1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 24 struct mempolicy; 25 struct anon_vma; 26 struct anon_vma_chain; 27 struct file_ra_state; 28 struct user_struct; 29 struct writeback_control; 30 31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 32 extern unsigned long max_mapnr; 33 34 static inline void set_max_mapnr(unsigned long limit) 35 { 36 max_mapnr = limit; 37 } 38 #else 39 static inline void set_max_mapnr(unsigned long limit) { } 40 #endif 41 42 extern unsigned long totalram_pages; 43 extern void * high_memory; 44 extern int page_cluster; 45 46 #ifdef CONFIG_SYSCTL 47 extern int sysctl_legacy_va_layout; 48 #else 49 #define sysctl_legacy_va_layout 0 50 #endif 51 52 #include <asm/page.h> 53 #include <asm/pgtable.h> 54 #include <asm/processor.h> 55 56 #ifndef __pa_symbol 57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 58 #endif 59 60 /* 61 * To prevent common memory management code establishing 62 * a zero page mapping on a read fault. 63 * This macro should be defined within <asm/pgtable.h>. 64 * s390 does this to prevent multiplexing of hardware bits 65 * related to the physical page in case of virtualization. 66 */ 67 #ifndef mm_forbids_zeropage 68 #define mm_forbids_zeropage(X) (0) 69 #endif 70 71 extern unsigned long sysctl_user_reserve_kbytes; 72 extern unsigned long sysctl_admin_reserve_kbytes; 73 74 extern int sysctl_overcommit_memory; 75 extern int sysctl_overcommit_ratio; 76 extern unsigned long sysctl_overcommit_kbytes; 77 78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 79 size_t *, loff_t *); 80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82 83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 84 85 /* to align the pointer to the (next) page boundary */ 86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 87 88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 90 91 /* 92 * Linux kernel virtual memory manager primitives. 93 * The idea being to have a "virtual" mm in the same way 94 * we have a virtual fs - giving a cleaner interface to the 95 * mm details, and allowing different kinds of memory mappings 96 * (from shared memory to executable loading to arbitrary 97 * mmap() functions). 98 */ 99 100 extern struct kmem_cache *vm_area_cachep; 101 102 #ifndef CONFIG_MMU 103 extern struct rb_root nommu_region_tree; 104 extern struct rw_semaphore nommu_region_sem; 105 106 extern unsigned int kobjsize(const void *objp); 107 #endif 108 109 /* 110 * vm_flags in vm_area_struct, see mm_types.h. 111 */ 112 #define VM_NONE 0x00000000 113 114 #define VM_READ 0x00000001 /* currently active flags */ 115 #define VM_WRITE 0x00000002 116 #define VM_EXEC 0x00000004 117 #define VM_SHARED 0x00000008 118 119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 121 #define VM_MAYWRITE 0x00000020 122 #define VM_MAYEXEC 0x00000040 123 #define VM_MAYSHARE 0x00000080 124 125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 128 129 #define VM_LOCKED 0x00002000 130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 131 132 /* Used by sys_madvise() */ 133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 135 136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 138 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 139 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 140 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 141 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 142 #define VM_ARCH_2 0x02000000 143 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 144 145 #ifdef CONFIG_MEM_SOFT_DIRTY 146 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 147 #else 148 # define VM_SOFTDIRTY 0 149 #endif 150 151 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 152 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 153 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 154 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 155 156 #if defined(CONFIG_X86) 157 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 158 #elif defined(CONFIG_PPC) 159 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 160 #elif defined(CONFIG_PARISC) 161 # define VM_GROWSUP VM_ARCH_1 162 #elif defined(CONFIG_METAG) 163 # define VM_GROWSUP VM_ARCH_1 164 #elif defined(CONFIG_IA64) 165 # define VM_GROWSUP VM_ARCH_1 166 #elif !defined(CONFIG_MMU) 167 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 168 #endif 169 170 #if defined(CONFIG_X86) 171 /* MPX specific bounds table or bounds directory */ 172 # define VM_MPX VM_ARCH_2 173 #endif 174 175 #ifndef VM_GROWSUP 176 # define VM_GROWSUP VM_NONE 177 #endif 178 179 /* Bits set in the VMA until the stack is in its final location */ 180 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 181 182 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 183 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 184 #endif 185 186 #ifdef CONFIG_STACK_GROWSUP 187 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 188 #else 189 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 190 #endif 191 192 /* 193 * Special vmas that are non-mergable, non-mlock()able. 194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 195 */ 196 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 197 198 /* This mask defines which mm->def_flags a process can inherit its parent */ 199 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 200 201 /* 202 * mapping from the currently active vm_flags protection bits (the 203 * low four bits) to a page protection mask.. 204 */ 205 extern pgprot_t protection_map[16]; 206 207 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 208 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 209 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 210 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 211 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 212 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 213 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 214 215 /* 216 * vm_fault is filled by the the pagefault handler and passed to the vma's 217 * ->fault function. The vma's ->fault is responsible for returning a bitmask 218 * of VM_FAULT_xxx flags that give details about how the fault was handled. 219 * 220 * pgoff should be used in favour of virtual_address, if possible. 221 */ 222 struct vm_fault { 223 unsigned int flags; /* FAULT_FLAG_xxx flags */ 224 pgoff_t pgoff; /* Logical page offset based on vma */ 225 void __user *virtual_address; /* Faulting virtual address */ 226 227 struct page *cow_page; /* Handler may choose to COW */ 228 struct page *page; /* ->fault handlers should return a 229 * page here, unless VM_FAULT_NOPAGE 230 * is set (which is also implied by 231 * VM_FAULT_ERROR). 232 */ 233 /* for ->map_pages() only */ 234 pgoff_t max_pgoff; /* map pages for offset from pgoff till 235 * max_pgoff inclusive */ 236 pte_t *pte; /* pte entry associated with ->pgoff */ 237 }; 238 239 /* 240 * These are the virtual MM functions - opening of an area, closing and 241 * unmapping it (needed to keep files on disk up-to-date etc), pointer 242 * to the functions called when a no-page or a wp-page exception occurs. 243 */ 244 struct vm_operations_struct { 245 void (*open)(struct vm_area_struct * area); 246 void (*close)(struct vm_area_struct * area); 247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 249 250 /* notification that a previously read-only page is about to become 251 * writable, if an error is returned it will cause a SIGBUS */ 252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 253 254 /* called by access_process_vm when get_user_pages() fails, typically 255 * for use by special VMAs that can switch between memory and hardware 256 */ 257 int (*access)(struct vm_area_struct *vma, unsigned long addr, 258 void *buf, int len, int write); 259 260 /* Called by the /proc/PID/maps code to ask the vma whether it 261 * has a special name. Returning non-NULL will also cause this 262 * vma to be dumped unconditionally. */ 263 const char *(*name)(struct vm_area_struct *vma); 264 265 #ifdef CONFIG_NUMA 266 /* 267 * set_policy() op must add a reference to any non-NULL @new mempolicy 268 * to hold the policy upon return. Caller should pass NULL @new to 269 * remove a policy and fall back to surrounding context--i.e. do not 270 * install a MPOL_DEFAULT policy, nor the task or system default 271 * mempolicy. 272 */ 273 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 274 275 /* 276 * get_policy() op must add reference [mpol_get()] to any policy at 277 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 278 * in mm/mempolicy.c will do this automatically. 279 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 280 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 281 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 282 * must return NULL--i.e., do not "fallback" to task or system default 283 * policy. 284 */ 285 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 286 unsigned long addr); 287 #endif 288 /* 289 * Called by vm_normal_page() for special PTEs to find the 290 * page for @addr. This is useful if the default behavior 291 * (using pte_page()) would not find the correct page. 292 */ 293 struct page *(*find_special_page)(struct vm_area_struct *vma, 294 unsigned long addr); 295 }; 296 297 struct mmu_gather; 298 struct inode; 299 300 #define page_private(page) ((page)->private) 301 #define set_page_private(page, v) ((page)->private = (v)) 302 303 /* It's valid only if the page is free path or free_list */ 304 static inline void set_freepage_migratetype(struct page *page, int migratetype) 305 { 306 page->index = migratetype; 307 } 308 309 /* It's valid only if the page is free path or free_list */ 310 static inline int get_freepage_migratetype(struct page *page) 311 { 312 return page->index; 313 } 314 315 /* 316 * FIXME: take this include out, include page-flags.h in 317 * files which need it (119 of them) 318 */ 319 #include <linux/page-flags.h> 320 #include <linux/huge_mm.h> 321 322 /* 323 * Methods to modify the page usage count. 324 * 325 * What counts for a page usage: 326 * - cache mapping (page->mapping) 327 * - private data (page->private) 328 * - page mapped in a task's page tables, each mapping 329 * is counted separately 330 * 331 * Also, many kernel routines increase the page count before a critical 332 * routine so they can be sure the page doesn't go away from under them. 333 */ 334 335 /* 336 * Drop a ref, return true if the refcount fell to zero (the page has no users) 337 */ 338 static inline int put_page_testzero(struct page *page) 339 { 340 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 341 return atomic_dec_and_test(&page->_count); 342 } 343 344 /* 345 * Try to grab a ref unless the page has a refcount of zero, return false if 346 * that is the case. 347 * This can be called when MMU is off so it must not access 348 * any of the virtual mappings. 349 */ 350 static inline int get_page_unless_zero(struct page *page) 351 { 352 return atomic_inc_not_zero(&page->_count); 353 } 354 355 /* 356 * Try to drop a ref unless the page has a refcount of one, return false if 357 * that is the case. 358 * This is to make sure that the refcount won't become zero after this drop. 359 * This can be called when MMU is off so it must not access 360 * any of the virtual mappings. 361 */ 362 static inline int put_page_unless_one(struct page *page) 363 { 364 return atomic_add_unless(&page->_count, -1, 1); 365 } 366 367 extern int page_is_ram(unsigned long pfn); 368 extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 369 370 /* Support for virtually mapped pages */ 371 struct page *vmalloc_to_page(const void *addr); 372 unsigned long vmalloc_to_pfn(const void *addr); 373 374 /* 375 * Determine if an address is within the vmalloc range 376 * 377 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 378 * is no special casing required. 379 */ 380 static inline int is_vmalloc_addr(const void *x) 381 { 382 #ifdef CONFIG_MMU 383 unsigned long addr = (unsigned long)x; 384 385 return addr >= VMALLOC_START && addr < VMALLOC_END; 386 #else 387 return 0; 388 #endif 389 } 390 #ifdef CONFIG_MMU 391 extern int is_vmalloc_or_module_addr(const void *x); 392 #else 393 static inline int is_vmalloc_or_module_addr(const void *x) 394 { 395 return 0; 396 } 397 #endif 398 399 extern void kvfree(const void *addr); 400 401 static inline void compound_lock(struct page *page) 402 { 403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 404 VM_BUG_ON_PAGE(PageSlab(page), page); 405 bit_spin_lock(PG_compound_lock, &page->flags); 406 #endif 407 } 408 409 static inline void compound_unlock(struct page *page) 410 { 411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 412 VM_BUG_ON_PAGE(PageSlab(page), page); 413 bit_spin_unlock(PG_compound_lock, &page->flags); 414 #endif 415 } 416 417 static inline unsigned long compound_lock_irqsave(struct page *page) 418 { 419 unsigned long uninitialized_var(flags); 420 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 421 local_irq_save(flags); 422 compound_lock(page); 423 #endif 424 return flags; 425 } 426 427 static inline void compound_unlock_irqrestore(struct page *page, 428 unsigned long flags) 429 { 430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 431 compound_unlock(page); 432 local_irq_restore(flags); 433 #endif 434 } 435 436 static inline struct page *compound_head_by_tail(struct page *tail) 437 { 438 struct page *head = tail->first_page; 439 440 /* 441 * page->first_page may be a dangling pointer to an old 442 * compound page, so recheck that it is still a tail 443 * page before returning. 444 */ 445 smp_rmb(); 446 if (likely(PageTail(tail))) 447 return head; 448 return tail; 449 } 450 451 /* 452 * Since either compound page could be dismantled asynchronously in THP 453 * or we access asynchronously arbitrary positioned struct page, there 454 * would be tail flag race. To handle this race, we should call 455 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 456 */ 457 static inline struct page *compound_head(struct page *page) 458 { 459 if (unlikely(PageTail(page))) 460 return compound_head_by_tail(page); 461 return page; 462 } 463 464 /* 465 * If we access compound page synchronously such as access to 466 * allocated page, there is no need to handle tail flag race, so we can 467 * check tail flag directly without any synchronization primitive. 468 */ 469 static inline struct page *compound_head_fast(struct page *page) 470 { 471 if (unlikely(PageTail(page))) 472 return page->first_page; 473 return page; 474 } 475 476 /* 477 * The atomic page->_mapcount, starts from -1: so that transitions 478 * both from it and to it can be tracked, using atomic_inc_and_test 479 * and atomic_add_negative(-1). 480 */ 481 static inline void page_mapcount_reset(struct page *page) 482 { 483 atomic_set(&(page)->_mapcount, -1); 484 } 485 486 static inline int page_mapcount(struct page *page) 487 { 488 VM_BUG_ON_PAGE(PageSlab(page), page); 489 return atomic_read(&page->_mapcount) + 1; 490 } 491 492 static inline int page_count(struct page *page) 493 { 494 return atomic_read(&compound_head(page)->_count); 495 } 496 497 #ifdef CONFIG_HUGETLB_PAGE 498 extern int PageHeadHuge(struct page *page_head); 499 #else /* CONFIG_HUGETLB_PAGE */ 500 static inline int PageHeadHuge(struct page *page_head) 501 { 502 return 0; 503 } 504 #endif /* CONFIG_HUGETLB_PAGE */ 505 506 static inline bool __compound_tail_refcounted(struct page *page) 507 { 508 return !PageSlab(page) && !PageHeadHuge(page); 509 } 510 511 /* 512 * This takes a head page as parameter and tells if the 513 * tail page reference counting can be skipped. 514 * 515 * For this to be safe, PageSlab and PageHeadHuge must remain true on 516 * any given page where they return true here, until all tail pins 517 * have been released. 518 */ 519 static inline bool compound_tail_refcounted(struct page *page) 520 { 521 VM_BUG_ON_PAGE(!PageHead(page), page); 522 return __compound_tail_refcounted(page); 523 } 524 525 static inline void get_huge_page_tail(struct page *page) 526 { 527 /* 528 * __split_huge_page_refcount() cannot run from under us. 529 */ 530 VM_BUG_ON_PAGE(!PageTail(page), page); 531 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 532 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 533 if (compound_tail_refcounted(page->first_page)) 534 atomic_inc(&page->_mapcount); 535 } 536 537 extern bool __get_page_tail(struct page *page); 538 539 static inline void get_page(struct page *page) 540 { 541 if (unlikely(PageTail(page))) 542 if (likely(__get_page_tail(page))) 543 return; 544 /* 545 * Getting a normal page or the head of a compound page 546 * requires to already have an elevated page->_count. 547 */ 548 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 549 atomic_inc(&page->_count); 550 } 551 552 static inline struct page *virt_to_head_page(const void *x) 553 { 554 struct page *page = virt_to_page(x); 555 556 /* 557 * We don't need to worry about synchronization of tail flag 558 * when we call virt_to_head_page() since it is only called for 559 * already allocated page and this page won't be freed until 560 * this virt_to_head_page() is finished. So use _fast variant. 561 */ 562 return compound_head_fast(page); 563 } 564 565 /* 566 * Setup the page count before being freed into the page allocator for 567 * the first time (boot or memory hotplug) 568 */ 569 static inline void init_page_count(struct page *page) 570 { 571 atomic_set(&page->_count, 1); 572 } 573 574 /* 575 * PageBuddy() indicate that the page is free and in the buddy system 576 * (see mm/page_alloc.c). 577 * 578 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 579 * -2 so that an underflow of the page_mapcount() won't be mistaken 580 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 581 * efficiently by most CPU architectures. 582 */ 583 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 584 585 static inline int PageBuddy(struct page *page) 586 { 587 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 588 } 589 590 static inline void __SetPageBuddy(struct page *page) 591 { 592 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 593 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 594 } 595 596 static inline void __ClearPageBuddy(struct page *page) 597 { 598 VM_BUG_ON_PAGE(!PageBuddy(page), page); 599 atomic_set(&page->_mapcount, -1); 600 } 601 602 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 603 604 static inline int PageBalloon(struct page *page) 605 { 606 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 607 } 608 609 static inline void __SetPageBalloon(struct page *page) 610 { 611 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 612 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 613 } 614 615 static inline void __ClearPageBalloon(struct page *page) 616 { 617 VM_BUG_ON_PAGE(!PageBalloon(page), page); 618 atomic_set(&page->_mapcount, -1); 619 } 620 621 void put_page(struct page *page); 622 void put_pages_list(struct list_head *pages); 623 624 void split_page(struct page *page, unsigned int order); 625 int split_free_page(struct page *page); 626 627 /* 628 * Compound pages have a destructor function. Provide a 629 * prototype for that function and accessor functions. 630 * These are _only_ valid on the head of a PG_compound page. 631 */ 632 633 static inline void set_compound_page_dtor(struct page *page, 634 compound_page_dtor *dtor) 635 { 636 page[1].compound_dtor = dtor; 637 } 638 639 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 640 { 641 return page[1].compound_dtor; 642 } 643 644 static inline int compound_order(struct page *page) 645 { 646 if (!PageHead(page)) 647 return 0; 648 return page[1].compound_order; 649 } 650 651 static inline void set_compound_order(struct page *page, unsigned long order) 652 { 653 page[1].compound_order = order; 654 } 655 656 #ifdef CONFIG_MMU 657 /* 658 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 659 * servicing faults for write access. In the normal case, do always want 660 * pte_mkwrite. But get_user_pages can cause write faults for mappings 661 * that do not have writing enabled, when used by access_process_vm. 662 */ 663 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 664 { 665 if (likely(vma->vm_flags & VM_WRITE)) 666 pte = pte_mkwrite(pte); 667 return pte; 668 } 669 670 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 671 struct page *page, pte_t *pte, bool write, bool anon); 672 #endif 673 674 /* 675 * Multiple processes may "see" the same page. E.g. for untouched 676 * mappings of /dev/null, all processes see the same page full of 677 * zeroes, and text pages of executables and shared libraries have 678 * only one copy in memory, at most, normally. 679 * 680 * For the non-reserved pages, page_count(page) denotes a reference count. 681 * page_count() == 0 means the page is free. page->lru is then used for 682 * freelist management in the buddy allocator. 683 * page_count() > 0 means the page has been allocated. 684 * 685 * Pages are allocated by the slab allocator in order to provide memory 686 * to kmalloc and kmem_cache_alloc. In this case, the management of the 687 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 688 * unless a particular usage is carefully commented. (the responsibility of 689 * freeing the kmalloc memory is the caller's, of course). 690 * 691 * A page may be used by anyone else who does a __get_free_page(). 692 * In this case, page_count still tracks the references, and should only 693 * be used through the normal accessor functions. The top bits of page->flags 694 * and page->virtual store page management information, but all other fields 695 * are unused and could be used privately, carefully. The management of this 696 * page is the responsibility of the one who allocated it, and those who have 697 * subsequently been given references to it. 698 * 699 * The other pages (we may call them "pagecache pages") are completely 700 * managed by the Linux memory manager: I/O, buffers, swapping etc. 701 * The following discussion applies only to them. 702 * 703 * A pagecache page contains an opaque `private' member, which belongs to the 704 * page's address_space. Usually, this is the address of a circular list of 705 * the page's disk buffers. PG_private must be set to tell the VM to call 706 * into the filesystem to release these pages. 707 * 708 * A page may belong to an inode's memory mapping. In this case, page->mapping 709 * is the pointer to the inode, and page->index is the file offset of the page, 710 * in units of PAGE_CACHE_SIZE. 711 * 712 * If pagecache pages are not associated with an inode, they are said to be 713 * anonymous pages. These may become associated with the swapcache, and in that 714 * case PG_swapcache is set, and page->private is an offset into the swapcache. 715 * 716 * In either case (swapcache or inode backed), the pagecache itself holds one 717 * reference to the page. Setting PG_private should also increment the 718 * refcount. The each user mapping also has a reference to the page. 719 * 720 * The pagecache pages are stored in a per-mapping radix tree, which is 721 * rooted at mapping->page_tree, and indexed by offset. 722 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 723 * lists, we instead now tag pages as dirty/writeback in the radix tree. 724 * 725 * All pagecache pages may be subject to I/O: 726 * - inode pages may need to be read from disk, 727 * - inode pages which have been modified and are MAP_SHARED may need 728 * to be written back to the inode on disk, 729 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 730 * modified may need to be swapped out to swap space and (later) to be read 731 * back into memory. 732 */ 733 734 /* 735 * The zone field is never updated after free_area_init_core() 736 * sets it, so none of the operations on it need to be atomic. 737 */ 738 739 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 740 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 741 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 742 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 743 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 744 745 /* 746 * Define the bit shifts to access each section. For non-existent 747 * sections we define the shift as 0; that plus a 0 mask ensures 748 * the compiler will optimise away reference to them. 749 */ 750 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 751 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 752 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 753 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 754 755 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 756 #ifdef NODE_NOT_IN_PAGE_FLAGS 757 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 758 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 759 SECTIONS_PGOFF : ZONES_PGOFF) 760 #else 761 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 762 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 763 NODES_PGOFF : ZONES_PGOFF) 764 #endif 765 766 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 767 768 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 769 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 770 #endif 771 772 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 773 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 774 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 775 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 776 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 777 778 static inline enum zone_type page_zonenum(const struct page *page) 779 { 780 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 781 } 782 783 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 784 #define SECTION_IN_PAGE_FLAGS 785 #endif 786 787 /* 788 * The identification function is mainly used by the buddy allocator for 789 * determining if two pages could be buddies. We are not really identifying 790 * the zone since we could be using the section number id if we do not have 791 * node id available in page flags. 792 * We only guarantee that it will return the same value for two combinable 793 * pages in a zone. 794 */ 795 static inline int page_zone_id(struct page *page) 796 { 797 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 798 } 799 800 static inline int zone_to_nid(struct zone *zone) 801 { 802 #ifdef CONFIG_NUMA 803 return zone->node; 804 #else 805 return 0; 806 #endif 807 } 808 809 #ifdef NODE_NOT_IN_PAGE_FLAGS 810 extern int page_to_nid(const struct page *page); 811 #else 812 static inline int page_to_nid(const struct page *page) 813 { 814 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 815 } 816 #endif 817 818 #ifdef CONFIG_NUMA_BALANCING 819 static inline int cpu_pid_to_cpupid(int cpu, int pid) 820 { 821 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 822 } 823 824 static inline int cpupid_to_pid(int cpupid) 825 { 826 return cpupid & LAST__PID_MASK; 827 } 828 829 static inline int cpupid_to_cpu(int cpupid) 830 { 831 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 832 } 833 834 static inline int cpupid_to_nid(int cpupid) 835 { 836 return cpu_to_node(cpupid_to_cpu(cpupid)); 837 } 838 839 static inline bool cpupid_pid_unset(int cpupid) 840 { 841 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 842 } 843 844 static inline bool cpupid_cpu_unset(int cpupid) 845 { 846 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 847 } 848 849 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 850 { 851 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 852 } 853 854 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 855 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 856 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 857 { 858 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 859 } 860 861 static inline int page_cpupid_last(struct page *page) 862 { 863 return page->_last_cpupid; 864 } 865 static inline void page_cpupid_reset_last(struct page *page) 866 { 867 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 868 } 869 #else 870 static inline int page_cpupid_last(struct page *page) 871 { 872 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 873 } 874 875 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 876 877 static inline void page_cpupid_reset_last(struct page *page) 878 { 879 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 880 881 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 882 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 883 } 884 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 885 #else /* !CONFIG_NUMA_BALANCING */ 886 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 887 { 888 return page_to_nid(page); /* XXX */ 889 } 890 891 static inline int page_cpupid_last(struct page *page) 892 { 893 return page_to_nid(page); /* XXX */ 894 } 895 896 static inline int cpupid_to_nid(int cpupid) 897 { 898 return -1; 899 } 900 901 static inline int cpupid_to_pid(int cpupid) 902 { 903 return -1; 904 } 905 906 static inline int cpupid_to_cpu(int cpupid) 907 { 908 return -1; 909 } 910 911 static inline int cpu_pid_to_cpupid(int nid, int pid) 912 { 913 return -1; 914 } 915 916 static inline bool cpupid_pid_unset(int cpupid) 917 { 918 return 1; 919 } 920 921 static inline void page_cpupid_reset_last(struct page *page) 922 { 923 } 924 925 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 926 { 927 return false; 928 } 929 #endif /* CONFIG_NUMA_BALANCING */ 930 931 static inline struct zone *page_zone(const struct page *page) 932 { 933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 934 } 935 936 #ifdef SECTION_IN_PAGE_FLAGS 937 static inline void set_page_section(struct page *page, unsigned long section) 938 { 939 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 940 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 941 } 942 943 static inline unsigned long page_to_section(const struct page *page) 944 { 945 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 946 } 947 #endif 948 949 static inline void set_page_zone(struct page *page, enum zone_type zone) 950 { 951 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 952 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 953 } 954 955 static inline void set_page_node(struct page *page, unsigned long node) 956 { 957 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 958 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 959 } 960 961 static inline void set_page_links(struct page *page, enum zone_type zone, 962 unsigned long node, unsigned long pfn) 963 { 964 set_page_zone(page, zone); 965 set_page_node(page, node); 966 #ifdef SECTION_IN_PAGE_FLAGS 967 set_page_section(page, pfn_to_section_nr(pfn)); 968 #endif 969 } 970 971 /* 972 * Some inline functions in vmstat.h depend on page_zone() 973 */ 974 #include <linux/vmstat.h> 975 976 static __always_inline void *lowmem_page_address(const struct page *page) 977 { 978 return __va(PFN_PHYS(page_to_pfn(page))); 979 } 980 981 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 982 #define HASHED_PAGE_VIRTUAL 983 #endif 984 985 #if defined(WANT_PAGE_VIRTUAL) 986 static inline void *page_address(const struct page *page) 987 { 988 return page->virtual; 989 } 990 static inline void set_page_address(struct page *page, void *address) 991 { 992 page->virtual = address; 993 } 994 #define page_address_init() do { } while(0) 995 #endif 996 997 #if defined(HASHED_PAGE_VIRTUAL) 998 void *page_address(const struct page *page); 999 void set_page_address(struct page *page, void *virtual); 1000 void page_address_init(void); 1001 #endif 1002 1003 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1004 #define page_address(page) lowmem_page_address(page) 1005 #define set_page_address(page, address) do { } while(0) 1006 #define page_address_init() do { } while(0) 1007 #endif 1008 1009 /* 1010 * On an anonymous page mapped into a user virtual memory area, 1011 * page->mapping points to its anon_vma, not to a struct address_space; 1012 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 1013 * 1014 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 1015 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 1016 * and then page->mapping points, not to an anon_vma, but to a private 1017 * structure which KSM associates with that merged page. See ksm.h. 1018 * 1019 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 1020 * 1021 * Please note that, confusingly, "page_mapping" refers to the inode 1022 * address_space which maps the page from disk; whereas "page_mapped" 1023 * refers to user virtual address space into which the page is mapped. 1024 */ 1025 #define PAGE_MAPPING_ANON 1 1026 #define PAGE_MAPPING_KSM 2 1027 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 1028 1029 extern struct address_space *page_mapping(struct page *page); 1030 1031 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 1032 static inline void *page_rmapping(struct page *page) 1033 { 1034 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 1035 } 1036 1037 extern struct address_space *__page_file_mapping(struct page *); 1038 1039 static inline 1040 struct address_space *page_file_mapping(struct page *page) 1041 { 1042 if (unlikely(PageSwapCache(page))) 1043 return __page_file_mapping(page); 1044 1045 return page->mapping; 1046 } 1047 1048 static inline int PageAnon(struct page *page) 1049 { 1050 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 1051 } 1052 1053 /* 1054 * Return the pagecache index of the passed page. Regular pagecache pages 1055 * use ->index whereas swapcache pages use ->private 1056 */ 1057 static inline pgoff_t page_index(struct page *page) 1058 { 1059 if (unlikely(PageSwapCache(page))) 1060 return page_private(page); 1061 return page->index; 1062 } 1063 1064 extern pgoff_t __page_file_index(struct page *page); 1065 1066 /* 1067 * Return the file index of the page. Regular pagecache pages use ->index 1068 * whereas swapcache pages use swp_offset(->private) 1069 */ 1070 static inline pgoff_t page_file_index(struct page *page) 1071 { 1072 if (unlikely(PageSwapCache(page))) 1073 return __page_file_index(page); 1074 1075 return page->index; 1076 } 1077 1078 /* 1079 * Return true if this page is mapped into pagetables. 1080 */ 1081 static inline int page_mapped(struct page *page) 1082 { 1083 return atomic_read(&(page)->_mapcount) >= 0; 1084 } 1085 1086 /* 1087 * Different kinds of faults, as returned by handle_mm_fault(). 1088 * Used to decide whether a process gets delivered SIGBUS or 1089 * just gets major/minor fault counters bumped up. 1090 */ 1091 1092 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1093 1094 #define VM_FAULT_OOM 0x0001 1095 #define VM_FAULT_SIGBUS 0x0002 1096 #define VM_FAULT_MAJOR 0x0004 1097 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1098 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1099 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1100 #define VM_FAULT_SIGSEGV 0x0040 1101 1102 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1103 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1104 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1105 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1106 1107 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1108 1109 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1110 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1111 VM_FAULT_FALLBACK) 1112 1113 /* Encode hstate index for a hwpoisoned large page */ 1114 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1115 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1116 1117 /* 1118 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1119 */ 1120 extern void pagefault_out_of_memory(void); 1121 1122 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1123 1124 /* 1125 * Flags passed to show_mem() and show_free_areas() to suppress output in 1126 * various contexts. 1127 */ 1128 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1129 1130 extern void show_free_areas(unsigned int flags); 1131 extern bool skip_free_areas_node(unsigned int flags, int nid); 1132 1133 int shmem_zero_setup(struct vm_area_struct *); 1134 #ifdef CONFIG_SHMEM 1135 bool shmem_mapping(struct address_space *mapping); 1136 #else 1137 static inline bool shmem_mapping(struct address_space *mapping) 1138 { 1139 return false; 1140 } 1141 #endif 1142 1143 extern int can_do_mlock(void); 1144 extern int user_shm_lock(size_t, struct user_struct *); 1145 extern void user_shm_unlock(size_t, struct user_struct *); 1146 1147 /* 1148 * Parameter block passed down to zap_pte_range in exceptional cases. 1149 */ 1150 struct zap_details { 1151 struct address_space *check_mapping; /* Check page->mapping if set */ 1152 pgoff_t first_index; /* Lowest page->index to unmap */ 1153 pgoff_t last_index; /* Highest page->index to unmap */ 1154 }; 1155 1156 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1157 pte_t pte); 1158 1159 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1160 unsigned long size); 1161 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1162 unsigned long size, struct zap_details *); 1163 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1164 unsigned long start, unsigned long end); 1165 1166 /** 1167 * mm_walk - callbacks for walk_page_range 1168 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1169 * this handler is required to be able to handle 1170 * pmd_trans_huge() pmds. They may simply choose to 1171 * split_huge_page() instead of handling it explicitly. 1172 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1173 * @pte_hole: if set, called for each hole at all levels 1174 * @hugetlb_entry: if set, called for each hugetlb entry 1175 * @test_walk: caller specific callback function to determine whether 1176 * we walk over the current vma or not. A positive returned 1177 * value means "do page table walk over the current vma," 1178 * and a negative one means "abort current page table walk 1179 * right now." 0 means "skip the current vma." 1180 * @mm: mm_struct representing the target process of page table walk 1181 * @vma: vma currently walked (NULL if walking outside vmas) 1182 * @private: private data for callbacks' usage 1183 * 1184 * (see the comment on walk_page_range() for more details) 1185 */ 1186 struct mm_walk { 1187 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1188 unsigned long next, struct mm_walk *walk); 1189 int (*pte_entry)(pte_t *pte, unsigned long addr, 1190 unsigned long next, struct mm_walk *walk); 1191 int (*pte_hole)(unsigned long addr, unsigned long next, 1192 struct mm_walk *walk); 1193 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1194 unsigned long addr, unsigned long next, 1195 struct mm_walk *walk); 1196 int (*test_walk)(unsigned long addr, unsigned long next, 1197 struct mm_walk *walk); 1198 struct mm_struct *mm; 1199 struct vm_area_struct *vma; 1200 void *private; 1201 }; 1202 1203 int walk_page_range(unsigned long addr, unsigned long end, 1204 struct mm_walk *walk); 1205 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1206 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1207 unsigned long end, unsigned long floor, unsigned long ceiling); 1208 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1209 struct vm_area_struct *vma); 1210 void unmap_mapping_range(struct address_space *mapping, 1211 loff_t const holebegin, loff_t const holelen, int even_cows); 1212 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1213 unsigned long *pfn); 1214 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1215 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1216 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1217 void *buf, int len, int write); 1218 1219 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1220 loff_t const holebegin, loff_t const holelen) 1221 { 1222 unmap_mapping_range(mapping, holebegin, holelen, 0); 1223 } 1224 1225 extern void truncate_pagecache(struct inode *inode, loff_t new); 1226 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1227 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1228 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1229 int truncate_inode_page(struct address_space *mapping, struct page *page); 1230 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1231 int invalidate_inode_page(struct page *page); 1232 1233 #ifdef CONFIG_MMU 1234 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1235 unsigned long address, unsigned int flags); 1236 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1237 unsigned long address, unsigned int fault_flags); 1238 #else 1239 static inline int handle_mm_fault(struct mm_struct *mm, 1240 struct vm_area_struct *vma, unsigned long address, 1241 unsigned int flags) 1242 { 1243 /* should never happen if there's no MMU */ 1244 BUG(); 1245 return VM_FAULT_SIGBUS; 1246 } 1247 static inline int fixup_user_fault(struct task_struct *tsk, 1248 struct mm_struct *mm, unsigned long address, 1249 unsigned int fault_flags) 1250 { 1251 /* should never happen if there's no MMU */ 1252 BUG(); 1253 return -EFAULT; 1254 } 1255 #endif 1256 1257 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1258 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1259 void *buf, int len, int write); 1260 1261 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1262 unsigned long start, unsigned long nr_pages, 1263 unsigned int foll_flags, struct page **pages, 1264 struct vm_area_struct **vmas, int *nonblocking); 1265 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1266 unsigned long start, unsigned long nr_pages, 1267 int write, int force, struct page **pages, 1268 struct vm_area_struct **vmas); 1269 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1270 unsigned long start, unsigned long nr_pages, 1271 int write, int force, struct page **pages, 1272 int *locked); 1273 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1274 unsigned long start, unsigned long nr_pages, 1275 int write, int force, struct page **pages, 1276 unsigned int gup_flags); 1277 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1278 unsigned long start, unsigned long nr_pages, 1279 int write, int force, struct page **pages); 1280 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1281 struct page **pages); 1282 struct kvec; 1283 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1284 struct page **pages); 1285 int get_kernel_page(unsigned long start, int write, struct page **pages); 1286 struct page *get_dump_page(unsigned long addr); 1287 1288 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1289 extern void do_invalidatepage(struct page *page, unsigned int offset, 1290 unsigned int length); 1291 1292 int __set_page_dirty_nobuffers(struct page *page); 1293 int __set_page_dirty_no_writeback(struct page *page); 1294 int redirty_page_for_writepage(struct writeback_control *wbc, 1295 struct page *page); 1296 void account_page_dirtied(struct page *page, struct address_space *mapping); 1297 int set_page_dirty(struct page *page); 1298 int set_page_dirty_lock(struct page *page); 1299 int clear_page_dirty_for_io(struct page *page); 1300 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1301 1302 /* Is the vma a continuation of the stack vma above it? */ 1303 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1304 { 1305 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1306 } 1307 1308 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1309 unsigned long addr) 1310 { 1311 return (vma->vm_flags & VM_GROWSDOWN) && 1312 (vma->vm_start == addr) && 1313 !vma_growsdown(vma->vm_prev, addr); 1314 } 1315 1316 /* Is the vma a continuation of the stack vma below it? */ 1317 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1318 { 1319 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1320 } 1321 1322 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1323 unsigned long addr) 1324 { 1325 return (vma->vm_flags & VM_GROWSUP) && 1326 (vma->vm_end == addr) && 1327 !vma_growsup(vma->vm_next, addr); 1328 } 1329 1330 extern struct task_struct *task_of_stack(struct task_struct *task, 1331 struct vm_area_struct *vma, bool in_group); 1332 1333 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1334 unsigned long old_addr, struct vm_area_struct *new_vma, 1335 unsigned long new_addr, unsigned long len, 1336 bool need_rmap_locks); 1337 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1338 unsigned long end, pgprot_t newprot, 1339 int dirty_accountable, int prot_numa); 1340 extern int mprotect_fixup(struct vm_area_struct *vma, 1341 struct vm_area_struct **pprev, unsigned long start, 1342 unsigned long end, unsigned long newflags); 1343 1344 /* 1345 * doesn't attempt to fault and will return short. 1346 */ 1347 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1348 struct page **pages); 1349 /* 1350 * per-process(per-mm_struct) statistics. 1351 */ 1352 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1353 { 1354 long val = atomic_long_read(&mm->rss_stat.count[member]); 1355 1356 #ifdef SPLIT_RSS_COUNTING 1357 /* 1358 * counter is updated in asynchronous manner and may go to minus. 1359 * But it's never be expected number for users. 1360 */ 1361 if (val < 0) 1362 val = 0; 1363 #endif 1364 return (unsigned long)val; 1365 } 1366 1367 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1368 { 1369 atomic_long_add(value, &mm->rss_stat.count[member]); 1370 } 1371 1372 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1373 { 1374 atomic_long_inc(&mm->rss_stat.count[member]); 1375 } 1376 1377 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1378 { 1379 atomic_long_dec(&mm->rss_stat.count[member]); 1380 } 1381 1382 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1383 { 1384 return get_mm_counter(mm, MM_FILEPAGES) + 1385 get_mm_counter(mm, MM_ANONPAGES); 1386 } 1387 1388 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1389 { 1390 return max(mm->hiwater_rss, get_mm_rss(mm)); 1391 } 1392 1393 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1394 { 1395 return max(mm->hiwater_vm, mm->total_vm); 1396 } 1397 1398 static inline void update_hiwater_rss(struct mm_struct *mm) 1399 { 1400 unsigned long _rss = get_mm_rss(mm); 1401 1402 if ((mm)->hiwater_rss < _rss) 1403 (mm)->hiwater_rss = _rss; 1404 } 1405 1406 static inline void update_hiwater_vm(struct mm_struct *mm) 1407 { 1408 if (mm->hiwater_vm < mm->total_vm) 1409 mm->hiwater_vm = mm->total_vm; 1410 } 1411 1412 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1413 { 1414 mm->hiwater_rss = get_mm_rss(mm); 1415 } 1416 1417 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1418 struct mm_struct *mm) 1419 { 1420 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1421 1422 if (*maxrss < hiwater_rss) 1423 *maxrss = hiwater_rss; 1424 } 1425 1426 #if defined(SPLIT_RSS_COUNTING) 1427 void sync_mm_rss(struct mm_struct *mm); 1428 #else 1429 static inline void sync_mm_rss(struct mm_struct *mm) 1430 { 1431 } 1432 #endif 1433 1434 int vma_wants_writenotify(struct vm_area_struct *vma); 1435 1436 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1437 spinlock_t **ptl); 1438 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1439 spinlock_t **ptl) 1440 { 1441 pte_t *ptep; 1442 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1443 return ptep; 1444 } 1445 1446 #ifdef __PAGETABLE_PUD_FOLDED 1447 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1448 unsigned long address) 1449 { 1450 return 0; 1451 } 1452 #else 1453 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1454 #endif 1455 1456 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1457 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1458 unsigned long address) 1459 { 1460 return 0; 1461 } 1462 1463 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1464 1465 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1466 { 1467 return 0; 1468 } 1469 1470 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1471 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1472 1473 #else 1474 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1475 1476 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1477 { 1478 atomic_long_set(&mm->nr_pmds, 0); 1479 } 1480 1481 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1482 { 1483 return atomic_long_read(&mm->nr_pmds); 1484 } 1485 1486 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1487 { 1488 atomic_long_inc(&mm->nr_pmds); 1489 } 1490 1491 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1492 { 1493 atomic_long_dec(&mm->nr_pmds); 1494 } 1495 #endif 1496 1497 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1498 pmd_t *pmd, unsigned long address); 1499 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1500 1501 /* 1502 * The following ifdef needed to get the 4level-fixup.h header to work. 1503 * Remove it when 4level-fixup.h has been removed. 1504 */ 1505 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1506 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1507 { 1508 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1509 NULL: pud_offset(pgd, address); 1510 } 1511 1512 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1513 { 1514 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1515 NULL: pmd_offset(pud, address); 1516 } 1517 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1518 1519 #if USE_SPLIT_PTE_PTLOCKS 1520 #if ALLOC_SPLIT_PTLOCKS 1521 void __init ptlock_cache_init(void); 1522 extern bool ptlock_alloc(struct page *page); 1523 extern void ptlock_free(struct page *page); 1524 1525 static inline spinlock_t *ptlock_ptr(struct page *page) 1526 { 1527 return page->ptl; 1528 } 1529 #else /* ALLOC_SPLIT_PTLOCKS */ 1530 static inline void ptlock_cache_init(void) 1531 { 1532 } 1533 1534 static inline bool ptlock_alloc(struct page *page) 1535 { 1536 return true; 1537 } 1538 1539 static inline void ptlock_free(struct page *page) 1540 { 1541 } 1542 1543 static inline spinlock_t *ptlock_ptr(struct page *page) 1544 { 1545 return &page->ptl; 1546 } 1547 #endif /* ALLOC_SPLIT_PTLOCKS */ 1548 1549 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1550 { 1551 return ptlock_ptr(pmd_page(*pmd)); 1552 } 1553 1554 static inline bool ptlock_init(struct page *page) 1555 { 1556 /* 1557 * prep_new_page() initialize page->private (and therefore page->ptl) 1558 * with 0. Make sure nobody took it in use in between. 1559 * 1560 * It can happen if arch try to use slab for page table allocation: 1561 * slab code uses page->slab_cache and page->first_page (for tail 1562 * pages), which share storage with page->ptl. 1563 */ 1564 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1565 if (!ptlock_alloc(page)) 1566 return false; 1567 spin_lock_init(ptlock_ptr(page)); 1568 return true; 1569 } 1570 1571 /* Reset page->mapping so free_pages_check won't complain. */ 1572 static inline void pte_lock_deinit(struct page *page) 1573 { 1574 page->mapping = NULL; 1575 ptlock_free(page); 1576 } 1577 1578 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1579 /* 1580 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1581 */ 1582 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1583 { 1584 return &mm->page_table_lock; 1585 } 1586 static inline void ptlock_cache_init(void) {} 1587 static inline bool ptlock_init(struct page *page) { return true; } 1588 static inline void pte_lock_deinit(struct page *page) {} 1589 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1590 1591 static inline void pgtable_init(void) 1592 { 1593 ptlock_cache_init(); 1594 pgtable_cache_init(); 1595 } 1596 1597 static inline bool pgtable_page_ctor(struct page *page) 1598 { 1599 inc_zone_page_state(page, NR_PAGETABLE); 1600 return ptlock_init(page); 1601 } 1602 1603 static inline void pgtable_page_dtor(struct page *page) 1604 { 1605 pte_lock_deinit(page); 1606 dec_zone_page_state(page, NR_PAGETABLE); 1607 } 1608 1609 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1610 ({ \ 1611 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1612 pte_t *__pte = pte_offset_map(pmd, address); \ 1613 *(ptlp) = __ptl; \ 1614 spin_lock(__ptl); \ 1615 __pte; \ 1616 }) 1617 1618 #define pte_unmap_unlock(pte, ptl) do { \ 1619 spin_unlock(ptl); \ 1620 pte_unmap(pte); \ 1621 } while (0) 1622 1623 #define pte_alloc_map(mm, vma, pmd, address) \ 1624 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1625 pmd, address))? \ 1626 NULL: pte_offset_map(pmd, address)) 1627 1628 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1629 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1630 pmd, address))? \ 1631 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1632 1633 #define pte_alloc_kernel(pmd, address) \ 1634 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1635 NULL: pte_offset_kernel(pmd, address)) 1636 1637 #if USE_SPLIT_PMD_PTLOCKS 1638 1639 static struct page *pmd_to_page(pmd_t *pmd) 1640 { 1641 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1642 return virt_to_page((void *)((unsigned long) pmd & mask)); 1643 } 1644 1645 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1646 { 1647 return ptlock_ptr(pmd_to_page(pmd)); 1648 } 1649 1650 static inline bool pgtable_pmd_page_ctor(struct page *page) 1651 { 1652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1653 page->pmd_huge_pte = NULL; 1654 #endif 1655 return ptlock_init(page); 1656 } 1657 1658 static inline void pgtable_pmd_page_dtor(struct page *page) 1659 { 1660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1661 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1662 #endif 1663 ptlock_free(page); 1664 } 1665 1666 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1667 1668 #else 1669 1670 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1671 { 1672 return &mm->page_table_lock; 1673 } 1674 1675 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1676 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1677 1678 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1679 1680 #endif 1681 1682 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1683 { 1684 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1685 spin_lock(ptl); 1686 return ptl; 1687 } 1688 1689 extern void free_area_init(unsigned long * zones_size); 1690 extern void free_area_init_node(int nid, unsigned long * zones_size, 1691 unsigned long zone_start_pfn, unsigned long *zholes_size); 1692 extern void free_initmem(void); 1693 1694 /* 1695 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1696 * into the buddy system. The freed pages will be poisoned with pattern 1697 * "poison" if it's within range [0, UCHAR_MAX]. 1698 * Return pages freed into the buddy system. 1699 */ 1700 extern unsigned long free_reserved_area(void *start, void *end, 1701 int poison, char *s); 1702 1703 #ifdef CONFIG_HIGHMEM 1704 /* 1705 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1706 * and totalram_pages. 1707 */ 1708 extern void free_highmem_page(struct page *page); 1709 #endif 1710 1711 extern void adjust_managed_page_count(struct page *page, long count); 1712 extern void mem_init_print_info(const char *str); 1713 1714 /* Free the reserved page into the buddy system, so it gets managed. */ 1715 static inline void __free_reserved_page(struct page *page) 1716 { 1717 ClearPageReserved(page); 1718 init_page_count(page); 1719 __free_page(page); 1720 } 1721 1722 static inline void free_reserved_page(struct page *page) 1723 { 1724 __free_reserved_page(page); 1725 adjust_managed_page_count(page, 1); 1726 } 1727 1728 static inline void mark_page_reserved(struct page *page) 1729 { 1730 SetPageReserved(page); 1731 adjust_managed_page_count(page, -1); 1732 } 1733 1734 /* 1735 * Default method to free all the __init memory into the buddy system. 1736 * The freed pages will be poisoned with pattern "poison" if it's within 1737 * range [0, UCHAR_MAX]. 1738 * Return pages freed into the buddy system. 1739 */ 1740 static inline unsigned long free_initmem_default(int poison) 1741 { 1742 extern char __init_begin[], __init_end[]; 1743 1744 return free_reserved_area(&__init_begin, &__init_end, 1745 poison, "unused kernel"); 1746 } 1747 1748 static inline unsigned long get_num_physpages(void) 1749 { 1750 int nid; 1751 unsigned long phys_pages = 0; 1752 1753 for_each_online_node(nid) 1754 phys_pages += node_present_pages(nid); 1755 1756 return phys_pages; 1757 } 1758 1759 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1760 /* 1761 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1762 * zones, allocate the backing mem_map and account for memory holes in a more 1763 * architecture independent manner. This is a substitute for creating the 1764 * zone_sizes[] and zholes_size[] arrays and passing them to 1765 * free_area_init_node() 1766 * 1767 * An architecture is expected to register range of page frames backed by 1768 * physical memory with memblock_add[_node]() before calling 1769 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1770 * usage, an architecture is expected to do something like 1771 * 1772 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1773 * max_highmem_pfn}; 1774 * for_each_valid_physical_page_range() 1775 * memblock_add_node(base, size, nid) 1776 * free_area_init_nodes(max_zone_pfns); 1777 * 1778 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1779 * registered physical page range. Similarly 1780 * sparse_memory_present_with_active_regions() calls memory_present() for 1781 * each range when SPARSEMEM is enabled. 1782 * 1783 * See mm/page_alloc.c for more information on each function exposed by 1784 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1785 */ 1786 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1787 unsigned long node_map_pfn_alignment(void); 1788 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1789 unsigned long end_pfn); 1790 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1791 unsigned long end_pfn); 1792 extern void get_pfn_range_for_nid(unsigned int nid, 1793 unsigned long *start_pfn, unsigned long *end_pfn); 1794 extern unsigned long find_min_pfn_with_active_regions(void); 1795 extern void free_bootmem_with_active_regions(int nid, 1796 unsigned long max_low_pfn); 1797 extern void sparse_memory_present_with_active_regions(int nid); 1798 1799 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1800 1801 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1802 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1803 static inline int __early_pfn_to_nid(unsigned long pfn) 1804 { 1805 return 0; 1806 } 1807 #else 1808 /* please see mm/page_alloc.c */ 1809 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1810 /* there is a per-arch backend function. */ 1811 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1812 #endif 1813 1814 extern void set_dma_reserve(unsigned long new_dma_reserve); 1815 extern void memmap_init_zone(unsigned long, int, unsigned long, 1816 unsigned long, enum memmap_context); 1817 extern void setup_per_zone_wmarks(void); 1818 extern int __meminit init_per_zone_wmark_min(void); 1819 extern void mem_init(void); 1820 extern void __init mmap_init(void); 1821 extern void show_mem(unsigned int flags); 1822 extern void si_meminfo(struct sysinfo * val); 1823 extern void si_meminfo_node(struct sysinfo *val, int nid); 1824 1825 extern __printf(3, 4) 1826 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1827 1828 extern void setup_per_cpu_pageset(void); 1829 1830 extern void zone_pcp_update(struct zone *zone); 1831 extern void zone_pcp_reset(struct zone *zone); 1832 1833 /* page_alloc.c */ 1834 extern int min_free_kbytes; 1835 1836 /* nommu.c */ 1837 extern atomic_long_t mmap_pages_allocated; 1838 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1839 1840 /* interval_tree.c */ 1841 void vma_interval_tree_insert(struct vm_area_struct *node, 1842 struct rb_root *root); 1843 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1844 struct vm_area_struct *prev, 1845 struct rb_root *root); 1846 void vma_interval_tree_remove(struct vm_area_struct *node, 1847 struct rb_root *root); 1848 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1849 unsigned long start, unsigned long last); 1850 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1851 unsigned long start, unsigned long last); 1852 1853 #define vma_interval_tree_foreach(vma, root, start, last) \ 1854 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1855 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1856 1857 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1858 struct rb_root *root); 1859 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1860 struct rb_root *root); 1861 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1862 struct rb_root *root, unsigned long start, unsigned long last); 1863 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1864 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1865 #ifdef CONFIG_DEBUG_VM_RB 1866 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1867 #endif 1868 1869 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1870 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1871 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1872 1873 /* mmap.c */ 1874 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1875 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1876 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1877 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1878 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1879 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1880 struct mempolicy *); 1881 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1882 extern int split_vma(struct mm_struct *, 1883 struct vm_area_struct *, unsigned long addr, int new_below); 1884 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1885 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1886 struct rb_node **, struct rb_node *); 1887 extern void unlink_file_vma(struct vm_area_struct *); 1888 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1889 unsigned long addr, unsigned long len, pgoff_t pgoff, 1890 bool *need_rmap_locks); 1891 extern void exit_mmap(struct mm_struct *); 1892 1893 static inline int check_data_rlimit(unsigned long rlim, 1894 unsigned long new, 1895 unsigned long start, 1896 unsigned long end_data, 1897 unsigned long start_data) 1898 { 1899 if (rlim < RLIM_INFINITY) { 1900 if (((new - start) + (end_data - start_data)) > rlim) 1901 return -ENOSPC; 1902 } 1903 1904 return 0; 1905 } 1906 1907 extern int mm_take_all_locks(struct mm_struct *mm); 1908 extern void mm_drop_all_locks(struct mm_struct *mm); 1909 1910 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1911 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1912 1913 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1914 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1915 unsigned long addr, unsigned long len, 1916 unsigned long flags, 1917 const struct vm_special_mapping *spec); 1918 /* This is an obsolete alternative to _install_special_mapping. */ 1919 extern int install_special_mapping(struct mm_struct *mm, 1920 unsigned long addr, unsigned long len, 1921 unsigned long flags, struct page **pages); 1922 1923 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1924 1925 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1926 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1927 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1928 unsigned long len, unsigned long prot, unsigned long flags, 1929 unsigned long pgoff, unsigned long *populate); 1930 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1931 1932 #ifdef CONFIG_MMU 1933 extern int __mm_populate(unsigned long addr, unsigned long len, 1934 int ignore_errors); 1935 static inline void mm_populate(unsigned long addr, unsigned long len) 1936 { 1937 /* Ignore errors */ 1938 (void) __mm_populate(addr, len, 1); 1939 } 1940 #else 1941 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1942 #endif 1943 1944 /* These take the mm semaphore themselves */ 1945 extern unsigned long vm_brk(unsigned long, unsigned long); 1946 extern int vm_munmap(unsigned long, size_t); 1947 extern unsigned long vm_mmap(struct file *, unsigned long, 1948 unsigned long, unsigned long, 1949 unsigned long, unsigned long); 1950 1951 struct vm_unmapped_area_info { 1952 #define VM_UNMAPPED_AREA_TOPDOWN 1 1953 unsigned long flags; 1954 unsigned long length; 1955 unsigned long low_limit; 1956 unsigned long high_limit; 1957 unsigned long align_mask; 1958 unsigned long align_offset; 1959 }; 1960 1961 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1962 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1963 1964 /* 1965 * Search for an unmapped address range. 1966 * 1967 * We are looking for a range that: 1968 * - does not intersect with any VMA; 1969 * - is contained within the [low_limit, high_limit) interval; 1970 * - is at least the desired size. 1971 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1972 */ 1973 static inline unsigned long 1974 vm_unmapped_area(struct vm_unmapped_area_info *info) 1975 { 1976 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1977 return unmapped_area(info); 1978 else 1979 return unmapped_area_topdown(info); 1980 } 1981 1982 /* truncate.c */ 1983 extern void truncate_inode_pages(struct address_space *, loff_t); 1984 extern void truncate_inode_pages_range(struct address_space *, 1985 loff_t lstart, loff_t lend); 1986 extern void truncate_inode_pages_final(struct address_space *); 1987 1988 /* generic vm_area_ops exported for stackable file systems */ 1989 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1990 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1991 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1992 1993 /* mm/page-writeback.c */ 1994 int write_one_page(struct page *page, int wait); 1995 void task_dirty_inc(struct task_struct *tsk); 1996 1997 /* readahead.c */ 1998 #define VM_MAX_READAHEAD 128 /* kbytes */ 1999 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2000 2001 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2002 pgoff_t offset, unsigned long nr_to_read); 2003 2004 void page_cache_sync_readahead(struct address_space *mapping, 2005 struct file_ra_state *ra, 2006 struct file *filp, 2007 pgoff_t offset, 2008 unsigned long size); 2009 2010 void page_cache_async_readahead(struct address_space *mapping, 2011 struct file_ra_state *ra, 2012 struct file *filp, 2013 struct page *pg, 2014 pgoff_t offset, 2015 unsigned long size); 2016 2017 unsigned long max_sane_readahead(unsigned long nr); 2018 2019 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2020 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2021 2022 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2023 extern int expand_downwards(struct vm_area_struct *vma, 2024 unsigned long address); 2025 #if VM_GROWSUP 2026 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2027 #else 2028 #define expand_upwards(vma, address) (0) 2029 #endif 2030 2031 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2032 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2033 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2034 struct vm_area_struct **pprev); 2035 2036 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2037 NULL if none. Assume start_addr < end_addr. */ 2038 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2039 { 2040 struct vm_area_struct * vma = find_vma(mm,start_addr); 2041 2042 if (vma && end_addr <= vma->vm_start) 2043 vma = NULL; 2044 return vma; 2045 } 2046 2047 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2048 { 2049 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2050 } 2051 2052 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2053 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2054 unsigned long vm_start, unsigned long vm_end) 2055 { 2056 struct vm_area_struct *vma = find_vma(mm, vm_start); 2057 2058 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2059 vma = NULL; 2060 2061 return vma; 2062 } 2063 2064 #ifdef CONFIG_MMU 2065 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2066 void vma_set_page_prot(struct vm_area_struct *vma); 2067 #else 2068 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2069 { 2070 return __pgprot(0); 2071 } 2072 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2073 { 2074 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2075 } 2076 #endif 2077 2078 #ifdef CONFIG_NUMA_BALANCING 2079 unsigned long change_prot_numa(struct vm_area_struct *vma, 2080 unsigned long start, unsigned long end); 2081 #endif 2082 2083 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2084 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2085 unsigned long pfn, unsigned long size, pgprot_t); 2086 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2087 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2088 unsigned long pfn); 2089 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2090 unsigned long pfn); 2091 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2092 2093 2094 struct page *follow_page_mask(struct vm_area_struct *vma, 2095 unsigned long address, unsigned int foll_flags, 2096 unsigned int *page_mask); 2097 2098 static inline struct page *follow_page(struct vm_area_struct *vma, 2099 unsigned long address, unsigned int foll_flags) 2100 { 2101 unsigned int unused_page_mask; 2102 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2103 } 2104 2105 #define FOLL_WRITE 0x01 /* check pte is writable */ 2106 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2107 #define FOLL_GET 0x04 /* do get_page on page */ 2108 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2109 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2110 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2111 * and return without waiting upon it */ 2112 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 2113 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2114 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2115 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2116 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2117 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2118 2119 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2120 void *data); 2121 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2122 unsigned long size, pte_fn_t fn, void *data); 2123 2124 #ifdef CONFIG_PROC_FS 2125 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2126 #else 2127 static inline void vm_stat_account(struct mm_struct *mm, 2128 unsigned long flags, struct file *file, long pages) 2129 { 2130 mm->total_vm += pages; 2131 } 2132 #endif /* CONFIG_PROC_FS */ 2133 2134 #ifdef CONFIG_DEBUG_PAGEALLOC 2135 extern bool _debug_pagealloc_enabled; 2136 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2137 2138 static inline bool debug_pagealloc_enabled(void) 2139 { 2140 return _debug_pagealloc_enabled; 2141 } 2142 2143 static inline void 2144 kernel_map_pages(struct page *page, int numpages, int enable) 2145 { 2146 if (!debug_pagealloc_enabled()) 2147 return; 2148 2149 __kernel_map_pages(page, numpages, enable); 2150 } 2151 #ifdef CONFIG_HIBERNATION 2152 extern bool kernel_page_present(struct page *page); 2153 #endif /* CONFIG_HIBERNATION */ 2154 #else 2155 static inline void 2156 kernel_map_pages(struct page *page, int numpages, int enable) {} 2157 #ifdef CONFIG_HIBERNATION 2158 static inline bool kernel_page_present(struct page *page) { return true; } 2159 #endif /* CONFIG_HIBERNATION */ 2160 #endif 2161 2162 #ifdef __HAVE_ARCH_GATE_AREA 2163 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2164 extern int in_gate_area_no_mm(unsigned long addr); 2165 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2166 #else 2167 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2168 { 2169 return NULL; 2170 } 2171 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2172 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2173 { 2174 return 0; 2175 } 2176 #endif /* __HAVE_ARCH_GATE_AREA */ 2177 2178 #ifdef CONFIG_SYSCTL 2179 extern int sysctl_drop_caches; 2180 int drop_caches_sysctl_handler(struct ctl_table *, int, 2181 void __user *, size_t *, loff_t *); 2182 #endif 2183 2184 void drop_slab(void); 2185 void drop_slab_node(int nid); 2186 2187 #ifndef CONFIG_MMU 2188 #define randomize_va_space 0 2189 #else 2190 extern int randomize_va_space; 2191 #endif 2192 2193 const char * arch_vma_name(struct vm_area_struct *vma); 2194 void print_vma_addr(char *prefix, unsigned long rip); 2195 2196 void sparse_mem_maps_populate_node(struct page **map_map, 2197 unsigned long pnum_begin, 2198 unsigned long pnum_end, 2199 unsigned long map_count, 2200 int nodeid); 2201 2202 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2203 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2204 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2205 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2206 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2207 void *vmemmap_alloc_block(unsigned long size, int node); 2208 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2209 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2210 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2211 int node); 2212 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2213 void vmemmap_populate_print_last(void); 2214 #ifdef CONFIG_MEMORY_HOTPLUG 2215 void vmemmap_free(unsigned long start, unsigned long end); 2216 #endif 2217 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2218 unsigned long size); 2219 2220 enum mf_flags { 2221 MF_COUNT_INCREASED = 1 << 0, 2222 MF_ACTION_REQUIRED = 1 << 1, 2223 MF_MUST_KILL = 1 << 2, 2224 MF_SOFT_OFFLINE = 1 << 3, 2225 }; 2226 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2227 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2228 extern int unpoison_memory(unsigned long pfn); 2229 extern int sysctl_memory_failure_early_kill; 2230 extern int sysctl_memory_failure_recovery; 2231 extern void shake_page(struct page *p, int access); 2232 extern atomic_long_t num_poisoned_pages; 2233 extern int soft_offline_page(struct page *page, int flags); 2234 2235 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2236 extern void clear_huge_page(struct page *page, 2237 unsigned long addr, 2238 unsigned int pages_per_huge_page); 2239 extern void copy_user_huge_page(struct page *dst, struct page *src, 2240 unsigned long addr, struct vm_area_struct *vma, 2241 unsigned int pages_per_huge_page); 2242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2243 2244 extern struct page_ext_operations debug_guardpage_ops; 2245 extern struct page_ext_operations page_poisoning_ops; 2246 2247 #ifdef CONFIG_DEBUG_PAGEALLOC 2248 extern unsigned int _debug_guardpage_minorder; 2249 extern bool _debug_guardpage_enabled; 2250 2251 static inline unsigned int debug_guardpage_minorder(void) 2252 { 2253 return _debug_guardpage_minorder; 2254 } 2255 2256 static inline bool debug_guardpage_enabled(void) 2257 { 2258 return _debug_guardpage_enabled; 2259 } 2260 2261 static inline bool page_is_guard(struct page *page) 2262 { 2263 struct page_ext *page_ext; 2264 2265 if (!debug_guardpage_enabled()) 2266 return false; 2267 2268 page_ext = lookup_page_ext(page); 2269 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2270 } 2271 #else 2272 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2273 static inline bool debug_guardpage_enabled(void) { return false; } 2274 static inline bool page_is_guard(struct page *page) { return false; } 2275 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2276 2277 #if MAX_NUMNODES > 1 2278 void __init setup_nr_node_ids(void); 2279 #else 2280 static inline void setup_nr_node_ids(void) {} 2281 #endif 2282 2283 #endif /* __KERNEL__ */ 2284 #endif /* _LINUX_MM_H */ 2285