xref: /linux-6.15/include/linux/mm.h (revision 65fddcfc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct file_ra_state;
37 struct user_struct;
38 struct writeback_control;
39 struct bdi_writeback;
40 
41 void init_mm_internals(void);
42 
43 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45 
46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 	max_mapnr = limit;
49 }
50 #else
51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53 
54 extern atomic_long_t _totalram_pages;
55 static inline unsigned long totalram_pages(void)
56 {
57 	return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_inc(void)
61 {
62 	atomic_long_inc(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_dec(void)
66 {
67 	atomic_long_dec(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_add(long count)
71 {
72 	atomic_long_add(count, &_totalram_pages);
73 }
74 
75 extern void * high_memory;
76 extern int page_cluster;
77 
78 #ifdef CONFIG_SYSCTL
79 extern int sysctl_legacy_va_layout;
80 #else
81 #define sysctl_legacy_va_layout 0
82 #endif
83 
84 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85 extern const int mmap_rnd_bits_min;
86 extern const int mmap_rnd_bits_max;
87 extern int mmap_rnd_bits __read_mostly;
88 #endif
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90 extern const int mmap_rnd_compat_bits_min;
91 extern const int mmap_rnd_compat_bits_max;
92 extern int mmap_rnd_compat_bits __read_mostly;
93 #endif
94 
95 #include <asm/page.h>
96 #include <asm/processor.h>
97 
98 /*
99  * Architectures that support memory tagging (assigning tags to memory regions,
100  * embedding these tags into addresses that point to these memory regions, and
101  * checking that the memory and the pointer tags match on memory accesses)
102  * redefine this macro to strip tags from pointers.
103  * It's defined as noop for arcitectures that don't support memory tagging.
104  */
105 #ifndef untagged_addr
106 #define untagged_addr(addr) (addr)
107 #endif
108 
109 #ifndef __pa_symbol
110 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
111 #endif
112 
113 #ifndef page_to_virt
114 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
115 #endif
116 
117 #ifndef lm_alias
118 #define lm_alias(x)	__va(__pa_symbol(x))
119 #endif
120 
121 /*
122  * To prevent common memory management code establishing
123  * a zero page mapping on a read fault.
124  * This macro should be defined within <asm/pgtable.h>.
125  * s390 does this to prevent multiplexing of hardware bits
126  * related to the physical page in case of virtualization.
127  */
128 #ifndef mm_forbids_zeropage
129 #define mm_forbids_zeropage(X)	(0)
130 #endif
131 
132 /*
133  * On some architectures it is expensive to call memset() for small sizes.
134  * If an architecture decides to implement their own version of
135  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136  * define their own version of this macro in <asm/pgtable.h>
137  */
138 #if BITS_PER_LONG == 64
139 /* This function must be updated when the size of struct page grows above 80
140  * or reduces below 56. The idea that compiler optimizes out switch()
141  * statement, and only leaves move/store instructions. Also the compiler can
142  * combine write statments if they are both assignments and can be reordered,
143  * this can result in several of the writes here being dropped.
144  */
145 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146 static inline void __mm_zero_struct_page(struct page *page)
147 {
148 	unsigned long *_pp = (void *)page;
149 
150 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 	BUILD_BUG_ON(sizeof(struct page) & 7);
152 	BUILD_BUG_ON(sizeof(struct page) < 56);
153 	BUILD_BUG_ON(sizeof(struct page) > 80);
154 
155 	switch (sizeof(struct page)) {
156 	case 80:
157 		_pp[9] = 0;	/* fallthrough */
158 	case 72:
159 		_pp[8] = 0;	/* fallthrough */
160 	case 64:
161 		_pp[7] = 0;	/* fallthrough */
162 	case 56:
163 		_pp[6] = 0;
164 		_pp[5] = 0;
165 		_pp[4] = 0;
166 		_pp[3] = 0;
167 		_pp[2] = 0;
168 		_pp[1] = 0;
169 		_pp[0] = 0;
170 	}
171 }
172 #else
173 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175 
176 /*
177  * Default maximum number of active map areas, this limits the number of vmas
178  * per mm struct. Users can overwrite this number by sysctl but there is a
179  * problem.
180  *
181  * When a program's coredump is generated as ELF format, a section is created
182  * per a vma. In ELF, the number of sections is represented in unsigned short.
183  * This means the number of sections should be smaller than 65535 at coredump.
184  * Because the kernel adds some informative sections to a image of program at
185  * generating coredump, we need some margin. The number of extra sections is
186  * 1-3 now and depends on arch. We use "5" as safe margin, here.
187  *
188  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189  * not a hard limit any more. Although some userspace tools can be surprised by
190  * that.
191  */
192 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
193 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194 
195 extern int sysctl_max_map_count;
196 
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199 
200 extern int sysctl_overcommit_memory;
201 extern int sysctl_overcommit_ratio;
202 extern unsigned long sysctl_overcommit_kbytes;
203 
204 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
205 		loff_t *);
206 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
207 		loff_t *);
208 
209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210 
211 /* to align the pointer to the (next) page boundary */
212 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213 
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216 
217 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218 
219 /*
220  * Linux kernel virtual memory manager primitives.
221  * The idea being to have a "virtual" mm in the same way
222  * we have a virtual fs - giving a cleaner interface to the
223  * mm details, and allowing different kinds of memory mappings
224  * (from shared memory to executable loading to arbitrary
225  * mmap() functions).
226  */
227 
228 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
229 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230 void vm_area_free(struct vm_area_struct *);
231 
232 #ifndef CONFIG_MMU
233 extern struct rb_root nommu_region_tree;
234 extern struct rw_semaphore nommu_region_sem;
235 
236 extern unsigned int kobjsize(const void *objp);
237 #endif
238 
239 /*
240  * vm_flags in vm_area_struct, see mm_types.h.
241  * When changing, update also include/trace/events/mmflags.h
242  */
243 #define VM_NONE		0x00000000
244 
245 #define VM_READ		0x00000001	/* currently active flags */
246 #define VM_WRITE	0x00000002
247 #define VM_EXEC		0x00000004
248 #define VM_SHARED	0x00000008
249 
250 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
251 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
252 #define VM_MAYWRITE	0x00000020
253 #define VM_MAYEXEC	0x00000040
254 #define VM_MAYSHARE	0x00000080
255 
256 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
257 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
258 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
259 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
260 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
261 
262 #define VM_LOCKED	0x00002000
263 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
264 
265 					/* Used by sys_madvise() */
266 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
267 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
268 
269 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
270 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
271 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
272 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
273 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
274 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
275 #define VM_SYNC		0x00800000	/* Synchronous page faults */
276 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
277 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
278 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
279 
280 #ifdef CONFIG_MEM_SOFT_DIRTY
281 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
282 #else
283 # define VM_SOFTDIRTY	0
284 #endif
285 
286 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
287 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
288 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
289 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
290 
291 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
293 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
294 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
295 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
296 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
298 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
299 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
300 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
301 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
302 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303 
304 #ifdef CONFIG_ARCH_HAS_PKEYS
305 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
306 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
307 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
308 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
309 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
310 #ifdef CONFIG_PPC
311 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
312 #else
313 # define VM_PKEY_BIT4  0
314 #endif
315 #endif /* CONFIG_ARCH_HAS_PKEYS */
316 
317 #if defined(CONFIG_X86)
318 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
319 #elif defined(CONFIG_PPC)
320 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
321 #elif defined(CONFIG_PARISC)
322 # define VM_GROWSUP	VM_ARCH_1
323 #elif defined(CONFIG_IA64)
324 # define VM_GROWSUP	VM_ARCH_1
325 #elif defined(CONFIG_SPARC64)
326 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
327 # define VM_ARCH_CLEAR	VM_SPARC_ADI
328 #elif defined(CONFIG_ARM64)
329 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
330 # define VM_ARCH_CLEAR	VM_ARM64_BTI
331 #elif !defined(CONFIG_MMU)
332 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
333 #endif
334 
335 #ifndef VM_GROWSUP
336 # define VM_GROWSUP	VM_NONE
337 #endif
338 
339 /* Bits set in the VMA until the stack is in its final location */
340 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
341 
342 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
343 
344 /* Common data flag combinations */
345 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
346 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
347 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
348 				 VM_MAYWRITE | VM_MAYEXEC)
349 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
350 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
351 
352 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
353 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
354 #endif
355 
356 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
357 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
358 #endif
359 
360 #ifdef CONFIG_STACK_GROWSUP
361 #define VM_STACK	VM_GROWSUP
362 #else
363 #define VM_STACK	VM_GROWSDOWN
364 #endif
365 
366 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
367 
368 /* VMA basic access permission flags */
369 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
370 
371 
372 /*
373  * Special vmas that are non-mergable, non-mlock()able.
374  */
375 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
376 
377 /* This mask prevents VMA from being scanned with khugepaged */
378 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
379 
380 /* This mask defines which mm->def_flags a process can inherit its parent */
381 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
382 
383 /* This mask is used to clear all the VMA flags used by mlock */
384 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
385 
386 /* Arch-specific flags to clear when updating VM flags on protection change */
387 #ifndef VM_ARCH_CLEAR
388 # define VM_ARCH_CLEAR	VM_NONE
389 #endif
390 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
391 
392 /*
393  * mapping from the currently active vm_flags protection bits (the
394  * low four bits) to a page protection mask..
395  */
396 extern pgprot_t protection_map[16];
397 
398 /**
399  * Fault flag definitions.
400  *
401  * @FAULT_FLAG_WRITE: Fault was a write fault.
402  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
403  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
404  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
405  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
406  * @FAULT_FLAG_TRIED: The fault has been tried once.
407  * @FAULT_FLAG_USER: The fault originated in userspace.
408  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
409  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
410  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
411  *
412  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
413  * whether we would allow page faults to retry by specifying these two
414  * fault flags correctly.  Currently there can be three legal combinations:
415  *
416  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
417  *                              this is the first try
418  *
419  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
420  *                              we've already tried at least once
421  *
422  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
423  *
424  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
425  * be used.  Note that page faults can be allowed to retry for multiple times,
426  * in which case we'll have an initial fault with flags (a) then later on
427  * continuous faults with flags (b).  We should always try to detect pending
428  * signals before a retry to make sure the continuous page faults can still be
429  * interrupted if necessary.
430  */
431 #define FAULT_FLAG_WRITE			0x01
432 #define FAULT_FLAG_MKWRITE			0x02
433 #define FAULT_FLAG_ALLOW_RETRY			0x04
434 #define FAULT_FLAG_RETRY_NOWAIT			0x08
435 #define FAULT_FLAG_KILLABLE			0x10
436 #define FAULT_FLAG_TRIED			0x20
437 #define FAULT_FLAG_USER				0x40
438 #define FAULT_FLAG_REMOTE			0x80
439 #define FAULT_FLAG_INSTRUCTION  		0x100
440 #define FAULT_FLAG_INTERRUPTIBLE		0x200
441 
442 /*
443  * The default fault flags that should be used by most of the
444  * arch-specific page fault handlers.
445  */
446 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
447 			     FAULT_FLAG_KILLABLE | \
448 			     FAULT_FLAG_INTERRUPTIBLE)
449 
450 /**
451  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
452  *
453  * This is mostly used for places where we want to try to avoid taking
454  * the mmap_sem for too long a time when waiting for another condition
455  * to change, in which case we can try to be polite to release the
456  * mmap_sem in the first round to avoid potential starvation of other
457  * processes that would also want the mmap_sem.
458  *
459  * Return: true if the page fault allows retry and this is the first
460  * attempt of the fault handling; false otherwise.
461  */
462 static inline bool fault_flag_allow_retry_first(unsigned int flags)
463 {
464 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
465 	    (!(flags & FAULT_FLAG_TRIED));
466 }
467 
468 #define FAULT_FLAG_TRACE \
469 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
470 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
471 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
472 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
473 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
474 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
475 	{ FAULT_FLAG_USER,		"USER" }, \
476 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
477 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
478 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
479 
480 /*
481  * vm_fault is filled by the the pagefault handler and passed to the vma's
482  * ->fault function. The vma's ->fault is responsible for returning a bitmask
483  * of VM_FAULT_xxx flags that give details about how the fault was handled.
484  *
485  * MM layer fills up gfp_mask for page allocations but fault handler might
486  * alter it if its implementation requires a different allocation context.
487  *
488  * pgoff should be used in favour of virtual_address, if possible.
489  */
490 struct vm_fault {
491 	struct vm_area_struct *vma;	/* Target VMA */
492 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
493 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
494 	pgoff_t pgoff;			/* Logical page offset based on vma */
495 	unsigned long address;		/* Faulting virtual address */
496 	pmd_t *pmd;			/* Pointer to pmd entry matching
497 					 * the 'address' */
498 	pud_t *pud;			/* Pointer to pud entry matching
499 					 * the 'address'
500 					 */
501 	pte_t orig_pte;			/* Value of PTE at the time of fault */
502 
503 	struct page *cow_page;		/* Page handler may use for COW fault */
504 	struct page *page;		/* ->fault handlers should return a
505 					 * page here, unless VM_FAULT_NOPAGE
506 					 * is set (which is also implied by
507 					 * VM_FAULT_ERROR).
508 					 */
509 	/* These three entries are valid only while holding ptl lock */
510 	pte_t *pte;			/* Pointer to pte entry matching
511 					 * the 'address'. NULL if the page
512 					 * table hasn't been allocated.
513 					 */
514 	spinlock_t *ptl;		/* Page table lock.
515 					 * Protects pte page table if 'pte'
516 					 * is not NULL, otherwise pmd.
517 					 */
518 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
519 					 * vm_ops->map_pages() calls
520 					 * alloc_set_pte() from atomic context.
521 					 * do_fault_around() pre-allocates
522 					 * page table to avoid allocation from
523 					 * atomic context.
524 					 */
525 };
526 
527 /* page entry size for vm->huge_fault() */
528 enum page_entry_size {
529 	PE_SIZE_PTE = 0,
530 	PE_SIZE_PMD,
531 	PE_SIZE_PUD,
532 };
533 
534 /*
535  * These are the virtual MM functions - opening of an area, closing and
536  * unmapping it (needed to keep files on disk up-to-date etc), pointer
537  * to the functions called when a no-page or a wp-page exception occurs.
538  */
539 struct vm_operations_struct {
540 	void (*open)(struct vm_area_struct * area);
541 	void (*close)(struct vm_area_struct * area);
542 	int (*split)(struct vm_area_struct * area, unsigned long addr);
543 	int (*mremap)(struct vm_area_struct * area);
544 	vm_fault_t (*fault)(struct vm_fault *vmf);
545 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
546 			enum page_entry_size pe_size);
547 	void (*map_pages)(struct vm_fault *vmf,
548 			pgoff_t start_pgoff, pgoff_t end_pgoff);
549 	unsigned long (*pagesize)(struct vm_area_struct * area);
550 
551 	/* notification that a previously read-only page is about to become
552 	 * writable, if an error is returned it will cause a SIGBUS */
553 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
554 
555 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
556 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
557 
558 	/* called by access_process_vm when get_user_pages() fails, typically
559 	 * for use by special VMAs that can switch between memory and hardware
560 	 */
561 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
562 		      void *buf, int len, int write);
563 
564 	/* Called by the /proc/PID/maps code to ask the vma whether it
565 	 * has a special name.  Returning non-NULL will also cause this
566 	 * vma to be dumped unconditionally. */
567 	const char *(*name)(struct vm_area_struct *vma);
568 
569 #ifdef CONFIG_NUMA
570 	/*
571 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
572 	 * to hold the policy upon return.  Caller should pass NULL @new to
573 	 * remove a policy and fall back to surrounding context--i.e. do not
574 	 * install a MPOL_DEFAULT policy, nor the task or system default
575 	 * mempolicy.
576 	 */
577 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
578 
579 	/*
580 	 * get_policy() op must add reference [mpol_get()] to any policy at
581 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
582 	 * in mm/mempolicy.c will do this automatically.
583 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
584 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
585 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
586 	 * must return NULL--i.e., do not "fallback" to task or system default
587 	 * policy.
588 	 */
589 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
590 					unsigned long addr);
591 #endif
592 	/*
593 	 * Called by vm_normal_page() for special PTEs to find the
594 	 * page for @addr.  This is useful if the default behavior
595 	 * (using pte_page()) would not find the correct page.
596 	 */
597 	struct page *(*find_special_page)(struct vm_area_struct *vma,
598 					  unsigned long addr);
599 };
600 
601 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
602 {
603 	static const struct vm_operations_struct dummy_vm_ops = {};
604 
605 	memset(vma, 0, sizeof(*vma));
606 	vma->vm_mm = mm;
607 	vma->vm_ops = &dummy_vm_ops;
608 	INIT_LIST_HEAD(&vma->anon_vma_chain);
609 }
610 
611 static inline void vma_set_anonymous(struct vm_area_struct *vma)
612 {
613 	vma->vm_ops = NULL;
614 }
615 
616 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
617 {
618 	return !vma->vm_ops;
619 }
620 
621 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
622 {
623 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
624 
625 	if (!maybe_stack)
626 		return false;
627 
628 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
629 						VM_STACK_INCOMPLETE_SETUP)
630 		return true;
631 
632 	return false;
633 }
634 
635 static inline bool vma_is_foreign(struct vm_area_struct *vma)
636 {
637 	if (!current->mm)
638 		return true;
639 
640 	if (current->mm != vma->vm_mm)
641 		return true;
642 
643 	return false;
644 }
645 
646 static inline bool vma_is_accessible(struct vm_area_struct *vma)
647 {
648 	return vma->vm_flags & VM_ACCESS_FLAGS;
649 }
650 
651 #ifdef CONFIG_SHMEM
652 /*
653  * The vma_is_shmem is not inline because it is used only by slow
654  * paths in userfault.
655  */
656 bool vma_is_shmem(struct vm_area_struct *vma);
657 #else
658 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
659 #endif
660 
661 int vma_is_stack_for_current(struct vm_area_struct *vma);
662 
663 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
664 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
665 
666 struct mmu_gather;
667 struct inode;
668 
669 /*
670  * FIXME: take this include out, include page-flags.h in
671  * files which need it (119 of them)
672  */
673 #include <linux/page-flags.h>
674 #include <linux/huge_mm.h>
675 
676 /*
677  * Methods to modify the page usage count.
678  *
679  * What counts for a page usage:
680  * - cache mapping   (page->mapping)
681  * - private data    (page->private)
682  * - page mapped in a task's page tables, each mapping
683  *   is counted separately
684  *
685  * Also, many kernel routines increase the page count before a critical
686  * routine so they can be sure the page doesn't go away from under them.
687  */
688 
689 /*
690  * Drop a ref, return true if the refcount fell to zero (the page has no users)
691  */
692 static inline int put_page_testzero(struct page *page)
693 {
694 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
695 	return page_ref_dec_and_test(page);
696 }
697 
698 /*
699  * Try to grab a ref unless the page has a refcount of zero, return false if
700  * that is the case.
701  * This can be called when MMU is off so it must not access
702  * any of the virtual mappings.
703  */
704 static inline int get_page_unless_zero(struct page *page)
705 {
706 	return page_ref_add_unless(page, 1, 0);
707 }
708 
709 extern int page_is_ram(unsigned long pfn);
710 
711 enum {
712 	REGION_INTERSECTS,
713 	REGION_DISJOINT,
714 	REGION_MIXED,
715 };
716 
717 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
718 		      unsigned long desc);
719 
720 /* Support for virtually mapped pages */
721 struct page *vmalloc_to_page(const void *addr);
722 unsigned long vmalloc_to_pfn(const void *addr);
723 
724 /*
725  * Determine if an address is within the vmalloc range
726  *
727  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
728  * is no special casing required.
729  */
730 
731 #ifndef is_ioremap_addr
732 #define is_ioremap_addr(x) is_vmalloc_addr(x)
733 #endif
734 
735 #ifdef CONFIG_MMU
736 extern bool is_vmalloc_addr(const void *x);
737 extern int is_vmalloc_or_module_addr(const void *x);
738 #else
739 static inline bool is_vmalloc_addr(const void *x)
740 {
741 	return false;
742 }
743 static inline int is_vmalloc_or_module_addr(const void *x)
744 {
745 	return 0;
746 }
747 #endif
748 
749 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
750 static inline void *kvmalloc(size_t size, gfp_t flags)
751 {
752 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
753 }
754 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
755 {
756 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
757 }
758 static inline void *kvzalloc(size_t size, gfp_t flags)
759 {
760 	return kvmalloc(size, flags | __GFP_ZERO);
761 }
762 
763 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
764 {
765 	size_t bytes;
766 
767 	if (unlikely(check_mul_overflow(n, size, &bytes)))
768 		return NULL;
769 
770 	return kvmalloc(bytes, flags);
771 }
772 
773 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
774 {
775 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
776 }
777 
778 extern void kvfree(const void *addr);
779 extern void kvfree_sensitive(const void *addr, size_t len);
780 
781 /*
782  * Mapcount of compound page as a whole, does not include mapped sub-pages.
783  *
784  * Must be called only for compound pages or any their tail sub-pages.
785  */
786 static inline int compound_mapcount(struct page *page)
787 {
788 	VM_BUG_ON_PAGE(!PageCompound(page), page);
789 	page = compound_head(page);
790 	return atomic_read(compound_mapcount_ptr(page)) + 1;
791 }
792 
793 /*
794  * The atomic page->_mapcount, starts from -1: so that transitions
795  * both from it and to it can be tracked, using atomic_inc_and_test
796  * and atomic_add_negative(-1).
797  */
798 static inline void page_mapcount_reset(struct page *page)
799 {
800 	atomic_set(&(page)->_mapcount, -1);
801 }
802 
803 int __page_mapcount(struct page *page);
804 
805 /*
806  * Mapcount of 0-order page; when compound sub-page, includes
807  * compound_mapcount().
808  *
809  * Result is undefined for pages which cannot be mapped into userspace.
810  * For example SLAB or special types of pages. See function page_has_type().
811  * They use this place in struct page differently.
812  */
813 static inline int page_mapcount(struct page *page)
814 {
815 	if (unlikely(PageCompound(page)))
816 		return __page_mapcount(page);
817 	return atomic_read(&page->_mapcount) + 1;
818 }
819 
820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
821 int total_mapcount(struct page *page);
822 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
823 #else
824 static inline int total_mapcount(struct page *page)
825 {
826 	return page_mapcount(page);
827 }
828 static inline int page_trans_huge_mapcount(struct page *page,
829 					   int *total_mapcount)
830 {
831 	int mapcount = page_mapcount(page);
832 	if (total_mapcount)
833 		*total_mapcount = mapcount;
834 	return mapcount;
835 }
836 #endif
837 
838 static inline struct page *virt_to_head_page(const void *x)
839 {
840 	struct page *page = virt_to_page(x);
841 
842 	return compound_head(page);
843 }
844 
845 void __put_page(struct page *page);
846 
847 void put_pages_list(struct list_head *pages);
848 
849 void split_page(struct page *page, unsigned int order);
850 
851 /*
852  * Compound pages have a destructor function.  Provide a
853  * prototype for that function and accessor functions.
854  * These are _only_ valid on the head of a compound page.
855  */
856 typedef void compound_page_dtor(struct page *);
857 
858 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
859 enum compound_dtor_id {
860 	NULL_COMPOUND_DTOR,
861 	COMPOUND_PAGE_DTOR,
862 #ifdef CONFIG_HUGETLB_PAGE
863 	HUGETLB_PAGE_DTOR,
864 #endif
865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
866 	TRANSHUGE_PAGE_DTOR,
867 #endif
868 	NR_COMPOUND_DTORS,
869 };
870 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
871 
872 static inline void set_compound_page_dtor(struct page *page,
873 		enum compound_dtor_id compound_dtor)
874 {
875 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
876 	page[1].compound_dtor = compound_dtor;
877 }
878 
879 static inline void destroy_compound_page(struct page *page)
880 {
881 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
882 	compound_page_dtors[page[1].compound_dtor](page);
883 }
884 
885 static inline unsigned int compound_order(struct page *page)
886 {
887 	if (!PageHead(page))
888 		return 0;
889 	return page[1].compound_order;
890 }
891 
892 static inline bool hpage_pincount_available(struct page *page)
893 {
894 	/*
895 	 * Can the page->hpage_pinned_refcount field be used? That field is in
896 	 * the 3rd page of the compound page, so the smallest (2-page) compound
897 	 * pages cannot support it.
898 	 */
899 	page = compound_head(page);
900 	return PageCompound(page) && compound_order(page) > 1;
901 }
902 
903 static inline int compound_pincount(struct page *page)
904 {
905 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
906 	page = compound_head(page);
907 	return atomic_read(compound_pincount_ptr(page));
908 }
909 
910 static inline void set_compound_order(struct page *page, unsigned int order)
911 {
912 	page[1].compound_order = order;
913 }
914 
915 /* Returns the number of pages in this potentially compound page. */
916 static inline unsigned long compound_nr(struct page *page)
917 {
918 	return 1UL << compound_order(page);
919 }
920 
921 /* Returns the number of bytes in this potentially compound page. */
922 static inline unsigned long page_size(struct page *page)
923 {
924 	return PAGE_SIZE << compound_order(page);
925 }
926 
927 /* Returns the number of bits needed for the number of bytes in a page */
928 static inline unsigned int page_shift(struct page *page)
929 {
930 	return PAGE_SHIFT + compound_order(page);
931 }
932 
933 void free_compound_page(struct page *page);
934 
935 #ifdef CONFIG_MMU
936 /*
937  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
938  * servicing faults for write access.  In the normal case, do always want
939  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
940  * that do not have writing enabled, when used by access_process_vm.
941  */
942 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
943 {
944 	if (likely(vma->vm_flags & VM_WRITE))
945 		pte = pte_mkwrite(pte);
946 	return pte;
947 }
948 
949 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
950 vm_fault_t finish_fault(struct vm_fault *vmf);
951 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
952 #endif
953 
954 /*
955  * Multiple processes may "see" the same page. E.g. for untouched
956  * mappings of /dev/null, all processes see the same page full of
957  * zeroes, and text pages of executables and shared libraries have
958  * only one copy in memory, at most, normally.
959  *
960  * For the non-reserved pages, page_count(page) denotes a reference count.
961  *   page_count() == 0 means the page is free. page->lru is then used for
962  *   freelist management in the buddy allocator.
963  *   page_count() > 0  means the page has been allocated.
964  *
965  * Pages are allocated by the slab allocator in order to provide memory
966  * to kmalloc and kmem_cache_alloc. In this case, the management of the
967  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
968  * unless a particular usage is carefully commented. (the responsibility of
969  * freeing the kmalloc memory is the caller's, of course).
970  *
971  * A page may be used by anyone else who does a __get_free_page().
972  * In this case, page_count still tracks the references, and should only
973  * be used through the normal accessor functions. The top bits of page->flags
974  * and page->virtual store page management information, but all other fields
975  * are unused and could be used privately, carefully. The management of this
976  * page is the responsibility of the one who allocated it, and those who have
977  * subsequently been given references to it.
978  *
979  * The other pages (we may call them "pagecache pages") are completely
980  * managed by the Linux memory manager: I/O, buffers, swapping etc.
981  * The following discussion applies only to them.
982  *
983  * A pagecache page contains an opaque `private' member, which belongs to the
984  * page's address_space. Usually, this is the address of a circular list of
985  * the page's disk buffers. PG_private must be set to tell the VM to call
986  * into the filesystem to release these pages.
987  *
988  * A page may belong to an inode's memory mapping. In this case, page->mapping
989  * is the pointer to the inode, and page->index is the file offset of the page,
990  * in units of PAGE_SIZE.
991  *
992  * If pagecache pages are not associated with an inode, they are said to be
993  * anonymous pages. These may become associated with the swapcache, and in that
994  * case PG_swapcache is set, and page->private is an offset into the swapcache.
995  *
996  * In either case (swapcache or inode backed), the pagecache itself holds one
997  * reference to the page. Setting PG_private should also increment the
998  * refcount. The each user mapping also has a reference to the page.
999  *
1000  * The pagecache pages are stored in a per-mapping radix tree, which is
1001  * rooted at mapping->i_pages, and indexed by offset.
1002  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1003  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1004  *
1005  * All pagecache pages may be subject to I/O:
1006  * - inode pages may need to be read from disk,
1007  * - inode pages which have been modified and are MAP_SHARED may need
1008  *   to be written back to the inode on disk,
1009  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1010  *   modified may need to be swapped out to swap space and (later) to be read
1011  *   back into memory.
1012  */
1013 
1014 /*
1015  * The zone field is never updated after free_area_init_core()
1016  * sets it, so none of the operations on it need to be atomic.
1017  */
1018 
1019 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1020 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1021 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1022 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1023 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1024 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1025 
1026 /*
1027  * Define the bit shifts to access each section.  For non-existent
1028  * sections we define the shift as 0; that plus a 0 mask ensures
1029  * the compiler will optimise away reference to them.
1030  */
1031 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1032 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1033 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1034 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1035 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1036 
1037 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1038 #ifdef NODE_NOT_IN_PAGE_FLAGS
1039 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1040 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1041 						SECTIONS_PGOFF : ZONES_PGOFF)
1042 #else
1043 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1044 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1045 						NODES_PGOFF : ZONES_PGOFF)
1046 #endif
1047 
1048 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1049 
1050 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1051 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1052 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1053 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1054 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1055 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1056 
1057 static inline enum zone_type page_zonenum(const struct page *page)
1058 {
1059 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1060 }
1061 
1062 #ifdef CONFIG_ZONE_DEVICE
1063 static inline bool is_zone_device_page(const struct page *page)
1064 {
1065 	return page_zonenum(page) == ZONE_DEVICE;
1066 }
1067 extern void memmap_init_zone_device(struct zone *, unsigned long,
1068 				    unsigned long, struct dev_pagemap *);
1069 #else
1070 static inline bool is_zone_device_page(const struct page *page)
1071 {
1072 	return false;
1073 }
1074 #endif
1075 
1076 #ifdef CONFIG_DEV_PAGEMAP_OPS
1077 void free_devmap_managed_page(struct page *page);
1078 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1079 
1080 static inline bool page_is_devmap_managed(struct page *page)
1081 {
1082 	if (!static_branch_unlikely(&devmap_managed_key))
1083 		return false;
1084 	if (!is_zone_device_page(page))
1085 		return false;
1086 	switch (page->pgmap->type) {
1087 	case MEMORY_DEVICE_PRIVATE:
1088 	case MEMORY_DEVICE_FS_DAX:
1089 		return true;
1090 	default:
1091 		break;
1092 	}
1093 	return false;
1094 }
1095 
1096 void put_devmap_managed_page(struct page *page);
1097 
1098 #else /* CONFIG_DEV_PAGEMAP_OPS */
1099 static inline bool page_is_devmap_managed(struct page *page)
1100 {
1101 	return false;
1102 }
1103 
1104 static inline void put_devmap_managed_page(struct page *page)
1105 {
1106 }
1107 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1108 
1109 static inline bool is_device_private_page(const struct page *page)
1110 {
1111 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1112 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1113 		is_zone_device_page(page) &&
1114 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1115 }
1116 
1117 static inline bool is_pci_p2pdma_page(const struct page *page)
1118 {
1119 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1120 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1121 		is_zone_device_page(page) &&
1122 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1123 }
1124 
1125 /* 127: arbitrary random number, small enough to assemble well */
1126 #define page_ref_zero_or_close_to_overflow(page) \
1127 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1128 
1129 static inline void get_page(struct page *page)
1130 {
1131 	page = compound_head(page);
1132 	/*
1133 	 * Getting a normal page or the head of a compound page
1134 	 * requires to already have an elevated page->_refcount.
1135 	 */
1136 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1137 	page_ref_inc(page);
1138 }
1139 
1140 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1141 
1142 static inline __must_check bool try_get_page(struct page *page)
1143 {
1144 	page = compound_head(page);
1145 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1146 		return false;
1147 	page_ref_inc(page);
1148 	return true;
1149 }
1150 
1151 static inline void put_page(struct page *page)
1152 {
1153 	page = compound_head(page);
1154 
1155 	/*
1156 	 * For devmap managed pages we need to catch refcount transition from
1157 	 * 2 to 1, when refcount reach one it means the page is free and we
1158 	 * need to inform the device driver through callback. See
1159 	 * include/linux/memremap.h and HMM for details.
1160 	 */
1161 	if (page_is_devmap_managed(page)) {
1162 		put_devmap_managed_page(page);
1163 		return;
1164 	}
1165 
1166 	if (put_page_testzero(page))
1167 		__put_page(page);
1168 }
1169 
1170 /*
1171  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1172  * the page's refcount so that two separate items are tracked: the original page
1173  * reference count, and also a new count of how many pin_user_pages() calls were
1174  * made against the page. ("gup-pinned" is another term for the latter).
1175  *
1176  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1177  * distinct from normal pages. As such, the unpin_user_page() call (and its
1178  * variants) must be used in order to release gup-pinned pages.
1179  *
1180  * Choice of value:
1181  *
1182  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1183  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1184  * simpler, due to the fact that adding an even power of two to the page
1185  * refcount has the effect of using only the upper N bits, for the code that
1186  * counts up using the bias value. This means that the lower bits are left for
1187  * the exclusive use of the original code that increments and decrements by one
1188  * (or at least, by much smaller values than the bias value).
1189  *
1190  * Of course, once the lower bits overflow into the upper bits (and this is
1191  * OK, because subtraction recovers the original values), then visual inspection
1192  * no longer suffices to directly view the separate counts. However, for normal
1193  * applications that don't have huge page reference counts, this won't be an
1194  * issue.
1195  *
1196  * Locking: the lockless algorithm described in page_cache_get_speculative()
1197  * and page_cache_gup_pin_speculative() provides safe operation for
1198  * get_user_pages and page_mkclean and other calls that race to set up page
1199  * table entries.
1200  */
1201 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1202 
1203 void unpin_user_page(struct page *page);
1204 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1205 				 bool make_dirty);
1206 void unpin_user_pages(struct page **pages, unsigned long npages);
1207 
1208 /**
1209  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1210  *
1211  * This function checks if a page has been pinned via a call to
1212  * pin_user_pages*().
1213  *
1214  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1215  * because it means "definitely not pinned for DMA", but true means "probably
1216  * pinned for DMA, but possibly a false positive due to having at least
1217  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1218  *
1219  * False positives are OK, because: a) it's unlikely for a page to get that many
1220  * refcounts, and b) all the callers of this routine are expected to be able to
1221  * deal gracefully with a false positive.
1222  *
1223  * For huge pages, the result will be exactly correct. That's because we have
1224  * more tracking data available: the 3rd struct page in the compound page is
1225  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1226  * scheme).
1227  *
1228  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1229  *
1230  * @page:	pointer to page to be queried.
1231  * @Return:	True, if it is likely that the page has been "dma-pinned".
1232  *		False, if the page is definitely not dma-pinned.
1233  */
1234 static inline bool page_maybe_dma_pinned(struct page *page)
1235 {
1236 	if (hpage_pincount_available(page))
1237 		return compound_pincount(page) > 0;
1238 
1239 	/*
1240 	 * page_ref_count() is signed. If that refcount overflows, then
1241 	 * page_ref_count() returns a negative value, and callers will avoid
1242 	 * further incrementing the refcount.
1243 	 *
1244 	 * Here, for that overflow case, use the signed bit to count a little
1245 	 * bit higher via unsigned math, and thus still get an accurate result.
1246 	 */
1247 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1248 		GUP_PIN_COUNTING_BIAS;
1249 }
1250 
1251 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1252 #define SECTION_IN_PAGE_FLAGS
1253 #endif
1254 
1255 /*
1256  * The identification function is mainly used by the buddy allocator for
1257  * determining if two pages could be buddies. We are not really identifying
1258  * the zone since we could be using the section number id if we do not have
1259  * node id available in page flags.
1260  * We only guarantee that it will return the same value for two combinable
1261  * pages in a zone.
1262  */
1263 static inline int page_zone_id(struct page *page)
1264 {
1265 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1266 }
1267 
1268 #ifdef NODE_NOT_IN_PAGE_FLAGS
1269 extern int page_to_nid(const struct page *page);
1270 #else
1271 static inline int page_to_nid(const struct page *page)
1272 {
1273 	struct page *p = (struct page *)page;
1274 
1275 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1276 }
1277 #endif
1278 
1279 #ifdef CONFIG_NUMA_BALANCING
1280 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1281 {
1282 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1283 }
1284 
1285 static inline int cpupid_to_pid(int cpupid)
1286 {
1287 	return cpupid & LAST__PID_MASK;
1288 }
1289 
1290 static inline int cpupid_to_cpu(int cpupid)
1291 {
1292 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1293 }
1294 
1295 static inline int cpupid_to_nid(int cpupid)
1296 {
1297 	return cpu_to_node(cpupid_to_cpu(cpupid));
1298 }
1299 
1300 static inline bool cpupid_pid_unset(int cpupid)
1301 {
1302 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1303 }
1304 
1305 static inline bool cpupid_cpu_unset(int cpupid)
1306 {
1307 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1308 }
1309 
1310 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1311 {
1312 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1313 }
1314 
1315 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1316 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1317 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1318 {
1319 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1320 }
1321 
1322 static inline int page_cpupid_last(struct page *page)
1323 {
1324 	return page->_last_cpupid;
1325 }
1326 static inline void page_cpupid_reset_last(struct page *page)
1327 {
1328 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1329 }
1330 #else
1331 static inline int page_cpupid_last(struct page *page)
1332 {
1333 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1334 }
1335 
1336 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1337 
1338 static inline void page_cpupid_reset_last(struct page *page)
1339 {
1340 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1341 }
1342 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1343 #else /* !CONFIG_NUMA_BALANCING */
1344 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1345 {
1346 	return page_to_nid(page); /* XXX */
1347 }
1348 
1349 static inline int page_cpupid_last(struct page *page)
1350 {
1351 	return page_to_nid(page); /* XXX */
1352 }
1353 
1354 static inline int cpupid_to_nid(int cpupid)
1355 {
1356 	return -1;
1357 }
1358 
1359 static inline int cpupid_to_pid(int cpupid)
1360 {
1361 	return -1;
1362 }
1363 
1364 static inline int cpupid_to_cpu(int cpupid)
1365 {
1366 	return -1;
1367 }
1368 
1369 static inline int cpu_pid_to_cpupid(int nid, int pid)
1370 {
1371 	return -1;
1372 }
1373 
1374 static inline bool cpupid_pid_unset(int cpupid)
1375 {
1376 	return true;
1377 }
1378 
1379 static inline void page_cpupid_reset_last(struct page *page)
1380 {
1381 }
1382 
1383 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1384 {
1385 	return false;
1386 }
1387 #endif /* CONFIG_NUMA_BALANCING */
1388 
1389 #ifdef CONFIG_KASAN_SW_TAGS
1390 static inline u8 page_kasan_tag(const struct page *page)
1391 {
1392 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1393 }
1394 
1395 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1396 {
1397 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1398 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1399 }
1400 
1401 static inline void page_kasan_tag_reset(struct page *page)
1402 {
1403 	page_kasan_tag_set(page, 0xff);
1404 }
1405 #else
1406 static inline u8 page_kasan_tag(const struct page *page)
1407 {
1408 	return 0xff;
1409 }
1410 
1411 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1412 static inline void page_kasan_tag_reset(struct page *page) { }
1413 #endif
1414 
1415 static inline struct zone *page_zone(const struct page *page)
1416 {
1417 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1418 }
1419 
1420 static inline pg_data_t *page_pgdat(const struct page *page)
1421 {
1422 	return NODE_DATA(page_to_nid(page));
1423 }
1424 
1425 #ifdef SECTION_IN_PAGE_FLAGS
1426 static inline void set_page_section(struct page *page, unsigned long section)
1427 {
1428 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1429 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1430 }
1431 
1432 static inline unsigned long page_to_section(const struct page *page)
1433 {
1434 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1435 }
1436 #endif
1437 
1438 static inline void set_page_zone(struct page *page, enum zone_type zone)
1439 {
1440 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1441 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1442 }
1443 
1444 static inline void set_page_node(struct page *page, unsigned long node)
1445 {
1446 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1447 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1448 }
1449 
1450 static inline void set_page_links(struct page *page, enum zone_type zone,
1451 	unsigned long node, unsigned long pfn)
1452 {
1453 	set_page_zone(page, zone);
1454 	set_page_node(page, node);
1455 #ifdef SECTION_IN_PAGE_FLAGS
1456 	set_page_section(page, pfn_to_section_nr(pfn));
1457 #endif
1458 }
1459 
1460 #ifdef CONFIG_MEMCG
1461 static inline struct mem_cgroup *page_memcg(struct page *page)
1462 {
1463 	return page->mem_cgroup;
1464 }
1465 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1466 {
1467 	WARN_ON_ONCE(!rcu_read_lock_held());
1468 	return READ_ONCE(page->mem_cgroup);
1469 }
1470 #else
1471 static inline struct mem_cgroup *page_memcg(struct page *page)
1472 {
1473 	return NULL;
1474 }
1475 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1476 {
1477 	WARN_ON_ONCE(!rcu_read_lock_held());
1478 	return NULL;
1479 }
1480 #endif
1481 
1482 /*
1483  * Some inline functions in vmstat.h depend on page_zone()
1484  */
1485 #include <linux/vmstat.h>
1486 
1487 static __always_inline void *lowmem_page_address(const struct page *page)
1488 {
1489 	return page_to_virt(page);
1490 }
1491 
1492 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1493 #define HASHED_PAGE_VIRTUAL
1494 #endif
1495 
1496 #if defined(WANT_PAGE_VIRTUAL)
1497 static inline void *page_address(const struct page *page)
1498 {
1499 	return page->virtual;
1500 }
1501 static inline void set_page_address(struct page *page, void *address)
1502 {
1503 	page->virtual = address;
1504 }
1505 #define page_address_init()  do { } while(0)
1506 #endif
1507 
1508 #if defined(HASHED_PAGE_VIRTUAL)
1509 void *page_address(const struct page *page);
1510 void set_page_address(struct page *page, void *virtual);
1511 void page_address_init(void);
1512 #endif
1513 
1514 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1515 #define page_address(page) lowmem_page_address(page)
1516 #define set_page_address(page, address)  do { } while(0)
1517 #define page_address_init()  do { } while(0)
1518 #endif
1519 
1520 extern void *page_rmapping(struct page *page);
1521 extern struct anon_vma *page_anon_vma(struct page *page);
1522 extern struct address_space *page_mapping(struct page *page);
1523 
1524 extern struct address_space *__page_file_mapping(struct page *);
1525 
1526 static inline
1527 struct address_space *page_file_mapping(struct page *page)
1528 {
1529 	if (unlikely(PageSwapCache(page)))
1530 		return __page_file_mapping(page);
1531 
1532 	return page->mapping;
1533 }
1534 
1535 extern pgoff_t __page_file_index(struct page *page);
1536 
1537 /*
1538  * Return the pagecache index of the passed page.  Regular pagecache pages
1539  * use ->index whereas swapcache pages use swp_offset(->private)
1540  */
1541 static inline pgoff_t page_index(struct page *page)
1542 {
1543 	if (unlikely(PageSwapCache(page)))
1544 		return __page_file_index(page);
1545 	return page->index;
1546 }
1547 
1548 bool page_mapped(struct page *page);
1549 struct address_space *page_mapping(struct page *page);
1550 struct address_space *page_mapping_file(struct page *page);
1551 
1552 /*
1553  * Return true only if the page has been allocated with
1554  * ALLOC_NO_WATERMARKS and the low watermark was not
1555  * met implying that the system is under some pressure.
1556  */
1557 static inline bool page_is_pfmemalloc(struct page *page)
1558 {
1559 	/*
1560 	 * Page index cannot be this large so this must be
1561 	 * a pfmemalloc page.
1562 	 */
1563 	return page->index == -1UL;
1564 }
1565 
1566 /*
1567  * Only to be called by the page allocator on a freshly allocated
1568  * page.
1569  */
1570 static inline void set_page_pfmemalloc(struct page *page)
1571 {
1572 	page->index = -1UL;
1573 }
1574 
1575 static inline void clear_page_pfmemalloc(struct page *page)
1576 {
1577 	page->index = 0;
1578 }
1579 
1580 /*
1581  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1582  */
1583 extern void pagefault_out_of_memory(void);
1584 
1585 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1586 
1587 /*
1588  * Flags passed to show_mem() and show_free_areas() to suppress output in
1589  * various contexts.
1590  */
1591 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1592 
1593 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1594 
1595 #ifdef CONFIG_MMU
1596 extern bool can_do_mlock(void);
1597 #else
1598 static inline bool can_do_mlock(void) { return false; }
1599 #endif
1600 extern int user_shm_lock(size_t, struct user_struct *);
1601 extern void user_shm_unlock(size_t, struct user_struct *);
1602 
1603 /*
1604  * Parameter block passed down to zap_pte_range in exceptional cases.
1605  */
1606 struct zap_details {
1607 	struct address_space *check_mapping;	/* Check page->mapping if set */
1608 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1609 	pgoff_t last_index;			/* Highest page->index to unmap */
1610 };
1611 
1612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1613 			     pte_t pte);
1614 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1615 				pmd_t pmd);
1616 
1617 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1618 		  unsigned long size);
1619 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1620 		    unsigned long size);
1621 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1622 		unsigned long start, unsigned long end);
1623 
1624 struct mmu_notifier_range;
1625 
1626 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1627 		unsigned long end, unsigned long floor, unsigned long ceiling);
1628 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1629 			struct vm_area_struct *vma);
1630 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1631 		   struct mmu_notifier_range *range,
1632 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1633 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1634 	unsigned long *pfn);
1635 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1636 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1637 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1638 			void *buf, int len, int write);
1639 
1640 extern void truncate_pagecache(struct inode *inode, loff_t new);
1641 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1642 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1643 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1644 int truncate_inode_page(struct address_space *mapping, struct page *page);
1645 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1646 int invalidate_inode_page(struct page *page);
1647 
1648 #ifdef CONFIG_MMU
1649 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1650 			unsigned long address, unsigned int flags);
1651 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1652 			    unsigned long address, unsigned int fault_flags,
1653 			    bool *unlocked);
1654 void unmap_mapping_pages(struct address_space *mapping,
1655 		pgoff_t start, pgoff_t nr, bool even_cows);
1656 void unmap_mapping_range(struct address_space *mapping,
1657 		loff_t const holebegin, loff_t const holelen, int even_cows);
1658 #else
1659 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1660 		unsigned long address, unsigned int flags)
1661 {
1662 	/* should never happen if there's no MMU */
1663 	BUG();
1664 	return VM_FAULT_SIGBUS;
1665 }
1666 static inline int fixup_user_fault(struct task_struct *tsk,
1667 		struct mm_struct *mm, unsigned long address,
1668 		unsigned int fault_flags, bool *unlocked)
1669 {
1670 	/* should never happen if there's no MMU */
1671 	BUG();
1672 	return -EFAULT;
1673 }
1674 static inline void unmap_mapping_pages(struct address_space *mapping,
1675 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1676 static inline void unmap_mapping_range(struct address_space *mapping,
1677 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1678 #endif
1679 
1680 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1681 		loff_t const holebegin, loff_t const holelen)
1682 {
1683 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1684 }
1685 
1686 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1687 		void *buf, int len, unsigned int gup_flags);
1688 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1689 		void *buf, int len, unsigned int gup_flags);
1690 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1691 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1692 
1693 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1694 			    unsigned long start, unsigned long nr_pages,
1695 			    unsigned int gup_flags, struct page **pages,
1696 			    struct vm_area_struct **vmas, int *locked);
1697 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1698 			   unsigned long start, unsigned long nr_pages,
1699 			   unsigned int gup_flags, struct page **pages,
1700 			   struct vm_area_struct **vmas, int *locked);
1701 long get_user_pages(unsigned long start, unsigned long nr_pages,
1702 			    unsigned int gup_flags, struct page **pages,
1703 			    struct vm_area_struct **vmas);
1704 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1705 		    unsigned int gup_flags, struct page **pages,
1706 		    struct vm_area_struct **vmas);
1707 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1708 		    unsigned int gup_flags, struct page **pages, int *locked);
1709 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1710 		    unsigned int gup_flags, struct page **pages, int *locked);
1711 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1712 		    struct page **pages, unsigned int gup_flags);
1713 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1714 		    struct page **pages, unsigned int gup_flags);
1715 
1716 int get_user_pages_fast(unsigned long start, int nr_pages,
1717 			unsigned int gup_flags, struct page **pages);
1718 int pin_user_pages_fast(unsigned long start, int nr_pages,
1719 			unsigned int gup_flags, struct page **pages);
1720 
1721 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1722 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1723 			struct task_struct *task, bool bypass_rlim);
1724 
1725 /* Container for pinned pfns / pages */
1726 struct frame_vector {
1727 	unsigned int nr_allocated;	/* Number of frames we have space for */
1728 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1729 	bool got_ref;		/* Did we pin pages by getting page ref? */
1730 	bool is_pfns;		/* Does array contain pages or pfns? */
1731 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1732 				 * pfns_vector_pages() or pfns_vector_pfns()
1733 				 * for access */
1734 };
1735 
1736 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1737 void frame_vector_destroy(struct frame_vector *vec);
1738 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1739 		     unsigned int gup_flags, struct frame_vector *vec);
1740 void put_vaddr_frames(struct frame_vector *vec);
1741 int frame_vector_to_pages(struct frame_vector *vec);
1742 void frame_vector_to_pfns(struct frame_vector *vec);
1743 
1744 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1745 {
1746 	return vec->nr_frames;
1747 }
1748 
1749 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1750 {
1751 	if (vec->is_pfns) {
1752 		int err = frame_vector_to_pages(vec);
1753 
1754 		if (err)
1755 			return ERR_PTR(err);
1756 	}
1757 	return (struct page **)(vec->ptrs);
1758 }
1759 
1760 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1761 {
1762 	if (!vec->is_pfns)
1763 		frame_vector_to_pfns(vec);
1764 	return (unsigned long *)(vec->ptrs);
1765 }
1766 
1767 struct kvec;
1768 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1769 			struct page **pages);
1770 int get_kernel_page(unsigned long start, int write, struct page **pages);
1771 struct page *get_dump_page(unsigned long addr);
1772 
1773 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1774 extern void do_invalidatepage(struct page *page, unsigned int offset,
1775 			      unsigned int length);
1776 
1777 void __set_page_dirty(struct page *, struct address_space *, int warn);
1778 int __set_page_dirty_nobuffers(struct page *page);
1779 int __set_page_dirty_no_writeback(struct page *page);
1780 int redirty_page_for_writepage(struct writeback_control *wbc,
1781 				struct page *page);
1782 void account_page_dirtied(struct page *page, struct address_space *mapping);
1783 void account_page_cleaned(struct page *page, struct address_space *mapping,
1784 			  struct bdi_writeback *wb);
1785 int set_page_dirty(struct page *page);
1786 int set_page_dirty_lock(struct page *page);
1787 void __cancel_dirty_page(struct page *page);
1788 static inline void cancel_dirty_page(struct page *page)
1789 {
1790 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1791 	if (PageDirty(page))
1792 		__cancel_dirty_page(page);
1793 }
1794 int clear_page_dirty_for_io(struct page *page);
1795 
1796 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1797 
1798 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1799 		unsigned long old_addr, struct vm_area_struct *new_vma,
1800 		unsigned long new_addr, unsigned long len,
1801 		bool need_rmap_locks);
1802 
1803 /*
1804  * Flags used by change_protection().  For now we make it a bitmap so
1805  * that we can pass in multiple flags just like parameters.  However
1806  * for now all the callers are only use one of the flags at the same
1807  * time.
1808  */
1809 /* Whether we should allow dirty bit accounting */
1810 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1811 /* Whether this protection change is for NUMA hints */
1812 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1813 /* Whether this change is for write protecting */
1814 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1815 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1816 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1817 					    MM_CP_UFFD_WP_RESOLVE)
1818 
1819 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1820 			      unsigned long end, pgprot_t newprot,
1821 			      unsigned long cp_flags);
1822 extern int mprotect_fixup(struct vm_area_struct *vma,
1823 			  struct vm_area_struct **pprev, unsigned long start,
1824 			  unsigned long end, unsigned long newflags);
1825 
1826 /*
1827  * doesn't attempt to fault and will return short.
1828  */
1829 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1830 			     unsigned int gup_flags, struct page **pages);
1831 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1832 			     unsigned int gup_flags, struct page **pages);
1833 
1834 static inline bool get_user_page_fast_only(unsigned long addr,
1835 			unsigned int gup_flags, struct page **pagep)
1836 {
1837 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1838 }
1839 /*
1840  * per-process(per-mm_struct) statistics.
1841  */
1842 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1843 {
1844 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1845 
1846 #ifdef SPLIT_RSS_COUNTING
1847 	/*
1848 	 * counter is updated in asynchronous manner and may go to minus.
1849 	 * But it's never be expected number for users.
1850 	 */
1851 	if (val < 0)
1852 		val = 0;
1853 #endif
1854 	return (unsigned long)val;
1855 }
1856 
1857 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1858 
1859 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1860 {
1861 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1862 
1863 	mm_trace_rss_stat(mm, member, count);
1864 }
1865 
1866 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1867 {
1868 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1869 
1870 	mm_trace_rss_stat(mm, member, count);
1871 }
1872 
1873 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1874 {
1875 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1876 
1877 	mm_trace_rss_stat(mm, member, count);
1878 }
1879 
1880 /* Optimized variant when page is already known not to be PageAnon */
1881 static inline int mm_counter_file(struct page *page)
1882 {
1883 	if (PageSwapBacked(page))
1884 		return MM_SHMEMPAGES;
1885 	return MM_FILEPAGES;
1886 }
1887 
1888 static inline int mm_counter(struct page *page)
1889 {
1890 	if (PageAnon(page))
1891 		return MM_ANONPAGES;
1892 	return mm_counter_file(page);
1893 }
1894 
1895 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1896 {
1897 	return get_mm_counter(mm, MM_FILEPAGES) +
1898 		get_mm_counter(mm, MM_ANONPAGES) +
1899 		get_mm_counter(mm, MM_SHMEMPAGES);
1900 }
1901 
1902 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1903 {
1904 	return max(mm->hiwater_rss, get_mm_rss(mm));
1905 }
1906 
1907 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1908 {
1909 	return max(mm->hiwater_vm, mm->total_vm);
1910 }
1911 
1912 static inline void update_hiwater_rss(struct mm_struct *mm)
1913 {
1914 	unsigned long _rss = get_mm_rss(mm);
1915 
1916 	if ((mm)->hiwater_rss < _rss)
1917 		(mm)->hiwater_rss = _rss;
1918 }
1919 
1920 static inline void update_hiwater_vm(struct mm_struct *mm)
1921 {
1922 	if (mm->hiwater_vm < mm->total_vm)
1923 		mm->hiwater_vm = mm->total_vm;
1924 }
1925 
1926 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1927 {
1928 	mm->hiwater_rss = get_mm_rss(mm);
1929 }
1930 
1931 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1932 					 struct mm_struct *mm)
1933 {
1934 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1935 
1936 	if (*maxrss < hiwater_rss)
1937 		*maxrss = hiwater_rss;
1938 }
1939 
1940 #if defined(SPLIT_RSS_COUNTING)
1941 void sync_mm_rss(struct mm_struct *mm);
1942 #else
1943 static inline void sync_mm_rss(struct mm_struct *mm)
1944 {
1945 }
1946 #endif
1947 
1948 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1949 static inline int pte_special(pte_t pte)
1950 {
1951 	return 0;
1952 }
1953 
1954 static inline pte_t pte_mkspecial(pte_t pte)
1955 {
1956 	return pte;
1957 }
1958 #endif
1959 
1960 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1961 static inline int pte_devmap(pte_t pte)
1962 {
1963 	return 0;
1964 }
1965 #endif
1966 
1967 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1968 
1969 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1970 			       spinlock_t **ptl);
1971 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1972 				    spinlock_t **ptl)
1973 {
1974 	pte_t *ptep;
1975 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1976 	return ptep;
1977 }
1978 
1979 #ifdef __PAGETABLE_P4D_FOLDED
1980 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1981 						unsigned long address)
1982 {
1983 	return 0;
1984 }
1985 #else
1986 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1987 #endif
1988 
1989 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1990 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1991 						unsigned long address)
1992 {
1993 	return 0;
1994 }
1995 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1996 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1997 
1998 #else
1999 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2000 
2001 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2002 {
2003 	if (mm_pud_folded(mm))
2004 		return;
2005 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2006 }
2007 
2008 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2009 {
2010 	if (mm_pud_folded(mm))
2011 		return;
2012 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2013 }
2014 #endif
2015 
2016 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2017 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2018 						unsigned long address)
2019 {
2020 	return 0;
2021 }
2022 
2023 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2024 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2025 
2026 #else
2027 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2028 
2029 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2030 {
2031 	if (mm_pmd_folded(mm))
2032 		return;
2033 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2034 }
2035 
2036 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2037 {
2038 	if (mm_pmd_folded(mm))
2039 		return;
2040 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2041 }
2042 #endif
2043 
2044 #ifdef CONFIG_MMU
2045 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2046 {
2047 	atomic_long_set(&mm->pgtables_bytes, 0);
2048 }
2049 
2050 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2051 {
2052 	return atomic_long_read(&mm->pgtables_bytes);
2053 }
2054 
2055 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2056 {
2057 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2058 }
2059 
2060 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2061 {
2062 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2063 }
2064 #else
2065 
2066 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2067 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2068 {
2069 	return 0;
2070 }
2071 
2072 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2073 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2074 #endif
2075 
2076 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2077 int __pte_alloc_kernel(pmd_t *pmd);
2078 
2079 #if defined(CONFIG_MMU)
2080 
2081 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2082 		unsigned long address)
2083 {
2084 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2085 		NULL : p4d_offset(pgd, address);
2086 }
2087 
2088 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2089 		unsigned long address)
2090 {
2091 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2092 		NULL : pud_offset(p4d, address);
2093 }
2094 
2095 static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd,
2096 				     unsigned long address,
2097 				     pgtbl_mod_mask *mod_mask)
2098 
2099 {
2100 	if (unlikely(pgd_none(*pgd))) {
2101 		if (__p4d_alloc(mm, pgd, address))
2102 			return NULL;
2103 		*mod_mask |= PGTBL_PGD_MODIFIED;
2104 	}
2105 
2106 	return p4d_offset(pgd, address);
2107 }
2108 
2109 static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d,
2110 				     unsigned long address,
2111 				     pgtbl_mod_mask *mod_mask)
2112 {
2113 	if (unlikely(p4d_none(*p4d))) {
2114 		if (__pud_alloc(mm, p4d, address))
2115 			return NULL;
2116 		*mod_mask |= PGTBL_P4D_MODIFIED;
2117 	}
2118 
2119 	return pud_offset(p4d, address);
2120 }
2121 
2122 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2123 {
2124 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2125 		NULL: pmd_offset(pud, address);
2126 }
2127 
2128 static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud,
2129 				     unsigned long address,
2130 				     pgtbl_mod_mask *mod_mask)
2131 {
2132 	if (unlikely(pud_none(*pud))) {
2133 		if (__pmd_alloc(mm, pud, address))
2134 			return NULL;
2135 		*mod_mask |= PGTBL_PUD_MODIFIED;
2136 	}
2137 
2138 	return pmd_offset(pud, address);
2139 }
2140 #endif /* CONFIG_MMU */
2141 
2142 #if USE_SPLIT_PTE_PTLOCKS
2143 #if ALLOC_SPLIT_PTLOCKS
2144 void __init ptlock_cache_init(void);
2145 extern bool ptlock_alloc(struct page *page);
2146 extern void ptlock_free(struct page *page);
2147 
2148 static inline spinlock_t *ptlock_ptr(struct page *page)
2149 {
2150 	return page->ptl;
2151 }
2152 #else /* ALLOC_SPLIT_PTLOCKS */
2153 static inline void ptlock_cache_init(void)
2154 {
2155 }
2156 
2157 static inline bool ptlock_alloc(struct page *page)
2158 {
2159 	return true;
2160 }
2161 
2162 static inline void ptlock_free(struct page *page)
2163 {
2164 }
2165 
2166 static inline spinlock_t *ptlock_ptr(struct page *page)
2167 {
2168 	return &page->ptl;
2169 }
2170 #endif /* ALLOC_SPLIT_PTLOCKS */
2171 
2172 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2173 {
2174 	return ptlock_ptr(pmd_page(*pmd));
2175 }
2176 
2177 static inline bool ptlock_init(struct page *page)
2178 {
2179 	/*
2180 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2181 	 * with 0. Make sure nobody took it in use in between.
2182 	 *
2183 	 * It can happen if arch try to use slab for page table allocation:
2184 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2185 	 */
2186 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2187 	if (!ptlock_alloc(page))
2188 		return false;
2189 	spin_lock_init(ptlock_ptr(page));
2190 	return true;
2191 }
2192 
2193 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2194 /*
2195  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2196  */
2197 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2198 {
2199 	return &mm->page_table_lock;
2200 }
2201 static inline void ptlock_cache_init(void) {}
2202 static inline bool ptlock_init(struct page *page) { return true; }
2203 static inline void ptlock_free(struct page *page) {}
2204 #endif /* USE_SPLIT_PTE_PTLOCKS */
2205 
2206 static inline void pgtable_init(void)
2207 {
2208 	ptlock_cache_init();
2209 	pgtable_cache_init();
2210 }
2211 
2212 static inline bool pgtable_pte_page_ctor(struct page *page)
2213 {
2214 	if (!ptlock_init(page))
2215 		return false;
2216 	__SetPageTable(page);
2217 	inc_zone_page_state(page, NR_PAGETABLE);
2218 	return true;
2219 }
2220 
2221 static inline void pgtable_pte_page_dtor(struct page *page)
2222 {
2223 	ptlock_free(page);
2224 	__ClearPageTable(page);
2225 	dec_zone_page_state(page, NR_PAGETABLE);
2226 }
2227 
2228 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2229 ({							\
2230 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2231 	pte_t *__pte = pte_offset_map(pmd, address);	\
2232 	*(ptlp) = __ptl;				\
2233 	spin_lock(__ptl);				\
2234 	__pte;						\
2235 })
2236 
2237 #define pte_unmap_unlock(pte, ptl)	do {		\
2238 	spin_unlock(ptl);				\
2239 	pte_unmap(pte);					\
2240 } while (0)
2241 
2242 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2243 
2244 #define pte_alloc_map(mm, pmd, address)			\
2245 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2246 
2247 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2248 	(pte_alloc(mm, pmd) ?			\
2249 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2250 
2251 #define pte_alloc_kernel(pmd, address)			\
2252 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2253 		NULL: pte_offset_kernel(pmd, address))
2254 
2255 #define pte_alloc_kernel_track(pmd, address, mask)			\
2256 	((unlikely(pmd_none(*(pmd))) &&					\
2257 	  (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\
2258 		NULL: pte_offset_kernel(pmd, address))
2259 
2260 #if USE_SPLIT_PMD_PTLOCKS
2261 
2262 static struct page *pmd_to_page(pmd_t *pmd)
2263 {
2264 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2265 	return virt_to_page((void *)((unsigned long) pmd & mask));
2266 }
2267 
2268 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2269 {
2270 	return ptlock_ptr(pmd_to_page(pmd));
2271 }
2272 
2273 static inline bool pgtable_pmd_page_ctor(struct page *page)
2274 {
2275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2276 	page->pmd_huge_pte = NULL;
2277 #endif
2278 	return ptlock_init(page);
2279 }
2280 
2281 static inline void pgtable_pmd_page_dtor(struct page *page)
2282 {
2283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2284 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2285 #endif
2286 	ptlock_free(page);
2287 }
2288 
2289 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2290 
2291 #else
2292 
2293 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2294 {
2295 	return &mm->page_table_lock;
2296 }
2297 
2298 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2299 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2300 
2301 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2302 
2303 #endif
2304 
2305 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2306 {
2307 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2308 	spin_lock(ptl);
2309 	return ptl;
2310 }
2311 
2312 /*
2313  * No scalability reason to split PUD locks yet, but follow the same pattern
2314  * as the PMD locks to make it easier if we decide to.  The VM should not be
2315  * considered ready to switch to split PUD locks yet; there may be places
2316  * which need to be converted from page_table_lock.
2317  */
2318 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2319 {
2320 	return &mm->page_table_lock;
2321 }
2322 
2323 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2324 {
2325 	spinlock_t *ptl = pud_lockptr(mm, pud);
2326 
2327 	spin_lock(ptl);
2328 	return ptl;
2329 }
2330 
2331 extern void __init pagecache_init(void);
2332 extern void __init free_area_init_memoryless_node(int nid);
2333 extern void free_initmem(void);
2334 
2335 /*
2336  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2337  * into the buddy system. The freed pages will be poisoned with pattern
2338  * "poison" if it's within range [0, UCHAR_MAX].
2339  * Return pages freed into the buddy system.
2340  */
2341 extern unsigned long free_reserved_area(void *start, void *end,
2342 					int poison, const char *s);
2343 
2344 #ifdef	CONFIG_HIGHMEM
2345 /*
2346  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2347  * and totalram_pages.
2348  */
2349 extern void free_highmem_page(struct page *page);
2350 #endif
2351 
2352 extern void adjust_managed_page_count(struct page *page, long count);
2353 extern void mem_init_print_info(const char *str);
2354 
2355 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2356 
2357 /* Free the reserved page into the buddy system, so it gets managed. */
2358 static inline void __free_reserved_page(struct page *page)
2359 {
2360 	ClearPageReserved(page);
2361 	init_page_count(page);
2362 	__free_page(page);
2363 }
2364 
2365 static inline void free_reserved_page(struct page *page)
2366 {
2367 	__free_reserved_page(page);
2368 	adjust_managed_page_count(page, 1);
2369 }
2370 
2371 static inline void mark_page_reserved(struct page *page)
2372 {
2373 	SetPageReserved(page);
2374 	adjust_managed_page_count(page, -1);
2375 }
2376 
2377 /*
2378  * Default method to free all the __init memory into the buddy system.
2379  * The freed pages will be poisoned with pattern "poison" if it's within
2380  * range [0, UCHAR_MAX].
2381  * Return pages freed into the buddy system.
2382  */
2383 static inline unsigned long free_initmem_default(int poison)
2384 {
2385 	extern char __init_begin[], __init_end[];
2386 
2387 	return free_reserved_area(&__init_begin, &__init_end,
2388 				  poison, "unused kernel");
2389 }
2390 
2391 static inline unsigned long get_num_physpages(void)
2392 {
2393 	int nid;
2394 	unsigned long phys_pages = 0;
2395 
2396 	for_each_online_node(nid)
2397 		phys_pages += node_present_pages(nid);
2398 
2399 	return phys_pages;
2400 }
2401 
2402 /*
2403  * Using memblock node mappings, an architecture may initialise its
2404  * zones, allocate the backing mem_map and account for memory holes in an
2405  * architecture independent manner.
2406  *
2407  * An architecture is expected to register range of page frames backed by
2408  * physical memory with memblock_add[_node]() before calling
2409  * free_area_init() passing in the PFN each zone ends at. At a basic
2410  * usage, an architecture is expected to do something like
2411  *
2412  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2413  * 							 max_highmem_pfn};
2414  * for_each_valid_physical_page_range()
2415  * 	memblock_add_node(base, size, nid)
2416  * free_area_init(max_zone_pfns);
2417  *
2418  * sparse_memory_present_with_active_regions() calls memory_present() for
2419  * each range when SPARSEMEM is enabled.
2420  */
2421 void free_area_init(unsigned long *max_zone_pfn);
2422 unsigned long node_map_pfn_alignment(void);
2423 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2424 						unsigned long end_pfn);
2425 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2426 						unsigned long end_pfn);
2427 extern void get_pfn_range_for_nid(unsigned int nid,
2428 			unsigned long *start_pfn, unsigned long *end_pfn);
2429 extern unsigned long find_min_pfn_with_active_regions(void);
2430 extern void sparse_memory_present_with_active_regions(int nid);
2431 
2432 #ifndef CONFIG_NEED_MULTIPLE_NODES
2433 static inline int early_pfn_to_nid(unsigned long pfn)
2434 {
2435 	return 0;
2436 }
2437 #else
2438 /* please see mm/page_alloc.c */
2439 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2440 /* there is a per-arch backend function. */
2441 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2442 					struct mminit_pfnnid_cache *state);
2443 #endif
2444 
2445 extern void set_dma_reserve(unsigned long new_dma_reserve);
2446 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2447 		enum memmap_context, struct vmem_altmap *);
2448 extern void setup_per_zone_wmarks(void);
2449 extern int __meminit init_per_zone_wmark_min(void);
2450 extern void mem_init(void);
2451 extern void __init mmap_init(void);
2452 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2453 extern long si_mem_available(void);
2454 extern void si_meminfo(struct sysinfo * val);
2455 extern void si_meminfo_node(struct sysinfo *val, int nid);
2456 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2457 extern unsigned long arch_reserved_kernel_pages(void);
2458 #endif
2459 
2460 extern __printf(3, 4)
2461 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2462 
2463 extern void setup_per_cpu_pageset(void);
2464 
2465 /* page_alloc.c */
2466 extern int min_free_kbytes;
2467 extern int watermark_boost_factor;
2468 extern int watermark_scale_factor;
2469 extern bool arch_has_descending_max_zone_pfns(void);
2470 
2471 /* nommu.c */
2472 extern atomic_long_t mmap_pages_allocated;
2473 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2474 
2475 /* interval_tree.c */
2476 void vma_interval_tree_insert(struct vm_area_struct *node,
2477 			      struct rb_root_cached *root);
2478 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2479 				    struct vm_area_struct *prev,
2480 				    struct rb_root_cached *root);
2481 void vma_interval_tree_remove(struct vm_area_struct *node,
2482 			      struct rb_root_cached *root);
2483 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2484 				unsigned long start, unsigned long last);
2485 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2486 				unsigned long start, unsigned long last);
2487 
2488 #define vma_interval_tree_foreach(vma, root, start, last)		\
2489 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2490 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2491 
2492 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2493 				   struct rb_root_cached *root);
2494 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2495 				   struct rb_root_cached *root);
2496 struct anon_vma_chain *
2497 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2498 				  unsigned long start, unsigned long last);
2499 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2500 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2501 #ifdef CONFIG_DEBUG_VM_RB
2502 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2503 #endif
2504 
2505 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2506 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2507 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2508 
2509 /* mmap.c */
2510 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2511 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2512 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2513 	struct vm_area_struct *expand);
2514 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2515 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2516 {
2517 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2518 }
2519 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2520 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2521 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2522 	struct mempolicy *, struct vm_userfaultfd_ctx);
2523 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2524 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2525 	unsigned long addr, int new_below);
2526 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2527 	unsigned long addr, int new_below);
2528 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2529 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2530 	struct rb_node **, struct rb_node *);
2531 extern void unlink_file_vma(struct vm_area_struct *);
2532 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2533 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2534 	bool *need_rmap_locks);
2535 extern void exit_mmap(struct mm_struct *);
2536 
2537 static inline int check_data_rlimit(unsigned long rlim,
2538 				    unsigned long new,
2539 				    unsigned long start,
2540 				    unsigned long end_data,
2541 				    unsigned long start_data)
2542 {
2543 	if (rlim < RLIM_INFINITY) {
2544 		if (((new - start) + (end_data - start_data)) > rlim)
2545 			return -ENOSPC;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 extern int mm_take_all_locks(struct mm_struct *mm);
2552 extern void mm_drop_all_locks(struct mm_struct *mm);
2553 
2554 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2555 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2556 extern struct file *get_task_exe_file(struct task_struct *task);
2557 
2558 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2559 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2560 
2561 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2562 				   const struct vm_special_mapping *sm);
2563 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2564 				   unsigned long addr, unsigned long len,
2565 				   unsigned long flags,
2566 				   const struct vm_special_mapping *spec);
2567 /* This is an obsolete alternative to _install_special_mapping. */
2568 extern int install_special_mapping(struct mm_struct *mm,
2569 				   unsigned long addr, unsigned long len,
2570 				   unsigned long flags, struct page **pages);
2571 
2572 unsigned long randomize_stack_top(unsigned long stack_top);
2573 
2574 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2575 
2576 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2577 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2578 	struct list_head *uf);
2579 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2580 	unsigned long len, unsigned long prot, unsigned long flags,
2581 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2582 	struct list_head *uf);
2583 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2584 		       struct list_head *uf, bool downgrade);
2585 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2586 		     struct list_head *uf);
2587 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2588 
2589 static inline unsigned long
2590 do_mmap_pgoff(struct file *file, unsigned long addr,
2591 	unsigned long len, unsigned long prot, unsigned long flags,
2592 	unsigned long pgoff, unsigned long *populate,
2593 	struct list_head *uf)
2594 {
2595 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2596 }
2597 
2598 #ifdef CONFIG_MMU
2599 extern int __mm_populate(unsigned long addr, unsigned long len,
2600 			 int ignore_errors);
2601 static inline void mm_populate(unsigned long addr, unsigned long len)
2602 {
2603 	/* Ignore errors */
2604 	(void) __mm_populate(addr, len, 1);
2605 }
2606 #else
2607 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2608 #endif
2609 
2610 /* These take the mm semaphore themselves */
2611 extern int __must_check vm_brk(unsigned long, unsigned long);
2612 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2613 extern int vm_munmap(unsigned long, size_t);
2614 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2615         unsigned long, unsigned long,
2616         unsigned long, unsigned long);
2617 
2618 struct vm_unmapped_area_info {
2619 #define VM_UNMAPPED_AREA_TOPDOWN 1
2620 	unsigned long flags;
2621 	unsigned long length;
2622 	unsigned long low_limit;
2623 	unsigned long high_limit;
2624 	unsigned long align_mask;
2625 	unsigned long align_offset;
2626 };
2627 
2628 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2629 
2630 /* truncate.c */
2631 extern void truncate_inode_pages(struct address_space *, loff_t);
2632 extern void truncate_inode_pages_range(struct address_space *,
2633 				       loff_t lstart, loff_t lend);
2634 extern void truncate_inode_pages_final(struct address_space *);
2635 
2636 /* generic vm_area_ops exported for stackable file systems */
2637 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2638 extern void filemap_map_pages(struct vm_fault *vmf,
2639 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2640 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2641 
2642 /* mm/page-writeback.c */
2643 int __must_check write_one_page(struct page *page);
2644 void task_dirty_inc(struct task_struct *tsk);
2645 
2646 extern unsigned long stack_guard_gap;
2647 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2648 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2649 
2650 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2651 extern int expand_downwards(struct vm_area_struct *vma,
2652 		unsigned long address);
2653 #if VM_GROWSUP
2654 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2655 #else
2656   #define expand_upwards(vma, address) (0)
2657 #endif
2658 
2659 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2660 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2661 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2662 					     struct vm_area_struct **pprev);
2663 
2664 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2665    NULL if none.  Assume start_addr < end_addr. */
2666 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2667 {
2668 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2669 
2670 	if (vma && end_addr <= vma->vm_start)
2671 		vma = NULL;
2672 	return vma;
2673 }
2674 
2675 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2676 {
2677 	unsigned long vm_start = vma->vm_start;
2678 
2679 	if (vma->vm_flags & VM_GROWSDOWN) {
2680 		vm_start -= stack_guard_gap;
2681 		if (vm_start > vma->vm_start)
2682 			vm_start = 0;
2683 	}
2684 	return vm_start;
2685 }
2686 
2687 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2688 {
2689 	unsigned long vm_end = vma->vm_end;
2690 
2691 	if (vma->vm_flags & VM_GROWSUP) {
2692 		vm_end += stack_guard_gap;
2693 		if (vm_end < vma->vm_end)
2694 			vm_end = -PAGE_SIZE;
2695 	}
2696 	return vm_end;
2697 }
2698 
2699 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2700 {
2701 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2702 }
2703 
2704 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2705 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2706 				unsigned long vm_start, unsigned long vm_end)
2707 {
2708 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2709 
2710 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2711 		vma = NULL;
2712 
2713 	return vma;
2714 }
2715 
2716 static inline bool range_in_vma(struct vm_area_struct *vma,
2717 				unsigned long start, unsigned long end)
2718 {
2719 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2720 }
2721 
2722 #ifdef CONFIG_MMU
2723 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2724 void vma_set_page_prot(struct vm_area_struct *vma);
2725 #else
2726 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2727 {
2728 	return __pgprot(0);
2729 }
2730 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2731 {
2732 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2733 }
2734 #endif
2735 
2736 #ifdef CONFIG_NUMA_BALANCING
2737 unsigned long change_prot_numa(struct vm_area_struct *vma,
2738 			unsigned long start, unsigned long end);
2739 #endif
2740 
2741 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2742 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2743 			unsigned long pfn, unsigned long size, pgprot_t);
2744 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2745 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2746 			struct page **pages, unsigned long *num);
2747 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2748 				unsigned long num);
2749 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2750 				unsigned long num);
2751 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2752 			unsigned long pfn);
2753 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2754 			unsigned long pfn, pgprot_t pgprot);
2755 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2756 			pfn_t pfn);
2757 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2758 			pfn_t pfn, pgprot_t pgprot);
2759 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2760 		unsigned long addr, pfn_t pfn);
2761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2762 
2763 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2764 				unsigned long addr, struct page *page)
2765 {
2766 	int err = vm_insert_page(vma, addr, page);
2767 
2768 	if (err == -ENOMEM)
2769 		return VM_FAULT_OOM;
2770 	if (err < 0 && err != -EBUSY)
2771 		return VM_FAULT_SIGBUS;
2772 
2773 	return VM_FAULT_NOPAGE;
2774 }
2775 
2776 static inline vm_fault_t vmf_error(int err)
2777 {
2778 	if (err == -ENOMEM)
2779 		return VM_FAULT_OOM;
2780 	return VM_FAULT_SIGBUS;
2781 }
2782 
2783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2784 			 unsigned int foll_flags);
2785 
2786 #define FOLL_WRITE	0x01	/* check pte is writable */
2787 #define FOLL_TOUCH	0x02	/* mark page accessed */
2788 #define FOLL_GET	0x04	/* do get_page on page */
2789 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2790 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2791 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2792 				 * and return without waiting upon it */
2793 #define FOLL_POPULATE	0x40	/* fault in page */
2794 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2795 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2796 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2797 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2798 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2799 #define FOLL_MLOCK	0x1000	/* lock present pages */
2800 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2801 #define FOLL_COW	0x4000	/* internal GUP flag */
2802 #define FOLL_ANON	0x8000	/* don't do file mappings */
2803 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2804 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2805 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2806 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2807 
2808 /*
2809  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2810  * other. Here is what they mean, and how to use them:
2811  *
2812  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2813  * period _often_ under userspace control.  This is in contrast to
2814  * iov_iter_get_pages(), whose usages are transient.
2815  *
2816  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2817  * lifetime enforced by the filesystem and we need guarantees that longterm
2818  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2819  * the filesystem.  Ideas for this coordination include revoking the longterm
2820  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2821  * added after the problem with filesystems was found FS DAX VMAs are
2822  * specifically failed.  Filesystem pages are still subject to bugs and use of
2823  * FOLL_LONGTERM should be avoided on those pages.
2824  *
2825  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2826  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2827  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2828  * is due to an incompatibility with the FS DAX check and
2829  * FAULT_FLAG_ALLOW_RETRY.
2830  *
2831  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2832  * that region.  And so, CMA attempts to migrate the page before pinning, when
2833  * FOLL_LONGTERM is specified.
2834  *
2835  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2836  * but an additional pin counting system) will be invoked. This is intended for
2837  * anything that gets a page reference and then touches page data (for example,
2838  * Direct IO). This lets the filesystem know that some non-file-system entity is
2839  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2840  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2841  * a call to unpin_user_page().
2842  *
2843  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2844  * and separate refcounting mechanisms, however, and that means that each has
2845  * its own acquire and release mechanisms:
2846  *
2847  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2848  *
2849  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2850  *
2851  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2852  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2853  * calls applied to them, and that's perfectly OK. This is a constraint on the
2854  * callers, not on the pages.)
2855  *
2856  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2857  * directly by the caller. That's in order to help avoid mismatches when
2858  * releasing pages: get_user_pages*() pages must be released via put_page(),
2859  * while pin_user_pages*() pages must be released via unpin_user_page().
2860  *
2861  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2862  */
2863 
2864 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2865 {
2866 	if (vm_fault & VM_FAULT_OOM)
2867 		return -ENOMEM;
2868 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2869 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2870 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2871 		return -EFAULT;
2872 	return 0;
2873 }
2874 
2875 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2876 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2877 			       unsigned long size, pte_fn_t fn, void *data);
2878 extern int apply_to_existing_page_range(struct mm_struct *mm,
2879 				   unsigned long address, unsigned long size,
2880 				   pte_fn_t fn, void *data);
2881 
2882 #ifdef CONFIG_PAGE_POISONING
2883 extern bool page_poisoning_enabled(void);
2884 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2885 #else
2886 static inline bool page_poisoning_enabled(void) { return false; }
2887 static inline void kernel_poison_pages(struct page *page, int numpages,
2888 					int enable) { }
2889 #endif
2890 
2891 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2892 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2893 #else
2894 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2895 #endif
2896 static inline bool want_init_on_alloc(gfp_t flags)
2897 {
2898 	if (static_branch_unlikely(&init_on_alloc) &&
2899 	    !page_poisoning_enabled())
2900 		return true;
2901 	return flags & __GFP_ZERO;
2902 }
2903 
2904 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2905 DECLARE_STATIC_KEY_TRUE(init_on_free);
2906 #else
2907 DECLARE_STATIC_KEY_FALSE(init_on_free);
2908 #endif
2909 static inline bool want_init_on_free(void)
2910 {
2911 	return static_branch_unlikely(&init_on_free) &&
2912 	       !page_poisoning_enabled();
2913 }
2914 
2915 #ifdef CONFIG_DEBUG_PAGEALLOC
2916 extern void init_debug_pagealloc(void);
2917 #else
2918 static inline void init_debug_pagealloc(void) {}
2919 #endif
2920 extern bool _debug_pagealloc_enabled_early;
2921 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2922 
2923 static inline bool debug_pagealloc_enabled(void)
2924 {
2925 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2926 		_debug_pagealloc_enabled_early;
2927 }
2928 
2929 /*
2930  * For use in fast paths after init_debug_pagealloc() has run, or when a
2931  * false negative result is not harmful when called too early.
2932  */
2933 static inline bool debug_pagealloc_enabled_static(void)
2934 {
2935 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2936 		return false;
2937 
2938 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2939 }
2940 
2941 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2942 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2943 
2944 /*
2945  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2946  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2947  */
2948 static inline void
2949 kernel_map_pages(struct page *page, int numpages, int enable)
2950 {
2951 	__kernel_map_pages(page, numpages, enable);
2952 }
2953 #ifdef CONFIG_HIBERNATION
2954 extern bool kernel_page_present(struct page *page);
2955 #endif	/* CONFIG_HIBERNATION */
2956 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2957 static inline void
2958 kernel_map_pages(struct page *page, int numpages, int enable) {}
2959 #ifdef CONFIG_HIBERNATION
2960 static inline bool kernel_page_present(struct page *page) { return true; }
2961 #endif	/* CONFIG_HIBERNATION */
2962 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2963 
2964 #ifdef __HAVE_ARCH_GATE_AREA
2965 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2966 extern int in_gate_area_no_mm(unsigned long addr);
2967 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2968 #else
2969 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2970 {
2971 	return NULL;
2972 }
2973 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2974 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2975 {
2976 	return 0;
2977 }
2978 #endif	/* __HAVE_ARCH_GATE_AREA */
2979 
2980 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2981 
2982 #ifdef CONFIG_SYSCTL
2983 extern int sysctl_drop_caches;
2984 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2985 		loff_t *);
2986 #endif
2987 
2988 void drop_slab(void);
2989 void drop_slab_node(int nid);
2990 
2991 #ifndef CONFIG_MMU
2992 #define randomize_va_space 0
2993 #else
2994 extern int randomize_va_space;
2995 #endif
2996 
2997 const char * arch_vma_name(struct vm_area_struct *vma);
2998 #ifdef CONFIG_MMU
2999 void print_vma_addr(char *prefix, unsigned long rip);
3000 #else
3001 static inline void print_vma_addr(char *prefix, unsigned long rip)
3002 {
3003 }
3004 #endif
3005 
3006 void *sparse_buffer_alloc(unsigned long size);
3007 struct page * __populate_section_memmap(unsigned long pfn,
3008 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3009 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3010 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3011 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3012 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3013 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
3014 void *vmemmap_alloc_block(unsigned long size, int node);
3015 struct vmem_altmap;
3016 void *vmemmap_alloc_block_buf(unsigned long size, int node);
3017 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
3018 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3019 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3020 			       int node);
3021 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3022 		struct vmem_altmap *altmap);
3023 void vmemmap_populate_print_last(void);
3024 #ifdef CONFIG_MEMORY_HOTPLUG
3025 void vmemmap_free(unsigned long start, unsigned long end,
3026 		struct vmem_altmap *altmap);
3027 #endif
3028 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3029 				  unsigned long nr_pages);
3030 
3031 enum mf_flags {
3032 	MF_COUNT_INCREASED = 1 << 0,
3033 	MF_ACTION_REQUIRED = 1 << 1,
3034 	MF_MUST_KILL = 1 << 2,
3035 	MF_SOFT_OFFLINE = 1 << 3,
3036 };
3037 extern int memory_failure(unsigned long pfn, int flags);
3038 extern void memory_failure_queue(unsigned long pfn, int flags);
3039 extern void memory_failure_queue_kick(int cpu);
3040 extern int unpoison_memory(unsigned long pfn);
3041 extern int get_hwpoison_page(struct page *page);
3042 #define put_hwpoison_page(page)	put_page(page)
3043 extern int sysctl_memory_failure_early_kill;
3044 extern int sysctl_memory_failure_recovery;
3045 extern void shake_page(struct page *p, int access);
3046 extern atomic_long_t num_poisoned_pages __read_mostly;
3047 extern int soft_offline_page(unsigned long pfn, int flags);
3048 
3049 
3050 /*
3051  * Error handlers for various types of pages.
3052  */
3053 enum mf_result {
3054 	MF_IGNORED,	/* Error: cannot be handled */
3055 	MF_FAILED,	/* Error: handling failed */
3056 	MF_DELAYED,	/* Will be handled later */
3057 	MF_RECOVERED,	/* Successfully recovered */
3058 };
3059 
3060 enum mf_action_page_type {
3061 	MF_MSG_KERNEL,
3062 	MF_MSG_KERNEL_HIGH_ORDER,
3063 	MF_MSG_SLAB,
3064 	MF_MSG_DIFFERENT_COMPOUND,
3065 	MF_MSG_POISONED_HUGE,
3066 	MF_MSG_HUGE,
3067 	MF_MSG_FREE_HUGE,
3068 	MF_MSG_NON_PMD_HUGE,
3069 	MF_MSG_UNMAP_FAILED,
3070 	MF_MSG_DIRTY_SWAPCACHE,
3071 	MF_MSG_CLEAN_SWAPCACHE,
3072 	MF_MSG_DIRTY_MLOCKED_LRU,
3073 	MF_MSG_CLEAN_MLOCKED_LRU,
3074 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3075 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3076 	MF_MSG_DIRTY_LRU,
3077 	MF_MSG_CLEAN_LRU,
3078 	MF_MSG_TRUNCATED_LRU,
3079 	MF_MSG_BUDDY,
3080 	MF_MSG_BUDDY_2ND,
3081 	MF_MSG_DAX,
3082 	MF_MSG_UNKNOWN,
3083 };
3084 
3085 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3086 extern void clear_huge_page(struct page *page,
3087 			    unsigned long addr_hint,
3088 			    unsigned int pages_per_huge_page);
3089 extern void copy_user_huge_page(struct page *dst, struct page *src,
3090 				unsigned long addr_hint,
3091 				struct vm_area_struct *vma,
3092 				unsigned int pages_per_huge_page);
3093 extern long copy_huge_page_from_user(struct page *dst_page,
3094 				const void __user *usr_src,
3095 				unsigned int pages_per_huge_page,
3096 				bool allow_pagefault);
3097 
3098 /**
3099  * vma_is_special_huge - Are transhuge page-table entries considered special?
3100  * @vma: Pointer to the struct vm_area_struct to consider
3101  *
3102  * Whether transhuge page-table entries are considered "special" following
3103  * the definition in vm_normal_page().
3104  *
3105  * Return: true if transhuge page-table entries should be considered special,
3106  * false otherwise.
3107  */
3108 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3109 {
3110 	return vma_is_dax(vma) || (vma->vm_file &&
3111 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3112 }
3113 
3114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3115 
3116 #ifdef CONFIG_DEBUG_PAGEALLOC
3117 extern unsigned int _debug_guardpage_minorder;
3118 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3119 
3120 static inline unsigned int debug_guardpage_minorder(void)
3121 {
3122 	return _debug_guardpage_minorder;
3123 }
3124 
3125 static inline bool debug_guardpage_enabled(void)
3126 {
3127 	return static_branch_unlikely(&_debug_guardpage_enabled);
3128 }
3129 
3130 static inline bool page_is_guard(struct page *page)
3131 {
3132 	if (!debug_guardpage_enabled())
3133 		return false;
3134 
3135 	return PageGuard(page);
3136 }
3137 #else
3138 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3139 static inline bool debug_guardpage_enabled(void) { return false; }
3140 static inline bool page_is_guard(struct page *page) { return false; }
3141 #endif /* CONFIG_DEBUG_PAGEALLOC */
3142 
3143 #if MAX_NUMNODES > 1
3144 void __init setup_nr_node_ids(void);
3145 #else
3146 static inline void setup_nr_node_ids(void) {}
3147 #endif
3148 
3149 extern int memcmp_pages(struct page *page1, struct page *page2);
3150 
3151 static inline int pages_identical(struct page *page1, struct page *page2)
3152 {
3153 	return !memcmp_pages(page1, page2);
3154 }
3155 
3156 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3157 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3158 						pgoff_t first_index, pgoff_t nr,
3159 						pgoff_t bitmap_pgoff,
3160 						unsigned long *bitmap,
3161 						pgoff_t *start,
3162 						pgoff_t *end);
3163 
3164 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3165 				      pgoff_t first_index, pgoff_t nr);
3166 #endif
3167 
3168 extern int sysctl_nr_trim_pages;
3169 
3170 #endif /* __KERNEL__ */
3171 #endif /* _LINUX_MM_H */
3172