1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36 extern unsigned long max_mapnr; 37 38 static inline void set_max_mapnr(unsigned long limit) 39 { 40 max_mapnr = limit; 41 } 42 #else 43 static inline void set_max_mapnr(unsigned long limit) { } 44 #endif 45 46 extern unsigned long totalram_pages; 47 extern void * high_memory; 48 extern int page_cluster; 49 50 #ifdef CONFIG_SYSCTL 51 extern int sysctl_legacy_va_layout; 52 #else 53 #define sysctl_legacy_va_layout 0 54 #endif 55 56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57 extern const int mmap_rnd_bits_min; 58 extern const int mmap_rnd_bits_max; 59 extern int mmap_rnd_bits __read_mostly; 60 #endif 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62 extern const int mmap_rnd_compat_bits_min; 63 extern const int mmap_rnd_compat_bits_max; 64 extern int mmap_rnd_compat_bits __read_mostly; 65 #endif 66 67 #include <asm/page.h> 68 #include <asm/pgtable.h> 69 #include <asm/processor.h> 70 71 #ifndef __pa_symbol 72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73 #endif 74 75 #ifndef page_to_virt 76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77 #endif 78 79 /* 80 * To prevent common memory management code establishing 81 * a zero page mapping on a read fault. 82 * This macro should be defined within <asm/pgtable.h>. 83 * s390 does this to prevent multiplexing of hardware bits 84 * related to the physical page in case of virtualization. 85 */ 86 #ifndef mm_forbids_zeropage 87 #define mm_forbids_zeropage(X) (0) 88 #endif 89 90 /* 91 * Default maximum number of active map areas, this limits the number of vmas 92 * per mm struct. Users can overwrite this number by sysctl but there is a 93 * problem. 94 * 95 * When a program's coredump is generated as ELF format, a section is created 96 * per a vma. In ELF, the number of sections is represented in unsigned short. 97 * This means the number of sections should be smaller than 65535 at coredump. 98 * Because the kernel adds some informative sections to a image of program at 99 * generating coredump, we need some margin. The number of extra sections is 100 * 1-3 now and depends on arch. We use "5" as safe margin, here. 101 * 102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 103 * not a hard limit any more. Although some userspace tools can be surprised by 104 * that. 105 */ 106 #define MAPCOUNT_ELF_CORE_MARGIN (5) 107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 108 109 extern int sysctl_max_map_count; 110 111 extern unsigned long sysctl_user_reserve_kbytes; 112 extern unsigned long sysctl_admin_reserve_kbytes; 113 114 extern int sysctl_overcommit_memory; 115 extern int sysctl_overcommit_ratio; 116 extern unsigned long sysctl_overcommit_kbytes; 117 118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 119 size_t *, loff_t *); 120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 121 size_t *, loff_t *); 122 123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 124 125 /* to align the pointer to the (next) page boundary */ 126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 127 128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 130 131 /* 132 * Linux kernel virtual memory manager primitives. 133 * The idea being to have a "virtual" mm in the same way 134 * we have a virtual fs - giving a cleaner interface to the 135 * mm details, and allowing different kinds of memory mappings 136 * (from shared memory to executable loading to arbitrary 137 * mmap() functions). 138 */ 139 140 extern struct kmem_cache *vm_area_cachep; 141 142 #ifndef CONFIG_MMU 143 extern struct rb_root nommu_region_tree; 144 extern struct rw_semaphore nommu_region_sem; 145 146 extern unsigned int kobjsize(const void *objp); 147 #endif 148 149 /* 150 * vm_flags in vm_area_struct, see mm_types.h. 151 * When changing, update also include/trace/events/mmflags.h 152 */ 153 #define VM_NONE 0x00000000 154 155 #define VM_READ 0x00000001 /* currently active flags */ 156 #define VM_WRITE 0x00000002 157 #define VM_EXEC 0x00000004 158 #define VM_SHARED 0x00000008 159 160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 162 #define VM_MAYWRITE 0x00000020 163 #define VM_MAYEXEC 0x00000040 164 #define VM_MAYSHARE 0x00000080 165 166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 171 172 #define VM_LOCKED 0x00002000 173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 174 175 /* Used by sys_madvise() */ 176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 178 179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 186 #define VM_ARCH_2 0x02000000 187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 188 189 #ifdef CONFIG_MEM_SOFT_DIRTY 190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 191 #else 192 # define VM_SOFTDIRTY 0 193 #endif 194 195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 199 200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 210 211 #if defined(CONFIG_X86) 212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 219 #endif 220 #elif defined(CONFIG_PPC) 221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 222 #elif defined(CONFIG_PARISC) 223 # define VM_GROWSUP VM_ARCH_1 224 #elif defined(CONFIG_METAG) 225 # define VM_GROWSUP VM_ARCH_1 226 #elif defined(CONFIG_IA64) 227 # define VM_GROWSUP VM_ARCH_1 228 #elif !defined(CONFIG_MMU) 229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 230 #endif 231 232 #if defined(CONFIG_X86) 233 /* MPX specific bounds table or bounds directory */ 234 # define VM_MPX VM_ARCH_2 235 #endif 236 237 #ifndef VM_GROWSUP 238 # define VM_GROWSUP VM_NONE 239 #endif 240 241 /* Bits set in the VMA until the stack is in its final location */ 242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 243 244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 246 #endif 247 248 #ifdef CONFIG_STACK_GROWSUP 249 #define VM_STACK VM_GROWSUP 250 #else 251 #define VM_STACK VM_GROWSDOWN 252 #endif 253 254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 255 256 /* 257 * Special vmas that are non-mergable, non-mlock()able. 258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 259 */ 260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 261 262 /* This mask defines which mm->def_flags a process can inherit its parent */ 263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 264 265 /* This mask is used to clear all the VMA flags used by mlock */ 266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 267 268 /* 269 * mapping from the currently active vm_flags protection bits (the 270 * low four bits) to a page protection mask.. 271 */ 272 extern pgprot_t protection_map[16]; 273 274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 279 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 283 284 /* 285 * vm_fault is filled by the the pagefault handler and passed to the vma's 286 * ->fault function. The vma's ->fault is responsible for returning a bitmask 287 * of VM_FAULT_xxx flags that give details about how the fault was handled. 288 * 289 * MM layer fills up gfp_mask for page allocations but fault handler might 290 * alter it if its implementation requires a different allocation context. 291 * 292 * pgoff should be used in favour of virtual_address, if possible. 293 */ 294 struct vm_fault { 295 unsigned int flags; /* FAULT_FLAG_xxx flags */ 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 297 pgoff_t pgoff; /* Logical page offset based on vma */ 298 void __user *virtual_address; /* Faulting virtual address */ 299 300 struct page *cow_page; /* Handler may choose to COW */ 301 struct page *page; /* ->fault handlers should return a 302 * page here, unless VM_FAULT_NOPAGE 303 * is set (which is also implied by 304 * VM_FAULT_ERROR). 305 */ 306 void *entry; /* ->fault handler can alternatively 307 * return locked DAX entry. In that 308 * case handler should return 309 * VM_FAULT_DAX_LOCKED and fill in 310 * entry here. 311 */ 312 }; 313 314 /* 315 * Page fault context: passes though page fault handler instead of endless list 316 * of function arguments. 317 */ 318 struct fault_env { 319 struct vm_area_struct *vma; /* Target VMA */ 320 unsigned long address; /* Faulting virtual address */ 321 unsigned int flags; /* FAULT_FLAG_xxx flags */ 322 pmd_t *pmd; /* Pointer to pmd entry matching 323 * the 'address' 324 */ 325 pte_t *pte; /* Pointer to pte entry matching 326 * the 'address'. NULL if the page 327 * table hasn't been allocated. 328 */ 329 spinlock_t *ptl; /* Page table lock. 330 * Protects pte page table if 'pte' 331 * is not NULL, otherwise pmd. 332 */ 333 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 334 * vm_ops->map_pages() calls 335 * alloc_set_pte() from atomic context. 336 * do_fault_around() pre-allocates 337 * page table to avoid allocation from 338 * atomic context. 339 */ 340 }; 341 342 /* 343 * These are the virtual MM functions - opening of an area, closing and 344 * unmapping it (needed to keep files on disk up-to-date etc), pointer 345 * to the functions called when a no-page or a wp-page exception occurs. 346 */ 347 struct vm_operations_struct { 348 void (*open)(struct vm_area_struct * area); 349 void (*close)(struct vm_area_struct * area); 350 int (*mremap)(struct vm_area_struct * area); 351 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 352 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 353 pmd_t *, unsigned int flags); 354 void (*map_pages)(struct fault_env *fe, 355 pgoff_t start_pgoff, pgoff_t end_pgoff); 356 357 /* notification that a previously read-only page is about to become 358 * writable, if an error is returned it will cause a SIGBUS */ 359 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 360 361 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 362 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 363 364 /* called by access_process_vm when get_user_pages() fails, typically 365 * for use by special VMAs that can switch between memory and hardware 366 */ 367 int (*access)(struct vm_area_struct *vma, unsigned long addr, 368 void *buf, int len, int write); 369 370 /* Called by the /proc/PID/maps code to ask the vma whether it 371 * has a special name. Returning non-NULL will also cause this 372 * vma to be dumped unconditionally. */ 373 const char *(*name)(struct vm_area_struct *vma); 374 375 #ifdef CONFIG_NUMA 376 /* 377 * set_policy() op must add a reference to any non-NULL @new mempolicy 378 * to hold the policy upon return. Caller should pass NULL @new to 379 * remove a policy and fall back to surrounding context--i.e. do not 380 * install a MPOL_DEFAULT policy, nor the task or system default 381 * mempolicy. 382 */ 383 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 384 385 /* 386 * get_policy() op must add reference [mpol_get()] to any policy at 387 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 388 * in mm/mempolicy.c will do this automatically. 389 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 390 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 391 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 392 * must return NULL--i.e., do not "fallback" to task or system default 393 * policy. 394 */ 395 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 396 unsigned long addr); 397 #endif 398 /* 399 * Called by vm_normal_page() for special PTEs to find the 400 * page for @addr. This is useful if the default behavior 401 * (using pte_page()) would not find the correct page. 402 */ 403 struct page *(*find_special_page)(struct vm_area_struct *vma, 404 unsigned long addr); 405 }; 406 407 struct mmu_gather; 408 struct inode; 409 410 #define page_private(page) ((page)->private) 411 #define set_page_private(page, v) ((page)->private = (v)) 412 413 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 414 static inline int pmd_devmap(pmd_t pmd) 415 { 416 return 0; 417 } 418 #endif 419 420 /* 421 * FIXME: take this include out, include page-flags.h in 422 * files which need it (119 of them) 423 */ 424 #include <linux/page-flags.h> 425 #include <linux/huge_mm.h> 426 427 /* 428 * Methods to modify the page usage count. 429 * 430 * What counts for a page usage: 431 * - cache mapping (page->mapping) 432 * - private data (page->private) 433 * - page mapped in a task's page tables, each mapping 434 * is counted separately 435 * 436 * Also, many kernel routines increase the page count before a critical 437 * routine so they can be sure the page doesn't go away from under them. 438 */ 439 440 /* 441 * Drop a ref, return true if the refcount fell to zero (the page has no users) 442 */ 443 static inline int put_page_testzero(struct page *page) 444 { 445 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 446 return page_ref_dec_and_test(page); 447 } 448 449 /* 450 * Try to grab a ref unless the page has a refcount of zero, return false if 451 * that is the case. 452 * This can be called when MMU is off so it must not access 453 * any of the virtual mappings. 454 */ 455 static inline int get_page_unless_zero(struct page *page) 456 { 457 return page_ref_add_unless(page, 1, 0); 458 } 459 460 extern int page_is_ram(unsigned long pfn); 461 462 enum { 463 REGION_INTERSECTS, 464 REGION_DISJOINT, 465 REGION_MIXED, 466 }; 467 468 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 469 unsigned long desc); 470 471 /* Support for virtually mapped pages */ 472 struct page *vmalloc_to_page(const void *addr); 473 unsigned long vmalloc_to_pfn(const void *addr); 474 475 /* 476 * Determine if an address is within the vmalloc range 477 * 478 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 479 * is no special casing required. 480 */ 481 static inline bool is_vmalloc_addr(const void *x) 482 { 483 #ifdef CONFIG_MMU 484 unsigned long addr = (unsigned long)x; 485 486 return addr >= VMALLOC_START && addr < VMALLOC_END; 487 #else 488 return false; 489 #endif 490 } 491 #ifdef CONFIG_MMU 492 extern int is_vmalloc_or_module_addr(const void *x); 493 #else 494 static inline int is_vmalloc_or_module_addr(const void *x) 495 { 496 return 0; 497 } 498 #endif 499 500 extern void kvfree(const void *addr); 501 502 static inline atomic_t *compound_mapcount_ptr(struct page *page) 503 { 504 return &page[1].compound_mapcount; 505 } 506 507 static inline int compound_mapcount(struct page *page) 508 { 509 VM_BUG_ON_PAGE(!PageCompound(page), page); 510 page = compound_head(page); 511 return atomic_read(compound_mapcount_ptr(page)) + 1; 512 } 513 514 /* 515 * The atomic page->_mapcount, starts from -1: so that transitions 516 * both from it and to it can be tracked, using atomic_inc_and_test 517 * and atomic_add_negative(-1). 518 */ 519 static inline void page_mapcount_reset(struct page *page) 520 { 521 atomic_set(&(page)->_mapcount, -1); 522 } 523 524 int __page_mapcount(struct page *page); 525 526 static inline int page_mapcount(struct page *page) 527 { 528 VM_BUG_ON_PAGE(PageSlab(page), page); 529 530 if (unlikely(PageCompound(page))) 531 return __page_mapcount(page); 532 return atomic_read(&page->_mapcount) + 1; 533 } 534 535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 536 int total_mapcount(struct page *page); 537 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 538 #else 539 static inline int total_mapcount(struct page *page) 540 { 541 return page_mapcount(page); 542 } 543 static inline int page_trans_huge_mapcount(struct page *page, 544 int *total_mapcount) 545 { 546 int mapcount = page_mapcount(page); 547 if (total_mapcount) 548 *total_mapcount = mapcount; 549 return mapcount; 550 } 551 #endif 552 553 static inline struct page *virt_to_head_page(const void *x) 554 { 555 struct page *page = virt_to_page(x); 556 557 return compound_head(page); 558 } 559 560 void __put_page(struct page *page); 561 562 void put_pages_list(struct list_head *pages); 563 564 void split_page(struct page *page, unsigned int order); 565 566 /* 567 * Compound pages have a destructor function. Provide a 568 * prototype for that function and accessor functions. 569 * These are _only_ valid on the head of a compound page. 570 */ 571 typedef void compound_page_dtor(struct page *); 572 573 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 574 enum compound_dtor_id { 575 NULL_COMPOUND_DTOR, 576 COMPOUND_PAGE_DTOR, 577 #ifdef CONFIG_HUGETLB_PAGE 578 HUGETLB_PAGE_DTOR, 579 #endif 580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 581 TRANSHUGE_PAGE_DTOR, 582 #endif 583 NR_COMPOUND_DTORS, 584 }; 585 extern compound_page_dtor * const compound_page_dtors[]; 586 587 static inline void set_compound_page_dtor(struct page *page, 588 enum compound_dtor_id compound_dtor) 589 { 590 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 591 page[1].compound_dtor = compound_dtor; 592 } 593 594 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 595 { 596 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 597 return compound_page_dtors[page[1].compound_dtor]; 598 } 599 600 static inline unsigned int compound_order(struct page *page) 601 { 602 if (!PageHead(page)) 603 return 0; 604 return page[1].compound_order; 605 } 606 607 static inline void set_compound_order(struct page *page, unsigned int order) 608 { 609 page[1].compound_order = order; 610 } 611 612 void free_compound_page(struct page *page); 613 614 #ifdef CONFIG_MMU 615 /* 616 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 617 * servicing faults for write access. In the normal case, do always want 618 * pte_mkwrite. But get_user_pages can cause write faults for mappings 619 * that do not have writing enabled, when used by access_process_vm. 620 */ 621 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 622 { 623 if (likely(vma->vm_flags & VM_WRITE)) 624 pte = pte_mkwrite(pte); 625 return pte; 626 } 627 628 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg, 629 struct page *page); 630 #endif 631 632 /* 633 * Multiple processes may "see" the same page. E.g. for untouched 634 * mappings of /dev/null, all processes see the same page full of 635 * zeroes, and text pages of executables and shared libraries have 636 * only one copy in memory, at most, normally. 637 * 638 * For the non-reserved pages, page_count(page) denotes a reference count. 639 * page_count() == 0 means the page is free. page->lru is then used for 640 * freelist management in the buddy allocator. 641 * page_count() > 0 means the page has been allocated. 642 * 643 * Pages are allocated by the slab allocator in order to provide memory 644 * to kmalloc and kmem_cache_alloc. In this case, the management of the 645 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 646 * unless a particular usage is carefully commented. (the responsibility of 647 * freeing the kmalloc memory is the caller's, of course). 648 * 649 * A page may be used by anyone else who does a __get_free_page(). 650 * In this case, page_count still tracks the references, and should only 651 * be used through the normal accessor functions. The top bits of page->flags 652 * and page->virtual store page management information, but all other fields 653 * are unused and could be used privately, carefully. The management of this 654 * page is the responsibility of the one who allocated it, and those who have 655 * subsequently been given references to it. 656 * 657 * The other pages (we may call them "pagecache pages") are completely 658 * managed by the Linux memory manager: I/O, buffers, swapping etc. 659 * The following discussion applies only to them. 660 * 661 * A pagecache page contains an opaque `private' member, which belongs to the 662 * page's address_space. Usually, this is the address of a circular list of 663 * the page's disk buffers. PG_private must be set to tell the VM to call 664 * into the filesystem to release these pages. 665 * 666 * A page may belong to an inode's memory mapping. In this case, page->mapping 667 * is the pointer to the inode, and page->index is the file offset of the page, 668 * in units of PAGE_SIZE. 669 * 670 * If pagecache pages are not associated with an inode, they are said to be 671 * anonymous pages. These may become associated with the swapcache, and in that 672 * case PG_swapcache is set, and page->private is an offset into the swapcache. 673 * 674 * In either case (swapcache or inode backed), the pagecache itself holds one 675 * reference to the page. Setting PG_private should also increment the 676 * refcount. The each user mapping also has a reference to the page. 677 * 678 * The pagecache pages are stored in a per-mapping radix tree, which is 679 * rooted at mapping->page_tree, and indexed by offset. 680 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 681 * lists, we instead now tag pages as dirty/writeback in the radix tree. 682 * 683 * All pagecache pages may be subject to I/O: 684 * - inode pages may need to be read from disk, 685 * - inode pages which have been modified and are MAP_SHARED may need 686 * to be written back to the inode on disk, 687 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 688 * modified may need to be swapped out to swap space and (later) to be read 689 * back into memory. 690 */ 691 692 /* 693 * The zone field is never updated after free_area_init_core() 694 * sets it, so none of the operations on it need to be atomic. 695 */ 696 697 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 698 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 699 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 700 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 701 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 702 703 /* 704 * Define the bit shifts to access each section. For non-existent 705 * sections we define the shift as 0; that plus a 0 mask ensures 706 * the compiler will optimise away reference to them. 707 */ 708 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 709 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 710 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 711 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 712 713 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 714 #ifdef NODE_NOT_IN_PAGE_FLAGS 715 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 716 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 717 SECTIONS_PGOFF : ZONES_PGOFF) 718 #else 719 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 720 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 721 NODES_PGOFF : ZONES_PGOFF) 722 #endif 723 724 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 725 726 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 727 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 728 #endif 729 730 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 731 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 732 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 733 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 734 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 735 736 static inline enum zone_type page_zonenum(const struct page *page) 737 { 738 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 739 } 740 741 #ifdef CONFIG_ZONE_DEVICE 742 void get_zone_device_page(struct page *page); 743 void put_zone_device_page(struct page *page); 744 static inline bool is_zone_device_page(const struct page *page) 745 { 746 return page_zonenum(page) == ZONE_DEVICE; 747 } 748 #else 749 static inline void get_zone_device_page(struct page *page) 750 { 751 } 752 static inline void put_zone_device_page(struct page *page) 753 { 754 } 755 static inline bool is_zone_device_page(const struct page *page) 756 { 757 return false; 758 } 759 #endif 760 761 static inline void get_page(struct page *page) 762 { 763 page = compound_head(page); 764 /* 765 * Getting a normal page or the head of a compound page 766 * requires to already have an elevated page->_refcount. 767 */ 768 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 769 page_ref_inc(page); 770 771 if (unlikely(is_zone_device_page(page))) 772 get_zone_device_page(page); 773 } 774 775 static inline void put_page(struct page *page) 776 { 777 page = compound_head(page); 778 779 if (put_page_testzero(page)) 780 __put_page(page); 781 782 if (unlikely(is_zone_device_page(page))) 783 put_zone_device_page(page); 784 } 785 786 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 787 #define SECTION_IN_PAGE_FLAGS 788 #endif 789 790 /* 791 * The identification function is mainly used by the buddy allocator for 792 * determining if two pages could be buddies. We are not really identifying 793 * the zone since we could be using the section number id if we do not have 794 * node id available in page flags. 795 * We only guarantee that it will return the same value for two combinable 796 * pages in a zone. 797 */ 798 static inline int page_zone_id(struct page *page) 799 { 800 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 801 } 802 803 static inline int zone_to_nid(struct zone *zone) 804 { 805 #ifdef CONFIG_NUMA 806 return zone->node; 807 #else 808 return 0; 809 #endif 810 } 811 812 #ifdef NODE_NOT_IN_PAGE_FLAGS 813 extern int page_to_nid(const struct page *page); 814 #else 815 static inline int page_to_nid(const struct page *page) 816 { 817 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 818 } 819 #endif 820 821 #ifdef CONFIG_NUMA_BALANCING 822 static inline int cpu_pid_to_cpupid(int cpu, int pid) 823 { 824 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 825 } 826 827 static inline int cpupid_to_pid(int cpupid) 828 { 829 return cpupid & LAST__PID_MASK; 830 } 831 832 static inline int cpupid_to_cpu(int cpupid) 833 { 834 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 835 } 836 837 static inline int cpupid_to_nid(int cpupid) 838 { 839 return cpu_to_node(cpupid_to_cpu(cpupid)); 840 } 841 842 static inline bool cpupid_pid_unset(int cpupid) 843 { 844 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 845 } 846 847 static inline bool cpupid_cpu_unset(int cpupid) 848 { 849 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 850 } 851 852 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 853 { 854 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 855 } 856 857 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 858 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 859 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 860 { 861 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 862 } 863 864 static inline int page_cpupid_last(struct page *page) 865 { 866 return page->_last_cpupid; 867 } 868 static inline void page_cpupid_reset_last(struct page *page) 869 { 870 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 871 } 872 #else 873 static inline int page_cpupid_last(struct page *page) 874 { 875 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 876 } 877 878 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 879 880 static inline void page_cpupid_reset_last(struct page *page) 881 { 882 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 883 } 884 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 885 #else /* !CONFIG_NUMA_BALANCING */ 886 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 887 { 888 return page_to_nid(page); /* XXX */ 889 } 890 891 static inline int page_cpupid_last(struct page *page) 892 { 893 return page_to_nid(page); /* XXX */ 894 } 895 896 static inline int cpupid_to_nid(int cpupid) 897 { 898 return -1; 899 } 900 901 static inline int cpupid_to_pid(int cpupid) 902 { 903 return -1; 904 } 905 906 static inline int cpupid_to_cpu(int cpupid) 907 { 908 return -1; 909 } 910 911 static inline int cpu_pid_to_cpupid(int nid, int pid) 912 { 913 return -1; 914 } 915 916 static inline bool cpupid_pid_unset(int cpupid) 917 { 918 return 1; 919 } 920 921 static inline void page_cpupid_reset_last(struct page *page) 922 { 923 } 924 925 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 926 { 927 return false; 928 } 929 #endif /* CONFIG_NUMA_BALANCING */ 930 931 static inline struct zone *page_zone(const struct page *page) 932 { 933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 934 } 935 936 static inline pg_data_t *page_pgdat(const struct page *page) 937 { 938 return NODE_DATA(page_to_nid(page)); 939 } 940 941 #ifdef SECTION_IN_PAGE_FLAGS 942 static inline void set_page_section(struct page *page, unsigned long section) 943 { 944 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 945 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 946 } 947 948 static inline unsigned long page_to_section(const struct page *page) 949 { 950 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 951 } 952 #endif 953 954 static inline void set_page_zone(struct page *page, enum zone_type zone) 955 { 956 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 957 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 958 } 959 960 static inline void set_page_node(struct page *page, unsigned long node) 961 { 962 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 963 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 964 } 965 966 static inline void set_page_links(struct page *page, enum zone_type zone, 967 unsigned long node, unsigned long pfn) 968 { 969 set_page_zone(page, zone); 970 set_page_node(page, node); 971 #ifdef SECTION_IN_PAGE_FLAGS 972 set_page_section(page, pfn_to_section_nr(pfn)); 973 #endif 974 } 975 976 #ifdef CONFIG_MEMCG 977 static inline struct mem_cgroup *page_memcg(struct page *page) 978 { 979 return page->mem_cgroup; 980 } 981 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 982 { 983 WARN_ON_ONCE(!rcu_read_lock_held()); 984 return READ_ONCE(page->mem_cgroup); 985 } 986 #else 987 static inline struct mem_cgroup *page_memcg(struct page *page) 988 { 989 return NULL; 990 } 991 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 992 { 993 WARN_ON_ONCE(!rcu_read_lock_held()); 994 return NULL; 995 } 996 #endif 997 998 /* 999 * Some inline functions in vmstat.h depend on page_zone() 1000 */ 1001 #include <linux/vmstat.h> 1002 1003 static __always_inline void *lowmem_page_address(const struct page *page) 1004 { 1005 return page_to_virt(page); 1006 } 1007 1008 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1009 #define HASHED_PAGE_VIRTUAL 1010 #endif 1011 1012 #if defined(WANT_PAGE_VIRTUAL) 1013 static inline void *page_address(const struct page *page) 1014 { 1015 return page->virtual; 1016 } 1017 static inline void set_page_address(struct page *page, void *address) 1018 { 1019 page->virtual = address; 1020 } 1021 #define page_address_init() do { } while(0) 1022 #endif 1023 1024 #if defined(HASHED_PAGE_VIRTUAL) 1025 void *page_address(const struct page *page); 1026 void set_page_address(struct page *page, void *virtual); 1027 void page_address_init(void); 1028 #endif 1029 1030 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1031 #define page_address(page) lowmem_page_address(page) 1032 #define set_page_address(page, address) do { } while(0) 1033 #define page_address_init() do { } while(0) 1034 #endif 1035 1036 extern void *page_rmapping(struct page *page); 1037 extern struct anon_vma *page_anon_vma(struct page *page); 1038 extern struct address_space *page_mapping(struct page *page); 1039 1040 extern struct address_space *__page_file_mapping(struct page *); 1041 1042 static inline 1043 struct address_space *page_file_mapping(struct page *page) 1044 { 1045 if (unlikely(PageSwapCache(page))) 1046 return __page_file_mapping(page); 1047 1048 return page->mapping; 1049 } 1050 1051 extern pgoff_t __page_file_index(struct page *page); 1052 1053 /* 1054 * Return the pagecache index of the passed page. Regular pagecache pages 1055 * use ->index whereas swapcache pages use swp_offset(->private) 1056 */ 1057 static inline pgoff_t page_index(struct page *page) 1058 { 1059 if (unlikely(PageSwapCache(page))) 1060 return __page_file_index(page); 1061 return page->index; 1062 } 1063 1064 bool page_mapped(struct page *page); 1065 struct address_space *page_mapping(struct page *page); 1066 1067 /* 1068 * Return true only if the page has been allocated with 1069 * ALLOC_NO_WATERMARKS and the low watermark was not 1070 * met implying that the system is under some pressure. 1071 */ 1072 static inline bool page_is_pfmemalloc(struct page *page) 1073 { 1074 /* 1075 * Page index cannot be this large so this must be 1076 * a pfmemalloc page. 1077 */ 1078 return page->index == -1UL; 1079 } 1080 1081 /* 1082 * Only to be called by the page allocator on a freshly allocated 1083 * page. 1084 */ 1085 static inline void set_page_pfmemalloc(struct page *page) 1086 { 1087 page->index = -1UL; 1088 } 1089 1090 static inline void clear_page_pfmemalloc(struct page *page) 1091 { 1092 page->index = 0; 1093 } 1094 1095 /* 1096 * Different kinds of faults, as returned by handle_mm_fault(). 1097 * Used to decide whether a process gets delivered SIGBUS or 1098 * just gets major/minor fault counters bumped up. 1099 */ 1100 1101 #define VM_FAULT_OOM 0x0001 1102 #define VM_FAULT_SIGBUS 0x0002 1103 #define VM_FAULT_MAJOR 0x0004 1104 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1105 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1106 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1107 #define VM_FAULT_SIGSEGV 0x0040 1108 1109 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1110 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1111 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1112 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1113 #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */ 1114 1115 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1116 1117 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1118 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1119 VM_FAULT_FALLBACK) 1120 1121 /* Encode hstate index for a hwpoisoned large page */ 1122 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1123 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1124 1125 /* 1126 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1127 */ 1128 extern void pagefault_out_of_memory(void); 1129 1130 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1131 1132 /* 1133 * Flags passed to show_mem() and show_free_areas() to suppress output in 1134 * various contexts. 1135 */ 1136 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1137 1138 extern void show_free_areas(unsigned int flags); 1139 extern bool skip_free_areas_node(unsigned int flags, int nid); 1140 1141 int shmem_zero_setup(struct vm_area_struct *); 1142 #ifdef CONFIG_SHMEM 1143 bool shmem_mapping(struct address_space *mapping); 1144 #else 1145 static inline bool shmem_mapping(struct address_space *mapping) 1146 { 1147 return false; 1148 } 1149 #endif 1150 1151 extern bool can_do_mlock(void); 1152 extern int user_shm_lock(size_t, struct user_struct *); 1153 extern void user_shm_unlock(size_t, struct user_struct *); 1154 1155 /* 1156 * Parameter block passed down to zap_pte_range in exceptional cases. 1157 */ 1158 struct zap_details { 1159 struct address_space *check_mapping; /* Check page->mapping if set */ 1160 pgoff_t first_index; /* Lowest page->index to unmap */ 1161 pgoff_t last_index; /* Highest page->index to unmap */ 1162 bool ignore_dirty; /* Ignore dirty pages */ 1163 bool check_swap_entries; /* Check also swap entries */ 1164 }; 1165 1166 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1167 pte_t pte); 1168 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1169 pmd_t pmd); 1170 1171 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1172 unsigned long size); 1173 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1174 unsigned long size, struct zap_details *); 1175 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1176 unsigned long start, unsigned long end); 1177 1178 /** 1179 * mm_walk - callbacks for walk_page_range 1180 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1181 * this handler is required to be able to handle 1182 * pmd_trans_huge() pmds. They may simply choose to 1183 * split_huge_page() instead of handling it explicitly. 1184 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1185 * @pte_hole: if set, called for each hole at all levels 1186 * @hugetlb_entry: if set, called for each hugetlb entry 1187 * @test_walk: caller specific callback function to determine whether 1188 * we walk over the current vma or not. Returning 0 1189 * value means "do page table walk over the current vma," 1190 * and a negative one means "abort current page table walk 1191 * right now." 1 means "skip the current vma." 1192 * @mm: mm_struct representing the target process of page table walk 1193 * @vma: vma currently walked (NULL if walking outside vmas) 1194 * @private: private data for callbacks' usage 1195 * 1196 * (see the comment on walk_page_range() for more details) 1197 */ 1198 struct mm_walk { 1199 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1200 unsigned long next, struct mm_walk *walk); 1201 int (*pte_entry)(pte_t *pte, unsigned long addr, 1202 unsigned long next, struct mm_walk *walk); 1203 int (*pte_hole)(unsigned long addr, unsigned long next, 1204 struct mm_walk *walk); 1205 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1206 unsigned long addr, unsigned long next, 1207 struct mm_walk *walk); 1208 int (*test_walk)(unsigned long addr, unsigned long next, 1209 struct mm_walk *walk); 1210 struct mm_struct *mm; 1211 struct vm_area_struct *vma; 1212 void *private; 1213 }; 1214 1215 int walk_page_range(unsigned long addr, unsigned long end, 1216 struct mm_walk *walk); 1217 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1218 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1219 unsigned long end, unsigned long floor, unsigned long ceiling); 1220 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1221 struct vm_area_struct *vma); 1222 void unmap_mapping_range(struct address_space *mapping, 1223 loff_t const holebegin, loff_t const holelen, int even_cows); 1224 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1225 unsigned long *pfn); 1226 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1227 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1228 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1229 void *buf, int len, int write); 1230 1231 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1232 loff_t const holebegin, loff_t const holelen) 1233 { 1234 unmap_mapping_range(mapping, holebegin, holelen, 0); 1235 } 1236 1237 extern void truncate_pagecache(struct inode *inode, loff_t new); 1238 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1239 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1240 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1241 int truncate_inode_page(struct address_space *mapping, struct page *page); 1242 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1243 int invalidate_inode_page(struct page *page); 1244 1245 #ifdef CONFIG_MMU 1246 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1247 unsigned int flags); 1248 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1249 unsigned long address, unsigned int fault_flags, 1250 bool *unlocked); 1251 #else 1252 static inline int handle_mm_fault(struct vm_area_struct *vma, 1253 unsigned long address, unsigned int flags) 1254 { 1255 /* should never happen if there's no MMU */ 1256 BUG(); 1257 return VM_FAULT_SIGBUS; 1258 } 1259 static inline int fixup_user_fault(struct task_struct *tsk, 1260 struct mm_struct *mm, unsigned long address, 1261 unsigned int fault_flags, bool *unlocked) 1262 { 1263 /* should never happen if there's no MMU */ 1264 BUG(); 1265 return -EFAULT; 1266 } 1267 #endif 1268 1269 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1270 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1271 void *buf, int len, int write); 1272 1273 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1274 unsigned long start, unsigned long nr_pages, 1275 unsigned int foll_flags, struct page **pages, 1276 struct vm_area_struct **vmas, int *nonblocking); 1277 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1278 unsigned long start, unsigned long nr_pages, 1279 int write, int force, struct page **pages, 1280 struct vm_area_struct **vmas); 1281 long get_user_pages(unsigned long start, unsigned long nr_pages, 1282 int write, int force, struct page **pages, 1283 struct vm_area_struct **vmas); 1284 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1285 int write, int force, struct page **pages, int *locked); 1286 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1287 unsigned long start, unsigned long nr_pages, 1288 int write, int force, struct page **pages, 1289 unsigned int gup_flags); 1290 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1291 int write, int force, struct page **pages); 1292 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1293 struct page **pages); 1294 1295 /* Container for pinned pfns / pages */ 1296 struct frame_vector { 1297 unsigned int nr_allocated; /* Number of frames we have space for */ 1298 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1299 bool got_ref; /* Did we pin pages by getting page ref? */ 1300 bool is_pfns; /* Does array contain pages or pfns? */ 1301 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1302 * pfns_vector_pages() or pfns_vector_pfns() 1303 * for access */ 1304 }; 1305 1306 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1307 void frame_vector_destroy(struct frame_vector *vec); 1308 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1309 bool write, bool force, struct frame_vector *vec); 1310 void put_vaddr_frames(struct frame_vector *vec); 1311 int frame_vector_to_pages(struct frame_vector *vec); 1312 void frame_vector_to_pfns(struct frame_vector *vec); 1313 1314 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1315 { 1316 return vec->nr_frames; 1317 } 1318 1319 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1320 { 1321 if (vec->is_pfns) { 1322 int err = frame_vector_to_pages(vec); 1323 1324 if (err) 1325 return ERR_PTR(err); 1326 } 1327 return (struct page **)(vec->ptrs); 1328 } 1329 1330 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1331 { 1332 if (!vec->is_pfns) 1333 frame_vector_to_pfns(vec); 1334 return (unsigned long *)(vec->ptrs); 1335 } 1336 1337 struct kvec; 1338 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1339 struct page **pages); 1340 int get_kernel_page(unsigned long start, int write, struct page **pages); 1341 struct page *get_dump_page(unsigned long addr); 1342 1343 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1344 extern void do_invalidatepage(struct page *page, unsigned int offset, 1345 unsigned int length); 1346 1347 int __set_page_dirty_nobuffers(struct page *page); 1348 int __set_page_dirty_no_writeback(struct page *page); 1349 int redirty_page_for_writepage(struct writeback_control *wbc, 1350 struct page *page); 1351 void account_page_dirtied(struct page *page, struct address_space *mapping); 1352 void account_page_cleaned(struct page *page, struct address_space *mapping, 1353 struct bdi_writeback *wb); 1354 int set_page_dirty(struct page *page); 1355 int set_page_dirty_lock(struct page *page); 1356 void cancel_dirty_page(struct page *page); 1357 int clear_page_dirty_for_io(struct page *page); 1358 1359 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1360 1361 /* Is the vma a continuation of the stack vma above it? */ 1362 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1363 { 1364 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1365 } 1366 1367 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1368 { 1369 return !vma->vm_ops; 1370 } 1371 1372 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1373 unsigned long addr) 1374 { 1375 return (vma->vm_flags & VM_GROWSDOWN) && 1376 (vma->vm_start == addr) && 1377 !vma_growsdown(vma->vm_prev, addr); 1378 } 1379 1380 /* Is the vma a continuation of the stack vma below it? */ 1381 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1382 { 1383 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1384 } 1385 1386 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1387 unsigned long addr) 1388 { 1389 return (vma->vm_flags & VM_GROWSUP) && 1390 (vma->vm_end == addr) && 1391 !vma_growsup(vma->vm_next, addr); 1392 } 1393 1394 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1395 1396 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1397 unsigned long old_addr, struct vm_area_struct *new_vma, 1398 unsigned long new_addr, unsigned long len, 1399 bool need_rmap_locks); 1400 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1401 unsigned long end, pgprot_t newprot, 1402 int dirty_accountable, int prot_numa); 1403 extern int mprotect_fixup(struct vm_area_struct *vma, 1404 struct vm_area_struct **pprev, unsigned long start, 1405 unsigned long end, unsigned long newflags); 1406 1407 /* 1408 * doesn't attempt to fault and will return short. 1409 */ 1410 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1411 struct page **pages); 1412 /* 1413 * per-process(per-mm_struct) statistics. 1414 */ 1415 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1416 { 1417 long val = atomic_long_read(&mm->rss_stat.count[member]); 1418 1419 #ifdef SPLIT_RSS_COUNTING 1420 /* 1421 * counter is updated in asynchronous manner and may go to minus. 1422 * But it's never be expected number for users. 1423 */ 1424 if (val < 0) 1425 val = 0; 1426 #endif 1427 return (unsigned long)val; 1428 } 1429 1430 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1431 { 1432 atomic_long_add(value, &mm->rss_stat.count[member]); 1433 } 1434 1435 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1436 { 1437 atomic_long_inc(&mm->rss_stat.count[member]); 1438 } 1439 1440 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1441 { 1442 atomic_long_dec(&mm->rss_stat.count[member]); 1443 } 1444 1445 /* Optimized variant when page is already known not to be PageAnon */ 1446 static inline int mm_counter_file(struct page *page) 1447 { 1448 if (PageSwapBacked(page)) 1449 return MM_SHMEMPAGES; 1450 return MM_FILEPAGES; 1451 } 1452 1453 static inline int mm_counter(struct page *page) 1454 { 1455 if (PageAnon(page)) 1456 return MM_ANONPAGES; 1457 return mm_counter_file(page); 1458 } 1459 1460 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1461 { 1462 return get_mm_counter(mm, MM_FILEPAGES) + 1463 get_mm_counter(mm, MM_ANONPAGES) + 1464 get_mm_counter(mm, MM_SHMEMPAGES); 1465 } 1466 1467 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1468 { 1469 return max(mm->hiwater_rss, get_mm_rss(mm)); 1470 } 1471 1472 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1473 { 1474 return max(mm->hiwater_vm, mm->total_vm); 1475 } 1476 1477 static inline void update_hiwater_rss(struct mm_struct *mm) 1478 { 1479 unsigned long _rss = get_mm_rss(mm); 1480 1481 if ((mm)->hiwater_rss < _rss) 1482 (mm)->hiwater_rss = _rss; 1483 } 1484 1485 static inline void update_hiwater_vm(struct mm_struct *mm) 1486 { 1487 if (mm->hiwater_vm < mm->total_vm) 1488 mm->hiwater_vm = mm->total_vm; 1489 } 1490 1491 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1492 { 1493 mm->hiwater_rss = get_mm_rss(mm); 1494 } 1495 1496 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1497 struct mm_struct *mm) 1498 { 1499 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1500 1501 if (*maxrss < hiwater_rss) 1502 *maxrss = hiwater_rss; 1503 } 1504 1505 #if defined(SPLIT_RSS_COUNTING) 1506 void sync_mm_rss(struct mm_struct *mm); 1507 #else 1508 static inline void sync_mm_rss(struct mm_struct *mm) 1509 { 1510 } 1511 #endif 1512 1513 #ifndef __HAVE_ARCH_PTE_DEVMAP 1514 static inline int pte_devmap(pte_t pte) 1515 { 1516 return 0; 1517 } 1518 #endif 1519 1520 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1521 1522 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1523 spinlock_t **ptl); 1524 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1525 spinlock_t **ptl) 1526 { 1527 pte_t *ptep; 1528 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1529 return ptep; 1530 } 1531 1532 #ifdef __PAGETABLE_PUD_FOLDED 1533 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1534 unsigned long address) 1535 { 1536 return 0; 1537 } 1538 #else 1539 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1540 #endif 1541 1542 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1543 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1544 unsigned long address) 1545 { 1546 return 0; 1547 } 1548 1549 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1550 1551 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1552 { 1553 return 0; 1554 } 1555 1556 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1557 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1558 1559 #else 1560 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1561 1562 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1563 { 1564 atomic_long_set(&mm->nr_pmds, 0); 1565 } 1566 1567 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1568 { 1569 return atomic_long_read(&mm->nr_pmds); 1570 } 1571 1572 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1573 { 1574 atomic_long_inc(&mm->nr_pmds); 1575 } 1576 1577 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1578 { 1579 atomic_long_dec(&mm->nr_pmds); 1580 } 1581 #endif 1582 1583 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1584 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1585 1586 /* 1587 * The following ifdef needed to get the 4level-fixup.h header to work. 1588 * Remove it when 4level-fixup.h has been removed. 1589 */ 1590 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1591 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1592 { 1593 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1594 NULL: pud_offset(pgd, address); 1595 } 1596 1597 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1598 { 1599 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1600 NULL: pmd_offset(pud, address); 1601 } 1602 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1603 1604 #if USE_SPLIT_PTE_PTLOCKS 1605 #if ALLOC_SPLIT_PTLOCKS 1606 void __init ptlock_cache_init(void); 1607 extern bool ptlock_alloc(struct page *page); 1608 extern void ptlock_free(struct page *page); 1609 1610 static inline spinlock_t *ptlock_ptr(struct page *page) 1611 { 1612 return page->ptl; 1613 } 1614 #else /* ALLOC_SPLIT_PTLOCKS */ 1615 static inline void ptlock_cache_init(void) 1616 { 1617 } 1618 1619 static inline bool ptlock_alloc(struct page *page) 1620 { 1621 return true; 1622 } 1623 1624 static inline void ptlock_free(struct page *page) 1625 { 1626 } 1627 1628 static inline spinlock_t *ptlock_ptr(struct page *page) 1629 { 1630 return &page->ptl; 1631 } 1632 #endif /* ALLOC_SPLIT_PTLOCKS */ 1633 1634 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1635 { 1636 return ptlock_ptr(pmd_page(*pmd)); 1637 } 1638 1639 static inline bool ptlock_init(struct page *page) 1640 { 1641 /* 1642 * prep_new_page() initialize page->private (and therefore page->ptl) 1643 * with 0. Make sure nobody took it in use in between. 1644 * 1645 * It can happen if arch try to use slab for page table allocation: 1646 * slab code uses page->slab_cache, which share storage with page->ptl. 1647 */ 1648 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1649 if (!ptlock_alloc(page)) 1650 return false; 1651 spin_lock_init(ptlock_ptr(page)); 1652 return true; 1653 } 1654 1655 /* Reset page->mapping so free_pages_check won't complain. */ 1656 static inline void pte_lock_deinit(struct page *page) 1657 { 1658 page->mapping = NULL; 1659 ptlock_free(page); 1660 } 1661 1662 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1663 /* 1664 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1665 */ 1666 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1667 { 1668 return &mm->page_table_lock; 1669 } 1670 static inline void ptlock_cache_init(void) {} 1671 static inline bool ptlock_init(struct page *page) { return true; } 1672 static inline void pte_lock_deinit(struct page *page) {} 1673 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1674 1675 static inline void pgtable_init(void) 1676 { 1677 ptlock_cache_init(); 1678 pgtable_cache_init(); 1679 } 1680 1681 static inline bool pgtable_page_ctor(struct page *page) 1682 { 1683 if (!ptlock_init(page)) 1684 return false; 1685 inc_zone_page_state(page, NR_PAGETABLE); 1686 return true; 1687 } 1688 1689 static inline void pgtable_page_dtor(struct page *page) 1690 { 1691 pte_lock_deinit(page); 1692 dec_zone_page_state(page, NR_PAGETABLE); 1693 } 1694 1695 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1696 ({ \ 1697 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1698 pte_t *__pte = pte_offset_map(pmd, address); \ 1699 *(ptlp) = __ptl; \ 1700 spin_lock(__ptl); \ 1701 __pte; \ 1702 }) 1703 1704 #define pte_unmap_unlock(pte, ptl) do { \ 1705 spin_unlock(ptl); \ 1706 pte_unmap(pte); \ 1707 } while (0) 1708 1709 #define pte_alloc(mm, pmd, address) \ 1710 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1711 1712 #define pte_alloc_map(mm, pmd, address) \ 1713 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1714 1715 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1716 (pte_alloc(mm, pmd, address) ? \ 1717 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1718 1719 #define pte_alloc_kernel(pmd, address) \ 1720 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1721 NULL: pte_offset_kernel(pmd, address)) 1722 1723 #if USE_SPLIT_PMD_PTLOCKS 1724 1725 static struct page *pmd_to_page(pmd_t *pmd) 1726 { 1727 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1728 return virt_to_page((void *)((unsigned long) pmd & mask)); 1729 } 1730 1731 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1732 { 1733 return ptlock_ptr(pmd_to_page(pmd)); 1734 } 1735 1736 static inline bool pgtable_pmd_page_ctor(struct page *page) 1737 { 1738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1739 page->pmd_huge_pte = NULL; 1740 #endif 1741 return ptlock_init(page); 1742 } 1743 1744 static inline void pgtable_pmd_page_dtor(struct page *page) 1745 { 1746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1747 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1748 #endif 1749 ptlock_free(page); 1750 } 1751 1752 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1753 1754 #else 1755 1756 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1757 { 1758 return &mm->page_table_lock; 1759 } 1760 1761 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1762 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1763 1764 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1765 1766 #endif 1767 1768 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1769 { 1770 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1771 spin_lock(ptl); 1772 return ptl; 1773 } 1774 1775 extern void free_area_init(unsigned long * zones_size); 1776 extern void free_area_init_node(int nid, unsigned long * zones_size, 1777 unsigned long zone_start_pfn, unsigned long *zholes_size); 1778 extern void free_initmem(void); 1779 1780 /* 1781 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1782 * into the buddy system. The freed pages will be poisoned with pattern 1783 * "poison" if it's within range [0, UCHAR_MAX]. 1784 * Return pages freed into the buddy system. 1785 */ 1786 extern unsigned long free_reserved_area(void *start, void *end, 1787 int poison, char *s); 1788 1789 #ifdef CONFIG_HIGHMEM 1790 /* 1791 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1792 * and totalram_pages. 1793 */ 1794 extern void free_highmem_page(struct page *page); 1795 #endif 1796 1797 extern void adjust_managed_page_count(struct page *page, long count); 1798 extern void mem_init_print_info(const char *str); 1799 1800 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1801 1802 /* Free the reserved page into the buddy system, so it gets managed. */ 1803 static inline void __free_reserved_page(struct page *page) 1804 { 1805 ClearPageReserved(page); 1806 init_page_count(page); 1807 __free_page(page); 1808 } 1809 1810 static inline void free_reserved_page(struct page *page) 1811 { 1812 __free_reserved_page(page); 1813 adjust_managed_page_count(page, 1); 1814 } 1815 1816 static inline void mark_page_reserved(struct page *page) 1817 { 1818 SetPageReserved(page); 1819 adjust_managed_page_count(page, -1); 1820 } 1821 1822 /* 1823 * Default method to free all the __init memory into the buddy system. 1824 * The freed pages will be poisoned with pattern "poison" if it's within 1825 * range [0, UCHAR_MAX]. 1826 * Return pages freed into the buddy system. 1827 */ 1828 static inline unsigned long free_initmem_default(int poison) 1829 { 1830 extern char __init_begin[], __init_end[]; 1831 1832 return free_reserved_area(&__init_begin, &__init_end, 1833 poison, "unused kernel"); 1834 } 1835 1836 static inline unsigned long get_num_physpages(void) 1837 { 1838 int nid; 1839 unsigned long phys_pages = 0; 1840 1841 for_each_online_node(nid) 1842 phys_pages += node_present_pages(nid); 1843 1844 return phys_pages; 1845 } 1846 1847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1848 /* 1849 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1850 * zones, allocate the backing mem_map and account for memory holes in a more 1851 * architecture independent manner. This is a substitute for creating the 1852 * zone_sizes[] and zholes_size[] arrays and passing them to 1853 * free_area_init_node() 1854 * 1855 * An architecture is expected to register range of page frames backed by 1856 * physical memory with memblock_add[_node]() before calling 1857 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1858 * usage, an architecture is expected to do something like 1859 * 1860 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1861 * max_highmem_pfn}; 1862 * for_each_valid_physical_page_range() 1863 * memblock_add_node(base, size, nid) 1864 * free_area_init_nodes(max_zone_pfns); 1865 * 1866 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1867 * registered physical page range. Similarly 1868 * sparse_memory_present_with_active_regions() calls memory_present() for 1869 * each range when SPARSEMEM is enabled. 1870 * 1871 * See mm/page_alloc.c for more information on each function exposed by 1872 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1873 */ 1874 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1875 unsigned long node_map_pfn_alignment(void); 1876 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1877 unsigned long end_pfn); 1878 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1879 unsigned long end_pfn); 1880 extern void get_pfn_range_for_nid(unsigned int nid, 1881 unsigned long *start_pfn, unsigned long *end_pfn); 1882 extern unsigned long find_min_pfn_with_active_regions(void); 1883 extern void free_bootmem_with_active_regions(int nid, 1884 unsigned long max_low_pfn); 1885 extern void sparse_memory_present_with_active_regions(int nid); 1886 1887 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1888 1889 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1890 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1891 static inline int __early_pfn_to_nid(unsigned long pfn, 1892 struct mminit_pfnnid_cache *state) 1893 { 1894 return 0; 1895 } 1896 #else 1897 /* please see mm/page_alloc.c */ 1898 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1899 /* there is a per-arch backend function. */ 1900 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1901 struct mminit_pfnnid_cache *state); 1902 #endif 1903 1904 extern void set_dma_reserve(unsigned long new_dma_reserve); 1905 extern void memmap_init_zone(unsigned long, int, unsigned long, 1906 unsigned long, enum memmap_context); 1907 extern void setup_per_zone_wmarks(void); 1908 extern int __meminit init_per_zone_wmark_min(void); 1909 extern void mem_init(void); 1910 extern void __init mmap_init(void); 1911 extern void show_mem(unsigned int flags); 1912 extern long si_mem_available(void); 1913 extern void si_meminfo(struct sysinfo * val); 1914 extern void si_meminfo_node(struct sysinfo *val, int nid); 1915 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1916 extern unsigned long arch_reserved_kernel_pages(void); 1917 #endif 1918 1919 extern __printf(2, 3) 1920 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...); 1921 1922 extern void setup_per_cpu_pageset(void); 1923 1924 extern void zone_pcp_update(struct zone *zone); 1925 extern void zone_pcp_reset(struct zone *zone); 1926 1927 /* page_alloc.c */ 1928 extern int min_free_kbytes; 1929 extern int watermark_scale_factor; 1930 1931 /* nommu.c */ 1932 extern atomic_long_t mmap_pages_allocated; 1933 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1934 1935 /* interval_tree.c */ 1936 void vma_interval_tree_insert(struct vm_area_struct *node, 1937 struct rb_root *root); 1938 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1939 struct vm_area_struct *prev, 1940 struct rb_root *root); 1941 void vma_interval_tree_remove(struct vm_area_struct *node, 1942 struct rb_root *root); 1943 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1944 unsigned long start, unsigned long last); 1945 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1946 unsigned long start, unsigned long last); 1947 1948 #define vma_interval_tree_foreach(vma, root, start, last) \ 1949 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1950 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1951 1952 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1953 struct rb_root *root); 1954 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1955 struct rb_root *root); 1956 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1957 struct rb_root *root, unsigned long start, unsigned long last); 1958 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1959 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1960 #ifdef CONFIG_DEBUG_VM_RB 1961 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1962 #endif 1963 1964 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1965 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1966 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1967 1968 /* mmap.c */ 1969 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1970 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 1971 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 1972 struct vm_area_struct *expand); 1973 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1974 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 1975 { 1976 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 1977 } 1978 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1979 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1980 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1981 struct mempolicy *, struct vm_userfaultfd_ctx); 1982 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1983 extern int split_vma(struct mm_struct *, 1984 struct vm_area_struct *, unsigned long addr, int new_below); 1985 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1986 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1987 struct rb_node **, struct rb_node *); 1988 extern void unlink_file_vma(struct vm_area_struct *); 1989 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1990 unsigned long addr, unsigned long len, pgoff_t pgoff, 1991 bool *need_rmap_locks); 1992 extern void exit_mmap(struct mm_struct *); 1993 1994 static inline int check_data_rlimit(unsigned long rlim, 1995 unsigned long new, 1996 unsigned long start, 1997 unsigned long end_data, 1998 unsigned long start_data) 1999 { 2000 if (rlim < RLIM_INFINITY) { 2001 if (((new - start) + (end_data - start_data)) > rlim) 2002 return -ENOSPC; 2003 } 2004 2005 return 0; 2006 } 2007 2008 extern int mm_take_all_locks(struct mm_struct *mm); 2009 extern void mm_drop_all_locks(struct mm_struct *mm); 2010 2011 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2012 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2013 extern struct file *get_task_exe_file(struct task_struct *task); 2014 2015 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2016 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2017 2018 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2019 const struct vm_special_mapping *sm); 2020 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2021 unsigned long addr, unsigned long len, 2022 unsigned long flags, 2023 const struct vm_special_mapping *spec); 2024 /* This is an obsolete alternative to _install_special_mapping. */ 2025 extern int install_special_mapping(struct mm_struct *mm, 2026 unsigned long addr, unsigned long len, 2027 unsigned long flags, struct page **pages); 2028 2029 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2030 2031 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2032 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2033 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2034 unsigned long len, unsigned long prot, unsigned long flags, 2035 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2036 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2037 2038 static inline unsigned long 2039 do_mmap_pgoff(struct file *file, unsigned long addr, 2040 unsigned long len, unsigned long prot, unsigned long flags, 2041 unsigned long pgoff, unsigned long *populate) 2042 { 2043 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2044 } 2045 2046 #ifdef CONFIG_MMU 2047 extern int __mm_populate(unsigned long addr, unsigned long len, 2048 int ignore_errors); 2049 static inline void mm_populate(unsigned long addr, unsigned long len) 2050 { 2051 /* Ignore errors */ 2052 (void) __mm_populate(addr, len, 1); 2053 } 2054 #else 2055 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2056 #endif 2057 2058 /* These take the mm semaphore themselves */ 2059 extern int __must_check vm_brk(unsigned long, unsigned long); 2060 extern int vm_munmap(unsigned long, size_t); 2061 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2062 unsigned long, unsigned long, 2063 unsigned long, unsigned long); 2064 2065 struct vm_unmapped_area_info { 2066 #define VM_UNMAPPED_AREA_TOPDOWN 1 2067 unsigned long flags; 2068 unsigned long length; 2069 unsigned long low_limit; 2070 unsigned long high_limit; 2071 unsigned long align_mask; 2072 unsigned long align_offset; 2073 }; 2074 2075 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2076 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2077 2078 /* 2079 * Search for an unmapped address range. 2080 * 2081 * We are looking for a range that: 2082 * - does not intersect with any VMA; 2083 * - is contained within the [low_limit, high_limit) interval; 2084 * - is at least the desired size. 2085 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2086 */ 2087 static inline unsigned long 2088 vm_unmapped_area(struct vm_unmapped_area_info *info) 2089 { 2090 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2091 return unmapped_area_topdown(info); 2092 else 2093 return unmapped_area(info); 2094 } 2095 2096 /* truncate.c */ 2097 extern void truncate_inode_pages(struct address_space *, loff_t); 2098 extern void truncate_inode_pages_range(struct address_space *, 2099 loff_t lstart, loff_t lend); 2100 extern void truncate_inode_pages_final(struct address_space *); 2101 2102 /* generic vm_area_ops exported for stackable file systems */ 2103 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2104 extern void filemap_map_pages(struct fault_env *fe, 2105 pgoff_t start_pgoff, pgoff_t end_pgoff); 2106 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2107 2108 /* mm/page-writeback.c */ 2109 int write_one_page(struct page *page, int wait); 2110 void task_dirty_inc(struct task_struct *tsk); 2111 2112 /* readahead.c */ 2113 #define VM_MAX_READAHEAD 128 /* kbytes */ 2114 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2115 2116 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2117 pgoff_t offset, unsigned long nr_to_read); 2118 2119 void page_cache_sync_readahead(struct address_space *mapping, 2120 struct file_ra_state *ra, 2121 struct file *filp, 2122 pgoff_t offset, 2123 unsigned long size); 2124 2125 void page_cache_async_readahead(struct address_space *mapping, 2126 struct file_ra_state *ra, 2127 struct file *filp, 2128 struct page *pg, 2129 pgoff_t offset, 2130 unsigned long size); 2131 2132 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2133 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2134 2135 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2136 extern int expand_downwards(struct vm_area_struct *vma, 2137 unsigned long address); 2138 #if VM_GROWSUP 2139 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2140 #else 2141 #define expand_upwards(vma, address) (0) 2142 #endif 2143 2144 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2145 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2146 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2147 struct vm_area_struct **pprev); 2148 2149 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2150 NULL if none. Assume start_addr < end_addr. */ 2151 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2152 { 2153 struct vm_area_struct * vma = find_vma(mm,start_addr); 2154 2155 if (vma && end_addr <= vma->vm_start) 2156 vma = NULL; 2157 return vma; 2158 } 2159 2160 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2161 { 2162 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2163 } 2164 2165 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2166 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2167 unsigned long vm_start, unsigned long vm_end) 2168 { 2169 struct vm_area_struct *vma = find_vma(mm, vm_start); 2170 2171 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2172 vma = NULL; 2173 2174 return vma; 2175 } 2176 2177 #ifdef CONFIG_MMU 2178 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2179 void vma_set_page_prot(struct vm_area_struct *vma); 2180 #else 2181 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2182 { 2183 return __pgprot(0); 2184 } 2185 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2186 { 2187 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2188 } 2189 #endif 2190 2191 #ifdef CONFIG_NUMA_BALANCING 2192 unsigned long change_prot_numa(struct vm_area_struct *vma, 2193 unsigned long start, unsigned long end); 2194 #endif 2195 2196 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2197 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2198 unsigned long pfn, unsigned long size, pgprot_t); 2199 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2200 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2201 unsigned long pfn); 2202 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2203 unsigned long pfn, pgprot_t pgprot); 2204 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2205 pfn_t pfn); 2206 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2207 2208 2209 struct page *follow_page_mask(struct vm_area_struct *vma, 2210 unsigned long address, unsigned int foll_flags, 2211 unsigned int *page_mask); 2212 2213 static inline struct page *follow_page(struct vm_area_struct *vma, 2214 unsigned long address, unsigned int foll_flags) 2215 { 2216 unsigned int unused_page_mask; 2217 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2218 } 2219 2220 #define FOLL_WRITE 0x01 /* check pte is writable */ 2221 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2222 #define FOLL_GET 0x04 /* do get_page on page */ 2223 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2224 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2225 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2226 * and return without waiting upon it */ 2227 #define FOLL_POPULATE 0x40 /* fault in page */ 2228 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2229 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2230 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2231 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2232 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2233 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2234 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2235 2236 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2237 void *data); 2238 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2239 unsigned long size, pte_fn_t fn, void *data); 2240 2241 2242 #ifdef CONFIG_PAGE_POISONING 2243 extern bool page_poisoning_enabled(void); 2244 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2245 extern bool page_is_poisoned(struct page *page); 2246 #else 2247 static inline bool page_poisoning_enabled(void) { return false; } 2248 static inline void kernel_poison_pages(struct page *page, int numpages, 2249 int enable) { } 2250 static inline bool page_is_poisoned(struct page *page) { return false; } 2251 #endif 2252 2253 #ifdef CONFIG_DEBUG_PAGEALLOC 2254 extern bool _debug_pagealloc_enabled; 2255 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2256 2257 static inline bool debug_pagealloc_enabled(void) 2258 { 2259 return _debug_pagealloc_enabled; 2260 } 2261 2262 static inline void 2263 kernel_map_pages(struct page *page, int numpages, int enable) 2264 { 2265 if (!debug_pagealloc_enabled()) 2266 return; 2267 2268 __kernel_map_pages(page, numpages, enable); 2269 } 2270 #ifdef CONFIG_HIBERNATION 2271 extern bool kernel_page_present(struct page *page); 2272 #endif /* CONFIG_HIBERNATION */ 2273 #else /* CONFIG_DEBUG_PAGEALLOC */ 2274 static inline void 2275 kernel_map_pages(struct page *page, int numpages, int enable) {} 2276 #ifdef CONFIG_HIBERNATION 2277 static inline bool kernel_page_present(struct page *page) { return true; } 2278 #endif /* CONFIG_HIBERNATION */ 2279 static inline bool debug_pagealloc_enabled(void) 2280 { 2281 return false; 2282 } 2283 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2284 2285 #ifdef __HAVE_ARCH_GATE_AREA 2286 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2287 extern int in_gate_area_no_mm(unsigned long addr); 2288 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2289 #else 2290 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2291 { 2292 return NULL; 2293 } 2294 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2295 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2296 { 2297 return 0; 2298 } 2299 #endif /* __HAVE_ARCH_GATE_AREA */ 2300 2301 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2302 2303 #ifdef CONFIG_SYSCTL 2304 extern int sysctl_drop_caches; 2305 int drop_caches_sysctl_handler(struct ctl_table *, int, 2306 void __user *, size_t *, loff_t *); 2307 #endif 2308 2309 void drop_slab(void); 2310 void drop_slab_node(int nid); 2311 2312 #ifndef CONFIG_MMU 2313 #define randomize_va_space 0 2314 #else 2315 extern int randomize_va_space; 2316 #endif 2317 2318 const char * arch_vma_name(struct vm_area_struct *vma); 2319 void print_vma_addr(char *prefix, unsigned long rip); 2320 2321 void sparse_mem_maps_populate_node(struct page **map_map, 2322 unsigned long pnum_begin, 2323 unsigned long pnum_end, 2324 unsigned long map_count, 2325 int nodeid); 2326 2327 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2328 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2329 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2330 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2331 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2332 void *vmemmap_alloc_block(unsigned long size, int node); 2333 struct vmem_altmap; 2334 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2335 struct vmem_altmap *altmap); 2336 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2337 { 2338 return __vmemmap_alloc_block_buf(size, node, NULL); 2339 } 2340 2341 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2342 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2343 int node); 2344 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2345 void vmemmap_populate_print_last(void); 2346 #ifdef CONFIG_MEMORY_HOTPLUG 2347 void vmemmap_free(unsigned long start, unsigned long end); 2348 #endif 2349 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2350 unsigned long size); 2351 2352 enum mf_flags { 2353 MF_COUNT_INCREASED = 1 << 0, 2354 MF_ACTION_REQUIRED = 1 << 1, 2355 MF_MUST_KILL = 1 << 2, 2356 MF_SOFT_OFFLINE = 1 << 3, 2357 }; 2358 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2359 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2360 extern int unpoison_memory(unsigned long pfn); 2361 extern int get_hwpoison_page(struct page *page); 2362 #define put_hwpoison_page(page) put_page(page) 2363 extern int sysctl_memory_failure_early_kill; 2364 extern int sysctl_memory_failure_recovery; 2365 extern void shake_page(struct page *p, int access); 2366 extern atomic_long_t num_poisoned_pages; 2367 extern int soft_offline_page(struct page *page, int flags); 2368 2369 2370 /* 2371 * Error handlers for various types of pages. 2372 */ 2373 enum mf_result { 2374 MF_IGNORED, /* Error: cannot be handled */ 2375 MF_FAILED, /* Error: handling failed */ 2376 MF_DELAYED, /* Will be handled later */ 2377 MF_RECOVERED, /* Successfully recovered */ 2378 }; 2379 2380 enum mf_action_page_type { 2381 MF_MSG_KERNEL, 2382 MF_MSG_KERNEL_HIGH_ORDER, 2383 MF_MSG_SLAB, 2384 MF_MSG_DIFFERENT_COMPOUND, 2385 MF_MSG_POISONED_HUGE, 2386 MF_MSG_HUGE, 2387 MF_MSG_FREE_HUGE, 2388 MF_MSG_UNMAP_FAILED, 2389 MF_MSG_DIRTY_SWAPCACHE, 2390 MF_MSG_CLEAN_SWAPCACHE, 2391 MF_MSG_DIRTY_MLOCKED_LRU, 2392 MF_MSG_CLEAN_MLOCKED_LRU, 2393 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2394 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2395 MF_MSG_DIRTY_LRU, 2396 MF_MSG_CLEAN_LRU, 2397 MF_MSG_TRUNCATED_LRU, 2398 MF_MSG_BUDDY, 2399 MF_MSG_BUDDY_2ND, 2400 MF_MSG_UNKNOWN, 2401 }; 2402 2403 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2404 extern void clear_huge_page(struct page *page, 2405 unsigned long addr, 2406 unsigned int pages_per_huge_page); 2407 extern void copy_user_huge_page(struct page *dst, struct page *src, 2408 unsigned long addr, struct vm_area_struct *vma, 2409 unsigned int pages_per_huge_page); 2410 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2411 2412 extern struct page_ext_operations debug_guardpage_ops; 2413 extern struct page_ext_operations page_poisoning_ops; 2414 2415 #ifdef CONFIG_DEBUG_PAGEALLOC 2416 extern unsigned int _debug_guardpage_minorder; 2417 extern bool _debug_guardpage_enabled; 2418 2419 static inline unsigned int debug_guardpage_minorder(void) 2420 { 2421 return _debug_guardpage_minorder; 2422 } 2423 2424 static inline bool debug_guardpage_enabled(void) 2425 { 2426 return _debug_guardpage_enabled; 2427 } 2428 2429 static inline bool page_is_guard(struct page *page) 2430 { 2431 struct page_ext *page_ext; 2432 2433 if (!debug_guardpage_enabled()) 2434 return false; 2435 2436 page_ext = lookup_page_ext(page); 2437 if (unlikely(!page_ext)) 2438 return false; 2439 2440 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2441 } 2442 #else 2443 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2444 static inline bool debug_guardpage_enabled(void) { return false; } 2445 static inline bool page_is_guard(struct page *page) { return false; } 2446 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2447 2448 #if MAX_NUMNODES > 1 2449 void __init setup_nr_node_ids(void); 2450 #else 2451 static inline void setup_nr_node_ids(void) {} 2452 #endif 2453 2454 #endif /* __KERNEL__ */ 2455 #endif /* _LINUX_MM_H */ 2456