xref: /linux-6.15/include/linux/mm.h (revision 66cd9d4e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 
32 struct mempolicy;
33 struct anon_vma;
34 struct anon_vma_chain;
35 struct user_struct;
36 struct pt_regs;
37 
38 extern int sysctl_page_lock_unfairness;
39 
40 void init_mm_internals(void);
41 
42 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
43 extern unsigned long max_mapnr;
44 
45 static inline void set_max_mapnr(unsigned long limit)
46 {
47 	max_mapnr = limit;
48 }
49 #else
50 static inline void set_max_mapnr(unsigned long limit) { }
51 #endif
52 
53 extern atomic_long_t _totalram_pages;
54 static inline unsigned long totalram_pages(void)
55 {
56 	return (unsigned long)atomic_long_read(&_totalram_pages);
57 }
58 
59 static inline void totalram_pages_inc(void)
60 {
61 	atomic_long_inc(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_dec(void)
65 {
66 	atomic_long_dec(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_add(long count)
70 {
71 	atomic_long_add(count, &_totalram_pages);
72 }
73 
74 extern void * high_memory;
75 extern int page_cluster;
76 
77 #ifdef CONFIG_SYSCTL
78 extern int sysctl_legacy_va_layout;
79 #else
80 #define sysctl_legacy_va_layout 0
81 #endif
82 
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84 extern const int mmap_rnd_bits_min;
85 extern const int mmap_rnd_bits_max;
86 extern int mmap_rnd_bits __read_mostly;
87 #endif
88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89 extern const int mmap_rnd_compat_bits_min;
90 extern const int mmap_rnd_compat_bits_max;
91 extern int mmap_rnd_compat_bits __read_mostly;
92 #endif
93 
94 #include <asm/page.h>
95 #include <asm/processor.h>
96 
97 /*
98  * Architectures that support memory tagging (assigning tags to memory regions,
99  * embedding these tags into addresses that point to these memory regions, and
100  * checking that the memory and the pointer tags match on memory accesses)
101  * redefine this macro to strip tags from pointers.
102  * It's defined as noop for architectures that don't support memory tagging.
103  */
104 #ifndef untagged_addr
105 #define untagged_addr(addr) (addr)
106 #endif
107 
108 #ifndef __pa_symbol
109 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
110 #endif
111 
112 #ifndef page_to_virt
113 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
114 #endif
115 
116 #ifndef lm_alias
117 #define lm_alias(x)	__va(__pa_symbol(x))
118 #endif
119 
120 /*
121  * To prevent common memory management code establishing
122  * a zero page mapping on a read fault.
123  * This macro should be defined within <asm/pgtable.h>.
124  * s390 does this to prevent multiplexing of hardware bits
125  * related to the physical page in case of virtualization.
126  */
127 #ifndef mm_forbids_zeropage
128 #define mm_forbids_zeropage(X)	(0)
129 #endif
130 
131 /*
132  * On some architectures it is expensive to call memset() for small sizes.
133  * If an architecture decides to implement their own version of
134  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135  * define their own version of this macro in <asm/pgtable.h>
136  */
137 #if BITS_PER_LONG == 64
138 /* This function must be updated when the size of struct page grows above 80
139  * or reduces below 56. The idea that compiler optimizes out switch()
140  * statement, and only leaves move/store instructions. Also the compiler can
141  * combine write statements if they are both assignments and can be reordered,
142  * this can result in several of the writes here being dropped.
143  */
144 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145 static inline void __mm_zero_struct_page(struct page *page)
146 {
147 	unsigned long *_pp = (void *)page;
148 
149 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 	BUILD_BUG_ON(sizeof(struct page) & 7);
151 	BUILD_BUG_ON(sizeof(struct page) < 56);
152 	BUILD_BUG_ON(sizeof(struct page) > 80);
153 
154 	switch (sizeof(struct page)) {
155 	case 80:
156 		_pp[9] = 0;
157 		fallthrough;
158 	case 72:
159 		_pp[8] = 0;
160 		fallthrough;
161 	case 64:
162 		_pp[7] = 0;
163 		fallthrough;
164 	case 56:
165 		_pp[6] = 0;
166 		_pp[5] = 0;
167 		_pp[4] = 0;
168 		_pp[3] = 0;
169 		_pp[2] = 0;
170 		_pp[1] = 0;
171 		_pp[0] = 0;
172 	}
173 }
174 #else
175 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
176 #endif
177 
178 /*
179  * Default maximum number of active map areas, this limits the number of vmas
180  * per mm struct. Users can overwrite this number by sysctl but there is a
181  * problem.
182  *
183  * When a program's coredump is generated as ELF format, a section is created
184  * per a vma. In ELF, the number of sections is represented in unsigned short.
185  * This means the number of sections should be smaller than 65535 at coredump.
186  * Because the kernel adds some informative sections to a image of program at
187  * generating coredump, we need some margin. The number of extra sections is
188  * 1-3 now and depends on arch. We use "5" as safe margin, here.
189  *
190  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191  * not a hard limit any more. Although some userspace tools can be surprised by
192  * that.
193  */
194 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
195 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196 
197 extern int sysctl_max_map_count;
198 
199 extern unsigned long sysctl_user_reserve_kbytes;
200 extern unsigned long sysctl_admin_reserve_kbytes;
201 
202 extern int sysctl_overcommit_memory;
203 extern int sysctl_overcommit_ratio;
204 extern unsigned long sysctl_overcommit_kbytes;
205 
206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 		loff_t *);
208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
216 #else
217 #define nth_page(page,n) ((page) + (n))
218 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
219 #endif
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226 
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228 static inline struct folio *lru_to_folio(struct list_head *head)
229 {
230 	return list_entry((head)->prev, struct folio, lru);
231 }
232 
233 void setup_initial_init_mm(void *start_code, void *end_code,
234 			   void *end_data, void *brk);
235 
236 /*
237  * Linux kernel virtual memory manager primitives.
238  * The idea being to have a "virtual" mm in the same way
239  * we have a virtual fs - giving a cleaner interface to the
240  * mm details, and allowing different kinds of memory mappings
241  * (from shared memory to executable loading to arbitrary
242  * mmap() functions).
243  */
244 
245 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
246 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
247 void vm_area_free(struct vm_area_struct *);
248 
249 #ifndef CONFIG_MMU
250 extern struct rb_root nommu_region_tree;
251 extern struct rw_semaphore nommu_region_sem;
252 
253 extern unsigned int kobjsize(const void *objp);
254 #endif
255 
256 /*
257  * vm_flags in vm_area_struct, see mm_types.h.
258  * When changing, update also include/trace/events/mmflags.h
259  */
260 #define VM_NONE		0x00000000
261 
262 #define VM_READ		0x00000001	/* currently active flags */
263 #define VM_WRITE	0x00000002
264 #define VM_EXEC		0x00000004
265 #define VM_SHARED	0x00000008
266 
267 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
268 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
269 #define VM_MAYWRITE	0x00000020
270 #define VM_MAYEXEC	0x00000040
271 #define VM_MAYSHARE	0x00000080
272 
273 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
274 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
275 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
276 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
277 
278 #define VM_LOCKED	0x00002000
279 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
280 
281 					/* Used by sys_madvise() */
282 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
283 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
284 
285 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
286 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
287 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
288 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
289 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
290 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
291 #define VM_SYNC		0x00800000	/* Synchronous page faults */
292 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
293 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
294 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
295 
296 #ifdef CONFIG_MEM_SOFT_DIRTY
297 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
298 #else
299 # define VM_SOFTDIRTY	0
300 #endif
301 
302 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
303 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
304 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
305 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
306 
307 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
308 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
312 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
314 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
315 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
316 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
317 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
318 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
319 
320 #ifdef CONFIG_ARCH_HAS_PKEYS
321 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
322 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
323 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
324 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
325 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
326 #ifdef CONFIG_PPC
327 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
328 #else
329 # define VM_PKEY_BIT4  0
330 #endif
331 #endif /* CONFIG_ARCH_HAS_PKEYS */
332 
333 #if defined(CONFIG_X86)
334 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
335 #elif defined(CONFIG_PPC)
336 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
337 #elif defined(CONFIG_PARISC)
338 # define VM_GROWSUP	VM_ARCH_1
339 #elif defined(CONFIG_IA64)
340 # define VM_GROWSUP	VM_ARCH_1
341 #elif defined(CONFIG_SPARC64)
342 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
343 # define VM_ARCH_CLEAR	VM_SPARC_ADI
344 #elif defined(CONFIG_ARM64)
345 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
346 # define VM_ARCH_CLEAR	VM_ARM64_BTI
347 #elif !defined(CONFIG_MMU)
348 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
349 #endif
350 
351 #if defined(CONFIG_ARM64_MTE)
352 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
353 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
354 #else
355 # define VM_MTE		VM_NONE
356 # define VM_MTE_ALLOWED	VM_NONE
357 #endif
358 
359 #ifndef VM_GROWSUP
360 # define VM_GROWSUP	VM_NONE
361 #endif
362 
363 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
364 # define VM_UFFD_MINOR_BIT	37
365 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
366 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367 # define VM_UFFD_MINOR		VM_NONE
368 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
369 
370 /* Bits set in the VMA until the stack is in its final location */
371 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
372 
373 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
374 
375 /* Common data flag combinations */
376 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
377 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
379 				 VM_MAYWRITE | VM_MAYEXEC)
380 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
381 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382 
383 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
384 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
385 #endif
386 
387 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
388 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
389 #endif
390 
391 #ifdef CONFIG_STACK_GROWSUP
392 #define VM_STACK	VM_GROWSUP
393 #else
394 #define VM_STACK	VM_GROWSDOWN
395 #endif
396 
397 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
398 
399 /* VMA basic access permission flags */
400 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
401 
402 
403 /*
404  * Special vmas that are non-mergable, non-mlock()able.
405  */
406 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
407 
408 /* This mask prevents VMA from being scanned with khugepaged */
409 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
410 
411 /* This mask defines which mm->def_flags a process can inherit its parent */
412 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
413 
414 /* This mask is used to clear all the VMA flags used by mlock */
415 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
416 
417 /* Arch-specific flags to clear when updating VM flags on protection change */
418 #ifndef VM_ARCH_CLEAR
419 # define VM_ARCH_CLEAR	VM_NONE
420 #endif
421 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
422 
423 /*
424  * mapping from the currently active vm_flags protection bits (the
425  * low four bits) to a page protection mask..
426  */
427 extern pgprot_t protection_map[16];
428 
429 /*
430  * The default fault flags that should be used by most of the
431  * arch-specific page fault handlers.
432  */
433 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
434 			     FAULT_FLAG_KILLABLE | \
435 			     FAULT_FLAG_INTERRUPTIBLE)
436 
437 /**
438  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
439  * @flags: Fault flags.
440  *
441  * This is mostly used for places where we want to try to avoid taking
442  * the mmap_lock for too long a time when waiting for another condition
443  * to change, in which case we can try to be polite to release the
444  * mmap_lock in the first round to avoid potential starvation of other
445  * processes that would also want the mmap_lock.
446  *
447  * Return: true if the page fault allows retry and this is the first
448  * attempt of the fault handling; false otherwise.
449  */
450 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
451 {
452 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
453 	    (!(flags & FAULT_FLAG_TRIED));
454 }
455 
456 #define FAULT_FLAG_TRACE \
457 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
458 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
459 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
460 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
461 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
462 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
463 	{ FAULT_FLAG_USER,		"USER" }, \
464 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
465 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
466 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
467 
468 /*
469  * vm_fault is filled by the pagefault handler and passed to the vma's
470  * ->fault function. The vma's ->fault is responsible for returning a bitmask
471  * of VM_FAULT_xxx flags that give details about how the fault was handled.
472  *
473  * MM layer fills up gfp_mask for page allocations but fault handler might
474  * alter it if its implementation requires a different allocation context.
475  *
476  * pgoff should be used in favour of virtual_address, if possible.
477  */
478 struct vm_fault {
479 	const struct {
480 		struct vm_area_struct *vma;	/* Target VMA */
481 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
482 		pgoff_t pgoff;			/* Logical page offset based on vma */
483 		unsigned long address;		/* Faulting virtual address - masked */
484 		unsigned long real_address;	/* Faulting virtual address - unmasked */
485 	};
486 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
487 					 * XXX: should really be 'const' */
488 	pmd_t *pmd;			/* Pointer to pmd entry matching
489 					 * the 'address' */
490 	pud_t *pud;			/* Pointer to pud entry matching
491 					 * the 'address'
492 					 */
493 	union {
494 		pte_t orig_pte;		/* Value of PTE at the time of fault */
495 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
496 					 * used by PMD fault only.
497 					 */
498 	};
499 
500 	struct page *cow_page;		/* Page handler may use for COW fault */
501 	struct page *page;		/* ->fault handlers should return a
502 					 * page here, unless VM_FAULT_NOPAGE
503 					 * is set (which is also implied by
504 					 * VM_FAULT_ERROR).
505 					 */
506 	/* These three entries are valid only while holding ptl lock */
507 	pte_t *pte;			/* Pointer to pte entry matching
508 					 * the 'address'. NULL if the page
509 					 * table hasn't been allocated.
510 					 */
511 	spinlock_t *ptl;		/* Page table lock.
512 					 * Protects pte page table if 'pte'
513 					 * is not NULL, otherwise pmd.
514 					 */
515 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
516 					 * vm_ops->map_pages() sets up a page
517 					 * table from atomic context.
518 					 * do_fault_around() pre-allocates
519 					 * page table to avoid allocation from
520 					 * atomic context.
521 					 */
522 };
523 
524 /* page entry size for vm->huge_fault() */
525 enum page_entry_size {
526 	PE_SIZE_PTE = 0,
527 	PE_SIZE_PMD,
528 	PE_SIZE_PUD,
529 };
530 
531 /*
532  * These are the virtual MM functions - opening of an area, closing and
533  * unmapping it (needed to keep files on disk up-to-date etc), pointer
534  * to the functions called when a no-page or a wp-page exception occurs.
535  */
536 struct vm_operations_struct {
537 	void (*open)(struct vm_area_struct * area);
538 	/**
539 	 * @close: Called when the VMA is being removed from the MM.
540 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
541 	 */
542 	void (*close)(struct vm_area_struct * area);
543 	/* Called any time before splitting to check if it's allowed */
544 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
545 	int (*mremap)(struct vm_area_struct *area);
546 	/*
547 	 * Called by mprotect() to make driver-specific permission
548 	 * checks before mprotect() is finalised.   The VMA must not
549 	 * be modified.  Returns 0 if eprotect() can proceed.
550 	 */
551 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
552 			unsigned long end, unsigned long newflags);
553 	vm_fault_t (*fault)(struct vm_fault *vmf);
554 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
555 			enum page_entry_size pe_size);
556 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
557 			pgoff_t start_pgoff, pgoff_t end_pgoff);
558 	unsigned long (*pagesize)(struct vm_area_struct * area);
559 
560 	/* notification that a previously read-only page is about to become
561 	 * writable, if an error is returned it will cause a SIGBUS */
562 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
563 
564 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
565 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
566 
567 	/* called by access_process_vm when get_user_pages() fails, typically
568 	 * for use by special VMAs. See also generic_access_phys() for a generic
569 	 * implementation useful for any iomem mapping.
570 	 */
571 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
572 		      void *buf, int len, int write);
573 
574 	/* Called by the /proc/PID/maps code to ask the vma whether it
575 	 * has a special name.  Returning non-NULL will also cause this
576 	 * vma to be dumped unconditionally. */
577 	const char *(*name)(struct vm_area_struct *vma);
578 
579 #ifdef CONFIG_NUMA
580 	/*
581 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
582 	 * to hold the policy upon return.  Caller should pass NULL @new to
583 	 * remove a policy and fall back to surrounding context--i.e. do not
584 	 * install a MPOL_DEFAULT policy, nor the task or system default
585 	 * mempolicy.
586 	 */
587 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
588 
589 	/*
590 	 * get_policy() op must add reference [mpol_get()] to any policy at
591 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
592 	 * in mm/mempolicy.c will do this automatically.
593 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
594 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
595 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
596 	 * must return NULL--i.e., do not "fallback" to task or system default
597 	 * policy.
598 	 */
599 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
600 					unsigned long addr);
601 #endif
602 	/*
603 	 * Called by vm_normal_page() for special PTEs to find the
604 	 * page for @addr.  This is useful if the default behavior
605 	 * (using pte_page()) would not find the correct page.
606 	 */
607 	struct page *(*find_special_page)(struct vm_area_struct *vma,
608 					  unsigned long addr);
609 };
610 
611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
612 {
613 	static const struct vm_operations_struct dummy_vm_ops = {};
614 
615 	memset(vma, 0, sizeof(*vma));
616 	vma->vm_mm = mm;
617 	vma->vm_ops = &dummy_vm_ops;
618 	INIT_LIST_HEAD(&vma->anon_vma_chain);
619 }
620 
621 static inline void vma_set_anonymous(struct vm_area_struct *vma)
622 {
623 	vma->vm_ops = NULL;
624 }
625 
626 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
627 {
628 	return !vma->vm_ops;
629 }
630 
631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
632 {
633 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
634 
635 	if (!maybe_stack)
636 		return false;
637 
638 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
639 						VM_STACK_INCOMPLETE_SETUP)
640 		return true;
641 
642 	return false;
643 }
644 
645 static inline bool vma_is_foreign(struct vm_area_struct *vma)
646 {
647 	if (!current->mm)
648 		return true;
649 
650 	if (current->mm != vma->vm_mm)
651 		return true;
652 
653 	return false;
654 }
655 
656 static inline bool vma_is_accessible(struct vm_area_struct *vma)
657 {
658 	return vma->vm_flags & VM_ACCESS_FLAGS;
659 }
660 
661 #ifdef CONFIG_SHMEM
662 /*
663  * The vma_is_shmem is not inline because it is used only by slow
664  * paths in userfault.
665  */
666 bool vma_is_shmem(struct vm_area_struct *vma);
667 #else
668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
669 #endif
670 
671 int vma_is_stack_for_current(struct vm_area_struct *vma);
672 
673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
675 
676 struct mmu_gather;
677 struct inode;
678 
679 static inline unsigned int compound_order(struct page *page)
680 {
681 	if (!PageHead(page))
682 		return 0;
683 	return page[1].compound_order;
684 }
685 
686 /**
687  * folio_order - The allocation order of a folio.
688  * @folio: The folio.
689  *
690  * A folio is composed of 2^order pages.  See get_order() for the definition
691  * of order.
692  *
693  * Return: The order of the folio.
694  */
695 static inline unsigned int folio_order(struct folio *folio)
696 {
697 	return compound_order(&folio->page);
698 }
699 
700 #include <linux/huge_mm.h>
701 
702 /*
703  * Methods to modify the page usage count.
704  *
705  * What counts for a page usage:
706  * - cache mapping   (page->mapping)
707  * - private data    (page->private)
708  * - page mapped in a task's page tables, each mapping
709  *   is counted separately
710  *
711  * Also, many kernel routines increase the page count before a critical
712  * routine so they can be sure the page doesn't go away from under them.
713  */
714 
715 /*
716  * Drop a ref, return true if the refcount fell to zero (the page has no users)
717  */
718 static inline int put_page_testzero(struct page *page)
719 {
720 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
721 	return page_ref_dec_and_test(page);
722 }
723 
724 static inline int folio_put_testzero(struct folio *folio)
725 {
726 	return put_page_testzero(&folio->page);
727 }
728 
729 /*
730  * Try to grab a ref unless the page has a refcount of zero, return false if
731  * that is the case.
732  * This can be called when MMU is off so it must not access
733  * any of the virtual mappings.
734  */
735 static inline bool get_page_unless_zero(struct page *page)
736 {
737 	return page_ref_add_unless(page, 1, 0);
738 }
739 
740 extern int page_is_ram(unsigned long pfn);
741 
742 enum {
743 	REGION_INTERSECTS,
744 	REGION_DISJOINT,
745 	REGION_MIXED,
746 };
747 
748 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
749 		      unsigned long desc);
750 
751 /* Support for virtually mapped pages */
752 struct page *vmalloc_to_page(const void *addr);
753 unsigned long vmalloc_to_pfn(const void *addr);
754 
755 /*
756  * Determine if an address is within the vmalloc range
757  *
758  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
759  * is no special casing required.
760  */
761 
762 #ifndef is_ioremap_addr
763 #define is_ioremap_addr(x) is_vmalloc_addr(x)
764 #endif
765 
766 #ifdef CONFIG_MMU
767 extern bool is_vmalloc_addr(const void *x);
768 extern int is_vmalloc_or_module_addr(const void *x);
769 #else
770 static inline bool is_vmalloc_addr(const void *x)
771 {
772 	return false;
773 }
774 static inline int is_vmalloc_or_module_addr(const void *x)
775 {
776 	return 0;
777 }
778 #endif
779 
780 /*
781  * How many times the entire folio is mapped as a single unit (eg by a
782  * PMD or PUD entry).  This is probably not what you want, except for
783  * debugging purposes; look at folio_mapcount() or page_mapcount()
784  * instead.
785  */
786 static inline int folio_entire_mapcount(struct folio *folio)
787 {
788 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
789 	return atomic_read(folio_mapcount_ptr(folio)) + 1;
790 }
791 
792 /*
793  * Mapcount of compound page as a whole, does not include mapped sub-pages.
794  *
795  * Must be called only for compound pages.
796  */
797 static inline int compound_mapcount(struct page *page)
798 {
799 	return folio_entire_mapcount(page_folio(page));
800 }
801 
802 /*
803  * The atomic page->_mapcount, starts from -1: so that transitions
804  * both from it and to it can be tracked, using atomic_inc_and_test
805  * and atomic_add_negative(-1).
806  */
807 static inline void page_mapcount_reset(struct page *page)
808 {
809 	atomic_set(&(page)->_mapcount, -1);
810 }
811 
812 int __page_mapcount(struct page *page);
813 
814 /*
815  * Mapcount of 0-order page; when compound sub-page, includes
816  * compound_mapcount().
817  *
818  * Result is undefined for pages which cannot be mapped into userspace.
819  * For example SLAB or special types of pages. See function page_has_type().
820  * They use this place in struct page differently.
821  */
822 static inline int page_mapcount(struct page *page)
823 {
824 	if (unlikely(PageCompound(page)))
825 		return __page_mapcount(page);
826 	return atomic_read(&page->_mapcount) + 1;
827 }
828 
829 int folio_mapcount(struct folio *folio);
830 
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
832 static inline int total_mapcount(struct page *page)
833 {
834 	return folio_mapcount(page_folio(page));
835 }
836 
837 #else
838 static inline int total_mapcount(struct page *page)
839 {
840 	return page_mapcount(page);
841 }
842 #endif
843 
844 static inline struct page *virt_to_head_page(const void *x)
845 {
846 	struct page *page = virt_to_page(x);
847 
848 	return compound_head(page);
849 }
850 
851 static inline struct folio *virt_to_folio(const void *x)
852 {
853 	struct page *page = virt_to_page(x);
854 
855 	return page_folio(page);
856 }
857 
858 void __put_page(struct page *page);
859 
860 void put_pages_list(struct list_head *pages);
861 
862 void split_page(struct page *page, unsigned int order);
863 void folio_copy(struct folio *dst, struct folio *src);
864 
865 unsigned long nr_free_buffer_pages(void);
866 
867 /*
868  * Compound pages have a destructor function.  Provide a
869  * prototype for that function and accessor functions.
870  * These are _only_ valid on the head of a compound page.
871  */
872 typedef void compound_page_dtor(struct page *);
873 
874 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
875 enum compound_dtor_id {
876 	NULL_COMPOUND_DTOR,
877 	COMPOUND_PAGE_DTOR,
878 #ifdef CONFIG_HUGETLB_PAGE
879 	HUGETLB_PAGE_DTOR,
880 #endif
881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
882 	TRANSHUGE_PAGE_DTOR,
883 #endif
884 	NR_COMPOUND_DTORS,
885 };
886 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
887 
888 static inline void set_compound_page_dtor(struct page *page,
889 		enum compound_dtor_id compound_dtor)
890 {
891 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
892 	page[1].compound_dtor = compound_dtor;
893 }
894 
895 static inline void destroy_compound_page(struct page *page)
896 {
897 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
898 	compound_page_dtors[page[1].compound_dtor](page);
899 }
900 
901 static inline int head_compound_pincount(struct page *head)
902 {
903 	return atomic_read(compound_pincount_ptr(head));
904 }
905 
906 static inline void set_compound_order(struct page *page, unsigned int order)
907 {
908 	page[1].compound_order = order;
909 #ifdef CONFIG_64BIT
910 	page[1].compound_nr = 1U << order;
911 #endif
912 }
913 
914 /* Returns the number of pages in this potentially compound page. */
915 static inline unsigned long compound_nr(struct page *page)
916 {
917 	if (!PageHead(page))
918 		return 1;
919 #ifdef CONFIG_64BIT
920 	return page[1].compound_nr;
921 #else
922 	return 1UL << compound_order(page);
923 #endif
924 }
925 
926 /* Returns the number of bytes in this potentially compound page. */
927 static inline unsigned long page_size(struct page *page)
928 {
929 	return PAGE_SIZE << compound_order(page);
930 }
931 
932 /* Returns the number of bits needed for the number of bytes in a page */
933 static inline unsigned int page_shift(struct page *page)
934 {
935 	return PAGE_SHIFT + compound_order(page);
936 }
937 
938 /**
939  * thp_order - Order of a transparent huge page.
940  * @page: Head page of a transparent huge page.
941  */
942 static inline unsigned int thp_order(struct page *page)
943 {
944 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
945 	return compound_order(page);
946 }
947 
948 /**
949  * thp_nr_pages - The number of regular pages in this huge page.
950  * @page: The head page of a huge page.
951  */
952 static inline int thp_nr_pages(struct page *page)
953 {
954 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
955 	return compound_nr(page);
956 }
957 
958 /**
959  * thp_size - Size of a transparent huge page.
960  * @page: Head page of a transparent huge page.
961  *
962  * Return: Number of bytes in this page.
963  */
964 static inline unsigned long thp_size(struct page *page)
965 {
966 	return PAGE_SIZE << thp_order(page);
967 }
968 
969 void free_compound_page(struct page *page);
970 
971 #ifdef CONFIG_MMU
972 /*
973  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
974  * servicing faults for write access.  In the normal case, do always want
975  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
976  * that do not have writing enabled, when used by access_process_vm.
977  */
978 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
979 {
980 	if (likely(vma->vm_flags & VM_WRITE))
981 		pte = pte_mkwrite(pte);
982 	return pte;
983 }
984 
985 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
986 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
987 
988 vm_fault_t finish_fault(struct vm_fault *vmf);
989 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
990 #endif
991 
992 /*
993  * Multiple processes may "see" the same page. E.g. for untouched
994  * mappings of /dev/null, all processes see the same page full of
995  * zeroes, and text pages of executables and shared libraries have
996  * only one copy in memory, at most, normally.
997  *
998  * For the non-reserved pages, page_count(page) denotes a reference count.
999  *   page_count() == 0 means the page is free. page->lru is then used for
1000  *   freelist management in the buddy allocator.
1001  *   page_count() > 0  means the page has been allocated.
1002  *
1003  * Pages are allocated by the slab allocator in order to provide memory
1004  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1005  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1006  * unless a particular usage is carefully commented. (the responsibility of
1007  * freeing the kmalloc memory is the caller's, of course).
1008  *
1009  * A page may be used by anyone else who does a __get_free_page().
1010  * In this case, page_count still tracks the references, and should only
1011  * be used through the normal accessor functions. The top bits of page->flags
1012  * and page->virtual store page management information, but all other fields
1013  * are unused and could be used privately, carefully. The management of this
1014  * page is the responsibility of the one who allocated it, and those who have
1015  * subsequently been given references to it.
1016  *
1017  * The other pages (we may call them "pagecache pages") are completely
1018  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1019  * The following discussion applies only to them.
1020  *
1021  * A pagecache page contains an opaque `private' member, which belongs to the
1022  * page's address_space. Usually, this is the address of a circular list of
1023  * the page's disk buffers. PG_private must be set to tell the VM to call
1024  * into the filesystem to release these pages.
1025  *
1026  * A page may belong to an inode's memory mapping. In this case, page->mapping
1027  * is the pointer to the inode, and page->index is the file offset of the page,
1028  * in units of PAGE_SIZE.
1029  *
1030  * If pagecache pages are not associated with an inode, they are said to be
1031  * anonymous pages. These may become associated with the swapcache, and in that
1032  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1033  *
1034  * In either case (swapcache or inode backed), the pagecache itself holds one
1035  * reference to the page. Setting PG_private should also increment the
1036  * refcount. The each user mapping also has a reference to the page.
1037  *
1038  * The pagecache pages are stored in a per-mapping radix tree, which is
1039  * rooted at mapping->i_pages, and indexed by offset.
1040  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1041  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1042  *
1043  * All pagecache pages may be subject to I/O:
1044  * - inode pages may need to be read from disk,
1045  * - inode pages which have been modified and are MAP_SHARED may need
1046  *   to be written back to the inode on disk,
1047  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1048  *   modified may need to be swapped out to swap space and (later) to be read
1049  *   back into memory.
1050  */
1051 
1052 /*
1053  * The zone field is never updated after free_area_init_core()
1054  * sets it, so none of the operations on it need to be atomic.
1055  */
1056 
1057 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1058 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1059 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1060 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1061 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1062 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1063 
1064 /*
1065  * Define the bit shifts to access each section.  For non-existent
1066  * sections we define the shift as 0; that plus a 0 mask ensures
1067  * the compiler will optimise away reference to them.
1068  */
1069 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1070 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1071 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1072 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1073 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1074 
1075 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1076 #ifdef NODE_NOT_IN_PAGE_FLAGS
1077 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1078 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1079 						SECTIONS_PGOFF : ZONES_PGOFF)
1080 #else
1081 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1082 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1083 						NODES_PGOFF : ZONES_PGOFF)
1084 #endif
1085 
1086 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1087 
1088 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1089 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1090 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1091 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1092 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1093 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1094 
1095 static inline enum zone_type page_zonenum(const struct page *page)
1096 {
1097 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1098 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1099 }
1100 
1101 static inline enum zone_type folio_zonenum(const struct folio *folio)
1102 {
1103 	return page_zonenum(&folio->page);
1104 }
1105 
1106 #ifdef CONFIG_ZONE_DEVICE
1107 static inline bool is_zone_device_page(const struct page *page)
1108 {
1109 	return page_zonenum(page) == ZONE_DEVICE;
1110 }
1111 extern void memmap_init_zone_device(struct zone *, unsigned long,
1112 				    unsigned long, struct dev_pagemap *);
1113 #else
1114 static inline bool is_zone_device_page(const struct page *page)
1115 {
1116 	return false;
1117 }
1118 #endif
1119 
1120 static inline bool folio_is_zone_device(const struct folio *folio)
1121 {
1122 	return is_zone_device_page(&folio->page);
1123 }
1124 
1125 static inline bool is_zone_movable_page(const struct page *page)
1126 {
1127 	return page_zonenum(page) == ZONE_MOVABLE;
1128 }
1129 
1130 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1131 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1132 
1133 bool __put_devmap_managed_page(struct page *page);
1134 static inline bool put_devmap_managed_page(struct page *page)
1135 {
1136 	if (!static_branch_unlikely(&devmap_managed_key))
1137 		return false;
1138 	if (!is_zone_device_page(page))
1139 		return false;
1140 	return __put_devmap_managed_page(page);
1141 }
1142 
1143 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1144 static inline bool put_devmap_managed_page(struct page *page)
1145 {
1146 	return false;
1147 }
1148 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1149 
1150 /* 127: arbitrary random number, small enough to assemble well */
1151 #define folio_ref_zero_or_close_to_overflow(folio) \
1152 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1153 
1154 /**
1155  * folio_get - Increment the reference count on a folio.
1156  * @folio: The folio.
1157  *
1158  * Context: May be called in any context, as long as you know that
1159  * you have a refcount on the folio.  If you do not already have one,
1160  * folio_try_get() may be the right interface for you to use.
1161  */
1162 static inline void folio_get(struct folio *folio)
1163 {
1164 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1165 	folio_ref_inc(folio);
1166 }
1167 
1168 static inline void get_page(struct page *page)
1169 {
1170 	folio_get(page_folio(page));
1171 }
1172 
1173 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1174 
1175 static inline __must_check bool try_get_page(struct page *page)
1176 {
1177 	page = compound_head(page);
1178 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1179 		return false;
1180 	page_ref_inc(page);
1181 	return true;
1182 }
1183 
1184 /**
1185  * folio_put - Decrement the reference count on a folio.
1186  * @folio: The folio.
1187  *
1188  * If the folio's reference count reaches zero, the memory will be
1189  * released back to the page allocator and may be used by another
1190  * allocation immediately.  Do not access the memory or the struct folio
1191  * after calling folio_put() unless you can be sure that it wasn't the
1192  * last reference.
1193  *
1194  * Context: May be called in process or interrupt context, but not in NMI
1195  * context.  May be called while holding a spinlock.
1196  */
1197 static inline void folio_put(struct folio *folio)
1198 {
1199 	if (folio_put_testzero(folio))
1200 		__put_page(&folio->page);
1201 }
1202 
1203 /**
1204  * folio_put_refs - Reduce the reference count on a folio.
1205  * @folio: The folio.
1206  * @refs: The amount to subtract from the folio's reference count.
1207  *
1208  * If the folio's reference count reaches zero, the memory will be
1209  * released back to the page allocator and may be used by another
1210  * allocation immediately.  Do not access the memory or the struct folio
1211  * after calling folio_put_refs() unless you can be sure that these weren't
1212  * the last references.
1213  *
1214  * Context: May be called in process or interrupt context, but not in NMI
1215  * context.  May be called while holding a spinlock.
1216  */
1217 static inline void folio_put_refs(struct folio *folio, int refs)
1218 {
1219 	if (folio_ref_sub_and_test(folio, refs))
1220 		__put_page(&folio->page);
1221 }
1222 
1223 static inline void put_page(struct page *page)
1224 {
1225 	struct folio *folio = page_folio(page);
1226 
1227 	/*
1228 	 * For some devmap managed pages we need to catch refcount transition
1229 	 * from 2 to 1:
1230 	 */
1231 	if (put_devmap_managed_page(&folio->page))
1232 		return;
1233 	folio_put(folio);
1234 }
1235 
1236 /*
1237  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1238  * the page's refcount so that two separate items are tracked: the original page
1239  * reference count, and also a new count of how many pin_user_pages() calls were
1240  * made against the page. ("gup-pinned" is another term for the latter).
1241  *
1242  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1243  * distinct from normal pages. As such, the unpin_user_page() call (and its
1244  * variants) must be used in order to release gup-pinned pages.
1245  *
1246  * Choice of value:
1247  *
1248  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1249  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1250  * simpler, due to the fact that adding an even power of two to the page
1251  * refcount has the effect of using only the upper N bits, for the code that
1252  * counts up using the bias value. This means that the lower bits are left for
1253  * the exclusive use of the original code that increments and decrements by one
1254  * (or at least, by much smaller values than the bias value).
1255  *
1256  * Of course, once the lower bits overflow into the upper bits (and this is
1257  * OK, because subtraction recovers the original values), then visual inspection
1258  * no longer suffices to directly view the separate counts. However, for normal
1259  * applications that don't have huge page reference counts, this won't be an
1260  * issue.
1261  *
1262  * Locking: the lockless algorithm described in folio_try_get_rcu()
1263  * provides safe operation for get_user_pages(), page_mkclean() and
1264  * other calls that race to set up page table entries.
1265  */
1266 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1267 
1268 void unpin_user_page(struct page *page);
1269 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1270 				 bool make_dirty);
1271 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1272 				      bool make_dirty);
1273 void unpin_user_pages(struct page **pages, unsigned long npages);
1274 
1275 static inline bool is_cow_mapping(vm_flags_t flags)
1276 {
1277 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1278 }
1279 
1280 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1281 #define SECTION_IN_PAGE_FLAGS
1282 #endif
1283 
1284 /*
1285  * The identification function is mainly used by the buddy allocator for
1286  * determining if two pages could be buddies. We are not really identifying
1287  * the zone since we could be using the section number id if we do not have
1288  * node id available in page flags.
1289  * We only guarantee that it will return the same value for two combinable
1290  * pages in a zone.
1291  */
1292 static inline int page_zone_id(struct page *page)
1293 {
1294 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1295 }
1296 
1297 #ifdef NODE_NOT_IN_PAGE_FLAGS
1298 extern int page_to_nid(const struct page *page);
1299 #else
1300 static inline int page_to_nid(const struct page *page)
1301 {
1302 	struct page *p = (struct page *)page;
1303 
1304 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1305 }
1306 #endif
1307 
1308 static inline int folio_nid(const struct folio *folio)
1309 {
1310 	return page_to_nid(&folio->page);
1311 }
1312 
1313 #ifdef CONFIG_NUMA_BALANCING
1314 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1315 {
1316 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1317 }
1318 
1319 static inline int cpupid_to_pid(int cpupid)
1320 {
1321 	return cpupid & LAST__PID_MASK;
1322 }
1323 
1324 static inline int cpupid_to_cpu(int cpupid)
1325 {
1326 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1327 }
1328 
1329 static inline int cpupid_to_nid(int cpupid)
1330 {
1331 	return cpu_to_node(cpupid_to_cpu(cpupid));
1332 }
1333 
1334 static inline bool cpupid_pid_unset(int cpupid)
1335 {
1336 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1337 }
1338 
1339 static inline bool cpupid_cpu_unset(int cpupid)
1340 {
1341 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1342 }
1343 
1344 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1345 {
1346 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1347 }
1348 
1349 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1350 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1351 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1352 {
1353 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1354 }
1355 
1356 static inline int page_cpupid_last(struct page *page)
1357 {
1358 	return page->_last_cpupid;
1359 }
1360 static inline void page_cpupid_reset_last(struct page *page)
1361 {
1362 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1363 }
1364 #else
1365 static inline int page_cpupid_last(struct page *page)
1366 {
1367 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1368 }
1369 
1370 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1371 
1372 static inline void page_cpupid_reset_last(struct page *page)
1373 {
1374 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1375 }
1376 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1377 #else /* !CONFIG_NUMA_BALANCING */
1378 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1379 {
1380 	return page_to_nid(page); /* XXX */
1381 }
1382 
1383 static inline int page_cpupid_last(struct page *page)
1384 {
1385 	return page_to_nid(page); /* XXX */
1386 }
1387 
1388 static inline int cpupid_to_nid(int cpupid)
1389 {
1390 	return -1;
1391 }
1392 
1393 static inline int cpupid_to_pid(int cpupid)
1394 {
1395 	return -1;
1396 }
1397 
1398 static inline int cpupid_to_cpu(int cpupid)
1399 {
1400 	return -1;
1401 }
1402 
1403 static inline int cpu_pid_to_cpupid(int nid, int pid)
1404 {
1405 	return -1;
1406 }
1407 
1408 static inline bool cpupid_pid_unset(int cpupid)
1409 {
1410 	return true;
1411 }
1412 
1413 static inline void page_cpupid_reset_last(struct page *page)
1414 {
1415 }
1416 
1417 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1418 {
1419 	return false;
1420 }
1421 #endif /* CONFIG_NUMA_BALANCING */
1422 
1423 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1424 
1425 /*
1426  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1427  * setting tags for all pages to native kernel tag value 0xff, as the default
1428  * value 0x00 maps to 0xff.
1429  */
1430 
1431 static inline u8 page_kasan_tag(const struct page *page)
1432 {
1433 	u8 tag = 0xff;
1434 
1435 	if (kasan_enabled()) {
1436 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1437 		tag ^= 0xff;
1438 	}
1439 
1440 	return tag;
1441 }
1442 
1443 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1444 {
1445 	unsigned long old_flags, flags;
1446 
1447 	if (!kasan_enabled())
1448 		return;
1449 
1450 	tag ^= 0xff;
1451 	old_flags = READ_ONCE(page->flags);
1452 	do {
1453 		flags = old_flags;
1454 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1455 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1456 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1457 }
1458 
1459 static inline void page_kasan_tag_reset(struct page *page)
1460 {
1461 	if (kasan_enabled())
1462 		page_kasan_tag_set(page, 0xff);
1463 }
1464 
1465 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1466 
1467 static inline u8 page_kasan_tag(const struct page *page)
1468 {
1469 	return 0xff;
1470 }
1471 
1472 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1473 static inline void page_kasan_tag_reset(struct page *page) { }
1474 
1475 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1476 
1477 static inline struct zone *page_zone(const struct page *page)
1478 {
1479 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1480 }
1481 
1482 static inline pg_data_t *page_pgdat(const struct page *page)
1483 {
1484 	return NODE_DATA(page_to_nid(page));
1485 }
1486 
1487 static inline struct zone *folio_zone(const struct folio *folio)
1488 {
1489 	return page_zone(&folio->page);
1490 }
1491 
1492 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1493 {
1494 	return page_pgdat(&folio->page);
1495 }
1496 
1497 #ifdef SECTION_IN_PAGE_FLAGS
1498 static inline void set_page_section(struct page *page, unsigned long section)
1499 {
1500 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1501 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1502 }
1503 
1504 static inline unsigned long page_to_section(const struct page *page)
1505 {
1506 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1507 }
1508 #endif
1509 
1510 /**
1511  * folio_pfn - Return the Page Frame Number of a folio.
1512  * @folio: The folio.
1513  *
1514  * A folio may contain multiple pages.  The pages have consecutive
1515  * Page Frame Numbers.
1516  *
1517  * Return: The Page Frame Number of the first page in the folio.
1518  */
1519 static inline unsigned long folio_pfn(struct folio *folio)
1520 {
1521 	return page_to_pfn(&folio->page);
1522 }
1523 
1524 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1525 {
1526 	return &folio_page(folio, 1)->compound_pincount;
1527 }
1528 
1529 /**
1530  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1531  * @folio: The folio.
1532  *
1533  * This function checks if a folio has been pinned via a call to
1534  * a function in the pin_user_pages() family.
1535  *
1536  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1537  * because it means "definitely not pinned for DMA", but true means "probably
1538  * pinned for DMA, but possibly a false positive due to having at least
1539  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1540  *
1541  * False positives are OK, because: a) it's unlikely for a folio to
1542  * get that many refcounts, and b) all the callers of this routine are
1543  * expected to be able to deal gracefully with a false positive.
1544  *
1545  * For large folios, the result will be exactly correct. That's because
1546  * we have more tracking data available: the compound_pincount is used
1547  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1548  *
1549  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1550  *
1551  * Return: True, if it is likely that the page has been "dma-pinned".
1552  * False, if the page is definitely not dma-pinned.
1553  */
1554 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1555 {
1556 	if (folio_test_large(folio))
1557 		return atomic_read(folio_pincount_ptr(folio)) > 0;
1558 
1559 	/*
1560 	 * folio_ref_count() is signed. If that refcount overflows, then
1561 	 * folio_ref_count() returns a negative value, and callers will avoid
1562 	 * further incrementing the refcount.
1563 	 *
1564 	 * Here, for that overflow case, use the sign bit to count a little
1565 	 * bit higher via unsigned math, and thus still get an accurate result.
1566 	 */
1567 	return ((unsigned int)folio_ref_count(folio)) >=
1568 		GUP_PIN_COUNTING_BIAS;
1569 }
1570 
1571 static inline bool page_maybe_dma_pinned(struct page *page)
1572 {
1573 	return folio_maybe_dma_pinned(page_folio(page));
1574 }
1575 
1576 /*
1577  * This should most likely only be called during fork() to see whether we
1578  * should break the cow immediately for a page on the src mm.
1579  */
1580 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1581 					  struct page *page)
1582 {
1583 	if (!is_cow_mapping(vma->vm_flags))
1584 		return false;
1585 
1586 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1587 		return false;
1588 
1589 	return page_maybe_dma_pinned(page);
1590 }
1591 
1592 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1593 #ifdef CONFIG_MIGRATION
1594 static inline bool is_pinnable_page(struct page *page)
1595 {
1596 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1597 		is_zero_pfn(page_to_pfn(page));
1598 }
1599 #else
1600 static inline bool is_pinnable_page(struct page *page)
1601 {
1602 	return true;
1603 }
1604 #endif
1605 
1606 static inline bool folio_is_pinnable(struct folio *folio)
1607 {
1608 	return is_pinnable_page(&folio->page);
1609 }
1610 
1611 static inline void set_page_zone(struct page *page, enum zone_type zone)
1612 {
1613 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1614 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1615 }
1616 
1617 static inline void set_page_node(struct page *page, unsigned long node)
1618 {
1619 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1620 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1621 }
1622 
1623 static inline void set_page_links(struct page *page, enum zone_type zone,
1624 	unsigned long node, unsigned long pfn)
1625 {
1626 	set_page_zone(page, zone);
1627 	set_page_node(page, node);
1628 #ifdef SECTION_IN_PAGE_FLAGS
1629 	set_page_section(page, pfn_to_section_nr(pfn));
1630 #endif
1631 }
1632 
1633 /**
1634  * folio_nr_pages - The number of pages in the folio.
1635  * @folio: The folio.
1636  *
1637  * Return: A positive power of two.
1638  */
1639 static inline long folio_nr_pages(struct folio *folio)
1640 {
1641 	return compound_nr(&folio->page);
1642 }
1643 
1644 /**
1645  * folio_next - Move to the next physical folio.
1646  * @folio: The folio we're currently operating on.
1647  *
1648  * If you have physically contiguous memory which may span more than
1649  * one folio (eg a &struct bio_vec), use this function to move from one
1650  * folio to the next.  Do not use it if the memory is only virtually
1651  * contiguous as the folios are almost certainly not adjacent to each
1652  * other.  This is the folio equivalent to writing ``page++``.
1653  *
1654  * Context: We assume that the folios are refcounted and/or locked at a
1655  * higher level and do not adjust the reference counts.
1656  * Return: The next struct folio.
1657  */
1658 static inline struct folio *folio_next(struct folio *folio)
1659 {
1660 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1661 }
1662 
1663 /**
1664  * folio_shift - The size of the memory described by this folio.
1665  * @folio: The folio.
1666  *
1667  * A folio represents a number of bytes which is a power-of-two in size.
1668  * This function tells you which power-of-two the folio is.  See also
1669  * folio_size() and folio_order().
1670  *
1671  * Context: The caller should have a reference on the folio to prevent
1672  * it from being split.  It is not necessary for the folio to be locked.
1673  * Return: The base-2 logarithm of the size of this folio.
1674  */
1675 static inline unsigned int folio_shift(struct folio *folio)
1676 {
1677 	return PAGE_SHIFT + folio_order(folio);
1678 }
1679 
1680 /**
1681  * folio_size - The number of bytes in a folio.
1682  * @folio: The folio.
1683  *
1684  * Context: The caller should have a reference on the folio to prevent
1685  * it from being split.  It is not necessary for the folio to be locked.
1686  * Return: The number of bytes in this folio.
1687  */
1688 static inline size_t folio_size(struct folio *folio)
1689 {
1690 	return PAGE_SIZE << folio_order(folio);
1691 }
1692 
1693 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1694 static inline int arch_make_page_accessible(struct page *page)
1695 {
1696 	return 0;
1697 }
1698 #endif
1699 
1700 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1701 static inline int arch_make_folio_accessible(struct folio *folio)
1702 {
1703 	int ret;
1704 	long i, nr = folio_nr_pages(folio);
1705 
1706 	for (i = 0; i < nr; i++) {
1707 		ret = arch_make_page_accessible(folio_page(folio, i));
1708 		if (ret)
1709 			break;
1710 	}
1711 
1712 	return ret;
1713 }
1714 #endif
1715 
1716 /*
1717  * Some inline functions in vmstat.h depend on page_zone()
1718  */
1719 #include <linux/vmstat.h>
1720 
1721 static __always_inline void *lowmem_page_address(const struct page *page)
1722 {
1723 	return page_to_virt(page);
1724 }
1725 
1726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1727 #define HASHED_PAGE_VIRTUAL
1728 #endif
1729 
1730 #if defined(WANT_PAGE_VIRTUAL)
1731 static inline void *page_address(const struct page *page)
1732 {
1733 	return page->virtual;
1734 }
1735 static inline void set_page_address(struct page *page, void *address)
1736 {
1737 	page->virtual = address;
1738 }
1739 #define page_address_init()  do { } while(0)
1740 #endif
1741 
1742 #if defined(HASHED_PAGE_VIRTUAL)
1743 void *page_address(const struct page *page);
1744 void set_page_address(struct page *page, void *virtual);
1745 void page_address_init(void);
1746 #endif
1747 
1748 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1749 #define page_address(page) lowmem_page_address(page)
1750 #define set_page_address(page, address)  do { } while(0)
1751 #define page_address_init()  do { } while(0)
1752 #endif
1753 
1754 static inline void *folio_address(const struct folio *folio)
1755 {
1756 	return page_address(&folio->page);
1757 }
1758 
1759 extern void *page_rmapping(struct page *page);
1760 extern pgoff_t __page_file_index(struct page *page);
1761 
1762 /*
1763  * Return the pagecache index of the passed page.  Regular pagecache pages
1764  * use ->index whereas swapcache pages use swp_offset(->private)
1765  */
1766 static inline pgoff_t page_index(struct page *page)
1767 {
1768 	if (unlikely(PageSwapCache(page)))
1769 		return __page_file_index(page);
1770 	return page->index;
1771 }
1772 
1773 bool page_mapped(struct page *page);
1774 bool folio_mapped(struct folio *folio);
1775 
1776 /*
1777  * Return true only if the page has been allocated with
1778  * ALLOC_NO_WATERMARKS and the low watermark was not
1779  * met implying that the system is under some pressure.
1780  */
1781 static inline bool page_is_pfmemalloc(const struct page *page)
1782 {
1783 	/*
1784 	 * lru.next has bit 1 set if the page is allocated from the
1785 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1786 	 * they do not need to preserve that information.
1787 	 */
1788 	return (uintptr_t)page->lru.next & BIT(1);
1789 }
1790 
1791 /*
1792  * Only to be called by the page allocator on a freshly allocated
1793  * page.
1794  */
1795 static inline void set_page_pfmemalloc(struct page *page)
1796 {
1797 	page->lru.next = (void *)BIT(1);
1798 }
1799 
1800 static inline void clear_page_pfmemalloc(struct page *page)
1801 {
1802 	page->lru.next = NULL;
1803 }
1804 
1805 /*
1806  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1807  */
1808 extern void pagefault_out_of_memory(void);
1809 
1810 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1811 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1812 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1813 
1814 /*
1815  * Flags passed to show_mem() and show_free_areas() to suppress output in
1816  * various contexts.
1817  */
1818 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1819 
1820 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1821 
1822 #ifdef CONFIG_MMU
1823 extern bool can_do_mlock(void);
1824 #else
1825 static inline bool can_do_mlock(void) { return false; }
1826 #endif
1827 extern int user_shm_lock(size_t, struct ucounts *);
1828 extern void user_shm_unlock(size_t, struct ucounts *);
1829 
1830 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1831 			     pte_t pte);
1832 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1833 				pmd_t pmd);
1834 
1835 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1836 		  unsigned long size);
1837 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1838 		    unsigned long size);
1839 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1840 		unsigned long start, unsigned long end);
1841 
1842 struct mmu_notifier_range;
1843 
1844 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1845 		unsigned long end, unsigned long floor, unsigned long ceiling);
1846 int
1847 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1848 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1849 			  struct mmu_notifier_range *range, pte_t **ptepp,
1850 			  pmd_t **pmdpp, spinlock_t **ptlp);
1851 int follow_pte(struct mm_struct *mm, unsigned long address,
1852 	       pte_t **ptepp, spinlock_t **ptlp);
1853 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1854 	unsigned long *pfn);
1855 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1856 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1857 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1858 			void *buf, int len, int write);
1859 
1860 extern void truncate_pagecache(struct inode *inode, loff_t new);
1861 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1862 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1863 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1864 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1865 
1866 #ifdef CONFIG_MMU
1867 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1868 				  unsigned long address, unsigned int flags,
1869 				  struct pt_regs *regs);
1870 extern int fixup_user_fault(struct mm_struct *mm,
1871 			    unsigned long address, unsigned int fault_flags,
1872 			    bool *unlocked);
1873 void unmap_mapping_pages(struct address_space *mapping,
1874 		pgoff_t start, pgoff_t nr, bool even_cows);
1875 void unmap_mapping_range(struct address_space *mapping,
1876 		loff_t const holebegin, loff_t const holelen, int even_cows);
1877 #else
1878 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1879 					 unsigned long address, unsigned int flags,
1880 					 struct pt_regs *regs)
1881 {
1882 	/* should never happen if there's no MMU */
1883 	BUG();
1884 	return VM_FAULT_SIGBUS;
1885 }
1886 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1887 		unsigned int fault_flags, bool *unlocked)
1888 {
1889 	/* should never happen if there's no MMU */
1890 	BUG();
1891 	return -EFAULT;
1892 }
1893 static inline void unmap_mapping_pages(struct address_space *mapping,
1894 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1895 static inline void unmap_mapping_range(struct address_space *mapping,
1896 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1897 #endif
1898 
1899 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1900 		loff_t const holebegin, loff_t const holelen)
1901 {
1902 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1903 }
1904 
1905 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1906 		void *buf, int len, unsigned int gup_flags);
1907 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1908 		void *buf, int len, unsigned int gup_flags);
1909 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1910 			      void *buf, int len, unsigned int gup_flags);
1911 
1912 long get_user_pages_remote(struct mm_struct *mm,
1913 			    unsigned long start, unsigned long nr_pages,
1914 			    unsigned int gup_flags, struct page **pages,
1915 			    struct vm_area_struct **vmas, int *locked);
1916 long pin_user_pages_remote(struct mm_struct *mm,
1917 			   unsigned long start, unsigned long nr_pages,
1918 			   unsigned int gup_flags, struct page **pages,
1919 			   struct vm_area_struct **vmas, int *locked);
1920 long get_user_pages(unsigned long start, unsigned long nr_pages,
1921 			    unsigned int gup_flags, struct page **pages,
1922 			    struct vm_area_struct **vmas);
1923 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1924 		    unsigned int gup_flags, struct page **pages,
1925 		    struct vm_area_struct **vmas);
1926 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1927 		    struct page **pages, unsigned int gup_flags);
1928 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1929 		    struct page **pages, unsigned int gup_flags);
1930 
1931 int get_user_pages_fast(unsigned long start, int nr_pages,
1932 			unsigned int gup_flags, struct page **pages);
1933 int pin_user_pages_fast(unsigned long start, int nr_pages,
1934 			unsigned int gup_flags, struct page **pages);
1935 
1936 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1937 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1938 			struct task_struct *task, bool bypass_rlim);
1939 
1940 struct kvec;
1941 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1942 			struct page **pages);
1943 struct page *get_dump_page(unsigned long addr);
1944 
1945 bool folio_mark_dirty(struct folio *folio);
1946 bool set_page_dirty(struct page *page);
1947 int set_page_dirty_lock(struct page *page);
1948 
1949 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1950 
1951 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1952 		unsigned long old_addr, struct vm_area_struct *new_vma,
1953 		unsigned long new_addr, unsigned long len,
1954 		bool need_rmap_locks);
1955 
1956 /*
1957  * Flags used by change_protection().  For now we make it a bitmap so
1958  * that we can pass in multiple flags just like parameters.  However
1959  * for now all the callers are only use one of the flags at the same
1960  * time.
1961  */
1962 /* Whether we should allow dirty bit accounting */
1963 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1964 /* Whether this protection change is for NUMA hints */
1965 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1966 /* Whether this change is for write protecting */
1967 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1968 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1969 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1970 					    MM_CP_UFFD_WP_RESOLVE)
1971 
1972 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1973 			      unsigned long end, pgprot_t newprot,
1974 			      unsigned long cp_flags);
1975 extern int mprotect_fixup(struct vm_area_struct *vma,
1976 			  struct vm_area_struct **pprev, unsigned long start,
1977 			  unsigned long end, unsigned long newflags);
1978 
1979 /*
1980  * doesn't attempt to fault and will return short.
1981  */
1982 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1983 			     unsigned int gup_flags, struct page **pages);
1984 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1985 			     unsigned int gup_flags, struct page **pages);
1986 
1987 static inline bool get_user_page_fast_only(unsigned long addr,
1988 			unsigned int gup_flags, struct page **pagep)
1989 {
1990 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1991 }
1992 /*
1993  * per-process(per-mm_struct) statistics.
1994  */
1995 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1996 {
1997 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1998 
1999 #ifdef SPLIT_RSS_COUNTING
2000 	/*
2001 	 * counter is updated in asynchronous manner and may go to minus.
2002 	 * But it's never be expected number for users.
2003 	 */
2004 	if (val < 0)
2005 		val = 0;
2006 #endif
2007 	return (unsigned long)val;
2008 }
2009 
2010 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2011 
2012 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2013 {
2014 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2015 
2016 	mm_trace_rss_stat(mm, member, count);
2017 }
2018 
2019 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2020 {
2021 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2022 
2023 	mm_trace_rss_stat(mm, member, count);
2024 }
2025 
2026 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2027 {
2028 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2029 
2030 	mm_trace_rss_stat(mm, member, count);
2031 }
2032 
2033 /* Optimized variant when page is already known not to be PageAnon */
2034 static inline int mm_counter_file(struct page *page)
2035 {
2036 	if (PageSwapBacked(page))
2037 		return MM_SHMEMPAGES;
2038 	return MM_FILEPAGES;
2039 }
2040 
2041 static inline int mm_counter(struct page *page)
2042 {
2043 	if (PageAnon(page))
2044 		return MM_ANONPAGES;
2045 	return mm_counter_file(page);
2046 }
2047 
2048 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2049 {
2050 	return get_mm_counter(mm, MM_FILEPAGES) +
2051 		get_mm_counter(mm, MM_ANONPAGES) +
2052 		get_mm_counter(mm, MM_SHMEMPAGES);
2053 }
2054 
2055 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2056 {
2057 	return max(mm->hiwater_rss, get_mm_rss(mm));
2058 }
2059 
2060 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2061 {
2062 	return max(mm->hiwater_vm, mm->total_vm);
2063 }
2064 
2065 static inline void update_hiwater_rss(struct mm_struct *mm)
2066 {
2067 	unsigned long _rss = get_mm_rss(mm);
2068 
2069 	if ((mm)->hiwater_rss < _rss)
2070 		(mm)->hiwater_rss = _rss;
2071 }
2072 
2073 static inline void update_hiwater_vm(struct mm_struct *mm)
2074 {
2075 	if (mm->hiwater_vm < mm->total_vm)
2076 		mm->hiwater_vm = mm->total_vm;
2077 }
2078 
2079 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2080 {
2081 	mm->hiwater_rss = get_mm_rss(mm);
2082 }
2083 
2084 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2085 					 struct mm_struct *mm)
2086 {
2087 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2088 
2089 	if (*maxrss < hiwater_rss)
2090 		*maxrss = hiwater_rss;
2091 }
2092 
2093 #if defined(SPLIT_RSS_COUNTING)
2094 void sync_mm_rss(struct mm_struct *mm);
2095 #else
2096 static inline void sync_mm_rss(struct mm_struct *mm)
2097 {
2098 }
2099 #endif
2100 
2101 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2102 static inline int pte_special(pte_t pte)
2103 {
2104 	return 0;
2105 }
2106 
2107 static inline pte_t pte_mkspecial(pte_t pte)
2108 {
2109 	return pte;
2110 }
2111 #endif
2112 
2113 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2114 static inline int pte_devmap(pte_t pte)
2115 {
2116 	return 0;
2117 }
2118 #endif
2119 
2120 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2121 
2122 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2123 			       spinlock_t **ptl);
2124 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2125 				    spinlock_t **ptl)
2126 {
2127 	pte_t *ptep;
2128 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2129 	return ptep;
2130 }
2131 
2132 #ifdef __PAGETABLE_P4D_FOLDED
2133 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2134 						unsigned long address)
2135 {
2136 	return 0;
2137 }
2138 #else
2139 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2140 #endif
2141 
2142 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2143 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2144 						unsigned long address)
2145 {
2146 	return 0;
2147 }
2148 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2149 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2150 
2151 #else
2152 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2153 
2154 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2155 {
2156 	if (mm_pud_folded(mm))
2157 		return;
2158 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2159 }
2160 
2161 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2162 {
2163 	if (mm_pud_folded(mm))
2164 		return;
2165 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2166 }
2167 #endif
2168 
2169 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2170 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2171 						unsigned long address)
2172 {
2173 	return 0;
2174 }
2175 
2176 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2177 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2178 
2179 #else
2180 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2181 
2182 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2183 {
2184 	if (mm_pmd_folded(mm))
2185 		return;
2186 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2187 }
2188 
2189 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2190 {
2191 	if (mm_pmd_folded(mm))
2192 		return;
2193 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2194 }
2195 #endif
2196 
2197 #ifdef CONFIG_MMU
2198 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2199 {
2200 	atomic_long_set(&mm->pgtables_bytes, 0);
2201 }
2202 
2203 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2204 {
2205 	return atomic_long_read(&mm->pgtables_bytes);
2206 }
2207 
2208 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2209 {
2210 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2211 }
2212 
2213 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2214 {
2215 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2216 }
2217 #else
2218 
2219 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2220 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2221 {
2222 	return 0;
2223 }
2224 
2225 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2226 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2227 #endif
2228 
2229 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2230 int __pte_alloc_kernel(pmd_t *pmd);
2231 
2232 #if defined(CONFIG_MMU)
2233 
2234 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2235 		unsigned long address)
2236 {
2237 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2238 		NULL : p4d_offset(pgd, address);
2239 }
2240 
2241 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2242 		unsigned long address)
2243 {
2244 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2245 		NULL : pud_offset(p4d, address);
2246 }
2247 
2248 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2249 {
2250 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2251 		NULL: pmd_offset(pud, address);
2252 }
2253 #endif /* CONFIG_MMU */
2254 
2255 #if USE_SPLIT_PTE_PTLOCKS
2256 #if ALLOC_SPLIT_PTLOCKS
2257 void __init ptlock_cache_init(void);
2258 extern bool ptlock_alloc(struct page *page);
2259 extern void ptlock_free(struct page *page);
2260 
2261 static inline spinlock_t *ptlock_ptr(struct page *page)
2262 {
2263 	return page->ptl;
2264 }
2265 #else /* ALLOC_SPLIT_PTLOCKS */
2266 static inline void ptlock_cache_init(void)
2267 {
2268 }
2269 
2270 static inline bool ptlock_alloc(struct page *page)
2271 {
2272 	return true;
2273 }
2274 
2275 static inline void ptlock_free(struct page *page)
2276 {
2277 }
2278 
2279 static inline spinlock_t *ptlock_ptr(struct page *page)
2280 {
2281 	return &page->ptl;
2282 }
2283 #endif /* ALLOC_SPLIT_PTLOCKS */
2284 
2285 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2286 {
2287 	return ptlock_ptr(pmd_page(*pmd));
2288 }
2289 
2290 static inline bool ptlock_init(struct page *page)
2291 {
2292 	/*
2293 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2294 	 * with 0. Make sure nobody took it in use in between.
2295 	 *
2296 	 * It can happen if arch try to use slab for page table allocation:
2297 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2298 	 */
2299 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2300 	if (!ptlock_alloc(page))
2301 		return false;
2302 	spin_lock_init(ptlock_ptr(page));
2303 	return true;
2304 }
2305 
2306 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2307 /*
2308  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2309  */
2310 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2311 {
2312 	return &mm->page_table_lock;
2313 }
2314 static inline void ptlock_cache_init(void) {}
2315 static inline bool ptlock_init(struct page *page) { return true; }
2316 static inline void ptlock_free(struct page *page) {}
2317 #endif /* USE_SPLIT_PTE_PTLOCKS */
2318 
2319 static inline void pgtable_init(void)
2320 {
2321 	ptlock_cache_init();
2322 	pgtable_cache_init();
2323 }
2324 
2325 static inline bool pgtable_pte_page_ctor(struct page *page)
2326 {
2327 	if (!ptlock_init(page))
2328 		return false;
2329 	__SetPageTable(page);
2330 	inc_lruvec_page_state(page, NR_PAGETABLE);
2331 	return true;
2332 }
2333 
2334 static inline void pgtable_pte_page_dtor(struct page *page)
2335 {
2336 	ptlock_free(page);
2337 	__ClearPageTable(page);
2338 	dec_lruvec_page_state(page, NR_PAGETABLE);
2339 }
2340 
2341 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2342 ({							\
2343 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2344 	pte_t *__pte = pte_offset_map(pmd, address);	\
2345 	*(ptlp) = __ptl;				\
2346 	spin_lock(__ptl);				\
2347 	__pte;						\
2348 })
2349 
2350 #define pte_unmap_unlock(pte, ptl)	do {		\
2351 	spin_unlock(ptl);				\
2352 	pte_unmap(pte);					\
2353 } while (0)
2354 
2355 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2356 
2357 #define pte_alloc_map(mm, pmd, address)			\
2358 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2359 
2360 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2361 	(pte_alloc(mm, pmd) ?			\
2362 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2363 
2364 #define pte_alloc_kernel(pmd, address)			\
2365 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2366 		NULL: pte_offset_kernel(pmd, address))
2367 
2368 #if USE_SPLIT_PMD_PTLOCKS
2369 
2370 static struct page *pmd_to_page(pmd_t *pmd)
2371 {
2372 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2373 	return virt_to_page((void *)((unsigned long) pmd & mask));
2374 }
2375 
2376 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2377 {
2378 	return ptlock_ptr(pmd_to_page(pmd));
2379 }
2380 
2381 static inline bool pmd_ptlock_init(struct page *page)
2382 {
2383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2384 	page->pmd_huge_pte = NULL;
2385 #endif
2386 	return ptlock_init(page);
2387 }
2388 
2389 static inline void pmd_ptlock_free(struct page *page)
2390 {
2391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2392 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2393 #endif
2394 	ptlock_free(page);
2395 }
2396 
2397 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2398 
2399 #else
2400 
2401 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2402 {
2403 	return &mm->page_table_lock;
2404 }
2405 
2406 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2407 static inline void pmd_ptlock_free(struct page *page) {}
2408 
2409 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2410 
2411 #endif
2412 
2413 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2414 {
2415 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2416 	spin_lock(ptl);
2417 	return ptl;
2418 }
2419 
2420 static inline bool pgtable_pmd_page_ctor(struct page *page)
2421 {
2422 	if (!pmd_ptlock_init(page))
2423 		return false;
2424 	__SetPageTable(page);
2425 	inc_lruvec_page_state(page, NR_PAGETABLE);
2426 	return true;
2427 }
2428 
2429 static inline void pgtable_pmd_page_dtor(struct page *page)
2430 {
2431 	pmd_ptlock_free(page);
2432 	__ClearPageTable(page);
2433 	dec_lruvec_page_state(page, NR_PAGETABLE);
2434 }
2435 
2436 /*
2437  * No scalability reason to split PUD locks yet, but follow the same pattern
2438  * as the PMD locks to make it easier if we decide to.  The VM should not be
2439  * considered ready to switch to split PUD locks yet; there may be places
2440  * which need to be converted from page_table_lock.
2441  */
2442 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2443 {
2444 	return &mm->page_table_lock;
2445 }
2446 
2447 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2448 {
2449 	spinlock_t *ptl = pud_lockptr(mm, pud);
2450 
2451 	spin_lock(ptl);
2452 	return ptl;
2453 }
2454 
2455 extern void __init pagecache_init(void);
2456 extern void free_initmem(void);
2457 
2458 /*
2459  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2460  * into the buddy system. The freed pages will be poisoned with pattern
2461  * "poison" if it's within range [0, UCHAR_MAX].
2462  * Return pages freed into the buddy system.
2463  */
2464 extern unsigned long free_reserved_area(void *start, void *end,
2465 					int poison, const char *s);
2466 
2467 extern void adjust_managed_page_count(struct page *page, long count);
2468 extern void mem_init_print_info(void);
2469 
2470 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2471 
2472 /* Free the reserved page into the buddy system, so it gets managed. */
2473 static inline void free_reserved_page(struct page *page)
2474 {
2475 	ClearPageReserved(page);
2476 	init_page_count(page);
2477 	__free_page(page);
2478 	adjust_managed_page_count(page, 1);
2479 }
2480 #define free_highmem_page(page) free_reserved_page(page)
2481 
2482 static inline void mark_page_reserved(struct page *page)
2483 {
2484 	SetPageReserved(page);
2485 	adjust_managed_page_count(page, -1);
2486 }
2487 
2488 /*
2489  * Default method to free all the __init memory into the buddy system.
2490  * The freed pages will be poisoned with pattern "poison" if it's within
2491  * range [0, UCHAR_MAX].
2492  * Return pages freed into the buddy system.
2493  */
2494 static inline unsigned long free_initmem_default(int poison)
2495 {
2496 	extern char __init_begin[], __init_end[];
2497 
2498 	return free_reserved_area(&__init_begin, &__init_end,
2499 				  poison, "unused kernel image (initmem)");
2500 }
2501 
2502 static inline unsigned long get_num_physpages(void)
2503 {
2504 	int nid;
2505 	unsigned long phys_pages = 0;
2506 
2507 	for_each_online_node(nid)
2508 		phys_pages += node_present_pages(nid);
2509 
2510 	return phys_pages;
2511 }
2512 
2513 /*
2514  * Using memblock node mappings, an architecture may initialise its
2515  * zones, allocate the backing mem_map and account for memory holes in an
2516  * architecture independent manner.
2517  *
2518  * An architecture is expected to register range of page frames backed by
2519  * physical memory with memblock_add[_node]() before calling
2520  * free_area_init() passing in the PFN each zone ends at. At a basic
2521  * usage, an architecture is expected to do something like
2522  *
2523  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2524  * 							 max_highmem_pfn};
2525  * for_each_valid_physical_page_range()
2526  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2527  * free_area_init(max_zone_pfns);
2528  */
2529 void free_area_init(unsigned long *max_zone_pfn);
2530 unsigned long node_map_pfn_alignment(void);
2531 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2532 						unsigned long end_pfn);
2533 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2534 						unsigned long end_pfn);
2535 extern void get_pfn_range_for_nid(unsigned int nid,
2536 			unsigned long *start_pfn, unsigned long *end_pfn);
2537 extern unsigned long find_min_pfn_with_active_regions(void);
2538 
2539 #ifndef CONFIG_NUMA
2540 static inline int early_pfn_to_nid(unsigned long pfn)
2541 {
2542 	return 0;
2543 }
2544 #else
2545 /* please see mm/page_alloc.c */
2546 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2547 #endif
2548 
2549 extern void set_dma_reserve(unsigned long new_dma_reserve);
2550 extern void memmap_init_range(unsigned long, int, unsigned long,
2551 		unsigned long, unsigned long, enum meminit_context,
2552 		struct vmem_altmap *, int migratetype);
2553 extern void setup_per_zone_wmarks(void);
2554 extern void calculate_min_free_kbytes(void);
2555 extern int __meminit init_per_zone_wmark_min(void);
2556 extern void mem_init(void);
2557 extern void __init mmap_init(void);
2558 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2559 extern long si_mem_available(void);
2560 extern void si_meminfo(struct sysinfo * val);
2561 extern void si_meminfo_node(struct sysinfo *val, int nid);
2562 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2563 extern unsigned long arch_reserved_kernel_pages(void);
2564 #endif
2565 
2566 extern __printf(3, 4)
2567 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2568 
2569 extern void setup_per_cpu_pageset(void);
2570 
2571 /* page_alloc.c */
2572 extern int min_free_kbytes;
2573 extern int watermark_boost_factor;
2574 extern int watermark_scale_factor;
2575 extern bool arch_has_descending_max_zone_pfns(void);
2576 
2577 /* nommu.c */
2578 extern atomic_long_t mmap_pages_allocated;
2579 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2580 
2581 /* interval_tree.c */
2582 void vma_interval_tree_insert(struct vm_area_struct *node,
2583 			      struct rb_root_cached *root);
2584 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2585 				    struct vm_area_struct *prev,
2586 				    struct rb_root_cached *root);
2587 void vma_interval_tree_remove(struct vm_area_struct *node,
2588 			      struct rb_root_cached *root);
2589 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2590 				unsigned long start, unsigned long last);
2591 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2592 				unsigned long start, unsigned long last);
2593 
2594 #define vma_interval_tree_foreach(vma, root, start, last)		\
2595 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2596 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2597 
2598 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2599 				   struct rb_root_cached *root);
2600 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2601 				   struct rb_root_cached *root);
2602 struct anon_vma_chain *
2603 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2604 				  unsigned long start, unsigned long last);
2605 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2606 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2607 #ifdef CONFIG_DEBUG_VM_RB
2608 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2609 #endif
2610 
2611 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2612 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2613 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2614 
2615 /* mmap.c */
2616 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2617 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2618 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2619 	struct vm_area_struct *expand);
2620 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2621 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2622 {
2623 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2624 }
2625 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2626 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2627 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2628 	struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2629 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2630 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2631 	unsigned long addr, int new_below);
2632 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2633 	unsigned long addr, int new_below);
2634 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2635 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2636 	struct rb_node **, struct rb_node *);
2637 extern void unlink_file_vma(struct vm_area_struct *);
2638 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2639 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2640 	bool *need_rmap_locks);
2641 extern void exit_mmap(struct mm_struct *);
2642 
2643 static inline int check_data_rlimit(unsigned long rlim,
2644 				    unsigned long new,
2645 				    unsigned long start,
2646 				    unsigned long end_data,
2647 				    unsigned long start_data)
2648 {
2649 	if (rlim < RLIM_INFINITY) {
2650 		if (((new - start) + (end_data - start_data)) > rlim)
2651 			return -ENOSPC;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 extern int mm_take_all_locks(struct mm_struct *mm);
2658 extern void mm_drop_all_locks(struct mm_struct *mm);
2659 
2660 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2661 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2662 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2663 extern struct file *get_task_exe_file(struct task_struct *task);
2664 
2665 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2666 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2667 
2668 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2669 				   const struct vm_special_mapping *sm);
2670 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2671 				   unsigned long addr, unsigned long len,
2672 				   unsigned long flags,
2673 				   const struct vm_special_mapping *spec);
2674 /* This is an obsolete alternative to _install_special_mapping. */
2675 extern int install_special_mapping(struct mm_struct *mm,
2676 				   unsigned long addr, unsigned long len,
2677 				   unsigned long flags, struct page **pages);
2678 
2679 unsigned long randomize_stack_top(unsigned long stack_top);
2680 
2681 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2682 
2683 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2684 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2685 	struct list_head *uf);
2686 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2687 	unsigned long len, unsigned long prot, unsigned long flags,
2688 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2689 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2690 		       struct list_head *uf, bool downgrade);
2691 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2692 		     struct list_head *uf);
2693 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2694 
2695 #ifdef CONFIG_MMU
2696 extern int __mm_populate(unsigned long addr, unsigned long len,
2697 			 int ignore_errors);
2698 static inline void mm_populate(unsigned long addr, unsigned long len)
2699 {
2700 	/* Ignore errors */
2701 	(void) __mm_populate(addr, len, 1);
2702 }
2703 #else
2704 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2705 #endif
2706 
2707 /* These take the mm semaphore themselves */
2708 extern int __must_check vm_brk(unsigned long, unsigned long);
2709 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2710 extern int vm_munmap(unsigned long, size_t);
2711 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2712         unsigned long, unsigned long,
2713         unsigned long, unsigned long);
2714 
2715 struct vm_unmapped_area_info {
2716 #define VM_UNMAPPED_AREA_TOPDOWN 1
2717 	unsigned long flags;
2718 	unsigned long length;
2719 	unsigned long low_limit;
2720 	unsigned long high_limit;
2721 	unsigned long align_mask;
2722 	unsigned long align_offset;
2723 };
2724 
2725 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2726 
2727 /* truncate.c */
2728 extern void truncate_inode_pages(struct address_space *, loff_t);
2729 extern void truncate_inode_pages_range(struct address_space *,
2730 				       loff_t lstart, loff_t lend);
2731 extern void truncate_inode_pages_final(struct address_space *);
2732 
2733 /* generic vm_area_ops exported for stackable file systems */
2734 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2735 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2736 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2737 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2738 
2739 extern unsigned long stack_guard_gap;
2740 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2741 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2742 
2743 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2744 extern int expand_downwards(struct vm_area_struct *vma,
2745 		unsigned long address);
2746 #if VM_GROWSUP
2747 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2748 #else
2749   #define expand_upwards(vma, address) (0)
2750 #endif
2751 
2752 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2753 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2754 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2755 					     struct vm_area_struct **pprev);
2756 
2757 /**
2758  * find_vma_intersection() - Look up the first VMA which intersects the interval
2759  * @mm: The process address space.
2760  * @start_addr: The inclusive start user address.
2761  * @end_addr: The exclusive end user address.
2762  *
2763  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2764  * start_addr < end_addr.
2765  */
2766 static inline
2767 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2768 					     unsigned long start_addr,
2769 					     unsigned long end_addr)
2770 {
2771 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2772 
2773 	if (vma && end_addr <= vma->vm_start)
2774 		vma = NULL;
2775 	return vma;
2776 }
2777 
2778 /**
2779  * vma_lookup() - Find a VMA at a specific address
2780  * @mm: The process address space.
2781  * @addr: The user address.
2782  *
2783  * Return: The vm_area_struct at the given address, %NULL otherwise.
2784  */
2785 static inline
2786 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2787 {
2788 	struct vm_area_struct *vma = find_vma(mm, addr);
2789 
2790 	if (vma && addr < vma->vm_start)
2791 		vma = NULL;
2792 
2793 	return vma;
2794 }
2795 
2796 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2797 {
2798 	unsigned long vm_start = vma->vm_start;
2799 
2800 	if (vma->vm_flags & VM_GROWSDOWN) {
2801 		vm_start -= stack_guard_gap;
2802 		if (vm_start > vma->vm_start)
2803 			vm_start = 0;
2804 	}
2805 	return vm_start;
2806 }
2807 
2808 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2809 {
2810 	unsigned long vm_end = vma->vm_end;
2811 
2812 	if (vma->vm_flags & VM_GROWSUP) {
2813 		vm_end += stack_guard_gap;
2814 		if (vm_end < vma->vm_end)
2815 			vm_end = -PAGE_SIZE;
2816 	}
2817 	return vm_end;
2818 }
2819 
2820 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2821 {
2822 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2823 }
2824 
2825 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2826 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2827 				unsigned long vm_start, unsigned long vm_end)
2828 {
2829 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2830 
2831 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2832 		vma = NULL;
2833 
2834 	return vma;
2835 }
2836 
2837 static inline bool range_in_vma(struct vm_area_struct *vma,
2838 				unsigned long start, unsigned long end)
2839 {
2840 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2841 }
2842 
2843 #ifdef CONFIG_MMU
2844 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2845 void vma_set_page_prot(struct vm_area_struct *vma);
2846 #else
2847 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2848 {
2849 	return __pgprot(0);
2850 }
2851 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2852 {
2853 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2854 }
2855 #endif
2856 
2857 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2858 
2859 #ifdef CONFIG_NUMA_BALANCING
2860 unsigned long change_prot_numa(struct vm_area_struct *vma,
2861 			unsigned long start, unsigned long end);
2862 #endif
2863 
2864 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2865 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2866 			unsigned long pfn, unsigned long size, pgprot_t);
2867 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2868 		unsigned long pfn, unsigned long size, pgprot_t prot);
2869 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2870 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2871 			struct page **pages, unsigned long *num);
2872 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2873 				unsigned long num);
2874 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2875 				unsigned long num);
2876 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2877 			unsigned long pfn);
2878 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2879 			unsigned long pfn, pgprot_t pgprot);
2880 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2881 			pfn_t pfn);
2882 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2883 			pfn_t pfn, pgprot_t pgprot);
2884 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2885 		unsigned long addr, pfn_t pfn);
2886 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2887 
2888 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2889 				unsigned long addr, struct page *page)
2890 {
2891 	int err = vm_insert_page(vma, addr, page);
2892 
2893 	if (err == -ENOMEM)
2894 		return VM_FAULT_OOM;
2895 	if (err < 0 && err != -EBUSY)
2896 		return VM_FAULT_SIGBUS;
2897 
2898 	return VM_FAULT_NOPAGE;
2899 }
2900 
2901 #ifndef io_remap_pfn_range
2902 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2903 				     unsigned long addr, unsigned long pfn,
2904 				     unsigned long size, pgprot_t prot)
2905 {
2906 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2907 }
2908 #endif
2909 
2910 static inline vm_fault_t vmf_error(int err)
2911 {
2912 	if (err == -ENOMEM)
2913 		return VM_FAULT_OOM;
2914 	return VM_FAULT_SIGBUS;
2915 }
2916 
2917 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2918 			 unsigned int foll_flags);
2919 
2920 #define FOLL_WRITE	0x01	/* check pte is writable */
2921 #define FOLL_TOUCH	0x02	/* mark page accessed */
2922 #define FOLL_GET	0x04	/* do get_page on page */
2923 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2924 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2925 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2926 				 * and return without waiting upon it */
2927 #define FOLL_NOFAULT	0x80	/* do not fault in pages */
2928 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2929 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2930 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2931 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2932 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2933 #define FOLL_COW	0x4000	/* internal GUP flag */
2934 #define FOLL_ANON	0x8000	/* don't do file mappings */
2935 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2936 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2937 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2938 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2939 
2940 /*
2941  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2942  * other. Here is what they mean, and how to use them:
2943  *
2944  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2945  * period _often_ under userspace control.  This is in contrast to
2946  * iov_iter_get_pages(), whose usages are transient.
2947  *
2948  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2949  * lifetime enforced by the filesystem and we need guarantees that longterm
2950  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2951  * the filesystem.  Ideas for this coordination include revoking the longterm
2952  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2953  * added after the problem with filesystems was found FS DAX VMAs are
2954  * specifically failed.  Filesystem pages are still subject to bugs and use of
2955  * FOLL_LONGTERM should be avoided on those pages.
2956  *
2957  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2958  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2959  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2960  * is due to an incompatibility with the FS DAX check and
2961  * FAULT_FLAG_ALLOW_RETRY.
2962  *
2963  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2964  * that region.  And so, CMA attempts to migrate the page before pinning, when
2965  * FOLL_LONGTERM is specified.
2966  *
2967  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2968  * but an additional pin counting system) will be invoked. This is intended for
2969  * anything that gets a page reference and then touches page data (for example,
2970  * Direct IO). This lets the filesystem know that some non-file-system entity is
2971  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2972  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2973  * a call to unpin_user_page().
2974  *
2975  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2976  * and separate refcounting mechanisms, however, and that means that each has
2977  * its own acquire and release mechanisms:
2978  *
2979  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2980  *
2981  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2982  *
2983  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2984  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2985  * calls applied to them, and that's perfectly OK. This is a constraint on the
2986  * callers, not on the pages.)
2987  *
2988  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2989  * directly by the caller. That's in order to help avoid mismatches when
2990  * releasing pages: get_user_pages*() pages must be released via put_page(),
2991  * while pin_user_pages*() pages must be released via unpin_user_page().
2992  *
2993  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2994  */
2995 
2996 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2997 {
2998 	if (vm_fault & VM_FAULT_OOM)
2999 		return -ENOMEM;
3000 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3001 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3002 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3003 		return -EFAULT;
3004 	return 0;
3005 }
3006 
3007 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3008 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3009 			       unsigned long size, pte_fn_t fn, void *data);
3010 extern int apply_to_existing_page_range(struct mm_struct *mm,
3011 				   unsigned long address, unsigned long size,
3012 				   pte_fn_t fn, void *data);
3013 
3014 extern void init_mem_debugging_and_hardening(void);
3015 #ifdef CONFIG_PAGE_POISONING
3016 extern void __kernel_poison_pages(struct page *page, int numpages);
3017 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3018 extern bool _page_poisoning_enabled_early;
3019 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3020 static inline bool page_poisoning_enabled(void)
3021 {
3022 	return _page_poisoning_enabled_early;
3023 }
3024 /*
3025  * For use in fast paths after init_mem_debugging() has run, or when a
3026  * false negative result is not harmful when called too early.
3027  */
3028 static inline bool page_poisoning_enabled_static(void)
3029 {
3030 	return static_branch_unlikely(&_page_poisoning_enabled);
3031 }
3032 static inline void kernel_poison_pages(struct page *page, int numpages)
3033 {
3034 	if (page_poisoning_enabled_static())
3035 		__kernel_poison_pages(page, numpages);
3036 }
3037 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3038 {
3039 	if (page_poisoning_enabled_static())
3040 		__kernel_unpoison_pages(page, numpages);
3041 }
3042 #else
3043 static inline bool page_poisoning_enabled(void) { return false; }
3044 static inline bool page_poisoning_enabled_static(void) { return false; }
3045 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3046 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3047 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3048 #endif
3049 
3050 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3051 static inline bool want_init_on_alloc(gfp_t flags)
3052 {
3053 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3054 				&init_on_alloc))
3055 		return true;
3056 	return flags & __GFP_ZERO;
3057 }
3058 
3059 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3060 static inline bool want_init_on_free(void)
3061 {
3062 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3063 				   &init_on_free);
3064 }
3065 
3066 extern bool _debug_pagealloc_enabled_early;
3067 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3068 
3069 static inline bool debug_pagealloc_enabled(void)
3070 {
3071 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3072 		_debug_pagealloc_enabled_early;
3073 }
3074 
3075 /*
3076  * For use in fast paths after init_debug_pagealloc() has run, or when a
3077  * false negative result is not harmful when called too early.
3078  */
3079 static inline bool debug_pagealloc_enabled_static(void)
3080 {
3081 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3082 		return false;
3083 
3084 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3085 }
3086 
3087 #ifdef CONFIG_DEBUG_PAGEALLOC
3088 /*
3089  * To support DEBUG_PAGEALLOC architecture must ensure that
3090  * __kernel_map_pages() never fails
3091  */
3092 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3093 
3094 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3095 {
3096 	if (debug_pagealloc_enabled_static())
3097 		__kernel_map_pages(page, numpages, 1);
3098 }
3099 
3100 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3101 {
3102 	if (debug_pagealloc_enabled_static())
3103 		__kernel_map_pages(page, numpages, 0);
3104 }
3105 #else	/* CONFIG_DEBUG_PAGEALLOC */
3106 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3107 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3108 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3109 
3110 #ifdef __HAVE_ARCH_GATE_AREA
3111 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3112 extern int in_gate_area_no_mm(unsigned long addr);
3113 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3114 #else
3115 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3116 {
3117 	return NULL;
3118 }
3119 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3120 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3121 {
3122 	return 0;
3123 }
3124 #endif	/* __HAVE_ARCH_GATE_AREA */
3125 
3126 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3127 
3128 #ifdef CONFIG_SYSCTL
3129 extern int sysctl_drop_caches;
3130 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3131 		loff_t *);
3132 #endif
3133 
3134 void drop_slab(void);
3135 
3136 #ifndef CONFIG_MMU
3137 #define randomize_va_space 0
3138 #else
3139 extern int randomize_va_space;
3140 #endif
3141 
3142 const char * arch_vma_name(struct vm_area_struct *vma);
3143 #ifdef CONFIG_MMU
3144 void print_vma_addr(char *prefix, unsigned long rip);
3145 #else
3146 static inline void print_vma_addr(char *prefix, unsigned long rip)
3147 {
3148 }
3149 #endif
3150 
3151 #ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
3152 int vmemmap_remap_free(unsigned long start, unsigned long end,
3153 		       unsigned long reuse);
3154 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3155 			unsigned long reuse, gfp_t gfp_mask);
3156 #endif
3157 
3158 void *sparse_buffer_alloc(unsigned long size);
3159 struct page * __populate_section_memmap(unsigned long pfn,
3160 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3161 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3162 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3163 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3164 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3165 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3166 			    struct vmem_altmap *altmap);
3167 void *vmemmap_alloc_block(unsigned long size, int node);
3168 struct vmem_altmap;
3169 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3170 			      struct vmem_altmap *altmap);
3171 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3172 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3173 			       int node, struct vmem_altmap *altmap);
3174 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3175 		struct vmem_altmap *altmap);
3176 void vmemmap_populate_print_last(void);
3177 #ifdef CONFIG_MEMORY_HOTPLUG
3178 void vmemmap_free(unsigned long start, unsigned long end,
3179 		struct vmem_altmap *altmap);
3180 #endif
3181 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3182 				  unsigned long nr_pages);
3183 
3184 enum mf_flags {
3185 	MF_COUNT_INCREASED = 1 << 0,
3186 	MF_ACTION_REQUIRED = 1 << 1,
3187 	MF_MUST_KILL = 1 << 2,
3188 	MF_SOFT_OFFLINE = 1 << 3,
3189 	MF_UNPOISON = 1 << 4,
3190 };
3191 extern int memory_failure(unsigned long pfn, int flags);
3192 extern void memory_failure_queue(unsigned long pfn, int flags);
3193 extern void memory_failure_queue_kick(int cpu);
3194 extern int unpoison_memory(unsigned long pfn);
3195 extern int sysctl_memory_failure_early_kill;
3196 extern int sysctl_memory_failure_recovery;
3197 extern void shake_page(struct page *p);
3198 extern atomic_long_t num_poisoned_pages __read_mostly;
3199 extern int soft_offline_page(unsigned long pfn, int flags);
3200 
3201 #ifndef arch_memory_failure
3202 static inline int arch_memory_failure(unsigned long pfn, int flags)
3203 {
3204 	return -ENXIO;
3205 }
3206 #endif
3207 
3208 #ifndef arch_is_platform_page
3209 static inline bool arch_is_platform_page(u64 paddr)
3210 {
3211 	return false;
3212 }
3213 #endif
3214 
3215 /*
3216  * Error handlers for various types of pages.
3217  */
3218 enum mf_result {
3219 	MF_IGNORED,	/* Error: cannot be handled */
3220 	MF_FAILED,	/* Error: handling failed */
3221 	MF_DELAYED,	/* Will be handled later */
3222 	MF_RECOVERED,	/* Successfully recovered */
3223 };
3224 
3225 enum mf_action_page_type {
3226 	MF_MSG_KERNEL,
3227 	MF_MSG_KERNEL_HIGH_ORDER,
3228 	MF_MSG_SLAB,
3229 	MF_MSG_DIFFERENT_COMPOUND,
3230 	MF_MSG_HUGE,
3231 	MF_MSG_FREE_HUGE,
3232 	MF_MSG_NON_PMD_HUGE,
3233 	MF_MSG_UNMAP_FAILED,
3234 	MF_MSG_DIRTY_SWAPCACHE,
3235 	MF_MSG_CLEAN_SWAPCACHE,
3236 	MF_MSG_DIRTY_MLOCKED_LRU,
3237 	MF_MSG_CLEAN_MLOCKED_LRU,
3238 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3239 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3240 	MF_MSG_DIRTY_LRU,
3241 	MF_MSG_CLEAN_LRU,
3242 	MF_MSG_TRUNCATED_LRU,
3243 	MF_MSG_BUDDY,
3244 	MF_MSG_DAX,
3245 	MF_MSG_UNSPLIT_THP,
3246 	MF_MSG_DIFFERENT_PAGE_SIZE,
3247 	MF_MSG_UNKNOWN,
3248 };
3249 
3250 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3251 extern void clear_huge_page(struct page *page,
3252 			    unsigned long addr_hint,
3253 			    unsigned int pages_per_huge_page);
3254 extern void copy_user_huge_page(struct page *dst, struct page *src,
3255 				unsigned long addr_hint,
3256 				struct vm_area_struct *vma,
3257 				unsigned int pages_per_huge_page);
3258 extern long copy_huge_page_from_user(struct page *dst_page,
3259 				const void __user *usr_src,
3260 				unsigned int pages_per_huge_page,
3261 				bool allow_pagefault);
3262 
3263 /**
3264  * vma_is_special_huge - Are transhuge page-table entries considered special?
3265  * @vma: Pointer to the struct vm_area_struct to consider
3266  *
3267  * Whether transhuge page-table entries are considered "special" following
3268  * the definition in vm_normal_page().
3269  *
3270  * Return: true if transhuge page-table entries should be considered special,
3271  * false otherwise.
3272  */
3273 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3274 {
3275 	return vma_is_dax(vma) || (vma->vm_file &&
3276 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3277 }
3278 
3279 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3280 
3281 #ifdef CONFIG_DEBUG_PAGEALLOC
3282 extern unsigned int _debug_guardpage_minorder;
3283 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3284 
3285 static inline unsigned int debug_guardpage_minorder(void)
3286 {
3287 	return _debug_guardpage_minorder;
3288 }
3289 
3290 static inline bool debug_guardpage_enabled(void)
3291 {
3292 	return static_branch_unlikely(&_debug_guardpage_enabled);
3293 }
3294 
3295 static inline bool page_is_guard(struct page *page)
3296 {
3297 	if (!debug_guardpage_enabled())
3298 		return false;
3299 
3300 	return PageGuard(page);
3301 }
3302 #else
3303 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3304 static inline bool debug_guardpage_enabled(void) { return false; }
3305 static inline bool page_is_guard(struct page *page) { return false; }
3306 #endif /* CONFIG_DEBUG_PAGEALLOC */
3307 
3308 #if MAX_NUMNODES > 1
3309 void __init setup_nr_node_ids(void);
3310 #else
3311 static inline void setup_nr_node_ids(void) {}
3312 #endif
3313 
3314 extern int memcmp_pages(struct page *page1, struct page *page2);
3315 
3316 static inline int pages_identical(struct page *page1, struct page *page2)
3317 {
3318 	return !memcmp_pages(page1, page2);
3319 }
3320 
3321 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3322 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3323 						pgoff_t first_index, pgoff_t nr,
3324 						pgoff_t bitmap_pgoff,
3325 						unsigned long *bitmap,
3326 						pgoff_t *start,
3327 						pgoff_t *end);
3328 
3329 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3330 				      pgoff_t first_index, pgoff_t nr);
3331 #endif
3332 
3333 extern int sysctl_nr_trim_pages;
3334 
3335 #ifdef CONFIG_PRINTK
3336 void mem_dump_obj(void *object);
3337 #else
3338 static inline void mem_dump_obj(void *object) {}
3339 #endif
3340 
3341 /**
3342  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3343  * @seals: the seals to check
3344  * @vma: the vma to operate on
3345  *
3346  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3347  * the vma flags.  Return 0 if check pass, or <0 for errors.
3348  */
3349 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3350 {
3351 	if (seals & F_SEAL_FUTURE_WRITE) {
3352 		/*
3353 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3354 		 * "future write" seal active.
3355 		 */
3356 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3357 			return -EPERM;
3358 
3359 		/*
3360 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3361 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3362 		 * revert protections on such mappings. Do this only for shared
3363 		 * mappings. For private mappings, don't need to mask
3364 		 * VM_MAYWRITE as we still want them to be COW-writable.
3365 		 */
3366 		if (vma->vm_flags & VM_SHARED)
3367 			vma->vm_flags &= ~(VM_MAYWRITE);
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 #ifdef CONFIG_ANON_VMA_NAME
3374 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3375 			  unsigned long len_in,
3376 			  struct anon_vma_name *anon_name);
3377 #else
3378 static inline int
3379 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3380 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3381 	return 0;
3382 }
3383 #endif
3384 
3385 #endif /* _LINUX_MM_H */
3386