1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 31 struct mempolicy; 32 struct anon_vma; 33 struct anon_vma_chain; 34 struct file_ra_state; 35 struct user_struct; 36 struct writeback_control; 37 struct bdi_writeback; 38 39 void init_mm_internals(void); 40 41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42 extern unsigned long max_mapnr; 43 44 static inline void set_max_mapnr(unsigned long limit) 45 { 46 max_mapnr = limit; 47 } 48 #else 49 static inline void set_max_mapnr(unsigned long limit) { } 50 #endif 51 52 extern atomic_long_t _totalram_pages; 53 static inline unsigned long totalram_pages(void) 54 { 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56 } 57 58 static inline void totalram_pages_inc(void) 59 { 60 atomic_long_inc(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_dec(void) 64 { 65 atomic_long_dec(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_add(long count) 69 { 70 atomic_long_add(count, &_totalram_pages); 71 } 72 73 static inline void totalram_pages_set(long val) 74 { 75 atomic_long_set(&_totalram_pages, val); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/pgtable.h> 100 #include <asm/processor.h> 101 102 /* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109 #ifndef untagged_addr 110 #define untagged_addr(addr) (addr) 111 #endif 112 113 #ifndef __pa_symbol 114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115 #endif 116 117 #ifndef page_to_virt 118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119 #endif 120 121 #ifndef lm_alias 122 #define lm_alias(x) __va(__pa_symbol(x)) 123 #endif 124 125 /* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132 #ifndef mm_forbids_zeropage 133 #define mm_forbids_zeropage(X) (0) 134 #endif 135 136 /* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142 #if BITS_PER_LONG == 64 143 /* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150 static inline void __mm_zero_struct_page(struct page *page) 151 { 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175 } 176 #else 177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178 #endif 179 180 /* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196 #define MAPCOUNT_ELF_CORE_MARGIN (5) 197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199 extern int sysctl_max_map_count; 200 201 extern unsigned long sysctl_user_reserve_kbytes; 202 extern unsigned long sysctl_admin_reserve_kbytes; 203 204 extern int sysctl_overcommit_memory; 205 extern int sysctl_overcommit_ratio; 206 extern unsigned long sysctl_overcommit_kbytes; 207 208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215 /* to align the pointer to the (next) page boundary */ 216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223 /* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234 void vm_area_free(struct vm_area_struct *); 235 236 #ifndef CONFIG_MMU 237 extern struct rb_root nommu_region_tree; 238 extern struct rw_semaphore nommu_region_sem; 239 240 extern unsigned int kobjsize(const void *objp); 241 #endif 242 243 /* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247 #define VM_NONE 0x00000000 248 249 #define VM_READ 0x00000001 /* currently active flags */ 250 #define VM_WRITE 0x00000002 251 #define VM_EXEC 0x00000004 252 #define VM_SHARED 0x00000008 253 254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256 #define VM_MAYWRITE 0x00000020 257 #define VM_MAYEXEC 0x00000040 258 #define VM_MAYSHARE 0x00000080 259 260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266 #define VM_LOCKED 0x00002000 267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284 #ifdef CONFIG_MEM_SOFT_DIRTY 285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286 #else 287 # define VM_SOFTDIRTY 0 288 #endif 289 290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308 #ifdef CONFIG_ARCH_HAS_PKEYS 309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314 #ifdef CONFIG_PPC 315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316 #else 317 # define VM_PKEY_BIT4 0 318 #endif 319 #endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321 #if defined(CONFIG_X86) 322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323 #elif defined(CONFIG_PPC) 324 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325 #elif defined(CONFIG_PARISC) 326 # define VM_GROWSUP VM_ARCH_1 327 #elif defined(CONFIG_IA64) 328 # define VM_GROWSUP VM_ARCH_1 329 #elif defined(CONFIG_SPARC64) 330 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331 # define VM_ARCH_CLEAR VM_SPARC_ADI 332 #elif !defined(CONFIG_MMU) 333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334 #endif 335 336 #if defined(CONFIG_X86_INTEL_MPX) 337 /* MPX specific bounds table or bounds directory */ 338 # define VM_MPX VM_HIGH_ARCH_4 339 #else 340 # define VM_MPX VM_NONE 341 #endif 342 343 #ifndef VM_GROWSUP 344 # define VM_GROWSUP VM_NONE 345 #endif 346 347 /* Bits set in the VMA until the stack is in its final location */ 348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352 #endif 353 354 #ifdef CONFIG_STACK_GROWSUP 355 #define VM_STACK VM_GROWSUP 356 #else 357 #define VM_STACK VM_GROWSDOWN 358 #endif 359 360 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362 /* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368 /* This mask defines which mm->def_flags a process can inherit its parent */ 369 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371 /* This mask is used to clear all the VMA flags used by mlock */ 372 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374 /* Arch-specific flags to clear when updating VM flags on protection change */ 375 #ifndef VM_ARCH_CLEAR 376 # define VM_ARCH_CLEAR VM_NONE 377 #endif 378 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380 /* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384 extern pgprot_t protection_map[16]; 385 386 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 392 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396 #define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407 /* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417 struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453 }; 454 455 /* page entry size for vm->huge_fault() */ 456 enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460 }; 461 462 /* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467 struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497 #ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519 #endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527 }; 528 529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530 { 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537 } 538 539 static inline void vma_set_anonymous(struct vm_area_struct *vma) 540 { 541 vma->vm_ops = NULL; 542 } 543 544 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 545 { 546 return !vma->vm_ops; 547 } 548 549 #ifdef CONFIG_SHMEM 550 /* 551 * The vma_is_shmem is not inline because it is used only by slow 552 * paths in userfault. 553 */ 554 bool vma_is_shmem(struct vm_area_struct *vma); 555 #else 556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 557 #endif 558 559 int vma_is_stack_for_current(struct vm_area_struct *vma); 560 561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 563 564 struct mmu_gather; 565 struct inode; 566 567 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 568 static inline int pmd_devmap(pmd_t pmd) 569 { 570 return 0; 571 } 572 static inline int pud_devmap(pud_t pud) 573 { 574 return 0; 575 } 576 static inline int pgd_devmap(pgd_t pgd) 577 { 578 return 0; 579 } 580 #endif 581 582 /* 583 * FIXME: take this include out, include page-flags.h in 584 * files which need it (119 of them) 585 */ 586 #include <linux/page-flags.h> 587 #include <linux/huge_mm.h> 588 589 /* 590 * Methods to modify the page usage count. 591 * 592 * What counts for a page usage: 593 * - cache mapping (page->mapping) 594 * - private data (page->private) 595 * - page mapped in a task's page tables, each mapping 596 * is counted separately 597 * 598 * Also, many kernel routines increase the page count before a critical 599 * routine so they can be sure the page doesn't go away from under them. 600 */ 601 602 /* 603 * Drop a ref, return true if the refcount fell to zero (the page has no users) 604 */ 605 static inline int put_page_testzero(struct page *page) 606 { 607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 608 return page_ref_dec_and_test(page); 609 } 610 611 /* 612 * Try to grab a ref unless the page has a refcount of zero, return false if 613 * that is the case. 614 * This can be called when MMU is off so it must not access 615 * any of the virtual mappings. 616 */ 617 static inline int get_page_unless_zero(struct page *page) 618 { 619 return page_ref_add_unless(page, 1, 0); 620 } 621 622 extern int page_is_ram(unsigned long pfn); 623 624 enum { 625 REGION_INTERSECTS, 626 REGION_DISJOINT, 627 REGION_MIXED, 628 }; 629 630 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 631 unsigned long desc); 632 633 /* Support for virtually mapped pages */ 634 struct page *vmalloc_to_page(const void *addr); 635 unsigned long vmalloc_to_pfn(const void *addr); 636 637 /* 638 * Determine if an address is within the vmalloc range 639 * 640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 641 * is no special casing required. 642 */ 643 static inline bool is_vmalloc_addr(const void *x) 644 { 645 #ifdef CONFIG_MMU 646 unsigned long addr = (unsigned long)x; 647 648 return addr >= VMALLOC_START && addr < VMALLOC_END; 649 #else 650 return false; 651 #endif 652 } 653 654 #ifndef is_ioremap_addr 655 #define is_ioremap_addr(x) is_vmalloc_addr(x) 656 #endif 657 658 #ifdef CONFIG_MMU 659 extern int is_vmalloc_or_module_addr(const void *x); 660 #else 661 static inline int is_vmalloc_or_module_addr(const void *x) 662 { 663 return 0; 664 } 665 #endif 666 667 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 668 static inline void *kvmalloc(size_t size, gfp_t flags) 669 { 670 return kvmalloc_node(size, flags, NUMA_NO_NODE); 671 } 672 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 673 { 674 return kvmalloc_node(size, flags | __GFP_ZERO, node); 675 } 676 static inline void *kvzalloc(size_t size, gfp_t flags) 677 { 678 return kvmalloc(size, flags | __GFP_ZERO); 679 } 680 681 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 682 { 683 size_t bytes; 684 685 if (unlikely(check_mul_overflow(n, size, &bytes))) 686 return NULL; 687 688 return kvmalloc(bytes, flags); 689 } 690 691 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 692 { 693 return kvmalloc_array(n, size, flags | __GFP_ZERO); 694 } 695 696 extern void kvfree(const void *addr); 697 698 static inline int compound_mapcount(struct page *page) 699 { 700 VM_BUG_ON_PAGE(!PageCompound(page), page); 701 page = compound_head(page); 702 return atomic_read(compound_mapcount_ptr(page)) + 1; 703 } 704 705 /* 706 * The atomic page->_mapcount, starts from -1: so that transitions 707 * both from it and to it can be tracked, using atomic_inc_and_test 708 * and atomic_add_negative(-1). 709 */ 710 static inline void page_mapcount_reset(struct page *page) 711 { 712 atomic_set(&(page)->_mapcount, -1); 713 } 714 715 int __page_mapcount(struct page *page); 716 717 static inline int page_mapcount(struct page *page) 718 { 719 VM_BUG_ON_PAGE(PageSlab(page), page); 720 721 if (unlikely(PageCompound(page))) 722 return __page_mapcount(page); 723 return atomic_read(&page->_mapcount) + 1; 724 } 725 726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 727 int total_mapcount(struct page *page); 728 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 729 #else 730 static inline int total_mapcount(struct page *page) 731 { 732 return page_mapcount(page); 733 } 734 static inline int page_trans_huge_mapcount(struct page *page, 735 int *total_mapcount) 736 { 737 int mapcount = page_mapcount(page); 738 if (total_mapcount) 739 *total_mapcount = mapcount; 740 return mapcount; 741 } 742 #endif 743 744 static inline struct page *virt_to_head_page(const void *x) 745 { 746 struct page *page = virt_to_page(x); 747 748 return compound_head(page); 749 } 750 751 void __put_page(struct page *page); 752 753 void put_pages_list(struct list_head *pages); 754 755 void split_page(struct page *page, unsigned int order); 756 757 /* 758 * Compound pages have a destructor function. Provide a 759 * prototype for that function and accessor functions. 760 * These are _only_ valid on the head of a compound page. 761 */ 762 typedef void compound_page_dtor(struct page *); 763 764 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 765 enum compound_dtor_id { 766 NULL_COMPOUND_DTOR, 767 COMPOUND_PAGE_DTOR, 768 #ifdef CONFIG_HUGETLB_PAGE 769 HUGETLB_PAGE_DTOR, 770 #endif 771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 772 TRANSHUGE_PAGE_DTOR, 773 #endif 774 NR_COMPOUND_DTORS, 775 }; 776 extern compound_page_dtor * const compound_page_dtors[]; 777 778 static inline void set_compound_page_dtor(struct page *page, 779 enum compound_dtor_id compound_dtor) 780 { 781 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 782 page[1].compound_dtor = compound_dtor; 783 } 784 785 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 786 { 787 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 788 return compound_page_dtors[page[1].compound_dtor]; 789 } 790 791 static inline unsigned int compound_order(struct page *page) 792 { 793 if (!PageHead(page)) 794 return 0; 795 return page[1].compound_order; 796 } 797 798 static inline void set_compound_order(struct page *page, unsigned int order) 799 { 800 page[1].compound_order = order; 801 } 802 803 /* Returns the number of pages in this potentially compound page. */ 804 static inline unsigned long compound_nr(struct page *page) 805 { 806 return 1UL << compound_order(page); 807 } 808 809 /* Returns the number of bytes in this potentially compound page. */ 810 static inline unsigned long page_size(struct page *page) 811 { 812 return PAGE_SIZE << compound_order(page); 813 } 814 815 /* Returns the number of bits needed for the number of bytes in a page */ 816 static inline unsigned int page_shift(struct page *page) 817 { 818 return PAGE_SHIFT + compound_order(page); 819 } 820 821 void free_compound_page(struct page *page); 822 823 #ifdef CONFIG_MMU 824 /* 825 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 826 * servicing faults for write access. In the normal case, do always want 827 * pte_mkwrite. But get_user_pages can cause write faults for mappings 828 * that do not have writing enabled, when used by access_process_vm. 829 */ 830 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 831 { 832 if (likely(vma->vm_flags & VM_WRITE)) 833 pte = pte_mkwrite(pte); 834 return pte; 835 } 836 837 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 838 struct page *page); 839 vm_fault_t finish_fault(struct vm_fault *vmf); 840 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 841 #endif 842 843 /* 844 * Multiple processes may "see" the same page. E.g. for untouched 845 * mappings of /dev/null, all processes see the same page full of 846 * zeroes, and text pages of executables and shared libraries have 847 * only one copy in memory, at most, normally. 848 * 849 * For the non-reserved pages, page_count(page) denotes a reference count. 850 * page_count() == 0 means the page is free. page->lru is then used for 851 * freelist management in the buddy allocator. 852 * page_count() > 0 means the page has been allocated. 853 * 854 * Pages are allocated by the slab allocator in order to provide memory 855 * to kmalloc and kmem_cache_alloc. In this case, the management of the 856 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 857 * unless a particular usage is carefully commented. (the responsibility of 858 * freeing the kmalloc memory is the caller's, of course). 859 * 860 * A page may be used by anyone else who does a __get_free_page(). 861 * In this case, page_count still tracks the references, and should only 862 * be used through the normal accessor functions. The top bits of page->flags 863 * and page->virtual store page management information, but all other fields 864 * are unused and could be used privately, carefully. The management of this 865 * page is the responsibility of the one who allocated it, and those who have 866 * subsequently been given references to it. 867 * 868 * The other pages (we may call them "pagecache pages") are completely 869 * managed by the Linux memory manager: I/O, buffers, swapping etc. 870 * The following discussion applies only to them. 871 * 872 * A pagecache page contains an opaque `private' member, which belongs to the 873 * page's address_space. Usually, this is the address of a circular list of 874 * the page's disk buffers. PG_private must be set to tell the VM to call 875 * into the filesystem to release these pages. 876 * 877 * A page may belong to an inode's memory mapping. In this case, page->mapping 878 * is the pointer to the inode, and page->index is the file offset of the page, 879 * in units of PAGE_SIZE. 880 * 881 * If pagecache pages are not associated with an inode, they are said to be 882 * anonymous pages. These may become associated with the swapcache, and in that 883 * case PG_swapcache is set, and page->private is an offset into the swapcache. 884 * 885 * In either case (swapcache or inode backed), the pagecache itself holds one 886 * reference to the page. Setting PG_private should also increment the 887 * refcount. The each user mapping also has a reference to the page. 888 * 889 * The pagecache pages are stored in a per-mapping radix tree, which is 890 * rooted at mapping->i_pages, and indexed by offset. 891 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 892 * lists, we instead now tag pages as dirty/writeback in the radix tree. 893 * 894 * All pagecache pages may be subject to I/O: 895 * - inode pages may need to be read from disk, 896 * - inode pages which have been modified and are MAP_SHARED may need 897 * to be written back to the inode on disk, 898 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 899 * modified may need to be swapped out to swap space and (later) to be read 900 * back into memory. 901 */ 902 903 /* 904 * The zone field is never updated after free_area_init_core() 905 * sets it, so none of the operations on it need to be atomic. 906 */ 907 908 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 909 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 910 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 911 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 912 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 913 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 914 915 /* 916 * Define the bit shifts to access each section. For non-existent 917 * sections we define the shift as 0; that plus a 0 mask ensures 918 * the compiler will optimise away reference to them. 919 */ 920 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 921 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 922 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 923 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 924 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 925 926 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 927 #ifdef NODE_NOT_IN_PAGE_FLAGS 928 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 929 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 930 SECTIONS_PGOFF : ZONES_PGOFF) 931 #else 932 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 933 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 934 NODES_PGOFF : ZONES_PGOFF) 935 #endif 936 937 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 938 939 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 940 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 941 #endif 942 943 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 944 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 945 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 946 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 947 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 948 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 949 950 static inline enum zone_type page_zonenum(const struct page *page) 951 { 952 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 953 } 954 955 #ifdef CONFIG_ZONE_DEVICE 956 static inline bool is_zone_device_page(const struct page *page) 957 { 958 return page_zonenum(page) == ZONE_DEVICE; 959 } 960 extern void memmap_init_zone_device(struct zone *, unsigned long, 961 unsigned long, struct dev_pagemap *); 962 #else 963 static inline bool is_zone_device_page(const struct page *page) 964 { 965 return false; 966 } 967 #endif 968 969 #ifdef CONFIG_DEV_PAGEMAP_OPS 970 void __put_devmap_managed_page(struct page *page); 971 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 972 static inline bool put_devmap_managed_page(struct page *page) 973 { 974 if (!static_branch_unlikely(&devmap_managed_key)) 975 return false; 976 if (!is_zone_device_page(page)) 977 return false; 978 switch (page->pgmap->type) { 979 case MEMORY_DEVICE_PRIVATE: 980 case MEMORY_DEVICE_FS_DAX: 981 __put_devmap_managed_page(page); 982 return true; 983 default: 984 break; 985 } 986 return false; 987 } 988 989 #else /* CONFIG_DEV_PAGEMAP_OPS */ 990 static inline bool put_devmap_managed_page(struct page *page) 991 { 992 return false; 993 } 994 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 995 996 static inline bool is_device_private_page(const struct page *page) 997 { 998 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 999 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1000 is_zone_device_page(page) && 1001 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1002 } 1003 1004 static inline bool is_pci_p2pdma_page(const struct page *page) 1005 { 1006 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1007 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1008 is_zone_device_page(page) && 1009 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1010 } 1011 1012 /* 127: arbitrary random number, small enough to assemble well */ 1013 #define page_ref_zero_or_close_to_overflow(page) \ 1014 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1015 1016 static inline void get_page(struct page *page) 1017 { 1018 page = compound_head(page); 1019 /* 1020 * Getting a normal page or the head of a compound page 1021 * requires to already have an elevated page->_refcount. 1022 */ 1023 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1024 page_ref_inc(page); 1025 } 1026 1027 static inline __must_check bool try_get_page(struct page *page) 1028 { 1029 page = compound_head(page); 1030 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1031 return false; 1032 page_ref_inc(page); 1033 return true; 1034 } 1035 1036 static inline void put_page(struct page *page) 1037 { 1038 page = compound_head(page); 1039 1040 /* 1041 * For devmap managed pages we need to catch refcount transition from 1042 * 2 to 1, when refcount reach one it means the page is free and we 1043 * need to inform the device driver through callback. See 1044 * include/linux/memremap.h and HMM for details. 1045 */ 1046 if (put_devmap_managed_page(page)) 1047 return; 1048 1049 if (put_page_testzero(page)) 1050 __put_page(page); 1051 } 1052 1053 /** 1054 * put_user_page() - release a gup-pinned page 1055 * @page: pointer to page to be released 1056 * 1057 * Pages that were pinned via get_user_pages*() must be released via 1058 * either put_user_page(), or one of the put_user_pages*() routines 1059 * below. This is so that eventually, pages that are pinned via 1060 * get_user_pages*() can be separately tracked and uniquely handled. In 1061 * particular, interactions with RDMA and filesystems need special 1062 * handling. 1063 * 1064 * put_user_page() and put_page() are not interchangeable, despite this early 1065 * implementation that makes them look the same. put_user_page() calls must 1066 * be perfectly matched up with get_user_page() calls. 1067 */ 1068 static inline void put_user_page(struct page *page) 1069 { 1070 put_page(page); 1071 } 1072 1073 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1074 bool make_dirty); 1075 1076 void put_user_pages(struct page **pages, unsigned long npages); 1077 1078 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1079 #define SECTION_IN_PAGE_FLAGS 1080 #endif 1081 1082 /* 1083 * The identification function is mainly used by the buddy allocator for 1084 * determining if two pages could be buddies. We are not really identifying 1085 * the zone since we could be using the section number id if we do not have 1086 * node id available in page flags. 1087 * We only guarantee that it will return the same value for two combinable 1088 * pages in a zone. 1089 */ 1090 static inline int page_zone_id(struct page *page) 1091 { 1092 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1093 } 1094 1095 #ifdef NODE_NOT_IN_PAGE_FLAGS 1096 extern int page_to_nid(const struct page *page); 1097 #else 1098 static inline int page_to_nid(const struct page *page) 1099 { 1100 struct page *p = (struct page *)page; 1101 1102 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1103 } 1104 #endif 1105 1106 #ifdef CONFIG_NUMA_BALANCING 1107 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1108 { 1109 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1110 } 1111 1112 static inline int cpupid_to_pid(int cpupid) 1113 { 1114 return cpupid & LAST__PID_MASK; 1115 } 1116 1117 static inline int cpupid_to_cpu(int cpupid) 1118 { 1119 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1120 } 1121 1122 static inline int cpupid_to_nid(int cpupid) 1123 { 1124 return cpu_to_node(cpupid_to_cpu(cpupid)); 1125 } 1126 1127 static inline bool cpupid_pid_unset(int cpupid) 1128 { 1129 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1130 } 1131 1132 static inline bool cpupid_cpu_unset(int cpupid) 1133 { 1134 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1135 } 1136 1137 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1138 { 1139 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1140 } 1141 1142 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1143 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1144 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1145 { 1146 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1147 } 1148 1149 static inline int page_cpupid_last(struct page *page) 1150 { 1151 return page->_last_cpupid; 1152 } 1153 static inline void page_cpupid_reset_last(struct page *page) 1154 { 1155 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1156 } 1157 #else 1158 static inline int page_cpupid_last(struct page *page) 1159 { 1160 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1161 } 1162 1163 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1164 1165 static inline void page_cpupid_reset_last(struct page *page) 1166 { 1167 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1168 } 1169 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1170 #else /* !CONFIG_NUMA_BALANCING */ 1171 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1172 { 1173 return page_to_nid(page); /* XXX */ 1174 } 1175 1176 static inline int page_cpupid_last(struct page *page) 1177 { 1178 return page_to_nid(page); /* XXX */ 1179 } 1180 1181 static inline int cpupid_to_nid(int cpupid) 1182 { 1183 return -1; 1184 } 1185 1186 static inline int cpupid_to_pid(int cpupid) 1187 { 1188 return -1; 1189 } 1190 1191 static inline int cpupid_to_cpu(int cpupid) 1192 { 1193 return -1; 1194 } 1195 1196 static inline int cpu_pid_to_cpupid(int nid, int pid) 1197 { 1198 return -1; 1199 } 1200 1201 static inline bool cpupid_pid_unset(int cpupid) 1202 { 1203 return 1; 1204 } 1205 1206 static inline void page_cpupid_reset_last(struct page *page) 1207 { 1208 } 1209 1210 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1211 { 1212 return false; 1213 } 1214 #endif /* CONFIG_NUMA_BALANCING */ 1215 1216 #ifdef CONFIG_KASAN_SW_TAGS 1217 static inline u8 page_kasan_tag(const struct page *page) 1218 { 1219 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1220 } 1221 1222 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1223 { 1224 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1225 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1226 } 1227 1228 static inline void page_kasan_tag_reset(struct page *page) 1229 { 1230 page_kasan_tag_set(page, 0xff); 1231 } 1232 #else 1233 static inline u8 page_kasan_tag(const struct page *page) 1234 { 1235 return 0xff; 1236 } 1237 1238 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1239 static inline void page_kasan_tag_reset(struct page *page) { } 1240 #endif 1241 1242 static inline struct zone *page_zone(const struct page *page) 1243 { 1244 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1245 } 1246 1247 static inline pg_data_t *page_pgdat(const struct page *page) 1248 { 1249 return NODE_DATA(page_to_nid(page)); 1250 } 1251 1252 #ifdef SECTION_IN_PAGE_FLAGS 1253 static inline void set_page_section(struct page *page, unsigned long section) 1254 { 1255 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1256 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1257 } 1258 1259 static inline unsigned long page_to_section(const struct page *page) 1260 { 1261 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1262 } 1263 #endif 1264 1265 static inline void set_page_zone(struct page *page, enum zone_type zone) 1266 { 1267 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1268 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1269 } 1270 1271 static inline void set_page_node(struct page *page, unsigned long node) 1272 { 1273 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1274 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1275 } 1276 1277 static inline void set_page_links(struct page *page, enum zone_type zone, 1278 unsigned long node, unsigned long pfn) 1279 { 1280 set_page_zone(page, zone); 1281 set_page_node(page, node); 1282 #ifdef SECTION_IN_PAGE_FLAGS 1283 set_page_section(page, pfn_to_section_nr(pfn)); 1284 #endif 1285 } 1286 1287 #ifdef CONFIG_MEMCG 1288 static inline struct mem_cgroup *page_memcg(struct page *page) 1289 { 1290 return page->mem_cgroup; 1291 } 1292 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1293 { 1294 WARN_ON_ONCE(!rcu_read_lock_held()); 1295 return READ_ONCE(page->mem_cgroup); 1296 } 1297 #else 1298 static inline struct mem_cgroup *page_memcg(struct page *page) 1299 { 1300 return NULL; 1301 } 1302 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1303 { 1304 WARN_ON_ONCE(!rcu_read_lock_held()); 1305 return NULL; 1306 } 1307 #endif 1308 1309 /* 1310 * Some inline functions in vmstat.h depend on page_zone() 1311 */ 1312 #include <linux/vmstat.h> 1313 1314 static __always_inline void *lowmem_page_address(const struct page *page) 1315 { 1316 return page_to_virt(page); 1317 } 1318 1319 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1320 #define HASHED_PAGE_VIRTUAL 1321 #endif 1322 1323 #if defined(WANT_PAGE_VIRTUAL) 1324 static inline void *page_address(const struct page *page) 1325 { 1326 return page->virtual; 1327 } 1328 static inline void set_page_address(struct page *page, void *address) 1329 { 1330 page->virtual = address; 1331 } 1332 #define page_address_init() do { } while(0) 1333 #endif 1334 1335 #if defined(HASHED_PAGE_VIRTUAL) 1336 void *page_address(const struct page *page); 1337 void set_page_address(struct page *page, void *virtual); 1338 void page_address_init(void); 1339 #endif 1340 1341 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1342 #define page_address(page) lowmem_page_address(page) 1343 #define set_page_address(page, address) do { } while(0) 1344 #define page_address_init() do { } while(0) 1345 #endif 1346 1347 extern void *page_rmapping(struct page *page); 1348 extern struct anon_vma *page_anon_vma(struct page *page); 1349 extern struct address_space *page_mapping(struct page *page); 1350 1351 extern struct address_space *__page_file_mapping(struct page *); 1352 1353 static inline 1354 struct address_space *page_file_mapping(struct page *page) 1355 { 1356 if (unlikely(PageSwapCache(page))) 1357 return __page_file_mapping(page); 1358 1359 return page->mapping; 1360 } 1361 1362 extern pgoff_t __page_file_index(struct page *page); 1363 1364 /* 1365 * Return the pagecache index of the passed page. Regular pagecache pages 1366 * use ->index whereas swapcache pages use swp_offset(->private) 1367 */ 1368 static inline pgoff_t page_index(struct page *page) 1369 { 1370 if (unlikely(PageSwapCache(page))) 1371 return __page_file_index(page); 1372 return page->index; 1373 } 1374 1375 bool page_mapped(struct page *page); 1376 struct address_space *page_mapping(struct page *page); 1377 struct address_space *page_mapping_file(struct page *page); 1378 1379 /* 1380 * Return true only if the page has been allocated with 1381 * ALLOC_NO_WATERMARKS and the low watermark was not 1382 * met implying that the system is under some pressure. 1383 */ 1384 static inline bool page_is_pfmemalloc(struct page *page) 1385 { 1386 /* 1387 * Page index cannot be this large so this must be 1388 * a pfmemalloc page. 1389 */ 1390 return page->index == -1UL; 1391 } 1392 1393 /* 1394 * Only to be called by the page allocator on a freshly allocated 1395 * page. 1396 */ 1397 static inline void set_page_pfmemalloc(struct page *page) 1398 { 1399 page->index = -1UL; 1400 } 1401 1402 static inline void clear_page_pfmemalloc(struct page *page) 1403 { 1404 page->index = 0; 1405 } 1406 1407 /* 1408 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1409 */ 1410 extern void pagefault_out_of_memory(void); 1411 1412 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1413 1414 /* 1415 * Flags passed to show_mem() and show_free_areas() to suppress output in 1416 * various contexts. 1417 */ 1418 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1419 1420 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1421 1422 #ifdef CONFIG_MMU 1423 extern bool can_do_mlock(void); 1424 #else 1425 static inline bool can_do_mlock(void) { return false; } 1426 #endif 1427 extern int user_shm_lock(size_t, struct user_struct *); 1428 extern void user_shm_unlock(size_t, struct user_struct *); 1429 1430 /* 1431 * Parameter block passed down to zap_pte_range in exceptional cases. 1432 */ 1433 struct zap_details { 1434 struct address_space *check_mapping; /* Check page->mapping if set */ 1435 pgoff_t first_index; /* Lowest page->index to unmap */ 1436 pgoff_t last_index; /* Highest page->index to unmap */ 1437 }; 1438 1439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1440 pte_t pte); 1441 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1442 pmd_t pmd); 1443 1444 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1445 unsigned long size); 1446 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1447 unsigned long size); 1448 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1449 unsigned long start, unsigned long end); 1450 1451 struct mmu_notifier_range; 1452 1453 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1454 unsigned long end, unsigned long floor, unsigned long ceiling); 1455 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1456 struct vm_area_struct *vma); 1457 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1458 struct mmu_notifier_range *range, 1459 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1460 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1461 unsigned long *pfn); 1462 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1463 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1464 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1465 void *buf, int len, int write); 1466 1467 extern void truncate_pagecache(struct inode *inode, loff_t new); 1468 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1469 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1470 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1471 int truncate_inode_page(struct address_space *mapping, struct page *page); 1472 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1473 int invalidate_inode_page(struct page *page); 1474 1475 #ifdef CONFIG_MMU 1476 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1477 unsigned long address, unsigned int flags); 1478 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1479 unsigned long address, unsigned int fault_flags, 1480 bool *unlocked); 1481 void unmap_mapping_pages(struct address_space *mapping, 1482 pgoff_t start, pgoff_t nr, bool even_cows); 1483 void unmap_mapping_range(struct address_space *mapping, 1484 loff_t const holebegin, loff_t const holelen, int even_cows); 1485 #else 1486 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1487 unsigned long address, unsigned int flags) 1488 { 1489 /* should never happen if there's no MMU */ 1490 BUG(); 1491 return VM_FAULT_SIGBUS; 1492 } 1493 static inline int fixup_user_fault(struct task_struct *tsk, 1494 struct mm_struct *mm, unsigned long address, 1495 unsigned int fault_flags, bool *unlocked) 1496 { 1497 /* should never happen if there's no MMU */ 1498 BUG(); 1499 return -EFAULT; 1500 } 1501 static inline void unmap_mapping_pages(struct address_space *mapping, 1502 pgoff_t start, pgoff_t nr, bool even_cows) { } 1503 static inline void unmap_mapping_range(struct address_space *mapping, 1504 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1505 #endif 1506 1507 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1508 loff_t const holebegin, loff_t const holelen) 1509 { 1510 unmap_mapping_range(mapping, holebegin, holelen, 0); 1511 } 1512 1513 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1514 void *buf, int len, unsigned int gup_flags); 1515 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1516 void *buf, int len, unsigned int gup_flags); 1517 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1518 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1519 1520 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1521 unsigned long start, unsigned long nr_pages, 1522 unsigned int gup_flags, struct page **pages, 1523 struct vm_area_struct **vmas, int *locked); 1524 long get_user_pages(unsigned long start, unsigned long nr_pages, 1525 unsigned int gup_flags, struct page **pages, 1526 struct vm_area_struct **vmas); 1527 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1528 unsigned int gup_flags, struct page **pages, int *locked); 1529 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1530 struct page **pages, unsigned int gup_flags); 1531 1532 int get_user_pages_fast(unsigned long start, int nr_pages, 1533 unsigned int gup_flags, struct page **pages); 1534 1535 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1536 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1537 struct task_struct *task, bool bypass_rlim); 1538 1539 /* Container for pinned pfns / pages */ 1540 struct frame_vector { 1541 unsigned int nr_allocated; /* Number of frames we have space for */ 1542 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1543 bool got_ref; /* Did we pin pages by getting page ref? */ 1544 bool is_pfns; /* Does array contain pages or pfns? */ 1545 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1546 * pfns_vector_pages() or pfns_vector_pfns() 1547 * for access */ 1548 }; 1549 1550 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1551 void frame_vector_destroy(struct frame_vector *vec); 1552 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1553 unsigned int gup_flags, struct frame_vector *vec); 1554 void put_vaddr_frames(struct frame_vector *vec); 1555 int frame_vector_to_pages(struct frame_vector *vec); 1556 void frame_vector_to_pfns(struct frame_vector *vec); 1557 1558 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1559 { 1560 return vec->nr_frames; 1561 } 1562 1563 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1564 { 1565 if (vec->is_pfns) { 1566 int err = frame_vector_to_pages(vec); 1567 1568 if (err) 1569 return ERR_PTR(err); 1570 } 1571 return (struct page **)(vec->ptrs); 1572 } 1573 1574 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1575 { 1576 if (!vec->is_pfns) 1577 frame_vector_to_pfns(vec); 1578 return (unsigned long *)(vec->ptrs); 1579 } 1580 1581 struct kvec; 1582 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1583 struct page **pages); 1584 int get_kernel_page(unsigned long start, int write, struct page **pages); 1585 struct page *get_dump_page(unsigned long addr); 1586 1587 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1588 extern void do_invalidatepage(struct page *page, unsigned int offset, 1589 unsigned int length); 1590 1591 void __set_page_dirty(struct page *, struct address_space *, int warn); 1592 int __set_page_dirty_nobuffers(struct page *page); 1593 int __set_page_dirty_no_writeback(struct page *page); 1594 int redirty_page_for_writepage(struct writeback_control *wbc, 1595 struct page *page); 1596 void account_page_dirtied(struct page *page, struct address_space *mapping); 1597 void account_page_cleaned(struct page *page, struct address_space *mapping, 1598 struct bdi_writeback *wb); 1599 int set_page_dirty(struct page *page); 1600 int set_page_dirty_lock(struct page *page); 1601 void __cancel_dirty_page(struct page *page); 1602 static inline void cancel_dirty_page(struct page *page) 1603 { 1604 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1605 if (PageDirty(page)) 1606 __cancel_dirty_page(page); 1607 } 1608 int clear_page_dirty_for_io(struct page *page); 1609 1610 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1611 1612 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1613 unsigned long old_addr, struct vm_area_struct *new_vma, 1614 unsigned long new_addr, unsigned long len, 1615 bool need_rmap_locks); 1616 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1617 unsigned long end, pgprot_t newprot, 1618 int dirty_accountable, int prot_numa); 1619 extern int mprotect_fixup(struct vm_area_struct *vma, 1620 struct vm_area_struct **pprev, unsigned long start, 1621 unsigned long end, unsigned long newflags); 1622 1623 /* 1624 * doesn't attempt to fault and will return short. 1625 */ 1626 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1627 struct page **pages); 1628 /* 1629 * per-process(per-mm_struct) statistics. 1630 */ 1631 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1632 { 1633 long val = atomic_long_read(&mm->rss_stat.count[member]); 1634 1635 #ifdef SPLIT_RSS_COUNTING 1636 /* 1637 * counter is updated in asynchronous manner and may go to minus. 1638 * But it's never be expected number for users. 1639 */ 1640 if (val < 0) 1641 val = 0; 1642 #endif 1643 return (unsigned long)val; 1644 } 1645 1646 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1647 { 1648 atomic_long_add(value, &mm->rss_stat.count[member]); 1649 } 1650 1651 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1652 { 1653 atomic_long_inc(&mm->rss_stat.count[member]); 1654 } 1655 1656 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1657 { 1658 atomic_long_dec(&mm->rss_stat.count[member]); 1659 } 1660 1661 /* Optimized variant when page is already known not to be PageAnon */ 1662 static inline int mm_counter_file(struct page *page) 1663 { 1664 if (PageSwapBacked(page)) 1665 return MM_SHMEMPAGES; 1666 return MM_FILEPAGES; 1667 } 1668 1669 static inline int mm_counter(struct page *page) 1670 { 1671 if (PageAnon(page)) 1672 return MM_ANONPAGES; 1673 return mm_counter_file(page); 1674 } 1675 1676 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1677 { 1678 return get_mm_counter(mm, MM_FILEPAGES) + 1679 get_mm_counter(mm, MM_ANONPAGES) + 1680 get_mm_counter(mm, MM_SHMEMPAGES); 1681 } 1682 1683 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1684 { 1685 return max(mm->hiwater_rss, get_mm_rss(mm)); 1686 } 1687 1688 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1689 { 1690 return max(mm->hiwater_vm, mm->total_vm); 1691 } 1692 1693 static inline void update_hiwater_rss(struct mm_struct *mm) 1694 { 1695 unsigned long _rss = get_mm_rss(mm); 1696 1697 if ((mm)->hiwater_rss < _rss) 1698 (mm)->hiwater_rss = _rss; 1699 } 1700 1701 static inline void update_hiwater_vm(struct mm_struct *mm) 1702 { 1703 if (mm->hiwater_vm < mm->total_vm) 1704 mm->hiwater_vm = mm->total_vm; 1705 } 1706 1707 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1708 { 1709 mm->hiwater_rss = get_mm_rss(mm); 1710 } 1711 1712 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1713 struct mm_struct *mm) 1714 { 1715 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1716 1717 if (*maxrss < hiwater_rss) 1718 *maxrss = hiwater_rss; 1719 } 1720 1721 #if defined(SPLIT_RSS_COUNTING) 1722 void sync_mm_rss(struct mm_struct *mm); 1723 #else 1724 static inline void sync_mm_rss(struct mm_struct *mm) 1725 { 1726 } 1727 #endif 1728 1729 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1730 static inline int pte_devmap(pte_t pte) 1731 { 1732 return 0; 1733 } 1734 #endif 1735 1736 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1737 1738 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1739 spinlock_t **ptl); 1740 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1741 spinlock_t **ptl) 1742 { 1743 pte_t *ptep; 1744 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1745 return ptep; 1746 } 1747 1748 #ifdef __PAGETABLE_P4D_FOLDED 1749 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1750 unsigned long address) 1751 { 1752 return 0; 1753 } 1754 #else 1755 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1756 #endif 1757 1758 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1759 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1760 unsigned long address) 1761 { 1762 return 0; 1763 } 1764 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1765 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1766 1767 #else 1768 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1769 1770 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1771 { 1772 if (mm_pud_folded(mm)) 1773 return; 1774 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1775 } 1776 1777 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1778 { 1779 if (mm_pud_folded(mm)) 1780 return; 1781 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1782 } 1783 #endif 1784 1785 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1786 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1787 unsigned long address) 1788 { 1789 return 0; 1790 } 1791 1792 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1793 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1794 1795 #else 1796 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1797 1798 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1799 { 1800 if (mm_pmd_folded(mm)) 1801 return; 1802 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1803 } 1804 1805 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1806 { 1807 if (mm_pmd_folded(mm)) 1808 return; 1809 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1810 } 1811 #endif 1812 1813 #ifdef CONFIG_MMU 1814 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1815 { 1816 atomic_long_set(&mm->pgtables_bytes, 0); 1817 } 1818 1819 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1820 { 1821 return atomic_long_read(&mm->pgtables_bytes); 1822 } 1823 1824 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1825 { 1826 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1827 } 1828 1829 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1830 { 1831 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1832 } 1833 #else 1834 1835 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1836 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1837 { 1838 return 0; 1839 } 1840 1841 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1842 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1843 #endif 1844 1845 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1846 int __pte_alloc_kernel(pmd_t *pmd); 1847 1848 /* 1849 * The following ifdef needed to get the 4level-fixup.h header to work. 1850 * Remove it when 4level-fixup.h has been removed. 1851 */ 1852 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1853 1854 #ifndef __ARCH_HAS_5LEVEL_HACK 1855 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1856 unsigned long address) 1857 { 1858 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1859 NULL : p4d_offset(pgd, address); 1860 } 1861 1862 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1863 unsigned long address) 1864 { 1865 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1866 NULL : pud_offset(p4d, address); 1867 } 1868 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1869 1870 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1871 { 1872 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1873 NULL: pmd_offset(pud, address); 1874 } 1875 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1876 1877 #if USE_SPLIT_PTE_PTLOCKS 1878 #if ALLOC_SPLIT_PTLOCKS 1879 void __init ptlock_cache_init(void); 1880 extern bool ptlock_alloc(struct page *page); 1881 extern void ptlock_free(struct page *page); 1882 1883 static inline spinlock_t *ptlock_ptr(struct page *page) 1884 { 1885 return page->ptl; 1886 } 1887 #else /* ALLOC_SPLIT_PTLOCKS */ 1888 static inline void ptlock_cache_init(void) 1889 { 1890 } 1891 1892 static inline bool ptlock_alloc(struct page *page) 1893 { 1894 return true; 1895 } 1896 1897 static inline void ptlock_free(struct page *page) 1898 { 1899 } 1900 1901 static inline spinlock_t *ptlock_ptr(struct page *page) 1902 { 1903 return &page->ptl; 1904 } 1905 #endif /* ALLOC_SPLIT_PTLOCKS */ 1906 1907 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1908 { 1909 return ptlock_ptr(pmd_page(*pmd)); 1910 } 1911 1912 static inline bool ptlock_init(struct page *page) 1913 { 1914 /* 1915 * prep_new_page() initialize page->private (and therefore page->ptl) 1916 * with 0. Make sure nobody took it in use in between. 1917 * 1918 * It can happen if arch try to use slab for page table allocation: 1919 * slab code uses page->slab_cache, which share storage with page->ptl. 1920 */ 1921 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1922 if (!ptlock_alloc(page)) 1923 return false; 1924 spin_lock_init(ptlock_ptr(page)); 1925 return true; 1926 } 1927 1928 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1929 /* 1930 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1931 */ 1932 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1933 { 1934 return &mm->page_table_lock; 1935 } 1936 static inline void ptlock_cache_init(void) {} 1937 static inline bool ptlock_init(struct page *page) { return true; } 1938 static inline void ptlock_free(struct page *page) {} 1939 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1940 1941 static inline void pgtable_init(void) 1942 { 1943 ptlock_cache_init(); 1944 pgtable_cache_init(); 1945 } 1946 1947 static inline bool pgtable_pte_page_ctor(struct page *page) 1948 { 1949 if (!ptlock_init(page)) 1950 return false; 1951 __SetPageTable(page); 1952 inc_zone_page_state(page, NR_PAGETABLE); 1953 return true; 1954 } 1955 1956 static inline void pgtable_pte_page_dtor(struct page *page) 1957 { 1958 ptlock_free(page); 1959 __ClearPageTable(page); 1960 dec_zone_page_state(page, NR_PAGETABLE); 1961 } 1962 1963 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1964 ({ \ 1965 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1966 pte_t *__pte = pte_offset_map(pmd, address); \ 1967 *(ptlp) = __ptl; \ 1968 spin_lock(__ptl); \ 1969 __pte; \ 1970 }) 1971 1972 #define pte_unmap_unlock(pte, ptl) do { \ 1973 spin_unlock(ptl); \ 1974 pte_unmap(pte); \ 1975 } while (0) 1976 1977 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 1978 1979 #define pte_alloc_map(mm, pmd, address) \ 1980 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 1981 1982 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1983 (pte_alloc(mm, pmd) ? \ 1984 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1985 1986 #define pte_alloc_kernel(pmd, address) \ 1987 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 1988 NULL: pte_offset_kernel(pmd, address)) 1989 1990 #if USE_SPLIT_PMD_PTLOCKS 1991 1992 static struct page *pmd_to_page(pmd_t *pmd) 1993 { 1994 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1995 return virt_to_page((void *)((unsigned long) pmd & mask)); 1996 } 1997 1998 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1999 { 2000 return ptlock_ptr(pmd_to_page(pmd)); 2001 } 2002 2003 static inline bool pgtable_pmd_page_ctor(struct page *page) 2004 { 2005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2006 page->pmd_huge_pte = NULL; 2007 #endif 2008 return ptlock_init(page); 2009 } 2010 2011 static inline void pgtable_pmd_page_dtor(struct page *page) 2012 { 2013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2014 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2015 #endif 2016 ptlock_free(page); 2017 } 2018 2019 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2020 2021 #else 2022 2023 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2024 { 2025 return &mm->page_table_lock; 2026 } 2027 2028 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2029 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2030 2031 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2032 2033 #endif 2034 2035 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2036 { 2037 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2038 spin_lock(ptl); 2039 return ptl; 2040 } 2041 2042 /* 2043 * No scalability reason to split PUD locks yet, but follow the same pattern 2044 * as the PMD locks to make it easier if we decide to. The VM should not be 2045 * considered ready to switch to split PUD locks yet; there may be places 2046 * which need to be converted from page_table_lock. 2047 */ 2048 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2049 { 2050 return &mm->page_table_lock; 2051 } 2052 2053 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2054 { 2055 spinlock_t *ptl = pud_lockptr(mm, pud); 2056 2057 spin_lock(ptl); 2058 return ptl; 2059 } 2060 2061 extern void __init pagecache_init(void); 2062 extern void free_area_init(unsigned long * zones_size); 2063 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2064 unsigned long zone_start_pfn, unsigned long *zholes_size); 2065 extern void free_initmem(void); 2066 2067 /* 2068 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2069 * into the buddy system. The freed pages will be poisoned with pattern 2070 * "poison" if it's within range [0, UCHAR_MAX]. 2071 * Return pages freed into the buddy system. 2072 */ 2073 extern unsigned long free_reserved_area(void *start, void *end, 2074 int poison, const char *s); 2075 2076 #ifdef CONFIG_HIGHMEM 2077 /* 2078 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2079 * and totalram_pages. 2080 */ 2081 extern void free_highmem_page(struct page *page); 2082 #endif 2083 2084 extern void adjust_managed_page_count(struct page *page, long count); 2085 extern void mem_init_print_info(const char *str); 2086 2087 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2088 2089 /* Free the reserved page into the buddy system, so it gets managed. */ 2090 static inline void __free_reserved_page(struct page *page) 2091 { 2092 ClearPageReserved(page); 2093 init_page_count(page); 2094 __free_page(page); 2095 } 2096 2097 static inline void free_reserved_page(struct page *page) 2098 { 2099 __free_reserved_page(page); 2100 adjust_managed_page_count(page, 1); 2101 } 2102 2103 static inline void mark_page_reserved(struct page *page) 2104 { 2105 SetPageReserved(page); 2106 adjust_managed_page_count(page, -1); 2107 } 2108 2109 /* 2110 * Default method to free all the __init memory into the buddy system. 2111 * The freed pages will be poisoned with pattern "poison" if it's within 2112 * range [0, UCHAR_MAX]. 2113 * Return pages freed into the buddy system. 2114 */ 2115 static inline unsigned long free_initmem_default(int poison) 2116 { 2117 extern char __init_begin[], __init_end[]; 2118 2119 return free_reserved_area(&__init_begin, &__init_end, 2120 poison, "unused kernel"); 2121 } 2122 2123 static inline unsigned long get_num_physpages(void) 2124 { 2125 int nid; 2126 unsigned long phys_pages = 0; 2127 2128 for_each_online_node(nid) 2129 phys_pages += node_present_pages(nid); 2130 2131 return phys_pages; 2132 } 2133 2134 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2135 /* 2136 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2137 * zones, allocate the backing mem_map and account for memory holes in a more 2138 * architecture independent manner. This is a substitute for creating the 2139 * zone_sizes[] and zholes_size[] arrays and passing them to 2140 * free_area_init_node() 2141 * 2142 * An architecture is expected to register range of page frames backed by 2143 * physical memory with memblock_add[_node]() before calling 2144 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2145 * usage, an architecture is expected to do something like 2146 * 2147 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2148 * max_highmem_pfn}; 2149 * for_each_valid_physical_page_range() 2150 * memblock_add_node(base, size, nid) 2151 * free_area_init_nodes(max_zone_pfns); 2152 * 2153 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2154 * registered physical page range. Similarly 2155 * sparse_memory_present_with_active_regions() calls memory_present() for 2156 * each range when SPARSEMEM is enabled. 2157 * 2158 * See mm/page_alloc.c for more information on each function exposed by 2159 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2160 */ 2161 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2162 unsigned long node_map_pfn_alignment(void); 2163 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2164 unsigned long end_pfn); 2165 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2166 unsigned long end_pfn); 2167 extern void get_pfn_range_for_nid(unsigned int nid, 2168 unsigned long *start_pfn, unsigned long *end_pfn); 2169 extern unsigned long find_min_pfn_with_active_regions(void); 2170 extern void free_bootmem_with_active_regions(int nid, 2171 unsigned long max_low_pfn); 2172 extern void sparse_memory_present_with_active_regions(int nid); 2173 2174 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2175 2176 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2177 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2178 static inline int __early_pfn_to_nid(unsigned long pfn, 2179 struct mminit_pfnnid_cache *state) 2180 { 2181 return 0; 2182 } 2183 #else 2184 /* please see mm/page_alloc.c */ 2185 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2186 /* there is a per-arch backend function. */ 2187 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2188 struct mminit_pfnnid_cache *state); 2189 #endif 2190 2191 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2192 void zero_resv_unavail(void); 2193 #else 2194 static inline void zero_resv_unavail(void) {} 2195 #endif 2196 2197 extern void set_dma_reserve(unsigned long new_dma_reserve); 2198 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2199 enum memmap_context, struct vmem_altmap *); 2200 extern void setup_per_zone_wmarks(void); 2201 extern int __meminit init_per_zone_wmark_min(void); 2202 extern void mem_init(void); 2203 extern void __init mmap_init(void); 2204 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2205 extern long si_mem_available(void); 2206 extern void si_meminfo(struct sysinfo * val); 2207 extern void si_meminfo_node(struct sysinfo *val, int nid); 2208 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2209 extern unsigned long arch_reserved_kernel_pages(void); 2210 #endif 2211 2212 extern __printf(3, 4) 2213 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2214 2215 extern void setup_per_cpu_pageset(void); 2216 2217 extern void zone_pcp_update(struct zone *zone); 2218 extern void zone_pcp_reset(struct zone *zone); 2219 2220 /* page_alloc.c */ 2221 extern int min_free_kbytes; 2222 extern int watermark_boost_factor; 2223 extern int watermark_scale_factor; 2224 2225 /* nommu.c */ 2226 extern atomic_long_t mmap_pages_allocated; 2227 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2228 2229 /* interval_tree.c */ 2230 void vma_interval_tree_insert(struct vm_area_struct *node, 2231 struct rb_root_cached *root); 2232 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2233 struct vm_area_struct *prev, 2234 struct rb_root_cached *root); 2235 void vma_interval_tree_remove(struct vm_area_struct *node, 2236 struct rb_root_cached *root); 2237 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2238 unsigned long start, unsigned long last); 2239 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2240 unsigned long start, unsigned long last); 2241 2242 #define vma_interval_tree_foreach(vma, root, start, last) \ 2243 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2244 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2245 2246 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2247 struct rb_root_cached *root); 2248 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2249 struct rb_root_cached *root); 2250 struct anon_vma_chain * 2251 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2252 unsigned long start, unsigned long last); 2253 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2254 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2255 #ifdef CONFIG_DEBUG_VM_RB 2256 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2257 #endif 2258 2259 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2260 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2261 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2262 2263 /* mmap.c */ 2264 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2265 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2266 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2267 struct vm_area_struct *expand); 2268 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2269 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2270 { 2271 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2272 } 2273 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2274 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2275 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2276 struct mempolicy *, struct vm_userfaultfd_ctx); 2277 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2278 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2279 unsigned long addr, int new_below); 2280 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2281 unsigned long addr, int new_below); 2282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2283 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2284 struct rb_node **, struct rb_node *); 2285 extern void unlink_file_vma(struct vm_area_struct *); 2286 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2287 unsigned long addr, unsigned long len, pgoff_t pgoff, 2288 bool *need_rmap_locks); 2289 extern void exit_mmap(struct mm_struct *); 2290 2291 static inline int check_data_rlimit(unsigned long rlim, 2292 unsigned long new, 2293 unsigned long start, 2294 unsigned long end_data, 2295 unsigned long start_data) 2296 { 2297 if (rlim < RLIM_INFINITY) { 2298 if (((new - start) + (end_data - start_data)) > rlim) 2299 return -ENOSPC; 2300 } 2301 2302 return 0; 2303 } 2304 2305 extern int mm_take_all_locks(struct mm_struct *mm); 2306 extern void mm_drop_all_locks(struct mm_struct *mm); 2307 2308 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2309 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2310 extern struct file *get_task_exe_file(struct task_struct *task); 2311 2312 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2313 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2314 2315 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2316 const struct vm_special_mapping *sm); 2317 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2318 unsigned long addr, unsigned long len, 2319 unsigned long flags, 2320 const struct vm_special_mapping *spec); 2321 /* This is an obsolete alternative to _install_special_mapping. */ 2322 extern int install_special_mapping(struct mm_struct *mm, 2323 unsigned long addr, unsigned long len, 2324 unsigned long flags, struct page **pages); 2325 2326 unsigned long randomize_stack_top(unsigned long stack_top); 2327 2328 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2329 2330 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2331 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2332 struct list_head *uf); 2333 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2334 unsigned long len, unsigned long prot, unsigned long flags, 2335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2336 struct list_head *uf); 2337 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2338 struct list_head *uf, bool downgrade); 2339 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2340 struct list_head *uf); 2341 2342 static inline unsigned long 2343 do_mmap_pgoff(struct file *file, unsigned long addr, 2344 unsigned long len, unsigned long prot, unsigned long flags, 2345 unsigned long pgoff, unsigned long *populate, 2346 struct list_head *uf) 2347 { 2348 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2349 } 2350 2351 #ifdef CONFIG_MMU 2352 extern int __mm_populate(unsigned long addr, unsigned long len, 2353 int ignore_errors); 2354 static inline void mm_populate(unsigned long addr, unsigned long len) 2355 { 2356 /* Ignore errors */ 2357 (void) __mm_populate(addr, len, 1); 2358 } 2359 #else 2360 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2361 #endif 2362 2363 /* These take the mm semaphore themselves */ 2364 extern int __must_check vm_brk(unsigned long, unsigned long); 2365 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2366 extern int vm_munmap(unsigned long, size_t); 2367 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2368 unsigned long, unsigned long, 2369 unsigned long, unsigned long); 2370 2371 struct vm_unmapped_area_info { 2372 #define VM_UNMAPPED_AREA_TOPDOWN 1 2373 unsigned long flags; 2374 unsigned long length; 2375 unsigned long low_limit; 2376 unsigned long high_limit; 2377 unsigned long align_mask; 2378 unsigned long align_offset; 2379 }; 2380 2381 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2382 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2383 2384 /* 2385 * Search for an unmapped address range. 2386 * 2387 * We are looking for a range that: 2388 * - does not intersect with any VMA; 2389 * - is contained within the [low_limit, high_limit) interval; 2390 * - is at least the desired size. 2391 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2392 */ 2393 static inline unsigned long 2394 vm_unmapped_area(struct vm_unmapped_area_info *info) 2395 { 2396 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2397 return unmapped_area_topdown(info); 2398 else 2399 return unmapped_area(info); 2400 } 2401 2402 /* truncate.c */ 2403 extern void truncate_inode_pages(struct address_space *, loff_t); 2404 extern void truncate_inode_pages_range(struct address_space *, 2405 loff_t lstart, loff_t lend); 2406 extern void truncate_inode_pages_final(struct address_space *); 2407 2408 /* generic vm_area_ops exported for stackable file systems */ 2409 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2410 extern void filemap_map_pages(struct vm_fault *vmf, 2411 pgoff_t start_pgoff, pgoff_t end_pgoff); 2412 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2413 2414 /* mm/page-writeback.c */ 2415 int __must_check write_one_page(struct page *page); 2416 void task_dirty_inc(struct task_struct *tsk); 2417 2418 /* readahead.c */ 2419 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2420 2421 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2422 pgoff_t offset, unsigned long nr_to_read); 2423 2424 void page_cache_sync_readahead(struct address_space *mapping, 2425 struct file_ra_state *ra, 2426 struct file *filp, 2427 pgoff_t offset, 2428 unsigned long size); 2429 2430 void page_cache_async_readahead(struct address_space *mapping, 2431 struct file_ra_state *ra, 2432 struct file *filp, 2433 struct page *pg, 2434 pgoff_t offset, 2435 unsigned long size); 2436 2437 extern unsigned long stack_guard_gap; 2438 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2439 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2440 2441 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2442 extern int expand_downwards(struct vm_area_struct *vma, 2443 unsigned long address); 2444 #if VM_GROWSUP 2445 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2446 #else 2447 #define expand_upwards(vma, address) (0) 2448 #endif 2449 2450 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2451 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2452 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2453 struct vm_area_struct **pprev); 2454 2455 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2456 NULL if none. Assume start_addr < end_addr. */ 2457 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2458 { 2459 struct vm_area_struct * vma = find_vma(mm,start_addr); 2460 2461 if (vma && end_addr <= vma->vm_start) 2462 vma = NULL; 2463 return vma; 2464 } 2465 2466 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2467 { 2468 unsigned long vm_start = vma->vm_start; 2469 2470 if (vma->vm_flags & VM_GROWSDOWN) { 2471 vm_start -= stack_guard_gap; 2472 if (vm_start > vma->vm_start) 2473 vm_start = 0; 2474 } 2475 return vm_start; 2476 } 2477 2478 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2479 { 2480 unsigned long vm_end = vma->vm_end; 2481 2482 if (vma->vm_flags & VM_GROWSUP) { 2483 vm_end += stack_guard_gap; 2484 if (vm_end < vma->vm_end) 2485 vm_end = -PAGE_SIZE; 2486 } 2487 return vm_end; 2488 } 2489 2490 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2491 { 2492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2493 } 2494 2495 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2496 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2497 unsigned long vm_start, unsigned long vm_end) 2498 { 2499 struct vm_area_struct *vma = find_vma(mm, vm_start); 2500 2501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2502 vma = NULL; 2503 2504 return vma; 2505 } 2506 2507 static inline bool range_in_vma(struct vm_area_struct *vma, 2508 unsigned long start, unsigned long end) 2509 { 2510 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2511 } 2512 2513 #ifdef CONFIG_MMU 2514 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2515 void vma_set_page_prot(struct vm_area_struct *vma); 2516 #else 2517 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2518 { 2519 return __pgprot(0); 2520 } 2521 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2522 { 2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2524 } 2525 #endif 2526 2527 #ifdef CONFIG_NUMA_BALANCING 2528 unsigned long change_prot_numa(struct vm_area_struct *vma, 2529 unsigned long start, unsigned long end); 2530 #endif 2531 2532 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2533 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2534 unsigned long pfn, unsigned long size, pgprot_t); 2535 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2536 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2537 unsigned long num); 2538 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2539 unsigned long num); 2540 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2541 unsigned long pfn); 2542 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2543 unsigned long pfn, pgprot_t pgprot); 2544 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2545 pfn_t pfn); 2546 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2547 unsigned long addr, pfn_t pfn); 2548 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2549 2550 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2551 unsigned long addr, struct page *page) 2552 { 2553 int err = vm_insert_page(vma, addr, page); 2554 2555 if (err == -ENOMEM) 2556 return VM_FAULT_OOM; 2557 if (err < 0 && err != -EBUSY) 2558 return VM_FAULT_SIGBUS; 2559 2560 return VM_FAULT_NOPAGE; 2561 } 2562 2563 static inline vm_fault_t vmf_error(int err) 2564 { 2565 if (err == -ENOMEM) 2566 return VM_FAULT_OOM; 2567 return VM_FAULT_SIGBUS; 2568 } 2569 2570 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2571 unsigned int foll_flags); 2572 2573 #define FOLL_WRITE 0x01 /* check pte is writable */ 2574 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2575 #define FOLL_GET 0x04 /* do get_page on page */ 2576 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2577 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2578 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2579 * and return without waiting upon it */ 2580 #define FOLL_POPULATE 0x40 /* fault in page */ 2581 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2582 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2583 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2584 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2585 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2586 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2587 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2588 #define FOLL_COW 0x4000 /* internal GUP flag */ 2589 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2590 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2591 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2592 2593 /* 2594 * NOTE on FOLL_LONGTERM: 2595 * 2596 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2597 * period _often_ under userspace control. This is contrasted with 2598 * iov_iter_get_pages() where usages which are transient. 2599 * 2600 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2601 * lifetime enforced by the filesystem and we need guarantees that longterm 2602 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2603 * the filesystem. Ideas for this coordination include revoking the longterm 2604 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2605 * added after the problem with filesystems was found FS DAX VMAs are 2606 * specifically failed. Filesystem pages are still subject to bugs and use of 2607 * FOLL_LONGTERM should be avoided on those pages. 2608 * 2609 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2610 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2611 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2612 * is due to an incompatibility with the FS DAX check and 2613 * FAULT_FLAG_ALLOW_RETRY 2614 * 2615 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2616 * that region. And so CMA attempts to migrate the page before pinning when 2617 * FOLL_LONGTERM is specified. 2618 */ 2619 2620 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2621 { 2622 if (vm_fault & VM_FAULT_OOM) 2623 return -ENOMEM; 2624 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2625 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2626 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2627 return -EFAULT; 2628 return 0; 2629 } 2630 2631 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2632 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2633 unsigned long size, pte_fn_t fn, void *data); 2634 2635 2636 #ifdef CONFIG_PAGE_POISONING 2637 extern bool page_poisoning_enabled(void); 2638 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2639 #else 2640 static inline bool page_poisoning_enabled(void) { return false; } 2641 static inline void kernel_poison_pages(struct page *page, int numpages, 2642 int enable) { } 2643 #endif 2644 2645 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2646 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2647 #else 2648 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2649 #endif 2650 static inline bool want_init_on_alloc(gfp_t flags) 2651 { 2652 if (static_branch_unlikely(&init_on_alloc) && 2653 !page_poisoning_enabled()) 2654 return true; 2655 return flags & __GFP_ZERO; 2656 } 2657 2658 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2659 DECLARE_STATIC_KEY_TRUE(init_on_free); 2660 #else 2661 DECLARE_STATIC_KEY_FALSE(init_on_free); 2662 #endif 2663 static inline bool want_init_on_free(void) 2664 { 2665 return static_branch_unlikely(&init_on_free) && 2666 !page_poisoning_enabled(); 2667 } 2668 2669 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 2670 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 2671 #else 2672 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2673 #endif 2674 2675 static inline bool debug_pagealloc_enabled(void) 2676 { 2677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2678 return false; 2679 2680 return static_branch_unlikely(&_debug_pagealloc_enabled); 2681 } 2682 2683 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2684 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2685 2686 static inline void 2687 kernel_map_pages(struct page *page, int numpages, int enable) 2688 { 2689 __kernel_map_pages(page, numpages, enable); 2690 } 2691 #ifdef CONFIG_HIBERNATION 2692 extern bool kernel_page_present(struct page *page); 2693 #endif /* CONFIG_HIBERNATION */ 2694 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2695 static inline void 2696 kernel_map_pages(struct page *page, int numpages, int enable) {} 2697 #ifdef CONFIG_HIBERNATION 2698 static inline bool kernel_page_present(struct page *page) { return true; } 2699 #endif /* CONFIG_HIBERNATION */ 2700 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2701 2702 #ifdef __HAVE_ARCH_GATE_AREA 2703 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2704 extern int in_gate_area_no_mm(unsigned long addr); 2705 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2706 #else 2707 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2708 { 2709 return NULL; 2710 } 2711 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2712 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2713 { 2714 return 0; 2715 } 2716 #endif /* __HAVE_ARCH_GATE_AREA */ 2717 2718 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2719 2720 #ifdef CONFIG_SYSCTL 2721 extern int sysctl_drop_caches; 2722 int drop_caches_sysctl_handler(struct ctl_table *, int, 2723 void __user *, size_t *, loff_t *); 2724 #endif 2725 2726 void drop_slab(void); 2727 void drop_slab_node(int nid); 2728 2729 #ifndef CONFIG_MMU 2730 #define randomize_va_space 0 2731 #else 2732 extern int randomize_va_space; 2733 #endif 2734 2735 const char * arch_vma_name(struct vm_area_struct *vma); 2736 #ifdef CONFIG_MMU 2737 void print_vma_addr(char *prefix, unsigned long rip); 2738 #else 2739 static inline void print_vma_addr(char *prefix, unsigned long rip) 2740 { 2741 } 2742 #endif 2743 2744 void *sparse_buffer_alloc(unsigned long size); 2745 struct page * __populate_section_memmap(unsigned long pfn, 2746 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2747 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2748 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2749 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2750 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2751 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2752 void *vmemmap_alloc_block(unsigned long size, int node); 2753 struct vmem_altmap; 2754 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2755 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2756 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2757 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2758 int node); 2759 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2760 struct vmem_altmap *altmap); 2761 void vmemmap_populate_print_last(void); 2762 #ifdef CONFIG_MEMORY_HOTPLUG 2763 void vmemmap_free(unsigned long start, unsigned long end, 2764 struct vmem_altmap *altmap); 2765 #endif 2766 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2767 unsigned long nr_pages); 2768 2769 enum mf_flags { 2770 MF_COUNT_INCREASED = 1 << 0, 2771 MF_ACTION_REQUIRED = 1 << 1, 2772 MF_MUST_KILL = 1 << 2, 2773 MF_SOFT_OFFLINE = 1 << 3, 2774 }; 2775 extern int memory_failure(unsigned long pfn, int flags); 2776 extern void memory_failure_queue(unsigned long pfn, int flags); 2777 extern int unpoison_memory(unsigned long pfn); 2778 extern int get_hwpoison_page(struct page *page); 2779 #define put_hwpoison_page(page) put_page(page) 2780 extern int sysctl_memory_failure_early_kill; 2781 extern int sysctl_memory_failure_recovery; 2782 extern void shake_page(struct page *p, int access); 2783 extern atomic_long_t num_poisoned_pages __read_mostly; 2784 extern int soft_offline_page(struct page *page, int flags); 2785 2786 2787 /* 2788 * Error handlers for various types of pages. 2789 */ 2790 enum mf_result { 2791 MF_IGNORED, /* Error: cannot be handled */ 2792 MF_FAILED, /* Error: handling failed */ 2793 MF_DELAYED, /* Will be handled later */ 2794 MF_RECOVERED, /* Successfully recovered */ 2795 }; 2796 2797 enum mf_action_page_type { 2798 MF_MSG_KERNEL, 2799 MF_MSG_KERNEL_HIGH_ORDER, 2800 MF_MSG_SLAB, 2801 MF_MSG_DIFFERENT_COMPOUND, 2802 MF_MSG_POISONED_HUGE, 2803 MF_MSG_HUGE, 2804 MF_MSG_FREE_HUGE, 2805 MF_MSG_NON_PMD_HUGE, 2806 MF_MSG_UNMAP_FAILED, 2807 MF_MSG_DIRTY_SWAPCACHE, 2808 MF_MSG_CLEAN_SWAPCACHE, 2809 MF_MSG_DIRTY_MLOCKED_LRU, 2810 MF_MSG_CLEAN_MLOCKED_LRU, 2811 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2812 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2813 MF_MSG_DIRTY_LRU, 2814 MF_MSG_CLEAN_LRU, 2815 MF_MSG_TRUNCATED_LRU, 2816 MF_MSG_BUDDY, 2817 MF_MSG_BUDDY_2ND, 2818 MF_MSG_DAX, 2819 MF_MSG_UNKNOWN, 2820 }; 2821 2822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2823 extern void clear_huge_page(struct page *page, 2824 unsigned long addr_hint, 2825 unsigned int pages_per_huge_page); 2826 extern void copy_user_huge_page(struct page *dst, struct page *src, 2827 unsigned long addr_hint, 2828 struct vm_area_struct *vma, 2829 unsigned int pages_per_huge_page); 2830 extern long copy_huge_page_from_user(struct page *dst_page, 2831 const void __user *usr_src, 2832 unsigned int pages_per_huge_page, 2833 bool allow_pagefault); 2834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2835 2836 #ifdef CONFIG_DEBUG_PAGEALLOC 2837 extern unsigned int _debug_guardpage_minorder; 2838 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2839 2840 static inline unsigned int debug_guardpage_minorder(void) 2841 { 2842 return _debug_guardpage_minorder; 2843 } 2844 2845 static inline bool debug_guardpage_enabled(void) 2846 { 2847 return static_branch_unlikely(&_debug_guardpage_enabled); 2848 } 2849 2850 static inline bool page_is_guard(struct page *page) 2851 { 2852 if (!debug_guardpage_enabled()) 2853 return false; 2854 2855 return PageGuard(page); 2856 } 2857 #else 2858 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2859 static inline bool debug_guardpage_enabled(void) { return false; } 2860 static inline bool page_is_guard(struct page *page) { return false; } 2861 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2862 2863 #if MAX_NUMNODES > 1 2864 void __init setup_nr_node_ids(void); 2865 #else 2866 static inline void setup_nr_node_ids(void) {} 2867 #endif 2868 2869 extern int memcmp_pages(struct page *page1, struct page *page2); 2870 2871 static inline int pages_identical(struct page *page1, struct page *page2) 2872 { 2873 return !memcmp_pages(page1, page2); 2874 } 2875 2876 #endif /* __KERNEL__ */ 2877 #endif /* _LINUX_MM_H */ 2878