1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/shrinker.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 struct anon_vma_chain; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 #endif 31 32 extern unsigned long num_physpages; 33 extern unsigned long totalram_pages; 34 extern void * high_memory; 35 extern int page_cluster; 36 37 #ifdef CONFIG_SYSCTL 38 extern int sysctl_legacy_va_layout; 39 #else 40 #define sysctl_legacy_va_layout 0 41 #endif 42 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/processor.h> 46 47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49 /* to align the pointer to the (next) page boundary */ 50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52 /* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61 extern struct kmem_cache *vm_area_cachep; 62 63 #ifndef CONFIG_MMU 64 extern struct rb_root nommu_region_tree; 65 extern struct rw_semaphore nommu_region_sem; 66 67 extern unsigned int kobjsize(const void *objp); 68 #endif 69 70 /* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73 #define VM_NONE 0x00000000 74 75 #define VM_READ 0x00000001 /* currently active flags */ 76 #define VM_WRITE 0x00000002 77 #define VM_EXEC 0x00000004 78 #define VM_SHARED 0x00000008 79 80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82 #define VM_MAYWRITE 0x00000020 83 #define VM_MAYEXEC 0x00000040 84 #define VM_MAYSHARE 0x00000080 85 86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90 #define VM_POPULATE 0x00001000 91 #define VM_LOCKED 0x00002000 92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 93 94 /* Used by sys_madvise() */ 95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 97 98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 101 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 104 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 105 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 106 107 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 108 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 109 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 110 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 111 112 #if defined(CONFIG_X86) 113 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 114 #elif defined(CONFIG_PPC) 115 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 116 #elif defined(CONFIG_PARISC) 117 # define VM_GROWSUP VM_ARCH_1 118 #elif defined(CONFIG_METAG) 119 # define VM_GROWSUP VM_ARCH_1 120 #elif defined(CONFIG_IA64) 121 # define VM_GROWSUP VM_ARCH_1 122 #elif !defined(CONFIG_MMU) 123 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 124 #endif 125 126 #ifndef VM_GROWSUP 127 # define VM_GROWSUP VM_NONE 128 #endif 129 130 /* Bits set in the VMA until the stack is in its final location */ 131 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 132 133 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 134 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 135 #endif 136 137 #ifdef CONFIG_STACK_GROWSUP 138 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 139 #else 140 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 141 #endif 142 143 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 144 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 145 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 146 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 147 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 148 149 /* 150 * Special vmas that are non-mergable, non-mlock()able. 151 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 152 */ 153 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 154 155 /* 156 * mapping from the currently active vm_flags protection bits (the 157 * low four bits) to a page protection mask.. 158 */ 159 extern pgprot_t protection_map[16]; 160 161 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 162 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 163 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 164 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 165 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 166 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 167 #define FAULT_FLAG_TRIED 0x40 /* second try */ 168 169 /* 170 * vm_fault is filled by the the pagefault handler and passed to the vma's 171 * ->fault function. The vma's ->fault is responsible for returning a bitmask 172 * of VM_FAULT_xxx flags that give details about how the fault was handled. 173 * 174 * pgoff should be used in favour of virtual_address, if possible. If pgoff 175 * is used, one may implement ->remap_pages to get nonlinear mapping support. 176 */ 177 struct vm_fault { 178 unsigned int flags; /* FAULT_FLAG_xxx flags */ 179 pgoff_t pgoff; /* Logical page offset based on vma */ 180 void __user *virtual_address; /* Faulting virtual address */ 181 182 struct page *page; /* ->fault handlers should return a 183 * page here, unless VM_FAULT_NOPAGE 184 * is set (which is also implied by 185 * VM_FAULT_ERROR). 186 */ 187 }; 188 189 /* 190 * These are the virtual MM functions - opening of an area, closing and 191 * unmapping it (needed to keep files on disk up-to-date etc), pointer 192 * to the functions called when a no-page or a wp-page exception occurs. 193 */ 194 struct vm_operations_struct { 195 void (*open)(struct vm_area_struct * area); 196 void (*close)(struct vm_area_struct * area); 197 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 198 199 /* notification that a previously read-only page is about to become 200 * writable, if an error is returned it will cause a SIGBUS */ 201 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 202 203 /* called by access_process_vm when get_user_pages() fails, typically 204 * for use by special VMAs that can switch between memory and hardware 205 */ 206 int (*access)(struct vm_area_struct *vma, unsigned long addr, 207 void *buf, int len, int write); 208 #ifdef CONFIG_NUMA 209 /* 210 * set_policy() op must add a reference to any non-NULL @new mempolicy 211 * to hold the policy upon return. Caller should pass NULL @new to 212 * remove a policy and fall back to surrounding context--i.e. do not 213 * install a MPOL_DEFAULT policy, nor the task or system default 214 * mempolicy. 215 */ 216 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 217 218 /* 219 * get_policy() op must add reference [mpol_get()] to any policy at 220 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 221 * in mm/mempolicy.c will do this automatically. 222 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 223 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 224 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 225 * must return NULL--i.e., do not "fallback" to task or system default 226 * policy. 227 */ 228 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 229 unsigned long addr); 230 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 231 const nodemask_t *to, unsigned long flags); 232 #endif 233 /* called by sys_remap_file_pages() to populate non-linear mapping */ 234 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 235 unsigned long size, pgoff_t pgoff); 236 }; 237 238 struct mmu_gather; 239 struct inode; 240 241 #define page_private(page) ((page)->private) 242 #define set_page_private(page, v) ((page)->private = (v)) 243 244 /* It's valid only if the page is free path or free_list */ 245 static inline void set_freepage_migratetype(struct page *page, int migratetype) 246 { 247 page->index = migratetype; 248 } 249 250 /* It's valid only if the page is free path or free_list */ 251 static inline int get_freepage_migratetype(struct page *page) 252 { 253 return page->index; 254 } 255 256 /* 257 * FIXME: take this include out, include page-flags.h in 258 * files which need it (119 of them) 259 */ 260 #include <linux/page-flags.h> 261 #include <linux/huge_mm.h> 262 263 /* 264 * Methods to modify the page usage count. 265 * 266 * What counts for a page usage: 267 * - cache mapping (page->mapping) 268 * - private data (page->private) 269 * - page mapped in a task's page tables, each mapping 270 * is counted separately 271 * 272 * Also, many kernel routines increase the page count before a critical 273 * routine so they can be sure the page doesn't go away from under them. 274 */ 275 276 /* 277 * Drop a ref, return true if the refcount fell to zero (the page has no users) 278 */ 279 static inline int put_page_testzero(struct page *page) 280 { 281 VM_BUG_ON(atomic_read(&page->_count) == 0); 282 return atomic_dec_and_test(&page->_count); 283 } 284 285 /* 286 * Try to grab a ref unless the page has a refcount of zero, return false if 287 * that is the case. 288 */ 289 static inline int get_page_unless_zero(struct page *page) 290 { 291 return atomic_inc_not_zero(&page->_count); 292 } 293 294 extern int page_is_ram(unsigned long pfn); 295 296 /* Support for virtually mapped pages */ 297 struct page *vmalloc_to_page(const void *addr); 298 unsigned long vmalloc_to_pfn(const void *addr); 299 300 /* 301 * Determine if an address is within the vmalloc range 302 * 303 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 304 * is no special casing required. 305 */ 306 static inline int is_vmalloc_addr(const void *x) 307 { 308 #ifdef CONFIG_MMU 309 unsigned long addr = (unsigned long)x; 310 311 return addr >= VMALLOC_START && addr < VMALLOC_END; 312 #else 313 return 0; 314 #endif 315 } 316 #ifdef CONFIG_MMU 317 extern int is_vmalloc_or_module_addr(const void *x); 318 #else 319 static inline int is_vmalloc_or_module_addr(const void *x) 320 { 321 return 0; 322 } 323 #endif 324 325 static inline void compound_lock(struct page *page) 326 { 327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 VM_BUG_ON(PageSlab(page)); 329 bit_spin_lock(PG_compound_lock, &page->flags); 330 #endif 331 } 332 333 static inline void compound_unlock(struct page *page) 334 { 335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 336 VM_BUG_ON(PageSlab(page)); 337 bit_spin_unlock(PG_compound_lock, &page->flags); 338 #endif 339 } 340 341 static inline unsigned long compound_lock_irqsave(struct page *page) 342 { 343 unsigned long uninitialized_var(flags); 344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 345 local_irq_save(flags); 346 compound_lock(page); 347 #endif 348 return flags; 349 } 350 351 static inline void compound_unlock_irqrestore(struct page *page, 352 unsigned long flags) 353 { 354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 355 compound_unlock(page); 356 local_irq_restore(flags); 357 #endif 358 } 359 360 static inline struct page *compound_head(struct page *page) 361 { 362 if (unlikely(PageTail(page))) 363 return page->first_page; 364 return page; 365 } 366 367 /* 368 * The atomic page->_mapcount, starts from -1: so that transitions 369 * both from it and to it can be tracked, using atomic_inc_and_test 370 * and atomic_add_negative(-1). 371 */ 372 static inline void page_mapcount_reset(struct page *page) 373 { 374 atomic_set(&(page)->_mapcount, -1); 375 } 376 377 static inline int page_mapcount(struct page *page) 378 { 379 return atomic_read(&(page)->_mapcount) + 1; 380 } 381 382 static inline int page_count(struct page *page) 383 { 384 return atomic_read(&compound_head(page)->_count); 385 } 386 387 static inline void get_huge_page_tail(struct page *page) 388 { 389 /* 390 * __split_huge_page_refcount() cannot run 391 * from under us. 392 */ 393 VM_BUG_ON(page_mapcount(page) < 0); 394 VM_BUG_ON(atomic_read(&page->_count) != 0); 395 atomic_inc(&page->_mapcount); 396 } 397 398 extern bool __get_page_tail(struct page *page); 399 400 static inline void get_page(struct page *page) 401 { 402 if (unlikely(PageTail(page))) 403 if (likely(__get_page_tail(page))) 404 return; 405 /* 406 * Getting a normal page or the head of a compound page 407 * requires to already have an elevated page->_count. 408 */ 409 VM_BUG_ON(atomic_read(&page->_count) <= 0); 410 atomic_inc(&page->_count); 411 } 412 413 static inline struct page *virt_to_head_page(const void *x) 414 { 415 struct page *page = virt_to_page(x); 416 return compound_head(page); 417 } 418 419 /* 420 * Setup the page count before being freed into the page allocator for 421 * the first time (boot or memory hotplug) 422 */ 423 static inline void init_page_count(struct page *page) 424 { 425 atomic_set(&page->_count, 1); 426 } 427 428 /* 429 * PageBuddy() indicate that the page is free and in the buddy system 430 * (see mm/page_alloc.c). 431 * 432 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 433 * -2 so that an underflow of the page_mapcount() won't be mistaken 434 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 435 * efficiently by most CPU architectures. 436 */ 437 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 438 439 static inline int PageBuddy(struct page *page) 440 { 441 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 442 } 443 444 static inline void __SetPageBuddy(struct page *page) 445 { 446 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 447 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 448 } 449 450 static inline void __ClearPageBuddy(struct page *page) 451 { 452 VM_BUG_ON(!PageBuddy(page)); 453 atomic_set(&page->_mapcount, -1); 454 } 455 456 void put_page(struct page *page); 457 void put_pages_list(struct list_head *pages); 458 459 void split_page(struct page *page, unsigned int order); 460 int split_free_page(struct page *page); 461 462 /* 463 * Compound pages have a destructor function. Provide a 464 * prototype for that function and accessor functions. 465 * These are _only_ valid on the head of a PG_compound page. 466 */ 467 typedef void compound_page_dtor(struct page *); 468 469 static inline void set_compound_page_dtor(struct page *page, 470 compound_page_dtor *dtor) 471 { 472 page[1].lru.next = (void *)dtor; 473 } 474 475 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 476 { 477 return (compound_page_dtor *)page[1].lru.next; 478 } 479 480 static inline int compound_order(struct page *page) 481 { 482 if (!PageHead(page)) 483 return 0; 484 return (unsigned long)page[1].lru.prev; 485 } 486 487 static inline int compound_trans_order(struct page *page) 488 { 489 int order; 490 unsigned long flags; 491 492 if (!PageHead(page)) 493 return 0; 494 495 flags = compound_lock_irqsave(page); 496 order = compound_order(page); 497 compound_unlock_irqrestore(page, flags); 498 return order; 499 } 500 501 static inline void set_compound_order(struct page *page, unsigned long order) 502 { 503 page[1].lru.prev = (void *)order; 504 } 505 506 #ifdef CONFIG_MMU 507 /* 508 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 509 * servicing faults for write access. In the normal case, do always want 510 * pte_mkwrite. But get_user_pages can cause write faults for mappings 511 * that do not have writing enabled, when used by access_process_vm. 512 */ 513 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 514 { 515 if (likely(vma->vm_flags & VM_WRITE)) 516 pte = pte_mkwrite(pte); 517 return pte; 518 } 519 #endif 520 521 /* 522 * Multiple processes may "see" the same page. E.g. for untouched 523 * mappings of /dev/null, all processes see the same page full of 524 * zeroes, and text pages of executables and shared libraries have 525 * only one copy in memory, at most, normally. 526 * 527 * For the non-reserved pages, page_count(page) denotes a reference count. 528 * page_count() == 0 means the page is free. page->lru is then used for 529 * freelist management in the buddy allocator. 530 * page_count() > 0 means the page has been allocated. 531 * 532 * Pages are allocated by the slab allocator in order to provide memory 533 * to kmalloc and kmem_cache_alloc. In this case, the management of the 534 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 535 * unless a particular usage is carefully commented. (the responsibility of 536 * freeing the kmalloc memory is the caller's, of course). 537 * 538 * A page may be used by anyone else who does a __get_free_page(). 539 * In this case, page_count still tracks the references, and should only 540 * be used through the normal accessor functions. The top bits of page->flags 541 * and page->virtual store page management information, but all other fields 542 * are unused and could be used privately, carefully. The management of this 543 * page is the responsibility of the one who allocated it, and those who have 544 * subsequently been given references to it. 545 * 546 * The other pages (we may call them "pagecache pages") are completely 547 * managed by the Linux memory manager: I/O, buffers, swapping etc. 548 * The following discussion applies only to them. 549 * 550 * A pagecache page contains an opaque `private' member, which belongs to the 551 * page's address_space. Usually, this is the address of a circular list of 552 * the page's disk buffers. PG_private must be set to tell the VM to call 553 * into the filesystem to release these pages. 554 * 555 * A page may belong to an inode's memory mapping. In this case, page->mapping 556 * is the pointer to the inode, and page->index is the file offset of the page, 557 * in units of PAGE_CACHE_SIZE. 558 * 559 * If pagecache pages are not associated with an inode, they are said to be 560 * anonymous pages. These may become associated with the swapcache, and in that 561 * case PG_swapcache is set, and page->private is an offset into the swapcache. 562 * 563 * In either case (swapcache or inode backed), the pagecache itself holds one 564 * reference to the page. Setting PG_private should also increment the 565 * refcount. The each user mapping also has a reference to the page. 566 * 567 * The pagecache pages are stored in a per-mapping radix tree, which is 568 * rooted at mapping->page_tree, and indexed by offset. 569 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 570 * lists, we instead now tag pages as dirty/writeback in the radix tree. 571 * 572 * All pagecache pages may be subject to I/O: 573 * - inode pages may need to be read from disk, 574 * - inode pages which have been modified and are MAP_SHARED may need 575 * to be written back to the inode on disk, 576 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 577 * modified may need to be swapped out to swap space and (later) to be read 578 * back into memory. 579 */ 580 581 /* 582 * The zone field is never updated after free_area_init_core() 583 * sets it, so none of the operations on it need to be atomic. 584 */ 585 586 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 587 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 588 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 589 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 590 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 591 592 /* 593 * Define the bit shifts to access each section. For non-existent 594 * sections we define the shift as 0; that plus a 0 mask ensures 595 * the compiler will optimise away reference to them. 596 */ 597 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 598 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 599 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 600 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 601 602 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 603 #ifdef NODE_NOT_IN_PAGE_FLAGS 604 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 605 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 606 SECTIONS_PGOFF : ZONES_PGOFF) 607 #else 608 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 609 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 610 NODES_PGOFF : ZONES_PGOFF) 611 #endif 612 613 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 614 615 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 616 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 617 #endif 618 619 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 620 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 621 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 622 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 623 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 624 625 static inline enum zone_type page_zonenum(const struct page *page) 626 { 627 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 628 } 629 630 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 631 #define SECTION_IN_PAGE_FLAGS 632 #endif 633 634 /* 635 * The identification function is only used by the buddy allocator for 636 * determining if two pages could be buddies. We are not really 637 * identifying a zone since we could be using a the section number 638 * id if we have not node id available in page flags. 639 * We guarantee only that it will return the same value for two 640 * combinable pages in a zone. 641 */ 642 static inline int page_zone_id(struct page *page) 643 { 644 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 645 } 646 647 static inline int zone_to_nid(struct zone *zone) 648 { 649 #ifdef CONFIG_NUMA 650 return zone->node; 651 #else 652 return 0; 653 #endif 654 } 655 656 #ifdef NODE_NOT_IN_PAGE_FLAGS 657 extern int page_to_nid(const struct page *page); 658 #else 659 static inline int page_to_nid(const struct page *page) 660 { 661 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 662 } 663 #endif 664 665 #ifdef CONFIG_NUMA_BALANCING 666 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 667 static inline int page_nid_xchg_last(struct page *page, int nid) 668 { 669 return xchg(&page->_last_nid, nid); 670 } 671 672 static inline int page_nid_last(struct page *page) 673 { 674 return page->_last_nid; 675 } 676 static inline void page_nid_reset_last(struct page *page) 677 { 678 page->_last_nid = -1; 679 } 680 #else 681 static inline int page_nid_last(struct page *page) 682 { 683 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 684 } 685 686 extern int page_nid_xchg_last(struct page *page, int nid); 687 688 static inline void page_nid_reset_last(struct page *page) 689 { 690 int nid = (1 << LAST_NID_SHIFT) - 1; 691 692 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 693 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 694 } 695 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 696 #else 697 static inline int page_nid_xchg_last(struct page *page, int nid) 698 { 699 return page_to_nid(page); 700 } 701 702 static inline int page_nid_last(struct page *page) 703 { 704 return page_to_nid(page); 705 } 706 707 static inline void page_nid_reset_last(struct page *page) 708 { 709 } 710 #endif 711 712 static inline struct zone *page_zone(const struct page *page) 713 { 714 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 715 } 716 717 #ifdef SECTION_IN_PAGE_FLAGS 718 static inline void set_page_section(struct page *page, unsigned long section) 719 { 720 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 721 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 722 } 723 724 static inline unsigned long page_to_section(const struct page *page) 725 { 726 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 727 } 728 #endif 729 730 static inline void set_page_zone(struct page *page, enum zone_type zone) 731 { 732 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 733 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 734 } 735 736 static inline void set_page_node(struct page *page, unsigned long node) 737 { 738 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 739 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 740 } 741 742 static inline void set_page_links(struct page *page, enum zone_type zone, 743 unsigned long node, unsigned long pfn) 744 { 745 set_page_zone(page, zone); 746 set_page_node(page, node); 747 #ifdef SECTION_IN_PAGE_FLAGS 748 set_page_section(page, pfn_to_section_nr(pfn)); 749 #endif 750 } 751 752 /* 753 * Some inline functions in vmstat.h depend on page_zone() 754 */ 755 #include <linux/vmstat.h> 756 757 static __always_inline void *lowmem_page_address(const struct page *page) 758 { 759 return __va(PFN_PHYS(page_to_pfn(page))); 760 } 761 762 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 763 #define HASHED_PAGE_VIRTUAL 764 #endif 765 766 #if defined(WANT_PAGE_VIRTUAL) 767 #define page_address(page) ((page)->virtual) 768 #define set_page_address(page, address) \ 769 do { \ 770 (page)->virtual = (address); \ 771 } while(0) 772 #define page_address_init() do { } while(0) 773 #endif 774 775 #if defined(HASHED_PAGE_VIRTUAL) 776 void *page_address(const struct page *page); 777 void set_page_address(struct page *page, void *virtual); 778 void page_address_init(void); 779 #endif 780 781 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 782 #define page_address(page) lowmem_page_address(page) 783 #define set_page_address(page, address) do { } while(0) 784 #define page_address_init() do { } while(0) 785 #endif 786 787 /* 788 * On an anonymous page mapped into a user virtual memory area, 789 * page->mapping points to its anon_vma, not to a struct address_space; 790 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 791 * 792 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 793 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 794 * and then page->mapping points, not to an anon_vma, but to a private 795 * structure which KSM associates with that merged page. See ksm.h. 796 * 797 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 798 * 799 * Please note that, confusingly, "page_mapping" refers to the inode 800 * address_space which maps the page from disk; whereas "page_mapped" 801 * refers to user virtual address space into which the page is mapped. 802 */ 803 #define PAGE_MAPPING_ANON 1 804 #define PAGE_MAPPING_KSM 2 805 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 806 807 extern struct address_space *page_mapping(struct page *page); 808 809 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 810 static inline void *page_rmapping(struct page *page) 811 { 812 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 813 } 814 815 extern struct address_space *__page_file_mapping(struct page *); 816 817 static inline 818 struct address_space *page_file_mapping(struct page *page) 819 { 820 if (unlikely(PageSwapCache(page))) 821 return __page_file_mapping(page); 822 823 return page->mapping; 824 } 825 826 static inline int PageAnon(struct page *page) 827 { 828 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 829 } 830 831 /* 832 * Return the pagecache index of the passed page. Regular pagecache pages 833 * use ->index whereas swapcache pages use ->private 834 */ 835 static inline pgoff_t page_index(struct page *page) 836 { 837 if (unlikely(PageSwapCache(page))) 838 return page_private(page); 839 return page->index; 840 } 841 842 extern pgoff_t __page_file_index(struct page *page); 843 844 /* 845 * Return the file index of the page. Regular pagecache pages use ->index 846 * whereas swapcache pages use swp_offset(->private) 847 */ 848 static inline pgoff_t page_file_index(struct page *page) 849 { 850 if (unlikely(PageSwapCache(page))) 851 return __page_file_index(page); 852 853 return page->index; 854 } 855 856 /* 857 * Return true if this page is mapped into pagetables. 858 */ 859 static inline int page_mapped(struct page *page) 860 { 861 return atomic_read(&(page)->_mapcount) >= 0; 862 } 863 864 /* 865 * Different kinds of faults, as returned by handle_mm_fault(). 866 * Used to decide whether a process gets delivered SIGBUS or 867 * just gets major/minor fault counters bumped up. 868 */ 869 870 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 871 872 #define VM_FAULT_OOM 0x0001 873 #define VM_FAULT_SIGBUS 0x0002 874 #define VM_FAULT_MAJOR 0x0004 875 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 876 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 877 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 878 879 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 880 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 881 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 882 883 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 884 885 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 886 VM_FAULT_HWPOISON_LARGE) 887 888 /* Encode hstate index for a hwpoisoned large page */ 889 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 890 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 891 892 /* 893 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 894 */ 895 extern void pagefault_out_of_memory(void); 896 897 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 898 899 /* 900 * Flags passed to show_mem() and show_free_areas() to suppress output in 901 * various contexts. 902 */ 903 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 904 905 extern void show_free_areas(unsigned int flags); 906 extern bool skip_free_areas_node(unsigned int flags, int nid); 907 908 int shmem_zero_setup(struct vm_area_struct *); 909 910 extern int can_do_mlock(void); 911 extern int user_shm_lock(size_t, struct user_struct *); 912 extern void user_shm_unlock(size_t, struct user_struct *); 913 914 /* 915 * Parameter block passed down to zap_pte_range in exceptional cases. 916 */ 917 struct zap_details { 918 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 919 struct address_space *check_mapping; /* Check page->mapping if set */ 920 pgoff_t first_index; /* Lowest page->index to unmap */ 921 pgoff_t last_index; /* Highest page->index to unmap */ 922 }; 923 924 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 925 pte_t pte); 926 927 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 928 unsigned long size); 929 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 930 unsigned long size, struct zap_details *); 931 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 932 unsigned long start, unsigned long end); 933 934 /** 935 * mm_walk - callbacks for walk_page_range 936 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 937 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 938 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 939 * this handler is required to be able to handle 940 * pmd_trans_huge() pmds. They may simply choose to 941 * split_huge_page() instead of handling it explicitly. 942 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 943 * @pte_hole: if set, called for each hole at all levels 944 * @hugetlb_entry: if set, called for each hugetlb entry 945 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 946 * is used. 947 * 948 * (see walk_page_range for more details) 949 */ 950 struct mm_walk { 951 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 952 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 953 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 954 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 955 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 956 int (*hugetlb_entry)(pte_t *, unsigned long, 957 unsigned long, unsigned long, struct mm_walk *); 958 struct mm_struct *mm; 959 void *private; 960 }; 961 962 int walk_page_range(unsigned long addr, unsigned long end, 963 struct mm_walk *walk); 964 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 965 unsigned long end, unsigned long floor, unsigned long ceiling); 966 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 967 struct vm_area_struct *vma); 968 void unmap_mapping_range(struct address_space *mapping, 969 loff_t const holebegin, loff_t const holelen, int even_cows); 970 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 971 unsigned long *pfn); 972 int follow_phys(struct vm_area_struct *vma, unsigned long address, 973 unsigned int flags, unsigned long *prot, resource_size_t *phys); 974 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 975 void *buf, int len, int write); 976 977 static inline void unmap_shared_mapping_range(struct address_space *mapping, 978 loff_t const holebegin, loff_t const holelen) 979 { 980 unmap_mapping_range(mapping, holebegin, holelen, 0); 981 } 982 983 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 984 extern void truncate_setsize(struct inode *inode, loff_t newsize); 985 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 986 int truncate_inode_page(struct address_space *mapping, struct page *page); 987 int generic_error_remove_page(struct address_space *mapping, struct page *page); 988 int invalidate_inode_page(struct page *page); 989 990 #ifdef CONFIG_MMU 991 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 992 unsigned long address, unsigned int flags); 993 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 994 unsigned long address, unsigned int fault_flags); 995 #else 996 static inline int handle_mm_fault(struct mm_struct *mm, 997 struct vm_area_struct *vma, unsigned long address, 998 unsigned int flags) 999 { 1000 /* should never happen if there's no MMU */ 1001 BUG(); 1002 return VM_FAULT_SIGBUS; 1003 } 1004 static inline int fixup_user_fault(struct task_struct *tsk, 1005 struct mm_struct *mm, unsigned long address, 1006 unsigned int fault_flags) 1007 { 1008 /* should never happen if there's no MMU */ 1009 BUG(); 1010 return -EFAULT; 1011 } 1012 #endif 1013 1014 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1015 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1016 void *buf, int len, int write); 1017 1018 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1019 unsigned long start, unsigned long nr_pages, 1020 unsigned int foll_flags, struct page **pages, 1021 struct vm_area_struct **vmas, int *nonblocking); 1022 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1023 unsigned long start, unsigned long nr_pages, 1024 int write, int force, struct page **pages, 1025 struct vm_area_struct **vmas); 1026 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1027 struct page **pages); 1028 struct kvec; 1029 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1030 struct page **pages); 1031 int get_kernel_page(unsigned long start, int write, struct page **pages); 1032 struct page *get_dump_page(unsigned long addr); 1033 1034 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1035 extern void do_invalidatepage(struct page *page, unsigned long offset); 1036 1037 int __set_page_dirty_nobuffers(struct page *page); 1038 int __set_page_dirty_no_writeback(struct page *page); 1039 int redirty_page_for_writepage(struct writeback_control *wbc, 1040 struct page *page); 1041 void account_page_dirtied(struct page *page, struct address_space *mapping); 1042 void account_page_writeback(struct page *page); 1043 int set_page_dirty(struct page *page); 1044 int set_page_dirty_lock(struct page *page); 1045 int clear_page_dirty_for_io(struct page *page); 1046 1047 /* Is the vma a continuation of the stack vma above it? */ 1048 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1049 { 1050 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1051 } 1052 1053 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1054 unsigned long addr) 1055 { 1056 return (vma->vm_flags & VM_GROWSDOWN) && 1057 (vma->vm_start == addr) && 1058 !vma_growsdown(vma->vm_prev, addr); 1059 } 1060 1061 /* Is the vma a continuation of the stack vma below it? */ 1062 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1063 { 1064 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1065 } 1066 1067 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1068 unsigned long addr) 1069 { 1070 return (vma->vm_flags & VM_GROWSUP) && 1071 (vma->vm_end == addr) && 1072 !vma_growsup(vma->vm_next, addr); 1073 } 1074 1075 extern pid_t 1076 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1077 1078 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1079 unsigned long old_addr, struct vm_area_struct *new_vma, 1080 unsigned long new_addr, unsigned long len, 1081 bool need_rmap_locks); 1082 extern unsigned long do_mremap(unsigned long addr, 1083 unsigned long old_len, unsigned long new_len, 1084 unsigned long flags, unsigned long new_addr); 1085 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1086 unsigned long end, pgprot_t newprot, 1087 int dirty_accountable, int prot_numa); 1088 extern int mprotect_fixup(struct vm_area_struct *vma, 1089 struct vm_area_struct **pprev, unsigned long start, 1090 unsigned long end, unsigned long newflags); 1091 1092 /* 1093 * doesn't attempt to fault and will return short. 1094 */ 1095 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1096 struct page **pages); 1097 /* 1098 * per-process(per-mm_struct) statistics. 1099 */ 1100 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1101 { 1102 long val = atomic_long_read(&mm->rss_stat.count[member]); 1103 1104 #ifdef SPLIT_RSS_COUNTING 1105 /* 1106 * counter is updated in asynchronous manner and may go to minus. 1107 * But it's never be expected number for users. 1108 */ 1109 if (val < 0) 1110 val = 0; 1111 #endif 1112 return (unsigned long)val; 1113 } 1114 1115 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1116 { 1117 atomic_long_add(value, &mm->rss_stat.count[member]); 1118 } 1119 1120 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1121 { 1122 atomic_long_inc(&mm->rss_stat.count[member]); 1123 } 1124 1125 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1126 { 1127 atomic_long_dec(&mm->rss_stat.count[member]); 1128 } 1129 1130 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1131 { 1132 return get_mm_counter(mm, MM_FILEPAGES) + 1133 get_mm_counter(mm, MM_ANONPAGES); 1134 } 1135 1136 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1137 { 1138 return max(mm->hiwater_rss, get_mm_rss(mm)); 1139 } 1140 1141 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1142 { 1143 return max(mm->hiwater_vm, mm->total_vm); 1144 } 1145 1146 static inline void update_hiwater_rss(struct mm_struct *mm) 1147 { 1148 unsigned long _rss = get_mm_rss(mm); 1149 1150 if ((mm)->hiwater_rss < _rss) 1151 (mm)->hiwater_rss = _rss; 1152 } 1153 1154 static inline void update_hiwater_vm(struct mm_struct *mm) 1155 { 1156 if (mm->hiwater_vm < mm->total_vm) 1157 mm->hiwater_vm = mm->total_vm; 1158 } 1159 1160 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1161 struct mm_struct *mm) 1162 { 1163 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1164 1165 if (*maxrss < hiwater_rss) 1166 *maxrss = hiwater_rss; 1167 } 1168 1169 #if defined(SPLIT_RSS_COUNTING) 1170 void sync_mm_rss(struct mm_struct *mm); 1171 #else 1172 static inline void sync_mm_rss(struct mm_struct *mm) 1173 { 1174 } 1175 #endif 1176 1177 int vma_wants_writenotify(struct vm_area_struct *vma); 1178 1179 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1180 spinlock_t **ptl); 1181 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1182 spinlock_t **ptl) 1183 { 1184 pte_t *ptep; 1185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1186 return ptep; 1187 } 1188 1189 #ifdef __PAGETABLE_PUD_FOLDED 1190 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1191 unsigned long address) 1192 { 1193 return 0; 1194 } 1195 #else 1196 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1197 #endif 1198 1199 #ifdef __PAGETABLE_PMD_FOLDED 1200 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1201 unsigned long address) 1202 { 1203 return 0; 1204 } 1205 #else 1206 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1207 #endif 1208 1209 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1210 pmd_t *pmd, unsigned long address); 1211 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1212 1213 /* 1214 * The following ifdef needed to get the 4level-fixup.h header to work. 1215 * Remove it when 4level-fixup.h has been removed. 1216 */ 1217 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1218 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1219 { 1220 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1221 NULL: pud_offset(pgd, address); 1222 } 1223 1224 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1225 { 1226 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1227 NULL: pmd_offset(pud, address); 1228 } 1229 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1230 1231 #if USE_SPLIT_PTLOCKS 1232 /* 1233 * We tuck a spinlock to guard each pagetable page into its struct page, 1234 * at page->private, with BUILD_BUG_ON to make sure that this will not 1235 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1236 * When freeing, reset page->mapping so free_pages_check won't complain. 1237 */ 1238 #define __pte_lockptr(page) &((page)->ptl) 1239 #define pte_lock_init(_page) do { \ 1240 spin_lock_init(__pte_lockptr(_page)); \ 1241 } while (0) 1242 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1243 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1244 #else /* !USE_SPLIT_PTLOCKS */ 1245 /* 1246 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1247 */ 1248 #define pte_lock_init(page) do {} while (0) 1249 #define pte_lock_deinit(page) do {} while (0) 1250 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1251 #endif /* USE_SPLIT_PTLOCKS */ 1252 1253 static inline void pgtable_page_ctor(struct page *page) 1254 { 1255 pte_lock_init(page); 1256 inc_zone_page_state(page, NR_PAGETABLE); 1257 } 1258 1259 static inline void pgtable_page_dtor(struct page *page) 1260 { 1261 pte_lock_deinit(page); 1262 dec_zone_page_state(page, NR_PAGETABLE); 1263 } 1264 1265 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1266 ({ \ 1267 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1268 pte_t *__pte = pte_offset_map(pmd, address); \ 1269 *(ptlp) = __ptl; \ 1270 spin_lock(__ptl); \ 1271 __pte; \ 1272 }) 1273 1274 #define pte_unmap_unlock(pte, ptl) do { \ 1275 spin_unlock(ptl); \ 1276 pte_unmap(pte); \ 1277 } while (0) 1278 1279 #define pte_alloc_map(mm, vma, pmd, address) \ 1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1281 pmd, address))? \ 1282 NULL: pte_offset_map(pmd, address)) 1283 1284 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1285 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1286 pmd, address))? \ 1287 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1288 1289 #define pte_alloc_kernel(pmd, address) \ 1290 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1291 NULL: pte_offset_kernel(pmd, address)) 1292 1293 extern void free_area_init(unsigned long * zones_size); 1294 extern void free_area_init_node(int nid, unsigned long * zones_size, 1295 unsigned long zone_start_pfn, unsigned long *zholes_size); 1296 extern void free_initmem(void); 1297 1298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1299 /* 1300 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1301 * zones, allocate the backing mem_map and account for memory holes in a more 1302 * architecture independent manner. This is a substitute for creating the 1303 * zone_sizes[] and zholes_size[] arrays and passing them to 1304 * free_area_init_node() 1305 * 1306 * An architecture is expected to register range of page frames backed by 1307 * physical memory with memblock_add[_node]() before calling 1308 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1309 * usage, an architecture is expected to do something like 1310 * 1311 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1312 * max_highmem_pfn}; 1313 * for_each_valid_physical_page_range() 1314 * memblock_add_node(base, size, nid) 1315 * free_area_init_nodes(max_zone_pfns); 1316 * 1317 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1318 * registered physical page range. Similarly 1319 * sparse_memory_present_with_active_regions() calls memory_present() for 1320 * each range when SPARSEMEM is enabled. 1321 * 1322 * See mm/page_alloc.c for more information on each function exposed by 1323 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1324 */ 1325 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1326 unsigned long node_map_pfn_alignment(void); 1327 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1328 unsigned long end_pfn); 1329 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1330 unsigned long end_pfn); 1331 extern void get_pfn_range_for_nid(unsigned int nid, 1332 unsigned long *start_pfn, unsigned long *end_pfn); 1333 extern unsigned long find_min_pfn_with_active_regions(void); 1334 extern void free_bootmem_with_active_regions(int nid, 1335 unsigned long max_low_pfn); 1336 extern void sparse_memory_present_with_active_regions(int nid); 1337 1338 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1339 1340 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1341 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1342 static inline int __early_pfn_to_nid(unsigned long pfn) 1343 { 1344 return 0; 1345 } 1346 #else 1347 /* please see mm/page_alloc.c */ 1348 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1349 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1350 /* there is a per-arch backend function. */ 1351 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1352 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1353 #endif 1354 1355 extern void set_dma_reserve(unsigned long new_dma_reserve); 1356 extern void memmap_init_zone(unsigned long, int, unsigned long, 1357 unsigned long, enum memmap_context); 1358 extern void setup_per_zone_wmarks(void); 1359 extern int __meminit init_per_zone_wmark_min(void); 1360 extern void mem_init(void); 1361 extern void __init mmap_init(void); 1362 extern void show_mem(unsigned int flags); 1363 extern void si_meminfo(struct sysinfo * val); 1364 extern void si_meminfo_node(struct sysinfo *val, int nid); 1365 1366 extern __printf(3, 4) 1367 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1368 1369 extern void setup_per_cpu_pageset(void); 1370 1371 extern void zone_pcp_update(struct zone *zone); 1372 extern void zone_pcp_reset(struct zone *zone); 1373 1374 /* page_alloc.c */ 1375 extern int min_free_kbytes; 1376 1377 /* nommu.c */ 1378 extern atomic_long_t mmap_pages_allocated; 1379 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1380 1381 /* interval_tree.c */ 1382 void vma_interval_tree_insert(struct vm_area_struct *node, 1383 struct rb_root *root); 1384 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1385 struct vm_area_struct *prev, 1386 struct rb_root *root); 1387 void vma_interval_tree_remove(struct vm_area_struct *node, 1388 struct rb_root *root); 1389 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1390 unsigned long start, unsigned long last); 1391 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1392 unsigned long start, unsigned long last); 1393 1394 #define vma_interval_tree_foreach(vma, root, start, last) \ 1395 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1396 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1397 1398 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1399 struct list_head *list) 1400 { 1401 list_add_tail(&vma->shared.nonlinear, list); 1402 } 1403 1404 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1405 struct rb_root *root); 1406 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1407 struct rb_root *root); 1408 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1409 struct rb_root *root, unsigned long start, unsigned long last); 1410 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1411 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1412 #ifdef CONFIG_DEBUG_VM_RB 1413 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1414 #endif 1415 1416 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1417 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1418 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1419 1420 /* mmap.c */ 1421 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1422 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1423 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1424 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1425 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1426 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1427 struct mempolicy *); 1428 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1429 extern int split_vma(struct mm_struct *, 1430 struct vm_area_struct *, unsigned long addr, int new_below); 1431 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1432 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1433 struct rb_node **, struct rb_node *); 1434 extern void unlink_file_vma(struct vm_area_struct *); 1435 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1436 unsigned long addr, unsigned long len, pgoff_t pgoff, 1437 bool *need_rmap_locks); 1438 extern void exit_mmap(struct mm_struct *); 1439 1440 extern int mm_take_all_locks(struct mm_struct *mm); 1441 extern void mm_drop_all_locks(struct mm_struct *mm); 1442 1443 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1444 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1445 1446 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1447 extern int install_special_mapping(struct mm_struct *mm, 1448 unsigned long addr, unsigned long len, 1449 unsigned long flags, struct page **pages); 1450 1451 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1452 1453 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1454 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1455 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1456 unsigned long len, unsigned long prot, unsigned long flags, 1457 unsigned long pgoff, unsigned long *populate); 1458 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1459 1460 #ifdef CONFIG_MMU 1461 extern int __mm_populate(unsigned long addr, unsigned long len, 1462 int ignore_errors); 1463 static inline void mm_populate(unsigned long addr, unsigned long len) 1464 { 1465 /* Ignore errors */ 1466 (void) __mm_populate(addr, len, 1); 1467 } 1468 #else 1469 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1470 #endif 1471 1472 /* These take the mm semaphore themselves */ 1473 extern unsigned long vm_brk(unsigned long, unsigned long); 1474 extern int vm_munmap(unsigned long, size_t); 1475 extern unsigned long vm_mmap(struct file *, unsigned long, 1476 unsigned long, unsigned long, 1477 unsigned long, unsigned long); 1478 1479 struct vm_unmapped_area_info { 1480 #define VM_UNMAPPED_AREA_TOPDOWN 1 1481 unsigned long flags; 1482 unsigned long length; 1483 unsigned long low_limit; 1484 unsigned long high_limit; 1485 unsigned long align_mask; 1486 unsigned long align_offset; 1487 }; 1488 1489 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1490 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1491 1492 /* 1493 * Search for an unmapped address range. 1494 * 1495 * We are looking for a range that: 1496 * - does not intersect with any VMA; 1497 * - is contained within the [low_limit, high_limit) interval; 1498 * - is at least the desired size. 1499 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1500 */ 1501 static inline unsigned long 1502 vm_unmapped_area(struct vm_unmapped_area_info *info) 1503 { 1504 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1505 return unmapped_area(info); 1506 else 1507 return unmapped_area_topdown(info); 1508 } 1509 1510 /* truncate.c */ 1511 extern void truncate_inode_pages(struct address_space *, loff_t); 1512 extern void truncate_inode_pages_range(struct address_space *, 1513 loff_t lstart, loff_t lend); 1514 1515 /* generic vm_area_ops exported for stackable file systems */ 1516 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1517 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1518 1519 /* mm/page-writeback.c */ 1520 int write_one_page(struct page *page, int wait); 1521 void task_dirty_inc(struct task_struct *tsk); 1522 1523 /* readahead.c */ 1524 #define VM_MAX_READAHEAD 128 /* kbytes */ 1525 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1526 1527 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1528 pgoff_t offset, unsigned long nr_to_read); 1529 1530 void page_cache_sync_readahead(struct address_space *mapping, 1531 struct file_ra_state *ra, 1532 struct file *filp, 1533 pgoff_t offset, 1534 unsigned long size); 1535 1536 void page_cache_async_readahead(struct address_space *mapping, 1537 struct file_ra_state *ra, 1538 struct file *filp, 1539 struct page *pg, 1540 pgoff_t offset, 1541 unsigned long size); 1542 1543 unsigned long max_sane_readahead(unsigned long nr); 1544 unsigned long ra_submit(struct file_ra_state *ra, 1545 struct address_space *mapping, 1546 struct file *filp); 1547 1548 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1549 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1550 1551 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1552 extern int expand_downwards(struct vm_area_struct *vma, 1553 unsigned long address); 1554 #if VM_GROWSUP 1555 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1556 #else 1557 #define expand_upwards(vma, address) do { } while (0) 1558 #endif 1559 1560 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1561 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1562 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1563 struct vm_area_struct **pprev); 1564 1565 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1566 NULL if none. Assume start_addr < end_addr. */ 1567 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1568 { 1569 struct vm_area_struct * vma = find_vma(mm,start_addr); 1570 1571 if (vma && end_addr <= vma->vm_start) 1572 vma = NULL; 1573 return vma; 1574 } 1575 1576 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1577 { 1578 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1579 } 1580 1581 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1582 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1583 unsigned long vm_start, unsigned long vm_end) 1584 { 1585 struct vm_area_struct *vma = find_vma(mm, vm_start); 1586 1587 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1588 vma = NULL; 1589 1590 return vma; 1591 } 1592 1593 #ifdef CONFIG_MMU 1594 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1595 #else 1596 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1597 { 1598 return __pgprot(0); 1599 } 1600 #endif 1601 1602 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1603 unsigned long change_prot_numa(struct vm_area_struct *vma, 1604 unsigned long start, unsigned long end); 1605 #endif 1606 1607 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1608 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1609 unsigned long pfn, unsigned long size, pgprot_t); 1610 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1611 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1612 unsigned long pfn); 1613 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1614 unsigned long pfn); 1615 1616 struct page *follow_page_mask(struct vm_area_struct *vma, 1617 unsigned long address, unsigned int foll_flags, 1618 unsigned int *page_mask); 1619 1620 static inline struct page *follow_page(struct vm_area_struct *vma, 1621 unsigned long address, unsigned int foll_flags) 1622 { 1623 unsigned int unused_page_mask; 1624 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1625 } 1626 1627 #define FOLL_WRITE 0x01 /* check pte is writable */ 1628 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1629 #define FOLL_GET 0x04 /* do get_page on page */ 1630 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1631 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1632 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1633 * and return without waiting upon it */ 1634 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1635 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1636 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1637 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1638 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1639 1640 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1641 void *data); 1642 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1643 unsigned long size, pte_fn_t fn, void *data); 1644 1645 #ifdef CONFIG_PROC_FS 1646 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1647 #else 1648 static inline void vm_stat_account(struct mm_struct *mm, 1649 unsigned long flags, struct file *file, long pages) 1650 { 1651 mm->total_vm += pages; 1652 } 1653 #endif /* CONFIG_PROC_FS */ 1654 1655 #ifdef CONFIG_DEBUG_PAGEALLOC 1656 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1657 #ifdef CONFIG_HIBERNATION 1658 extern bool kernel_page_present(struct page *page); 1659 #endif /* CONFIG_HIBERNATION */ 1660 #else 1661 static inline void 1662 kernel_map_pages(struct page *page, int numpages, int enable) {} 1663 #ifdef CONFIG_HIBERNATION 1664 static inline bool kernel_page_present(struct page *page) { return true; } 1665 #endif /* CONFIG_HIBERNATION */ 1666 #endif 1667 1668 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1669 #ifdef __HAVE_ARCH_GATE_AREA 1670 int in_gate_area_no_mm(unsigned long addr); 1671 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1672 #else 1673 int in_gate_area_no_mm(unsigned long addr); 1674 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1675 #endif /* __HAVE_ARCH_GATE_AREA */ 1676 1677 int drop_caches_sysctl_handler(struct ctl_table *, int, 1678 void __user *, size_t *, loff_t *); 1679 unsigned long shrink_slab(struct shrink_control *shrink, 1680 unsigned long nr_pages_scanned, 1681 unsigned long lru_pages); 1682 1683 #ifndef CONFIG_MMU 1684 #define randomize_va_space 0 1685 #else 1686 extern int randomize_va_space; 1687 #endif 1688 1689 const char * arch_vma_name(struct vm_area_struct *vma); 1690 void print_vma_addr(char *prefix, unsigned long rip); 1691 1692 void sparse_mem_maps_populate_node(struct page **map_map, 1693 unsigned long pnum_begin, 1694 unsigned long pnum_end, 1695 unsigned long map_count, 1696 int nodeid); 1697 1698 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1699 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1700 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1701 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1702 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1703 void *vmemmap_alloc_block(unsigned long size, int node); 1704 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1705 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1706 int vmemmap_populate_basepages(struct page *start_page, 1707 unsigned long pages, int node); 1708 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1709 void vmemmap_populate_print_last(void); 1710 #ifdef CONFIG_MEMORY_HOTPLUG 1711 void vmemmap_free(struct page *memmap, unsigned long nr_pages); 1712 #endif 1713 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1714 unsigned long size); 1715 1716 enum mf_flags { 1717 MF_COUNT_INCREASED = 1 << 0, 1718 MF_ACTION_REQUIRED = 1 << 1, 1719 MF_MUST_KILL = 1 << 2, 1720 }; 1721 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1722 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1723 extern int unpoison_memory(unsigned long pfn); 1724 extern int sysctl_memory_failure_early_kill; 1725 extern int sysctl_memory_failure_recovery; 1726 extern void shake_page(struct page *p, int access); 1727 extern atomic_long_t num_poisoned_pages; 1728 extern int soft_offline_page(struct page *page, int flags); 1729 1730 extern void dump_page(struct page *page); 1731 1732 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1733 extern void clear_huge_page(struct page *page, 1734 unsigned long addr, 1735 unsigned int pages_per_huge_page); 1736 extern void copy_user_huge_page(struct page *dst, struct page *src, 1737 unsigned long addr, struct vm_area_struct *vma, 1738 unsigned int pages_per_huge_page); 1739 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1740 1741 #ifdef CONFIG_DEBUG_PAGEALLOC 1742 extern unsigned int _debug_guardpage_minorder; 1743 1744 static inline unsigned int debug_guardpage_minorder(void) 1745 { 1746 return _debug_guardpage_minorder; 1747 } 1748 1749 static inline bool page_is_guard(struct page *page) 1750 { 1751 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1752 } 1753 #else 1754 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1755 static inline bool page_is_guard(struct page *page) { return false; } 1756 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1757 1758 #endif /* __KERNEL__ */ 1759 #endif /* _LINUX_MM_H */ 1760