page_range
904  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
905  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
906  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
907  *	       this handler is required to be able to handle
908  *	       pmd_trans_huge() pmds.  They may simply choose to
909  *	       split_huge_page() instead of handling it explicitly.
910  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
911  * @pte_hole: if set, called for each hole at all levels
912  * @hugetlb_entry: if set, called for each hugetlb entry
913  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
914  * 			      is used.
915  *
916  * (see walk_page_range for more details)
917  */
918 struct mm_walk {
919 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
920 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
921 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
922 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
923 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
924 	int (*hugetlb_entry)(pte_t *, unsigned long,
925 			     unsigned long, unsigned long, struct mm_walk *);
926 	struct mm_struct *mm;
927 	void *private;
928 };
929 
930 int walk_page_range(unsigned long addr, unsigned long end,
931 		struct mm_walk *walk);
932 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
933 		unsigned long end, unsigned long floor, unsigned long ceiling);
934 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
935 			struct vm_area_struct *vma);
936 void unmap_mapping_range(struct address_space *mapping,
937 		loff_t const holebegin, loff_t const holelen, int even_cows);
938 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
939 	unsigned long *pfn);
940 int follow_phys(struct vm_area_struct *vma, unsigned long address,
941 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
942 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
943 			void *buf, int len, int write);
944 
945 static inline void unmap_shared_mapping_range(struct address_space *mapping,
946 		loff_t const holebegin, loff_t const holelen)
947 {
948 	unmap_mapping_range(mapping, holebegin, holelen, 0);
949 }
950 
951 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
952 extern void truncate_setsize(struct inode *inode, loff_t newsize);
953 extern int vmtruncate(struct inode *inode, loff_t offset);
954 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
955 int truncate_inode_page(struct address_space *mapping, struct page *page);
956 int generic_error_remove_page(struct address_space *mapping, struct page *page);
957 int invalidate_inode_page(struct page *page);
958 
959 #ifdef CONFIG_MMU
960 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
961 			unsigned long address, unsigned int flags);
962 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
963 			    unsigned long address, unsigned int fault_flags);
964 #else
965 static inline int handle_mm_fault(struct mm_struct *mm,
966 			struct vm_area_struct *vma, unsigned long address,
967 			unsigned int flags)
968 {
969 	/* should never happen if there's no MMU */
970 	BUG();
971 	return VM_FAULT_SIGBUS;
972 }
973 static inline int fixup_user_fault(struct task_struct *tsk,
974 		struct mm_struct *mm, unsigned long address,
975 		unsigned int fault_flags)
976 {
977 	/* should never happen if there's no MMU */
978 	BUG();
979 	return -EFAULT;
980 }
981 #endif
982 
983 extern int make_pages_present(unsigned long addr, unsigned long end);
984 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
985 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
986 		void *buf, int len, int write);
987 
988 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
989 		     unsigned long start, int len, unsigned int foll_flags,
990 		     struct page **pages, struct vm_area_struct **vmas,
991 		     int *nonblocking);
992 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
993 			unsigned long start, int nr_pages, int write, int force,
994 			struct page **pages, struct vm_area_struct **vmas);
995 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
996 			struct page **pages);
997 struct page *get_dump_page(unsigned long addr);
998 
999 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1000 extern void do_invalidatepage(struct page *page, unsigned long offset);
1001 
1002 int __set_page_dirty_nobuffers(struct page *page);
1003 int __set_page_dirty_no_writeback(struct page *page);
1004 int redirty_page_for_writepage(struct writeback_control *wbc,
1005 				struct page *page);
1006 void account_page_dirtied(struct page *page, struct address_space *mapping);
1007 void account_page_writeback(struct page *page);
1008 int set_page_dirty(struct page *page);
1009 int set_page_dirty_lock(struct page *page);
1010 int clear_page_dirty_for_io(struct page *page);
1011 
1012 /* Is the vma a continuation of the stack vma above it? */
1013 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1014 {
1015 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1016 }
1017 
1018 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1019 					     unsigned long addr)
1020 {
1021 	return (vma->vm_flags & VM_GROWSDOWN) &&
1022 		(vma->vm_start == addr) &&
1023 		!vma_growsdown(vma->vm_prev, addr);
1024 }
1025 
1026 /* Is the vma a continuation of the stack vma below it? */
1027 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1028 {
1029 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1030 }
1031 
1032 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1033 					   unsigned long addr)
1034 {
1035 	return (vma->vm_flags & VM_GROWSUP) &&
1036 		(vma->vm_end == addr) &&
1037 		!vma_growsup(vma->vm_next, addr);
1038 }
1039 
1040 extern pid_t
1041 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1042 
1043 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1044 		unsigned long old_addr, struct vm_area_struct *new_vma,
1045 		unsigned long new_addr, unsigned long len);
1046 extern unsigned long do_mremap(unsigned long addr,
1047 			       unsigned long old_len, unsigned long new_len,
1048 			       unsigned long flags, unsigned long new_addr);
1049 extern int mprotect_fixup(struct vm_area_struct *vma,
1050 			  struct vm_area_struct **pprev, unsigned long start,
1051 			  unsigned long end, unsigned long newflags);
1052 
1053 /*
1054  * doesn't attempt to fault and will return short.
1055  */
1056 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1057 			  struct page **pages);
1058 /*
1059  * per-process(per-mm_struct) statistics.
1060  */
1061 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1062 {
1063 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1064 
1065 #ifdef SPLIT_RSS_COUNTING
1066 	/*
1067 	 * counter is updated in asynchronous manner and may go to minus.
1068 	 * But it's never be expected number for users.
1069 	 */
1070 	if (val < 0)
1071 		val = 0;
1072 #endif
1073 	return (unsigned long)val;
1074 }
1075 
1076 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1077 {
1078 	atomic_long_add(value, &mm->rss_stat.count[member]);
1079 }
1080 
1081 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1082 {
1083 	atomic_long_inc(&mm->rss_stat.count[member]);
1084 }
1085 
1086 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1087 {
1088 	atomic_long_dec(&mm->rss_stat.count[member]);
1089 }
1090 
1091 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1092 {
1093 	return get_mm_counter(mm, MM_FILEPAGES) +
1094 		get_mm_counter(mm, MM_ANONPAGES);
1095 }
1096 
1097 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1098 {
1099 	return max(mm->hiwater_rss, get_mm_rss(mm));
1100 }
1101 
1102 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1103 {
1104 	return max(mm->hiwater_vm, mm->total_vm);
1105 }
1106 
1107 static inline void update_hiwater_rss(struct mm_struct *mm)
1108 {
1109 	unsigned long _rss = get_mm_rss(mm);
1110 
1111 	if ((mm)->hiwater_rss < _rss)
1112 		(mm)->hiwater_rss = _rss;
1113 }
1114 
1115 static inline void update_hiwater_vm(struct mm_struct *mm)
1116 {
1117 	if (mm->hiwater_vm < mm->total_vm)
1118 		mm->hiwater_vm = mm->total_vm;
1119 }
1120 
1121 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1122 					 struct mm_struct *mm)
1123 {
1124 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1125 
1126 	if (*maxrss < hiwater_rss)
1127 		*maxrss = hiwater_rss;
1128 }
1129 
1130 #if defined(SPLIT_RSS_COUNTING)
1131 void sync_mm_rss(struct mm_struct *mm);
1132 #else
1133 static inline void sync_mm_rss(struct mm_struct *mm)
1134 {
1135 }
1136 #endif
1137 
1138 int vma_wants_writenotify(struct vm_area_struct *vma);
1139 
1140 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1141 			       spinlock_t **ptl);
1142 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1143 				    spinlock_t **ptl)
1144 {
1145 	pte_t *ptep;
1146 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1147 	return ptep;
1148 }
1149 
1150 #ifdef __PAGETABLE_PUD_FOLDED
1151 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1152 						unsigned long address)
1153 {
1154 	return 0;
1155 }
1156 #else
1157 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1158 #endif
1159 
1160 #ifdef __PAGETABLE_PMD_FOLDED
1161 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1162 						unsigned long address)
1163 {
1164 	return 0;
1165 }
1166 #else
1167 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1168 #endif
1169 
1170 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1171 		pmd_t *pmd, unsigned long address);
1172 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1173 
1174 /*
1175  * The following ifdef needed to get the 4level-fixup.h header to work.
1176  * Remove it when 4level-fixup.h has been removed.
1177  */
1178 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1179 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1180 {
1181 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1182 		NULL: pud_offset(pgd, address);
1183 }
1184 
1185 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1186 {
1187 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1188 		NULL: pmd_offset(pud, address);
1189 }
1190 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1191 
1192 #if USE_SPLIT_PTLOCKS
1193 /*
1194  * We tuck a spinlock to guard each pagetable page into its struct page,
1195  * at page->private, with BUILD_BUG_ON to make sure that this will not
1196  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1197  * When freeing, reset page->mapping so free_pages_check won't complain.
1198  */
1199 #define __pte_lockptr(page)	&((page)->ptl)
1200 #define pte_lock_init(_page)	do {					\
1201 	spin_lock_init(__pte_lockptr(_page));				\
1202 } while (0)
1203 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1204 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1205 #else	/* !USE_SPLIT_PTLOCKS */
1206 /*
1207  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1208  */
1209 #define pte_lock_init(page)	do {} while (0)
1210 #define pte_lock_deinit(page)	do {} while (0)
1211 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1212 #endif /* USE_SPLIT_PTLOCKS */
1213 
1214 static inline void pgtable_page_ctor(struct page *page)
1215 {
1216 	pte_lock_init(page);
1217 	inc_zone_page_state(page, NR_PAGETABLE);
1218 }
1219 
1220 static inline void pgtable_page_dtor(struct page *page)
1221 {
1222 	pte_lock_deinit(page);
1223 	dec_zone_page_state(page, NR_PAGETABLE);
1224 }
1225 
1226 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1227 ({							\
1228 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1229 	pte_t *__pte = pte_offset_map(pmd, address);	\
1230 	*(ptlp) = __ptl;				\
1231 	spin_lock(__ptl);				\
1232 	__pte;						\
1233 })
1234 
1235 #define pte_unmap_unlock(pte, ptl)	do {		\
1236 	spin_unlock(ptl);				\
1237 	pte_unmap(pte);					\
1238 } while (0)
1239 
1240 #define pte_alloc_map(mm, vma, pmd, address)				\
1241 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1242 							pmd, address))?	\
1243 	 NULL: pte_offset_map(pmd, address))
1244 
1245 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1246 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1247 							pmd, address))?	\
1248 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1249 
1250 #define pte_alloc_kernel(pmd, address)			\
1251 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1252 		NULL: pte_offset_kernel(pmd, address))
1253 
1254 extern void free_area_init(unsigned long * zones_size);
1255 extern void free_area_init_node(int nid, unsigned long * zones_size,
1256 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1257 extern void free_initmem(void);
1258 
1259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1260 /*
1261  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1262  * zones, allocate the backing mem_map and account for memory holes in a more
1263  * architecture independent manner. This is a substitute for creating the
1264  * zone_sizes[] and zholes_size[] arrays and passing them to
1265  * free_area_init_node()
1266  *
1267  * An architecture is expected to register range of page frames backed by
1268  * physical memory with memblock_add[_node]() before calling
1269  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1270  * usage, an architecture is expected to do something like
1271  *
1272  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1273  * 							 max_highmem_pfn};
1274  * for_each_valid_physical_page_range()
1275  * 	memblock_add_node(base, size, nid)
1276  * free_area_init_nodes(max_zone_pfns);
1277  *
1278  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1279  * registered physical page range.  Similarly
1280  * sparse_memory_present_with_active_regions() calls memory_present() for
1281  * each range when SPARSEMEM is enabled.
1282  *
1283  * See mm/page_alloc.c for more information on each function exposed by
1284  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1285  */
1286 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1287 unsigned long node_map_pfn_alignment(void);
1288 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1289 						unsigned long end_pfn);
1290 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1291 						unsigned long end_pfn);
1292 extern void get_pfn_range_for_nid(unsigned int nid,
1293 			unsigned long *start_pfn, unsigned long *end_pfn);
1294 extern unsigned long find_min_pfn_with_active_regions(void);
1295 extern void free_bootmem_with_active_regions(int nid,
1296 						unsigned long max_low_pfn);
1297 extern void sparse_memory_present_with_active_regions(int nid);
1298 
1299 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1300 
1301 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1302     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1303 static inline int __early_pfn_to_nid(unsigned long pfn)
1304 {
1305 	return 0;
1306 }
1307 #else
1308 /* please see mm/page_alloc.c */
1309 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1310 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1311 /* there is a per-arch backend function. */
1312 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1313 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1314 #endif
1315 
1316 extern void set_dma_reserve(unsigned long new_dma_reserve);
1317 extern void memmap_init_zone(unsigned long, int, unsigned long,
1318 				unsigned long, enum memmap_context);
1319 extern void setup_per_zone_wmarks(void);
1320 extern int __meminit init_per_zone_wmark_min(void);
1321 extern void mem_init(void);
1322 extern void __init mmap_init(void);
1323 extern void show_mem(unsigned int flags);
1324 extern void si_meminfo(struct sysinfo * val);
1325 extern void si_meminfo_node(struct sysinfo *val, int nid);
1326 extern int after_bootmem;
1327 
1328 extern __printf(3, 4)
1329 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1330 
1331 extern void setup_per_cpu_pageset(void);
1332 
1333 extern void zone_pcp_update(struct zone *zone);
1334 
1335 /* nommu.c */
1336 extern atomic_long_t mmap_pages_allocated;
1337 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1338 
1339 /* prio_tree.c */
1340 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1341 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1342 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1343 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1344 	struct prio_tree_iter *iter);
1345 
1346 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1347 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1348 		(vma = vma_prio_tree_next(vma, iter)); )
1349 
1350 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1351 					struct list_head *list)
1352 {
1353 	vma->shared.vm_set.parent = NULL;
1354 	list_add_tail(&vma->shared.vm_set.list, list);
1355 }
1356 
1357 /* mmap.c */
1358 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1359 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1360 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1361 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1362 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1363 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1364 	struct mempolicy *);
1365 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1366 extern int split_vma(struct mm_struct *,
1367 	struct vm_area_struct *, unsigned long addr, int new_below);
1368 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1369 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1370 	struct rb_node **, struct rb_node *);
1371 extern void unlink_file_vma(struct vm_area_struct *);
1372 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1373 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1374 extern void exit_mmap(struct mm_struct *);
1375 
1376 extern int mm_take_all_locks(struct mm_struct *mm);
1377 extern void mm_drop_all_locks(struct mm_struct *mm);
1378 
1379 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1380 extern void added_exe_file_vma(struct mm_struct *mm);
1381 extern void removed_exe_file_vma(struct mm_struct *mm);
1382 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1383 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1384 
1385 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1386 extern int install_special_mapping(struct mm_struct *mm,
1387 				   unsigned long addr, unsigned long len,
1388 				   unsigned long flags, struct page **pages);
1389 
1390 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1391 
1392 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1393 	unsigned long len, unsigned long flags,
1394 	vm_flags_t vm_flags, unsigned long pgoff);
1395 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1396         unsigned long, unsigned long,
1397         unsigned long, unsigned long);
1398 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1399 
1400 /* These take the mm semaphore themselves */
1401 extern unsigned long vm_brk(unsigned long, unsigned long);
1402 extern int vm_munmap(unsigned long, size_t);
1403 extern unsigned long vm_mmap(struct file *, unsigned long,
1404         unsigned long, unsigned long,
1405         unsigned long, unsigned long);
1406 
1407 /* truncate.c */
1408 extern void truncate_inode_pages(struct address_space *, loff_t);
1409 extern void truncate_inode_pages_range(struct address_space *,
1410 				       loff_t lstart, loff_t lend);
1411 
1412 /* generic vm_area_ops exported for stackable file systems */
1413 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1414 
1415 /* mm/page-writeback.c */
1416 int write_one_page(struct page *page, int wait);
1417 void task_dirty_inc(struct task_struct *tsk);
1418 
1419 /* readahead.c */
1420 #define VM_MAX_READAHEAD	128	/* kbytes */
1421 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1422 
1423 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1424 			pgoff_t offset, unsigned long nr_to_read);
1425 
1426 void page_cache_sync_readahead(struct address_space *mapping,
1427 			       struct file_ra_state *ra,
1428 			       struct file *filp,
1429 			       pgoff_t offset,
1430 			       unsigned long size);
1431 
1432 void page_cache_async_readahead(struct address_space *mapping,
1433 				struct file_ra_state *ra,
1434 				struct file *filp,
1435 				struct page *pg,
1436 				pgoff_t offset,
1437 				unsigned long size);
1438 
1439 unsigned long max_sane_readahead(unsigned long nr);
1440 unsigned long ra_submit(struct file_ra_state *ra,
1441 			struct address_space *mapping,
1442 			struct file *filp);
1443 
1444 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1445 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1446 
1447 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1448 extern int expand_downwards(struct vm_area_struct *vma,
1449 		unsigned long address);
1450 #if VM_GROWSUP
1451 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1452 #else
1453   #define expand_upwards(vma, address) do { } while (0)
1454 #endif
1455 
1456 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1457 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1458 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1459 					     struct vm_area_struct **pprev);
1460 
1461 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1462    NULL if none.  Assume start_addr < end_addr. */
1463 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1464 {
1465 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1466 
1467 	if (vma && end_addr <= vma->vm_start)
1468 		vma = NULL;
1469 	return vma;
1470 }
1471 
1472 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1473 {
1474 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1475 }
1476 
1477 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1478 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1479 				unsigned long vm_start, unsigned long vm_end)
1480 {
1481 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1482 
1483 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1484 		vma = NULL;
1485 
1486 	return vma;
1487 }
1488 
1489 #ifdef CONFIG_MMU
1490 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1491 #else
1492 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1493 {
1494 	return __pgprot(0);
1495 }
1496 #endif
1497 
1498 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1499 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1500 			unsigned long pfn, unsigned long size, pgprot_t);
1501 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1502 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1503 			unsigned long pfn);
1504 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1505 			unsigned long pfn);
1506 
1507 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1508 			unsigned int foll_flags);
1509 #define FOLL_WRITE	0x01	/* check pte is writable */
1510 #define FOLL_TOUCH	0x02	/* mark page accessed */
1511 #define FOLL_GET	0x04	/* do get_page on page */
1512 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1513 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1514 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1515 				 * and return without waiting upon it */
1516 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1517 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1518 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1519 
1520 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1521 			void *data);
1522 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1523 			       unsigned long size, pte_fn_t fn, void *data);
1524 
1525 #ifdef CONFIG_PROC_FS
1526 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1527 #else
1528 static inline void vm_stat_account(struct mm_struct *mm,
1529 			unsigned long flags, struct file *file, long pages)
1530 {
1531 }
1532 #endif /* CONFIG_PROC_FS */
1533 
1534 #ifdef CONFIG_DEBUG_PAGEALLOC
1535 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1536 #ifdef CONFIG_HIBERNATION
1537 extern bool kernel_page_present(struct page *page);
1538 #endif /* CONFIG_HIBERNATION */
1539 #else
1540 static inline void
1541 kernel_map_pages(struct page *page, int numpages, int enable) {}
1542 #ifdef CONFIG_HIBERNATION
1543 static inline bool kernel_page_present(struct page *page) { return true; }
1544 #endif /* CONFIG_HIBERNATION */
1545 #endif
1546 
1547 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1548 #ifdef	__HAVE_ARCH_GATE_AREA
1549 int in_gate_area_no_mm(unsigned long addr);
1550 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1551 #else
1552 int in_gate_area_no_mm(unsigned long addr);
1553 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1554 #endif	/* __HAVE_ARCH_GATE_AREA */
1555 
1556 int drop_caches_sysctl_handler(struct ctl_table *, int,
1557 					void __user *, size_t *, loff_t *);
1558 unsigned long shrink_slab(struct shrink_control *shrink,
1559 			  unsigned long nr_pages_scanned,
1560 			  unsigned long lru_pages);
1561 
1562 #ifndef CONFIG_MMU
1563 #define randomize_va_space 0
1564 #else
1565 extern int randomize_va_space;
1566 #endif
1567 
1568 const char * arch_vma_name(struct vm_area_struct *vma);
1569 void print_vma_addr(char *prefix, unsigned long rip);
1570 
1571 void sparse_mem_maps_populate_node(struct page **map_map,
1572 				   unsigned long pnum_begin,
1573 				   unsigned long pnum_end,
1574 				   unsigned long map_count,
1575 				   int nodeid);
1576 
1577 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1578 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1579 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1580 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1581 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1582 void *vmemmap_alloc_block(unsigned long size, int node);
1583 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1584 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1585 int vmemmap_populate_basepages(struct page *start_page,
1586 						unsigned long pages, int node);
1587 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1588 void vmemmap_populate_print_last(void);
1589 
1590 
1591 enum mf_flags {
1592 	MF_COUNT_INCREASED = 1 << 0,
1593 	MF_ACTION_REQUIRED = 1 << 1,
1594 };
1595 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1596 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1597 extern int unpoison_memory(unsigned long pfn);
1598 extern int sysctl_memory_failure_early_kill;
1599 extern int sysctl_memory_failure_recovery;
1600 extern void shake_page(struct page *p, int access);
1601 extern atomic_long_t mce_bad_pages;
1602 extern int soft_offline_page(struct page *page, int flags);
1603 
1604 extern void dump_page(struct page *page);
1605 
1606 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1607 extern void clear_huge_page(struct page *page,
1608 			    unsigned long addr,
1609 			    unsigned int pages_per_huge_page);
1610 extern void copy_user_huge_page(struct page *dst, struct page *src,
1611 				unsigned long addr, struct vm_area_struct *vma,
1612 				unsigned int pages_per_huge_page);
1613 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1614 
1615 #ifdef CONFIG_DEBUG_PAGEALLOC
1616 extern unsigned int _debug_guardpage_minorder;
1617 
1618 static inline unsigned int debug_guardpage_minorder(void)
1619 {
1620 	return _debug_guardpage_minorder;
1621 }
1622 
1623 static inline bool page_is_guard(struct page *page)
1624 {
1625 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1626 }
1627 #else
1628 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1629 static inline bool page_is_guard(struct page *page) { return false; }
1630 #endif /* CONFIG_DEBUG_PAGEALLOC */
1631 
1632 #endif /* __KERNEL__ */
1633 #endif /* _LINUX_MM_H */
1634