1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 #include <linux/sched.h> 31 #include <linux/pgtable.h> 32 33 struct mempolicy; 34 struct anon_vma; 35 struct anon_vma_chain; 36 struct file_ra_state; 37 struct user_struct; 38 struct writeback_control; 39 struct bdi_writeback; 40 41 void init_mm_internals(void); 42 43 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 44 extern unsigned long max_mapnr; 45 46 static inline void set_max_mapnr(unsigned long limit) 47 { 48 max_mapnr = limit; 49 } 50 #else 51 static inline void set_max_mapnr(unsigned long limit) { } 52 #endif 53 54 extern atomic_long_t _totalram_pages; 55 static inline unsigned long totalram_pages(void) 56 { 57 return (unsigned long)atomic_long_read(&_totalram_pages); 58 } 59 60 static inline void totalram_pages_inc(void) 61 { 62 atomic_long_inc(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_dec(void) 66 { 67 atomic_long_dec(&_totalram_pages); 68 } 69 70 static inline void totalram_pages_add(long count) 71 { 72 atomic_long_add(count, &_totalram_pages); 73 } 74 75 extern void * high_memory; 76 extern int page_cluster; 77 78 #ifdef CONFIG_SYSCTL 79 extern int sysctl_legacy_va_layout; 80 #else 81 #define sysctl_legacy_va_layout 0 82 #endif 83 84 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 85 extern const int mmap_rnd_bits_min; 86 extern const int mmap_rnd_bits_max; 87 extern int mmap_rnd_bits __read_mostly; 88 #endif 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 90 extern const int mmap_rnd_compat_bits_min; 91 extern const int mmap_rnd_compat_bits_max; 92 extern int mmap_rnd_compat_bits __read_mostly; 93 #endif 94 95 #include <asm/page.h> 96 #include <asm/processor.h> 97 98 /* 99 * Architectures that support memory tagging (assigning tags to memory regions, 100 * embedding these tags into addresses that point to these memory regions, and 101 * checking that the memory and the pointer tags match on memory accesses) 102 * redefine this macro to strip tags from pointers. 103 * It's defined as noop for arcitectures that don't support memory tagging. 104 */ 105 #ifndef untagged_addr 106 #define untagged_addr(addr) (addr) 107 #endif 108 109 #ifndef __pa_symbol 110 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 111 #endif 112 113 #ifndef page_to_virt 114 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 115 #endif 116 117 #ifndef lm_alias 118 #define lm_alias(x) __va(__pa_symbol(x)) 119 #endif 120 121 /* 122 * To prevent common memory management code establishing 123 * a zero page mapping on a read fault. 124 * This macro should be defined within <asm/pgtable.h>. 125 * s390 does this to prevent multiplexing of hardware bits 126 * related to the physical page in case of virtualization. 127 */ 128 #ifndef mm_forbids_zeropage 129 #define mm_forbids_zeropage(X) (0) 130 #endif 131 132 /* 133 * On some architectures it is expensive to call memset() for small sizes. 134 * If an architecture decides to implement their own version of 135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 136 * define their own version of this macro in <asm/pgtable.h> 137 */ 138 #if BITS_PER_LONG == 64 139 /* This function must be updated when the size of struct page grows above 80 140 * or reduces below 56. The idea that compiler optimizes out switch() 141 * statement, and only leaves move/store instructions. Also the compiler can 142 * combine write statments if they are both assignments and can be reordered, 143 * this can result in several of the writes here being dropped. 144 */ 145 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 146 static inline void __mm_zero_struct_page(struct page *page) 147 { 148 unsigned long *_pp = (void *)page; 149 150 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 151 BUILD_BUG_ON(sizeof(struct page) & 7); 152 BUILD_BUG_ON(sizeof(struct page) < 56); 153 BUILD_BUG_ON(sizeof(struct page) > 80); 154 155 switch (sizeof(struct page)) { 156 case 80: 157 _pp[9] = 0; /* fallthrough */ 158 case 72: 159 _pp[8] = 0; /* fallthrough */ 160 case 64: 161 _pp[7] = 0; /* fallthrough */ 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171 } 172 #else 173 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174 #endif 175 176 /* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192 #define MAPCOUNT_ELF_CORE_MARGIN (5) 193 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195 extern int sysctl_max_map_count; 196 197 extern unsigned long sysctl_user_reserve_kbytes; 198 extern unsigned long sysctl_admin_reserve_kbytes; 199 200 extern int sysctl_overcommit_memory; 201 extern int sysctl_overcommit_ratio; 202 extern unsigned long sysctl_overcommit_kbytes; 203 204 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 205 loff_t *); 206 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 210 211 /* to align the pointer to the (next) page boundary */ 212 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 213 214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 218 219 /* 220 * Linux kernel virtual memory manager primitives. 221 * The idea being to have a "virtual" mm in the same way 222 * we have a virtual fs - giving a cleaner interface to the 223 * mm details, and allowing different kinds of memory mappings 224 * (from shared memory to executable loading to arbitrary 225 * mmap() functions). 226 */ 227 228 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 229 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 230 void vm_area_free(struct vm_area_struct *); 231 232 #ifndef CONFIG_MMU 233 extern struct rb_root nommu_region_tree; 234 extern struct rw_semaphore nommu_region_sem; 235 236 extern unsigned int kobjsize(const void *objp); 237 #endif 238 239 /* 240 * vm_flags in vm_area_struct, see mm_types.h. 241 * When changing, update also include/trace/events/mmflags.h 242 */ 243 #define VM_NONE 0x00000000 244 245 #define VM_READ 0x00000001 /* currently active flags */ 246 #define VM_WRITE 0x00000002 247 #define VM_EXEC 0x00000004 248 #define VM_SHARED 0x00000008 249 250 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 251 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 252 #define VM_MAYWRITE 0x00000020 253 #define VM_MAYEXEC 0x00000040 254 #define VM_MAYSHARE 0x00000080 255 256 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 257 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 258 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 259 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 260 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 261 262 #define VM_LOCKED 0x00002000 263 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 264 265 /* Used by sys_madvise() */ 266 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 267 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 268 269 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 270 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 271 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 272 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 273 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 274 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 275 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 276 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 277 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 278 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 279 280 #ifdef CONFIG_MEM_SOFT_DIRTY 281 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 282 #else 283 # define VM_SOFTDIRTY 0 284 #endif 285 286 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 287 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 288 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 289 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 290 291 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 292 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 293 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 294 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 295 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 296 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 298 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 299 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 300 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 301 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 302 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 303 304 #ifdef CONFIG_ARCH_HAS_PKEYS 305 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 306 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 307 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 308 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 309 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 310 #ifdef CONFIG_PPC 311 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 312 #else 313 # define VM_PKEY_BIT4 0 314 #endif 315 #endif /* CONFIG_ARCH_HAS_PKEYS */ 316 317 #if defined(CONFIG_X86) 318 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 319 #elif defined(CONFIG_PPC) 320 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 321 #elif defined(CONFIG_PARISC) 322 # define VM_GROWSUP VM_ARCH_1 323 #elif defined(CONFIG_IA64) 324 # define VM_GROWSUP VM_ARCH_1 325 #elif defined(CONFIG_SPARC64) 326 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 327 # define VM_ARCH_CLEAR VM_SPARC_ADI 328 #elif defined(CONFIG_ARM64) 329 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 330 # define VM_ARCH_CLEAR VM_ARM64_BTI 331 #elif !defined(CONFIG_MMU) 332 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 333 #endif 334 335 #ifndef VM_GROWSUP 336 # define VM_GROWSUP VM_NONE 337 #endif 338 339 /* Bits set in the VMA until the stack is in its final location */ 340 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 341 342 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 343 344 /* Common data flag combinations */ 345 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 346 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 347 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 348 VM_MAYWRITE | VM_MAYEXEC) 349 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 351 352 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 353 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 354 #endif 355 356 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 357 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 358 #endif 359 360 #ifdef CONFIG_STACK_GROWSUP 361 #define VM_STACK VM_GROWSUP 362 #else 363 #define VM_STACK VM_GROWSDOWN 364 #endif 365 366 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 367 368 /* VMA basic access permission flags */ 369 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 370 371 372 /* 373 * Special vmas that are non-mergable, non-mlock()able. 374 */ 375 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 376 377 /* This mask prevents VMA from being scanned with khugepaged */ 378 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 379 380 /* This mask defines which mm->def_flags a process can inherit its parent */ 381 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 382 383 /* This mask is used to clear all the VMA flags used by mlock */ 384 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 385 386 /* Arch-specific flags to clear when updating VM flags on protection change */ 387 #ifndef VM_ARCH_CLEAR 388 # define VM_ARCH_CLEAR VM_NONE 389 #endif 390 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 391 392 /* 393 * mapping from the currently active vm_flags protection bits (the 394 * low four bits) to a page protection mask.. 395 */ 396 extern pgprot_t protection_map[16]; 397 398 /** 399 * Fault flag definitions. 400 * 401 * @FAULT_FLAG_WRITE: Fault was a write fault. 402 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 403 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 404 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying. 405 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 406 * @FAULT_FLAG_TRIED: The fault has been tried once. 407 * @FAULT_FLAG_USER: The fault originated in userspace. 408 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 409 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 410 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 411 * 412 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 413 * whether we would allow page faults to retry by specifying these two 414 * fault flags correctly. Currently there can be three legal combinations: 415 * 416 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 417 * this is the first try 418 * 419 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 420 * we've already tried at least once 421 * 422 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 423 * 424 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 425 * be used. Note that page faults can be allowed to retry for multiple times, 426 * in which case we'll have an initial fault with flags (a) then later on 427 * continuous faults with flags (b). We should always try to detect pending 428 * signals before a retry to make sure the continuous page faults can still be 429 * interrupted if necessary. 430 */ 431 #define FAULT_FLAG_WRITE 0x01 432 #define FAULT_FLAG_MKWRITE 0x02 433 #define FAULT_FLAG_ALLOW_RETRY 0x04 434 #define FAULT_FLAG_RETRY_NOWAIT 0x08 435 #define FAULT_FLAG_KILLABLE 0x10 436 #define FAULT_FLAG_TRIED 0x20 437 #define FAULT_FLAG_USER 0x40 438 #define FAULT_FLAG_REMOTE 0x80 439 #define FAULT_FLAG_INSTRUCTION 0x100 440 #define FAULT_FLAG_INTERRUPTIBLE 0x200 441 442 /* 443 * The default fault flags that should be used by most of the 444 * arch-specific page fault handlers. 445 */ 446 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 447 FAULT_FLAG_KILLABLE | \ 448 FAULT_FLAG_INTERRUPTIBLE) 449 450 /** 451 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 452 * 453 * This is mostly used for places where we want to try to avoid taking 454 * the mmap_sem for too long a time when waiting for another condition 455 * to change, in which case we can try to be polite to release the 456 * mmap_sem in the first round to avoid potential starvation of other 457 * processes that would also want the mmap_sem. 458 * 459 * Return: true if the page fault allows retry and this is the first 460 * attempt of the fault handling; false otherwise. 461 */ 462 static inline bool fault_flag_allow_retry_first(unsigned int flags) 463 { 464 return (flags & FAULT_FLAG_ALLOW_RETRY) && 465 (!(flags & FAULT_FLAG_TRIED)); 466 } 467 468 #define FAULT_FLAG_TRACE \ 469 { FAULT_FLAG_WRITE, "WRITE" }, \ 470 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 471 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 472 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 473 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 474 { FAULT_FLAG_TRIED, "TRIED" }, \ 475 { FAULT_FLAG_USER, "USER" }, \ 476 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 477 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 478 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 479 480 /* 481 * vm_fault is filled by the the pagefault handler and passed to the vma's 482 * ->fault function. The vma's ->fault is responsible for returning a bitmask 483 * of VM_FAULT_xxx flags that give details about how the fault was handled. 484 * 485 * MM layer fills up gfp_mask for page allocations but fault handler might 486 * alter it if its implementation requires a different allocation context. 487 * 488 * pgoff should be used in favour of virtual_address, if possible. 489 */ 490 struct vm_fault { 491 struct vm_area_struct *vma; /* Target VMA */ 492 unsigned int flags; /* FAULT_FLAG_xxx flags */ 493 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 494 pgoff_t pgoff; /* Logical page offset based on vma */ 495 unsigned long address; /* Faulting virtual address */ 496 pmd_t *pmd; /* Pointer to pmd entry matching 497 * the 'address' */ 498 pud_t *pud; /* Pointer to pud entry matching 499 * the 'address' 500 */ 501 pte_t orig_pte; /* Value of PTE at the time of fault */ 502 503 struct page *cow_page; /* Page handler may use for COW fault */ 504 struct page *page; /* ->fault handlers should return a 505 * page here, unless VM_FAULT_NOPAGE 506 * is set (which is also implied by 507 * VM_FAULT_ERROR). 508 */ 509 /* These three entries are valid only while holding ptl lock */ 510 pte_t *pte; /* Pointer to pte entry matching 511 * the 'address'. NULL if the page 512 * table hasn't been allocated. 513 */ 514 spinlock_t *ptl; /* Page table lock. 515 * Protects pte page table if 'pte' 516 * is not NULL, otherwise pmd. 517 */ 518 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 519 * vm_ops->map_pages() calls 520 * alloc_set_pte() from atomic context. 521 * do_fault_around() pre-allocates 522 * page table to avoid allocation from 523 * atomic context. 524 */ 525 }; 526 527 /* page entry size for vm->huge_fault() */ 528 enum page_entry_size { 529 PE_SIZE_PTE = 0, 530 PE_SIZE_PMD, 531 PE_SIZE_PUD, 532 }; 533 534 /* 535 * These are the virtual MM functions - opening of an area, closing and 536 * unmapping it (needed to keep files on disk up-to-date etc), pointer 537 * to the functions called when a no-page or a wp-page exception occurs. 538 */ 539 struct vm_operations_struct { 540 void (*open)(struct vm_area_struct * area); 541 void (*close)(struct vm_area_struct * area); 542 int (*split)(struct vm_area_struct * area, unsigned long addr); 543 int (*mremap)(struct vm_area_struct * area); 544 vm_fault_t (*fault)(struct vm_fault *vmf); 545 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 546 enum page_entry_size pe_size); 547 void (*map_pages)(struct vm_fault *vmf, 548 pgoff_t start_pgoff, pgoff_t end_pgoff); 549 unsigned long (*pagesize)(struct vm_area_struct * area); 550 551 /* notification that a previously read-only page is about to become 552 * writable, if an error is returned it will cause a SIGBUS */ 553 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 554 555 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 556 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 557 558 /* called by access_process_vm when get_user_pages() fails, typically 559 * for use by special VMAs that can switch between memory and hardware 560 */ 561 int (*access)(struct vm_area_struct *vma, unsigned long addr, 562 void *buf, int len, int write); 563 564 /* Called by the /proc/PID/maps code to ask the vma whether it 565 * has a special name. Returning non-NULL will also cause this 566 * vma to be dumped unconditionally. */ 567 const char *(*name)(struct vm_area_struct *vma); 568 569 #ifdef CONFIG_NUMA 570 /* 571 * set_policy() op must add a reference to any non-NULL @new mempolicy 572 * to hold the policy upon return. Caller should pass NULL @new to 573 * remove a policy and fall back to surrounding context--i.e. do not 574 * install a MPOL_DEFAULT policy, nor the task or system default 575 * mempolicy. 576 */ 577 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 578 579 /* 580 * get_policy() op must add reference [mpol_get()] to any policy at 581 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 582 * in mm/mempolicy.c will do this automatically. 583 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 584 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 585 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 586 * must return NULL--i.e., do not "fallback" to task or system default 587 * policy. 588 */ 589 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 590 unsigned long addr); 591 #endif 592 /* 593 * Called by vm_normal_page() for special PTEs to find the 594 * page for @addr. This is useful if the default behavior 595 * (using pte_page()) would not find the correct page. 596 */ 597 struct page *(*find_special_page)(struct vm_area_struct *vma, 598 unsigned long addr); 599 }; 600 601 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 602 { 603 static const struct vm_operations_struct dummy_vm_ops = {}; 604 605 memset(vma, 0, sizeof(*vma)); 606 vma->vm_mm = mm; 607 vma->vm_ops = &dummy_vm_ops; 608 INIT_LIST_HEAD(&vma->anon_vma_chain); 609 } 610 611 static inline void vma_set_anonymous(struct vm_area_struct *vma) 612 { 613 vma->vm_ops = NULL; 614 } 615 616 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 617 { 618 return !vma->vm_ops; 619 } 620 621 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 622 { 623 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 624 625 if (!maybe_stack) 626 return false; 627 628 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 629 VM_STACK_INCOMPLETE_SETUP) 630 return true; 631 632 return false; 633 } 634 635 static inline bool vma_is_foreign(struct vm_area_struct *vma) 636 { 637 if (!current->mm) 638 return true; 639 640 if (current->mm != vma->vm_mm) 641 return true; 642 643 return false; 644 } 645 646 static inline bool vma_is_accessible(struct vm_area_struct *vma) 647 { 648 return vma->vm_flags & VM_ACCESS_FLAGS; 649 } 650 651 #ifdef CONFIG_SHMEM 652 /* 653 * The vma_is_shmem is not inline because it is used only by slow 654 * paths in userfault. 655 */ 656 bool vma_is_shmem(struct vm_area_struct *vma); 657 #else 658 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 659 #endif 660 661 int vma_is_stack_for_current(struct vm_area_struct *vma); 662 663 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 664 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 665 666 struct mmu_gather; 667 struct inode; 668 669 /* 670 * FIXME: take this include out, include page-flags.h in 671 * files which need it (119 of them) 672 */ 673 #include <linux/page-flags.h> 674 #include <linux/huge_mm.h> 675 676 /* 677 * Methods to modify the page usage count. 678 * 679 * What counts for a page usage: 680 * - cache mapping (page->mapping) 681 * - private data (page->private) 682 * - page mapped in a task's page tables, each mapping 683 * is counted separately 684 * 685 * Also, many kernel routines increase the page count before a critical 686 * routine so they can be sure the page doesn't go away from under them. 687 */ 688 689 /* 690 * Drop a ref, return true if the refcount fell to zero (the page has no users) 691 */ 692 static inline int put_page_testzero(struct page *page) 693 { 694 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 695 return page_ref_dec_and_test(page); 696 } 697 698 /* 699 * Try to grab a ref unless the page has a refcount of zero, return false if 700 * that is the case. 701 * This can be called when MMU is off so it must not access 702 * any of the virtual mappings. 703 */ 704 static inline int get_page_unless_zero(struct page *page) 705 { 706 return page_ref_add_unless(page, 1, 0); 707 } 708 709 extern int page_is_ram(unsigned long pfn); 710 711 enum { 712 REGION_INTERSECTS, 713 REGION_DISJOINT, 714 REGION_MIXED, 715 }; 716 717 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 718 unsigned long desc); 719 720 /* Support for virtually mapped pages */ 721 struct page *vmalloc_to_page(const void *addr); 722 unsigned long vmalloc_to_pfn(const void *addr); 723 724 /* 725 * Determine if an address is within the vmalloc range 726 * 727 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 728 * is no special casing required. 729 */ 730 731 #ifndef is_ioremap_addr 732 #define is_ioremap_addr(x) is_vmalloc_addr(x) 733 #endif 734 735 #ifdef CONFIG_MMU 736 extern bool is_vmalloc_addr(const void *x); 737 extern int is_vmalloc_or_module_addr(const void *x); 738 #else 739 static inline bool is_vmalloc_addr(const void *x) 740 { 741 return false; 742 } 743 static inline int is_vmalloc_or_module_addr(const void *x) 744 { 745 return 0; 746 } 747 #endif 748 749 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 750 static inline void *kvmalloc(size_t size, gfp_t flags) 751 { 752 return kvmalloc_node(size, flags, NUMA_NO_NODE); 753 } 754 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 755 { 756 return kvmalloc_node(size, flags | __GFP_ZERO, node); 757 } 758 static inline void *kvzalloc(size_t size, gfp_t flags) 759 { 760 return kvmalloc(size, flags | __GFP_ZERO); 761 } 762 763 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 764 { 765 size_t bytes; 766 767 if (unlikely(check_mul_overflow(n, size, &bytes))) 768 return NULL; 769 770 return kvmalloc(bytes, flags); 771 } 772 773 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 774 { 775 return kvmalloc_array(n, size, flags | __GFP_ZERO); 776 } 777 778 extern void kvfree(const void *addr); 779 extern void kvfree_sensitive(const void *addr, size_t len); 780 781 /* 782 * Mapcount of compound page as a whole, does not include mapped sub-pages. 783 * 784 * Must be called only for compound pages or any their tail sub-pages. 785 */ 786 static inline int compound_mapcount(struct page *page) 787 { 788 VM_BUG_ON_PAGE(!PageCompound(page), page); 789 page = compound_head(page); 790 return atomic_read(compound_mapcount_ptr(page)) + 1; 791 } 792 793 /* 794 * The atomic page->_mapcount, starts from -1: so that transitions 795 * both from it and to it can be tracked, using atomic_inc_and_test 796 * and atomic_add_negative(-1). 797 */ 798 static inline void page_mapcount_reset(struct page *page) 799 { 800 atomic_set(&(page)->_mapcount, -1); 801 } 802 803 int __page_mapcount(struct page *page); 804 805 /* 806 * Mapcount of 0-order page; when compound sub-page, includes 807 * compound_mapcount(). 808 * 809 * Result is undefined for pages which cannot be mapped into userspace. 810 * For example SLAB or special types of pages. See function page_has_type(). 811 * They use this place in struct page differently. 812 */ 813 static inline int page_mapcount(struct page *page) 814 { 815 if (unlikely(PageCompound(page))) 816 return __page_mapcount(page); 817 return atomic_read(&page->_mapcount) + 1; 818 } 819 820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 821 int total_mapcount(struct page *page); 822 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 823 #else 824 static inline int total_mapcount(struct page *page) 825 { 826 return page_mapcount(page); 827 } 828 static inline int page_trans_huge_mapcount(struct page *page, 829 int *total_mapcount) 830 { 831 int mapcount = page_mapcount(page); 832 if (total_mapcount) 833 *total_mapcount = mapcount; 834 return mapcount; 835 } 836 #endif 837 838 static inline struct page *virt_to_head_page(const void *x) 839 { 840 struct page *page = virt_to_page(x); 841 842 return compound_head(page); 843 } 844 845 void __put_page(struct page *page); 846 847 void put_pages_list(struct list_head *pages); 848 849 void split_page(struct page *page, unsigned int order); 850 851 /* 852 * Compound pages have a destructor function. Provide a 853 * prototype for that function and accessor functions. 854 * These are _only_ valid on the head of a compound page. 855 */ 856 typedef void compound_page_dtor(struct page *); 857 858 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 859 enum compound_dtor_id { 860 NULL_COMPOUND_DTOR, 861 COMPOUND_PAGE_DTOR, 862 #ifdef CONFIG_HUGETLB_PAGE 863 HUGETLB_PAGE_DTOR, 864 #endif 865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 866 TRANSHUGE_PAGE_DTOR, 867 #endif 868 NR_COMPOUND_DTORS, 869 }; 870 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 871 872 static inline void set_compound_page_dtor(struct page *page, 873 enum compound_dtor_id compound_dtor) 874 { 875 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 876 page[1].compound_dtor = compound_dtor; 877 } 878 879 static inline void destroy_compound_page(struct page *page) 880 { 881 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 882 compound_page_dtors[page[1].compound_dtor](page); 883 } 884 885 static inline unsigned int compound_order(struct page *page) 886 { 887 if (!PageHead(page)) 888 return 0; 889 return page[1].compound_order; 890 } 891 892 static inline bool hpage_pincount_available(struct page *page) 893 { 894 /* 895 * Can the page->hpage_pinned_refcount field be used? That field is in 896 * the 3rd page of the compound page, so the smallest (2-page) compound 897 * pages cannot support it. 898 */ 899 page = compound_head(page); 900 return PageCompound(page) && compound_order(page) > 1; 901 } 902 903 static inline int compound_pincount(struct page *page) 904 { 905 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 906 page = compound_head(page); 907 return atomic_read(compound_pincount_ptr(page)); 908 } 909 910 static inline void set_compound_order(struct page *page, unsigned int order) 911 { 912 page[1].compound_order = order; 913 } 914 915 /* Returns the number of pages in this potentially compound page. */ 916 static inline unsigned long compound_nr(struct page *page) 917 { 918 return 1UL << compound_order(page); 919 } 920 921 /* Returns the number of bytes in this potentially compound page. */ 922 static inline unsigned long page_size(struct page *page) 923 { 924 return PAGE_SIZE << compound_order(page); 925 } 926 927 /* Returns the number of bits needed for the number of bytes in a page */ 928 static inline unsigned int page_shift(struct page *page) 929 { 930 return PAGE_SHIFT + compound_order(page); 931 } 932 933 void free_compound_page(struct page *page); 934 935 #ifdef CONFIG_MMU 936 /* 937 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 938 * servicing faults for write access. In the normal case, do always want 939 * pte_mkwrite. But get_user_pages can cause write faults for mappings 940 * that do not have writing enabled, when used by access_process_vm. 941 */ 942 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 943 { 944 if (likely(vma->vm_flags & VM_WRITE)) 945 pte = pte_mkwrite(pte); 946 return pte; 947 } 948 949 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 950 vm_fault_t finish_fault(struct vm_fault *vmf); 951 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 952 #endif 953 954 /* 955 * Multiple processes may "see" the same page. E.g. for untouched 956 * mappings of /dev/null, all processes see the same page full of 957 * zeroes, and text pages of executables and shared libraries have 958 * only one copy in memory, at most, normally. 959 * 960 * For the non-reserved pages, page_count(page) denotes a reference count. 961 * page_count() == 0 means the page is free. page->lru is then used for 962 * freelist management in the buddy allocator. 963 * page_count() > 0 means the page has been allocated. 964 * 965 * Pages are allocated by the slab allocator in order to provide memory 966 * to kmalloc and kmem_cache_alloc. In this case, the management of the 967 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 968 * unless a particular usage is carefully commented. (the responsibility of 969 * freeing the kmalloc memory is the caller's, of course). 970 * 971 * A page may be used by anyone else who does a __get_free_page(). 972 * In this case, page_count still tracks the references, and should only 973 * be used through the normal accessor functions. The top bits of page->flags 974 * and page->virtual store page management information, but all other fields 975 * are unused and could be used privately, carefully. The management of this 976 * page is the responsibility of the one who allocated it, and those who have 977 * subsequently been given references to it. 978 * 979 * The other pages (we may call them "pagecache pages") are completely 980 * managed by the Linux memory manager: I/O, buffers, swapping etc. 981 * The following discussion applies only to them. 982 * 983 * A pagecache page contains an opaque `private' member, which belongs to the 984 * page's address_space. Usually, this is the address of a circular list of 985 * the page's disk buffers. PG_private must be set to tell the VM to call 986 * into the filesystem to release these pages. 987 * 988 * A page may belong to an inode's memory mapping. In this case, page->mapping 989 * is the pointer to the inode, and page->index is the file offset of the page, 990 * in units of PAGE_SIZE. 991 * 992 * If pagecache pages are not associated with an inode, they are said to be 993 * anonymous pages. These may become associated with the swapcache, and in that 994 * case PG_swapcache is set, and page->private is an offset into the swapcache. 995 * 996 * In either case (swapcache or inode backed), the pagecache itself holds one 997 * reference to the page. Setting PG_private should also increment the 998 * refcount. The each user mapping also has a reference to the page. 999 * 1000 * The pagecache pages are stored in a per-mapping radix tree, which is 1001 * rooted at mapping->i_pages, and indexed by offset. 1002 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1003 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1004 * 1005 * All pagecache pages may be subject to I/O: 1006 * - inode pages may need to be read from disk, 1007 * - inode pages which have been modified and are MAP_SHARED may need 1008 * to be written back to the inode on disk, 1009 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1010 * modified may need to be swapped out to swap space and (later) to be read 1011 * back into memory. 1012 */ 1013 1014 /* 1015 * The zone field is never updated after free_area_init_core() 1016 * sets it, so none of the operations on it need to be atomic. 1017 */ 1018 1019 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1020 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1021 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1022 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1023 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1024 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1025 1026 /* 1027 * Define the bit shifts to access each section. For non-existent 1028 * sections we define the shift as 0; that plus a 0 mask ensures 1029 * the compiler will optimise away reference to them. 1030 */ 1031 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1032 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1033 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1034 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1035 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1036 1037 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1038 #ifdef NODE_NOT_IN_PAGE_FLAGS 1039 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1040 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1041 SECTIONS_PGOFF : ZONES_PGOFF) 1042 #else 1043 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1044 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1045 NODES_PGOFF : ZONES_PGOFF) 1046 #endif 1047 1048 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1049 1050 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1051 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1052 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1053 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1054 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1055 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1056 1057 static inline enum zone_type page_zonenum(const struct page *page) 1058 { 1059 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1060 } 1061 1062 #ifdef CONFIG_ZONE_DEVICE 1063 static inline bool is_zone_device_page(const struct page *page) 1064 { 1065 return page_zonenum(page) == ZONE_DEVICE; 1066 } 1067 extern void memmap_init_zone_device(struct zone *, unsigned long, 1068 unsigned long, struct dev_pagemap *); 1069 #else 1070 static inline bool is_zone_device_page(const struct page *page) 1071 { 1072 return false; 1073 } 1074 #endif 1075 1076 #ifdef CONFIG_DEV_PAGEMAP_OPS 1077 void free_devmap_managed_page(struct page *page); 1078 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1079 1080 static inline bool page_is_devmap_managed(struct page *page) 1081 { 1082 if (!static_branch_unlikely(&devmap_managed_key)) 1083 return false; 1084 if (!is_zone_device_page(page)) 1085 return false; 1086 switch (page->pgmap->type) { 1087 case MEMORY_DEVICE_PRIVATE: 1088 case MEMORY_DEVICE_FS_DAX: 1089 return true; 1090 default: 1091 break; 1092 } 1093 return false; 1094 } 1095 1096 void put_devmap_managed_page(struct page *page); 1097 1098 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1099 static inline bool page_is_devmap_managed(struct page *page) 1100 { 1101 return false; 1102 } 1103 1104 static inline void put_devmap_managed_page(struct page *page) 1105 { 1106 } 1107 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1108 1109 static inline bool is_device_private_page(const struct page *page) 1110 { 1111 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1112 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1113 is_zone_device_page(page) && 1114 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1115 } 1116 1117 static inline bool is_pci_p2pdma_page(const struct page *page) 1118 { 1119 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1120 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1121 is_zone_device_page(page) && 1122 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1123 } 1124 1125 /* 127: arbitrary random number, small enough to assemble well */ 1126 #define page_ref_zero_or_close_to_overflow(page) \ 1127 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1128 1129 static inline void get_page(struct page *page) 1130 { 1131 page = compound_head(page); 1132 /* 1133 * Getting a normal page or the head of a compound page 1134 * requires to already have an elevated page->_refcount. 1135 */ 1136 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1137 page_ref_inc(page); 1138 } 1139 1140 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1141 1142 static inline __must_check bool try_get_page(struct page *page) 1143 { 1144 page = compound_head(page); 1145 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1146 return false; 1147 page_ref_inc(page); 1148 return true; 1149 } 1150 1151 static inline void put_page(struct page *page) 1152 { 1153 page = compound_head(page); 1154 1155 /* 1156 * For devmap managed pages we need to catch refcount transition from 1157 * 2 to 1, when refcount reach one it means the page is free and we 1158 * need to inform the device driver through callback. See 1159 * include/linux/memremap.h and HMM for details. 1160 */ 1161 if (page_is_devmap_managed(page)) { 1162 put_devmap_managed_page(page); 1163 return; 1164 } 1165 1166 if (put_page_testzero(page)) 1167 __put_page(page); 1168 } 1169 1170 /* 1171 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1172 * the page's refcount so that two separate items are tracked: the original page 1173 * reference count, and also a new count of how many pin_user_pages() calls were 1174 * made against the page. ("gup-pinned" is another term for the latter). 1175 * 1176 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1177 * distinct from normal pages. As such, the unpin_user_page() call (and its 1178 * variants) must be used in order to release gup-pinned pages. 1179 * 1180 * Choice of value: 1181 * 1182 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1183 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1184 * simpler, due to the fact that adding an even power of two to the page 1185 * refcount has the effect of using only the upper N bits, for the code that 1186 * counts up using the bias value. This means that the lower bits are left for 1187 * the exclusive use of the original code that increments and decrements by one 1188 * (or at least, by much smaller values than the bias value). 1189 * 1190 * Of course, once the lower bits overflow into the upper bits (and this is 1191 * OK, because subtraction recovers the original values), then visual inspection 1192 * no longer suffices to directly view the separate counts. However, for normal 1193 * applications that don't have huge page reference counts, this won't be an 1194 * issue. 1195 * 1196 * Locking: the lockless algorithm described in page_cache_get_speculative() 1197 * and page_cache_gup_pin_speculative() provides safe operation for 1198 * get_user_pages and page_mkclean and other calls that race to set up page 1199 * table entries. 1200 */ 1201 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1202 1203 void unpin_user_page(struct page *page); 1204 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1205 bool make_dirty); 1206 void unpin_user_pages(struct page **pages, unsigned long npages); 1207 1208 /** 1209 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1210 * 1211 * This function checks if a page has been pinned via a call to 1212 * pin_user_pages*(). 1213 * 1214 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1215 * because it means "definitely not pinned for DMA", but true means "probably 1216 * pinned for DMA, but possibly a false positive due to having at least 1217 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1218 * 1219 * False positives are OK, because: a) it's unlikely for a page to get that many 1220 * refcounts, and b) all the callers of this routine are expected to be able to 1221 * deal gracefully with a false positive. 1222 * 1223 * For huge pages, the result will be exactly correct. That's because we have 1224 * more tracking data available: the 3rd struct page in the compound page is 1225 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1226 * scheme). 1227 * 1228 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1229 * 1230 * @page: pointer to page to be queried. 1231 * @Return: True, if it is likely that the page has been "dma-pinned". 1232 * False, if the page is definitely not dma-pinned. 1233 */ 1234 static inline bool page_maybe_dma_pinned(struct page *page) 1235 { 1236 if (hpage_pincount_available(page)) 1237 return compound_pincount(page) > 0; 1238 1239 /* 1240 * page_ref_count() is signed. If that refcount overflows, then 1241 * page_ref_count() returns a negative value, and callers will avoid 1242 * further incrementing the refcount. 1243 * 1244 * Here, for that overflow case, use the signed bit to count a little 1245 * bit higher via unsigned math, and thus still get an accurate result. 1246 */ 1247 return ((unsigned int)page_ref_count(compound_head(page))) >= 1248 GUP_PIN_COUNTING_BIAS; 1249 } 1250 1251 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1252 #define SECTION_IN_PAGE_FLAGS 1253 #endif 1254 1255 /* 1256 * The identification function is mainly used by the buddy allocator for 1257 * determining if two pages could be buddies. We are not really identifying 1258 * the zone since we could be using the section number id if we do not have 1259 * node id available in page flags. 1260 * We only guarantee that it will return the same value for two combinable 1261 * pages in a zone. 1262 */ 1263 static inline int page_zone_id(struct page *page) 1264 { 1265 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1266 } 1267 1268 #ifdef NODE_NOT_IN_PAGE_FLAGS 1269 extern int page_to_nid(const struct page *page); 1270 #else 1271 static inline int page_to_nid(const struct page *page) 1272 { 1273 struct page *p = (struct page *)page; 1274 1275 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1276 } 1277 #endif 1278 1279 #ifdef CONFIG_NUMA_BALANCING 1280 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1281 { 1282 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1283 } 1284 1285 static inline int cpupid_to_pid(int cpupid) 1286 { 1287 return cpupid & LAST__PID_MASK; 1288 } 1289 1290 static inline int cpupid_to_cpu(int cpupid) 1291 { 1292 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1293 } 1294 1295 static inline int cpupid_to_nid(int cpupid) 1296 { 1297 return cpu_to_node(cpupid_to_cpu(cpupid)); 1298 } 1299 1300 static inline bool cpupid_pid_unset(int cpupid) 1301 { 1302 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1303 } 1304 1305 static inline bool cpupid_cpu_unset(int cpupid) 1306 { 1307 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1308 } 1309 1310 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1311 { 1312 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1313 } 1314 1315 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1316 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1317 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1318 { 1319 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1320 } 1321 1322 static inline int page_cpupid_last(struct page *page) 1323 { 1324 return page->_last_cpupid; 1325 } 1326 static inline void page_cpupid_reset_last(struct page *page) 1327 { 1328 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1329 } 1330 #else 1331 static inline int page_cpupid_last(struct page *page) 1332 { 1333 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1334 } 1335 1336 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1337 1338 static inline void page_cpupid_reset_last(struct page *page) 1339 { 1340 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1341 } 1342 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1343 #else /* !CONFIG_NUMA_BALANCING */ 1344 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1345 { 1346 return page_to_nid(page); /* XXX */ 1347 } 1348 1349 static inline int page_cpupid_last(struct page *page) 1350 { 1351 return page_to_nid(page); /* XXX */ 1352 } 1353 1354 static inline int cpupid_to_nid(int cpupid) 1355 { 1356 return -1; 1357 } 1358 1359 static inline int cpupid_to_pid(int cpupid) 1360 { 1361 return -1; 1362 } 1363 1364 static inline int cpupid_to_cpu(int cpupid) 1365 { 1366 return -1; 1367 } 1368 1369 static inline int cpu_pid_to_cpupid(int nid, int pid) 1370 { 1371 return -1; 1372 } 1373 1374 static inline bool cpupid_pid_unset(int cpupid) 1375 { 1376 return true; 1377 } 1378 1379 static inline void page_cpupid_reset_last(struct page *page) 1380 { 1381 } 1382 1383 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1384 { 1385 return false; 1386 } 1387 #endif /* CONFIG_NUMA_BALANCING */ 1388 1389 #ifdef CONFIG_KASAN_SW_TAGS 1390 static inline u8 page_kasan_tag(const struct page *page) 1391 { 1392 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1393 } 1394 1395 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1396 { 1397 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1398 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1399 } 1400 1401 static inline void page_kasan_tag_reset(struct page *page) 1402 { 1403 page_kasan_tag_set(page, 0xff); 1404 } 1405 #else 1406 static inline u8 page_kasan_tag(const struct page *page) 1407 { 1408 return 0xff; 1409 } 1410 1411 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1412 static inline void page_kasan_tag_reset(struct page *page) { } 1413 #endif 1414 1415 static inline struct zone *page_zone(const struct page *page) 1416 { 1417 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1418 } 1419 1420 static inline pg_data_t *page_pgdat(const struct page *page) 1421 { 1422 return NODE_DATA(page_to_nid(page)); 1423 } 1424 1425 #ifdef SECTION_IN_PAGE_FLAGS 1426 static inline void set_page_section(struct page *page, unsigned long section) 1427 { 1428 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1429 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1430 } 1431 1432 static inline unsigned long page_to_section(const struct page *page) 1433 { 1434 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1435 } 1436 #endif 1437 1438 static inline void set_page_zone(struct page *page, enum zone_type zone) 1439 { 1440 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1441 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1442 } 1443 1444 static inline void set_page_node(struct page *page, unsigned long node) 1445 { 1446 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1447 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1448 } 1449 1450 static inline void set_page_links(struct page *page, enum zone_type zone, 1451 unsigned long node, unsigned long pfn) 1452 { 1453 set_page_zone(page, zone); 1454 set_page_node(page, node); 1455 #ifdef SECTION_IN_PAGE_FLAGS 1456 set_page_section(page, pfn_to_section_nr(pfn)); 1457 #endif 1458 } 1459 1460 #ifdef CONFIG_MEMCG 1461 static inline struct mem_cgroup *page_memcg(struct page *page) 1462 { 1463 return page->mem_cgroup; 1464 } 1465 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1466 { 1467 WARN_ON_ONCE(!rcu_read_lock_held()); 1468 return READ_ONCE(page->mem_cgroup); 1469 } 1470 #else 1471 static inline struct mem_cgroup *page_memcg(struct page *page) 1472 { 1473 return NULL; 1474 } 1475 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1476 { 1477 WARN_ON_ONCE(!rcu_read_lock_held()); 1478 return NULL; 1479 } 1480 #endif 1481 1482 /* 1483 * Some inline functions in vmstat.h depend on page_zone() 1484 */ 1485 #include <linux/vmstat.h> 1486 1487 static __always_inline void *lowmem_page_address(const struct page *page) 1488 { 1489 return page_to_virt(page); 1490 } 1491 1492 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1493 #define HASHED_PAGE_VIRTUAL 1494 #endif 1495 1496 #if defined(WANT_PAGE_VIRTUAL) 1497 static inline void *page_address(const struct page *page) 1498 { 1499 return page->virtual; 1500 } 1501 static inline void set_page_address(struct page *page, void *address) 1502 { 1503 page->virtual = address; 1504 } 1505 #define page_address_init() do { } while(0) 1506 #endif 1507 1508 #if defined(HASHED_PAGE_VIRTUAL) 1509 void *page_address(const struct page *page); 1510 void set_page_address(struct page *page, void *virtual); 1511 void page_address_init(void); 1512 #endif 1513 1514 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1515 #define page_address(page) lowmem_page_address(page) 1516 #define set_page_address(page, address) do { } while(0) 1517 #define page_address_init() do { } while(0) 1518 #endif 1519 1520 extern void *page_rmapping(struct page *page); 1521 extern struct anon_vma *page_anon_vma(struct page *page); 1522 extern struct address_space *page_mapping(struct page *page); 1523 1524 extern struct address_space *__page_file_mapping(struct page *); 1525 1526 static inline 1527 struct address_space *page_file_mapping(struct page *page) 1528 { 1529 if (unlikely(PageSwapCache(page))) 1530 return __page_file_mapping(page); 1531 1532 return page->mapping; 1533 } 1534 1535 extern pgoff_t __page_file_index(struct page *page); 1536 1537 /* 1538 * Return the pagecache index of the passed page. Regular pagecache pages 1539 * use ->index whereas swapcache pages use swp_offset(->private) 1540 */ 1541 static inline pgoff_t page_index(struct page *page) 1542 { 1543 if (unlikely(PageSwapCache(page))) 1544 return __page_file_index(page); 1545 return page->index; 1546 } 1547 1548 bool page_mapped(struct page *page); 1549 struct address_space *page_mapping(struct page *page); 1550 struct address_space *page_mapping_file(struct page *page); 1551 1552 /* 1553 * Return true only if the page has been allocated with 1554 * ALLOC_NO_WATERMARKS and the low watermark was not 1555 * met implying that the system is under some pressure. 1556 */ 1557 static inline bool page_is_pfmemalloc(struct page *page) 1558 { 1559 /* 1560 * Page index cannot be this large so this must be 1561 * a pfmemalloc page. 1562 */ 1563 return page->index == -1UL; 1564 } 1565 1566 /* 1567 * Only to be called by the page allocator on a freshly allocated 1568 * page. 1569 */ 1570 static inline void set_page_pfmemalloc(struct page *page) 1571 { 1572 page->index = -1UL; 1573 } 1574 1575 static inline void clear_page_pfmemalloc(struct page *page) 1576 { 1577 page->index = 0; 1578 } 1579 1580 /* 1581 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1582 */ 1583 extern void pagefault_out_of_memory(void); 1584 1585 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1586 1587 /* 1588 * Flags passed to show_mem() and show_free_areas() to suppress output in 1589 * various contexts. 1590 */ 1591 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1592 1593 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1594 1595 #ifdef CONFIG_MMU 1596 extern bool can_do_mlock(void); 1597 #else 1598 static inline bool can_do_mlock(void) { return false; } 1599 #endif 1600 extern int user_shm_lock(size_t, struct user_struct *); 1601 extern void user_shm_unlock(size_t, struct user_struct *); 1602 1603 /* 1604 * Parameter block passed down to zap_pte_range in exceptional cases. 1605 */ 1606 struct zap_details { 1607 struct address_space *check_mapping; /* Check page->mapping if set */ 1608 pgoff_t first_index; /* Lowest page->index to unmap */ 1609 pgoff_t last_index; /* Highest page->index to unmap */ 1610 }; 1611 1612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1613 pte_t pte); 1614 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1615 pmd_t pmd); 1616 1617 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1618 unsigned long size); 1619 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1620 unsigned long size); 1621 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1622 unsigned long start, unsigned long end); 1623 1624 struct mmu_notifier_range; 1625 1626 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1627 unsigned long end, unsigned long floor, unsigned long ceiling); 1628 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1629 struct vm_area_struct *vma); 1630 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1631 struct mmu_notifier_range *range, 1632 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1633 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1634 unsigned long *pfn); 1635 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1636 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1637 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1638 void *buf, int len, int write); 1639 1640 extern void truncate_pagecache(struct inode *inode, loff_t new); 1641 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1642 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1643 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1644 int truncate_inode_page(struct address_space *mapping, struct page *page); 1645 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1646 int invalidate_inode_page(struct page *page); 1647 1648 #ifdef CONFIG_MMU 1649 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1650 unsigned long address, unsigned int flags); 1651 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1652 unsigned long address, unsigned int fault_flags, 1653 bool *unlocked); 1654 void unmap_mapping_pages(struct address_space *mapping, 1655 pgoff_t start, pgoff_t nr, bool even_cows); 1656 void unmap_mapping_range(struct address_space *mapping, 1657 loff_t const holebegin, loff_t const holelen, int even_cows); 1658 #else 1659 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1660 unsigned long address, unsigned int flags) 1661 { 1662 /* should never happen if there's no MMU */ 1663 BUG(); 1664 return VM_FAULT_SIGBUS; 1665 } 1666 static inline int fixup_user_fault(struct task_struct *tsk, 1667 struct mm_struct *mm, unsigned long address, 1668 unsigned int fault_flags, bool *unlocked) 1669 { 1670 /* should never happen if there's no MMU */ 1671 BUG(); 1672 return -EFAULT; 1673 } 1674 static inline void unmap_mapping_pages(struct address_space *mapping, 1675 pgoff_t start, pgoff_t nr, bool even_cows) { } 1676 static inline void unmap_mapping_range(struct address_space *mapping, 1677 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1678 #endif 1679 1680 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1681 loff_t const holebegin, loff_t const holelen) 1682 { 1683 unmap_mapping_range(mapping, holebegin, holelen, 0); 1684 } 1685 1686 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1687 void *buf, int len, unsigned int gup_flags); 1688 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1689 void *buf, int len, unsigned int gup_flags); 1690 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1691 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1692 1693 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1694 unsigned long start, unsigned long nr_pages, 1695 unsigned int gup_flags, struct page **pages, 1696 struct vm_area_struct **vmas, int *locked); 1697 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1698 unsigned long start, unsigned long nr_pages, 1699 unsigned int gup_flags, struct page **pages, 1700 struct vm_area_struct **vmas, int *locked); 1701 long get_user_pages(unsigned long start, unsigned long nr_pages, 1702 unsigned int gup_flags, struct page **pages, 1703 struct vm_area_struct **vmas); 1704 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1705 unsigned int gup_flags, struct page **pages, 1706 struct vm_area_struct **vmas); 1707 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1708 unsigned int gup_flags, struct page **pages, int *locked); 1709 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1710 unsigned int gup_flags, struct page **pages, int *locked); 1711 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1712 struct page **pages, unsigned int gup_flags); 1713 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1714 struct page **pages, unsigned int gup_flags); 1715 1716 int get_user_pages_fast(unsigned long start, int nr_pages, 1717 unsigned int gup_flags, struct page **pages); 1718 int pin_user_pages_fast(unsigned long start, int nr_pages, 1719 unsigned int gup_flags, struct page **pages); 1720 1721 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1722 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1723 struct task_struct *task, bool bypass_rlim); 1724 1725 /* Container for pinned pfns / pages */ 1726 struct frame_vector { 1727 unsigned int nr_allocated; /* Number of frames we have space for */ 1728 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1729 bool got_ref; /* Did we pin pages by getting page ref? */ 1730 bool is_pfns; /* Does array contain pages or pfns? */ 1731 void *ptrs[]; /* Array of pinned pfns / pages. Use 1732 * pfns_vector_pages() or pfns_vector_pfns() 1733 * for access */ 1734 }; 1735 1736 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1737 void frame_vector_destroy(struct frame_vector *vec); 1738 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1739 unsigned int gup_flags, struct frame_vector *vec); 1740 void put_vaddr_frames(struct frame_vector *vec); 1741 int frame_vector_to_pages(struct frame_vector *vec); 1742 void frame_vector_to_pfns(struct frame_vector *vec); 1743 1744 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1745 { 1746 return vec->nr_frames; 1747 } 1748 1749 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1750 { 1751 if (vec->is_pfns) { 1752 int err = frame_vector_to_pages(vec); 1753 1754 if (err) 1755 return ERR_PTR(err); 1756 } 1757 return (struct page **)(vec->ptrs); 1758 } 1759 1760 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1761 { 1762 if (!vec->is_pfns) 1763 frame_vector_to_pfns(vec); 1764 return (unsigned long *)(vec->ptrs); 1765 } 1766 1767 struct kvec; 1768 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1769 struct page **pages); 1770 int get_kernel_page(unsigned long start, int write, struct page **pages); 1771 struct page *get_dump_page(unsigned long addr); 1772 1773 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1774 extern void do_invalidatepage(struct page *page, unsigned int offset, 1775 unsigned int length); 1776 1777 void __set_page_dirty(struct page *, struct address_space *, int warn); 1778 int __set_page_dirty_nobuffers(struct page *page); 1779 int __set_page_dirty_no_writeback(struct page *page); 1780 int redirty_page_for_writepage(struct writeback_control *wbc, 1781 struct page *page); 1782 void account_page_dirtied(struct page *page, struct address_space *mapping); 1783 void account_page_cleaned(struct page *page, struct address_space *mapping, 1784 struct bdi_writeback *wb); 1785 int set_page_dirty(struct page *page); 1786 int set_page_dirty_lock(struct page *page); 1787 void __cancel_dirty_page(struct page *page); 1788 static inline void cancel_dirty_page(struct page *page) 1789 { 1790 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1791 if (PageDirty(page)) 1792 __cancel_dirty_page(page); 1793 } 1794 int clear_page_dirty_for_io(struct page *page); 1795 1796 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1797 1798 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1799 unsigned long old_addr, struct vm_area_struct *new_vma, 1800 unsigned long new_addr, unsigned long len, 1801 bool need_rmap_locks); 1802 1803 /* 1804 * Flags used by change_protection(). For now we make it a bitmap so 1805 * that we can pass in multiple flags just like parameters. However 1806 * for now all the callers are only use one of the flags at the same 1807 * time. 1808 */ 1809 /* Whether we should allow dirty bit accounting */ 1810 #define MM_CP_DIRTY_ACCT (1UL << 0) 1811 /* Whether this protection change is for NUMA hints */ 1812 #define MM_CP_PROT_NUMA (1UL << 1) 1813 /* Whether this change is for write protecting */ 1814 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1815 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1816 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1817 MM_CP_UFFD_WP_RESOLVE) 1818 1819 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1820 unsigned long end, pgprot_t newprot, 1821 unsigned long cp_flags); 1822 extern int mprotect_fixup(struct vm_area_struct *vma, 1823 struct vm_area_struct **pprev, unsigned long start, 1824 unsigned long end, unsigned long newflags); 1825 1826 /* 1827 * doesn't attempt to fault and will return short. 1828 */ 1829 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1830 unsigned int gup_flags, struct page **pages); 1831 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1832 unsigned int gup_flags, struct page **pages); 1833 1834 static inline bool get_user_page_fast_only(unsigned long addr, 1835 unsigned int gup_flags, struct page **pagep) 1836 { 1837 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1838 } 1839 /* 1840 * per-process(per-mm_struct) statistics. 1841 */ 1842 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1843 { 1844 long val = atomic_long_read(&mm->rss_stat.count[member]); 1845 1846 #ifdef SPLIT_RSS_COUNTING 1847 /* 1848 * counter is updated in asynchronous manner and may go to minus. 1849 * But it's never be expected number for users. 1850 */ 1851 if (val < 0) 1852 val = 0; 1853 #endif 1854 return (unsigned long)val; 1855 } 1856 1857 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1858 1859 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1860 { 1861 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1862 1863 mm_trace_rss_stat(mm, member, count); 1864 } 1865 1866 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1867 { 1868 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1869 1870 mm_trace_rss_stat(mm, member, count); 1871 } 1872 1873 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1874 { 1875 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1876 1877 mm_trace_rss_stat(mm, member, count); 1878 } 1879 1880 /* Optimized variant when page is already known not to be PageAnon */ 1881 static inline int mm_counter_file(struct page *page) 1882 { 1883 if (PageSwapBacked(page)) 1884 return MM_SHMEMPAGES; 1885 return MM_FILEPAGES; 1886 } 1887 1888 static inline int mm_counter(struct page *page) 1889 { 1890 if (PageAnon(page)) 1891 return MM_ANONPAGES; 1892 return mm_counter_file(page); 1893 } 1894 1895 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1896 { 1897 return get_mm_counter(mm, MM_FILEPAGES) + 1898 get_mm_counter(mm, MM_ANONPAGES) + 1899 get_mm_counter(mm, MM_SHMEMPAGES); 1900 } 1901 1902 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1903 { 1904 return max(mm->hiwater_rss, get_mm_rss(mm)); 1905 } 1906 1907 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1908 { 1909 return max(mm->hiwater_vm, mm->total_vm); 1910 } 1911 1912 static inline void update_hiwater_rss(struct mm_struct *mm) 1913 { 1914 unsigned long _rss = get_mm_rss(mm); 1915 1916 if ((mm)->hiwater_rss < _rss) 1917 (mm)->hiwater_rss = _rss; 1918 } 1919 1920 static inline void update_hiwater_vm(struct mm_struct *mm) 1921 { 1922 if (mm->hiwater_vm < mm->total_vm) 1923 mm->hiwater_vm = mm->total_vm; 1924 } 1925 1926 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1927 { 1928 mm->hiwater_rss = get_mm_rss(mm); 1929 } 1930 1931 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1932 struct mm_struct *mm) 1933 { 1934 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1935 1936 if (*maxrss < hiwater_rss) 1937 *maxrss = hiwater_rss; 1938 } 1939 1940 #if defined(SPLIT_RSS_COUNTING) 1941 void sync_mm_rss(struct mm_struct *mm); 1942 #else 1943 static inline void sync_mm_rss(struct mm_struct *mm) 1944 { 1945 } 1946 #endif 1947 1948 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1949 static inline int pte_special(pte_t pte) 1950 { 1951 return 0; 1952 } 1953 1954 static inline pte_t pte_mkspecial(pte_t pte) 1955 { 1956 return pte; 1957 } 1958 #endif 1959 1960 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1961 static inline int pte_devmap(pte_t pte) 1962 { 1963 return 0; 1964 } 1965 #endif 1966 1967 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1968 1969 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1970 spinlock_t **ptl); 1971 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1972 spinlock_t **ptl) 1973 { 1974 pte_t *ptep; 1975 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1976 return ptep; 1977 } 1978 1979 #ifdef __PAGETABLE_P4D_FOLDED 1980 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1981 unsigned long address) 1982 { 1983 return 0; 1984 } 1985 #else 1986 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1987 #endif 1988 1989 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1990 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1991 unsigned long address) 1992 { 1993 return 0; 1994 } 1995 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1996 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1997 1998 #else 1999 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2000 2001 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2002 { 2003 if (mm_pud_folded(mm)) 2004 return; 2005 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2006 } 2007 2008 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2009 { 2010 if (mm_pud_folded(mm)) 2011 return; 2012 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2013 } 2014 #endif 2015 2016 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2017 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2018 unsigned long address) 2019 { 2020 return 0; 2021 } 2022 2023 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2024 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2025 2026 #else 2027 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2028 2029 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2030 { 2031 if (mm_pmd_folded(mm)) 2032 return; 2033 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2034 } 2035 2036 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2037 { 2038 if (mm_pmd_folded(mm)) 2039 return; 2040 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2041 } 2042 #endif 2043 2044 #ifdef CONFIG_MMU 2045 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2046 { 2047 atomic_long_set(&mm->pgtables_bytes, 0); 2048 } 2049 2050 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2051 { 2052 return atomic_long_read(&mm->pgtables_bytes); 2053 } 2054 2055 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2056 { 2057 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2058 } 2059 2060 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2061 { 2062 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2063 } 2064 #else 2065 2066 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2067 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2068 { 2069 return 0; 2070 } 2071 2072 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2073 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2074 #endif 2075 2076 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2077 int __pte_alloc_kernel(pmd_t *pmd); 2078 2079 #if defined(CONFIG_MMU) 2080 2081 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2082 unsigned long address) 2083 { 2084 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2085 NULL : p4d_offset(pgd, address); 2086 } 2087 2088 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2089 unsigned long address) 2090 { 2091 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2092 NULL : pud_offset(p4d, address); 2093 } 2094 2095 static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, 2096 unsigned long address, 2097 pgtbl_mod_mask *mod_mask) 2098 2099 { 2100 if (unlikely(pgd_none(*pgd))) { 2101 if (__p4d_alloc(mm, pgd, address)) 2102 return NULL; 2103 *mod_mask |= PGTBL_PGD_MODIFIED; 2104 } 2105 2106 return p4d_offset(pgd, address); 2107 } 2108 2109 static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, 2110 unsigned long address, 2111 pgtbl_mod_mask *mod_mask) 2112 { 2113 if (unlikely(p4d_none(*p4d))) { 2114 if (__pud_alloc(mm, p4d, address)) 2115 return NULL; 2116 *mod_mask |= PGTBL_P4D_MODIFIED; 2117 } 2118 2119 return pud_offset(p4d, address); 2120 } 2121 2122 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2123 { 2124 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2125 NULL: pmd_offset(pud, address); 2126 } 2127 2128 static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, 2129 unsigned long address, 2130 pgtbl_mod_mask *mod_mask) 2131 { 2132 if (unlikely(pud_none(*pud))) { 2133 if (__pmd_alloc(mm, pud, address)) 2134 return NULL; 2135 *mod_mask |= PGTBL_PUD_MODIFIED; 2136 } 2137 2138 return pmd_offset(pud, address); 2139 } 2140 #endif /* CONFIG_MMU */ 2141 2142 #if USE_SPLIT_PTE_PTLOCKS 2143 #if ALLOC_SPLIT_PTLOCKS 2144 void __init ptlock_cache_init(void); 2145 extern bool ptlock_alloc(struct page *page); 2146 extern void ptlock_free(struct page *page); 2147 2148 static inline spinlock_t *ptlock_ptr(struct page *page) 2149 { 2150 return page->ptl; 2151 } 2152 #else /* ALLOC_SPLIT_PTLOCKS */ 2153 static inline void ptlock_cache_init(void) 2154 { 2155 } 2156 2157 static inline bool ptlock_alloc(struct page *page) 2158 { 2159 return true; 2160 } 2161 2162 static inline void ptlock_free(struct page *page) 2163 { 2164 } 2165 2166 static inline spinlock_t *ptlock_ptr(struct page *page) 2167 { 2168 return &page->ptl; 2169 } 2170 #endif /* ALLOC_SPLIT_PTLOCKS */ 2171 2172 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2173 { 2174 return ptlock_ptr(pmd_page(*pmd)); 2175 } 2176 2177 static inline bool ptlock_init(struct page *page) 2178 { 2179 /* 2180 * prep_new_page() initialize page->private (and therefore page->ptl) 2181 * with 0. Make sure nobody took it in use in between. 2182 * 2183 * It can happen if arch try to use slab for page table allocation: 2184 * slab code uses page->slab_cache, which share storage with page->ptl. 2185 */ 2186 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2187 if (!ptlock_alloc(page)) 2188 return false; 2189 spin_lock_init(ptlock_ptr(page)); 2190 return true; 2191 } 2192 2193 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2194 /* 2195 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2196 */ 2197 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2198 { 2199 return &mm->page_table_lock; 2200 } 2201 static inline void ptlock_cache_init(void) {} 2202 static inline bool ptlock_init(struct page *page) { return true; } 2203 static inline void ptlock_free(struct page *page) {} 2204 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2205 2206 static inline void pgtable_init(void) 2207 { 2208 ptlock_cache_init(); 2209 pgtable_cache_init(); 2210 } 2211 2212 static inline bool pgtable_pte_page_ctor(struct page *page) 2213 { 2214 if (!ptlock_init(page)) 2215 return false; 2216 __SetPageTable(page); 2217 inc_zone_page_state(page, NR_PAGETABLE); 2218 return true; 2219 } 2220 2221 static inline void pgtable_pte_page_dtor(struct page *page) 2222 { 2223 ptlock_free(page); 2224 __ClearPageTable(page); 2225 dec_zone_page_state(page, NR_PAGETABLE); 2226 } 2227 2228 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2229 ({ \ 2230 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2231 pte_t *__pte = pte_offset_map(pmd, address); \ 2232 *(ptlp) = __ptl; \ 2233 spin_lock(__ptl); \ 2234 __pte; \ 2235 }) 2236 2237 #define pte_unmap_unlock(pte, ptl) do { \ 2238 spin_unlock(ptl); \ 2239 pte_unmap(pte); \ 2240 } while (0) 2241 2242 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2243 2244 #define pte_alloc_map(mm, pmd, address) \ 2245 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2246 2247 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2248 (pte_alloc(mm, pmd) ? \ 2249 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2250 2251 #define pte_alloc_kernel(pmd, address) \ 2252 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2253 NULL: pte_offset_kernel(pmd, address)) 2254 2255 #define pte_alloc_kernel_track(pmd, address, mask) \ 2256 ((unlikely(pmd_none(*(pmd))) && \ 2257 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ 2258 NULL: pte_offset_kernel(pmd, address)) 2259 2260 #if USE_SPLIT_PMD_PTLOCKS 2261 2262 static struct page *pmd_to_page(pmd_t *pmd) 2263 { 2264 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2265 return virt_to_page((void *)((unsigned long) pmd & mask)); 2266 } 2267 2268 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2269 { 2270 return ptlock_ptr(pmd_to_page(pmd)); 2271 } 2272 2273 static inline bool pgtable_pmd_page_ctor(struct page *page) 2274 { 2275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2276 page->pmd_huge_pte = NULL; 2277 #endif 2278 return ptlock_init(page); 2279 } 2280 2281 static inline void pgtable_pmd_page_dtor(struct page *page) 2282 { 2283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2284 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2285 #endif 2286 ptlock_free(page); 2287 } 2288 2289 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2290 2291 #else 2292 2293 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2294 { 2295 return &mm->page_table_lock; 2296 } 2297 2298 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2299 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2300 2301 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2302 2303 #endif 2304 2305 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2306 { 2307 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2308 spin_lock(ptl); 2309 return ptl; 2310 } 2311 2312 /* 2313 * No scalability reason to split PUD locks yet, but follow the same pattern 2314 * as the PMD locks to make it easier if we decide to. The VM should not be 2315 * considered ready to switch to split PUD locks yet; there may be places 2316 * which need to be converted from page_table_lock. 2317 */ 2318 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2319 { 2320 return &mm->page_table_lock; 2321 } 2322 2323 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2324 { 2325 spinlock_t *ptl = pud_lockptr(mm, pud); 2326 2327 spin_lock(ptl); 2328 return ptl; 2329 } 2330 2331 extern void __init pagecache_init(void); 2332 extern void __init free_area_init_memoryless_node(int nid); 2333 extern void free_initmem(void); 2334 2335 /* 2336 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2337 * into the buddy system. The freed pages will be poisoned with pattern 2338 * "poison" if it's within range [0, UCHAR_MAX]. 2339 * Return pages freed into the buddy system. 2340 */ 2341 extern unsigned long free_reserved_area(void *start, void *end, 2342 int poison, const char *s); 2343 2344 #ifdef CONFIG_HIGHMEM 2345 /* 2346 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2347 * and totalram_pages. 2348 */ 2349 extern void free_highmem_page(struct page *page); 2350 #endif 2351 2352 extern void adjust_managed_page_count(struct page *page, long count); 2353 extern void mem_init_print_info(const char *str); 2354 2355 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2356 2357 /* Free the reserved page into the buddy system, so it gets managed. */ 2358 static inline void __free_reserved_page(struct page *page) 2359 { 2360 ClearPageReserved(page); 2361 init_page_count(page); 2362 __free_page(page); 2363 } 2364 2365 static inline void free_reserved_page(struct page *page) 2366 { 2367 __free_reserved_page(page); 2368 adjust_managed_page_count(page, 1); 2369 } 2370 2371 static inline void mark_page_reserved(struct page *page) 2372 { 2373 SetPageReserved(page); 2374 adjust_managed_page_count(page, -1); 2375 } 2376 2377 /* 2378 * Default method to free all the __init memory into the buddy system. 2379 * The freed pages will be poisoned with pattern "poison" if it's within 2380 * range [0, UCHAR_MAX]. 2381 * Return pages freed into the buddy system. 2382 */ 2383 static inline unsigned long free_initmem_default(int poison) 2384 { 2385 extern char __init_begin[], __init_end[]; 2386 2387 return free_reserved_area(&__init_begin, &__init_end, 2388 poison, "unused kernel"); 2389 } 2390 2391 static inline unsigned long get_num_physpages(void) 2392 { 2393 int nid; 2394 unsigned long phys_pages = 0; 2395 2396 for_each_online_node(nid) 2397 phys_pages += node_present_pages(nid); 2398 2399 return phys_pages; 2400 } 2401 2402 /* 2403 * Using memblock node mappings, an architecture may initialise its 2404 * zones, allocate the backing mem_map and account for memory holes in an 2405 * architecture independent manner. 2406 * 2407 * An architecture is expected to register range of page frames backed by 2408 * physical memory with memblock_add[_node]() before calling 2409 * free_area_init() passing in the PFN each zone ends at. At a basic 2410 * usage, an architecture is expected to do something like 2411 * 2412 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2413 * max_highmem_pfn}; 2414 * for_each_valid_physical_page_range() 2415 * memblock_add_node(base, size, nid) 2416 * free_area_init(max_zone_pfns); 2417 * 2418 * sparse_memory_present_with_active_regions() calls memory_present() for 2419 * each range when SPARSEMEM is enabled. 2420 */ 2421 void free_area_init(unsigned long *max_zone_pfn); 2422 unsigned long node_map_pfn_alignment(void); 2423 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2424 unsigned long end_pfn); 2425 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2426 unsigned long end_pfn); 2427 extern void get_pfn_range_for_nid(unsigned int nid, 2428 unsigned long *start_pfn, unsigned long *end_pfn); 2429 extern unsigned long find_min_pfn_with_active_regions(void); 2430 extern void sparse_memory_present_with_active_regions(int nid); 2431 2432 #ifndef CONFIG_NEED_MULTIPLE_NODES 2433 static inline int early_pfn_to_nid(unsigned long pfn) 2434 { 2435 return 0; 2436 } 2437 #else 2438 /* please see mm/page_alloc.c */ 2439 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2440 /* there is a per-arch backend function. */ 2441 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2442 struct mminit_pfnnid_cache *state); 2443 #endif 2444 2445 extern void set_dma_reserve(unsigned long new_dma_reserve); 2446 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2447 enum memmap_context, struct vmem_altmap *); 2448 extern void setup_per_zone_wmarks(void); 2449 extern int __meminit init_per_zone_wmark_min(void); 2450 extern void mem_init(void); 2451 extern void __init mmap_init(void); 2452 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2453 extern long si_mem_available(void); 2454 extern void si_meminfo(struct sysinfo * val); 2455 extern void si_meminfo_node(struct sysinfo *val, int nid); 2456 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2457 extern unsigned long arch_reserved_kernel_pages(void); 2458 #endif 2459 2460 extern __printf(3, 4) 2461 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2462 2463 extern void setup_per_cpu_pageset(void); 2464 2465 /* page_alloc.c */ 2466 extern int min_free_kbytes; 2467 extern int watermark_boost_factor; 2468 extern int watermark_scale_factor; 2469 extern bool arch_has_descending_max_zone_pfns(void); 2470 2471 /* nommu.c */ 2472 extern atomic_long_t mmap_pages_allocated; 2473 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2474 2475 /* interval_tree.c */ 2476 void vma_interval_tree_insert(struct vm_area_struct *node, 2477 struct rb_root_cached *root); 2478 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2479 struct vm_area_struct *prev, 2480 struct rb_root_cached *root); 2481 void vma_interval_tree_remove(struct vm_area_struct *node, 2482 struct rb_root_cached *root); 2483 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2484 unsigned long start, unsigned long last); 2485 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2486 unsigned long start, unsigned long last); 2487 2488 #define vma_interval_tree_foreach(vma, root, start, last) \ 2489 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2490 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2491 2492 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2493 struct rb_root_cached *root); 2494 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2495 struct rb_root_cached *root); 2496 struct anon_vma_chain * 2497 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2498 unsigned long start, unsigned long last); 2499 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2500 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2501 #ifdef CONFIG_DEBUG_VM_RB 2502 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2503 #endif 2504 2505 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2506 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2507 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2508 2509 /* mmap.c */ 2510 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2511 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2512 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2513 struct vm_area_struct *expand); 2514 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2515 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2516 { 2517 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2518 } 2519 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2520 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2521 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2522 struct mempolicy *, struct vm_userfaultfd_ctx); 2523 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2524 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2525 unsigned long addr, int new_below); 2526 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2527 unsigned long addr, int new_below); 2528 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2529 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2530 struct rb_node **, struct rb_node *); 2531 extern void unlink_file_vma(struct vm_area_struct *); 2532 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2533 unsigned long addr, unsigned long len, pgoff_t pgoff, 2534 bool *need_rmap_locks); 2535 extern void exit_mmap(struct mm_struct *); 2536 2537 static inline int check_data_rlimit(unsigned long rlim, 2538 unsigned long new, 2539 unsigned long start, 2540 unsigned long end_data, 2541 unsigned long start_data) 2542 { 2543 if (rlim < RLIM_INFINITY) { 2544 if (((new - start) + (end_data - start_data)) > rlim) 2545 return -ENOSPC; 2546 } 2547 2548 return 0; 2549 } 2550 2551 extern int mm_take_all_locks(struct mm_struct *mm); 2552 extern void mm_drop_all_locks(struct mm_struct *mm); 2553 2554 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2555 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2556 extern struct file *get_task_exe_file(struct task_struct *task); 2557 2558 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2559 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2560 2561 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2562 const struct vm_special_mapping *sm); 2563 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2564 unsigned long addr, unsigned long len, 2565 unsigned long flags, 2566 const struct vm_special_mapping *spec); 2567 /* This is an obsolete alternative to _install_special_mapping. */ 2568 extern int install_special_mapping(struct mm_struct *mm, 2569 unsigned long addr, unsigned long len, 2570 unsigned long flags, struct page **pages); 2571 2572 unsigned long randomize_stack_top(unsigned long stack_top); 2573 2574 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2575 2576 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2577 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2578 struct list_head *uf); 2579 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2580 unsigned long len, unsigned long prot, unsigned long flags, 2581 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2582 struct list_head *uf); 2583 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2584 struct list_head *uf, bool downgrade); 2585 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2586 struct list_head *uf); 2587 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2588 2589 static inline unsigned long 2590 do_mmap_pgoff(struct file *file, unsigned long addr, 2591 unsigned long len, unsigned long prot, unsigned long flags, 2592 unsigned long pgoff, unsigned long *populate, 2593 struct list_head *uf) 2594 { 2595 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2596 } 2597 2598 #ifdef CONFIG_MMU 2599 extern int __mm_populate(unsigned long addr, unsigned long len, 2600 int ignore_errors); 2601 static inline void mm_populate(unsigned long addr, unsigned long len) 2602 { 2603 /* Ignore errors */ 2604 (void) __mm_populate(addr, len, 1); 2605 } 2606 #else 2607 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2608 #endif 2609 2610 /* These take the mm semaphore themselves */ 2611 extern int __must_check vm_brk(unsigned long, unsigned long); 2612 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2613 extern int vm_munmap(unsigned long, size_t); 2614 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2615 unsigned long, unsigned long, 2616 unsigned long, unsigned long); 2617 2618 struct vm_unmapped_area_info { 2619 #define VM_UNMAPPED_AREA_TOPDOWN 1 2620 unsigned long flags; 2621 unsigned long length; 2622 unsigned long low_limit; 2623 unsigned long high_limit; 2624 unsigned long align_mask; 2625 unsigned long align_offset; 2626 }; 2627 2628 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2629 2630 /* truncate.c */ 2631 extern void truncate_inode_pages(struct address_space *, loff_t); 2632 extern void truncate_inode_pages_range(struct address_space *, 2633 loff_t lstart, loff_t lend); 2634 extern void truncate_inode_pages_final(struct address_space *); 2635 2636 /* generic vm_area_ops exported for stackable file systems */ 2637 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2638 extern void filemap_map_pages(struct vm_fault *vmf, 2639 pgoff_t start_pgoff, pgoff_t end_pgoff); 2640 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2641 2642 /* mm/page-writeback.c */ 2643 int __must_check write_one_page(struct page *page); 2644 void task_dirty_inc(struct task_struct *tsk); 2645 2646 extern unsigned long stack_guard_gap; 2647 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2648 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2649 2650 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2651 extern int expand_downwards(struct vm_area_struct *vma, 2652 unsigned long address); 2653 #if VM_GROWSUP 2654 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2655 #else 2656 #define expand_upwards(vma, address) (0) 2657 #endif 2658 2659 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2660 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2661 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2662 struct vm_area_struct **pprev); 2663 2664 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2665 NULL if none. Assume start_addr < end_addr. */ 2666 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2667 { 2668 struct vm_area_struct * vma = find_vma(mm,start_addr); 2669 2670 if (vma && end_addr <= vma->vm_start) 2671 vma = NULL; 2672 return vma; 2673 } 2674 2675 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2676 { 2677 unsigned long vm_start = vma->vm_start; 2678 2679 if (vma->vm_flags & VM_GROWSDOWN) { 2680 vm_start -= stack_guard_gap; 2681 if (vm_start > vma->vm_start) 2682 vm_start = 0; 2683 } 2684 return vm_start; 2685 } 2686 2687 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2688 { 2689 unsigned long vm_end = vma->vm_end; 2690 2691 if (vma->vm_flags & VM_GROWSUP) { 2692 vm_end += stack_guard_gap; 2693 if (vm_end < vma->vm_end) 2694 vm_end = -PAGE_SIZE; 2695 } 2696 return vm_end; 2697 } 2698 2699 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2700 { 2701 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2702 } 2703 2704 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2705 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2706 unsigned long vm_start, unsigned long vm_end) 2707 { 2708 struct vm_area_struct *vma = find_vma(mm, vm_start); 2709 2710 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2711 vma = NULL; 2712 2713 return vma; 2714 } 2715 2716 static inline bool range_in_vma(struct vm_area_struct *vma, 2717 unsigned long start, unsigned long end) 2718 { 2719 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2720 } 2721 2722 #ifdef CONFIG_MMU 2723 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2724 void vma_set_page_prot(struct vm_area_struct *vma); 2725 #else 2726 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2727 { 2728 return __pgprot(0); 2729 } 2730 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2731 { 2732 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2733 } 2734 #endif 2735 2736 #ifdef CONFIG_NUMA_BALANCING 2737 unsigned long change_prot_numa(struct vm_area_struct *vma, 2738 unsigned long start, unsigned long end); 2739 #endif 2740 2741 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2742 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2743 unsigned long pfn, unsigned long size, pgprot_t); 2744 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2745 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2746 struct page **pages, unsigned long *num); 2747 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2748 unsigned long num); 2749 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2750 unsigned long num); 2751 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2752 unsigned long pfn); 2753 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2754 unsigned long pfn, pgprot_t pgprot); 2755 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2756 pfn_t pfn); 2757 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2758 pfn_t pfn, pgprot_t pgprot); 2759 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2760 unsigned long addr, pfn_t pfn); 2761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2762 2763 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2764 unsigned long addr, struct page *page) 2765 { 2766 int err = vm_insert_page(vma, addr, page); 2767 2768 if (err == -ENOMEM) 2769 return VM_FAULT_OOM; 2770 if (err < 0 && err != -EBUSY) 2771 return VM_FAULT_SIGBUS; 2772 2773 return VM_FAULT_NOPAGE; 2774 } 2775 2776 static inline vm_fault_t vmf_error(int err) 2777 { 2778 if (err == -ENOMEM) 2779 return VM_FAULT_OOM; 2780 return VM_FAULT_SIGBUS; 2781 } 2782 2783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2784 unsigned int foll_flags); 2785 2786 #define FOLL_WRITE 0x01 /* check pte is writable */ 2787 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2788 #define FOLL_GET 0x04 /* do get_page on page */ 2789 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2790 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2791 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2792 * and return without waiting upon it */ 2793 #define FOLL_POPULATE 0x40 /* fault in page */ 2794 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2795 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2796 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2797 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2798 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2799 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2800 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2801 #define FOLL_COW 0x4000 /* internal GUP flag */ 2802 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2803 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2804 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2805 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2806 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2807 2808 /* 2809 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2810 * other. Here is what they mean, and how to use them: 2811 * 2812 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2813 * period _often_ under userspace control. This is in contrast to 2814 * iov_iter_get_pages(), whose usages are transient. 2815 * 2816 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2817 * lifetime enforced by the filesystem and we need guarantees that longterm 2818 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2819 * the filesystem. Ideas for this coordination include revoking the longterm 2820 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2821 * added after the problem with filesystems was found FS DAX VMAs are 2822 * specifically failed. Filesystem pages are still subject to bugs and use of 2823 * FOLL_LONGTERM should be avoided on those pages. 2824 * 2825 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2826 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2827 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2828 * is due to an incompatibility with the FS DAX check and 2829 * FAULT_FLAG_ALLOW_RETRY. 2830 * 2831 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2832 * that region. And so, CMA attempts to migrate the page before pinning, when 2833 * FOLL_LONGTERM is specified. 2834 * 2835 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2836 * but an additional pin counting system) will be invoked. This is intended for 2837 * anything that gets a page reference and then touches page data (for example, 2838 * Direct IO). This lets the filesystem know that some non-file-system entity is 2839 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2840 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2841 * a call to unpin_user_page(). 2842 * 2843 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2844 * and separate refcounting mechanisms, however, and that means that each has 2845 * its own acquire and release mechanisms: 2846 * 2847 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2848 * 2849 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2850 * 2851 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2852 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2853 * calls applied to them, and that's perfectly OK. This is a constraint on the 2854 * callers, not on the pages.) 2855 * 2856 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2857 * directly by the caller. That's in order to help avoid mismatches when 2858 * releasing pages: get_user_pages*() pages must be released via put_page(), 2859 * while pin_user_pages*() pages must be released via unpin_user_page(). 2860 * 2861 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2862 */ 2863 2864 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2865 { 2866 if (vm_fault & VM_FAULT_OOM) 2867 return -ENOMEM; 2868 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2869 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2870 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2871 return -EFAULT; 2872 return 0; 2873 } 2874 2875 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2876 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2877 unsigned long size, pte_fn_t fn, void *data); 2878 extern int apply_to_existing_page_range(struct mm_struct *mm, 2879 unsigned long address, unsigned long size, 2880 pte_fn_t fn, void *data); 2881 2882 #ifdef CONFIG_PAGE_POISONING 2883 extern bool page_poisoning_enabled(void); 2884 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2885 #else 2886 static inline bool page_poisoning_enabled(void) { return false; } 2887 static inline void kernel_poison_pages(struct page *page, int numpages, 2888 int enable) { } 2889 #endif 2890 2891 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2892 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2893 #else 2894 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2895 #endif 2896 static inline bool want_init_on_alloc(gfp_t flags) 2897 { 2898 if (static_branch_unlikely(&init_on_alloc) && 2899 !page_poisoning_enabled()) 2900 return true; 2901 return flags & __GFP_ZERO; 2902 } 2903 2904 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2905 DECLARE_STATIC_KEY_TRUE(init_on_free); 2906 #else 2907 DECLARE_STATIC_KEY_FALSE(init_on_free); 2908 #endif 2909 static inline bool want_init_on_free(void) 2910 { 2911 return static_branch_unlikely(&init_on_free) && 2912 !page_poisoning_enabled(); 2913 } 2914 2915 #ifdef CONFIG_DEBUG_PAGEALLOC 2916 extern void init_debug_pagealloc(void); 2917 #else 2918 static inline void init_debug_pagealloc(void) {} 2919 #endif 2920 extern bool _debug_pagealloc_enabled_early; 2921 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2922 2923 static inline bool debug_pagealloc_enabled(void) 2924 { 2925 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2926 _debug_pagealloc_enabled_early; 2927 } 2928 2929 /* 2930 * For use in fast paths after init_debug_pagealloc() has run, or when a 2931 * false negative result is not harmful when called too early. 2932 */ 2933 static inline bool debug_pagealloc_enabled_static(void) 2934 { 2935 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2936 return false; 2937 2938 return static_branch_unlikely(&_debug_pagealloc_enabled); 2939 } 2940 2941 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2942 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2943 2944 /* 2945 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2946 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2947 */ 2948 static inline void 2949 kernel_map_pages(struct page *page, int numpages, int enable) 2950 { 2951 __kernel_map_pages(page, numpages, enable); 2952 } 2953 #ifdef CONFIG_HIBERNATION 2954 extern bool kernel_page_present(struct page *page); 2955 #endif /* CONFIG_HIBERNATION */ 2956 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2957 static inline void 2958 kernel_map_pages(struct page *page, int numpages, int enable) {} 2959 #ifdef CONFIG_HIBERNATION 2960 static inline bool kernel_page_present(struct page *page) { return true; } 2961 #endif /* CONFIG_HIBERNATION */ 2962 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2963 2964 #ifdef __HAVE_ARCH_GATE_AREA 2965 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2966 extern int in_gate_area_no_mm(unsigned long addr); 2967 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2968 #else 2969 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2970 { 2971 return NULL; 2972 } 2973 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2974 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2975 { 2976 return 0; 2977 } 2978 #endif /* __HAVE_ARCH_GATE_AREA */ 2979 2980 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2981 2982 #ifdef CONFIG_SYSCTL 2983 extern int sysctl_drop_caches; 2984 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2985 loff_t *); 2986 #endif 2987 2988 void drop_slab(void); 2989 void drop_slab_node(int nid); 2990 2991 #ifndef CONFIG_MMU 2992 #define randomize_va_space 0 2993 #else 2994 extern int randomize_va_space; 2995 #endif 2996 2997 const char * arch_vma_name(struct vm_area_struct *vma); 2998 #ifdef CONFIG_MMU 2999 void print_vma_addr(char *prefix, unsigned long rip); 3000 #else 3001 static inline void print_vma_addr(char *prefix, unsigned long rip) 3002 { 3003 } 3004 #endif 3005 3006 void *sparse_buffer_alloc(unsigned long size); 3007 struct page * __populate_section_memmap(unsigned long pfn, 3008 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3009 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3010 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3011 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3012 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3013 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 3014 void *vmemmap_alloc_block(unsigned long size, int node); 3015 struct vmem_altmap; 3016 void *vmemmap_alloc_block_buf(unsigned long size, int node); 3017 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 3018 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3019 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3020 int node); 3021 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3022 struct vmem_altmap *altmap); 3023 void vmemmap_populate_print_last(void); 3024 #ifdef CONFIG_MEMORY_HOTPLUG 3025 void vmemmap_free(unsigned long start, unsigned long end, 3026 struct vmem_altmap *altmap); 3027 #endif 3028 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3029 unsigned long nr_pages); 3030 3031 enum mf_flags { 3032 MF_COUNT_INCREASED = 1 << 0, 3033 MF_ACTION_REQUIRED = 1 << 1, 3034 MF_MUST_KILL = 1 << 2, 3035 MF_SOFT_OFFLINE = 1 << 3, 3036 }; 3037 extern int memory_failure(unsigned long pfn, int flags); 3038 extern void memory_failure_queue(unsigned long pfn, int flags); 3039 extern void memory_failure_queue_kick(int cpu); 3040 extern int unpoison_memory(unsigned long pfn); 3041 extern int get_hwpoison_page(struct page *page); 3042 #define put_hwpoison_page(page) put_page(page) 3043 extern int sysctl_memory_failure_early_kill; 3044 extern int sysctl_memory_failure_recovery; 3045 extern void shake_page(struct page *p, int access); 3046 extern atomic_long_t num_poisoned_pages __read_mostly; 3047 extern int soft_offline_page(unsigned long pfn, int flags); 3048 3049 3050 /* 3051 * Error handlers for various types of pages. 3052 */ 3053 enum mf_result { 3054 MF_IGNORED, /* Error: cannot be handled */ 3055 MF_FAILED, /* Error: handling failed */ 3056 MF_DELAYED, /* Will be handled later */ 3057 MF_RECOVERED, /* Successfully recovered */ 3058 }; 3059 3060 enum mf_action_page_type { 3061 MF_MSG_KERNEL, 3062 MF_MSG_KERNEL_HIGH_ORDER, 3063 MF_MSG_SLAB, 3064 MF_MSG_DIFFERENT_COMPOUND, 3065 MF_MSG_POISONED_HUGE, 3066 MF_MSG_HUGE, 3067 MF_MSG_FREE_HUGE, 3068 MF_MSG_NON_PMD_HUGE, 3069 MF_MSG_UNMAP_FAILED, 3070 MF_MSG_DIRTY_SWAPCACHE, 3071 MF_MSG_CLEAN_SWAPCACHE, 3072 MF_MSG_DIRTY_MLOCKED_LRU, 3073 MF_MSG_CLEAN_MLOCKED_LRU, 3074 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3075 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3076 MF_MSG_DIRTY_LRU, 3077 MF_MSG_CLEAN_LRU, 3078 MF_MSG_TRUNCATED_LRU, 3079 MF_MSG_BUDDY, 3080 MF_MSG_BUDDY_2ND, 3081 MF_MSG_DAX, 3082 MF_MSG_UNKNOWN, 3083 }; 3084 3085 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3086 extern void clear_huge_page(struct page *page, 3087 unsigned long addr_hint, 3088 unsigned int pages_per_huge_page); 3089 extern void copy_user_huge_page(struct page *dst, struct page *src, 3090 unsigned long addr_hint, 3091 struct vm_area_struct *vma, 3092 unsigned int pages_per_huge_page); 3093 extern long copy_huge_page_from_user(struct page *dst_page, 3094 const void __user *usr_src, 3095 unsigned int pages_per_huge_page, 3096 bool allow_pagefault); 3097 3098 /** 3099 * vma_is_special_huge - Are transhuge page-table entries considered special? 3100 * @vma: Pointer to the struct vm_area_struct to consider 3101 * 3102 * Whether transhuge page-table entries are considered "special" following 3103 * the definition in vm_normal_page(). 3104 * 3105 * Return: true if transhuge page-table entries should be considered special, 3106 * false otherwise. 3107 */ 3108 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3109 { 3110 return vma_is_dax(vma) || (vma->vm_file && 3111 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3112 } 3113 3114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3115 3116 #ifdef CONFIG_DEBUG_PAGEALLOC 3117 extern unsigned int _debug_guardpage_minorder; 3118 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3119 3120 static inline unsigned int debug_guardpage_minorder(void) 3121 { 3122 return _debug_guardpage_minorder; 3123 } 3124 3125 static inline bool debug_guardpage_enabled(void) 3126 { 3127 return static_branch_unlikely(&_debug_guardpage_enabled); 3128 } 3129 3130 static inline bool page_is_guard(struct page *page) 3131 { 3132 if (!debug_guardpage_enabled()) 3133 return false; 3134 3135 return PageGuard(page); 3136 } 3137 #else 3138 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3139 static inline bool debug_guardpage_enabled(void) { return false; } 3140 static inline bool page_is_guard(struct page *page) { return false; } 3141 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3142 3143 #if MAX_NUMNODES > 1 3144 void __init setup_nr_node_ids(void); 3145 #else 3146 static inline void setup_nr_node_ids(void) {} 3147 #endif 3148 3149 extern int memcmp_pages(struct page *page1, struct page *page2); 3150 3151 static inline int pages_identical(struct page *page1, struct page *page2) 3152 { 3153 return !memcmp_pages(page1, page2); 3154 } 3155 3156 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3157 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3158 pgoff_t first_index, pgoff_t nr, 3159 pgoff_t bitmap_pgoff, 3160 unsigned long *bitmap, 3161 pgoff_t *start, 3162 pgoff_t *end); 3163 3164 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3165 pgoff_t first_index, pgoff_t nr); 3166 #endif 3167 3168 extern int sysctl_nr_trim_pages; 3169 3170 #endif /* __KERNEL__ */ 3171 #endif /* _LINUX_MM_H */ 3172