xref: /linux-6.15/include/linux/mm.h (revision 656fe3ee)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 #ifdef CONFIG_64BIT
410 /* VM is sealed, in vm_flags */
411 #define VM_SEALED	_BITUL(63)
412 #endif
413 
414 /* Bits set in the VMA until the stack is in its final location */
415 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
416 
417 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
418 
419 /* Common data flag combinations */
420 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
421 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
422 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
423 				 VM_MAYWRITE | VM_MAYEXEC)
424 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
425 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
426 
427 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
428 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
429 #endif
430 
431 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
432 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
433 #endif
434 
435 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
436 
437 #ifdef CONFIG_STACK_GROWSUP
438 #define VM_STACK	VM_GROWSUP
439 #define VM_STACK_EARLY	VM_GROWSDOWN
440 #else
441 #define VM_STACK	VM_GROWSDOWN
442 #define VM_STACK_EARLY	0
443 #endif
444 
445 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
446 
447 /* VMA basic access permission flags */
448 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
449 
450 
451 /*
452  * Special vmas that are non-mergable, non-mlock()able.
453  */
454 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
455 
456 /* This mask prevents VMA from being scanned with khugepaged */
457 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
458 
459 /* This mask defines which mm->def_flags a process can inherit its parent */
460 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
461 
462 /* This mask represents all the VMA flag bits used by mlock */
463 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
464 
465 /* Arch-specific flags to clear when updating VM flags on protection change */
466 #ifndef VM_ARCH_CLEAR
467 # define VM_ARCH_CLEAR	VM_NONE
468 #endif
469 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
470 
471 /*
472  * mapping from the currently active vm_flags protection bits (the
473  * low four bits) to a page protection mask..
474  */
475 
476 /*
477  * The default fault flags that should be used by most of the
478  * arch-specific page fault handlers.
479  */
480 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
481 			     FAULT_FLAG_KILLABLE | \
482 			     FAULT_FLAG_INTERRUPTIBLE)
483 
484 /**
485  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
486  * @flags: Fault flags.
487  *
488  * This is mostly used for places where we want to try to avoid taking
489  * the mmap_lock for too long a time when waiting for another condition
490  * to change, in which case we can try to be polite to release the
491  * mmap_lock in the first round to avoid potential starvation of other
492  * processes that would also want the mmap_lock.
493  *
494  * Return: true if the page fault allows retry and this is the first
495  * attempt of the fault handling; false otherwise.
496  */
497 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
498 {
499 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
500 	    (!(flags & FAULT_FLAG_TRIED));
501 }
502 
503 #define FAULT_FLAG_TRACE \
504 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
505 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
506 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
507 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
508 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
509 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
510 	{ FAULT_FLAG_USER,		"USER" }, \
511 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
512 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
513 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
514 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
515 
516 /*
517  * vm_fault is filled by the pagefault handler and passed to the vma's
518  * ->fault function. The vma's ->fault is responsible for returning a bitmask
519  * of VM_FAULT_xxx flags that give details about how the fault was handled.
520  *
521  * MM layer fills up gfp_mask for page allocations but fault handler might
522  * alter it if its implementation requires a different allocation context.
523  *
524  * pgoff should be used in favour of virtual_address, if possible.
525  */
526 struct vm_fault {
527 	const struct {
528 		struct vm_area_struct *vma;	/* Target VMA */
529 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
530 		pgoff_t pgoff;			/* Logical page offset based on vma */
531 		unsigned long address;		/* Faulting virtual address - masked */
532 		unsigned long real_address;	/* Faulting virtual address - unmasked */
533 	};
534 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
535 					 * XXX: should really be 'const' */
536 	pmd_t *pmd;			/* Pointer to pmd entry matching
537 					 * the 'address' */
538 	pud_t *pud;			/* Pointer to pud entry matching
539 					 * the 'address'
540 					 */
541 	union {
542 		pte_t orig_pte;		/* Value of PTE at the time of fault */
543 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
544 					 * used by PMD fault only.
545 					 */
546 	};
547 
548 	struct page *cow_page;		/* Page handler may use for COW fault */
549 	struct page *page;		/* ->fault handlers should return a
550 					 * page here, unless VM_FAULT_NOPAGE
551 					 * is set (which is also implied by
552 					 * VM_FAULT_ERROR).
553 					 */
554 	/* These three entries are valid only while holding ptl lock */
555 	pte_t *pte;			/* Pointer to pte entry matching
556 					 * the 'address'. NULL if the page
557 					 * table hasn't been allocated.
558 					 */
559 	spinlock_t *ptl;		/* Page table lock.
560 					 * Protects pte page table if 'pte'
561 					 * is not NULL, otherwise pmd.
562 					 */
563 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
564 					 * vm_ops->map_pages() sets up a page
565 					 * table from atomic context.
566 					 * do_fault_around() pre-allocates
567 					 * page table to avoid allocation from
568 					 * atomic context.
569 					 */
570 };
571 
572 /*
573  * These are the virtual MM functions - opening of an area, closing and
574  * unmapping it (needed to keep files on disk up-to-date etc), pointer
575  * to the functions called when a no-page or a wp-page exception occurs.
576  */
577 struct vm_operations_struct {
578 	void (*open)(struct vm_area_struct * area);
579 	/**
580 	 * @close: Called when the VMA is being removed from the MM.
581 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
582 	 */
583 	void (*close)(struct vm_area_struct * area);
584 	/* Called any time before splitting to check if it's allowed */
585 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
586 	int (*mremap)(struct vm_area_struct *area);
587 	/*
588 	 * Called by mprotect() to make driver-specific permission
589 	 * checks before mprotect() is finalised.   The VMA must not
590 	 * be modified.  Returns 0 if mprotect() can proceed.
591 	 */
592 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
593 			unsigned long end, unsigned long newflags);
594 	vm_fault_t (*fault)(struct vm_fault *vmf);
595 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
596 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
597 			pgoff_t start_pgoff, pgoff_t end_pgoff);
598 	unsigned long (*pagesize)(struct vm_area_struct * area);
599 
600 	/* notification that a previously read-only page is about to become
601 	 * writable, if an error is returned it will cause a SIGBUS */
602 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
603 
604 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
605 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
606 
607 	/* called by access_process_vm when get_user_pages() fails, typically
608 	 * for use by special VMAs. See also generic_access_phys() for a generic
609 	 * implementation useful for any iomem mapping.
610 	 */
611 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
612 		      void *buf, int len, int write);
613 
614 	/* Called by the /proc/PID/maps code to ask the vma whether it
615 	 * has a special name.  Returning non-NULL will also cause this
616 	 * vma to be dumped unconditionally. */
617 	const char *(*name)(struct vm_area_struct *vma);
618 
619 #ifdef CONFIG_NUMA
620 	/*
621 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
622 	 * to hold the policy upon return.  Caller should pass NULL @new to
623 	 * remove a policy and fall back to surrounding context--i.e. do not
624 	 * install a MPOL_DEFAULT policy, nor the task or system default
625 	 * mempolicy.
626 	 */
627 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
628 
629 	/*
630 	 * get_policy() op must add reference [mpol_get()] to any policy at
631 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
632 	 * in mm/mempolicy.c will do this automatically.
633 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
634 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
635 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
636 	 * must return NULL--i.e., do not "fallback" to task or system default
637 	 * policy.
638 	 */
639 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
640 					unsigned long addr, pgoff_t *ilx);
641 #endif
642 	/*
643 	 * Called by vm_normal_page() for special PTEs to find the
644 	 * page for @addr.  This is useful if the default behavior
645 	 * (using pte_page()) would not find the correct page.
646 	 */
647 	struct page *(*find_special_page)(struct vm_area_struct *vma,
648 					  unsigned long addr);
649 };
650 
651 #ifdef CONFIG_NUMA_BALANCING
652 static inline void vma_numab_state_init(struct vm_area_struct *vma)
653 {
654 	vma->numab_state = NULL;
655 }
656 static inline void vma_numab_state_free(struct vm_area_struct *vma)
657 {
658 	kfree(vma->numab_state);
659 }
660 #else
661 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
662 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
663 #endif /* CONFIG_NUMA_BALANCING */
664 
665 #ifdef CONFIG_PER_VMA_LOCK
666 /*
667  * Try to read-lock a vma. The function is allowed to occasionally yield false
668  * locked result to avoid performance overhead, in which case we fall back to
669  * using mmap_lock. The function should never yield false unlocked result.
670  */
671 static inline bool vma_start_read(struct vm_area_struct *vma)
672 {
673 	/*
674 	 * Check before locking. A race might cause false locked result.
675 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
676 	 * ACQUIRE semantics, because this is just a lockless check whose result
677 	 * we don't rely on for anything - the mm_lock_seq read against which we
678 	 * need ordering is below.
679 	 */
680 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
681 		return false;
682 
683 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
684 		return false;
685 
686 	/*
687 	 * Overflow might produce false locked result.
688 	 * False unlocked result is impossible because we modify and check
689 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
690 	 * modification invalidates all existing locks.
691 	 *
692 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
693 	 * racing with vma_end_write_all(), we only start reading from the VMA
694 	 * after it has been unlocked.
695 	 * This pairs with RELEASE semantics in vma_end_write_all().
696 	 */
697 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
698 		up_read(&vma->vm_lock->lock);
699 		return false;
700 	}
701 	return true;
702 }
703 
704 static inline void vma_end_read(struct vm_area_struct *vma)
705 {
706 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
707 	up_read(&vma->vm_lock->lock);
708 	rcu_read_unlock();
709 }
710 
711 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
712 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
713 {
714 	mmap_assert_write_locked(vma->vm_mm);
715 
716 	/*
717 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
718 	 * mm->mm_lock_seq can't be concurrently modified.
719 	 */
720 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
721 	return (vma->vm_lock_seq == *mm_lock_seq);
722 }
723 
724 /*
725  * Begin writing to a VMA.
726  * Exclude concurrent readers under the per-VMA lock until the currently
727  * write-locked mmap_lock is dropped or downgraded.
728  */
729 static inline void vma_start_write(struct vm_area_struct *vma)
730 {
731 	int mm_lock_seq;
732 
733 	if (__is_vma_write_locked(vma, &mm_lock_seq))
734 		return;
735 
736 	down_write(&vma->vm_lock->lock);
737 	/*
738 	 * We should use WRITE_ONCE() here because we can have concurrent reads
739 	 * from the early lockless pessimistic check in vma_start_read().
740 	 * We don't really care about the correctness of that early check, but
741 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
742 	 */
743 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
744 	up_write(&vma->vm_lock->lock);
745 }
746 
747 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
748 {
749 	int mm_lock_seq;
750 
751 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
752 }
753 
754 static inline void vma_assert_locked(struct vm_area_struct *vma)
755 {
756 	if (!rwsem_is_locked(&vma->vm_lock->lock))
757 		vma_assert_write_locked(vma);
758 }
759 
760 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
761 {
762 	/* When detaching vma should be write-locked */
763 	if (detached)
764 		vma_assert_write_locked(vma);
765 	vma->detached = detached;
766 }
767 
768 static inline void release_fault_lock(struct vm_fault *vmf)
769 {
770 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
771 		vma_end_read(vmf->vma);
772 	else
773 		mmap_read_unlock(vmf->vma->vm_mm);
774 }
775 
776 static inline void assert_fault_locked(struct vm_fault *vmf)
777 {
778 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
779 		vma_assert_locked(vmf->vma);
780 	else
781 		mmap_assert_locked(vmf->vma->vm_mm);
782 }
783 
784 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
785 					  unsigned long address);
786 
787 #else /* CONFIG_PER_VMA_LOCK */
788 
789 static inline bool vma_start_read(struct vm_area_struct *vma)
790 		{ return false; }
791 static inline void vma_end_read(struct vm_area_struct *vma) {}
792 static inline void vma_start_write(struct vm_area_struct *vma) {}
793 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
794 		{ mmap_assert_write_locked(vma->vm_mm); }
795 static inline void vma_mark_detached(struct vm_area_struct *vma,
796 				     bool detached) {}
797 
798 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
799 		unsigned long address)
800 {
801 	return NULL;
802 }
803 
804 static inline void vma_assert_locked(struct vm_area_struct *vma)
805 {
806 	mmap_assert_locked(vma->vm_mm);
807 }
808 
809 static inline void release_fault_lock(struct vm_fault *vmf)
810 {
811 	mmap_read_unlock(vmf->vma->vm_mm);
812 }
813 
814 static inline void assert_fault_locked(struct vm_fault *vmf)
815 {
816 	mmap_assert_locked(vmf->vma->vm_mm);
817 }
818 
819 #endif /* CONFIG_PER_VMA_LOCK */
820 
821 extern const struct vm_operations_struct vma_dummy_vm_ops;
822 
823 /*
824  * WARNING: vma_init does not initialize vma->vm_lock.
825  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
826  */
827 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
828 {
829 	memset(vma, 0, sizeof(*vma));
830 	vma->vm_mm = mm;
831 	vma->vm_ops = &vma_dummy_vm_ops;
832 	INIT_LIST_HEAD(&vma->anon_vma_chain);
833 	vma_mark_detached(vma, false);
834 	vma_numab_state_init(vma);
835 }
836 
837 /* Use when VMA is not part of the VMA tree and needs no locking */
838 static inline void vm_flags_init(struct vm_area_struct *vma,
839 				 vm_flags_t flags)
840 {
841 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
842 }
843 
844 /*
845  * Use when VMA is part of the VMA tree and modifications need coordination
846  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
847  * it should be locked explicitly beforehand.
848  */
849 static inline void vm_flags_reset(struct vm_area_struct *vma,
850 				  vm_flags_t flags)
851 {
852 	vma_assert_write_locked(vma);
853 	vm_flags_init(vma, flags);
854 }
855 
856 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
857 				       vm_flags_t flags)
858 {
859 	vma_assert_write_locked(vma);
860 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
861 }
862 
863 static inline void vm_flags_set(struct vm_area_struct *vma,
864 				vm_flags_t flags)
865 {
866 	vma_start_write(vma);
867 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
868 }
869 
870 static inline void vm_flags_clear(struct vm_area_struct *vma,
871 				  vm_flags_t flags)
872 {
873 	vma_start_write(vma);
874 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
875 }
876 
877 /*
878  * Use only if VMA is not part of the VMA tree or has no other users and
879  * therefore needs no locking.
880  */
881 static inline void __vm_flags_mod(struct vm_area_struct *vma,
882 				  vm_flags_t set, vm_flags_t clear)
883 {
884 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
885 }
886 
887 /*
888  * Use only when the order of set/clear operations is unimportant, otherwise
889  * use vm_flags_{set|clear} explicitly.
890  */
891 static inline void vm_flags_mod(struct vm_area_struct *vma,
892 				vm_flags_t set, vm_flags_t clear)
893 {
894 	vma_start_write(vma);
895 	__vm_flags_mod(vma, set, clear);
896 }
897 
898 static inline void vma_set_anonymous(struct vm_area_struct *vma)
899 {
900 	vma->vm_ops = NULL;
901 }
902 
903 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
904 {
905 	return !vma->vm_ops;
906 }
907 
908 /*
909  * Indicate if the VMA is a heap for the given task; for
910  * /proc/PID/maps that is the heap of the main task.
911  */
912 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
913 {
914 	return vma->vm_start < vma->vm_mm->brk &&
915 		vma->vm_end > vma->vm_mm->start_brk;
916 }
917 
918 /*
919  * Indicate if the VMA is a stack for the given task; for
920  * /proc/PID/maps that is the stack of the main task.
921  */
922 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
923 {
924 	/*
925 	 * We make no effort to guess what a given thread considers to be
926 	 * its "stack".  It's not even well-defined for programs written
927 	 * languages like Go.
928 	 */
929 	return vma->vm_start <= vma->vm_mm->start_stack &&
930 		vma->vm_end >= vma->vm_mm->start_stack;
931 }
932 
933 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
934 {
935 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
936 
937 	if (!maybe_stack)
938 		return false;
939 
940 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
941 						VM_STACK_INCOMPLETE_SETUP)
942 		return true;
943 
944 	return false;
945 }
946 
947 static inline bool vma_is_foreign(struct vm_area_struct *vma)
948 {
949 	if (!current->mm)
950 		return true;
951 
952 	if (current->mm != vma->vm_mm)
953 		return true;
954 
955 	return false;
956 }
957 
958 static inline bool vma_is_accessible(struct vm_area_struct *vma)
959 {
960 	return vma->vm_flags & VM_ACCESS_FLAGS;
961 }
962 
963 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
964 {
965 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
966 		(VM_SHARED | VM_MAYWRITE);
967 }
968 
969 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
970 {
971 	return is_shared_maywrite(vma->vm_flags);
972 }
973 
974 static inline
975 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
976 {
977 	return mas_find(&vmi->mas, max - 1);
978 }
979 
980 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
981 {
982 	/*
983 	 * Uses mas_find() to get the first VMA when the iterator starts.
984 	 * Calling mas_next() could skip the first entry.
985 	 */
986 	return mas_find(&vmi->mas, ULONG_MAX);
987 }
988 
989 static inline
990 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
991 {
992 	return mas_next_range(&vmi->mas, ULONG_MAX);
993 }
994 
995 
996 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
997 {
998 	return mas_prev(&vmi->mas, 0);
999 }
1000 
1001 static inline
1002 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1003 {
1004 	return mas_prev_range(&vmi->mas, 0);
1005 }
1006 
1007 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1008 {
1009 	return vmi->mas.index;
1010 }
1011 
1012 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1013 {
1014 	return vmi->mas.last + 1;
1015 }
1016 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1017 				      unsigned long count)
1018 {
1019 	return mas_expected_entries(&vmi->mas, count);
1020 }
1021 
1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1023 			unsigned long start, unsigned long end, gfp_t gfp)
1024 {
1025 	__mas_set_range(&vmi->mas, start, end - 1);
1026 	mas_store_gfp(&vmi->mas, NULL, gfp);
1027 	if (unlikely(mas_is_err(&vmi->mas)))
1028 		return -ENOMEM;
1029 
1030 	return 0;
1031 }
1032 
1033 /* Free any unused preallocations */
1034 static inline void vma_iter_free(struct vma_iterator *vmi)
1035 {
1036 	mas_destroy(&vmi->mas);
1037 }
1038 
1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1040 				      struct vm_area_struct *vma)
1041 {
1042 	vmi->mas.index = vma->vm_start;
1043 	vmi->mas.last = vma->vm_end - 1;
1044 	mas_store(&vmi->mas, vma);
1045 	if (unlikely(mas_is_err(&vmi->mas)))
1046 		return -ENOMEM;
1047 
1048 	return 0;
1049 }
1050 
1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1052 {
1053 	mas_pause(&vmi->mas);
1054 }
1055 
1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1057 {
1058 	mas_set(&vmi->mas, addr);
1059 }
1060 
1061 #define for_each_vma(__vmi, __vma)					\
1062 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1063 
1064 /* The MM code likes to work with exclusive end addresses */
1065 #define for_each_vma_range(__vmi, __vma, __end)				\
1066 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1067 
1068 #ifdef CONFIG_SHMEM
1069 /*
1070  * The vma_is_shmem is not inline because it is used only by slow
1071  * paths in userfault.
1072  */
1073 bool vma_is_shmem(struct vm_area_struct *vma);
1074 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1075 #else
1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1078 #endif
1079 
1080 int vma_is_stack_for_current(struct vm_area_struct *vma);
1081 
1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1084 
1085 struct mmu_gather;
1086 struct inode;
1087 
1088 /*
1089  * compound_order() can be called without holding a reference, which means
1090  * that niceties like page_folio() don't work.  These callers should be
1091  * prepared to handle wild return values.  For example, PG_head may be
1092  * set before the order is initialised, or this may be a tail page.
1093  * See compaction.c for some good examples.
1094  */
1095 static inline unsigned int compound_order(struct page *page)
1096 {
1097 	struct folio *folio = (struct folio *)page;
1098 
1099 	if (!test_bit(PG_head, &folio->flags))
1100 		return 0;
1101 	return folio->_flags_1 & 0xff;
1102 }
1103 
1104 /**
1105  * folio_order - The allocation order of a folio.
1106  * @folio: The folio.
1107  *
1108  * A folio is composed of 2^order pages.  See get_order() for the definition
1109  * of order.
1110  *
1111  * Return: The order of the folio.
1112  */
1113 static inline unsigned int folio_order(struct folio *folio)
1114 {
1115 	if (!folio_test_large(folio))
1116 		return 0;
1117 	return folio->_flags_1 & 0xff;
1118 }
1119 
1120 #include <linux/huge_mm.h>
1121 
1122 /*
1123  * Methods to modify the page usage count.
1124  *
1125  * What counts for a page usage:
1126  * - cache mapping   (page->mapping)
1127  * - private data    (page->private)
1128  * - page mapped in a task's page tables, each mapping
1129  *   is counted separately
1130  *
1131  * Also, many kernel routines increase the page count before a critical
1132  * routine so they can be sure the page doesn't go away from under them.
1133  */
1134 
1135 /*
1136  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1137  */
1138 static inline int put_page_testzero(struct page *page)
1139 {
1140 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1141 	return page_ref_dec_and_test(page);
1142 }
1143 
1144 static inline int folio_put_testzero(struct folio *folio)
1145 {
1146 	return put_page_testzero(&folio->page);
1147 }
1148 
1149 /*
1150  * Try to grab a ref unless the page has a refcount of zero, return false if
1151  * that is the case.
1152  * This can be called when MMU is off so it must not access
1153  * any of the virtual mappings.
1154  */
1155 static inline bool get_page_unless_zero(struct page *page)
1156 {
1157 	return page_ref_add_unless(page, 1, 0);
1158 }
1159 
1160 static inline struct folio *folio_get_nontail_page(struct page *page)
1161 {
1162 	if (unlikely(!get_page_unless_zero(page)))
1163 		return NULL;
1164 	return (struct folio *)page;
1165 }
1166 
1167 extern int page_is_ram(unsigned long pfn);
1168 
1169 enum {
1170 	REGION_INTERSECTS,
1171 	REGION_DISJOINT,
1172 	REGION_MIXED,
1173 };
1174 
1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1176 		      unsigned long desc);
1177 
1178 /* Support for virtually mapped pages */
1179 struct page *vmalloc_to_page(const void *addr);
1180 unsigned long vmalloc_to_pfn(const void *addr);
1181 
1182 /*
1183  * Determine if an address is within the vmalloc range
1184  *
1185  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1186  * is no special casing required.
1187  */
1188 #ifdef CONFIG_MMU
1189 extern bool is_vmalloc_addr(const void *x);
1190 extern int is_vmalloc_or_module_addr(const void *x);
1191 #else
1192 static inline bool is_vmalloc_addr(const void *x)
1193 {
1194 	return false;
1195 }
1196 static inline int is_vmalloc_or_module_addr(const void *x)
1197 {
1198 	return 0;
1199 }
1200 #endif
1201 
1202 /*
1203  * How many times the entire folio is mapped as a single unit (eg by a
1204  * PMD or PUD entry).  This is probably not what you want, except for
1205  * debugging purposes - it does not include PTE-mapped sub-pages; look
1206  * at folio_mapcount() or page_mapcount() instead.
1207  */
1208 static inline int folio_entire_mapcount(const struct folio *folio)
1209 {
1210 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1211 	return atomic_read(&folio->_entire_mapcount) + 1;
1212 }
1213 
1214 /*
1215  * The atomic page->_mapcount, starts from -1: so that transitions
1216  * both from it and to it can be tracked, using atomic_inc_and_test
1217  * and atomic_add_negative(-1).
1218  */
1219 static inline void page_mapcount_reset(struct page *page)
1220 {
1221 	atomic_set(&(page)->_mapcount, -1);
1222 }
1223 
1224 /**
1225  * page_mapcount() - Number of times this precise page is mapped.
1226  * @page: The page.
1227  *
1228  * The number of times this page is mapped.  If this page is part of
1229  * a large folio, it includes the number of times this page is mapped
1230  * as part of that folio.
1231  *
1232  * Will report 0 for pages which cannot be mapped into userspace, eg
1233  * slab, page tables and similar.
1234  */
1235 static inline int page_mapcount(struct page *page)
1236 {
1237 	int mapcount = atomic_read(&page->_mapcount) + 1;
1238 
1239 	/* Handle page_has_type() pages */
1240 	if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1241 		mapcount = 0;
1242 	if (unlikely(PageCompound(page)))
1243 		mapcount += folio_entire_mapcount(page_folio(page));
1244 
1245 	return mapcount;
1246 }
1247 
1248 static inline int folio_large_mapcount(const struct folio *folio)
1249 {
1250 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1251 	return atomic_read(&folio->_large_mapcount) + 1;
1252 }
1253 
1254 /**
1255  * folio_mapcount() - Number of mappings of this folio.
1256  * @folio: The folio.
1257  *
1258  * The folio mapcount corresponds to the number of present user page table
1259  * entries that reference any part of a folio. Each such present user page
1260  * table entry must be paired with exactly on folio reference.
1261  *
1262  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1263  * exactly once.
1264  *
1265  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1266  * references the entire folio counts exactly once, even when such special
1267  * page table entries are comprised of multiple ordinary page table entries.
1268  *
1269  * Will report 0 for pages which cannot be mapped into userspace, such as
1270  * slab, page tables and similar.
1271  *
1272  * Return: The number of times this folio is mapped.
1273  */
1274 static inline int folio_mapcount(const struct folio *folio)
1275 {
1276 	int mapcount;
1277 
1278 	if (likely(!folio_test_large(folio))) {
1279 		mapcount = atomic_read(&folio->_mapcount) + 1;
1280 		/* Handle page_has_type() pages */
1281 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1282 			mapcount = 0;
1283 		return mapcount;
1284 	}
1285 	return folio_large_mapcount(folio);
1286 }
1287 
1288 /**
1289  * folio_mapped - Is this folio mapped into userspace?
1290  * @folio: The folio.
1291  *
1292  * Return: True if any page in this folio is referenced by user page tables.
1293  */
1294 static inline bool folio_mapped(const struct folio *folio)
1295 {
1296 	return folio_mapcount(folio) >= 1;
1297 }
1298 
1299 /*
1300  * Return true if this page is mapped into pagetables.
1301  * For compound page it returns true if any sub-page of compound page is mapped,
1302  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1303  */
1304 static inline bool page_mapped(const struct page *page)
1305 {
1306 	return folio_mapped(page_folio(page));
1307 }
1308 
1309 static inline struct page *virt_to_head_page(const void *x)
1310 {
1311 	struct page *page = virt_to_page(x);
1312 
1313 	return compound_head(page);
1314 }
1315 
1316 static inline struct folio *virt_to_folio(const void *x)
1317 {
1318 	struct page *page = virt_to_page(x);
1319 
1320 	return page_folio(page);
1321 }
1322 
1323 void __folio_put(struct folio *folio);
1324 
1325 void put_pages_list(struct list_head *pages);
1326 
1327 void split_page(struct page *page, unsigned int order);
1328 void folio_copy(struct folio *dst, struct folio *src);
1329 
1330 unsigned long nr_free_buffer_pages(void);
1331 
1332 /* Returns the number of bytes in this potentially compound page. */
1333 static inline unsigned long page_size(struct page *page)
1334 {
1335 	return PAGE_SIZE << compound_order(page);
1336 }
1337 
1338 /* Returns the number of bits needed for the number of bytes in a page */
1339 static inline unsigned int page_shift(struct page *page)
1340 {
1341 	return PAGE_SHIFT + compound_order(page);
1342 }
1343 
1344 /**
1345  * thp_order - Order of a transparent huge page.
1346  * @page: Head page of a transparent huge page.
1347  */
1348 static inline unsigned int thp_order(struct page *page)
1349 {
1350 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1351 	return compound_order(page);
1352 }
1353 
1354 /**
1355  * thp_size - Size of a transparent huge page.
1356  * @page: Head page of a transparent huge page.
1357  *
1358  * Return: Number of bytes in this page.
1359  */
1360 static inline unsigned long thp_size(struct page *page)
1361 {
1362 	return PAGE_SIZE << thp_order(page);
1363 }
1364 
1365 #ifdef CONFIG_MMU
1366 /*
1367  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1368  * servicing faults for write access.  In the normal case, do always want
1369  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1370  * that do not have writing enabled, when used by access_process_vm.
1371  */
1372 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1373 {
1374 	if (likely(vma->vm_flags & VM_WRITE))
1375 		pte = pte_mkwrite(pte, vma);
1376 	return pte;
1377 }
1378 
1379 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1380 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1381 		struct page *page, unsigned int nr, unsigned long addr);
1382 
1383 vm_fault_t finish_fault(struct vm_fault *vmf);
1384 #endif
1385 
1386 /*
1387  * Multiple processes may "see" the same page. E.g. for untouched
1388  * mappings of /dev/null, all processes see the same page full of
1389  * zeroes, and text pages of executables and shared libraries have
1390  * only one copy in memory, at most, normally.
1391  *
1392  * For the non-reserved pages, page_count(page) denotes a reference count.
1393  *   page_count() == 0 means the page is free. page->lru is then used for
1394  *   freelist management in the buddy allocator.
1395  *   page_count() > 0  means the page has been allocated.
1396  *
1397  * Pages are allocated by the slab allocator in order to provide memory
1398  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1399  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1400  * unless a particular usage is carefully commented. (the responsibility of
1401  * freeing the kmalloc memory is the caller's, of course).
1402  *
1403  * A page may be used by anyone else who does a __get_free_page().
1404  * In this case, page_count still tracks the references, and should only
1405  * be used through the normal accessor functions. The top bits of page->flags
1406  * and page->virtual store page management information, but all other fields
1407  * are unused and could be used privately, carefully. The management of this
1408  * page is the responsibility of the one who allocated it, and those who have
1409  * subsequently been given references to it.
1410  *
1411  * The other pages (we may call them "pagecache pages") are completely
1412  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1413  * The following discussion applies only to them.
1414  *
1415  * A pagecache page contains an opaque `private' member, which belongs to the
1416  * page's address_space. Usually, this is the address of a circular list of
1417  * the page's disk buffers. PG_private must be set to tell the VM to call
1418  * into the filesystem to release these pages.
1419  *
1420  * A page may belong to an inode's memory mapping. In this case, page->mapping
1421  * is the pointer to the inode, and page->index is the file offset of the page,
1422  * in units of PAGE_SIZE.
1423  *
1424  * If pagecache pages are not associated with an inode, they are said to be
1425  * anonymous pages. These may become associated with the swapcache, and in that
1426  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1427  *
1428  * In either case (swapcache or inode backed), the pagecache itself holds one
1429  * reference to the page. Setting PG_private should also increment the
1430  * refcount. The each user mapping also has a reference to the page.
1431  *
1432  * The pagecache pages are stored in a per-mapping radix tree, which is
1433  * rooted at mapping->i_pages, and indexed by offset.
1434  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1435  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1436  *
1437  * All pagecache pages may be subject to I/O:
1438  * - inode pages may need to be read from disk,
1439  * - inode pages which have been modified and are MAP_SHARED may need
1440  *   to be written back to the inode on disk,
1441  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1442  *   modified may need to be swapped out to swap space and (later) to be read
1443  *   back into memory.
1444  */
1445 
1446 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1447 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1448 
1449 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1450 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1451 {
1452 	if (!static_branch_unlikely(&devmap_managed_key))
1453 		return false;
1454 	if (!folio_is_zone_device(folio))
1455 		return false;
1456 	return __put_devmap_managed_folio_refs(folio, refs);
1457 }
1458 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1459 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1460 {
1461 	return false;
1462 }
1463 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1464 
1465 /* 127: arbitrary random number, small enough to assemble well */
1466 #define folio_ref_zero_or_close_to_overflow(folio) \
1467 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1468 
1469 /**
1470  * folio_get - Increment the reference count on a folio.
1471  * @folio: The folio.
1472  *
1473  * Context: May be called in any context, as long as you know that
1474  * you have a refcount on the folio.  If you do not already have one,
1475  * folio_try_get() may be the right interface for you to use.
1476  */
1477 static inline void folio_get(struct folio *folio)
1478 {
1479 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1480 	folio_ref_inc(folio);
1481 }
1482 
1483 static inline void get_page(struct page *page)
1484 {
1485 	folio_get(page_folio(page));
1486 }
1487 
1488 static inline __must_check bool try_get_page(struct page *page)
1489 {
1490 	page = compound_head(page);
1491 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1492 		return false;
1493 	page_ref_inc(page);
1494 	return true;
1495 }
1496 
1497 /**
1498  * folio_put - Decrement the reference count on a folio.
1499  * @folio: The folio.
1500  *
1501  * If the folio's reference count reaches zero, the memory will be
1502  * released back to the page allocator and may be used by another
1503  * allocation immediately.  Do not access the memory or the struct folio
1504  * after calling folio_put() unless you can be sure that it wasn't the
1505  * last reference.
1506  *
1507  * Context: May be called in process or interrupt context, but not in NMI
1508  * context.  May be called while holding a spinlock.
1509  */
1510 static inline void folio_put(struct folio *folio)
1511 {
1512 	if (folio_put_testzero(folio))
1513 		__folio_put(folio);
1514 }
1515 
1516 /**
1517  * folio_put_refs - Reduce the reference count on a folio.
1518  * @folio: The folio.
1519  * @refs: The amount to subtract from the folio's reference count.
1520  *
1521  * If the folio's reference count reaches zero, the memory will be
1522  * released back to the page allocator and may be used by another
1523  * allocation immediately.  Do not access the memory or the struct folio
1524  * after calling folio_put_refs() unless you can be sure that these weren't
1525  * the last references.
1526  *
1527  * Context: May be called in process or interrupt context, but not in NMI
1528  * context.  May be called while holding a spinlock.
1529  */
1530 static inline void folio_put_refs(struct folio *folio, int refs)
1531 {
1532 	if (folio_ref_sub_and_test(folio, refs))
1533 		__folio_put(folio);
1534 }
1535 
1536 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1537 
1538 /*
1539  * union release_pages_arg - an array of pages or folios
1540  *
1541  * release_pages() releases a simple array of multiple pages, and
1542  * accepts various different forms of said page array: either
1543  * a regular old boring array of pages, an array of folios, or
1544  * an array of encoded page pointers.
1545  *
1546  * The transparent union syntax for this kind of "any of these
1547  * argument types" is all kinds of ugly, so look away.
1548  */
1549 typedef union {
1550 	struct page **pages;
1551 	struct folio **folios;
1552 	struct encoded_page **encoded_pages;
1553 } release_pages_arg __attribute__ ((__transparent_union__));
1554 
1555 void release_pages(release_pages_arg, int nr);
1556 
1557 /**
1558  * folios_put - Decrement the reference count on an array of folios.
1559  * @folios: The folios.
1560  *
1561  * Like folio_put(), but for a batch of folios.  This is more efficient
1562  * than writing the loop yourself as it will optimise the locks which need
1563  * to be taken if the folios are freed.  The folios batch is returned
1564  * empty and ready to be reused for another batch; there is no need to
1565  * reinitialise it.
1566  *
1567  * Context: May be called in process or interrupt context, but not in NMI
1568  * context.  May be called while holding a spinlock.
1569  */
1570 static inline void folios_put(struct folio_batch *folios)
1571 {
1572 	folios_put_refs(folios, NULL);
1573 }
1574 
1575 static inline void put_page(struct page *page)
1576 {
1577 	struct folio *folio = page_folio(page);
1578 
1579 	/*
1580 	 * For some devmap managed pages we need to catch refcount transition
1581 	 * from 2 to 1:
1582 	 */
1583 	if (put_devmap_managed_folio_refs(folio, 1))
1584 		return;
1585 	folio_put(folio);
1586 }
1587 
1588 /*
1589  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1590  * the page's refcount so that two separate items are tracked: the original page
1591  * reference count, and also a new count of how many pin_user_pages() calls were
1592  * made against the page. ("gup-pinned" is another term for the latter).
1593  *
1594  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1595  * distinct from normal pages. As such, the unpin_user_page() call (and its
1596  * variants) must be used in order to release gup-pinned pages.
1597  *
1598  * Choice of value:
1599  *
1600  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1601  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1602  * simpler, due to the fact that adding an even power of two to the page
1603  * refcount has the effect of using only the upper N bits, for the code that
1604  * counts up using the bias value. This means that the lower bits are left for
1605  * the exclusive use of the original code that increments and decrements by one
1606  * (or at least, by much smaller values than the bias value).
1607  *
1608  * Of course, once the lower bits overflow into the upper bits (and this is
1609  * OK, because subtraction recovers the original values), then visual inspection
1610  * no longer suffices to directly view the separate counts. However, for normal
1611  * applications that don't have huge page reference counts, this won't be an
1612  * issue.
1613  *
1614  * Locking: the lockless algorithm described in folio_try_get_rcu()
1615  * provides safe operation for get_user_pages(), page_mkclean() and
1616  * other calls that race to set up page table entries.
1617  */
1618 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1619 
1620 void unpin_user_page(struct page *page);
1621 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1622 				 bool make_dirty);
1623 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1624 				      bool make_dirty);
1625 void unpin_user_pages(struct page **pages, unsigned long npages);
1626 
1627 static inline bool is_cow_mapping(vm_flags_t flags)
1628 {
1629 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1630 }
1631 
1632 #ifndef CONFIG_MMU
1633 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1634 {
1635 	/*
1636 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1637 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1638 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1639 	 * underlying memory if ptrace is active, so this is only possible if
1640 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1641 	 * write permissions later.
1642 	 */
1643 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1644 }
1645 #endif
1646 
1647 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1648 #define SECTION_IN_PAGE_FLAGS
1649 #endif
1650 
1651 /*
1652  * The identification function is mainly used by the buddy allocator for
1653  * determining if two pages could be buddies. We are not really identifying
1654  * the zone since we could be using the section number id if we do not have
1655  * node id available in page flags.
1656  * We only guarantee that it will return the same value for two combinable
1657  * pages in a zone.
1658  */
1659 static inline int page_zone_id(struct page *page)
1660 {
1661 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1662 }
1663 
1664 #ifdef NODE_NOT_IN_PAGE_FLAGS
1665 int page_to_nid(const struct page *page);
1666 #else
1667 static inline int page_to_nid(const struct page *page)
1668 {
1669 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1670 }
1671 #endif
1672 
1673 static inline int folio_nid(const struct folio *folio)
1674 {
1675 	return page_to_nid(&folio->page);
1676 }
1677 
1678 #ifdef CONFIG_NUMA_BALANCING
1679 /* page access time bits needs to hold at least 4 seconds */
1680 #define PAGE_ACCESS_TIME_MIN_BITS	12
1681 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1682 #define PAGE_ACCESS_TIME_BUCKETS				\
1683 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1684 #else
1685 #define PAGE_ACCESS_TIME_BUCKETS	0
1686 #endif
1687 
1688 #define PAGE_ACCESS_TIME_MASK				\
1689 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1690 
1691 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1692 {
1693 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1694 }
1695 
1696 static inline int cpupid_to_pid(int cpupid)
1697 {
1698 	return cpupid & LAST__PID_MASK;
1699 }
1700 
1701 static inline int cpupid_to_cpu(int cpupid)
1702 {
1703 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1704 }
1705 
1706 static inline int cpupid_to_nid(int cpupid)
1707 {
1708 	return cpu_to_node(cpupid_to_cpu(cpupid));
1709 }
1710 
1711 static inline bool cpupid_pid_unset(int cpupid)
1712 {
1713 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1714 }
1715 
1716 static inline bool cpupid_cpu_unset(int cpupid)
1717 {
1718 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1719 }
1720 
1721 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1722 {
1723 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1724 }
1725 
1726 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1727 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1728 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1729 {
1730 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1731 }
1732 
1733 static inline int folio_last_cpupid(struct folio *folio)
1734 {
1735 	return folio->_last_cpupid;
1736 }
1737 static inline void page_cpupid_reset_last(struct page *page)
1738 {
1739 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1740 }
1741 #else
1742 static inline int folio_last_cpupid(struct folio *folio)
1743 {
1744 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1745 }
1746 
1747 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1748 
1749 static inline void page_cpupid_reset_last(struct page *page)
1750 {
1751 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1752 }
1753 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1754 
1755 static inline int folio_xchg_access_time(struct folio *folio, int time)
1756 {
1757 	int last_time;
1758 
1759 	last_time = folio_xchg_last_cpupid(folio,
1760 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1761 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1762 }
1763 
1764 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1765 {
1766 	unsigned int pid_bit;
1767 
1768 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1769 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1770 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1771 	}
1772 }
1773 #else /* !CONFIG_NUMA_BALANCING */
1774 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1775 {
1776 	return folio_nid(folio); /* XXX */
1777 }
1778 
1779 static inline int folio_xchg_access_time(struct folio *folio, int time)
1780 {
1781 	return 0;
1782 }
1783 
1784 static inline int folio_last_cpupid(struct folio *folio)
1785 {
1786 	return folio_nid(folio); /* XXX */
1787 }
1788 
1789 static inline int cpupid_to_nid(int cpupid)
1790 {
1791 	return -1;
1792 }
1793 
1794 static inline int cpupid_to_pid(int cpupid)
1795 {
1796 	return -1;
1797 }
1798 
1799 static inline int cpupid_to_cpu(int cpupid)
1800 {
1801 	return -1;
1802 }
1803 
1804 static inline int cpu_pid_to_cpupid(int nid, int pid)
1805 {
1806 	return -1;
1807 }
1808 
1809 static inline bool cpupid_pid_unset(int cpupid)
1810 {
1811 	return true;
1812 }
1813 
1814 static inline void page_cpupid_reset_last(struct page *page)
1815 {
1816 }
1817 
1818 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1819 {
1820 	return false;
1821 }
1822 
1823 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1824 {
1825 }
1826 #endif /* CONFIG_NUMA_BALANCING */
1827 
1828 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1829 
1830 /*
1831  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1832  * setting tags for all pages to native kernel tag value 0xff, as the default
1833  * value 0x00 maps to 0xff.
1834  */
1835 
1836 static inline u8 page_kasan_tag(const struct page *page)
1837 {
1838 	u8 tag = KASAN_TAG_KERNEL;
1839 
1840 	if (kasan_enabled()) {
1841 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1842 		tag ^= 0xff;
1843 	}
1844 
1845 	return tag;
1846 }
1847 
1848 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1849 {
1850 	unsigned long old_flags, flags;
1851 
1852 	if (!kasan_enabled())
1853 		return;
1854 
1855 	tag ^= 0xff;
1856 	old_flags = READ_ONCE(page->flags);
1857 	do {
1858 		flags = old_flags;
1859 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1860 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1861 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1862 }
1863 
1864 static inline void page_kasan_tag_reset(struct page *page)
1865 {
1866 	if (kasan_enabled())
1867 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1868 }
1869 
1870 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1871 
1872 static inline u8 page_kasan_tag(const struct page *page)
1873 {
1874 	return 0xff;
1875 }
1876 
1877 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1878 static inline void page_kasan_tag_reset(struct page *page) { }
1879 
1880 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1881 
1882 static inline struct zone *page_zone(const struct page *page)
1883 {
1884 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1885 }
1886 
1887 static inline pg_data_t *page_pgdat(const struct page *page)
1888 {
1889 	return NODE_DATA(page_to_nid(page));
1890 }
1891 
1892 static inline struct zone *folio_zone(const struct folio *folio)
1893 {
1894 	return page_zone(&folio->page);
1895 }
1896 
1897 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1898 {
1899 	return page_pgdat(&folio->page);
1900 }
1901 
1902 #ifdef SECTION_IN_PAGE_FLAGS
1903 static inline void set_page_section(struct page *page, unsigned long section)
1904 {
1905 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1906 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1907 }
1908 
1909 static inline unsigned long page_to_section(const struct page *page)
1910 {
1911 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1912 }
1913 #endif
1914 
1915 /**
1916  * folio_pfn - Return the Page Frame Number of a folio.
1917  * @folio: The folio.
1918  *
1919  * A folio may contain multiple pages.  The pages have consecutive
1920  * Page Frame Numbers.
1921  *
1922  * Return: The Page Frame Number of the first page in the folio.
1923  */
1924 static inline unsigned long folio_pfn(struct folio *folio)
1925 {
1926 	return page_to_pfn(&folio->page);
1927 }
1928 
1929 static inline struct folio *pfn_folio(unsigned long pfn)
1930 {
1931 	return page_folio(pfn_to_page(pfn));
1932 }
1933 
1934 /**
1935  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1936  * @folio: The folio.
1937  *
1938  * This function checks if a folio has been pinned via a call to
1939  * a function in the pin_user_pages() family.
1940  *
1941  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1942  * because it means "definitely not pinned for DMA", but true means "probably
1943  * pinned for DMA, but possibly a false positive due to having at least
1944  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1945  *
1946  * False positives are OK, because: a) it's unlikely for a folio to
1947  * get that many refcounts, and b) all the callers of this routine are
1948  * expected to be able to deal gracefully with a false positive.
1949  *
1950  * For large folios, the result will be exactly correct. That's because
1951  * we have more tracking data available: the _pincount field is used
1952  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1953  *
1954  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1955  *
1956  * Return: True, if it is likely that the page has been "dma-pinned".
1957  * False, if the page is definitely not dma-pinned.
1958  */
1959 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1960 {
1961 	if (folio_test_large(folio))
1962 		return atomic_read(&folio->_pincount) > 0;
1963 
1964 	/*
1965 	 * folio_ref_count() is signed. If that refcount overflows, then
1966 	 * folio_ref_count() returns a negative value, and callers will avoid
1967 	 * further incrementing the refcount.
1968 	 *
1969 	 * Here, for that overflow case, use the sign bit to count a little
1970 	 * bit higher via unsigned math, and thus still get an accurate result.
1971 	 */
1972 	return ((unsigned int)folio_ref_count(folio)) >=
1973 		GUP_PIN_COUNTING_BIAS;
1974 }
1975 
1976 static inline bool page_maybe_dma_pinned(struct page *page)
1977 {
1978 	return folio_maybe_dma_pinned(page_folio(page));
1979 }
1980 
1981 /*
1982  * This should most likely only be called during fork() to see whether we
1983  * should break the cow immediately for an anon page on the src mm.
1984  *
1985  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1986  */
1987 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1988 					  struct folio *folio)
1989 {
1990 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1991 
1992 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1993 		return false;
1994 
1995 	return folio_maybe_dma_pinned(folio);
1996 }
1997 
1998 /**
1999  * is_zero_page - Query if a page is a zero page
2000  * @page: The page to query
2001  *
2002  * This returns true if @page is one of the permanent zero pages.
2003  */
2004 static inline bool is_zero_page(const struct page *page)
2005 {
2006 	return is_zero_pfn(page_to_pfn(page));
2007 }
2008 
2009 /**
2010  * is_zero_folio - Query if a folio is a zero page
2011  * @folio: The folio to query
2012  *
2013  * This returns true if @folio is one of the permanent zero pages.
2014  */
2015 static inline bool is_zero_folio(const struct folio *folio)
2016 {
2017 	return is_zero_page(&folio->page);
2018 }
2019 
2020 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2021 #ifdef CONFIG_MIGRATION
2022 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2023 {
2024 #ifdef CONFIG_CMA
2025 	int mt = folio_migratetype(folio);
2026 
2027 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2028 		return false;
2029 #endif
2030 	/* The zero page can be "pinned" but gets special handling. */
2031 	if (is_zero_folio(folio))
2032 		return true;
2033 
2034 	/* Coherent device memory must always allow eviction. */
2035 	if (folio_is_device_coherent(folio))
2036 		return false;
2037 
2038 	/* Otherwise, non-movable zone folios can be pinned. */
2039 	return !folio_is_zone_movable(folio);
2040 
2041 }
2042 #else
2043 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2044 {
2045 	return true;
2046 }
2047 #endif
2048 
2049 static inline void set_page_zone(struct page *page, enum zone_type zone)
2050 {
2051 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2052 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2053 }
2054 
2055 static inline void set_page_node(struct page *page, unsigned long node)
2056 {
2057 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2058 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2059 }
2060 
2061 static inline void set_page_links(struct page *page, enum zone_type zone,
2062 	unsigned long node, unsigned long pfn)
2063 {
2064 	set_page_zone(page, zone);
2065 	set_page_node(page, node);
2066 #ifdef SECTION_IN_PAGE_FLAGS
2067 	set_page_section(page, pfn_to_section_nr(pfn));
2068 #endif
2069 }
2070 
2071 /**
2072  * folio_nr_pages - The number of pages in the folio.
2073  * @folio: The folio.
2074  *
2075  * Return: A positive power of two.
2076  */
2077 static inline long folio_nr_pages(const struct folio *folio)
2078 {
2079 	if (!folio_test_large(folio))
2080 		return 1;
2081 #ifdef CONFIG_64BIT
2082 	return folio->_folio_nr_pages;
2083 #else
2084 	return 1L << (folio->_flags_1 & 0xff);
2085 #endif
2086 }
2087 
2088 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2089 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2090 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2091 #else
2092 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2093 #endif
2094 
2095 /*
2096  * compound_nr() returns the number of pages in this potentially compound
2097  * page.  compound_nr() can be called on a tail page, and is defined to
2098  * return 1 in that case.
2099  */
2100 static inline unsigned long compound_nr(struct page *page)
2101 {
2102 	struct folio *folio = (struct folio *)page;
2103 
2104 	if (!test_bit(PG_head, &folio->flags))
2105 		return 1;
2106 #ifdef CONFIG_64BIT
2107 	return folio->_folio_nr_pages;
2108 #else
2109 	return 1L << (folio->_flags_1 & 0xff);
2110 #endif
2111 }
2112 
2113 /**
2114  * thp_nr_pages - The number of regular pages in this huge page.
2115  * @page: The head page of a huge page.
2116  */
2117 static inline int thp_nr_pages(struct page *page)
2118 {
2119 	return folio_nr_pages((struct folio *)page);
2120 }
2121 
2122 /**
2123  * folio_next - Move to the next physical folio.
2124  * @folio: The folio we're currently operating on.
2125  *
2126  * If you have physically contiguous memory which may span more than
2127  * one folio (eg a &struct bio_vec), use this function to move from one
2128  * folio to the next.  Do not use it if the memory is only virtually
2129  * contiguous as the folios are almost certainly not adjacent to each
2130  * other.  This is the folio equivalent to writing ``page++``.
2131  *
2132  * Context: We assume that the folios are refcounted and/or locked at a
2133  * higher level and do not adjust the reference counts.
2134  * Return: The next struct folio.
2135  */
2136 static inline struct folio *folio_next(struct folio *folio)
2137 {
2138 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2139 }
2140 
2141 /**
2142  * folio_shift - The size of the memory described by this folio.
2143  * @folio: The folio.
2144  *
2145  * A folio represents a number of bytes which is a power-of-two in size.
2146  * This function tells you which power-of-two the folio is.  See also
2147  * folio_size() and folio_order().
2148  *
2149  * Context: The caller should have a reference on the folio to prevent
2150  * it from being split.  It is not necessary for the folio to be locked.
2151  * Return: The base-2 logarithm of the size of this folio.
2152  */
2153 static inline unsigned int folio_shift(struct folio *folio)
2154 {
2155 	return PAGE_SHIFT + folio_order(folio);
2156 }
2157 
2158 /**
2159  * folio_size - The number of bytes in a folio.
2160  * @folio: The folio.
2161  *
2162  * Context: The caller should have a reference on the folio to prevent
2163  * it from being split.  It is not necessary for the folio to be locked.
2164  * Return: The number of bytes in this folio.
2165  */
2166 static inline size_t folio_size(struct folio *folio)
2167 {
2168 	return PAGE_SIZE << folio_order(folio);
2169 }
2170 
2171 /**
2172  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2173  *				tables of more than one MM
2174  * @folio: The folio.
2175  *
2176  * This function checks if the folio is currently mapped into more than one
2177  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2178  * ("mapped exclusively").
2179  *
2180  * As precise information is not easily available for all folios, this function
2181  * estimates the number of MMs ("sharers") that are currently mapping a folio
2182  * using the number of times the first page of the folio is currently mapped
2183  * into page tables.
2184  *
2185  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2186  * the return value will be exactly correct, because they can only be mapped
2187  * at most once into an MM, and they cannot be partially mapped.
2188  *
2189  * For other folios, the result can be fuzzy:
2190  *    #. For partially-mappable large folios (THP), the return value can wrongly
2191  *       indicate "mapped exclusively" (false negative) when the folio is
2192  *       only partially mapped into at least one MM.
2193  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2194  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2195  *       cover the same file range.
2196  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2197  *       shared" (false positive), when the folio is mapped multiple times into
2198  *       the same MM.
2199  *
2200  * Further, this function only considers current page table mappings that
2201  * are tracked using the folio mapcount(s).
2202  *
2203  * This function does not consider:
2204  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2205  *       pagecache, temporary unmapping for migration).
2206  *    #. If the folio is mapped differently (VM_PFNMAP).
2207  *    #. If hugetlb page table sharing applies. Callers might want to check
2208  *       hugetlb_pmd_shared().
2209  *
2210  * Return: Whether the folio is estimated to be mapped into more than one MM.
2211  */
2212 static inline bool folio_likely_mapped_shared(struct folio *folio)
2213 {
2214 	int mapcount = folio_mapcount(folio);
2215 
2216 	/* Only partially-mappable folios require more care. */
2217 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2218 		return mapcount > 1;
2219 
2220 	/* A single mapping implies "mapped exclusively". */
2221 	if (mapcount <= 1)
2222 		return false;
2223 
2224 	/* If any page is mapped more than once we treat it "mapped shared". */
2225 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2226 		return true;
2227 
2228 	/* Let's guess based on the first subpage. */
2229 	return atomic_read(&folio->_mapcount) > 0;
2230 }
2231 
2232 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2233 static inline int arch_make_page_accessible(struct page *page)
2234 {
2235 	return 0;
2236 }
2237 #endif
2238 
2239 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2240 static inline int arch_make_folio_accessible(struct folio *folio)
2241 {
2242 	int ret;
2243 	long i, nr = folio_nr_pages(folio);
2244 
2245 	for (i = 0; i < nr; i++) {
2246 		ret = arch_make_page_accessible(folio_page(folio, i));
2247 		if (ret)
2248 			break;
2249 	}
2250 
2251 	return ret;
2252 }
2253 #endif
2254 
2255 /*
2256  * Some inline functions in vmstat.h depend on page_zone()
2257  */
2258 #include <linux/vmstat.h>
2259 
2260 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2261 #define HASHED_PAGE_VIRTUAL
2262 #endif
2263 
2264 #if defined(WANT_PAGE_VIRTUAL)
2265 static inline void *page_address(const struct page *page)
2266 {
2267 	return page->virtual;
2268 }
2269 static inline void set_page_address(struct page *page, void *address)
2270 {
2271 	page->virtual = address;
2272 }
2273 #define page_address_init()  do { } while(0)
2274 #endif
2275 
2276 #if defined(HASHED_PAGE_VIRTUAL)
2277 void *page_address(const struct page *page);
2278 void set_page_address(struct page *page, void *virtual);
2279 void page_address_init(void);
2280 #endif
2281 
2282 static __always_inline void *lowmem_page_address(const struct page *page)
2283 {
2284 	return page_to_virt(page);
2285 }
2286 
2287 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2288 #define page_address(page) lowmem_page_address(page)
2289 #define set_page_address(page, address)  do { } while(0)
2290 #define page_address_init()  do { } while(0)
2291 #endif
2292 
2293 static inline void *folio_address(const struct folio *folio)
2294 {
2295 	return page_address(&folio->page);
2296 }
2297 
2298 /*
2299  * Return true only if the page has been allocated with
2300  * ALLOC_NO_WATERMARKS and the low watermark was not
2301  * met implying that the system is under some pressure.
2302  */
2303 static inline bool page_is_pfmemalloc(const struct page *page)
2304 {
2305 	/*
2306 	 * lru.next has bit 1 set if the page is allocated from the
2307 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2308 	 * they do not need to preserve that information.
2309 	 */
2310 	return (uintptr_t)page->lru.next & BIT(1);
2311 }
2312 
2313 /*
2314  * Return true only if the folio has been allocated with
2315  * ALLOC_NO_WATERMARKS and the low watermark was not
2316  * met implying that the system is under some pressure.
2317  */
2318 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2319 {
2320 	/*
2321 	 * lru.next has bit 1 set if the page is allocated from the
2322 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2323 	 * they do not need to preserve that information.
2324 	 */
2325 	return (uintptr_t)folio->lru.next & BIT(1);
2326 }
2327 
2328 /*
2329  * Only to be called by the page allocator on a freshly allocated
2330  * page.
2331  */
2332 static inline void set_page_pfmemalloc(struct page *page)
2333 {
2334 	page->lru.next = (void *)BIT(1);
2335 }
2336 
2337 static inline void clear_page_pfmemalloc(struct page *page)
2338 {
2339 	page->lru.next = NULL;
2340 }
2341 
2342 /*
2343  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2344  */
2345 extern void pagefault_out_of_memory(void);
2346 
2347 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2348 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2349 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2350 
2351 /*
2352  * Parameter block passed down to zap_pte_range in exceptional cases.
2353  */
2354 struct zap_details {
2355 	struct folio *single_folio;	/* Locked folio to be unmapped */
2356 	bool even_cows;			/* Zap COWed private pages too? */
2357 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2358 };
2359 
2360 /*
2361  * Whether to drop the pte markers, for example, the uffd-wp information for
2362  * file-backed memory.  This should only be specified when we will completely
2363  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2364  * default, the flag is not set.
2365  */
2366 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2367 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2368 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2369 
2370 #ifdef CONFIG_SCHED_MM_CID
2371 void sched_mm_cid_before_execve(struct task_struct *t);
2372 void sched_mm_cid_after_execve(struct task_struct *t);
2373 void sched_mm_cid_fork(struct task_struct *t);
2374 void sched_mm_cid_exit_signals(struct task_struct *t);
2375 static inline int task_mm_cid(struct task_struct *t)
2376 {
2377 	return t->mm_cid;
2378 }
2379 #else
2380 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2381 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2382 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2383 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2384 static inline int task_mm_cid(struct task_struct *t)
2385 {
2386 	/*
2387 	 * Use the processor id as a fall-back when the mm cid feature is
2388 	 * disabled. This provides functional per-cpu data structure accesses
2389 	 * in user-space, althrough it won't provide the memory usage benefits.
2390 	 */
2391 	return raw_smp_processor_id();
2392 }
2393 #endif
2394 
2395 #ifdef CONFIG_MMU
2396 extern bool can_do_mlock(void);
2397 #else
2398 static inline bool can_do_mlock(void) { return false; }
2399 #endif
2400 extern int user_shm_lock(size_t, struct ucounts *);
2401 extern void user_shm_unlock(size_t, struct ucounts *);
2402 
2403 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2404 			     pte_t pte);
2405 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2406 			     pte_t pte);
2407 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2408 				  unsigned long addr, pmd_t pmd);
2409 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2410 				pmd_t pmd);
2411 
2412 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2413 		  unsigned long size);
2414 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2415 			   unsigned long size, struct zap_details *details);
2416 static inline void zap_vma_pages(struct vm_area_struct *vma)
2417 {
2418 	zap_page_range_single(vma, vma->vm_start,
2419 			      vma->vm_end - vma->vm_start, NULL);
2420 }
2421 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2422 		struct vm_area_struct *start_vma, unsigned long start,
2423 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2424 
2425 struct mmu_notifier_range;
2426 
2427 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2428 		unsigned long end, unsigned long floor, unsigned long ceiling);
2429 int
2430 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2431 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2432 	       pte_t **ptepp, spinlock_t **ptlp);
2433 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2434 			void *buf, int len, int write);
2435 
2436 extern void truncate_pagecache(struct inode *inode, loff_t new);
2437 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2438 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2439 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2440 int generic_error_remove_folio(struct address_space *mapping,
2441 		struct folio *folio);
2442 
2443 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2444 		unsigned long address, struct pt_regs *regs);
2445 
2446 #ifdef CONFIG_MMU
2447 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2448 				  unsigned long address, unsigned int flags,
2449 				  struct pt_regs *regs);
2450 extern int fixup_user_fault(struct mm_struct *mm,
2451 			    unsigned long address, unsigned int fault_flags,
2452 			    bool *unlocked);
2453 void unmap_mapping_pages(struct address_space *mapping,
2454 		pgoff_t start, pgoff_t nr, bool even_cows);
2455 void unmap_mapping_range(struct address_space *mapping,
2456 		loff_t const holebegin, loff_t const holelen, int even_cows);
2457 #else
2458 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2459 					 unsigned long address, unsigned int flags,
2460 					 struct pt_regs *regs)
2461 {
2462 	/* should never happen if there's no MMU */
2463 	BUG();
2464 	return VM_FAULT_SIGBUS;
2465 }
2466 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2467 		unsigned int fault_flags, bool *unlocked)
2468 {
2469 	/* should never happen if there's no MMU */
2470 	BUG();
2471 	return -EFAULT;
2472 }
2473 static inline void unmap_mapping_pages(struct address_space *mapping,
2474 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2475 static inline void unmap_mapping_range(struct address_space *mapping,
2476 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2477 #endif
2478 
2479 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2480 		loff_t const holebegin, loff_t const holelen)
2481 {
2482 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2483 }
2484 
2485 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2486 						unsigned long addr);
2487 
2488 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2489 		void *buf, int len, unsigned int gup_flags);
2490 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2491 		void *buf, int len, unsigned int gup_flags);
2492 
2493 long get_user_pages_remote(struct mm_struct *mm,
2494 			   unsigned long start, unsigned long nr_pages,
2495 			   unsigned int gup_flags, struct page **pages,
2496 			   int *locked);
2497 long pin_user_pages_remote(struct mm_struct *mm,
2498 			   unsigned long start, unsigned long nr_pages,
2499 			   unsigned int gup_flags, struct page **pages,
2500 			   int *locked);
2501 
2502 /*
2503  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2504  */
2505 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2506 						    unsigned long addr,
2507 						    int gup_flags,
2508 						    struct vm_area_struct **vmap)
2509 {
2510 	struct page *page;
2511 	struct vm_area_struct *vma;
2512 	int got;
2513 
2514 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2515 		return ERR_PTR(-EINVAL);
2516 
2517 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2518 
2519 	if (got < 0)
2520 		return ERR_PTR(got);
2521 
2522 	vma = vma_lookup(mm, addr);
2523 	if (WARN_ON_ONCE(!vma)) {
2524 		put_page(page);
2525 		return ERR_PTR(-EINVAL);
2526 	}
2527 
2528 	*vmap = vma;
2529 	return page;
2530 }
2531 
2532 long get_user_pages(unsigned long start, unsigned long nr_pages,
2533 		    unsigned int gup_flags, struct page **pages);
2534 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2535 		    unsigned int gup_flags, struct page **pages);
2536 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2537 		    struct page **pages, unsigned int gup_flags);
2538 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2539 		    struct page **pages, unsigned int gup_flags);
2540 
2541 int get_user_pages_fast(unsigned long start, int nr_pages,
2542 			unsigned int gup_flags, struct page **pages);
2543 int pin_user_pages_fast(unsigned long start, int nr_pages,
2544 			unsigned int gup_flags, struct page **pages);
2545 void folio_add_pin(struct folio *folio);
2546 
2547 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2548 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2549 			struct task_struct *task, bool bypass_rlim);
2550 
2551 struct kvec;
2552 struct page *get_dump_page(unsigned long addr);
2553 
2554 bool folio_mark_dirty(struct folio *folio);
2555 bool set_page_dirty(struct page *page);
2556 int set_page_dirty_lock(struct page *page);
2557 
2558 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2559 
2560 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2561 		unsigned long old_addr, struct vm_area_struct *new_vma,
2562 		unsigned long new_addr, unsigned long len,
2563 		bool need_rmap_locks, bool for_stack);
2564 
2565 /*
2566  * Flags used by change_protection().  For now we make it a bitmap so
2567  * that we can pass in multiple flags just like parameters.  However
2568  * for now all the callers are only use one of the flags at the same
2569  * time.
2570  */
2571 /*
2572  * Whether we should manually check if we can map individual PTEs writable,
2573  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2574  * PTEs automatically in a writable mapping.
2575  */
2576 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2577 /* Whether this protection change is for NUMA hints */
2578 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2579 /* Whether this change is for write protecting */
2580 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2581 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2582 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2583 					    MM_CP_UFFD_WP_RESOLVE)
2584 
2585 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2586 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2587 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2588 {
2589 	/*
2590 	 * We want to check manually if we can change individual PTEs writable
2591 	 * if we can't do that automatically for all PTEs in a mapping. For
2592 	 * private mappings, that's always the case when we have write
2593 	 * permissions as we properly have to handle COW.
2594 	 */
2595 	if (vma->vm_flags & VM_SHARED)
2596 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2597 	return !!(vma->vm_flags & VM_WRITE);
2598 
2599 }
2600 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2601 			     pte_t pte);
2602 extern long change_protection(struct mmu_gather *tlb,
2603 			      struct vm_area_struct *vma, unsigned long start,
2604 			      unsigned long end, unsigned long cp_flags);
2605 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2606 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2607 	  unsigned long start, unsigned long end, unsigned long newflags);
2608 
2609 /*
2610  * doesn't attempt to fault and will return short.
2611  */
2612 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2613 			     unsigned int gup_flags, struct page **pages);
2614 
2615 static inline bool get_user_page_fast_only(unsigned long addr,
2616 			unsigned int gup_flags, struct page **pagep)
2617 {
2618 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2619 }
2620 /*
2621  * per-process(per-mm_struct) statistics.
2622  */
2623 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2624 {
2625 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2626 }
2627 
2628 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2629 
2630 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2631 {
2632 	percpu_counter_add(&mm->rss_stat[member], value);
2633 
2634 	mm_trace_rss_stat(mm, member);
2635 }
2636 
2637 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2638 {
2639 	percpu_counter_inc(&mm->rss_stat[member]);
2640 
2641 	mm_trace_rss_stat(mm, member);
2642 }
2643 
2644 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2645 {
2646 	percpu_counter_dec(&mm->rss_stat[member]);
2647 
2648 	mm_trace_rss_stat(mm, member);
2649 }
2650 
2651 /* Optimized variant when folio is already known not to be anon */
2652 static inline int mm_counter_file(struct folio *folio)
2653 {
2654 	if (folio_test_swapbacked(folio))
2655 		return MM_SHMEMPAGES;
2656 	return MM_FILEPAGES;
2657 }
2658 
2659 static inline int mm_counter(struct folio *folio)
2660 {
2661 	if (folio_test_anon(folio))
2662 		return MM_ANONPAGES;
2663 	return mm_counter_file(folio);
2664 }
2665 
2666 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2667 {
2668 	return get_mm_counter(mm, MM_FILEPAGES) +
2669 		get_mm_counter(mm, MM_ANONPAGES) +
2670 		get_mm_counter(mm, MM_SHMEMPAGES);
2671 }
2672 
2673 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2674 {
2675 	return max(mm->hiwater_rss, get_mm_rss(mm));
2676 }
2677 
2678 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2679 {
2680 	return max(mm->hiwater_vm, mm->total_vm);
2681 }
2682 
2683 static inline void update_hiwater_rss(struct mm_struct *mm)
2684 {
2685 	unsigned long _rss = get_mm_rss(mm);
2686 
2687 	if ((mm)->hiwater_rss < _rss)
2688 		(mm)->hiwater_rss = _rss;
2689 }
2690 
2691 static inline void update_hiwater_vm(struct mm_struct *mm)
2692 {
2693 	if (mm->hiwater_vm < mm->total_vm)
2694 		mm->hiwater_vm = mm->total_vm;
2695 }
2696 
2697 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2698 {
2699 	mm->hiwater_rss = get_mm_rss(mm);
2700 }
2701 
2702 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2703 					 struct mm_struct *mm)
2704 {
2705 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2706 
2707 	if (*maxrss < hiwater_rss)
2708 		*maxrss = hiwater_rss;
2709 }
2710 
2711 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2712 static inline int pte_special(pte_t pte)
2713 {
2714 	return 0;
2715 }
2716 
2717 static inline pte_t pte_mkspecial(pte_t pte)
2718 {
2719 	return pte;
2720 }
2721 #endif
2722 
2723 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2724 static inline int pte_devmap(pte_t pte)
2725 {
2726 	return 0;
2727 }
2728 #endif
2729 
2730 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2731 			       spinlock_t **ptl);
2732 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2733 				    spinlock_t **ptl)
2734 {
2735 	pte_t *ptep;
2736 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2737 	return ptep;
2738 }
2739 
2740 #ifdef __PAGETABLE_P4D_FOLDED
2741 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2742 						unsigned long address)
2743 {
2744 	return 0;
2745 }
2746 #else
2747 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2748 #endif
2749 
2750 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2751 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2752 						unsigned long address)
2753 {
2754 	return 0;
2755 }
2756 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2757 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2758 
2759 #else
2760 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2761 
2762 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2763 {
2764 	if (mm_pud_folded(mm))
2765 		return;
2766 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2767 }
2768 
2769 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2770 {
2771 	if (mm_pud_folded(mm))
2772 		return;
2773 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2774 }
2775 #endif
2776 
2777 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2778 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2779 						unsigned long address)
2780 {
2781 	return 0;
2782 }
2783 
2784 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2785 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2786 
2787 #else
2788 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2789 
2790 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2791 {
2792 	if (mm_pmd_folded(mm))
2793 		return;
2794 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2795 }
2796 
2797 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2798 {
2799 	if (mm_pmd_folded(mm))
2800 		return;
2801 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2802 }
2803 #endif
2804 
2805 #ifdef CONFIG_MMU
2806 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2807 {
2808 	atomic_long_set(&mm->pgtables_bytes, 0);
2809 }
2810 
2811 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2812 {
2813 	return atomic_long_read(&mm->pgtables_bytes);
2814 }
2815 
2816 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2817 {
2818 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2819 }
2820 
2821 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2822 {
2823 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2824 }
2825 #else
2826 
2827 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2828 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2829 {
2830 	return 0;
2831 }
2832 
2833 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2834 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2835 #endif
2836 
2837 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2838 int __pte_alloc_kernel(pmd_t *pmd);
2839 
2840 #if defined(CONFIG_MMU)
2841 
2842 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2843 		unsigned long address)
2844 {
2845 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2846 		NULL : p4d_offset(pgd, address);
2847 }
2848 
2849 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2850 		unsigned long address)
2851 {
2852 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2853 		NULL : pud_offset(p4d, address);
2854 }
2855 
2856 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2857 {
2858 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2859 		NULL: pmd_offset(pud, address);
2860 }
2861 #endif /* CONFIG_MMU */
2862 
2863 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2864 {
2865 	return page_ptdesc(virt_to_page(x));
2866 }
2867 
2868 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2869 {
2870 	return page_to_virt(ptdesc_page(pt));
2871 }
2872 
2873 static inline void *ptdesc_address(const struct ptdesc *pt)
2874 {
2875 	return folio_address(ptdesc_folio(pt));
2876 }
2877 
2878 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2879 {
2880 	return folio_test_reserved(ptdesc_folio(pt));
2881 }
2882 
2883 /**
2884  * pagetable_alloc - Allocate pagetables
2885  * @gfp:    GFP flags
2886  * @order:  desired pagetable order
2887  *
2888  * pagetable_alloc allocates memory for page tables as well as a page table
2889  * descriptor to describe that memory.
2890  *
2891  * Return: The ptdesc describing the allocated page tables.
2892  */
2893 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2894 {
2895 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2896 
2897 	return page_ptdesc(page);
2898 }
2899 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2900 
2901 /**
2902  * pagetable_free - Free pagetables
2903  * @pt:	The page table descriptor
2904  *
2905  * pagetable_free frees the memory of all page tables described by a page
2906  * table descriptor and the memory for the descriptor itself.
2907  */
2908 static inline void pagetable_free(struct ptdesc *pt)
2909 {
2910 	struct page *page = ptdesc_page(pt);
2911 
2912 	__free_pages(page, compound_order(page));
2913 }
2914 
2915 #if USE_SPLIT_PTE_PTLOCKS
2916 #if ALLOC_SPLIT_PTLOCKS
2917 void __init ptlock_cache_init(void);
2918 bool ptlock_alloc(struct ptdesc *ptdesc);
2919 void ptlock_free(struct ptdesc *ptdesc);
2920 
2921 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2922 {
2923 	return ptdesc->ptl;
2924 }
2925 #else /* ALLOC_SPLIT_PTLOCKS */
2926 static inline void ptlock_cache_init(void)
2927 {
2928 }
2929 
2930 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2931 {
2932 	return true;
2933 }
2934 
2935 static inline void ptlock_free(struct ptdesc *ptdesc)
2936 {
2937 }
2938 
2939 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2940 {
2941 	return &ptdesc->ptl;
2942 }
2943 #endif /* ALLOC_SPLIT_PTLOCKS */
2944 
2945 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2946 {
2947 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2948 }
2949 
2950 static inline bool ptlock_init(struct ptdesc *ptdesc)
2951 {
2952 	/*
2953 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2954 	 * with 0. Make sure nobody took it in use in between.
2955 	 *
2956 	 * It can happen if arch try to use slab for page table allocation:
2957 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2958 	 */
2959 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2960 	if (!ptlock_alloc(ptdesc))
2961 		return false;
2962 	spin_lock_init(ptlock_ptr(ptdesc));
2963 	return true;
2964 }
2965 
2966 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2967 /*
2968  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2969  */
2970 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2971 {
2972 	return &mm->page_table_lock;
2973 }
2974 static inline void ptlock_cache_init(void) {}
2975 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2976 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2977 #endif /* USE_SPLIT_PTE_PTLOCKS */
2978 
2979 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2980 {
2981 	struct folio *folio = ptdesc_folio(ptdesc);
2982 
2983 	if (!ptlock_init(ptdesc))
2984 		return false;
2985 	__folio_set_pgtable(folio);
2986 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2987 	return true;
2988 }
2989 
2990 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2991 {
2992 	struct folio *folio = ptdesc_folio(ptdesc);
2993 
2994 	ptlock_free(ptdesc);
2995 	__folio_clear_pgtable(folio);
2996 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2997 }
2998 
2999 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3000 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3001 {
3002 	return __pte_offset_map(pmd, addr, NULL);
3003 }
3004 
3005 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3006 			unsigned long addr, spinlock_t **ptlp);
3007 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3008 			unsigned long addr, spinlock_t **ptlp)
3009 {
3010 	pte_t *pte;
3011 
3012 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3013 	return pte;
3014 }
3015 
3016 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3017 			unsigned long addr, spinlock_t **ptlp);
3018 
3019 #define pte_unmap_unlock(pte, ptl)	do {		\
3020 	spin_unlock(ptl);				\
3021 	pte_unmap(pte);					\
3022 } while (0)
3023 
3024 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3025 
3026 #define pte_alloc_map(mm, pmd, address)			\
3027 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3028 
3029 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3030 	(pte_alloc(mm, pmd) ?			\
3031 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3032 
3033 #define pte_alloc_kernel(pmd, address)			\
3034 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3035 		NULL: pte_offset_kernel(pmd, address))
3036 
3037 #if USE_SPLIT_PMD_PTLOCKS
3038 
3039 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3040 {
3041 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3042 	return virt_to_page((void *)((unsigned long) pmd & mask));
3043 }
3044 
3045 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3046 {
3047 	return page_ptdesc(pmd_pgtable_page(pmd));
3048 }
3049 
3050 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3051 {
3052 	return ptlock_ptr(pmd_ptdesc(pmd));
3053 }
3054 
3055 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3056 {
3057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3058 	ptdesc->pmd_huge_pte = NULL;
3059 #endif
3060 	return ptlock_init(ptdesc);
3061 }
3062 
3063 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3064 {
3065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3066 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3067 #endif
3068 	ptlock_free(ptdesc);
3069 }
3070 
3071 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3072 
3073 #else
3074 
3075 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3076 {
3077 	return &mm->page_table_lock;
3078 }
3079 
3080 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3081 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3082 
3083 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3084 
3085 #endif
3086 
3087 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3088 {
3089 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3090 	spin_lock(ptl);
3091 	return ptl;
3092 }
3093 
3094 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3095 {
3096 	struct folio *folio = ptdesc_folio(ptdesc);
3097 
3098 	if (!pmd_ptlock_init(ptdesc))
3099 		return false;
3100 	__folio_set_pgtable(folio);
3101 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3102 	return true;
3103 }
3104 
3105 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3106 {
3107 	struct folio *folio = ptdesc_folio(ptdesc);
3108 
3109 	pmd_ptlock_free(ptdesc);
3110 	__folio_clear_pgtable(folio);
3111 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3112 }
3113 
3114 /*
3115  * No scalability reason to split PUD locks yet, but follow the same pattern
3116  * as the PMD locks to make it easier if we decide to.  The VM should not be
3117  * considered ready to switch to split PUD locks yet; there may be places
3118  * which need to be converted from page_table_lock.
3119  */
3120 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3121 {
3122 	return &mm->page_table_lock;
3123 }
3124 
3125 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3126 {
3127 	spinlock_t *ptl = pud_lockptr(mm, pud);
3128 
3129 	spin_lock(ptl);
3130 	return ptl;
3131 }
3132 
3133 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3134 {
3135 	struct folio *folio = ptdesc_folio(ptdesc);
3136 
3137 	__folio_set_pgtable(folio);
3138 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3139 }
3140 
3141 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3142 {
3143 	struct folio *folio = ptdesc_folio(ptdesc);
3144 
3145 	__folio_clear_pgtable(folio);
3146 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3147 }
3148 
3149 extern void __init pagecache_init(void);
3150 extern void free_initmem(void);
3151 
3152 /*
3153  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3154  * into the buddy system. The freed pages will be poisoned with pattern
3155  * "poison" if it's within range [0, UCHAR_MAX].
3156  * Return pages freed into the buddy system.
3157  */
3158 extern unsigned long free_reserved_area(void *start, void *end,
3159 					int poison, const char *s);
3160 
3161 extern void adjust_managed_page_count(struct page *page, long count);
3162 
3163 extern void reserve_bootmem_region(phys_addr_t start,
3164 				   phys_addr_t end, int nid);
3165 
3166 /* Free the reserved page into the buddy system, so it gets managed. */
3167 static inline void free_reserved_page(struct page *page)
3168 {
3169 	if (mem_alloc_profiling_enabled()) {
3170 		union codetag_ref *ref = get_page_tag_ref(page);
3171 
3172 		if (ref) {
3173 			set_codetag_empty(ref);
3174 			put_page_tag_ref(ref);
3175 		}
3176 	}
3177 	ClearPageReserved(page);
3178 	init_page_count(page);
3179 	__free_page(page);
3180 	adjust_managed_page_count(page, 1);
3181 }
3182 #define free_highmem_page(page) free_reserved_page(page)
3183 
3184 static inline void mark_page_reserved(struct page *page)
3185 {
3186 	SetPageReserved(page);
3187 	adjust_managed_page_count(page, -1);
3188 }
3189 
3190 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3191 {
3192 	free_reserved_page(ptdesc_page(pt));
3193 }
3194 
3195 /*
3196  * Default method to free all the __init memory into the buddy system.
3197  * The freed pages will be poisoned with pattern "poison" if it's within
3198  * range [0, UCHAR_MAX].
3199  * Return pages freed into the buddy system.
3200  */
3201 static inline unsigned long free_initmem_default(int poison)
3202 {
3203 	extern char __init_begin[], __init_end[];
3204 
3205 	return free_reserved_area(&__init_begin, &__init_end,
3206 				  poison, "unused kernel image (initmem)");
3207 }
3208 
3209 static inline unsigned long get_num_physpages(void)
3210 {
3211 	int nid;
3212 	unsigned long phys_pages = 0;
3213 
3214 	for_each_online_node(nid)
3215 		phys_pages += node_present_pages(nid);
3216 
3217 	return phys_pages;
3218 }
3219 
3220 /*
3221  * Using memblock node mappings, an architecture may initialise its
3222  * zones, allocate the backing mem_map and account for memory holes in an
3223  * architecture independent manner.
3224  *
3225  * An architecture is expected to register range of page frames backed by
3226  * physical memory with memblock_add[_node]() before calling
3227  * free_area_init() passing in the PFN each zone ends at. At a basic
3228  * usage, an architecture is expected to do something like
3229  *
3230  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3231  * 							 max_highmem_pfn};
3232  * for_each_valid_physical_page_range()
3233  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3234  * free_area_init(max_zone_pfns);
3235  */
3236 void free_area_init(unsigned long *max_zone_pfn);
3237 unsigned long node_map_pfn_alignment(void);
3238 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3239 						unsigned long end_pfn);
3240 extern void get_pfn_range_for_nid(unsigned int nid,
3241 			unsigned long *start_pfn, unsigned long *end_pfn);
3242 
3243 #ifndef CONFIG_NUMA
3244 static inline int early_pfn_to_nid(unsigned long pfn)
3245 {
3246 	return 0;
3247 }
3248 #else
3249 /* please see mm/page_alloc.c */
3250 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3251 #endif
3252 
3253 extern void mem_init(void);
3254 extern void __init mmap_init(void);
3255 
3256 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3257 static inline void show_mem(void)
3258 {
3259 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3260 }
3261 extern long si_mem_available(void);
3262 extern void si_meminfo(struct sysinfo * val);
3263 extern void si_meminfo_node(struct sysinfo *val, int nid);
3264 
3265 extern __printf(3, 4)
3266 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3267 
3268 extern void setup_per_cpu_pageset(void);
3269 
3270 /* nommu.c */
3271 extern atomic_long_t mmap_pages_allocated;
3272 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3273 
3274 /* interval_tree.c */
3275 void vma_interval_tree_insert(struct vm_area_struct *node,
3276 			      struct rb_root_cached *root);
3277 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3278 				    struct vm_area_struct *prev,
3279 				    struct rb_root_cached *root);
3280 void vma_interval_tree_remove(struct vm_area_struct *node,
3281 			      struct rb_root_cached *root);
3282 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3283 				unsigned long start, unsigned long last);
3284 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3285 				unsigned long start, unsigned long last);
3286 
3287 #define vma_interval_tree_foreach(vma, root, start, last)		\
3288 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3289 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3290 
3291 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3292 				   struct rb_root_cached *root);
3293 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3294 				   struct rb_root_cached *root);
3295 struct anon_vma_chain *
3296 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3297 				  unsigned long start, unsigned long last);
3298 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3299 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3300 #ifdef CONFIG_DEBUG_VM_RB
3301 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3302 #endif
3303 
3304 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3305 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3306 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3307 
3308 /* mmap.c */
3309 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3310 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3311 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3312 		      struct vm_area_struct *next);
3313 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3314 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3315 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3316 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3317 extern void unlink_file_vma(struct vm_area_struct *);
3318 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3319 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3320 	bool *need_rmap_locks);
3321 extern void exit_mmap(struct mm_struct *);
3322 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3323 				  struct vm_area_struct *prev,
3324 				  struct vm_area_struct *vma,
3325 				  unsigned long start, unsigned long end,
3326 				  unsigned long vm_flags,
3327 				  struct mempolicy *policy,
3328 				  struct vm_userfaultfd_ctx uffd_ctx,
3329 				  struct anon_vma_name *anon_name);
3330 
3331 /* We are about to modify the VMA's flags. */
3332 static inline struct vm_area_struct
3333 *vma_modify_flags(struct vma_iterator *vmi,
3334 		  struct vm_area_struct *prev,
3335 		  struct vm_area_struct *vma,
3336 		  unsigned long start, unsigned long end,
3337 		  unsigned long new_flags)
3338 {
3339 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3340 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3341 			  anon_vma_name(vma));
3342 }
3343 
3344 /* We are about to modify the VMA's flags and/or anon_name. */
3345 static inline struct vm_area_struct
3346 *vma_modify_flags_name(struct vma_iterator *vmi,
3347 		       struct vm_area_struct *prev,
3348 		       struct vm_area_struct *vma,
3349 		       unsigned long start,
3350 		       unsigned long end,
3351 		       unsigned long new_flags,
3352 		       struct anon_vma_name *new_name)
3353 {
3354 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3355 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3356 }
3357 
3358 /* We are about to modify the VMA's memory policy. */
3359 static inline struct vm_area_struct
3360 *vma_modify_policy(struct vma_iterator *vmi,
3361 		   struct vm_area_struct *prev,
3362 		   struct vm_area_struct *vma,
3363 		   unsigned long start, unsigned long end,
3364 		   struct mempolicy *new_pol)
3365 {
3366 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3367 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3368 }
3369 
3370 /* We are about to modify the VMA's flags and/or uffd context. */
3371 static inline struct vm_area_struct
3372 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3373 		       struct vm_area_struct *prev,
3374 		       struct vm_area_struct *vma,
3375 		       unsigned long start, unsigned long end,
3376 		       unsigned long new_flags,
3377 		       struct vm_userfaultfd_ctx new_ctx)
3378 {
3379 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3380 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3381 }
3382 
3383 static inline int check_data_rlimit(unsigned long rlim,
3384 				    unsigned long new,
3385 				    unsigned long start,
3386 				    unsigned long end_data,
3387 				    unsigned long start_data)
3388 {
3389 	if (rlim < RLIM_INFINITY) {
3390 		if (((new - start) + (end_data - start_data)) > rlim)
3391 			return -ENOSPC;
3392 	}
3393 
3394 	return 0;
3395 }
3396 
3397 extern int mm_take_all_locks(struct mm_struct *mm);
3398 extern void mm_drop_all_locks(struct mm_struct *mm);
3399 
3400 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3401 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3402 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3403 extern struct file *get_task_exe_file(struct task_struct *task);
3404 
3405 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3406 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3407 
3408 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3409 				   const struct vm_special_mapping *sm);
3410 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3411 				   unsigned long addr, unsigned long len,
3412 				   unsigned long flags,
3413 				   const struct vm_special_mapping *spec);
3414 /* This is an obsolete alternative to _install_special_mapping. */
3415 extern int install_special_mapping(struct mm_struct *mm,
3416 				   unsigned long addr, unsigned long len,
3417 				   unsigned long flags, struct page **pages);
3418 
3419 unsigned long randomize_stack_top(unsigned long stack_top);
3420 unsigned long randomize_page(unsigned long start, unsigned long range);
3421 
3422 unsigned long
3423 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3424 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3425 
3426 static inline unsigned long
3427 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3428 		  unsigned long pgoff, unsigned long flags)
3429 {
3430 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3431 }
3432 
3433 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3434 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3435 	struct list_head *uf);
3436 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3437 	unsigned long len, unsigned long prot, unsigned long flags,
3438 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3439 	struct list_head *uf);
3440 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3441 			 unsigned long start, size_t len, struct list_head *uf,
3442 			 bool unlock);
3443 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3444 		     struct list_head *uf);
3445 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3446 
3447 #ifdef CONFIG_MMU
3448 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3449 			 unsigned long start, unsigned long end,
3450 			 struct list_head *uf, bool unlock);
3451 extern int __mm_populate(unsigned long addr, unsigned long len,
3452 			 int ignore_errors);
3453 static inline void mm_populate(unsigned long addr, unsigned long len)
3454 {
3455 	/* Ignore errors */
3456 	(void) __mm_populate(addr, len, 1);
3457 }
3458 #else
3459 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3460 #endif
3461 
3462 /* This takes the mm semaphore itself */
3463 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3464 extern int vm_munmap(unsigned long, size_t);
3465 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3466         unsigned long, unsigned long,
3467         unsigned long, unsigned long);
3468 
3469 struct vm_unmapped_area_info {
3470 #define VM_UNMAPPED_AREA_TOPDOWN 1
3471 	unsigned long flags;
3472 	unsigned long length;
3473 	unsigned long low_limit;
3474 	unsigned long high_limit;
3475 	unsigned long align_mask;
3476 	unsigned long align_offset;
3477 	unsigned long start_gap;
3478 };
3479 
3480 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3481 
3482 /* truncate.c */
3483 extern void truncate_inode_pages(struct address_space *, loff_t);
3484 extern void truncate_inode_pages_range(struct address_space *,
3485 				       loff_t lstart, loff_t lend);
3486 extern void truncate_inode_pages_final(struct address_space *);
3487 
3488 /* generic vm_area_ops exported for stackable file systems */
3489 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3490 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3491 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3492 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3493 
3494 extern unsigned long stack_guard_gap;
3495 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3496 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3497 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3498 
3499 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3500 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3501 
3502 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3503 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3504 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3505 					     struct vm_area_struct **pprev);
3506 
3507 /*
3508  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3509  * NULL if none.  Assume start_addr < end_addr.
3510  */
3511 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3512 			unsigned long start_addr, unsigned long end_addr);
3513 
3514 /**
3515  * vma_lookup() - Find a VMA at a specific address
3516  * @mm: The process address space.
3517  * @addr: The user address.
3518  *
3519  * Return: The vm_area_struct at the given address, %NULL otherwise.
3520  */
3521 static inline
3522 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3523 {
3524 	return mtree_load(&mm->mm_mt, addr);
3525 }
3526 
3527 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3528 {
3529 	if (vma->vm_flags & VM_GROWSDOWN)
3530 		return stack_guard_gap;
3531 
3532 	/* See reasoning around the VM_SHADOW_STACK definition */
3533 	if (vma->vm_flags & VM_SHADOW_STACK)
3534 		return PAGE_SIZE;
3535 
3536 	return 0;
3537 }
3538 
3539 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3540 {
3541 	unsigned long gap = stack_guard_start_gap(vma);
3542 	unsigned long vm_start = vma->vm_start;
3543 
3544 	vm_start -= gap;
3545 	if (vm_start > vma->vm_start)
3546 		vm_start = 0;
3547 	return vm_start;
3548 }
3549 
3550 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3551 {
3552 	unsigned long vm_end = vma->vm_end;
3553 
3554 	if (vma->vm_flags & VM_GROWSUP) {
3555 		vm_end += stack_guard_gap;
3556 		if (vm_end < vma->vm_end)
3557 			vm_end = -PAGE_SIZE;
3558 	}
3559 	return vm_end;
3560 }
3561 
3562 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3563 {
3564 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3565 }
3566 
3567 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3568 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3569 				unsigned long vm_start, unsigned long vm_end)
3570 {
3571 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3572 
3573 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3574 		vma = NULL;
3575 
3576 	return vma;
3577 }
3578 
3579 static inline bool range_in_vma(struct vm_area_struct *vma,
3580 				unsigned long start, unsigned long end)
3581 {
3582 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3583 }
3584 
3585 #ifdef CONFIG_MMU
3586 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3587 void vma_set_page_prot(struct vm_area_struct *vma);
3588 #else
3589 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3590 {
3591 	return __pgprot(0);
3592 }
3593 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3594 {
3595 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3596 }
3597 #endif
3598 
3599 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3600 
3601 #ifdef CONFIG_NUMA_BALANCING
3602 unsigned long change_prot_numa(struct vm_area_struct *vma,
3603 			unsigned long start, unsigned long end);
3604 #endif
3605 
3606 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3607 		unsigned long addr);
3608 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3609 			unsigned long pfn, unsigned long size, pgprot_t);
3610 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3611 		unsigned long pfn, unsigned long size, pgprot_t prot);
3612 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3613 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3614 			struct page **pages, unsigned long *num);
3615 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3616 				unsigned long num);
3617 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3618 				unsigned long num);
3619 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3620 			unsigned long pfn);
3621 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3622 			unsigned long pfn, pgprot_t pgprot);
3623 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3624 			pfn_t pfn);
3625 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3626 		unsigned long addr, pfn_t pfn);
3627 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3628 
3629 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3630 				unsigned long addr, struct page *page)
3631 {
3632 	int err = vm_insert_page(vma, addr, page);
3633 
3634 	if (err == -ENOMEM)
3635 		return VM_FAULT_OOM;
3636 	if (err < 0 && err != -EBUSY)
3637 		return VM_FAULT_SIGBUS;
3638 
3639 	return VM_FAULT_NOPAGE;
3640 }
3641 
3642 #ifndef io_remap_pfn_range
3643 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3644 				     unsigned long addr, unsigned long pfn,
3645 				     unsigned long size, pgprot_t prot)
3646 {
3647 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3648 }
3649 #endif
3650 
3651 static inline vm_fault_t vmf_error(int err)
3652 {
3653 	if (err == -ENOMEM)
3654 		return VM_FAULT_OOM;
3655 	else if (err == -EHWPOISON)
3656 		return VM_FAULT_HWPOISON;
3657 	return VM_FAULT_SIGBUS;
3658 }
3659 
3660 /*
3661  * Convert errno to return value for ->page_mkwrite() calls.
3662  *
3663  * This should eventually be merged with vmf_error() above, but will need a
3664  * careful audit of all vmf_error() callers.
3665  */
3666 static inline vm_fault_t vmf_fs_error(int err)
3667 {
3668 	if (err == 0)
3669 		return VM_FAULT_LOCKED;
3670 	if (err == -EFAULT || err == -EAGAIN)
3671 		return VM_FAULT_NOPAGE;
3672 	if (err == -ENOMEM)
3673 		return VM_FAULT_OOM;
3674 	/* -ENOSPC, -EDQUOT, -EIO ... */
3675 	return VM_FAULT_SIGBUS;
3676 }
3677 
3678 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3679 			 unsigned int foll_flags);
3680 
3681 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3682 {
3683 	if (vm_fault & VM_FAULT_OOM)
3684 		return -ENOMEM;
3685 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3686 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3687 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3688 		return -EFAULT;
3689 	return 0;
3690 }
3691 
3692 /*
3693  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3694  * a (NUMA hinting) fault is required.
3695  */
3696 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3697 					   unsigned int flags)
3698 {
3699 	/*
3700 	 * If callers don't want to honor NUMA hinting faults, no need to
3701 	 * determine if we would actually have to trigger a NUMA hinting fault.
3702 	 */
3703 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3704 		return true;
3705 
3706 	/*
3707 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3708 	 *
3709 	 * Requiring a fault here even for inaccessible VMAs would mean that
3710 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3711 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3712 	 */
3713 	return !vma_is_accessible(vma);
3714 }
3715 
3716 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3717 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3718 			       unsigned long size, pte_fn_t fn, void *data);
3719 extern int apply_to_existing_page_range(struct mm_struct *mm,
3720 				   unsigned long address, unsigned long size,
3721 				   pte_fn_t fn, void *data);
3722 
3723 #ifdef CONFIG_PAGE_POISONING
3724 extern void __kernel_poison_pages(struct page *page, int numpages);
3725 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3726 extern bool _page_poisoning_enabled_early;
3727 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3728 static inline bool page_poisoning_enabled(void)
3729 {
3730 	return _page_poisoning_enabled_early;
3731 }
3732 /*
3733  * For use in fast paths after init_mem_debugging() has run, or when a
3734  * false negative result is not harmful when called too early.
3735  */
3736 static inline bool page_poisoning_enabled_static(void)
3737 {
3738 	return static_branch_unlikely(&_page_poisoning_enabled);
3739 }
3740 static inline void kernel_poison_pages(struct page *page, int numpages)
3741 {
3742 	if (page_poisoning_enabled_static())
3743 		__kernel_poison_pages(page, numpages);
3744 }
3745 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3746 {
3747 	if (page_poisoning_enabled_static())
3748 		__kernel_unpoison_pages(page, numpages);
3749 }
3750 #else
3751 static inline bool page_poisoning_enabled(void) { return false; }
3752 static inline bool page_poisoning_enabled_static(void) { return false; }
3753 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3754 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3755 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3756 #endif
3757 
3758 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3759 static inline bool want_init_on_alloc(gfp_t flags)
3760 {
3761 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3762 				&init_on_alloc))
3763 		return true;
3764 	return flags & __GFP_ZERO;
3765 }
3766 
3767 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3768 static inline bool want_init_on_free(void)
3769 {
3770 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3771 				   &init_on_free);
3772 }
3773 
3774 extern bool _debug_pagealloc_enabled_early;
3775 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3776 
3777 static inline bool debug_pagealloc_enabled(void)
3778 {
3779 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3780 		_debug_pagealloc_enabled_early;
3781 }
3782 
3783 /*
3784  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3785  * or when a false negative result is not harmful when called too early.
3786  */
3787 static inline bool debug_pagealloc_enabled_static(void)
3788 {
3789 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3790 		return false;
3791 
3792 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3793 }
3794 
3795 /*
3796  * To support DEBUG_PAGEALLOC architecture must ensure that
3797  * __kernel_map_pages() never fails
3798  */
3799 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3800 #ifdef CONFIG_DEBUG_PAGEALLOC
3801 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3802 {
3803 	if (debug_pagealloc_enabled_static())
3804 		__kernel_map_pages(page, numpages, 1);
3805 }
3806 
3807 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3808 {
3809 	if (debug_pagealloc_enabled_static())
3810 		__kernel_map_pages(page, numpages, 0);
3811 }
3812 
3813 extern unsigned int _debug_guardpage_minorder;
3814 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3815 
3816 static inline unsigned int debug_guardpage_minorder(void)
3817 {
3818 	return _debug_guardpage_minorder;
3819 }
3820 
3821 static inline bool debug_guardpage_enabled(void)
3822 {
3823 	return static_branch_unlikely(&_debug_guardpage_enabled);
3824 }
3825 
3826 static inline bool page_is_guard(struct page *page)
3827 {
3828 	if (!debug_guardpage_enabled())
3829 		return false;
3830 
3831 	return PageGuard(page);
3832 }
3833 
3834 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3835 static inline bool set_page_guard(struct zone *zone, struct page *page,
3836 				  unsigned int order)
3837 {
3838 	if (!debug_guardpage_enabled())
3839 		return false;
3840 	return __set_page_guard(zone, page, order);
3841 }
3842 
3843 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3844 static inline void clear_page_guard(struct zone *zone, struct page *page,
3845 				    unsigned int order)
3846 {
3847 	if (!debug_guardpage_enabled())
3848 		return;
3849 	__clear_page_guard(zone, page, order);
3850 }
3851 
3852 #else	/* CONFIG_DEBUG_PAGEALLOC */
3853 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3854 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3855 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3856 static inline bool debug_guardpage_enabled(void) { return false; }
3857 static inline bool page_is_guard(struct page *page) { return false; }
3858 static inline bool set_page_guard(struct zone *zone, struct page *page,
3859 			unsigned int order) { return false; }
3860 static inline void clear_page_guard(struct zone *zone, struct page *page,
3861 				unsigned int order) {}
3862 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3863 
3864 #ifdef __HAVE_ARCH_GATE_AREA
3865 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3866 extern int in_gate_area_no_mm(unsigned long addr);
3867 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3868 #else
3869 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3870 {
3871 	return NULL;
3872 }
3873 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3874 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3875 {
3876 	return 0;
3877 }
3878 #endif	/* __HAVE_ARCH_GATE_AREA */
3879 
3880 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3881 
3882 #ifdef CONFIG_SYSCTL
3883 extern int sysctl_drop_caches;
3884 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3885 		loff_t *);
3886 #endif
3887 
3888 void drop_slab(void);
3889 
3890 #ifndef CONFIG_MMU
3891 #define randomize_va_space 0
3892 #else
3893 extern int randomize_va_space;
3894 #endif
3895 
3896 const char * arch_vma_name(struct vm_area_struct *vma);
3897 #ifdef CONFIG_MMU
3898 void print_vma_addr(char *prefix, unsigned long rip);
3899 #else
3900 static inline void print_vma_addr(char *prefix, unsigned long rip)
3901 {
3902 }
3903 #endif
3904 
3905 void *sparse_buffer_alloc(unsigned long size);
3906 struct page * __populate_section_memmap(unsigned long pfn,
3907 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3908 		struct dev_pagemap *pgmap);
3909 void pmd_init(void *addr);
3910 void pud_init(void *addr);
3911 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3912 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3913 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3914 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3915 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3916 			    struct vmem_altmap *altmap, struct page *reuse);
3917 void *vmemmap_alloc_block(unsigned long size, int node);
3918 struct vmem_altmap;
3919 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3920 			      struct vmem_altmap *altmap);
3921 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3922 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3923 		     unsigned long addr, unsigned long next);
3924 int vmemmap_check_pmd(pmd_t *pmd, int node,
3925 		      unsigned long addr, unsigned long next);
3926 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3927 			       int node, struct vmem_altmap *altmap);
3928 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3929 			       int node, struct vmem_altmap *altmap);
3930 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3931 		struct vmem_altmap *altmap);
3932 void vmemmap_populate_print_last(void);
3933 #ifdef CONFIG_MEMORY_HOTPLUG
3934 void vmemmap_free(unsigned long start, unsigned long end,
3935 		struct vmem_altmap *altmap);
3936 #endif
3937 
3938 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3939 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3940 {
3941 	/* number of pfns from base where pfn_to_page() is valid */
3942 	if (altmap)
3943 		return altmap->reserve + altmap->free;
3944 	return 0;
3945 }
3946 
3947 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3948 				    unsigned long nr_pfns)
3949 {
3950 	altmap->alloc -= nr_pfns;
3951 }
3952 #else
3953 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3954 {
3955 	return 0;
3956 }
3957 
3958 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3959 				    unsigned long nr_pfns)
3960 {
3961 }
3962 #endif
3963 
3964 #define VMEMMAP_RESERVE_NR	2
3965 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3966 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3967 					  struct dev_pagemap *pgmap)
3968 {
3969 	unsigned long nr_pages;
3970 	unsigned long nr_vmemmap_pages;
3971 
3972 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3973 		return false;
3974 
3975 	nr_pages = pgmap_vmemmap_nr(pgmap);
3976 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3977 	/*
3978 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3979 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3980 	 */
3981 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3982 }
3983 /*
3984  * If we don't have an architecture override, use the generic rule
3985  */
3986 #ifndef vmemmap_can_optimize
3987 #define vmemmap_can_optimize __vmemmap_can_optimize
3988 #endif
3989 
3990 #else
3991 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3992 					   struct dev_pagemap *pgmap)
3993 {
3994 	return false;
3995 }
3996 #endif
3997 
3998 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3999 				  unsigned long nr_pages);
4000 
4001 enum mf_flags {
4002 	MF_COUNT_INCREASED = 1 << 0,
4003 	MF_ACTION_REQUIRED = 1 << 1,
4004 	MF_MUST_KILL = 1 << 2,
4005 	MF_SOFT_OFFLINE = 1 << 3,
4006 	MF_UNPOISON = 1 << 4,
4007 	MF_SW_SIMULATED = 1 << 5,
4008 	MF_NO_RETRY = 1 << 6,
4009 	MF_MEM_PRE_REMOVE = 1 << 7,
4010 };
4011 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4012 		      unsigned long count, int mf_flags);
4013 extern int memory_failure(unsigned long pfn, int flags);
4014 extern void memory_failure_queue_kick(int cpu);
4015 extern int unpoison_memory(unsigned long pfn);
4016 extern atomic_long_t num_poisoned_pages __read_mostly;
4017 extern int soft_offline_page(unsigned long pfn, int flags);
4018 #ifdef CONFIG_MEMORY_FAILURE
4019 /*
4020  * Sysfs entries for memory failure handling statistics.
4021  */
4022 extern const struct attribute_group memory_failure_attr_group;
4023 extern void memory_failure_queue(unsigned long pfn, int flags);
4024 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4025 					bool *migratable_cleared);
4026 void num_poisoned_pages_inc(unsigned long pfn);
4027 void num_poisoned_pages_sub(unsigned long pfn, long i);
4028 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
4029 #else
4030 static inline void memory_failure_queue(unsigned long pfn, int flags)
4031 {
4032 }
4033 
4034 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4035 					bool *migratable_cleared)
4036 {
4037 	return 0;
4038 }
4039 
4040 static inline void num_poisoned_pages_inc(unsigned long pfn)
4041 {
4042 }
4043 
4044 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4045 {
4046 }
4047 #endif
4048 
4049 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4050 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4051 		     struct vm_area_struct *vma, struct list_head *to_kill,
4052 		     unsigned long ksm_addr);
4053 #endif
4054 
4055 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4056 extern void memblk_nr_poison_inc(unsigned long pfn);
4057 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4058 #else
4059 static inline void memblk_nr_poison_inc(unsigned long pfn)
4060 {
4061 }
4062 
4063 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4064 {
4065 }
4066 #endif
4067 
4068 #ifndef arch_memory_failure
4069 static inline int arch_memory_failure(unsigned long pfn, int flags)
4070 {
4071 	return -ENXIO;
4072 }
4073 #endif
4074 
4075 #ifndef arch_is_platform_page
4076 static inline bool arch_is_platform_page(u64 paddr)
4077 {
4078 	return false;
4079 }
4080 #endif
4081 
4082 /*
4083  * Error handlers for various types of pages.
4084  */
4085 enum mf_result {
4086 	MF_IGNORED,	/* Error: cannot be handled */
4087 	MF_FAILED,	/* Error: handling failed */
4088 	MF_DELAYED,	/* Will be handled later */
4089 	MF_RECOVERED,	/* Successfully recovered */
4090 };
4091 
4092 enum mf_action_page_type {
4093 	MF_MSG_KERNEL,
4094 	MF_MSG_KERNEL_HIGH_ORDER,
4095 	MF_MSG_SLAB,
4096 	MF_MSG_DIFFERENT_COMPOUND,
4097 	MF_MSG_HUGE,
4098 	MF_MSG_FREE_HUGE,
4099 	MF_MSG_GET_HWPOISON,
4100 	MF_MSG_UNMAP_FAILED,
4101 	MF_MSG_DIRTY_SWAPCACHE,
4102 	MF_MSG_CLEAN_SWAPCACHE,
4103 	MF_MSG_DIRTY_MLOCKED_LRU,
4104 	MF_MSG_CLEAN_MLOCKED_LRU,
4105 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4106 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4107 	MF_MSG_DIRTY_LRU,
4108 	MF_MSG_CLEAN_LRU,
4109 	MF_MSG_TRUNCATED_LRU,
4110 	MF_MSG_BUDDY,
4111 	MF_MSG_DAX,
4112 	MF_MSG_UNSPLIT_THP,
4113 	MF_MSG_ALREADY_POISONED,
4114 	MF_MSG_UNKNOWN,
4115 };
4116 
4117 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4118 extern void clear_huge_page(struct page *page,
4119 			    unsigned long addr_hint,
4120 			    unsigned int pages_per_huge_page);
4121 int copy_user_large_folio(struct folio *dst, struct folio *src,
4122 			  unsigned long addr_hint,
4123 			  struct vm_area_struct *vma);
4124 long copy_folio_from_user(struct folio *dst_folio,
4125 			   const void __user *usr_src,
4126 			   bool allow_pagefault);
4127 
4128 /**
4129  * vma_is_special_huge - Are transhuge page-table entries considered special?
4130  * @vma: Pointer to the struct vm_area_struct to consider
4131  *
4132  * Whether transhuge page-table entries are considered "special" following
4133  * the definition in vm_normal_page().
4134  *
4135  * Return: true if transhuge page-table entries should be considered special,
4136  * false otherwise.
4137  */
4138 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4139 {
4140 	return vma_is_dax(vma) || (vma->vm_file &&
4141 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4142 }
4143 
4144 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4145 
4146 #if MAX_NUMNODES > 1
4147 void __init setup_nr_node_ids(void);
4148 #else
4149 static inline void setup_nr_node_ids(void) {}
4150 #endif
4151 
4152 extern int memcmp_pages(struct page *page1, struct page *page2);
4153 
4154 static inline int pages_identical(struct page *page1, struct page *page2)
4155 {
4156 	return !memcmp_pages(page1, page2);
4157 }
4158 
4159 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4160 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4161 						pgoff_t first_index, pgoff_t nr,
4162 						pgoff_t bitmap_pgoff,
4163 						unsigned long *bitmap,
4164 						pgoff_t *start,
4165 						pgoff_t *end);
4166 
4167 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4168 				      pgoff_t first_index, pgoff_t nr);
4169 #endif
4170 
4171 extern int sysctl_nr_trim_pages;
4172 
4173 #ifdef CONFIG_PRINTK
4174 void mem_dump_obj(void *object);
4175 #else
4176 static inline void mem_dump_obj(void *object) {}
4177 #endif
4178 
4179 /**
4180  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4181  *                    handle them.
4182  * @seals: the seals to check
4183  * @vma: the vma to operate on
4184  *
4185  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4186  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4187  */
4188 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4189 {
4190 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4191 		/*
4192 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4193 		 * write seals are active.
4194 		 */
4195 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4196 			return -EPERM;
4197 
4198 		/*
4199 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4200 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4201 		 * revert protections on such mappings. Do this only for shared
4202 		 * mappings. For private mappings, don't need to mask
4203 		 * VM_MAYWRITE as we still want them to be COW-writable.
4204 		 */
4205 		if (vma->vm_flags & VM_SHARED)
4206 			vm_flags_clear(vma, VM_MAYWRITE);
4207 	}
4208 
4209 	return 0;
4210 }
4211 
4212 #ifdef CONFIG_ANON_VMA_NAME
4213 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4214 			  unsigned long len_in,
4215 			  struct anon_vma_name *anon_name);
4216 #else
4217 static inline int
4218 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4219 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4220 	return 0;
4221 }
4222 #endif
4223 
4224 #ifdef CONFIG_UNACCEPTED_MEMORY
4225 
4226 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4227 void accept_memory(phys_addr_t start, phys_addr_t end);
4228 
4229 #else
4230 
4231 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4232 						    phys_addr_t end)
4233 {
4234 	return false;
4235 }
4236 
4237 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4238 {
4239 }
4240 
4241 #endif
4242 
4243 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4244 {
4245 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4246 
4247 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4248 }
4249 
4250 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4251 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4252 
4253 #endif /* _LINUX_MM_H */
4254