xref: /linux-6.15/include/linux/mm.h (revision 6ed7ffdd)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31 
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36 
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42 
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46 
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48 
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51 
52 /*
53  * Linux kernel virtual memory manager primitives.
54  * The idea being to have a "virtual" mm in the same way
55  * we have a virtual fs - giving a cleaner interface to the
56  * mm details, and allowing different kinds of memory mappings
57  * (from shared memory to executable loading to arbitrary
58  * mmap() functions).
59  */
60 
61 extern struct kmem_cache *vm_area_cachep;
62 
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66 
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69 
70 /*
71  * vm_flags in vm_area_struct, see mm_types.h.
72  */
73 #define VM_NONE		0x00000000
74 
75 #define VM_READ		0x00000001	/* currently active flags */
76 #define VM_WRITE	0x00000002
77 #define VM_EXEC		0x00000004
78 #define VM_SHARED	0x00000008
79 
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
82 #define VM_MAYWRITE	0x00000020
83 #define VM_MAYEXEC	0x00000040
84 #define VM_MAYSHARE	0x00000080
85 
86 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
87 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
89 
90 #define VM_POPULATE     0x00001000
91 #define VM_LOCKED	0x00002000
92 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
93 
94 					/* Used by sys_madvise() */
95 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
96 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
97 
98 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
100 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
101 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
102 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
103 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
104 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
105 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
106 
107 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
108 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
109 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
110 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
111 
112 #if defined(CONFIG_X86)
113 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
114 #elif defined(CONFIG_PPC)
115 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
116 #elif defined(CONFIG_PARISC)
117 # define VM_GROWSUP	VM_ARCH_1
118 #elif defined(CONFIG_METAG)
119 # define VM_GROWSUP	VM_ARCH_1
120 #elif defined(CONFIG_IA64)
121 # define VM_GROWSUP	VM_ARCH_1
122 #elif !defined(CONFIG_MMU)
123 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
124 #endif
125 
126 #ifndef VM_GROWSUP
127 # define VM_GROWSUP	VM_NONE
128 #endif
129 
130 /* Bits set in the VMA until the stack is in its final location */
131 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
132 
133 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
134 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
135 #endif
136 
137 #ifdef CONFIG_STACK_GROWSUP
138 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
139 #else
140 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141 #endif
142 
143 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
144 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
145 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
146 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
147 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
148 
149 /*
150  * Special vmas that are non-mergable, non-mlock()able.
151  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
152  */
153 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
154 
155 /*
156  * mapping from the currently active vm_flags protection bits (the
157  * low four bits) to a page protection mask..
158  */
159 extern pgprot_t protection_map[16];
160 
161 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
162 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
163 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
164 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
165 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
166 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
167 #define FAULT_FLAG_TRIED	0x40	/* second try */
168 
169 /*
170  * vm_fault is filled by the the pagefault handler and passed to the vma's
171  * ->fault function. The vma's ->fault is responsible for returning a bitmask
172  * of VM_FAULT_xxx flags that give details about how the fault was handled.
173  *
174  * pgoff should be used in favour of virtual_address, if possible. If pgoff
175  * is used, one may implement ->remap_pages to get nonlinear mapping support.
176  */
177 struct vm_fault {
178 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
179 	pgoff_t pgoff;			/* Logical page offset based on vma */
180 	void __user *virtual_address;	/* Faulting virtual address */
181 
182 	struct page *page;		/* ->fault handlers should return a
183 					 * page here, unless VM_FAULT_NOPAGE
184 					 * is set (which is also implied by
185 					 * VM_FAULT_ERROR).
186 					 */
187 };
188 
189 /*
190  * These are the virtual MM functions - opening of an area, closing and
191  * unmapping it (needed to keep files on disk up-to-date etc), pointer
192  * to the functions called when a no-page or a wp-page exception occurs.
193  */
194 struct vm_operations_struct {
195 	void (*open)(struct vm_area_struct * area);
196 	void (*close)(struct vm_area_struct * area);
197 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
198 
199 	/* notification that a previously read-only page is about to become
200 	 * writable, if an error is returned it will cause a SIGBUS */
201 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
202 
203 	/* called by access_process_vm when get_user_pages() fails, typically
204 	 * for use by special VMAs that can switch between memory and hardware
205 	 */
206 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
207 		      void *buf, int len, int write);
208 #ifdef CONFIG_NUMA
209 	/*
210 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
211 	 * to hold the policy upon return.  Caller should pass NULL @new to
212 	 * remove a policy and fall back to surrounding context--i.e. do not
213 	 * install a MPOL_DEFAULT policy, nor the task or system default
214 	 * mempolicy.
215 	 */
216 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
217 
218 	/*
219 	 * get_policy() op must add reference [mpol_get()] to any policy at
220 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
221 	 * in mm/mempolicy.c will do this automatically.
222 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
223 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
224 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
225 	 * must return NULL--i.e., do not "fallback" to task or system default
226 	 * policy.
227 	 */
228 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
229 					unsigned long addr);
230 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
231 		const nodemask_t *to, unsigned long flags);
232 #endif
233 	/* called by sys_remap_file_pages() to populate non-linear mapping */
234 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
235 			   unsigned long size, pgoff_t pgoff);
236 };
237 
238 struct mmu_gather;
239 struct inode;
240 
241 #define page_private(page)		((page)->private)
242 #define set_page_private(page, v)	((page)->private = (v))
243 
244 /* It's valid only if the page is free path or free_list */
245 static inline void set_freepage_migratetype(struct page *page, int migratetype)
246 {
247 	page->index = migratetype;
248 }
249 
250 /* It's valid only if the page is free path or free_list */
251 static inline int get_freepage_migratetype(struct page *page)
252 {
253 	return page->index;
254 }
255 
256 /*
257  * FIXME: take this include out, include page-flags.h in
258  * files which need it (119 of them)
259  */
260 #include <linux/page-flags.h>
261 #include <linux/huge_mm.h>
262 
263 /*
264  * Methods to modify the page usage count.
265  *
266  * What counts for a page usage:
267  * - cache mapping   (page->mapping)
268  * - private data    (page->private)
269  * - page mapped in a task's page tables, each mapping
270  *   is counted separately
271  *
272  * Also, many kernel routines increase the page count before a critical
273  * routine so they can be sure the page doesn't go away from under them.
274  */
275 
276 /*
277  * Drop a ref, return true if the refcount fell to zero (the page has no users)
278  */
279 static inline int put_page_testzero(struct page *page)
280 {
281 	VM_BUG_ON(atomic_read(&page->_count) == 0);
282 	return atomic_dec_and_test(&page->_count);
283 }
284 
285 /*
286  * Try to grab a ref unless the page has a refcount of zero, return false if
287  * that is the case.
288  */
289 static inline int get_page_unless_zero(struct page *page)
290 {
291 	return atomic_inc_not_zero(&page->_count);
292 }
293 
294 extern int page_is_ram(unsigned long pfn);
295 
296 /* Support for virtually mapped pages */
297 struct page *vmalloc_to_page(const void *addr);
298 unsigned long vmalloc_to_pfn(const void *addr);
299 
300 /*
301  * Determine if an address is within the vmalloc range
302  *
303  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
304  * is no special casing required.
305  */
306 static inline int is_vmalloc_addr(const void *x)
307 {
308 #ifdef CONFIG_MMU
309 	unsigned long addr = (unsigned long)x;
310 
311 	return addr >= VMALLOC_START && addr < VMALLOC_END;
312 #else
313 	return 0;
314 #endif
315 }
316 #ifdef CONFIG_MMU
317 extern int is_vmalloc_or_module_addr(const void *x);
318 #else
319 static inline int is_vmalloc_or_module_addr(const void *x)
320 {
321 	return 0;
322 }
323 #endif
324 
325 static inline void compound_lock(struct page *page)
326 {
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	VM_BUG_ON(PageSlab(page));
329 	bit_spin_lock(PG_compound_lock, &page->flags);
330 #endif
331 }
332 
333 static inline void compound_unlock(struct page *page)
334 {
335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 	VM_BUG_ON(PageSlab(page));
337 	bit_spin_unlock(PG_compound_lock, &page->flags);
338 #endif
339 }
340 
341 static inline unsigned long compound_lock_irqsave(struct page *page)
342 {
343 	unsigned long uninitialized_var(flags);
344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
345 	local_irq_save(flags);
346 	compound_lock(page);
347 #endif
348 	return flags;
349 }
350 
351 static inline void compound_unlock_irqrestore(struct page *page,
352 					      unsigned long flags)
353 {
354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
355 	compound_unlock(page);
356 	local_irq_restore(flags);
357 #endif
358 }
359 
360 static inline struct page *compound_head(struct page *page)
361 {
362 	if (unlikely(PageTail(page)))
363 		return page->first_page;
364 	return page;
365 }
366 
367 /*
368  * The atomic page->_mapcount, starts from -1: so that transitions
369  * both from it and to it can be tracked, using atomic_inc_and_test
370  * and atomic_add_negative(-1).
371  */
372 static inline void page_mapcount_reset(struct page *page)
373 {
374 	atomic_set(&(page)->_mapcount, -1);
375 }
376 
377 static inline int page_mapcount(struct page *page)
378 {
379 	return atomic_read(&(page)->_mapcount) + 1;
380 }
381 
382 static inline int page_count(struct page *page)
383 {
384 	return atomic_read(&compound_head(page)->_count);
385 }
386 
387 static inline void get_huge_page_tail(struct page *page)
388 {
389 	/*
390 	 * __split_huge_page_refcount() cannot run
391 	 * from under us.
392 	 */
393 	VM_BUG_ON(page_mapcount(page) < 0);
394 	VM_BUG_ON(atomic_read(&page->_count) != 0);
395 	atomic_inc(&page->_mapcount);
396 }
397 
398 extern bool __get_page_tail(struct page *page);
399 
400 static inline void get_page(struct page *page)
401 {
402 	if (unlikely(PageTail(page)))
403 		if (likely(__get_page_tail(page)))
404 			return;
405 	/*
406 	 * Getting a normal page or the head of a compound page
407 	 * requires to already have an elevated page->_count.
408 	 */
409 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
410 	atomic_inc(&page->_count);
411 }
412 
413 static inline struct page *virt_to_head_page(const void *x)
414 {
415 	struct page *page = virt_to_page(x);
416 	return compound_head(page);
417 }
418 
419 /*
420  * Setup the page count before being freed into the page allocator for
421  * the first time (boot or memory hotplug)
422  */
423 static inline void init_page_count(struct page *page)
424 {
425 	atomic_set(&page->_count, 1);
426 }
427 
428 /*
429  * PageBuddy() indicate that the page is free and in the buddy system
430  * (see mm/page_alloc.c).
431  *
432  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
433  * -2 so that an underflow of the page_mapcount() won't be mistaken
434  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
435  * efficiently by most CPU architectures.
436  */
437 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
438 
439 static inline int PageBuddy(struct page *page)
440 {
441 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
442 }
443 
444 static inline void __SetPageBuddy(struct page *page)
445 {
446 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
447 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
448 }
449 
450 static inline void __ClearPageBuddy(struct page *page)
451 {
452 	VM_BUG_ON(!PageBuddy(page));
453 	atomic_set(&page->_mapcount, -1);
454 }
455 
456 void put_page(struct page *page);
457 void put_pages_list(struct list_head *pages);
458 
459 void split_page(struct page *page, unsigned int order);
460 int split_free_page(struct page *page);
461 
462 /*
463  * Compound pages have a destructor function.  Provide a
464  * prototype for that function and accessor functions.
465  * These are _only_ valid on the head of a PG_compound page.
466  */
467 typedef void compound_page_dtor(struct page *);
468 
469 static inline void set_compound_page_dtor(struct page *page,
470 						compound_page_dtor *dtor)
471 {
472 	page[1].lru.next = (void *)dtor;
473 }
474 
475 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
476 {
477 	return (compound_page_dtor *)page[1].lru.next;
478 }
479 
480 static inline int compound_order(struct page *page)
481 {
482 	if (!PageHead(page))
483 		return 0;
484 	return (unsigned long)page[1].lru.prev;
485 }
486 
487 static inline int compound_trans_order(struct page *page)
488 {
489 	int order;
490 	unsigned long flags;
491 
492 	if (!PageHead(page))
493 		return 0;
494 
495 	flags = compound_lock_irqsave(page);
496 	order = compound_order(page);
497 	compound_unlock_irqrestore(page, flags);
498 	return order;
499 }
500 
501 static inline void set_compound_order(struct page *page, unsigned long order)
502 {
503 	page[1].lru.prev = (void *)order;
504 }
505 
506 #ifdef CONFIG_MMU
507 /*
508  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
509  * servicing faults for write access.  In the normal case, do always want
510  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
511  * that do not have writing enabled, when used by access_process_vm.
512  */
513 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
514 {
515 	if (likely(vma->vm_flags & VM_WRITE))
516 		pte = pte_mkwrite(pte);
517 	return pte;
518 }
519 #endif
520 
521 /*
522  * Multiple processes may "see" the same page. E.g. for untouched
523  * mappings of /dev/null, all processes see the same page full of
524  * zeroes, and text pages of executables and shared libraries have
525  * only one copy in memory, at most, normally.
526  *
527  * For the non-reserved pages, page_count(page) denotes a reference count.
528  *   page_count() == 0 means the page is free. page->lru is then used for
529  *   freelist management in the buddy allocator.
530  *   page_count() > 0  means the page has been allocated.
531  *
532  * Pages are allocated by the slab allocator in order to provide memory
533  * to kmalloc and kmem_cache_alloc. In this case, the management of the
534  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
535  * unless a particular usage is carefully commented. (the responsibility of
536  * freeing the kmalloc memory is the caller's, of course).
537  *
538  * A page may be used by anyone else who does a __get_free_page().
539  * In this case, page_count still tracks the references, and should only
540  * be used through the normal accessor functions. The top bits of page->flags
541  * and page->virtual store page management information, but all other fields
542  * are unused and could be used privately, carefully. The management of this
543  * page is the responsibility of the one who allocated it, and those who have
544  * subsequently been given references to it.
545  *
546  * The other pages (we may call them "pagecache pages") are completely
547  * managed by the Linux memory manager: I/O, buffers, swapping etc.
548  * The following discussion applies only to them.
549  *
550  * A pagecache page contains an opaque `private' member, which belongs to the
551  * page's address_space. Usually, this is the address of a circular list of
552  * the page's disk buffers. PG_private must be set to tell the VM to call
553  * into the filesystem to release these pages.
554  *
555  * A page may belong to an inode's memory mapping. In this case, page->mapping
556  * is the pointer to the inode, and page->index is the file offset of the page,
557  * in units of PAGE_CACHE_SIZE.
558  *
559  * If pagecache pages are not associated with an inode, they are said to be
560  * anonymous pages. These may become associated with the swapcache, and in that
561  * case PG_swapcache is set, and page->private is an offset into the swapcache.
562  *
563  * In either case (swapcache or inode backed), the pagecache itself holds one
564  * reference to the page. Setting PG_private should also increment the
565  * refcount. The each user mapping also has a reference to the page.
566  *
567  * The pagecache pages are stored in a per-mapping radix tree, which is
568  * rooted at mapping->page_tree, and indexed by offset.
569  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
570  * lists, we instead now tag pages as dirty/writeback in the radix tree.
571  *
572  * All pagecache pages may be subject to I/O:
573  * - inode pages may need to be read from disk,
574  * - inode pages which have been modified and are MAP_SHARED may need
575  *   to be written back to the inode on disk,
576  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
577  *   modified may need to be swapped out to swap space and (later) to be read
578  *   back into memory.
579  */
580 
581 /*
582  * The zone field is never updated after free_area_init_core()
583  * sets it, so none of the operations on it need to be atomic.
584  */
585 
586 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
587 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
588 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
589 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
590 #define LAST_NID_PGOFF		(ZONES_PGOFF - LAST_NID_WIDTH)
591 
592 /*
593  * Define the bit shifts to access each section.  For non-existent
594  * sections we define the shift as 0; that plus a 0 mask ensures
595  * the compiler will optimise away reference to them.
596  */
597 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
598 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
599 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
600 #define LAST_NID_PGSHIFT	(LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
601 
602 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
603 #ifdef NODE_NOT_IN_PAGE_FLAGS
604 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
605 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
606 						SECTIONS_PGOFF : ZONES_PGOFF)
607 #else
608 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
609 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
610 						NODES_PGOFF : ZONES_PGOFF)
611 #endif
612 
613 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
614 
615 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
616 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
617 #endif
618 
619 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
620 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
621 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
622 #define LAST_NID_MASK		((1UL << LAST_NID_WIDTH) - 1)
623 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
624 
625 static inline enum zone_type page_zonenum(const struct page *page)
626 {
627 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
628 }
629 
630 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
631 #define SECTION_IN_PAGE_FLAGS
632 #endif
633 
634 /*
635  * The identification function is only used by the buddy allocator for
636  * determining if two pages could be buddies. We are not really
637  * identifying a zone since we could be using a the section number
638  * id if we have not node id available in page flags.
639  * We guarantee only that it will return the same value for two
640  * combinable pages in a zone.
641  */
642 static inline int page_zone_id(struct page *page)
643 {
644 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
645 }
646 
647 static inline int zone_to_nid(struct zone *zone)
648 {
649 #ifdef CONFIG_NUMA
650 	return zone->node;
651 #else
652 	return 0;
653 #endif
654 }
655 
656 #ifdef NODE_NOT_IN_PAGE_FLAGS
657 extern int page_to_nid(const struct page *page);
658 #else
659 static inline int page_to_nid(const struct page *page)
660 {
661 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
662 }
663 #endif
664 
665 #ifdef CONFIG_NUMA_BALANCING
666 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
667 static inline int page_nid_xchg_last(struct page *page, int nid)
668 {
669 	return xchg(&page->_last_nid, nid);
670 }
671 
672 static inline int page_nid_last(struct page *page)
673 {
674 	return page->_last_nid;
675 }
676 static inline void page_nid_reset_last(struct page *page)
677 {
678 	page->_last_nid = -1;
679 }
680 #else
681 static inline int page_nid_last(struct page *page)
682 {
683 	return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
684 }
685 
686 extern int page_nid_xchg_last(struct page *page, int nid);
687 
688 static inline void page_nid_reset_last(struct page *page)
689 {
690 	int nid = (1 << LAST_NID_SHIFT) - 1;
691 
692 	page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
693 	page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
694 }
695 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
696 #else
697 static inline int page_nid_xchg_last(struct page *page, int nid)
698 {
699 	return page_to_nid(page);
700 }
701 
702 static inline int page_nid_last(struct page *page)
703 {
704 	return page_to_nid(page);
705 }
706 
707 static inline void page_nid_reset_last(struct page *page)
708 {
709 }
710 #endif
711 
712 static inline struct zone *page_zone(const struct page *page)
713 {
714 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
715 }
716 
717 #ifdef SECTION_IN_PAGE_FLAGS
718 static inline void set_page_section(struct page *page, unsigned long section)
719 {
720 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
721 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
722 }
723 
724 static inline unsigned long page_to_section(const struct page *page)
725 {
726 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
727 }
728 #endif
729 
730 static inline void set_page_zone(struct page *page, enum zone_type zone)
731 {
732 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
733 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
734 }
735 
736 static inline void set_page_node(struct page *page, unsigned long node)
737 {
738 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
739 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
740 }
741 
742 static inline void set_page_links(struct page *page, enum zone_type zone,
743 	unsigned long node, unsigned long pfn)
744 {
745 	set_page_zone(page, zone);
746 	set_page_node(page, node);
747 #ifdef SECTION_IN_PAGE_FLAGS
748 	set_page_section(page, pfn_to_section_nr(pfn));
749 #endif
750 }
751 
752 /*
753  * Some inline functions in vmstat.h depend on page_zone()
754  */
755 #include <linux/vmstat.h>
756 
757 static __always_inline void *lowmem_page_address(const struct page *page)
758 {
759 	return __va(PFN_PHYS(page_to_pfn(page)));
760 }
761 
762 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
763 #define HASHED_PAGE_VIRTUAL
764 #endif
765 
766 #if defined(WANT_PAGE_VIRTUAL)
767 #define page_address(page) ((page)->virtual)
768 #define set_page_address(page, address)			\
769 	do {						\
770 		(page)->virtual = (address);		\
771 	} while(0)
772 #define page_address_init()  do { } while(0)
773 #endif
774 
775 #if defined(HASHED_PAGE_VIRTUAL)
776 void *page_address(const struct page *page);
777 void set_page_address(struct page *page, void *virtual);
778 void page_address_init(void);
779 #endif
780 
781 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
782 #define page_address(page) lowmem_page_address(page)
783 #define set_page_address(page, address)  do { } while(0)
784 #define page_address_init()  do { } while(0)
785 #endif
786 
787 /*
788  * On an anonymous page mapped into a user virtual memory area,
789  * page->mapping points to its anon_vma, not to a struct address_space;
790  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
791  *
792  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
793  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
794  * and then page->mapping points, not to an anon_vma, but to a private
795  * structure which KSM associates with that merged page.  See ksm.h.
796  *
797  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
798  *
799  * Please note that, confusingly, "page_mapping" refers to the inode
800  * address_space which maps the page from disk; whereas "page_mapped"
801  * refers to user virtual address space into which the page is mapped.
802  */
803 #define PAGE_MAPPING_ANON	1
804 #define PAGE_MAPPING_KSM	2
805 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
806 
807 extern struct address_space *page_mapping(struct page *page);
808 
809 /* Neutral page->mapping pointer to address_space or anon_vma or other */
810 static inline void *page_rmapping(struct page *page)
811 {
812 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
813 }
814 
815 extern struct address_space *__page_file_mapping(struct page *);
816 
817 static inline
818 struct address_space *page_file_mapping(struct page *page)
819 {
820 	if (unlikely(PageSwapCache(page)))
821 		return __page_file_mapping(page);
822 
823 	return page->mapping;
824 }
825 
826 static inline int PageAnon(struct page *page)
827 {
828 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
829 }
830 
831 /*
832  * Return the pagecache index of the passed page.  Regular pagecache pages
833  * use ->index whereas swapcache pages use ->private
834  */
835 static inline pgoff_t page_index(struct page *page)
836 {
837 	if (unlikely(PageSwapCache(page)))
838 		return page_private(page);
839 	return page->index;
840 }
841 
842 extern pgoff_t __page_file_index(struct page *page);
843 
844 /*
845  * Return the file index of the page. Regular pagecache pages use ->index
846  * whereas swapcache pages use swp_offset(->private)
847  */
848 static inline pgoff_t page_file_index(struct page *page)
849 {
850 	if (unlikely(PageSwapCache(page)))
851 		return __page_file_index(page);
852 
853 	return page->index;
854 }
855 
856 /*
857  * Return true if this page is mapped into pagetables.
858  */
859 static inline int page_mapped(struct page *page)
860 {
861 	return atomic_read(&(page)->_mapcount) >= 0;
862 }
863 
864 /*
865  * Different kinds of faults, as returned by handle_mm_fault().
866  * Used to decide whether a process gets delivered SIGBUS or
867  * just gets major/minor fault counters bumped up.
868  */
869 
870 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
871 
872 #define VM_FAULT_OOM	0x0001
873 #define VM_FAULT_SIGBUS	0x0002
874 #define VM_FAULT_MAJOR	0x0004
875 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
876 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
877 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
878 
879 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
880 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
881 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
882 
883 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
884 
885 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
886 			 VM_FAULT_HWPOISON_LARGE)
887 
888 /* Encode hstate index for a hwpoisoned large page */
889 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
890 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
891 
892 /*
893  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
894  */
895 extern void pagefault_out_of_memory(void);
896 
897 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
898 
899 /*
900  * Flags passed to show_mem() and show_free_areas() to suppress output in
901  * various contexts.
902  */
903 #define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */
904 
905 extern void show_free_areas(unsigned int flags);
906 extern bool skip_free_areas_node(unsigned int flags, int nid);
907 
908 int shmem_zero_setup(struct vm_area_struct *);
909 
910 extern int can_do_mlock(void);
911 extern int user_shm_lock(size_t, struct user_struct *);
912 extern void user_shm_unlock(size_t, struct user_struct *);
913 
914 /*
915  * Parameter block passed down to zap_pte_range in exceptional cases.
916  */
917 struct zap_details {
918 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
919 	struct address_space *check_mapping;	/* Check page->mapping if set */
920 	pgoff_t	first_index;			/* Lowest page->index to unmap */
921 	pgoff_t last_index;			/* Highest page->index to unmap */
922 };
923 
924 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
925 		pte_t pte);
926 
927 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
928 		unsigned long size);
929 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
930 		unsigned long size, struct zap_details *);
931 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
932 		unsigned long start, unsigned long end);
933 
934 /**
935  * mm_walk - callbacks for walk_page_range
936  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
937  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
938  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
939  *	       this handler is required to be able to handle
940  *	       pmd_trans_huge() pmds.  They may simply choose to
941  *	       split_huge_page() instead of handling it explicitly.
942  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
943  * @pte_hole: if set, called for each hole at all levels
944  * @hugetlb_entry: if set, called for each hugetlb entry
945  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
946  * 			      is used.
947  *
948  * (see walk_page_range for more details)
949  */
950 struct mm_walk {
951 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
952 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
953 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
954 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
955 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
956 	int (*hugetlb_entry)(pte_t *, unsigned long,
957 			     unsigned long, unsigned long, struct mm_walk *);
958 	struct mm_struct *mm;
959 	void *private;
960 };
961 
962 int walk_page_range(unsigned long addr, unsigned long end,
963 		struct mm_walk *walk);
964 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
965 		unsigned long end, unsigned long floor, unsigned long ceiling);
966 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
967 			struct vm_area_struct *vma);
968 void unmap_mapping_range(struct address_space *mapping,
969 		loff_t const holebegin, loff_t const holelen, int even_cows);
970 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
971 	unsigned long *pfn);
972 int follow_phys(struct vm_area_struct *vma, unsigned long address,
973 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
974 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
975 			void *buf, int len, int write);
976 
977 static inline void unmap_shared_mapping_range(struct address_space *mapping,
978 		loff_t const holebegin, loff_t const holelen)
979 {
980 	unmap_mapping_range(mapping, holebegin, holelen, 0);
981 }
982 
983 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
984 extern void truncate_setsize(struct inode *inode, loff_t newsize);
985 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
986 int truncate_inode_page(struct address_space *mapping, struct page *page);
987 int generic_error_remove_page(struct address_space *mapping, struct page *page);
988 int invalidate_inode_page(struct page *page);
989 
990 #ifdef CONFIG_MMU
991 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
992 			unsigned long address, unsigned int flags);
993 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
994 			    unsigned long address, unsigned int fault_flags);
995 #else
996 static inline int handle_mm_fault(struct mm_struct *mm,
997 			struct vm_area_struct *vma, unsigned long address,
998 			unsigned int flags)
999 {
1000 	/* should never happen if there's no MMU */
1001 	BUG();
1002 	return VM_FAULT_SIGBUS;
1003 }
1004 static inline int fixup_user_fault(struct task_struct *tsk,
1005 		struct mm_struct *mm, unsigned long address,
1006 		unsigned int fault_flags)
1007 {
1008 	/* should never happen if there's no MMU */
1009 	BUG();
1010 	return -EFAULT;
1011 }
1012 #endif
1013 
1014 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1015 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1016 		void *buf, int len, int write);
1017 
1018 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1019 		      unsigned long start, unsigned long nr_pages,
1020 		      unsigned int foll_flags, struct page **pages,
1021 		      struct vm_area_struct **vmas, int *nonblocking);
1022 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1023 		    unsigned long start, unsigned long nr_pages,
1024 		    int write, int force, struct page **pages,
1025 		    struct vm_area_struct **vmas);
1026 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1027 			struct page **pages);
1028 struct kvec;
1029 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1030 			struct page **pages);
1031 int get_kernel_page(unsigned long start, int write, struct page **pages);
1032 struct page *get_dump_page(unsigned long addr);
1033 
1034 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1035 extern void do_invalidatepage(struct page *page, unsigned long offset);
1036 
1037 int __set_page_dirty_nobuffers(struct page *page);
1038 int __set_page_dirty_no_writeback(struct page *page);
1039 int redirty_page_for_writepage(struct writeback_control *wbc,
1040 				struct page *page);
1041 void account_page_dirtied(struct page *page, struct address_space *mapping);
1042 void account_page_writeback(struct page *page);
1043 int set_page_dirty(struct page *page);
1044 int set_page_dirty_lock(struct page *page);
1045 int clear_page_dirty_for_io(struct page *page);
1046 
1047 /* Is the vma a continuation of the stack vma above it? */
1048 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1049 {
1050 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1051 }
1052 
1053 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1054 					     unsigned long addr)
1055 {
1056 	return (vma->vm_flags & VM_GROWSDOWN) &&
1057 		(vma->vm_start == addr) &&
1058 		!vma_growsdown(vma->vm_prev, addr);
1059 }
1060 
1061 /* Is the vma a continuation of the stack vma below it? */
1062 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1063 {
1064 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1065 }
1066 
1067 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1068 					   unsigned long addr)
1069 {
1070 	return (vma->vm_flags & VM_GROWSUP) &&
1071 		(vma->vm_end == addr) &&
1072 		!vma_growsup(vma->vm_next, addr);
1073 }
1074 
1075 extern pid_t
1076 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1077 
1078 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1079 		unsigned long old_addr, struct vm_area_struct *new_vma,
1080 		unsigned long new_addr, unsigned long len,
1081 		bool need_rmap_locks);
1082 extern unsigned long do_mremap(unsigned long addr,
1083 			       unsigned long old_len, unsigned long new_len,
1084 			       unsigned long flags, unsigned long new_addr);
1085 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1086 			      unsigned long end, pgprot_t newprot,
1087 			      int dirty_accountable, int prot_numa);
1088 extern int mprotect_fixup(struct vm_area_struct *vma,
1089 			  struct vm_area_struct **pprev, unsigned long start,
1090 			  unsigned long end, unsigned long newflags);
1091 
1092 /*
1093  * doesn't attempt to fault and will return short.
1094  */
1095 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1096 			  struct page **pages);
1097 /*
1098  * per-process(per-mm_struct) statistics.
1099  */
1100 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1101 {
1102 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1103 
1104 #ifdef SPLIT_RSS_COUNTING
1105 	/*
1106 	 * counter is updated in asynchronous manner and may go to minus.
1107 	 * But it's never be expected number for users.
1108 	 */
1109 	if (val < 0)
1110 		val = 0;
1111 #endif
1112 	return (unsigned long)val;
1113 }
1114 
1115 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1116 {
1117 	atomic_long_add(value, &mm->rss_stat.count[member]);
1118 }
1119 
1120 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1121 {
1122 	atomic_long_inc(&mm->rss_stat.count[member]);
1123 }
1124 
1125 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1126 {
1127 	atomic_long_dec(&mm->rss_stat.count[member]);
1128 }
1129 
1130 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1131 {
1132 	return get_mm_counter(mm, MM_FILEPAGES) +
1133 		get_mm_counter(mm, MM_ANONPAGES);
1134 }
1135 
1136 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1137 {
1138 	return max(mm->hiwater_rss, get_mm_rss(mm));
1139 }
1140 
1141 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1142 {
1143 	return max(mm->hiwater_vm, mm->total_vm);
1144 }
1145 
1146 static inline void update_hiwater_rss(struct mm_struct *mm)
1147 {
1148 	unsigned long _rss = get_mm_rss(mm);
1149 
1150 	if ((mm)->hiwater_rss < _rss)
1151 		(mm)->hiwater_rss = _rss;
1152 }
1153 
1154 static inline void update_hiwater_vm(struct mm_struct *mm)
1155 {
1156 	if (mm->hiwater_vm < mm->total_vm)
1157 		mm->hiwater_vm = mm->total_vm;
1158 }
1159 
1160 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1161 					 struct mm_struct *mm)
1162 {
1163 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1164 
1165 	if (*maxrss < hiwater_rss)
1166 		*maxrss = hiwater_rss;
1167 }
1168 
1169 #if defined(SPLIT_RSS_COUNTING)
1170 void sync_mm_rss(struct mm_struct *mm);
1171 #else
1172 static inline void sync_mm_rss(struct mm_struct *mm)
1173 {
1174 }
1175 #endif
1176 
1177 int vma_wants_writenotify(struct vm_area_struct *vma);
1178 
1179 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180 			       spinlock_t **ptl);
1181 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1182 				    spinlock_t **ptl)
1183 {
1184 	pte_t *ptep;
1185 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1186 	return ptep;
1187 }
1188 
1189 #ifdef __PAGETABLE_PUD_FOLDED
1190 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1191 						unsigned long address)
1192 {
1193 	return 0;
1194 }
1195 #else
1196 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1197 #endif
1198 
1199 #ifdef __PAGETABLE_PMD_FOLDED
1200 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1201 						unsigned long address)
1202 {
1203 	return 0;
1204 }
1205 #else
1206 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1207 #endif
1208 
1209 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1210 		pmd_t *pmd, unsigned long address);
1211 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1212 
1213 /*
1214  * The following ifdef needed to get the 4level-fixup.h header to work.
1215  * Remove it when 4level-fixup.h has been removed.
1216  */
1217 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1218 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1219 {
1220 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1221 		NULL: pud_offset(pgd, address);
1222 }
1223 
1224 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1225 {
1226 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1227 		NULL: pmd_offset(pud, address);
1228 }
1229 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1230 
1231 #if USE_SPLIT_PTLOCKS
1232 /*
1233  * We tuck a spinlock to guard each pagetable page into its struct page,
1234  * at page->private, with BUILD_BUG_ON to make sure that this will not
1235  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1236  * When freeing, reset page->mapping so free_pages_check won't complain.
1237  */
1238 #define __pte_lockptr(page)	&((page)->ptl)
1239 #define pte_lock_init(_page)	do {					\
1240 	spin_lock_init(__pte_lockptr(_page));				\
1241 } while (0)
1242 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1243 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1244 #else	/* !USE_SPLIT_PTLOCKS */
1245 /*
1246  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1247  */
1248 #define pte_lock_init(page)	do {} while (0)
1249 #define pte_lock_deinit(page)	do {} while (0)
1250 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1251 #endif /* USE_SPLIT_PTLOCKS */
1252 
1253 static inline void pgtable_page_ctor(struct page *page)
1254 {
1255 	pte_lock_init(page);
1256 	inc_zone_page_state(page, NR_PAGETABLE);
1257 }
1258 
1259 static inline void pgtable_page_dtor(struct page *page)
1260 {
1261 	pte_lock_deinit(page);
1262 	dec_zone_page_state(page, NR_PAGETABLE);
1263 }
1264 
1265 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1266 ({							\
1267 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1268 	pte_t *__pte = pte_offset_map(pmd, address);	\
1269 	*(ptlp) = __ptl;				\
1270 	spin_lock(__ptl);				\
1271 	__pte;						\
1272 })
1273 
1274 #define pte_unmap_unlock(pte, ptl)	do {		\
1275 	spin_unlock(ptl);				\
1276 	pte_unmap(pte);					\
1277 } while (0)
1278 
1279 #define pte_alloc_map(mm, vma, pmd, address)				\
1280 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1281 							pmd, address))?	\
1282 	 NULL: pte_offset_map(pmd, address))
1283 
1284 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1285 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1286 							pmd, address))?	\
1287 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1288 
1289 #define pte_alloc_kernel(pmd, address)			\
1290 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1291 		NULL: pte_offset_kernel(pmd, address))
1292 
1293 extern void free_area_init(unsigned long * zones_size);
1294 extern void free_area_init_node(int nid, unsigned long * zones_size,
1295 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1296 extern void free_initmem(void);
1297 
1298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1299 /*
1300  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1301  * zones, allocate the backing mem_map and account for memory holes in a more
1302  * architecture independent manner. This is a substitute for creating the
1303  * zone_sizes[] and zholes_size[] arrays and passing them to
1304  * free_area_init_node()
1305  *
1306  * An architecture is expected to register range of page frames backed by
1307  * physical memory with memblock_add[_node]() before calling
1308  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1309  * usage, an architecture is expected to do something like
1310  *
1311  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1312  * 							 max_highmem_pfn};
1313  * for_each_valid_physical_page_range()
1314  * 	memblock_add_node(base, size, nid)
1315  * free_area_init_nodes(max_zone_pfns);
1316  *
1317  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1318  * registered physical page range.  Similarly
1319  * sparse_memory_present_with_active_regions() calls memory_present() for
1320  * each range when SPARSEMEM is enabled.
1321  *
1322  * See mm/page_alloc.c for more information on each function exposed by
1323  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1324  */
1325 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1326 unsigned long node_map_pfn_alignment(void);
1327 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1328 						unsigned long end_pfn);
1329 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1330 						unsigned long end_pfn);
1331 extern void get_pfn_range_for_nid(unsigned int nid,
1332 			unsigned long *start_pfn, unsigned long *end_pfn);
1333 extern unsigned long find_min_pfn_with_active_regions(void);
1334 extern void free_bootmem_with_active_regions(int nid,
1335 						unsigned long max_low_pfn);
1336 extern void sparse_memory_present_with_active_regions(int nid);
1337 
1338 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1339 
1340 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1341     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1342 static inline int __early_pfn_to_nid(unsigned long pfn)
1343 {
1344 	return 0;
1345 }
1346 #else
1347 /* please see mm/page_alloc.c */
1348 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1349 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1350 /* there is a per-arch backend function. */
1351 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1352 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1353 #endif
1354 
1355 extern void set_dma_reserve(unsigned long new_dma_reserve);
1356 extern void memmap_init_zone(unsigned long, int, unsigned long,
1357 				unsigned long, enum memmap_context);
1358 extern void setup_per_zone_wmarks(void);
1359 extern int __meminit init_per_zone_wmark_min(void);
1360 extern void mem_init(void);
1361 extern void __init mmap_init(void);
1362 extern void show_mem(unsigned int flags);
1363 extern void si_meminfo(struct sysinfo * val);
1364 extern void si_meminfo_node(struct sysinfo *val, int nid);
1365 
1366 extern __printf(3, 4)
1367 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1368 
1369 extern void setup_per_cpu_pageset(void);
1370 
1371 extern void zone_pcp_update(struct zone *zone);
1372 extern void zone_pcp_reset(struct zone *zone);
1373 
1374 /* page_alloc.c */
1375 extern int min_free_kbytes;
1376 
1377 /* nommu.c */
1378 extern atomic_long_t mmap_pages_allocated;
1379 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1380 
1381 /* interval_tree.c */
1382 void vma_interval_tree_insert(struct vm_area_struct *node,
1383 			      struct rb_root *root);
1384 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1385 				    struct vm_area_struct *prev,
1386 				    struct rb_root *root);
1387 void vma_interval_tree_remove(struct vm_area_struct *node,
1388 			      struct rb_root *root);
1389 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1390 				unsigned long start, unsigned long last);
1391 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1392 				unsigned long start, unsigned long last);
1393 
1394 #define vma_interval_tree_foreach(vma, root, start, last)		\
1395 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1396 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1397 
1398 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1399 					struct list_head *list)
1400 {
1401 	list_add_tail(&vma->shared.nonlinear, list);
1402 }
1403 
1404 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1405 				   struct rb_root *root);
1406 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1407 				   struct rb_root *root);
1408 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1409 	struct rb_root *root, unsigned long start, unsigned long last);
1410 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1411 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1412 #ifdef CONFIG_DEBUG_VM_RB
1413 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1414 #endif
1415 
1416 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1417 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1418 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1419 
1420 /* mmap.c */
1421 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1422 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1423 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1424 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1425 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1426 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1427 	struct mempolicy *);
1428 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1429 extern int split_vma(struct mm_struct *,
1430 	struct vm_area_struct *, unsigned long addr, int new_below);
1431 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1432 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1433 	struct rb_node **, struct rb_node *);
1434 extern void unlink_file_vma(struct vm_area_struct *);
1435 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1436 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1437 	bool *need_rmap_locks);
1438 extern void exit_mmap(struct mm_struct *);
1439 
1440 extern int mm_take_all_locks(struct mm_struct *mm);
1441 extern void mm_drop_all_locks(struct mm_struct *mm);
1442 
1443 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1444 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1445 
1446 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1447 extern int install_special_mapping(struct mm_struct *mm,
1448 				   unsigned long addr, unsigned long len,
1449 				   unsigned long flags, struct page **pages);
1450 
1451 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1452 
1453 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1454 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1455 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1456 	unsigned long len, unsigned long prot, unsigned long flags,
1457 	unsigned long pgoff, unsigned long *populate);
1458 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1459 
1460 #ifdef CONFIG_MMU
1461 extern int __mm_populate(unsigned long addr, unsigned long len,
1462 			 int ignore_errors);
1463 static inline void mm_populate(unsigned long addr, unsigned long len)
1464 {
1465 	/* Ignore errors */
1466 	(void) __mm_populate(addr, len, 1);
1467 }
1468 #else
1469 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1470 #endif
1471 
1472 /* These take the mm semaphore themselves */
1473 extern unsigned long vm_brk(unsigned long, unsigned long);
1474 extern int vm_munmap(unsigned long, size_t);
1475 extern unsigned long vm_mmap(struct file *, unsigned long,
1476         unsigned long, unsigned long,
1477         unsigned long, unsigned long);
1478 
1479 struct vm_unmapped_area_info {
1480 #define VM_UNMAPPED_AREA_TOPDOWN 1
1481 	unsigned long flags;
1482 	unsigned long length;
1483 	unsigned long low_limit;
1484 	unsigned long high_limit;
1485 	unsigned long align_mask;
1486 	unsigned long align_offset;
1487 };
1488 
1489 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1490 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1491 
1492 /*
1493  * Search for an unmapped address range.
1494  *
1495  * We are looking for a range that:
1496  * - does not intersect with any VMA;
1497  * - is contained within the [low_limit, high_limit) interval;
1498  * - is at least the desired size.
1499  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1500  */
1501 static inline unsigned long
1502 vm_unmapped_area(struct vm_unmapped_area_info *info)
1503 {
1504 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1505 		return unmapped_area(info);
1506 	else
1507 		return unmapped_area_topdown(info);
1508 }
1509 
1510 /* truncate.c */
1511 extern void truncate_inode_pages(struct address_space *, loff_t);
1512 extern void truncate_inode_pages_range(struct address_space *,
1513 				       loff_t lstart, loff_t lend);
1514 
1515 /* generic vm_area_ops exported for stackable file systems */
1516 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1517 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1518 
1519 /* mm/page-writeback.c */
1520 int write_one_page(struct page *page, int wait);
1521 void task_dirty_inc(struct task_struct *tsk);
1522 
1523 /* readahead.c */
1524 #define VM_MAX_READAHEAD	128	/* kbytes */
1525 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1526 
1527 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1528 			pgoff_t offset, unsigned long nr_to_read);
1529 
1530 void page_cache_sync_readahead(struct address_space *mapping,
1531 			       struct file_ra_state *ra,
1532 			       struct file *filp,
1533 			       pgoff_t offset,
1534 			       unsigned long size);
1535 
1536 void page_cache_async_readahead(struct address_space *mapping,
1537 				struct file_ra_state *ra,
1538 				struct file *filp,
1539 				struct page *pg,
1540 				pgoff_t offset,
1541 				unsigned long size);
1542 
1543 unsigned long max_sane_readahead(unsigned long nr);
1544 unsigned long ra_submit(struct file_ra_state *ra,
1545 			struct address_space *mapping,
1546 			struct file *filp);
1547 
1548 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1549 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1550 
1551 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1552 extern int expand_downwards(struct vm_area_struct *vma,
1553 		unsigned long address);
1554 #if VM_GROWSUP
1555 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1556 #else
1557   #define expand_upwards(vma, address) do { } while (0)
1558 #endif
1559 
1560 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1561 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1562 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1563 					     struct vm_area_struct **pprev);
1564 
1565 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1566    NULL if none.  Assume start_addr < end_addr. */
1567 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1568 {
1569 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1570 
1571 	if (vma && end_addr <= vma->vm_start)
1572 		vma = NULL;
1573 	return vma;
1574 }
1575 
1576 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1577 {
1578 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1579 }
1580 
1581 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1582 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1583 				unsigned long vm_start, unsigned long vm_end)
1584 {
1585 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1586 
1587 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1588 		vma = NULL;
1589 
1590 	return vma;
1591 }
1592 
1593 #ifdef CONFIG_MMU
1594 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1595 #else
1596 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1597 {
1598 	return __pgprot(0);
1599 }
1600 #endif
1601 
1602 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1603 unsigned long change_prot_numa(struct vm_area_struct *vma,
1604 			unsigned long start, unsigned long end);
1605 #endif
1606 
1607 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1608 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1609 			unsigned long pfn, unsigned long size, pgprot_t);
1610 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1611 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612 			unsigned long pfn);
1613 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1614 			unsigned long pfn);
1615 
1616 struct page *follow_page_mask(struct vm_area_struct *vma,
1617 			      unsigned long address, unsigned int foll_flags,
1618 			      unsigned int *page_mask);
1619 
1620 static inline struct page *follow_page(struct vm_area_struct *vma,
1621 		unsigned long address, unsigned int foll_flags)
1622 {
1623 	unsigned int unused_page_mask;
1624 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1625 }
1626 
1627 #define FOLL_WRITE	0x01	/* check pte is writable */
1628 #define FOLL_TOUCH	0x02	/* mark page accessed */
1629 #define FOLL_GET	0x04	/* do get_page on page */
1630 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1631 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1632 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1633 				 * and return without waiting upon it */
1634 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1635 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1636 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1637 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
1638 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
1639 
1640 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1641 			void *data);
1642 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1643 			       unsigned long size, pte_fn_t fn, void *data);
1644 
1645 #ifdef CONFIG_PROC_FS
1646 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1647 #else
1648 static inline void vm_stat_account(struct mm_struct *mm,
1649 			unsigned long flags, struct file *file, long pages)
1650 {
1651 	mm->total_vm += pages;
1652 }
1653 #endif /* CONFIG_PROC_FS */
1654 
1655 #ifdef CONFIG_DEBUG_PAGEALLOC
1656 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1657 #ifdef CONFIG_HIBERNATION
1658 extern bool kernel_page_present(struct page *page);
1659 #endif /* CONFIG_HIBERNATION */
1660 #else
1661 static inline void
1662 kernel_map_pages(struct page *page, int numpages, int enable) {}
1663 #ifdef CONFIG_HIBERNATION
1664 static inline bool kernel_page_present(struct page *page) { return true; }
1665 #endif /* CONFIG_HIBERNATION */
1666 #endif
1667 
1668 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1669 #ifdef	__HAVE_ARCH_GATE_AREA
1670 int in_gate_area_no_mm(unsigned long addr);
1671 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1672 #else
1673 int in_gate_area_no_mm(unsigned long addr);
1674 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1675 #endif	/* __HAVE_ARCH_GATE_AREA */
1676 
1677 int drop_caches_sysctl_handler(struct ctl_table *, int,
1678 					void __user *, size_t *, loff_t *);
1679 unsigned long shrink_slab(struct shrink_control *shrink,
1680 			  unsigned long nr_pages_scanned,
1681 			  unsigned long lru_pages);
1682 
1683 #ifndef CONFIG_MMU
1684 #define randomize_va_space 0
1685 #else
1686 extern int randomize_va_space;
1687 #endif
1688 
1689 const char * arch_vma_name(struct vm_area_struct *vma);
1690 void print_vma_addr(char *prefix, unsigned long rip);
1691 
1692 void sparse_mem_maps_populate_node(struct page **map_map,
1693 				   unsigned long pnum_begin,
1694 				   unsigned long pnum_end,
1695 				   unsigned long map_count,
1696 				   int nodeid);
1697 
1698 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1699 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1700 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1701 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1702 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1703 void *vmemmap_alloc_block(unsigned long size, int node);
1704 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1705 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1706 int vmemmap_populate_basepages(struct page *start_page,
1707 						unsigned long pages, int node);
1708 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1709 void vmemmap_populate_print_last(void);
1710 #ifdef CONFIG_MEMORY_HOTPLUG
1711 void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1712 #endif
1713 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1714 				  unsigned long size);
1715 
1716 enum mf_flags {
1717 	MF_COUNT_INCREASED = 1 << 0,
1718 	MF_ACTION_REQUIRED = 1 << 1,
1719 	MF_MUST_KILL = 1 << 2,
1720 };
1721 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1722 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1723 extern int unpoison_memory(unsigned long pfn);
1724 extern int sysctl_memory_failure_early_kill;
1725 extern int sysctl_memory_failure_recovery;
1726 extern void shake_page(struct page *p, int access);
1727 extern atomic_long_t num_poisoned_pages;
1728 extern int soft_offline_page(struct page *page, int flags);
1729 
1730 extern void dump_page(struct page *page);
1731 
1732 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1733 extern void clear_huge_page(struct page *page,
1734 			    unsigned long addr,
1735 			    unsigned int pages_per_huge_page);
1736 extern void copy_user_huge_page(struct page *dst, struct page *src,
1737 				unsigned long addr, struct vm_area_struct *vma,
1738 				unsigned int pages_per_huge_page);
1739 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1740 
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742 extern unsigned int _debug_guardpage_minorder;
1743 
1744 static inline unsigned int debug_guardpage_minorder(void)
1745 {
1746 	return _debug_guardpage_minorder;
1747 }
1748 
1749 static inline bool page_is_guard(struct page *page)
1750 {
1751 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1752 }
1753 #else
1754 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1755 static inline bool page_is_guard(struct page *page) { return false; }
1756 #endif /* CONFIG_DEBUG_PAGEALLOC */
1757 
1758 #endif /* __KERNEL__ */
1759 #endif /* _LINUX_MM_H */
1760