1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 32 struct mempolicy; 33 struct anon_vma; 34 struct anon_vma_chain; 35 struct user_struct; 36 struct pt_regs; 37 38 extern int sysctl_page_lock_unfairness; 39 40 void init_mm_internals(void); 41 42 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 43 extern unsigned long max_mapnr; 44 45 static inline void set_max_mapnr(unsigned long limit) 46 { 47 max_mapnr = limit; 48 } 49 #else 50 static inline void set_max_mapnr(unsigned long limit) { } 51 #endif 52 53 extern atomic_long_t _totalram_pages; 54 static inline unsigned long totalram_pages(void) 55 { 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_inc(void) 60 { 61 atomic_long_inc(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_dec(void) 65 { 66 atomic_long_dec(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_add(long count) 70 { 71 atomic_long_add(count, &_totalram_pages); 72 } 73 74 extern void * high_memory; 75 extern int page_cluster; 76 77 #ifdef CONFIG_SYSCTL 78 extern int sysctl_legacy_va_layout; 79 #else 80 #define sysctl_legacy_va_layout 0 81 #endif 82 83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84 extern const int mmap_rnd_bits_min; 85 extern const int mmap_rnd_bits_max; 86 extern int mmap_rnd_bits __read_mostly; 87 #endif 88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89 extern const int mmap_rnd_compat_bits_min; 90 extern const int mmap_rnd_compat_bits_max; 91 extern int mmap_rnd_compat_bits __read_mostly; 92 #endif 93 94 #include <asm/page.h> 95 #include <asm/processor.h> 96 97 /* 98 * Architectures that support memory tagging (assigning tags to memory regions, 99 * embedding these tags into addresses that point to these memory regions, and 100 * checking that the memory and the pointer tags match on memory accesses) 101 * redefine this macro to strip tags from pointers. 102 * It's defined as noop for architectures that don't support memory tagging. 103 */ 104 #ifndef untagged_addr 105 #define untagged_addr(addr) (addr) 106 #endif 107 108 #ifndef __pa_symbol 109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110 #endif 111 112 #ifndef page_to_virt 113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114 #endif 115 116 #ifndef lm_alias 117 #define lm_alias(x) __va(__pa_symbol(x)) 118 #endif 119 120 /* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127 #ifndef mm_forbids_zeropage 128 #define mm_forbids_zeropage(X) (0) 129 #endif 130 131 /* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137 #if BITS_PER_LONG == 64 138 /* This function must be updated when the size of struct page grows above 80 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statements if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145 static inline void __mm_zero_struct_page(struct page *page) 146 { 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 80); 153 154 switch (sizeof(struct page)) { 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173 } 174 #else 175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176 #endif 177 178 /* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194 #define MAPCOUNT_ELF_CORE_MARGIN (5) 195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197 extern int sysctl_max_map_count; 198 199 extern unsigned long sysctl_user_reserve_kbytes; 200 extern unsigned long sysctl_admin_reserve_kbytes; 201 202 extern int sysctl_overcommit_memory; 203 extern int sysctl_overcommit_ratio; 204 extern unsigned long sysctl_overcommit_kbytes; 205 206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216 #else 217 #define nth_page(page,n) ((page) + (n)) 218 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 219 #endif 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228 static inline struct folio *lru_to_folio(struct list_head *head) 229 { 230 return list_entry((head)->prev, struct folio, lru); 231 } 232 233 void setup_initial_init_mm(void *start_code, void *end_code, 234 void *end_data, void *brk); 235 236 /* 237 * Linux kernel virtual memory manager primitives. 238 * The idea being to have a "virtual" mm in the same way 239 * we have a virtual fs - giving a cleaner interface to the 240 * mm details, and allowing different kinds of memory mappings 241 * (from shared memory to executable loading to arbitrary 242 * mmap() functions). 243 */ 244 245 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 246 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 247 void vm_area_free(struct vm_area_struct *); 248 249 #ifndef CONFIG_MMU 250 extern struct rb_root nommu_region_tree; 251 extern struct rw_semaphore nommu_region_sem; 252 253 extern unsigned int kobjsize(const void *objp); 254 #endif 255 256 /* 257 * vm_flags in vm_area_struct, see mm_types.h. 258 * When changing, update also include/trace/events/mmflags.h 259 */ 260 #define VM_NONE 0x00000000 261 262 #define VM_READ 0x00000001 /* currently active flags */ 263 #define VM_WRITE 0x00000002 264 #define VM_EXEC 0x00000004 265 #define VM_SHARED 0x00000008 266 267 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 268 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 269 #define VM_MAYWRITE 0x00000020 270 #define VM_MAYEXEC 0x00000040 271 #define VM_MAYSHARE 0x00000080 272 273 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 275 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 276 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 277 278 #define VM_LOCKED 0x00002000 279 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 280 281 /* Used by sys_madvise() */ 282 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 283 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 284 285 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 286 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 287 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 288 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 289 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 290 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 291 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 292 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 293 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 294 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 295 296 #ifdef CONFIG_MEM_SOFT_DIRTY 297 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 298 #else 299 # define VM_SOFTDIRTY 0 300 #endif 301 302 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 303 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 304 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 305 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 306 307 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 308 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 309 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 310 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 311 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 312 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 314 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 315 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 316 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 317 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 318 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 319 320 #ifdef CONFIG_ARCH_HAS_PKEYS 321 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 322 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 323 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 324 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 325 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 326 #ifdef CONFIG_PPC 327 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 328 #else 329 # define VM_PKEY_BIT4 0 330 #endif 331 #endif /* CONFIG_ARCH_HAS_PKEYS */ 332 333 #if defined(CONFIG_X86) 334 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 335 #elif defined(CONFIG_PPC) 336 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 337 #elif defined(CONFIG_PARISC) 338 # define VM_GROWSUP VM_ARCH_1 339 #elif defined(CONFIG_IA64) 340 # define VM_GROWSUP VM_ARCH_1 341 #elif defined(CONFIG_SPARC64) 342 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 343 # define VM_ARCH_CLEAR VM_SPARC_ADI 344 #elif defined(CONFIG_ARM64) 345 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 346 # define VM_ARCH_CLEAR VM_ARM64_BTI 347 #elif !defined(CONFIG_MMU) 348 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 349 #endif 350 351 #if defined(CONFIG_ARM64_MTE) 352 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 353 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 354 #else 355 # define VM_MTE VM_NONE 356 # define VM_MTE_ALLOWED VM_NONE 357 #endif 358 359 #ifndef VM_GROWSUP 360 # define VM_GROWSUP VM_NONE 361 #endif 362 363 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 364 # define VM_UFFD_MINOR_BIT 37 365 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 366 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367 # define VM_UFFD_MINOR VM_NONE 368 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 369 370 /* Bits set in the VMA until the stack is in its final location */ 371 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 372 373 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 374 375 /* Common data flag combinations */ 376 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 378 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 379 VM_MAYWRITE | VM_MAYEXEC) 380 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 382 383 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 384 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 385 #endif 386 387 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 388 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 389 #endif 390 391 #ifdef CONFIG_STACK_GROWSUP 392 #define VM_STACK VM_GROWSUP 393 #else 394 #define VM_STACK VM_GROWSDOWN 395 #endif 396 397 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 398 399 /* VMA basic access permission flags */ 400 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 401 402 403 /* 404 * Special vmas that are non-mergable, non-mlock()able. 405 */ 406 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 407 408 /* This mask prevents VMA from being scanned with khugepaged */ 409 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 410 411 /* This mask defines which mm->def_flags a process can inherit its parent */ 412 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 413 414 /* This mask is used to clear all the VMA flags used by mlock */ 415 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 416 417 /* Arch-specific flags to clear when updating VM flags on protection change */ 418 #ifndef VM_ARCH_CLEAR 419 # define VM_ARCH_CLEAR VM_NONE 420 #endif 421 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 422 423 /* 424 * mapping from the currently active vm_flags protection bits (the 425 * low four bits) to a page protection mask.. 426 */ 427 extern pgprot_t protection_map[16]; 428 429 /* 430 * The default fault flags that should be used by most of the 431 * arch-specific page fault handlers. 432 */ 433 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 434 FAULT_FLAG_KILLABLE | \ 435 FAULT_FLAG_INTERRUPTIBLE) 436 437 /** 438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 439 * @flags: Fault flags. 440 * 441 * This is mostly used for places where we want to try to avoid taking 442 * the mmap_lock for too long a time when waiting for another condition 443 * to change, in which case we can try to be polite to release the 444 * mmap_lock in the first round to avoid potential starvation of other 445 * processes that would also want the mmap_lock. 446 * 447 * Return: true if the page fault allows retry and this is the first 448 * attempt of the fault handling; false otherwise. 449 */ 450 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 451 { 452 return (flags & FAULT_FLAG_ALLOW_RETRY) && 453 (!(flags & FAULT_FLAG_TRIED)); 454 } 455 456 #define FAULT_FLAG_TRACE \ 457 { FAULT_FLAG_WRITE, "WRITE" }, \ 458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 462 { FAULT_FLAG_TRIED, "TRIED" }, \ 463 { FAULT_FLAG_USER, "USER" }, \ 464 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 467 468 /* 469 * vm_fault is filled by the pagefault handler and passed to the vma's 470 * ->fault function. The vma's ->fault is responsible for returning a bitmask 471 * of VM_FAULT_xxx flags that give details about how the fault was handled. 472 * 473 * MM layer fills up gfp_mask for page allocations but fault handler might 474 * alter it if its implementation requires a different allocation context. 475 * 476 * pgoff should be used in favour of virtual_address, if possible. 477 */ 478 struct vm_fault { 479 const struct { 480 struct vm_area_struct *vma; /* Target VMA */ 481 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 482 pgoff_t pgoff; /* Logical page offset based on vma */ 483 unsigned long address; /* Faulting virtual address - masked */ 484 unsigned long real_address; /* Faulting virtual address - unmasked */ 485 }; 486 enum fault_flag flags; /* FAULT_FLAG_xxx flags 487 * XXX: should really be 'const' */ 488 pmd_t *pmd; /* Pointer to pmd entry matching 489 * the 'address' */ 490 pud_t *pud; /* Pointer to pud entry matching 491 * the 'address' 492 */ 493 union { 494 pte_t orig_pte; /* Value of PTE at the time of fault */ 495 pmd_t orig_pmd; /* Value of PMD at the time of fault, 496 * used by PMD fault only. 497 */ 498 }; 499 500 struct page *cow_page; /* Page handler may use for COW fault */ 501 struct page *page; /* ->fault handlers should return a 502 * page here, unless VM_FAULT_NOPAGE 503 * is set (which is also implied by 504 * VM_FAULT_ERROR). 505 */ 506 /* These three entries are valid only while holding ptl lock */ 507 pte_t *pte; /* Pointer to pte entry matching 508 * the 'address'. NULL if the page 509 * table hasn't been allocated. 510 */ 511 spinlock_t *ptl; /* Page table lock. 512 * Protects pte page table if 'pte' 513 * is not NULL, otherwise pmd. 514 */ 515 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 516 * vm_ops->map_pages() sets up a page 517 * table from atomic context. 518 * do_fault_around() pre-allocates 519 * page table to avoid allocation from 520 * atomic context. 521 */ 522 }; 523 524 /* page entry size for vm->huge_fault() */ 525 enum page_entry_size { 526 PE_SIZE_PTE = 0, 527 PE_SIZE_PMD, 528 PE_SIZE_PUD, 529 }; 530 531 /* 532 * These are the virtual MM functions - opening of an area, closing and 533 * unmapping it (needed to keep files on disk up-to-date etc), pointer 534 * to the functions called when a no-page or a wp-page exception occurs. 535 */ 536 struct vm_operations_struct { 537 void (*open)(struct vm_area_struct * area); 538 /** 539 * @close: Called when the VMA is being removed from the MM. 540 * Context: User context. May sleep. Caller holds mmap_lock. 541 */ 542 void (*close)(struct vm_area_struct * area); 543 /* Called any time before splitting to check if it's allowed */ 544 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 545 int (*mremap)(struct vm_area_struct *area); 546 /* 547 * Called by mprotect() to make driver-specific permission 548 * checks before mprotect() is finalised. The VMA must not 549 * be modified. Returns 0 if eprotect() can proceed. 550 */ 551 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 552 unsigned long end, unsigned long newflags); 553 vm_fault_t (*fault)(struct vm_fault *vmf); 554 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 555 enum page_entry_size pe_size); 556 vm_fault_t (*map_pages)(struct vm_fault *vmf, 557 pgoff_t start_pgoff, pgoff_t end_pgoff); 558 unsigned long (*pagesize)(struct vm_area_struct * area); 559 560 /* notification that a previously read-only page is about to become 561 * writable, if an error is returned it will cause a SIGBUS */ 562 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 563 564 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 565 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 566 567 /* called by access_process_vm when get_user_pages() fails, typically 568 * for use by special VMAs. See also generic_access_phys() for a generic 569 * implementation useful for any iomem mapping. 570 */ 571 int (*access)(struct vm_area_struct *vma, unsigned long addr, 572 void *buf, int len, int write); 573 574 /* Called by the /proc/PID/maps code to ask the vma whether it 575 * has a special name. Returning non-NULL will also cause this 576 * vma to be dumped unconditionally. */ 577 const char *(*name)(struct vm_area_struct *vma); 578 579 #ifdef CONFIG_NUMA 580 /* 581 * set_policy() op must add a reference to any non-NULL @new mempolicy 582 * to hold the policy upon return. Caller should pass NULL @new to 583 * remove a policy and fall back to surrounding context--i.e. do not 584 * install a MPOL_DEFAULT policy, nor the task or system default 585 * mempolicy. 586 */ 587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 588 589 /* 590 * get_policy() op must add reference [mpol_get()] to any policy at 591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 592 * in mm/mempolicy.c will do this automatically. 593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 596 * must return NULL--i.e., do not "fallback" to task or system default 597 * policy. 598 */ 599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 600 unsigned long addr); 601 #endif 602 /* 603 * Called by vm_normal_page() for special PTEs to find the 604 * page for @addr. This is useful if the default behavior 605 * (using pte_page()) would not find the correct page. 606 */ 607 struct page *(*find_special_page)(struct vm_area_struct *vma, 608 unsigned long addr); 609 }; 610 611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 612 { 613 static const struct vm_operations_struct dummy_vm_ops = {}; 614 615 memset(vma, 0, sizeof(*vma)); 616 vma->vm_mm = mm; 617 vma->vm_ops = &dummy_vm_ops; 618 INIT_LIST_HEAD(&vma->anon_vma_chain); 619 } 620 621 static inline void vma_set_anonymous(struct vm_area_struct *vma) 622 { 623 vma->vm_ops = NULL; 624 } 625 626 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 627 { 628 return !vma->vm_ops; 629 } 630 631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 632 { 633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 634 635 if (!maybe_stack) 636 return false; 637 638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 639 VM_STACK_INCOMPLETE_SETUP) 640 return true; 641 642 return false; 643 } 644 645 static inline bool vma_is_foreign(struct vm_area_struct *vma) 646 { 647 if (!current->mm) 648 return true; 649 650 if (current->mm != vma->vm_mm) 651 return true; 652 653 return false; 654 } 655 656 static inline bool vma_is_accessible(struct vm_area_struct *vma) 657 { 658 return vma->vm_flags & VM_ACCESS_FLAGS; 659 } 660 661 #ifdef CONFIG_SHMEM 662 /* 663 * The vma_is_shmem is not inline because it is used only by slow 664 * paths in userfault. 665 */ 666 bool vma_is_shmem(struct vm_area_struct *vma); 667 #else 668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 669 #endif 670 671 int vma_is_stack_for_current(struct vm_area_struct *vma); 672 673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 675 676 struct mmu_gather; 677 struct inode; 678 679 static inline unsigned int compound_order(struct page *page) 680 { 681 if (!PageHead(page)) 682 return 0; 683 return page[1].compound_order; 684 } 685 686 /** 687 * folio_order - The allocation order of a folio. 688 * @folio: The folio. 689 * 690 * A folio is composed of 2^order pages. See get_order() for the definition 691 * of order. 692 * 693 * Return: The order of the folio. 694 */ 695 static inline unsigned int folio_order(struct folio *folio) 696 { 697 return compound_order(&folio->page); 698 } 699 700 #include <linux/huge_mm.h> 701 702 /* 703 * Methods to modify the page usage count. 704 * 705 * What counts for a page usage: 706 * - cache mapping (page->mapping) 707 * - private data (page->private) 708 * - page mapped in a task's page tables, each mapping 709 * is counted separately 710 * 711 * Also, many kernel routines increase the page count before a critical 712 * routine so they can be sure the page doesn't go away from under them. 713 */ 714 715 /* 716 * Drop a ref, return true if the refcount fell to zero (the page has no users) 717 */ 718 static inline int put_page_testzero(struct page *page) 719 { 720 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 721 return page_ref_dec_and_test(page); 722 } 723 724 static inline int folio_put_testzero(struct folio *folio) 725 { 726 return put_page_testzero(&folio->page); 727 } 728 729 /* 730 * Try to grab a ref unless the page has a refcount of zero, return false if 731 * that is the case. 732 * This can be called when MMU is off so it must not access 733 * any of the virtual mappings. 734 */ 735 static inline bool get_page_unless_zero(struct page *page) 736 { 737 return page_ref_add_unless(page, 1, 0); 738 } 739 740 extern int page_is_ram(unsigned long pfn); 741 742 enum { 743 REGION_INTERSECTS, 744 REGION_DISJOINT, 745 REGION_MIXED, 746 }; 747 748 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 749 unsigned long desc); 750 751 /* Support for virtually mapped pages */ 752 struct page *vmalloc_to_page(const void *addr); 753 unsigned long vmalloc_to_pfn(const void *addr); 754 755 /* 756 * Determine if an address is within the vmalloc range 757 * 758 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 759 * is no special casing required. 760 */ 761 762 #ifndef is_ioremap_addr 763 #define is_ioremap_addr(x) is_vmalloc_addr(x) 764 #endif 765 766 #ifdef CONFIG_MMU 767 extern bool is_vmalloc_addr(const void *x); 768 extern int is_vmalloc_or_module_addr(const void *x); 769 #else 770 static inline bool is_vmalloc_addr(const void *x) 771 { 772 return false; 773 } 774 static inline int is_vmalloc_or_module_addr(const void *x) 775 { 776 return 0; 777 } 778 #endif 779 780 /* 781 * How many times the entire folio is mapped as a single unit (eg by a 782 * PMD or PUD entry). This is probably not what you want, except for 783 * debugging purposes; look at folio_mapcount() or page_mapcount() 784 * instead. 785 */ 786 static inline int folio_entire_mapcount(struct folio *folio) 787 { 788 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 789 return atomic_read(folio_mapcount_ptr(folio)) + 1; 790 } 791 792 /* 793 * Mapcount of compound page as a whole, does not include mapped sub-pages. 794 * 795 * Must be called only for compound pages. 796 */ 797 static inline int compound_mapcount(struct page *page) 798 { 799 return folio_entire_mapcount(page_folio(page)); 800 } 801 802 /* 803 * The atomic page->_mapcount, starts from -1: so that transitions 804 * both from it and to it can be tracked, using atomic_inc_and_test 805 * and atomic_add_negative(-1). 806 */ 807 static inline void page_mapcount_reset(struct page *page) 808 { 809 atomic_set(&(page)->_mapcount, -1); 810 } 811 812 int __page_mapcount(struct page *page); 813 814 /* 815 * Mapcount of 0-order page; when compound sub-page, includes 816 * compound_mapcount(). 817 * 818 * Result is undefined for pages which cannot be mapped into userspace. 819 * For example SLAB or special types of pages. See function page_has_type(). 820 * They use this place in struct page differently. 821 */ 822 static inline int page_mapcount(struct page *page) 823 { 824 if (unlikely(PageCompound(page))) 825 return __page_mapcount(page); 826 return atomic_read(&page->_mapcount) + 1; 827 } 828 829 int folio_mapcount(struct folio *folio); 830 831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 832 static inline int total_mapcount(struct page *page) 833 { 834 return folio_mapcount(page_folio(page)); 835 } 836 837 #else 838 static inline int total_mapcount(struct page *page) 839 { 840 return page_mapcount(page); 841 } 842 #endif 843 844 static inline struct page *virt_to_head_page(const void *x) 845 { 846 struct page *page = virt_to_page(x); 847 848 return compound_head(page); 849 } 850 851 static inline struct folio *virt_to_folio(const void *x) 852 { 853 struct page *page = virt_to_page(x); 854 855 return page_folio(page); 856 } 857 858 void __put_page(struct page *page); 859 860 void put_pages_list(struct list_head *pages); 861 862 void split_page(struct page *page, unsigned int order); 863 void folio_copy(struct folio *dst, struct folio *src); 864 865 unsigned long nr_free_buffer_pages(void); 866 867 /* 868 * Compound pages have a destructor function. Provide a 869 * prototype for that function and accessor functions. 870 * These are _only_ valid on the head of a compound page. 871 */ 872 typedef void compound_page_dtor(struct page *); 873 874 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 875 enum compound_dtor_id { 876 NULL_COMPOUND_DTOR, 877 COMPOUND_PAGE_DTOR, 878 #ifdef CONFIG_HUGETLB_PAGE 879 HUGETLB_PAGE_DTOR, 880 #endif 881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 882 TRANSHUGE_PAGE_DTOR, 883 #endif 884 NR_COMPOUND_DTORS, 885 }; 886 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 887 888 static inline void set_compound_page_dtor(struct page *page, 889 enum compound_dtor_id compound_dtor) 890 { 891 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 892 page[1].compound_dtor = compound_dtor; 893 } 894 895 static inline void destroy_compound_page(struct page *page) 896 { 897 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 898 compound_page_dtors[page[1].compound_dtor](page); 899 } 900 901 static inline int head_compound_pincount(struct page *head) 902 { 903 return atomic_read(compound_pincount_ptr(head)); 904 } 905 906 static inline void set_compound_order(struct page *page, unsigned int order) 907 { 908 page[1].compound_order = order; 909 #ifdef CONFIG_64BIT 910 page[1].compound_nr = 1U << order; 911 #endif 912 } 913 914 /* Returns the number of pages in this potentially compound page. */ 915 static inline unsigned long compound_nr(struct page *page) 916 { 917 if (!PageHead(page)) 918 return 1; 919 #ifdef CONFIG_64BIT 920 return page[1].compound_nr; 921 #else 922 return 1UL << compound_order(page); 923 #endif 924 } 925 926 /* Returns the number of bytes in this potentially compound page. */ 927 static inline unsigned long page_size(struct page *page) 928 { 929 return PAGE_SIZE << compound_order(page); 930 } 931 932 /* Returns the number of bits needed for the number of bytes in a page */ 933 static inline unsigned int page_shift(struct page *page) 934 { 935 return PAGE_SHIFT + compound_order(page); 936 } 937 938 /** 939 * thp_order - Order of a transparent huge page. 940 * @page: Head page of a transparent huge page. 941 */ 942 static inline unsigned int thp_order(struct page *page) 943 { 944 VM_BUG_ON_PGFLAGS(PageTail(page), page); 945 return compound_order(page); 946 } 947 948 /** 949 * thp_nr_pages - The number of regular pages in this huge page. 950 * @page: The head page of a huge page. 951 */ 952 static inline int thp_nr_pages(struct page *page) 953 { 954 VM_BUG_ON_PGFLAGS(PageTail(page), page); 955 return compound_nr(page); 956 } 957 958 /** 959 * thp_size - Size of a transparent huge page. 960 * @page: Head page of a transparent huge page. 961 * 962 * Return: Number of bytes in this page. 963 */ 964 static inline unsigned long thp_size(struct page *page) 965 { 966 return PAGE_SIZE << thp_order(page); 967 } 968 969 void free_compound_page(struct page *page); 970 971 #ifdef CONFIG_MMU 972 /* 973 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 974 * servicing faults for write access. In the normal case, do always want 975 * pte_mkwrite. But get_user_pages can cause write faults for mappings 976 * that do not have writing enabled, when used by access_process_vm. 977 */ 978 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 979 { 980 if (likely(vma->vm_flags & VM_WRITE)) 981 pte = pte_mkwrite(pte); 982 return pte; 983 } 984 985 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 986 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 987 988 vm_fault_t finish_fault(struct vm_fault *vmf); 989 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 990 #endif 991 992 /* 993 * Multiple processes may "see" the same page. E.g. for untouched 994 * mappings of /dev/null, all processes see the same page full of 995 * zeroes, and text pages of executables and shared libraries have 996 * only one copy in memory, at most, normally. 997 * 998 * For the non-reserved pages, page_count(page) denotes a reference count. 999 * page_count() == 0 means the page is free. page->lru is then used for 1000 * freelist management in the buddy allocator. 1001 * page_count() > 0 means the page has been allocated. 1002 * 1003 * Pages are allocated by the slab allocator in order to provide memory 1004 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1005 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1006 * unless a particular usage is carefully commented. (the responsibility of 1007 * freeing the kmalloc memory is the caller's, of course). 1008 * 1009 * A page may be used by anyone else who does a __get_free_page(). 1010 * In this case, page_count still tracks the references, and should only 1011 * be used through the normal accessor functions. The top bits of page->flags 1012 * and page->virtual store page management information, but all other fields 1013 * are unused and could be used privately, carefully. The management of this 1014 * page is the responsibility of the one who allocated it, and those who have 1015 * subsequently been given references to it. 1016 * 1017 * The other pages (we may call them "pagecache pages") are completely 1018 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1019 * The following discussion applies only to them. 1020 * 1021 * A pagecache page contains an opaque `private' member, which belongs to the 1022 * page's address_space. Usually, this is the address of a circular list of 1023 * the page's disk buffers. PG_private must be set to tell the VM to call 1024 * into the filesystem to release these pages. 1025 * 1026 * A page may belong to an inode's memory mapping. In this case, page->mapping 1027 * is the pointer to the inode, and page->index is the file offset of the page, 1028 * in units of PAGE_SIZE. 1029 * 1030 * If pagecache pages are not associated with an inode, they are said to be 1031 * anonymous pages. These may become associated with the swapcache, and in that 1032 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1033 * 1034 * In either case (swapcache or inode backed), the pagecache itself holds one 1035 * reference to the page. Setting PG_private should also increment the 1036 * refcount. The each user mapping also has a reference to the page. 1037 * 1038 * The pagecache pages are stored in a per-mapping radix tree, which is 1039 * rooted at mapping->i_pages, and indexed by offset. 1040 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1041 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1042 * 1043 * All pagecache pages may be subject to I/O: 1044 * - inode pages may need to be read from disk, 1045 * - inode pages which have been modified and are MAP_SHARED may need 1046 * to be written back to the inode on disk, 1047 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1048 * modified may need to be swapped out to swap space and (later) to be read 1049 * back into memory. 1050 */ 1051 1052 /* 1053 * The zone field is never updated after free_area_init_core() 1054 * sets it, so none of the operations on it need to be atomic. 1055 */ 1056 1057 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1058 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1059 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1060 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1061 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1062 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1063 1064 /* 1065 * Define the bit shifts to access each section. For non-existent 1066 * sections we define the shift as 0; that plus a 0 mask ensures 1067 * the compiler will optimise away reference to them. 1068 */ 1069 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1070 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1071 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1072 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1073 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1074 1075 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1076 #ifdef NODE_NOT_IN_PAGE_FLAGS 1077 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1078 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1079 SECTIONS_PGOFF : ZONES_PGOFF) 1080 #else 1081 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1082 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1083 NODES_PGOFF : ZONES_PGOFF) 1084 #endif 1085 1086 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1087 1088 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1089 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1090 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1091 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1092 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1093 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1094 1095 static inline enum zone_type page_zonenum(const struct page *page) 1096 { 1097 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1098 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1099 } 1100 1101 static inline enum zone_type folio_zonenum(const struct folio *folio) 1102 { 1103 return page_zonenum(&folio->page); 1104 } 1105 1106 #ifdef CONFIG_ZONE_DEVICE 1107 static inline bool is_zone_device_page(const struct page *page) 1108 { 1109 return page_zonenum(page) == ZONE_DEVICE; 1110 } 1111 extern void memmap_init_zone_device(struct zone *, unsigned long, 1112 unsigned long, struct dev_pagemap *); 1113 #else 1114 static inline bool is_zone_device_page(const struct page *page) 1115 { 1116 return false; 1117 } 1118 #endif 1119 1120 static inline bool folio_is_zone_device(const struct folio *folio) 1121 { 1122 return is_zone_device_page(&folio->page); 1123 } 1124 1125 static inline bool is_zone_movable_page(const struct page *page) 1126 { 1127 return page_zonenum(page) == ZONE_MOVABLE; 1128 } 1129 1130 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1131 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1132 1133 bool __put_devmap_managed_page(struct page *page); 1134 static inline bool put_devmap_managed_page(struct page *page) 1135 { 1136 if (!static_branch_unlikely(&devmap_managed_key)) 1137 return false; 1138 if (!is_zone_device_page(page)) 1139 return false; 1140 return __put_devmap_managed_page(page); 1141 } 1142 1143 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1144 static inline bool put_devmap_managed_page(struct page *page) 1145 { 1146 return false; 1147 } 1148 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1149 1150 /* 127: arbitrary random number, small enough to assemble well */ 1151 #define folio_ref_zero_or_close_to_overflow(folio) \ 1152 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1153 1154 /** 1155 * folio_get - Increment the reference count on a folio. 1156 * @folio: The folio. 1157 * 1158 * Context: May be called in any context, as long as you know that 1159 * you have a refcount on the folio. If you do not already have one, 1160 * folio_try_get() may be the right interface for you to use. 1161 */ 1162 static inline void folio_get(struct folio *folio) 1163 { 1164 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1165 folio_ref_inc(folio); 1166 } 1167 1168 static inline void get_page(struct page *page) 1169 { 1170 folio_get(page_folio(page)); 1171 } 1172 1173 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1174 1175 static inline __must_check bool try_get_page(struct page *page) 1176 { 1177 page = compound_head(page); 1178 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1179 return false; 1180 page_ref_inc(page); 1181 return true; 1182 } 1183 1184 /** 1185 * folio_put - Decrement the reference count on a folio. 1186 * @folio: The folio. 1187 * 1188 * If the folio's reference count reaches zero, the memory will be 1189 * released back to the page allocator and may be used by another 1190 * allocation immediately. Do not access the memory or the struct folio 1191 * after calling folio_put() unless you can be sure that it wasn't the 1192 * last reference. 1193 * 1194 * Context: May be called in process or interrupt context, but not in NMI 1195 * context. May be called while holding a spinlock. 1196 */ 1197 static inline void folio_put(struct folio *folio) 1198 { 1199 if (folio_put_testzero(folio)) 1200 __put_page(&folio->page); 1201 } 1202 1203 /** 1204 * folio_put_refs - Reduce the reference count on a folio. 1205 * @folio: The folio. 1206 * @refs: The amount to subtract from the folio's reference count. 1207 * 1208 * If the folio's reference count reaches zero, the memory will be 1209 * released back to the page allocator and may be used by another 1210 * allocation immediately. Do not access the memory or the struct folio 1211 * after calling folio_put_refs() unless you can be sure that these weren't 1212 * the last references. 1213 * 1214 * Context: May be called in process or interrupt context, but not in NMI 1215 * context. May be called while holding a spinlock. 1216 */ 1217 static inline void folio_put_refs(struct folio *folio, int refs) 1218 { 1219 if (folio_ref_sub_and_test(folio, refs)) 1220 __put_page(&folio->page); 1221 } 1222 1223 static inline void put_page(struct page *page) 1224 { 1225 struct folio *folio = page_folio(page); 1226 1227 /* 1228 * For some devmap managed pages we need to catch refcount transition 1229 * from 2 to 1: 1230 */ 1231 if (put_devmap_managed_page(&folio->page)) 1232 return; 1233 folio_put(folio); 1234 } 1235 1236 /* 1237 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1238 * the page's refcount so that two separate items are tracked: the original page 1239 * reference count, and also a new count of how many pin_user_pages() calls were 1240 * made against the page. ("gup-pinned" is another term for the latter). 1241 * 1242 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1243 * distinct from normal pages. As such, the unpin_user_page() call (and its 1244 * variants) must be used in order to release gup-pinned pages. 1245 * 1246 * Choice of value: 1247 * 1248 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1249 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1250 * simpler, due to the fact that adding an even power of two to the page 1251 * refcount has the effect of using only the upper N bits, for the code that 1252 * counts up using the bias value. This means that the lower bits are left for 1253 * the exclusive use of the original code that increments and decrements by one 1254 * (or at least, by much smaller values than the bias value). 1255 * 1256 * Of course, once the lower bits overflow into the upper bits (and this is 1257 * OK, because subtraction recovers the original values), then visual inspection 1258 * no longer suffices to directly view the separate counts. However, for normal 1259 * applications that don't have huge page reference counts, this won't be an 1260 * issue. 1261 * 1262 * Locking: the lockless algorithm described in folio_try_get_rcu() 1263 * provides safe operation for get_user_pages(), page_mkclean() and 1264 * other calls that race to set up page table entries. 1265 */ 1266 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1267 1268 void unpin_user_page(struct page *page); 1269 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1270 bool make_dirty); 1271 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1272 bool make_dirty); 1273 void unpin_user_pages(struct page **pages, unsigned long npages); 1274 1275 static inline bool is_cow_mapping(vm_flags_t flags) 1276 { 1277 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1278 } 1279 1280 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1281 #define SECTION_IN_PAGE_FLAGS 1282 #endif 1283 1284 /* 1285 * The identification function is mainly used by the buddy allocator for 1286 * determining if two pages could be buddies. We are not really identifying 1287 * the zone since we could be using the section number id if we do not have 1288 * node id available in page flags. 1289 * We only guarantee that it will return the same value for two combinable 1290 * pages in a zone. 1291 */ 1292 static inline int page_zone_id(struct page *page) 1293 { 1294 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1295 } 1296 1297 #ifdef NODE_NOT_IN_PAGE_FLAGS 1298 extern int page_to_nid(const struct page *page); 1299 #else 1300 static inline int page_to_nid(const struct page *page) 1301 { 1302 struct page *p = (struct page *)page; 1303 1304 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1305 } 1306 #endif 1307 1308 static inline int folio_nid(const struct folio *folio) 1309 { 1310 return page_to_nid(&folio->page); 1311 } 1312 1313 #ifdef CONFIG_NUMA_BALANCING 1314 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1315 { 1316 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1317 } 1318 1319 static inline int cpupid_to_pid(int cpupid) 1320 { 1321 return cpupid & LAST__PID_MASK; 1322 } 1323 1324 static inline int cpupid_to_cpu(int cpupid) 1325 { 1326 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1327 } 1328 1329 static inline int cpupid_to_nid(int cpupid) 1330 { 1331 return cpu_to_node(cpupid_to_cpu(cpupid)); 1332 } 1333 1334 static inline bool cpupid_pid_unset(int cpupid) 1335 { 1336 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1337 } 1338 1339 static inline bool cpupid_cpu_unset(int cpupid) 1340 { 1341 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1342 } 1343 1344 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1345 { 1346 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1347 } 1348 1349 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1350 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1351 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1352 { 1353 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1354 } 1355 1356 static inline int page_cpupid_last(struct page *page) 1357 { 1358 return page->_last_cpupid; 1359 } 1360 static inline void page_cpupid_reset_last(struct page *page) 1361 { 1362 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1363 } 1364 #else 1365 static inline int page_cpupid_last(struct page *page) 1366 { 1367 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1368 } 1369 1370 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1371 1372 static inline void page_cpupid_reset_last(struct page *page) 1373 { 1374 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1375 } 1376 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1377 #else /* !CONFIG_NUMA_BALANCING */ 1378 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1379 { 1380 return page_to_nid(page); /* XXX */ 1381 } 1382 1383 static inline int page_cpupid_last(struct page *page) 1384 { 1385 return page_to_nid(page); /* XXX */ 1386 } 1387 1388 static inline int cpupid_to_nid(int cpupid) 1389 { 1390 return -1; 1391 } 1392 1393 static inline int cpupid_to_pid(int cpupid) 1394 { 1395 return -1; 1396 } 1397 1398 static inline int cpupid_to_cpu(int cpupid) 1399 { 1400 return -1; 1401 } 1402 1403 static inline int cpu_pid_to_cpupid(int nid, int pid) 1404 { 1405 return -1; 1406 } 1407 1408 static inline bool cpupid_pid_unset(int cpupid) 1409 { 1410 return true; 1411 } 1412 1413 static inline void page_cpupid_reset_last(struct page *page) 1414 { 1415 } 1416 1417 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1418 { 1419 return false; 1420 } 1421 #endif /* CONFIG_NUMA_BALANCING */ 1422 1423 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1424 1425 /* 1426 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1427 * setting tags for all pages to native kernel tag value 0xff, as the default 1428 * value 0x00 maps to 0xff. 1429 */ 1430 1431 static inline u8 page_kasan_tag(const struct page *page) 1432 { 1433 u8 tag = 0xff; 1434 1435 if (kasan_enabled()) { 1436 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1437 tag ^= 0xff; 1438 } 1439 1440 return tag; 1441 } 1442 1443 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1444 { 1445 unsigned long old_flags, flags; 1446 1447 if (!kasan_enabled()) 1448 return; 1449 1450 tag ^= 0xff; 1451 old_flags = READ_ONCE(page->flags); 1452 do { 1453 flags = old_flags; 1454 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1455 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1456 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1457 } 1458 1459 static inline void page_kasan_tag_reset(struct page *page) 1460 { 1461 if (kasan_enabled()) 1462 page_kasan_tag_set(page, 0xff); 1463 } 1464 1465 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1466 1467 static inline u8 page_kasan_tag(const struct page *page) 1468 { 1469 return 0xff; 1470 } 1471 1472 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1473 static inline void page_kasan_tag_reset(struct page *page) { } 1474 1475 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1476 1477 static inline struct zone *page_zone(const struct page *page) 1478 { 1479 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1480 } 1481 1482 static inline pg_data_t *page_pgdat(const struct page *page) 1483 { 1484 return NODE_DATA(page_to_nid(page)); 1485 } 1486 1487 static inline struct zone *folio_zone(const struct folio *folio) 1488 { 1489 return page_zone(&folio->page); 1490 } 1491 1492 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1493 { 1494 return page_pgdat(&folio->page); 1495 } 1496 1497 #ifdef SECTION_IN_PAGE_FLAGS 1498 static inline void set_page_section(struct page *page, unsigned long section) 1499 { 1500 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1501 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1502 } 1503 1504 static inline unsigned long page_to_section(const struct page *page) 1505 { 1506 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1507 } 1508 #endif 1509 1510 /** 1511 * folio_pfn - Return the Page Frame Number of a folio. 1512 * @folio: The folio. 1513 * 1514 * A folio may contain multiple pages. The pages have consecutive 1515 * Page Frame Numbers. 1516 * 1517 * Return: The Page Frame Number of the first page in the folio. 1518 */ 1519 static inline unsigned long folio_pfn(struct folio *folio) 1520 { 1521 return page_to_pfn(&folio->page); 1522 } 1523 1524 static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1525 { 1526 return &folio_page(folio, 1)->compound_pincount; 1527 } 1528 1529 /** 1530 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1531 * @folio: The folio. 1532 * 1533 * This function checks if a folio has been pinned via a call to 1534 * a function in the pin_user_pages() family. 1535 * 1536 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1537 * because it means "definitely not pinned for DMA", but true means "probably 1538 * pinned for DMA, but possibly a false positive due to having at least 1539 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1540 * 1541 * False positives are OK, because: a) it's unlikely for a folio to 1542 * get that many refcounts, and b) all the callers of this routine are 1543 * expected to be able to deal gracefully with a false positive. 1544 * 1545 * For large folios, the result will be exactly correct. That's because 1546 * we have more tracking data available: the compound_pincount is used 1547 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1548 * 1549 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1550 * 1551 * Return: True, if it is likely that the page has been "dma-pinned". 1552 * False, if the page is definitely not dma-pinned. 1553 */ 1554 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1555 { 1556 if (folio_test_large(folio)) 1557 return atomic_read(folio_pincount_ptr(folio)) > 0; 1558 1559 /* 1560 * folio_ref_count() is signed. If that refcount overflows, then 1561 * folio_ref_count() returns a negative value, and callers will avoid 1562 * further incrementing the refcount. 1563 * 1564 * Here, for that overflow case, use the sign bit to count a little 1565 * bit higher via unsigned math, and thus still get an accurate result. 1566 */ 1567 return ((unsigned int)folio_ref_count(folio)) >= 1568 GUP_PIN_COUNTING_BIAS; 1569 } 1570 1571 static inline bool page_maybe_dma_pinned(struct page *page) 1572 { 1573 return folio_maybe_dma_pinned(page_folio(page)); 1574 } 1575 1576 /* 1577 * This should most likely only be called during fork() to see whether we 1578 * should break the cow immediately for a page on the src mm. 1579 */ 1580 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1581 struct page *page) 1582 { 1583 if (!is_cow_mapping(vma->vm_flags)) 1584 return false; 1585 1586 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1587 return false; 1588 1589 return page_maybe_dma_pinned(page); 1590 } 1591 1592 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1593 #ifdef CONFIG_MIGRATION 1594 static inline bool is_pinnable_page(struct page *page) 1595 { 1596 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1597 is_zero_pfn(page_to_pfn(page)); 1598 } 1599 #else 1600 static inline bool is_pinnable_page(struct page *page) 1601 { 1602 return true; 1603 } 1604 #endif 1605 1606 static inline bool folio_is_pinnable(struct folio *folio) 1607 { 1608 return is_pinnable_page(&folio->page); 1609 } 1610 1611 static inline void set_page_zone(struct page *page, enum zone_type zone) 1612 { 1613 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1614 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1615 } 1616 1617 static inline void set_page_node(struct page *page, unsigned long node) 1618 { 1619 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1620 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1621 } 1622 1623 static inline void set_page_links(struct page *page, enum zone_type zone, 1624 unsigned long node, unsigned long pfn) 1625 { 1626 set_page_zone(page, zone); 1627 set_page_node(page, node); 1628 #ifdef SECTION_IN_PAGE_FLAGS 1629 set_page_section(page, pfn_to_section_nr(pfn)); 1630 #endif 1631 } 1632 1633 /** 1634 * folio_nr_pages - The number of pages in the folio. 1635 * @folio: The folio. 1636 * 1637 * Return: A positive power of two. 1638 */ 1639 static inline long folio_nr_pages(struct folio *folio) 1640 { 1641 return compound_nr(&folio->page); 1642 } 1643 1644 /** 1645 * folio_next - Move to the next physical folio. 1646 * @folio: The folio we're currently operating on. 1647 * 1648 * If you have physically contiguous memory which may span more than 1649 * one folio (eg a &struct bio_vec), use this function to move from one 1650 * folio to the next. Do not use it if the memory is only virtually 1651 * contiguous as the folios are almost certainly not adjacent to each 1652 * other. This is the folio equivalent to writing ``page++``. 1653 * 1654 * Context: We assume that the folios are refcounted and/or locked at a 1655 * higher level and do not adjust the reference counts. 1656 * Return: The next struct folio. 1657 */ 1658 static inline struct folio *folio_next(struct folio *folio) 1659 { 1660 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1661 } 1662 1663 /** 1664 * folio_shift - The size of the memory described by this folio. 1665 * @folio: The folio. 1666 * 1667 * A folio represents a number of bytes which is a power-of-two in size. 1668 * This function tells you which power-of-two the folio is. See also 1669 * folio_size() and folio_order(). 1670 * 1671 * Context: The caller should have a reference on the folio to prevent 1672 * it from being split. It is not necessary for the folio to be locked. 1673 * Return: The base-2 logarithm of the size of this folio. 1674 */ 1675 static inline unsigned int folio_shift(struct folio *folio) 1676 { 1677 return PAGE_SHIFT + folio_order(folio); 1678 } 1679 1680 /** 1681 * folio_size - The number of bytes in a folio. 1682 * @folio: The folio. 1683 * 1684 * Context: The caller should have a reference on the folio to prevent 1685 * it from being split. It is not necessary for the folio to be locked. 1686 * Return: The number of bytes in this folio. 1687 */ 1688 static inline size_t folio_size(struct folio *folio) 1689 { 1690 return PAGE_SIZE << folio_order(folio); 1691 } 1692 1693 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1694 static inline int arch_make_page_accessible(struct page *page) 1695 { 1696 return 0; 1697 } 1698 #endif 1699 1700 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1701 static inline int arch_make_folio_accessible(struct folio *folio) 1702 { 1703 int ret; 1704 long i, nr = folio_nr_pages(folio); 1705 1706 for (i = 0; i < nr; i++) { 1707 ret = arch_make_page_accessible(folio_page(folio, i)); 1708 if (ret) 1709 break; 1710 } 1711 1712 return ret; 1713 } 1714 #endif 1715 1716 /* 1717 * Some inline functions in vmstat.h depend on page_zone() 1718 */ 1719 #include <linux/vmstat.h> 1720 1721 static __always_inline void *lowmem_page_address(const struct page *page) 1722 { 1723 return page_to_virt(page); 1724 } 1725 1726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1727 #define HASHED_PAGE_VIRTUAL 1728 #endif 1729 1730 #if defined(WANT_PAGE_VIRTUAL) 1731 static inline void *page_address(const struct page *page) 1732 { 1733 return page->virtual; 1734 } 1735 static inline void set_page_address(struct page *page, void *address) 1736 { 1737 page->virtual = address; 1738 } 1739 #define page_address_init() do { } while(0) 1740 #endif 1741 1742 #if defined(HASHED_PAGE_VIRTUAL) 1743 void *page_address(const struct page *page); 1744 void set_page_address(struct page *page, void *virtual); 1745 void page_address_init(void); 1746 #endif 1747 1748 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1749 #define page_address(page) lowmem_page_address(page) 1750 #define set_page_address(page, address) do { } while(0) 1751 #define page_address_init() do { } while(0) 1752 #endif 1753 1754 static inline void *folio_address(const struct folio *folio) 1755 { 1756 return page_address(&folio->page); 1757 } 1758 1759 extern void *page_rmapping(struct page *page); 1760 extern pgoff_t __page_file_index(struct page *page); 1761 1762 /* 1763 * Return the pagecache index of the passed page. Regular pagecache pages 1764 * use ->index whereas swapcache pages use swp_offset(->private) 1765 */ 1766 static inline pgoff_t page_index(struct page *page) 1767 { 1768 if (unlikely(PageSwapCache(page))) 1769 return __page_file_index(page); 1770 return page->index; 1771 } 1772 1773 bool page_mapped(struct page *page); 1774 bool folio_mapped(struct folio *folio); 1775 1776 /* 1777 * Return true only if the page has been allocated with 1778 * ALLOC_NO_WATERMARKS and the low watermark was not 1779 * met implying that the system is under some pressure. 1780 */ 1781 static inline bool page_is_pfmemalloc(const struct page *page) 1782 { 1783 /* 1784 * lru.next has bit 1 set if the page is allocated from the 1785 * pfmemalloc reserves. Callers may simply overwrite it if 1786 * they do not need to preserve that information. 1787 */ 1788 return (uintptr_t)page->lru.next & BIT(1); 1789 } 1790 1791 /* 1792 * Only to be called by the page allocator on a freshly allocated 1793 * page. 1794 */ 1795 static inline void set_page_pfmemalloc(struct page *page) 1796 { 1797 page->lru.next = (void *)BIT(1); 1798 } 1799 1800 static inline void clear_page_pfmemalloc(struct page *page) 1801 { 1802 page->lru.next = NULL; 1803 } 1804 1805 /* 1806 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1807 */ 1808 extern void pagefault_out_of_memory(void); 1809 1810 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1811 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1812 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1813 1814 /* 1815 * Flags passed to show_mem() and show_free_areas() to suppress output in 1816 * various contexts. 1817 */ 1818 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1819 1820 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1821 1822 #ifdef CONFIG_MMU 1823 extern bool can_do_mlock(void); 1824 #else 1825 static inline bool can_do_mlock(void) { return false; } 1826 #endif 1827 extern int user_shm_lock(size_t, struct ucounts *); 1828 extern void user_shm_unlock(size_t, struct ucounts *); 1829 1830 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1831 pte_t pte); 1832 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1833 pmd_t pmd); 1834 1835 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1836 unsigned long size); 1837 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1838 unsigned long size); 1839 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1840 unsigned long start, unsigned long end); 1841 1842 struct mmu_notifier_range; 1843 1844 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1845 unsigned long end, unsigned long floor, unsigned long ceiling); 1846 int 1847 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1848 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1849 struct mmu_notifier_range *range, pte_t **ptepp, 1850 pmd_t **pmdpp, spinlock_t **ptlp); 1851 int follow_pte(struct mm_struct *mm, unsigned long address, 1852 pte_t **ptepp, spinlock_t **ptlp); 1853 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1854 unsigned long *pfn); 1855 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1856 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1857 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1858 void *buf, int len, int write); 1859 1860 extern void truncate_pagecache(struct inode *inode, loff_t new); 1861 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1862 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1863 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1864 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1865 1866 #ifdef CONFIG_MMU 1867 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1868 unsigned long address, unsigned int flags, 1869 struct pt_regs *regs); 1870 extern int fixup_user_fault(struct mm_struct *mm, 1871 unsigned long address, unsigned int fault_flags, 1872 bool *unlocked); 1873 void unmap_mapping_pages(struct address_space *mapping, 1874 pgoff_t start, pgoff_t nr, bool even_cows); 1875 void unmap_mapping_range(struct address_space *mapping, 1876 loff_t const holebegin, loff_t const holelen, int even_cows); 1877 #else 1878 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1879 unsigned long address, unsigned int flags, 1880 struct pt_regs *regs) 1881 { 1882 /* should never happen if there's no MMU */ 1883 BUG(); 1884 return VM_FAULT_SIGBUS; 1885 } 1886 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1887 unsigned int fault_flags, bool *unlocked) 1888 { 1889 /* should never happen if there's no MMU */ 1890 BUG(); 1891 return -EFAULT; 1892 } 1893 static inline void unmap_mapping_pages(struct address_space *mapping, 1894 pgoff_t start, pgoff_t nr, bool even_cows) { } 1895 static inline void unmap_mapping_range(struct address_space *mapping, 1896 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1897 #endif 1898 1899 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1900 loff_t const holebegin, loff_t const holelen) 1901 { 1902 unmap_mapping_range(mapping, holebegin, holelen, 0); 1903 } 1904 1905 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1906 void *buf, int len, unsigned int gup_flags); 1907 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1908 void *buf, int len, unsigned int gup_flags); 1909 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1910 void *buf, int len, unsigned int gup_flags); 1911 1912 long get_user_pages_remote(struct mm_struct *mm, 1913 unsigned long start, unsigned long nr_pages, 1914 unsigned int gup_flags, struct page **pages, 1915 struct vm_area_struct **vmas, int *locked); 1916 long pin_user_pages_remote(struct mm_struct *mm, 1917 unsigned long start, unsigned long nr_pages, 1918 unsigned int gup_flags, struct page **pages, 1919 struct vm_area_struct **vmas, int *locked); 1920 long get_user_pages(unsigned long start, unsigned long nr_pages, 1921 unsigned int gup_flags, struct page **pages, 1922 struct vm_area_struct **vmas); 1923 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1924 unsigned int gup_flags, struct page **pages, 1925 struct vm_area_struct **vmas); 1926 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1927 struct page **pages, unsigned int gup_flags); 1928 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1929 struct page **pages, unsigned int gup_flags); 1930 1931 int get_user_pages_fast(unsigned long start, int nr_pages, 1932 unsigned int gup_flags, struct page **pages); 1933 int pin_user_pages_fast(unsigned long start, int nr_pages, 1934 unsigned int gup_flags, struct page **pages); 1935 1936 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1937 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1938 struct task_struct *task, bool bypass_rlim); 1939 1940 struct kvec; 1941 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1942 struct page **pages); 1943 struct page *get_dump_page(unsigned long addr); 1944 1945 bool folio_mark_dirty(struct folio *folio); 1946 bool set_page_dirty(struct page *page); 1947 int set_page_dirty_lock(struct page *page); 1948 1949 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1950 1951 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1952 unsigned long old_addr, struct vm_area_struct *new_vma, 1953 unsigned long new_addr, unsigned long len, 1954 bool need_rmap_locks); 1955 1956 /* 1957 * Flags used by change_protection(). For now we make it a bitmap so 1958 * that we can pass in multiple flags just like parameters. However 1959 * for now all the callers are only use one of the flags at the same 1960 * time. 1961 */ 1962 /* Whether we should allow dirty bit accounting */ 1963 #define MM_CP_DIRTY_ACCT (1UL << 0) 1964 /* Whether this protection change is for NUMA hints */ 1965 #define MM_CP_PROT_NUMA (1UL << 1) 1966 /* Whether this change is for write protecting */ 1967 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1968 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1969 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1970 MM_CP_UFFD_WP_RESOLVE) 1971 1972 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1973 unsigned long end, pgprot_t newprot, 1974 unsigned long cp_flags); 1975 extern int mprotect_fixup(struct vm_area_struct *vma, 1976 struct vm_area_struct **pprev, unsigned long start, 1977 unsigned long end, unsigned long newflags); 1978 1979 /* 1980 * doesn't attempt to fault and will return short. 1981 */ 1982 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1983 unsigned int gup_flags, struct page **pages); 1984 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1985 unsigned int gup_flags, struct page **pages); 1986 1987 static inline bool get_user_page_fast_only(unsigned long addr, 1988 unsigned int gup_flags, struct page **pagep) 1989 { 1990 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1991 } 1992 /* 1993 * per-process(per-mm_struct) statistics. 1994 */ 1995 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1996 { 1997 long val = atomic_long_read(&mm->rss_stat.count[member]); 1998 1999 #ifdef SPLIT_RSS_COUNTING 2000 /* 2001 * counter is updated in asynchronous manner and may go to minus. 2002 * But it's never be expected number for users. 2003 */ 2004 if (val < 0) 2005 val = 0; 2006 #endif 2007 return (unsigned long)val; 2008 } 2009 2010 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2011 2012 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2013 { 2014 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2015 2016 mm_trace_rss_stat(mm, member, count); 2017 } 2018 2019 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2020 { 2021 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2022 2023 mm_trace_rss_stat(mm, member, count); 2024 } 2025 2026 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2027 { 2028 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2029 2030 mm_trace_rss_stat(mm, member, count); 2031 } 2032 2033 /* Optimized variant when page is already known not to be PageAnon */ 2034 static inline int mm_counter_file(struct page *page) 2035 { 2036 if (PageSwapBacked(page)) 2037 return MM_SHMEMPAGES; 2038 return MM_FILEPAGES; 2039 } 2040 2041 static inline int mm_counter(struct page *page) 2042 { 2043 if (PageAnon(page)) 2044 return MM_ANONPAGES; 2045 return mm_counter_file(page); 2046 } 2047 2048 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2049 { 2050 return get_mm_counter(mm, MM_FILEPAGES) + 2051 get_mm_counter(mm, MM_ANONPAGES) + 2052 get_mm_counter(mm, MM_SHMEMPAGES); 2053 } 2054 2055 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2056 { 2057 return max(mm->hiwater_rss, get_mm_rss(mm)); 2058 } 2059 2060 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2061 { 2062 return max(mm->hiwater_vm, mm->total_vm); 2063 } 2064 2065 static inline void update_hiwater_rss(struct mm_struct *mm) 2066 { 2067 unsigned long _rss = get_mm_rss(mm); 2068 2069 if ((mm)->hiwater_rss < _rss) 2070 (mm)->hiwater_rss = _rss; 2071 } 2072 2073 static inline void update_hiwater_vm(struct mm_struct *mm) 2074 { 2075 if (mm->hiwater_vm < mm->total_vm) 2076 mm->hiwater_vm = mm->total_vm; 2077 } 2078 2079 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2080 { 2081 mm->hiwater_rss = get_mm_rss(mm); 2082 } 2083 2084 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2085 struct mm_struct *mm) 2086 { 2087 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2088 2089 if (*maxrss < hiwater_rss) 2090 *maxrss = hiwater_rss; 2091 } 2092 2093 #if defined(SPLIT_RSS_COUNTING) 2094 void sync_mm_rss(struct mm_struct *mm); 2095 #else 2096 static inline void sync_mm_rss(struct mm_struct *mm) 2097 { 2098 } 2099 #endif 2100 2101 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2102 static inline int pte_special(pte_t pte) 2103 { 2104 return 0; 2105 } 2106 2107 static inline pte_t pte_mkspecial(pte_t pte) 2108 { 2109 return pte; 2110 } 2111 #endif 2112 2113 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2114 static inline int pte_devmap(pte_t pte) 2115 { 2116 return 0; 2117 } 2118 #endif 2119 2120 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2121 2122 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2123 spinlock_t **ptl); 2124 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2125 spinlock_t **ptl) 2126 { 2127 pte_t *ptep; 2128 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2129 return ptep; 2130 } 2131 2132 #ifdef __PAGETABLE_P4D_FOLDED 2133 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2134 unsigned long address) 2135 { 2136 return 0; 2137 } 2138 #else 2139 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2140 #endif 2141 2142 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2143 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2144 unsigned long address) 2145 { 2146 return 0; 2147 } 2148 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2149 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2150 2151 #else 2152 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2153 2154 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2155 { 2156 if (mm_pud_folded(mm)) 2157 return; 2158 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2159 } 2160 2161 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2162 { 2163 if (mm_pud_folded(mm)) 2164 return; 2165 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2166 } 2167 #endif 2168 2169 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2170 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2171 unsigned long address) 2172 { 2173 return 0; 2174 } 2175 2176 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2177 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2178 2179 #else 2180 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2181 2182 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2183 { 2184 if (mm_pmd_folded(mm)) 2185 return; 2186 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2187 } 2188 2189 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2190 { 2191 if (mm_pmd_folded(mm)) 2192 return; 2193 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2194 } 2195 #endif 2196 2197 #ifdef CONFIG_MMU 2198 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2199 { 2200 atomic_long_set(&mm->pgtables_bytes, 0); 2201 } 2202 2203 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2204 { 2205 return atomic_long_read(&mm->pgtables_bytes); 2206 } 2207 2208 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2209 { 2210 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2211 } 2212 2213 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2214 { 2215 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2216 } 2217 #else 2218 2219 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2220 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2221 { 2222 return 0; 2223 } 2224 2225 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2226 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2227 #endif 2228 2229 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2230 int __pte_alloc_kernel(pmd_t *pmd); 2231 2232 #if defined(CONFIG_MMU) 2233 2234 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2235 unsigned long address) 2236 { 2237 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2238 NULL : p4d_offset(pgd, address); 2239 } 2240 2241 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2242 unsigned long address) 2243 { 2244 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2245 NULL : pud_offset(p4d, address); 2246 } 2247 2248 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2249 { 2250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2251 NULL: pmd_offset(pud, address); 2252 } 2253 #endif /* CONFIG_MMU */ 2254 2255 #if USE_SPLIT_PTE_PTLOCKS 2256 #if ALLOC_SPLIT_PTLOCKS 2257 void __init ptlock_cache_init(void); 2258 extern bool ptlock_alloc(struct page *page); 2259 extern void ptlock_free(struct page *page); 2260 2261 static inline spinlock_t *ptlock_ptr(struct page *page) 2262 { 2263 return page->ptl; 2264 } 2265 #else /* ALLOC_SPLIT_PTLOCKS */ 2266 static inline void ptlock_cache_init(void) 2267 { 2268 } 2269 2270 static inline bool ptlock_alloc(struct page *page) 2271 { 2272 return true; 2273 } 2274 2275 static inline void ptlock_free(struct page *page) 2276 { 2277 } 2278 2279 static inline spinlock_t *ptlock_ptr(struct page *page) 2280 { 2281 return &page->ptl; 2282 } 2283 #endif /* ALLOC_SPLIT_PTLOCKS */ 2284 2285 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2286 { 2287 return ptlock_ptr(pmd_page(*pmd)); 2288 } 2289 2290 static inline bool ptlock_init(struct page *page) 2291 { 2292 /* 2293 * prep_new_page() initialize page->private (and therefore page->ptl) 2294 * with 0. Make sure nobody took it in use in between. 2295 * 2296 * It can happen if arch try to use slab for page table allocation: 2297 * slab code uses page->slab_cache, which share storage with page->ptl. 2298 */ 2299 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2300 if (!ptlock_alloc(page)) 2301 return false; 2302 spin_lock_init(ptlock_ptr(page)); 2303 return true; 2304 } 2305 2306 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2307 /* 2308 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2309 */ 2310 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2311 { 2312 return &mm->page_table_lock; 2313 } 2314 static inline void ptlock_cache_init(void) {} 2315 static inline bool ptlock_init(struct page *page) { return true; } 2316 static inline void ptlock_free(struct page *page) {} 2317 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2318 2319 static inline void pgtable_init(void) 2320 { 2321 ptlock_cache_init(); 2322 pgtable_cache_init(); 2323 } 2324 2325 static inline bool pgtable_pte_page_ctor(struct page *page) 2326 { 2327 if (!ptlock_init(page)) 2328 return false; 2329 __SetPageTable(page); 2330 inc_lruvec_page_state(page, NR_PAGETABLE); 2331 return true; 2332 } 2333 2334 static inline void pgtable_pte_page_dtor(struct page *page) 2335 { 2336 ptlock_free(page); 2337 __ClearPageTable(page); 2338 dec_lruvec_page_state(page, NR_PAGETABLE); 2339 } 2340 2341 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2342 ({ \ 2343 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2344 pte_t *__pte = pte_offset_map(pmd, address); \ 2345 *(ptlp) = __ptl; \ 2346 spin_lock(__ptl); \ 2347 __pte; \ 2348 }) 2349 2350 #define pte_unmap_unlock(pte, ptl) do { \ 2351 spin_unlock(ptl); \ 2352 pte_unmap(pte); \ 2353 } while (0) 2354 2355 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2356 2357 #define pte_alloc_map(mm, pmd, address) \ 2358 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2359 2360 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2361 (pte_alloc(mm, pmd) ? \ 2362 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2363 2364 #define pte_alloc_kernel(pmd, address) \ 2365 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2366 NULL: pte_offset_kernel(pmd, address)) 2367 2368 #if USE_SPLIT_PMD_PTLOCKS 2369 2370 static struct page *pmd_to_page(pmd_t *pmd) 2371 { 2372 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2373 return virt_to_page((void *)((unsigned long) pmd & mask)); 2374 } 2375 2376 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2377 { 2378 return ptlock_ptr(pmd_to_page(pmd)); 2379 } 2380 2381 static inline bool pmd_ptlock_init(struct page *page) 2382 { 2383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2384 page->pmd_huge_pte = NULL; 2385 #endif 2386 return ptlock_init(page); 2387 } 2388 2389 static inline void pmd_ptlock_free(struct page *page) 2390 { 2391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2392 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2393 #endif 2394 ptlock_free(page); 2395 } 2396 2397 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2398 2399 #else 2400 2401 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2402 { 2403 return &mm->page_table_lock; 2404 } 2405 2406 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2407 static inline void pmd_ptlock_free(struct page *page) {} 2408 2409 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2410 2411 #endif 2412 2413 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2414 { 2415 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2416 spin_lock(ptl); 2417 return ptl; 2418 } 2419 2420 static inline bool pgtable_pmd_page_ctor(struct page *page) 2421 { 2422 if (!pmd_ptlock_init(page)) 2423 return false; 2424 __SetPageTable(page); 2425 inc_lruvec_page_state(page, NR_PAGETABLE); 2426 return true; 2427 } 2428 2429 static inline void pgtable_pmd_page_dtor(struct page *page) 2430 { 2431 pmd_ptlock_free(page); 2432 __ClearPageTable(page); 2433 dec_lruvec_page_state(page, NR_PAGETABLE); 2434 } 2435 2436 /* 2437 * No scalability reason to split PUD locks yet, but follow the same pattern 2438 * as the PMD locks to make it easier if we decide to. The VM should not be 2439 * considered ready to switch to split PUD locks yet; there may be places 2440 * which need to be converted from page_table_lock. 2441 */ 2442 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2443 { 2444 return &mm->page_table_lock; 2445 } 2446 2447 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2448 { 2449 spinlock_t *ptl = pud_lockptr(mm, pud); 2450 2451 spin_lock(ptl); 2452 return ptl; 2453 } 2454 2455 extern void __init pagecache_init(void); 2456 extern void free_initmem(void); 2457 2458 /* 2459 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2460 * into the buddy system. The freed pages will be poisoned with pattern 2461 * "poison" if it's within range [0, UCHAR_MAX]. 2462 * Return pages freed into the buddy system. 2463 */ 2464 extern unsigned long free_reserved_area(void *start, void *end, 2465 int poison, const char *s); 2466 2467 extern void adjust_managed_page_count(struct page *page, long count); 2468 extern void mem_init_print_info(void); 2469 2470 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2471 2472 /* Free the reserved page into the buddy system, so it gets managed. */ 2473 static inline void free_reserved_page(struct page *page) 2474 { 2475 ClearPageReserved(page); 2476 init_page_count(page); 2477 __free_page(page); 2478 adjust_managed_page_count(page, 1); 2479 } 2480 #define free_highmem_page(page) free_reserved_page(page) 2481 2482 static inline void mark_page_reserved(struct page *page) 2483 { 2484 SetPageReserved(page); 2485 adjust_managed_page_count(page, -1); 2486 } 2487 2488 /* 2489 * Default method to free all the __init memory into the buddy system. 2490 * The freed pages will be poisoned with pattern "poison" if it's within 2491 * range [0, UCHAR_MAX]. 2492 * Return pages freed into the buddy system. 2493 */ 2494 static inline unsigned long free_initmem_default(int poison) 2495 { 2496 extern char __init_begin[], __init_end[]; 2497 2498 return free_reserved_area(&__init_begin, &__init_end, 2499 poison, "unused kernel image (initmem)"); 2500 } 2501 2502 static inline unsigned long get_num_physpages(void) 2503 { 2504 int nid; 2505 unsigned long phys_pages = 0; 2506 2507 for_each_online_node(nid) 2508 phys_pages += node_present_pages(nid); 2509 2510 return phys_pages; 2511 } 2512 2513 /* 2514 * Using memblock node mappings, an architecture may initialise its 2515 * zones, allocate the backing mem_map and account for memory holes in an 2516 * architecture independent manner. 2517 * 2518 * An architecture is expected to register range of page frames backed by 2519 * physical memory with memblock_add[_node]() before calling 2520 * free_area_init() passing in the PFN each zone ends at. At a basic 2521 * usage, an architecture is expected to do something like 2522 * 2523 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2524 * max_highmem_pfn}; 2525 * for_each_valid_physical_page_range() 2526 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2527 * free_area_init(max_zone_pfns); 2528 */ 2529 void free_area_init(unsigned long *max_zone_pfn); 2530 unsigned long node_map_pfn_alignment(void); 2531 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2532 unsigned long end_pfn); 2533 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2534 unsigned long end_pfn); 2535 extern void get_pfn_range_for_nid(unsigned int nid, 2536 unsigned long *start_pfn, unsigned long *end_pfn); 2537 extern unsigned long find_min_pfn_with_active_regions(void); 2538 2539 #ifndef CONFIG_NUMA 2540 static inline int early_pfn_to_nid(unsigned long pfn) 2541 { 2542 return 0; 2543 } 2544 #else 2545 /* please see mm/page_alloc.c */ 2546 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2547 #endif 2548 2549 extern void set_dma_reserve(unsigned long new_dma_reserve); 2550 extern void memmap_init_range(unsigned long, int, unsigned long, 2551 unsigned long, unsigned long, enum meminit_context, 2552 struct vmem_altmap *, int migratetype); 2553 extern void setup_per_zone_wmarks(void); 2554 extern void calculate_min_free_kbytes(void); 2555 extern int __meminit init_per_zone_wmark_min(void); 2556 extern void mem_init(void); 2557 extern void __init mmap_init(void); 2558 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2559 extern long si_mem_available(void); 2560 extern void si_meminfo(struct sysinfo * val); 2561 extern void si_meminfo_node(struct sysinfo *val, int nid); 2562 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2563 extern unsigned long arch_reserved_kernel_pages(void); 2564 #endif 2565 2566 extern __printf(3, 4) 2567 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2568 2569 extern void setup_per_cpu_pageset(void); 2570 2571 /* page_alloc.c */ 2572 extern int min_free_kbytes; 2573 extern int watermark_boost_factor; 2574 extern int watermark_scale_factor; 2575 extern bool arch_has_descending_max_zone_pfns(void); 2576 2577 /* nommu.c */ 2578 extern atomic_long_t mmap_pages_allocated; 2579 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2580 2581 /* interval_tree.c */ 2582 void vma_interval_tree_insert(struct vm_area_struct *node, 2583 struct rb_root_cached *root); 2584 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2585 struct vm_area_struct *prev, 2586 struct rb_root_cached *root); 2587 void vma_interval_tree_remove(struct vm_area_struct *node, 2588 struct rb_root_cached *root); 2589 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2590 unsigned long start, unsigned long last); 2591 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2592 unsigned long start, unsigned long last); 2593 2594 #define vma_interval_tree_foreach(vma, root, start, last) \ 2595 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2596 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2597 2598 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2599 struct rb_root_cached *root); 2600 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2601 struct rb_root_cached *root); 2602 struct anon_vma_chain * 2603 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2604 unsigned long start, unsigned long last); 2605 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2606 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2607 #ifdef CONFIG_DEBUG_VM_RB 2608 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2609 #endif 2610 2611 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2612 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2613 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2614 2615 /* mmap.c */ 2616 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2617 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2618 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2619 struct vm_area_struct *expand); 2620 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2621 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2622 { 2623 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2624 } 2625 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2626 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2627 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2628 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2629 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2630 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2631 unsigned long addr, int new_below); 2632 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2633 unsigned long addr, int new_below); 2634 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2635 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2636 struct rb_node **, struct rb_node *); 2637 extern void unlink_file_vma(struct vm_area_struct *); 2638 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2639 unsigned long addr, unsigned long len, pgoff_t pgoff, 2640 bool *need_rmap_locks); 2641 extern void exit_mmap(struct mm_struct *); 2642 2643 static inline int check_data_rlimit(unsigned long rlim, 2644 unsigned long new, 2645 unsigned long start, 2646 unsigned long end_data, 2647 unsigned long start_data) 2648 { 2649 if (rlim < RLIM_INFINITY) { 2650 if (((new - start) + (end_data - start_data)) > rlim) 2651 return -ENOSPC; 2652 } 2653 2654 return 0; 2655 } 2656 2657 extern int mm_take_all_locks(struct mm_struct *mm); 2658 extern void mm_drop_all_locks(struct mm_struct *mm); 2659 2660 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2661 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2662 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2663 extern struct file *get_task_exe_file(struct task_struct *task); 2664 2665 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2666 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2667 2668 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2669 const struct vm_special_mapping *sm); 2670 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2671 unsigned long addr, unsigned long len, 2672 unsigned long flags, 2673 const struct vm_special_mapping *spec); 2674 /* This is an obsolete alternative to _install_special_mapping. */ 2675 extern int install_special_mapping(struct mm_struct *mm, 2676 unsigned long addr, unsigned long len, 2677 unsigned long flags, struct page **pages); 2678 2679 unsigned long randomize_stack_top(unsigned long stack_top); 2680 2681 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2682 2683 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2684 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2685 struct list_head *uf); 2686 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2687 unsigned long len, unsigned long prot, unsigned long flags, 2688 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2689 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2690 struct list_head *uf, bool downgrade); 2691 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2692 struct list_head *uf); 2693 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2694 2695 #ifdef CONFIG_MMU 2696 extern int __mm_populate(unsigned long addr, unsigned long len, 2697 int ignore_errors); 2698 static inline void mm_populate(unsigned long addr, unsigned long len) 2699 { 2700 /* Ignore errors */ 2701 (void) __mm_populate(addr, len, 1); 2702 } 2703 #else 2704 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2705 #endif 2706 2707 /* These take the mm semaphore themselves */ 2708 extern int __must_check vm_brk(unsigned long, unsigned long); 2709 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2710 extern int vm_munmap(unsigned long, size_t); 2711 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2712 unsigned long, unsigned long, 2713 unsigned long, unsigned long); 2714 2715 struct vm_unmapped_area_info { 2716 #define VM_UNMAPPED_AREA_TOPDOWN 1 2717 unsigned long flags; 2718 unsigned long length; 2719 unsigned long low_limit; 2720 unsigned long high_limit; 2721 unsigned long align_mask; 2722 unsigned long align_offset; 2723 }; 2724 2725 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2726 2727 /* truncate.c */ 2728 extern void truncate_inode_pages(struct address_space *, loff_t); 2729 extern void truncate_inode_pages_range(struct address_space *, 2730 loff_t lstart, loff_t lend); 2731 extern void truncate_inode_pages_final(struct address_space *); 2732 2733 /* generic vm_area_ops exported for stackable file systems */ 2734 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2735 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2736 pgoff_t start_pgoff, pgoff_t end_pgoff); 2737 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2738 2739 extern unsigned long stack_guard_gap; 2740 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2741 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2742 2743 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2744 extern int expand_downwards(struct vm_area_struct *vma, 2745 unsigned long address); 2746 #if VM_GROWSUP 2747 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2748 #else 2749 #define expand_upwards(vma, address) (0) 2750 #endif 2751 2752 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2753 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2754 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2755 struct vm_area_struct **pprev); 2756 2757 /** 2758 * find_vma_intersection() - Look up the first VMA which intersects the interval 2759 * @mm: The process address space. 2760 * @start_addr: The inclusive start user address. 2761 * @end_addr: The exclusive end user address. 2762 * 2763 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2764 * start_addr < end_addr. 2765 */ 2766 static inline 2767 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2768 unsigned long start_addr, 2769 unsigned long end_addr) 2770 { 2771 struct vm_area_struct *vma = find_vma(mm, start_addr); 2772 2773 if (vma && end_addr <= vma->vm_start) 2774 vma = NULL; 2775 return vma; 2776 } 2777 2778 /** 2779 * vma_lookup() - Find a VMA at a specific address 2780 * @mm: The process address space. 2781 * @addr: The user address. 2782 * 2783 * Return: The vm_area_struct at the given address, %NULL otherwise. 2784 */ 2785 static inline 2786 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2787 { 2788 struct vm_area_struct *vma = find_vma(mm, addr); 2789 2790 if (vma && addr < vma->vm_start) 2791 vma = NULL; 2792 2793 return vma; 2794 } 2795 2796 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2797 { 2798 unsigned long vm_start = vma->vm_start; 2799 2800 if (vma->vm_flags & VM_GROWSDOWN) { 2801 vm_start -= stack_guard_gap; 2802 if (vm_start > vma->vm_start) 2803 vm_start = 0; 2804 } 2805 return vm_start; 2806 } 2807 2808 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2809 { 2810 unsigned long vm_end = vma->vm_end; 2811 2812 if (vma->vm_flags & VM_GROWSUP) { 2813 vm_end += stack_guard_gap; 2814 if (vm_end < vma->vm_end) 2815 vm_end = -PAGE_SIZE; 2816 } 2817 return vm_end; 2818 } 2819 2820 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2821 { 2822 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2823 } 2824 2825 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2826 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2827 unsigned long vm_start, unsigned long vm_end) 2828 { 2829 struct vm_area_struct *vma = find_vma(mm, vm_start); 2830 2831 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2832 vma = NULL; 2833 2834 return vma; 2835 } 2836 2837 static inline bool range_in_vma(struct vm_area_struct *vma, 2838 unsigned long start, unsigned long end) 2839 { 2840 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2841 } 2842 2843 #ifdef CONFIG_MMU 2844 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2845 void vma_set_page_prot(struct vm_area_struct *vma); 2846 #else 2847 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2848 { 2849 return __pgprot(0); 2850 } 2851 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2852 { 2853 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2854 } 2855 #endif 2856 2857 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2858 2859 #ifdef CONFIG_NUMA_BALANCING 2860 unsigned long change_prot_numa(struct vm_area_struct *vma, 2861 unsigned long start, unsigned long end); 2862 #endif 2863 2864 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2865 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2866 unsigned long pfn, unsigned long size, pgprot_t); 2867 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2868 unsigned long pfn, unsigned long size, pgprot_t prot); 2869 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2870 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2871 struct page **pages, unsigned long *num); 2872 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2873 unsigned long num); 2874 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2875 unsigned long num); 2876 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2877 unsigned long pfn); 2878 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2879 unsigned long pfn, pgprot_t pgprot); 2880 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2881 pfn_t pfn); 2882 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2883 pfn_t pfn, pgprot_t pgprot); 2884 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2885 unsigned long addr, pfn_t pfn); 2886 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2887 2888 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2889 unsigned long addr, struct page *page) 2890 { 2891 int err = vm_insert_page(vma, addr, page); 2892 2893 if (err == -ENOMEM) 2894 return VM_FAULT_OOM; 2895 if (err < 0 && err != -EBUSY) 2896 return VM_FAULT_SIGBUS; 2897 2898 return VM_FAULT_NOPAGE; 2899 } 2900 2901 #ifndef io_remap_pfn_range 2902 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2903 unsigned long addr, unsigned long pfn, 2904 unsigned long size, pgprot_t prot) 2905 { 2906 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2907 } 2908 #endif 2909 2910 static inline vm_fault_t vmf_error(int err) 2911 { 2912 if (err == -ENOMEM) 2913 return VM_FAULT_OOM; 2914 return VM_FAULT_SIGBUS; 2915 } 2916 2917 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2918 unsigned int foll_flags); 2919 2920 #define FOLL_WRITE 0x01 /* check pte is writable */ 2921 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2922 #define FOLL_GET 0x04 /* do get_page on page */ 2923 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2924 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2925 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2926 * and return without waiting upon it */ 2927 #define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2928 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2929 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2930 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2931 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2932 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2933 #define FOLL_COW 0x4000 /* internal GUP flag */ 2934 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2935 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2936 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2937 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2938 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2939 2940 /* 2941 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2942 * other. Here is what they mean, and how to use them: 2943 * 2944 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2945 * period _often_ under userspace control. This is in contrast to 2946 * iov_iter_get_pages(), whose usages are transient. 2947 * 2948 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2949 * lifetime enforced by the filesystem and we need guarantees that longterm 2950 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2951 * the filesystem. Ideas for this coordination include revoking the longterm 2952 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2953 * added after the problem with filesystems was found FS DAX VMAs are 2954 * specifically failed. Filesystem pages are still subject to bugs and use of 2955 * FOLL_LONGTERM should be avoided on those pages. 2956 * 2957 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2958 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2959 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2960 * is due to an incompatibility with the FS DAX check and 2961 * FAULT_FLAG_ALLOW_RETRY. 2962 * 2963 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2964 * that region. And so, CMA attempts to migrate the page before pinning, when 2965 * FOLL_LONGTERM is specified. 2966 * 2967 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2968 * but an additional pin counting system) will be invoked. This is intended for 2969 * anything that gets a page reference and then touches page data (for example, 2970 * Direct IO). This lets the filesystem know that some non-file-system entity is 2971 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2972 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2973 * a call to unpin_user_page(). 2974 * 2975 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2976 * and separate refcounting mechanisms, however, and that means that each has 2977 * its own acquire and release mechanisms: 2978 * 2979 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2980 * 2981 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2982 * 2983 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2984 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2985 * calls applied to them, and that's perfectly OK. This is a constraint on the 2986 * callers, not on the pages.) 2987 * 2988 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2989 * directly by the caller. That's in order to help avoid mismatches when 2990 * releasing pages: get_user_pages*() pages must be released via put_page(), 2991 * while pin_user_pages*() pages must be released via unpin_user_page(). 2992 * 2993 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2994 */ 2995 2996 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2997 { 2998 if (vm_fault & VM_FAULT_OOM) 2999 return -ENOMEM; 3000 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3001 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3002 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3003 return -EFAULT; 3004 return 0; 3005 } 3006 3007 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3008 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3009 unsigned long size, pte_fn_t fn, void *data); 3010 extern int apply_to_existing_page_range(struct mm_struct *mm, 3011 unsigned long address, unsigned long size, 3012 pte_fn_t fn, void *data); 3013 3014 extern void init_mem_debugging_and_hardening(void); 3015 #ifdef CONFIG_PAGE_POISONING 3016 extern void __kernel_poison_pages(struct page *page, int numpages); 3017 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3018 extern bool _page_poisoning_enabled_early; 3019 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3020 static inline bool page_poisoning_enabled(void) 3021 { 3022 return _page_poisoning_enabled_early; 3023 } 3024 /* 3025 * For use in fast paths after init_mem_debugging() has run, or when a 3026 * false negative result is not harmful when called too early. 3027 */ 3028 static inline bool page_poisoning_enabled_static(void) 3029 { 3030 return static_branch_unlikely(&_page_poisoning_enabled); 3031 } 3032 static inline void kernel_poison_pages(struct page *page, int numpages) 3033 { 3034 if (page_poisoning_enabled_static()) 3035 __kernel_poison_pages(page, numpages); 3036 } 3037 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3038 { 3039 if (page_poisoning_enabled_static()) 3040 __kernel_unpoison_pages(page, numpages); 3041 } 3042 #else 3043 static inline bool page_poisoning_enabled(void) { return false; } 3044 static inline bool page_poisoning_enabled_static(void) { return false; } 3045 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3046 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3047 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3048 #endif 3049 3050 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3051 static inline bool want_init_on_alloc(gfp_t flags) 3052 { 3053 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3054 &init_on_alloc)) 3055 return true; 3056 return flags & __GFP_ZERO; 3057 } 3058 3059 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3060 static inline bool want_init_on_free(void) 3061 { 3062 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3063 &init_on_free); 3064 } 3065 3066 extern bool _debug_pagealloc_enabled_early; 3067 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3068 3069 static inline bool debug_pagealloc_enabled(void) 3070 { 3071 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3072 _debug_pagealloc_enabled_early; 3073 } 3074 3075 /* 3076 * For use in fast paths after init_debug_pagealloc() has run, or when a 3077 * false negative result is not harmful when called too early. 3078 */ 3079 static inline bool debug_pagealloc_enabled_static(void) 3080 { 3081 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3082 return false; 3083 3084 return static_branch_unlikely(&_debug_pagealloc_enabled); 3085 } 3086 3087 #ifdef CONFIG_DEBUG_PAGEALLOC 3088 /* 3089 * To support DEBUG_PAGEALLOC architecture must ensure that 3090 * __kernel_map_pages() never fails 3091 */ 3092 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3093 3094 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3095 { 3096 if (debug_pagealloc_enabled_static()) 3097 __kernel_map_pages(page, numpages, 1); 3098 } 3099 3100 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3101 { 3102 if (debug_pagealloc_enabled_static()) 3103 __kernel_map_pages(page, numpages, 0); 3104 } 3105 #else /* CONFIG_DEBUG_PAGEALLOC */ 3106 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3107 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3108 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3109 3110 #ifdef __HAVE_ARCH_GATE_AREA 3111 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3112 extern int in_gate_area_no_mm(unsigned long addr); 3113 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3114 #else 3115 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3116 { 3117 return NULL; 3118 } 3119 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3120 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3121 { 3122 return 0; 3123 } 3124 #endif /* __HAVE_ARCH_GATE_AREA */ 3125 3126 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3127 3128 #ifdef CONFIG_SYSCTL 3129 extern int sysctl_drop_caches; 3130 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3131 loff_t *); 3132 #endif 3133 3134 void drop_slab(void); 3135 3136 #ifndef CONFIG_MMU 3137 #define randomize_va_space 0 3138 #else 3139 extern int randomize_va_space; 3140 #endif 3141 3142 const char * arch_vma_name(struct vm_area_struct *vma); 3143 #ifdef CONFIG_MMU 3144 void print_vma_addr(char *prefix, unsigned long rip); 3145 #else 3146 static inline void print_vma_addr(char *prefix, unsigned long rip) 3147 { 3148 } 3149 #endif 3150 3151 #ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP 3152 int vmemmap_remap_free(unsigned long start, unsigned long end, 3153 unsigned long reuse); 3154 int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3155 unsigned long reuse, gfp_t gfp_mask); 3156 #endif 3157 3158 void *sparse_buffer_alloc(unsigned long size); 3159 struct page * __populate_section_memmap(unsigned long pfn, 3160 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3161 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3162 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3163 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3164 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3165 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3166 struct vmem_altmap *altmap); 3167 void *vmemmap_alloc_block(unsigned long size, int node); 3168 struct vmem_altmap; 3169 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3170 struct vmem_altmap *altmap); 3171 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3172 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3173 int node, struct vmem_altmap *altmap); 3174 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3175 struct vmem_altmap *altmap); 3176 void vmemmap_populate_print_last(void); 3177 #ifdef CONFIG_MEMORY_HOTPLUG 3178 void vmemmap_free(unsigned long start, unsigned long end, 3179 struct vmem_altmap *altmap); 3180 #endif 3181 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3182 unsigned long nr_pages); 3183 3184 enum mf_flags { 3185 MF_COUNT_INCREASED = 1 << 0, 3186 MF_ACTION_REQUIRED = 1 << 1, 3187 MF_MUST_KILL = 1 << 2, 3188 MF_SOFT_OFFLINE = 1 << 3, 3189 MF_UNPOISON = 1 << 4, 3190 }; 3191 extern int memory_failure(unsigned long pfn, int flags); 3192 extern void memory_failure_queue(unsigned long pfn, int flags); 3193 extern void memory_failure_queue_kick(int cpu); 3194 extern int unpoison_memory(unsigned long pfn); 3195 extern int sysctl_memory_failure_early_kill; 3196 extern int sysctl_memory_failure_recovery; 3197 extern void shake_page(struct page *p); 3198 extern atomic_long_t num_poisoned_pages __read_mostly; 3199 extern int soft_offline_page(unsigned long pfn, int flags); 3200 3201 #ifndef arch_memory_failure 3202 static inline int arch_memory_failure(unsigned long pfn, int flags) 3203 { 3204 return -ENXIO; 3205 } 3206 #endif 3207 3208 #ifndef arch_is_platform_page 3209 static inline bool arch_is_platform_page(u64 paddr) 3210 { 3211 return false; 3212 } 3213 #endif 3214 3215 /* 3216 * Error handlers for various types of pages. 3217 */ 3218 enum mf_result { 3219 MF_IGNORED, /* Error: cannot be handled */ 3220 MF_FAILED, /* Error: handling failed */ 3221 MF_DELAYED, /* Will be handled later */ 3222 MF_RECOVERED, /* Successfully recovered */ 3223 }; 3224 3225 enum mf_action_page_type { 3226 MF_MSG_KERNEL, 3227 MF_MSG_KERNEL_HIGH_ORDER, 3228 MF_MSG_SLAB, 3229 MF_MSG_DIFFERENT_COMPOUND, 3230 MF_MSG_HUGE, 3231 MF_MSG_FREE_HUGE, 3232 MF_MSG_NON_PMD_HUGE, 3233 MF_MSG_UNMAP_FAILED, 3234 MF_MSG_DIRTY_SWAPCACHE, 3235 MF_MSG_CLEAN_SWAPCACHE, 3236 MF_MSG_DIRTY_MLOCKED_LRU, 3237 MF_MSG_CLEAN_MLOCKED_LRU, 3238 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3239 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3240 MF_MSG_DIRTY_LRU, 3241 MF_MSG_CLEAN_LRU, 3242 MF_MSG_TRUNCATED_LRU, 3243 MF_MSG_BUDDY, 3244 MF_MSG_DAX, 3245 MF_MSG_UNSPLIT_THP, 3246 MF_MSG_DIFFERENT_PAGE_SIZE, 3247 MF_MSG_UNKNOWN, 3248 }; 3249 3250 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3251 extern void clear_huge_page(struct page *page, 3252 unsigned long addr_hint, 3253 unsigned int pages_per_huge_page); 3254 extern void copy_user_huge_page(struct page *dst, struct page *src, 3255 unsigned long addr_hint, 3256 struct vm_area_struct *vma, 3257 unsigned int pages_per_huge_page); 3258 extern long copy_huge_page_from_user(struct page *dst_page, 3259 const void __user *usr_src, 3260 unsigned int pages_per_huge_page, 3261 bool allow_pagefault); 3262 3263 /** 3264 * vma_is_special_huge - Are transhuge page-table entries considered special? 3265 * @vma: Pointer to the struct vm_area_struct to consider 3266 * 3267 * Whether transhuge page-table entries are considered "special" following 3268 * the definition in vm_normal_page(). 3269 * 3270 * Return: true if transhuge page-table entries should be considered special, 3271 * false otherwise. 3272 */ 3273 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3274 { 3275 return vma_is_dax(vma) || (vma->vm_file && 3276 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3277 } 3278 3279 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3280 3281 #ifdef CONFIG_DEBUG_PAGEALLOC 3282 extern unsigned int _debug_guardpage_minorder; 3283 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3284 3285 static inline unsigned int debug_guardpage_minorder(void) 3286 { 3287 return _debug_guardpage_minorder; 3288 } 3289 3290 static inline bool debug_guardpage_enabled(void) 3291 { 3292 return static_branch_unlikely(&_debug_guardpage_enabled); 3293 } 3294 3295 static inline bool page_is_guard(struct page *page) 3296 { 3297 if (!debug_guardpage_enabled()) 3298 return false; 3299 3300 return PageGuard(page); 3301 } 3302 #else 3303 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3304 static inline bool debug_guardpage_enabled(void) { return false; } 3305 static inline bool page_is_guard(struct page *page) { return false; } 3306 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3307 3308 #if MAX_NUMNODES > 1 3309 void __init setup_nr_node_ids(void); 3310 #else 3311 static inline void setup_nr_node_ids(void) {} 3312 #endif 3313 3314 extern int memcmp_pages(struct page *page1, struct page *page2); 3315 3316 static inline int pages_identical(struct page *page1, struct page *page2) 3317 { 3318 return !memcmp_pages(page1, page2); 3319 } 3320 3321 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3322 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3323 pgoff_t first_index, pgoff_t nr, 3324 pgoff_t bitmap_pgoff, 3325 unsigned long *bitmap, 3326 pgoff_t *start, 3327 pgoff_t *end); 3328 3329 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3330 pgoff_t first_index, pgoff_t nr); 3331 #endif 3332 3333 extern int sysctl_nr_trim_pages; 3334 3335 #ifdef CONFIG_PRINTK 3336 void mem_dump_obj(void *object); 3337 #else 3338 static inline void mem_dump_obj(void *object) {} 3339 #endif 3340 3341 /** 3342 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3343 * @seals: the seals to check 3344 * @vma: the vma to operate on 3345 * 3346 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3347 * the vma flags. Return 0 if check pass, or <0 for errors. 3348 */ 3349 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3350 { 3351 if (seals & F_SEAL_FUTURE_WRITE) { 3352 /* 3353 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3354 * "future write" seal active. 3355 */ 3356 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3357 return -EPERM; 3358 3359 /* 3360 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3361 * MAP_SHARED and read-only, take care to not allow mprotect to 3362 * revert protections on such mappings. Do this only for shared 3363 * mappings. For private mappings, don't need to mask 3364 * VM_MAYWRITE as we still want them to be COW-writable. 3365 */ 3366 if (vma->vm_flags & VM_SHARED) 3367 vma->vm_flags &= ~(VM_MAYWRITE); 3368 } 3369 3370 return 0; 3371 } 3372 3373 #ifdef CONFIG_ANON_VMA_NAME 3374 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3375 unsigned long len_in, 3376 struct anon_vma_name *anon_name); 3377 #else 3378 static inline int 3379 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3380 unsigned long len_in, struct anon_vma_name *anon_name) { 3381 return 0; 3382 } 3383 #endif 3384 3385 #endif /* _LINUX_MM_H */ 3386