xref: /linux-6.15/include/linux/mm.h (revision 5e6ded2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void init_mm_internals(void);
45 
46 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48 
49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 	max_mapnr = limit;
52 }
53 #else
54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56 
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
59 {
60 	return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_inc(void)
64 {
65 	atomic_long_inc(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_dec(void)
69 {
70 	atomic_long_dec(&_totalram_pages);
71 }
72 
73 static inline void totalram_pages_add(long count)
74 {
75 	atomic_long_add(count, &_totalram_pages);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 /*
102  * Architectures that support memory tagging (assigning tags to memory regions,
103  * embedding these tags into addresses that point to these memory regions, and
104  * checking that the memory and the pointer tags match on memory accesses)
105  * redefine this macro to strip tags from pointers.
106  * It's defined as noop for architectures that don't support memory tagging.
107  */
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
110 #endif
111 
112 #ifndef __pa_symbol
113 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115 
116 #ifndef page_to_virt
117 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119 
120 #ifndef lm_alias
121 #define lm_alias(x)	__va(__pa_symbol(x))
122 #endif
123 
124 /*
125  * To prevent common memory management code establishing
126  * a zero page mapping on a read fault.
127  * This macro should be defined within <asm/pgtable.h>.
128  * s390 does this to prevent multiplexing of hardware bits
129  * related to the physical page in case of virtualization.
130  */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X)	(0)
133 #endif
134 
135 /*
136  * On some architectures it is expensive to call memset() for small sizes.
137  * If an architecture decides to implement their own version of
138  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139  * define their own version of this macro in <asm/pgtable.h>
140  */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 80
143  * or reduces below 56. The idea that compiler optimizes out switch()
144  * statement, and only leaves move/store instructions. Also the compiler can
145  * combine write statements if they are both assignments and can be reordered,
146  * this can result in several of the writes here being dropped.
147  */
148 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 	unsigned long *_pp = (void *)page;
152 
153 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 	BUILD_BUG_ON(sizeof(struct page) & 7);
155 	BUILD_BUG_ON(sizeof(struct page) < 56);
156 	BUILD_BUG_ON(sizeof(struct page) > 80);
157 
158 	switch (sizeof(struct page)) {
159 	case 80:
160 		_pp[9] = 0;
161 		fallthrough;
162 	case 72:
163 		_pp[8] = 0;
164 		fallthrough;
165 	case 64:
166 		_pp[7] = 0;
167 		fallthrough;
168 	case 56:
169 		_pp[6] = 0;
170 		_pp[5] = 0;
171 		_pp[4] = 0;
172 		_pp[3] = 0;
173 		_pp[2] = 0;
174 		_pp[1] = 0;
175 		_pp[0] = 0;
176 	}
177 }
178 #else
179 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
180 #endif
181 
182 /*
183  * Default maximum number of active map areas, this limits the number of vmas
184  * per mm struct. Users can overwrite this number by sysctl but there is a
185  * problem.
186  *
187  * When a program's coredump is generated as ELF format, a section is created
188  * per a vma. In ELF, the number of sections is represented in unsigned short.
189  * This means the number of sections should be smaller than 65535 at coredump.
190  * Because the kernel adds some informative sections to a image of program at
191  * generating coredump, we need some margin. The number of extra sections is
192  * 1-3 now and depends on arch. We use "5" as safe margin, here.
193  *
194  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195  * not a hard limit any more. Although some userspace tools can be surprised by
196  * that.
197  */
198 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
199 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200 
201 extern int sysctl_max_map_count;
202 
203 extern unsigned long sysctl_user_reserve_kbytes;
204 extern unsigned long sysctl_admin_reserve_kbytes;
205 
206 extern int sysctl_overcommit_memory;
207 extern int sysctl_overcommit_ratio;
208 extern unsigned long sysctl_overcommit_kbytes;
209 
210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215 		loff_t *);
216 
217 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
218 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
219 #else
220 #define nth_page(page,n) ((page) + (n))
221 #endif
222 
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 
231 void setup_initial_init_mm(void *start_code, void *end_code,
232 			   void *end_data, void *brk);
233 
234 /*
235  * Linux kernel virtual memory manager primitives.
236  * The idea being to have a "virtual" mm in the same way
237  * we have a virtual fs - giving a cleaner interface to the
238  * mm details, and allowing different kinds of memory mappings
239  * (from shared memory to executable loading to arbitrary
240  * mmap() functions).
241  */
242 
243 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
244 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
245 void vm_area_free(struct vm_area_struct *);
246 
247 #ifndef CONFIG_MMU
248 extern struct rb_root nommu_region_tree;
249 extern struct rw_semaphore nommu_region_sem;
250 
251 extern unsigned int kobjsize(const void *objp);
252 #endif
253 
254 /*
255  * vm_flags in vm_area_struct, see mm_types.h.
256  * When changing, update also include/trace/events/mmflags.h
257  */
258 #define VM_NONE		0x00000000
259 
260 #define VM_READ		0x00000001	/* currently active flags */
261 #define VM_WRITE	0x00000002
262 #define VM_EXEC		0x00000004
263 #define VM_SHARED	0x00000008
264 
265 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
266 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
267 #define VM_MAYWRITE	0x00000020
268 #define VM_MAYEXEC	0x00000040
269 #define VM_MAYSHARE	0x00000080
270 
271 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
272 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
273 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
274 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
275 
276 #define VM_LOCKED	0x00002000
277 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
278 
279 					/* Used by sys_madvise() */
280 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
281 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
282 
283 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
284 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
285 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
286 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
287 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
288 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
289 #define VM_SYNC		0x00800000	/* Synchronous page faults */
290 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
291 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
292 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
293 
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
296 #else
297 # define VM_SOFTDIRTY	0
298 #endif
299 
300 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
301 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
302 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
303 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
304 
305 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
306 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
312 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
313 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
314 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
315 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317 
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
321 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
322 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
323 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
324 #ifdef CONFIG_PPC
325 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
326 #else
327 # define VM_PKEY_BIT4  0
328 #endif
329 #endif /* CONFIG_ARCH_HAS_PKEYS */
330 
331 #if defined(CONFIG_X86)
332 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
333 #elif defined(CONFIG_PPC)
334 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
335 #elif defined(CONFIG_PARISC)
336 # define VM_GROWSUP	VM_ARCH_1
337 #elif defined(CONFIG_IA64)
338 # define VM_GROWSUP	VM_ARCH_1
339 #elif defined(CONFIG_SPARC64)
340 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
341 # define VM_ARCH_CLEAR	VM_SPARC_ADI
342 #elif defined(CONFIG_ARM64)
343 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
344 # define VM_ARCH_CLEAR	VM_ARM64_BTI
345 #elif !defined(CONFIG_MMU)
346 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
347 #endif
348 
349 #if defined(CONFIG_ARM64_MTE)
350 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
351 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
352 #else
353 # define VM_MTE		VM_NONE
354 # define VM_MTE_ALLOWED	VM_NONE
355 #endif
356 
357 #ifndef VM_GROWSUP
358 # define VM_GROWSUP	VM_NONE
359 #endif
360 
361 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
362 # define VM_UFFD_MINOR_BIT	37
363 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
364 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365 # define VM_UFFD_MINOR		VM_NONE
366 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367 
368 /* Bits set in the VMA until the stack is in its final location */
369 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
370 
371 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
372 
373 /* Common data flag combinations */
374 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
375 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
376 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
377 				 VM_MAYWRITE | VM_MAYEXEC)
378 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
379 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
380 
381 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
382 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
383 #endif
384 
385 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
386 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
387 #endif
388 
389 #ifdef CONFIG_STACK_GROWSUP
390 #define VM_STACK	VM_GROWSUP
391 #else
392 #define VM_STACK	VM_GROWSDOWN
393 #endif
394 
395 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
396 
397 /* VMA basic access permission flags */
398 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
399 
400 
401 /*
402  * Special vmas that are non-mergable, non-mlock()able.
403  */
404 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
405 
406 /* This mask prevents VMA from being scanned with khugepaged */
407 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
408 
409 /* This mask defines which mm->def_flags a process can inherit its parent */
410 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
411 
412 /* This mask is used to clear all the VMA flags used by mlock */
413 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
414 
415 /* Arch-specific flags to clear when updating VM flags on protection change */
416 #ifndef VM_ARCH_CLEAR
417 # define VM_ARCH_CLEAR	VM_NONE
418 #endif
419 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
420 
421 /*
422  * mapping from the currently active vm_flags protection bits (the
423  * low four bits) to a page protection mask..
424  */
425 extern pgprot_t protection_map[16];
426 
427 /*
428  * The default fault flags that should be used by most of the
429  * arch-specific page fault handlers.
430  */
431 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
432 			     FAULT_FLAG_KILLABLE | \
433 			     FAULT_FLAG_INTERRUPTIBLE)
434 
435 /**
436  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
437  * @flags: Fault flags.
438  *
439  * This is mostly used for places where we want to try to avoid taking
440  * the mmap_lock for too long a time when waiting for another condition
441  * to change, in which case we can try to be polite to release the
442  * mmap_lock in the first round to avoid potential starvation of other
443  * processes that would also want the mmap_lock.
444  *
445  * Return: true if the page fault allows retry and this is the first
446  * attempt of the fault handling; false otherwise.
447  */
448 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
449 {
450 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
451 	    (!(flags & FAULT_FLAG_TRIED));
452 }
453 
454 #define FAULT_FLAG_TRACE \
455 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
456 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
457 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
458 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
459 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
460 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
461 	{ FAULT_FLAG_USER,		"USER" }, \
462 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
463 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
464 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
465 
466 /*
467  * vm_fault is filled by the pagefault handler and passed to the vma's
468  * ->fault function. The vma's ->fault is responsible for returning a bitmask
469  * of VM_FAULT_xxx flags that give details about how the fault was handled.
470  *
471  * MM layer fills up gfp_mask for page allocations but fault handler might
472  * alter it if its implementation requires a different allocation context.
473  *
474  * pgoff should be used in favour of virtual_address, if possible.
475  */
476 struct vm_fault {
477 	const struct {
478 		struct vm_area_struct *vma;	/* Target VMA */
479 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
480 		pgoff_t pgoff;			/* Logical page offset based on vma */
481 		unsigned long address;		/* Faulting virtual address */
482 	};
483 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
484 					 * XXX: should really be 'const' */
485 	pmd_t *pmd;			/* Pointer to pmd entry matching
486 					 * the 'address' */
487 	pud_t *pud;			/* Pointer to pud entry matching
488 					 * the 'address'
489 					 */
490 	union {
491 		pte_t orig_pte;		/* Value of PTE at the time of fault */
492 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
493 					 * used by PMD fault only.
494 					 */
495 	};
496 
497 	struct page *cow_page;		/* Page handler may use for COW fault */
498 	struct page *page;		/* ->fault handlers should return a
499 					 * page here, unless VM_FAULT_NOPAGE
500 					 * is set (which is also implied by
501 					 * VM_FAULT_ERROR).
502 					 */
503 	/* These three entries are valid only while holding ptl lock */
504 	pte_t *pte;			/* Pointer to pte entry matching
505 					 * the 'address'. NULL if the page
506 					 * table hasn't been allocated.
507 					 */
508 	spinlock_t *ptl;		/* Page table lock.
509 					 * Protects pte page table if 'pte'
510 					 * is not NULL, otherwise pmd.
511 					 */
512 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
513 					 * vm_ops->map_pages() sets up a page
514 					 * table from atomic context.
515 					 * do_fault_around() pre-allocates
516 					 * page table to avoid allocation from
517 					 * atomic context.
518 					 */
519 };
520 
521 /* page entry size for vm->huge_fault() */
522 enum page_entry_size {
523 	PE_SIZE_PTE = 0,
524 	PE_SIZE_PMD,
525 	PE_SIZE_PUD,
526 };
527 
528 /*
529  * These are the virtual MM functions - opening of an area, closing and
530  * unmapping it (needed to keep files on disk up-to-date etc), pointer
531  * to the functions called when a no-page or a wp-page exception occurs.
532  */
533 struct vm_operations_struct {
534 	void (*open)(struct vm_area_struct * area);
535 	/**
536 	 * @close: Called when the VMA is being removed from the MM.
537 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
538 	 */
539 	void (*close)(struct vm_area_struct * area);
540 	/* Called any time before splitting to check if it's allowed */
541 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
542 	int (*mremap)(struct vm_area_struct *area);
543 	/*
544 	 * Called by mprotect() to make driver-specific permission
545 	 * checks before mprotect() is finalised.   The VMA must not
546 	 * be modified.  Returns 0 if eprotect() can proceed.
547 	 */
548 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
549 			unsigned long end, unsigned long newflags);
550 	vm_fault_t (*fault)(struct vm_fault *vmf);
551 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
552 			enum page_entry_size pe_size);
553 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
554 			pgoff_t start_pgoff, pgoff_t end_pgoff);
555 	unsigned long (*pagesize)(struct vm_area_struct * area);
556 
557 	/* notification that a previously read-only page is about to become
558 	 * writable, if an error is returned it will cause a SIGBUS */
559 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
560 
561 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
562 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
563 
564 	/* called by access_process_vm when get_user_pages() fails, typically
565 	 * for use by special VMAs. See also generic_access_phys() for a generic
566 	 * implementation useful for any iomem mapping.
567 	 */
568 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
569 		      void *buf, int len, int write);
570 
571 	/* Called by the /proc/PID/maps code to ask the vma whether it
572 	 * has a special name.  Returning non-NULL will also cause this
573 	 * vma to be dumped unconditionally. */
574 	const char *(*name)(struct vm_area_struct *vma);
575 
576 #ifdef CONFIG_NUMA
577 	/*
578 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
579 	 * to hold the policy upon return.  Caller should pass NULL @new to
580 	 * remove a policy and fall back to surrounding context--i.e. do not
581 	 * install a MPOL_DEFAULT policy, nor the task or system default
582 	 * mempolicy.
583 	 */
584 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
585 
586 	/*
587 	 * get_policy() op must add reference [mpol_get()] to any policy at
588 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
589 	 * in mm/mempolicy.c will do this automatically.
590 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
591 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
592 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
593 	 * must return NULL--i.e., do not "fallback" to task or system default
594 	 * policy.
595 	 */
596 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
597 					unsigned long addr);
598 #endif
599 	/*
600 	 * Called by vm_normal_page() for special PTEs to find the
601 	 * page for @addr.  This is useful if the default behavior
602 	 * (using pte_page()) would not find the correct page.
603 	 */
604 	struct page *(*find_special_page)(struct vm_area_struct *vma,
605 					  unsigned long addr);
606 };
607 
608 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
609 {
610 	static const struct vm_operations_struct dummy_vm_ops = {};
611 
612 	memset(vma, 0, sizeof(*vma));
613 	vma->vm_mm = mm;
614 	vma->vm_ops = &dummy_vm_ops;
615 	INIT_LIST_HEAD(&vma->anon_vma_chain);
616 }
617 
618 static inline void vma_set_anonymous(struct vm_area_struct *vma)
619 {
620 	vma->vm_ops = NULL;
621 }
622 
623 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
624 {
625 	return !vma->vm_ops;
626 }
627 
628 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
629 {
630 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
631 
632 	if (!maybe_stack)
633 		return false;
634 
635 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
636 						VM_STACK_INCOMPLETE_SETUP)
637 		return true;
638 
639 	return false;
640 }
641 
642 static inline bool vma_is_foreign(struct vm_area_struct *vma)
643 {
644 	if (!current->mm)
645 		return true;
646 
647 	if (current->mm != vma->vm_mm)
648 		return true;
649 
650 	return false;
651 }
652 
653 static inline bool vma_is_accessible(struct vm_area_struct *vma)
654 {
655 	return vma->vm_flags & VM_ACCESS_FLAGS;
656 }
657 
658 #ifdef CONFIG_SHMEM
659 /*
660  * The vma_is_shmem is not inline because it is used only by slow
661  * paths in userfault.
662  */
663 bool vma_is_shmem(struct vm_area_struct *vma);
664 #else
665 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
666 #endif
667 
668 int vma_is_stack_for_current(struct vm_area_struct *vma);
669 
670 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
671 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
672 
673 struct mmu_gather;
674 struct inode;
675 
676 static inline unsigned int compound_order(struct page *page)
677 {
678 	if (!PageHead(page))
679 		return 0;
680 	return page[1].compound_order;
681 }
682 
683 /**
684  * folio_order - The allocation order of a folio.
685  * @folio: The folio.
686  *
687  * A folio is composed of 2^order pages.  See get_order() for the definition
688  * of order.
689  *
690  * Return: The order of the folio.
691  */
692 static inline unsigned int folio_order(struct folio *folio)
693 {
694 	return compound_order(&folio->page);
695 }
696 
697 #include <linux/huge_mm.h>
698 
699 /*
700  * Methods to modify the page usage count.
701  *
702  * What counts for a page usage:
703  * - cache mapping   (page->mapping)
704  * - private data    (page->private)
705  * - page mapped in a task's page tables, each mapping
706  *   is counted separately
707  *
708  * Also, many kernel routines increase the page count before a critical
709  * routine so they can be sure the page doesn't go away from under them.
710  */
711 
712 /*
713  * Drop a ref, return true if the refcount fell to zero (the page has no users)
714  */
715 static inline int put_page_testzero(struct page *page)
716 {
717 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
718 	return page_ref_dec_and_test(page);
719 }
720 
721 static inline int folio_put_testzero(struct folio *folio)
722 {
723 	return put_page_testzero(&folio->page);
724 }
725 
726 /*
727  * Try to grab a ref unless the page has a refcount of zero, return false if
728  * that is the case.
729  * This can be called when MMU is off so it must not access
730  * any of the virtual mappings.
731  */
732 static inline bool get_page_unless_zero(struct page *page)
733 {
734 	return page_ref_add_unless(page, 1, 0);
735 }
736 
737 extern int page_is_ram(unsigned long pfn);
738 
739 enum {
740 	REGION_INTERSECTS,
741 	REGION_DISJOINT,
742 	REGION_MIXED,
743 };
744 
745 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
746 		      unsigned long desc);
747 
748 /* Support for virtually mapped pages */
749 struct page *vmalloc_to_page(const void *addr);
750 unsigned long vmalloc_to_pfn(const void *addr);
751 
752 /*
753  * Determine if an address is within the vmalloc range
754  *
755  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
756  * is no special casing required.
757  */
758 
759 #ifndef is_ioremap_addr
760 #define is_ioremap_addr(x) is_vmalloc_addr(x)
761 #endif
762 
763 #ifdef CONFIG_MMU
764 extern bool is_vmalloc_addr(const void *x);
765 extern int is_vmalloc_or_module_addr(const void *x);
766 #else
767 static inline bool is_vmalloc_addr(const void *x)
768 {
769 	return false;
770 }
771 static inline int is_vmalloc_or_module_addr(const void *x)
772 {
773 	return 0;
774 }
775 #endif
776 
777 static inline int head_compound_mapcount(struct page *head)
778 {
779 	return atomic_read(compound_mapcount_ptr(head)) + 1;
780 }
781 
782 /*
783  * Mapcount of compound page as a whole, does not include mapped sub-pages.
784  *
785  * Must be called only for compound pages or any their tail sub-pages.
786  */
787 static inline int compound_mapcount(struct page *page)
788 {
789 	VM_BUG_ON_PAGE(!PageCompound(page), page);
790 	page = compound_head(page);
791 	return head_compound_mapcount(page);
792 }
793 
794 /*
795  * The atomic page->_mapcount, starts from -1: so that transitions
796  * both from it and to it can be tracked, using atomic_inc_and_test
797  * and atomic_add_negative(-1).
798  */
799 static inline void page_mapcount_reset(struct page *page)
800 {
801 	atomic_set(&(page)->_mapcount, -1);
802 }
803 
804 int __page_mapcount(struct page *page);
805 
806 /*
807  * Mapcount of 0-order page; when compound sub-page, includes
808  * compound_mapcount().
809  *
810  * Result is undefined for pages which cannot be mapped into userspace.
811  * For example SLAB or special types of pages. See function page_has_type().
812  * They use this place in struct page differently.
813  */
814 static inline int page_mapcount(struct page *page)
815 {
816 	if (unlikely(PageCompound(page)))
817 		return __page_mapcount(page);
818 	return atomic_read(&page->_mapcount) + 1;
819 }
820 
821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
822 int total_mapcount(struct page *page);
823 int page_trans_huge_mapcount(struct page *page);
824 #else
825 static inline int total_mapcount(struct page *page)
826 {
827 	return page_mapcount(page);
828 }
829 static inline int page_trans_huge_mapcount(struct page *page)
830 {
831 	return page_mapcount(page);
832 }
833 #endif
834 
835 static inline struct page *virt_to_head_page(const void *x)
836 {
837 	struct page *page = virt_to_page(x);
838 
839 	return compound_head(page);
840 }
841 
842 static inline struct folio *virt_to_folio(const void *x)
843 {
844 	struct page *page = virt_to_page(x);
845 
846 	return page_folio(page);
847 }
848 
849 void __put_page(struct page *page);
850 
851 void put_pages_list(struct list_head *pages);
852 
853 void split_page(struct page *page, unsigned int order);
854 void folio_copy(struct folio *dst, struct folio *src);
855 
856 unsigned long nr_free_buffer_pages(void);
857 
858 /*
859  * Compound pages have a destructor function.  Provide a
860  * prototype for that function and accessor functions.
861  * These are _only_ valid on the head of a compound page.
862  */
863 typedef void compound_page_dtor(struct page *);
864 
865 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
866 enum compound_dtor_id {
867 	NULL_COMPOUND_DTOR,
868 	COMPOUND_PAGE_DTOR,
869 #ifdef CONFIG_HUGETLB_PAGE
870 	HUGETLB_PAGE_DTOR,
871 #endif
872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 	TRANSHUGE_PAGE_DTOR,
874 #endif
875 	NR_COMPOUND_DTORS,
876 };
877 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
878 
879 static inline void set_compound_page_dtor(struct page *page,
880 		enum compound_dtor_id compound_dtor)
881 {
882 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
883 	page[1].compound_dtor = compound_dtor;
884 }
885 
886 static inline void destroy_compound_page(struct page *page)
887 {
888 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
889 	compound_page_dtors[page[1].compound_dtor](page);
890 }
891 
892 static inline bool hpage_pincount_available(struct page *page)
893 {
894 	/*
895 	 * Can the page->hpage_pinned_refcount field be used? That field is in
896 	 * the 3rd page of the compound page, so the smallest (2-page) compound
897 	 * pages cannot support it.
898 	 */
899 	page = compound_head(page);
900 	return PageCompound(page) && compound_order(page) > 1;
901 }
902 
903 static inline int head_compound_pincount(struct page *head)
904 {
905 	return atomic_read(compound_pincount_ptr(head));
906 }
907 
908 static inline int compound_pincount(struct page *page)
909 {
910 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
911 	page = compound_head(page);
912 	return head_compound_pincount(page);
913 }
914 
915 static inline void set_compound_order(struct page *page, unsigned int order)
916 {
917 	page[1].compound_order = order;
918 	page[1].compound_nr = 1U << order;
919 }
920 
921 /* Returns the number of pages in this potentially compound page. */
922 static inline unsigned long compound_nr(struct page *page)
923 {
924 	if (!PageHead(page))
925 		return 1;
926 	return page[1].compound_nr;
927 }
928 
929 /* Returns the number of bytes in this potentially compound page. */
930 static inline unsigned long page_size(struct page *page)
931 {
932 	return PAGE_SIZE << compound_order(page);
933 }
934 
935 /* Returns the number of bits needed for the number of bytes in a page */
936 static inline unsigned int page_shift(struct page *page)
937 {
938 	return PAGE_SHIFT + compound_order(page);
939 }
940 
941 void free_compound_page(struct page *page);
942 
943 #ifdef CONFIG_MMU
944 /*
945  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
946  * servicing faults for write access.  In the normal case, do always want
947  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
948  * that do not have writing enabled, when used by access_process_vm.
949  */
950 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
951 {
952 	if (likely(vma->vm_flags & VM_WRITE))
953 		pte = pte_mkwrite(pte);
954 	return pte;
955 }
956 
957 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
958 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
959 
960 vm_fault_t finish_fault(struct vm_fault *vmf);
961 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
962 #endif
963 
964 /*
965  * Multiple processes may "see" the same page. E.g. for untouched
966  * mappings of /dev/null, all processes see the same page full of
967  * zeroes, and text pages of executables and shared libraries have
968  * only one copy in memory, at most, normally.
969  *
970  * For the non-reserved pages, page_count(page) denotes a reference count.
971  *   page_count() == 0 means the page is free. page->lru is then used for
972  *   freelist management in the buddy allocator.
973  *   page_count() > 0  means the page has been allocated.
974  *
975  * Pages are allocated by the slab allocator in order to provide memory
976  * to kmalloc and kmem_cache_alloc. In this case, the management of the
977  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
978  * unless a particular usage is carefully commented. (the responsibility of
979  * freeing the kmalloc memory is the caller's, of course).
980  *
981  * A page may be used by anyone else who does a __get_free_page().
982  * In this case, page_count still tracks the references, and should only
983  * be used through the normal accessor functions. The top bits of page->flags
984  * and page->virtual store page management information, but all other fields
985  * are unused and could be used privately, carefully. The management of this
986  * page is the responsibility of the one who allocated it, and those who have
987  * subsequently been given references to it.
988  *
989  * The other pages (we may call them "pagecache pages") are completely
990  * managed by the Linux memory manager: I/O, buffers, swapping etc.
991  * The following discussion applies only to them.
992  *
993  * A pagecache page contains an opaque `private' member, which belongs to the
994  * page's address_space. Usually, this is the address of a circular list of
995  * the page's disk buffers. PG_private must be set to tell the VM to call
996  * into the filesystem to release these pages.
997  *
998  * A page may belong to an inode's memory mapping. In this case, page->mapping
999  * is the pointer to the inode, and page->index is the file offset of the page,
1000  * in units of PAGE_SIZE.
1001  *
1002  * If pagecache pages are not associated with an inode, they are said to be
1003  * anonymous pages. These may become associated with the swapcache, and in that
1004  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1005  *
1006  * In either case (swapcache or inode backed), the pagecache itself holds one
1007  * reference to the page. Setting PG_private should also increment the
1008  * refcount. The each user mapping also has a reference to the page.
1009  *
1010  * The pagecache pages are stored in a per-mapping radix tree, which is
1011  * rooted at mapping->i_pages, and indexed by offset.
1012  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1013  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1014  *
1015  * All pagecache pages may be subject to I/O:
1016  * - inode pages may need to be read from disk,
1017  * - inode pages which have been modified and are MAP_SHARED may need
1018  *   to be written back to the inode on disk,
1019  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1020  *   modified may need to be swapped out to swap space and (later) to be read
1021  *   back into memory.
1022  */
1023 
1024 /*
1025  * The zone field is never updated after free_area_init_core()
1026  * sets it, so none of the operations on it need to be atomic.
1027  */
1028 
1029 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1030 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1031 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1032 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1033 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1034 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1035 
1036 /*
1037  * Define the bit shifts to access each section.  For non-existent
1038  * sections we define the shift as 0; that plus a 0 mask ensures
1039  * the compiler will optimise away reference to them.
1040  */
1041 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1042 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1043 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1044 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1045 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1046 
1047 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1048 #ifdef NODE_NOT_IN_PAGE_FLAGS
1049 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1050 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1051 						SECTIONS_PGOFF : ZONES_PGOFF)
1052 #else
1053 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1054 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1055 						NODES_PGOFF : ZONES_PGOFF)
1056 #endif
1057 
1058 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1059 
1060 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1061 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1062 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1063 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1064 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1065 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1066 
1067 static inline enum zone_type page_zonenum(const struct page *page)
1068 {
1069 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1070 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1071 }
1072 
1073 static inline enum zone_type folio_zonenum(const struct folio *folio)
1074 {
1075 	return page_zonenum(&folio->page);
1076 }
1077 
1078 #ifdef CONFIG_ZONE_DEVICE
1079 static inline bool is_zone_device_page(const struct page *page)
1080 {
1081 	return page_zonenum(page) == ZONE_DEVICE;
1082 }
1083 extern void memmap_init_zone_device(struct zone *, unsigned long,
1084 				    unsigned long, struct dev_pagemap *);
1085 #else
1086 static inline bool is_zone_device_page(const struct page *page)
1087 {
1088 	return false;
1089 }
1090 #endif
1091 
1092 static inline bool is_zone_movable_page(const struct page *page)
1093 {
1094 	return page_zonenum(page) == ZONE_MOVABLE;
1095 }
1096 
1097 #ifdef CONFIG_DEV_PAGEMAP_OPS
1098 void free_devmap_managed_page(struct page *page);
1099 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1100 
1101 static inline bool page_is_devmap_managed(struct page *page)
1102 {
1103 	if (!static_branch_unlikely(&devmap_managed_key))
1104 		return false;
1105 	if (!is_zone_device_page(page))
1106 		return false;
1107 	switch (page->pgmap->type) {
1108 	case MEMORY_DEVICE_PRIVATE:
1109 	case MEMORY_DEVICE_FS_DAX:
1110 		return true;
1111 	default:
1112 		break;
1113 	}
1114 	return false;
1115 }
1116 
1117 void put_devmap_managed_page(struct page *page);
1118 
1119 #else /* CONFIG_DEV_PAGEMAP_OPS */
1120 static inline bool page_is_devmap_managed(struct page *page)
1121 {
1122 	return false;
1123 }
1124 
1125 static inline void put_devmap_managed_page(struct page *page)
1126 {
1127 }
1128 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1129 
1130 static inline bool is_device_private_page(const struct page *page)
1131 {
1132 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1133 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1134 		is_zone_device_page(page) &&
1135 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1136 }
1137 
1138 static inline bool is_pci_p2pdma_page(const struct page *page)
1139 {
1140 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1141 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1142 		is_zone_device_page(page) &&
1143 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1144 }
1145 
1146 /* 127: arbitrary random number, small enough to assemble well */
1147 #define folio_ref_zero_or_close_to_overflow(folio) \
1148 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1149 
1150 /**
1151  * folio_get - Increment the reference count on a folio.
1152  * @folio: The folio.
1153  *
1154  * Context: May be called in any context, as long as you know that
1155  * you have a refcount on the folio.  If you do not already have one,
1156  * folio_try_get() may be the right interface for you to use.
1157  */
1158 static inline void folio_get(struct folio *folio)
1159 {
1160 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1161 	folio_ref_inc(folio);
1162 }
1163 
1164 static inline void get_page(struct page *page)
1165 {
1166 	folio_get(page_folio(page));
1167 }
1168 
1169 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1170 struct page *try_grab_compound_head(struct page *page, int refs,
1171 				    unsigned int flags);
1172 
1173 
1174 static inline __must_check bool try_get_page(struct page *page)
1175 {
1176 	page = compound_head(page);
1177 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1178 		return false;
1179 	page_ref_inc(page);
1180 	return true;
1181 }
1182 
1183 /**
1184  * folio_put - Decrement the reference count on a folio.
1185  * @folio: The folio.
1186  *
1187  * If the folio's reference count reaches zero, the memory will be
1188  * released back to the page allocator and may be used by another
1189  * allocation immediately.  Do not access the memory or the struct folio
1190  * after calling folio_put() unless you can be sure that it wasn't the
1191  * last reference.
1192  *
1193  * Context: May be called in process or interrupt context, but not in NMI
1194  * context.  May be called while holding a spinlock.
1195  */
1196 static inline void folio_put(struct folio *folio)
1197 {
1198 	if (folio_put_testzero(folio))
1199 		__put_page(&folio->page);
1200 }
1201 
1202 static inline void put_page(struct page *page)
1203 {
1204 	struct folio *folio = page_folio(page);
1205 
1206 	/*
1207 	 * For devmap managed pages we need to catch refcount transition from
1208 	 * 2 to 1, when refcount reach one it means the page is free and we
1209 	 * need to inform the device driver through callback. See
1210 	 * include/linux/memremap.h and HMM for details.
1211 	 */
1212 	if (page_is_devmap_managed(&folio->page)) {
1213 		put_devmap_managed_page(&folio->page);
1214 		return;
1215 	}
1216 
1217 	folio_put(folio);
1218 }
1219 
1220 /*
1221  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1222  * the page's refcount so that two separate items are tracked: the original page
1223  * reference count, and also a new count of how many pin_user_pages() calls were
1224  * made against the page. ("gup-pinned" is another term for the latter).
1225  *
1226  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1227  * distinct from normal pages. As such, the unpin_user_page() call (and its
1228  * variants) must be used in order to release gup-pinned pages.
1229  *
1230  * Choice of value:
1231  *
1232  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1233  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1234  * simpler, due to the fact that adding an even power of two to the page
1235  * refcount has the effect of using only the upper N bits, for the code that
1236  * counts up using the bias value. This means that the lower bits are left for
1237  * the exclusive use of the original code that increments and decrements by one
1238  * (or at least, by much smaller values than the bias value).
1239  *
1240  * Of course, once the lower bits overflow into the upper bits (and this is
1241  * OK, because subtraction recovers the original values), then visual inspection
1242  * no longer suffices to directly view the separate counts. However, for normal
1243  * applications that don't have huge page reference counts, this won't be an
1244  * issue.
1245  *
1246  * Locking: the lockless algorithm described in page_cache_get_speculative()
1247  * and page_cache_gup_pin_speculative() provides safe operation for
1248  * get_user_pages and page_mkclean and other calls that race to set up page
1249  * table entries.
1250  */
1251 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1252 
1253 void unpin_user_page(struct page *page);
1254 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1255 				 bool make_dirty);
1256 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1257 				      bool make_dirty);
1258 void unpin_user_pages(struct page **pages, unsigned long npages);
1259 
1260 /**
1261  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1262  * @page: The page.
1263  *
1264  * This function checks if a page has been pinned via a call to
1265  * a function in the pin_user_pages() family.
1266  *
1267  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1268  * because it means "definitely not pinned for DMA", but true means "probably
1269  * pinned for DMA, but possibly a false positive due to having at least
1270  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1271  *
1272  * False positives are OK, because: a) it's unlikely for a page to get that many
1273  * refcounts, and b) all the callers of this routine are expected to be able to
1274  * deal gracefully with a false positive.
1275  *
1276  * For huge pages, the result will be exactly correct. That's because we have
1277  * more tracking data available: the 3rd struct page in the compound page is
1278  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1279  * scheme).
1280  *
1281  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1282  *
1283  * Return: True, if it is likely that the page has been "dma-pinned".
1284  * False, if the page is definitely not dma-pinned.
1285  */
1286 static inline bool page_maybe_dma_pinned(struct page *page)
1287 {
1288 	if (hpage_pincount_available(page))
1289 		return compound_pincount(page) > 0;
1290 
1291 	/*
1292 	 * page_ref_count() is signed. If that refcount overflows, then
1293 	 * page_ref_count() returns a negative value, and callers will avoid
1294 	 * further incrementing the refcount.
1295 	 *
1296 	 * Here, for that overflow case, use the signed bit to count a little
1297 	 * bit higher via unsigned math, and thus still get an accurate result.
1298 	 */
1299 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1300 		GUP_PIN_COUNTING_BIAS;
1301 }
1302 
1303 static inline bool is_cow_mapping(vm_flags_t flags)
1304 {
1305 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1306 }
1307 
1308 /*
1309  * This should most likely only be called during fork() to see whether we
1310  * should break the cow immediately for a page on the src mm.
1311  */
1312 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1313 					  struct page *page)
1314 {
1315 	if (!is_cow_mapping(vma->vm_flags))
1316 		return false;
1317 
1318 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1319 		return false;
1320 
1321 	return page_maybe_dma_pinned(page);
1322 }
1323 
1324 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1325 #define SECTION_IN_PAGE_FLAGS
1326 #endif
1327 
1328 /*
1329  * The identification function is mainly used by the buddy allocator for
1330  * determining if two pages could be buddies. We are not really identifying
1331  * the zone since we could be using the section number id if we do not have
1332  * node id available in page flags.
1333  * We only guarantee that it will return the same value for two combinable
1334  * pages in a zone.
1335  */
1336 static inline int page_zone_id(struct page *page)
1337 {
1338 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1339 }
1340 
1341 #ifdef NODE_NOT_IN_PAGE_FLAGS
1342 extern int page_to_nid(const struct page *page);
1343 #else
1344 static inline int page_to_nid(const struct page *page)
1345 {
1346 	struct page *p = (struct page *)page;
1347 
1348 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1349 }
1350 #endif
1351 
1352 static inline int folio_nid(const struct folio *folio)
1353 {
1354 	return page_to_nid(&folio->page);
1355 }
1356 
1357 #ifdef CONFIG_NUMA_BALANCING
1358 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1359 {
1360 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1361 }
1362 
1363 static inline int cpupid_to_pid(int cpupid)
1364 {
1365 	return cpupid & LAST__PID_MASK;
1366 }
1367 
1368 static inline int cpupid_to_cpu(int cpupid)
1369 {
1370 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1371 }
1372 
1373 static inline int cpupid_to_nid(int cpupid)
1374 {
1375 	return cpu_to_node(cpupid_to_cpu(cpupid));
1376 }
1377 
1378 static inline bool cpupid_pid_unset(int cpupid)
1379 {
1380 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1381 }
1382 
1383 static inline bool cpupid_cpu_unset(int cpupid)
1384 {
1385 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1386 }
1387 
1388 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1389 {
1390 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1391 }
1392 
1393 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1394 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1395 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1396 {
1397 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1398 }
1399 
1400 static inline int page_cpupid_last(struct page *page)
1401 {
1402 	return page->_last_cpupid;
1403 }
1404 static inline void page_cpupid_reset_last(struct page *page)
1405 {
1406 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1407 }
1408 #else
1409 static inline int page_cpupid_last(struct page *page)
1410 {
1411 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1412 }
1413 
1414 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1415 
1416 static inline void page_cpupid_reset_last(struct page *page)
1417 {
1418 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1419 }
1420 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1421 #else /* !CONFIG_NUMA_BALANCING */
1422 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1423 {
1424 	return page_to_nid(page); /* XXX */
1425 }
1426 
1427 static inline int page_cpupid_last(struct page *page)
1428 {
1429 	return page_to_nid(page); /* XXX */
1430 }
1431 
1432 static inline int cpupid_to_nid(int cpupid)
1433 {
1434 	return -1;
1435 }
1436 
1437 static inline int cpupid_to_pid(int cpupid)
1438 {
1439 	return -1;
1440 }
1441 
1442 static inline int cpupid_to_cpu(int cpupid)
1443 {
1444 	return -1;
1445 }
1446 
1447 static inline int cpu_pid_to_cpupid(int nid, int pid)
1448 {
1449 	return -1;
1450 }
1451 
1452 static inline bool cpupid_pid_unset(int cpupid)
1453 {
1454 	return true;
1455 }
1456 
1457 static inline void page_cpupid_reset_last(struct page *page)
1458 {
1459 }
1460 
1461 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1462 {
1463 	return false;
1464 }
1465 #endif /* CONFIG_NUMA_BALANCING */
1466 
1467 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1468 
1469 /*
1470  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1471  * setting tags for all pages to native kernel tag value 0xff, as the default
1472  * value 0x00 maps to 0xff.
1473  */
1474 
1475 static inline u8 page_kasan_tag(const struct page *page)
1476 {
1477 	u8 tag = 0xff;
1478 
1479 	if (kasan_enabled()) {
1480 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1481 		tag ^= 0xff;
1482 	}
1483 
1484 	return tag;
1485 }
1486 
1487 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1488 {
1489 	if (kasan_enabled()) {
1490 		tag ^= 0xff;
1491 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1492 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1493 	}
1494 }
1495 
1496 static inline void page_kasan_tag_reset(struct page *page)
1497 {
1498 	if (kasan_enabled())
1499 		page_kasan_tag_set(page, 0xff);
1500 }
1501 
1502 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1503 
1504 static inline u8 page_kasan_tag(const struct page *page)
1505 {
1506 	return 0xff;
1507 }
1508 
1509 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1510 static inline void page_kasan_tag_reset(struct page *page) { }
1511 
1512 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1513 
1514 static inline struct zone *page_zone(const struct page *page)
1515 {
1516 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1517 }
1518 
1519 static inline pg_data_t *page_pgdat(const struct page *page)
1520 {
1521 	return NODE_DATA(page_to_nid(page));
1522 }
1523 
1524 static inline struct zone *folio_zone(const struct folio *folio)
1525 {
1526 	return page_zone(&folio->page);
1527 }
1528 
1529 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1530 {
1531 	return page_pgdat(&folio->page);
1532 }
1533 
1534 #ifdef SECTION_IN_PAGE_FLAGS
1535 static inline void set_page_section(struct page *page, unsigned long section)
1536 {
1537 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1538 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1539 }
1540 
1541 static inline unsigned long page_to_section(const struct page *page)
1542 {
1543 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1544 }
1545 #endif
1546 
1547 /**
1548  * folio_pfn - Return the Page Frame Number of a folio.
1549  * @folio: The folio.
1550  *
1551  * A folio may contain multiple pages.  The pages have consecutive
1552  * Page Frame Numbers.
1553  *
1554  * Return: The Page Frame Number of the first page in the folio.
1555  */
1556 static inline unsigned long folio_pfn(struct folio *folio)
1557 {
1558 	return page_to_pfn(&folio->page);
1559 }
1560 
1561 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1562 #ifdef CONFIG_MIGRATION
1563 static inline bool is_pinnable_page(struct page *page)
1564 {
1565 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1566 		is_zero_pfn(page_to_pfn(page));
1567 }
1568 #else
1569 static inline bool is_pinnable_page(struct page *page)
1570 {
1571 	return true;
1572 }
1573 #endif
1574 
1575 static inline void set_page_zone(struct page *page, enum zone_type zone)
1576 {
1577 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1578 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1579 }
1580 
1581 static inline void set_page_node(struct page *page, unsigned long node)
1582 {
1583 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1584 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1585 }
1586 
1587 static inline void set_page_links(struct page *page, enum zone_type zone,
1588 	unsigned long node, unsigned long pfn)
1589 {
1590 	set_page_zone(page, zone);
1591 	set_page_node(page, node);
1592 #ifdef SECTION_IN_PAGE_FLAGS
1593 	set_page_section(page, pfn_to_section_nr(pfn));
1594 #endif
1595 }
1596 
1597 /**
1598  * folio_nr_pages - The number of pages in the folio.
1599  * @folio: The folio.
1600  *
1601  * Return: A positive power of two.
1602  */
1603 static inline long folio_nr_pages(struct folio *folio)
1604 {
1605 	return compound_nr(&folio->page);
1606 }
1607 
1608 /**
1609  * folio_next - Move to the next physical folio.
1610  * @folio: The folio we're currently operating on.
1611  *
1612  * If you have physically contiguous memory which may span more than
1613  * one folio (eg a &struct bio_vec), use this function to move from one
1614  * folio to the next.  Do not use it if the memory is only virtually
1615  * contiguous as the folios are almost certainly not adjacent to each
1616  * other.  This is the folio equivalent to writing ``page++``.
1617  *
1618  * Context: We assume that the folios are refcounted and/or locked at a
1619  * higher level and do not adjust the reference counts.
1620  * Return: The next struct folio.
1621  */
1622 static inline struct folio *folio_next(struct folio *folio)
1623 {
1624 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1625 }
1626 
1627 /**
1628  * folio_shift - The size of the memory described by this folio.
1629  * @folio: The folio.
1630  *
1631  * A folio represents a number of bytes which is a power-of-two in size.
1632  * This function tells you which power-of-two the folio is.  See also
1633  * folio_size() and folio_order().
1634  *
1635  * Context: The caller should have a reference on the folio to prevent
1636  * it from being split.  It is not necessary for the folio to be locked.
1637  * Return: The base-2 logarithm of the size of this folio.
1638  */
1639 static inline unsigned int folio_shift(struct folio *folio)
1640 {
1641 	return PAGE_SHIFT + folio_order(folio);
1642 }
1643 
1644 /**
1645  * folio_size - The number of bytes in a folio.
1646  * @folio: The folio.
1647  *
1648  * Context: The caller should have a reference on the folio to prevent
1649  * it from being split.  It is not necessary for the folio to be locked.
1650  * Return: The number of bytes in this folio.
1651  */
1652 static inline size_t folio_size(struct folio *folio)
1653 {
1654 	return PAGE_SIZE << folio_order(folio);
1655 }
1656 
1657 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1658 static inline int arch_make_page_accessible(struct page *page)
1659 {
1660 	return 0;
1661 }
1662 #endif
1663 
1664 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1665 static inline int arch_make_folio_accessible(struct folio *folio)
1666 {
1667 	int ret;
1668 	long i, nr = folio_nr_pages(folio);
1669 
1670 	for (i = 0; i < nr; i++) {
1671 		ret = arch_make_page_accessible(folio_page(folio, i));
1672 		if (ret)
1673 			break;
1674 	}
1675 
1676 	return ret;
1677 }
1678 #endif
1679 
1680 /*
1681  * Some inline functions in vmstat.h depend on page_zone()
1682  */
1683 #include <linux/vmstat.h>
1684 
1685 static __always_inline void *lowmem_page_address(const struct page *page)
1686 {
1687 	return page_to_virt(page);
1688 }
1689 
1690 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1691 #define HASHED_PAGE_VIRTUAL
1692 #endif
1693 
1694 #if defined(WANT_PAGE_VIRTUAL)
1695 static inline void *page_address(const struct page *page)
1696 {
1697 	return page->virtual;
1698 }
1699 static inline void set_page_address(struct page *page, void *address)
1700 {
1701 	page->virtual = address;
1702 }
1703 #define page_address_init()  do { } while(0)
1704 #endif
1705 
1706 #if defined(HASHED_PAGE_VIRTUAL)
1707 void *page_address(const struct page *page);
1708 void set_page_address(struct page *page, void *virtual);
1709 void page_address_init(void);
1710 #endif
1711 
1712 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1713 #define page_address(page) lowmem_page_address(page)
1714 #define set_page_address(page, address)  do { } while(0)
1715 #define page_address_init()  do { } while(0)
1716 #endif
1717 
1718 static inline void *folio_address(const struct folio *folio)
1719 {
1720 	return page_address(&folio->page);
1721 }
1722 
1723 extern void *page_rmapping(struct page *page);
1724 extern struct anon_vma *page_anon_vma(struct page *page);
1725 extern pgoff_t __page_file_index(struct page *page);
1726 
1727 /*
1728  * Return the pagecache index of the passed page.  Regular pagecache pages
1729  * use ->index whereas swapcache pages use swp_offset(->private)
1730  */
1731 static inline pgoff_t page_index(struct page *page)
1732 {
1733 	if (unlikely(PageSwapCache(page)))
1734 		return __page_file_index(page);
1735 	return page->index;
1736 }
1737 
1738 bool page_mapped(struct page *page);
1739 bool folio_mapped(struct folio *folio);
1740 
1741 /*
1742  * Return true only if the page has been allocated with
1743  * ALLOC_NO_WATERMARKS and the low watermark was not
1744  * met implying that the system is under some pressure.
1745  */
1746 static inline bool page_is_pfmemalloc(const struct page *page)
1747 {
1748 	/*
1749 	 * lru.next has bit 1 set if the page is allocated from the
1750 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1751 	 * they do not need to preserve that information.
1752 	 */
1753 	return (uintptr_t)page->lru.next & BIT(1);
1754 }
1755 
1756 /*
1757  * Only to be called by the page allocator on a freshly allocated
1758  * page.
1759  */
1760 static inline void set_page_pfmemalloc(struct page *page)
1761 {
1762 	page->lru.next = (void *)BIT(1);
1763 }
1764 
1765 static inline void clear_page_pfmemalloc(struct page *page)
1766 {
1767 	page->lru.next = NULL;
1768 }
1769 
1770 /*
1771  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1772  */
1773 extern void pagefault_out_of_memory(void);
1774 
1775 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1776 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1777 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1778 
1779 /*
1780  * Flags passed to show_mem() and show_free_areas() to suppress output in
1781  * various contexts.
1782  */
1783 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1784 
1785 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1786 
1787 #ifdef CONFIG_MMU
1788 extern bool can_do_mlock(void);
1789 #else
1790 static inline bool can_do_mlock(void) { return false; }
1791 #endif
1792 extern int user_shm_lock(size_t, struct ucounts *);
1793 extern void user_shm_unlock(size_t, struct ucounts *);
1794 
1795 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1796 			     pte_t pte);
1797 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1798 				pmd_t pmd);
1799 
1800 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1801 		  unsigned long size);
1802 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1803 		    unsigned long size);
1804 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1805 		unsigned long start, unsigned long end);
1806 
1807 struct mmu_notifier_range;
1808 
1809 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1810 		unsigned long end, unsigned long floor, unsigned long ceiling);
1811 int
1812 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1813 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1814 			  struct mmu_notifier_range *range, pte_t **ptepp,
1815 			  pmd_t **pmdpp, spinlock_t **ptlp);
1816 int follow_pte(struct mm_struct *mm, unsigned long address,
1817 	       pte_t **ptepp, spinlock_t **ptlp);
1818 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1819 	unsigned long *pfn);
1820 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1821 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1822 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1823 			void *buf, int len, int write);
1824 
1825 extern void truncate_pagecache(struct inode *inode, loff_t new);
1826 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1827 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1828 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1829 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1830 int invalidate_inode_page(struct page *page);
1831 
1832 #ifdef CONFIG_MMU
1833 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1834 				  unsigned long address, unsigned int flags,
1835 				  struct pt_regs *regs);
1836 extern int fixup_user_fault(struct mm_struct *mm,
1837 			    unsigned long address, unsigned int fault_flags,
1838 			    bool *unlocked);
1839 void unmap_mapping_pages(struct address_space *mapping,
1840 		pgoff_t start, pgoff_t nr, bool even_cows);
1841 void unmap_mapping_range(struct address_space *mapping,
1842 		loff_t const holebegin, loff_t const holelen, int even_cows);
1843 #else
1844 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1845 					 unsigned long address, unsigned int flags,
1846 					 struct pt_regs *regs)
1847 {
1848 	/* should never happen if there's no MMU */
1849 	BUG();
1850 	return VM_FAULT_SIGBUS;
1851 }
1852 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1853 		unsigned int fault_flags, bool *unlocked)
1854 {
1855 	/* should never happen if there's no MMU */
1856 	BUG();
1857 	return -EFAULT;
1858 }
1859 static inline void unmap_mapping_pages(struct address_space *mapping,
1860 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1861 static inline void unmap_mapping_range(struct address_space *mapping,
1862 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1863 #endif
1864 
1865 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1866 		loff_t const holebegin, loff_t const holelen)
1867 {
1868 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1869 }
1870 
1871 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1872 		void *buf, int len, unsigned int gup_flags);
1873 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1874 		void *buf, int len, unsigned int gup_flags);
1875 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1876 			      void *buf, int len, unsigned int gup_flags);
1877 
1878 long get_user_pages_remote(struct mm_struct *mm,
1879 			    unsigned long start, unsigned long nr_pages,
1880 			    unsigned int gup_flags, struct page **pages,
1881 			    struct vm_area_struct **vmas, int *locked);
1882 long pin_user_pages_remote(struct mm_struct *mm,
1883 			   unsigned long start, unsigned long nr_pages,
1884 			   unsigned int gup_flags, struct page **pages,
1885 			   struct vm_area_struct **vmas, int *locked);
1886 long get_user_pages(unsigned long start, unsigned long nr_pages,
1887 			    unsigned int gup_flags, struct page **pages,
1888 			    struct vm_area_struct **vmas);
1889 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1890 		    unsigned int gup_flags, struct page **pages,
1891 		    struct vm_area_struct **vmas);
1892 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1893 		    unsigned int gup_flags, struct page **pages, int *locked);
1894 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1895 		    unsigned int gup_flags, struct page **pages, int *locked);
1896 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1897 		    struct page **pages, unsigned int gup_flags);
1898 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1899 		    struct page **pages, unsigned int gup_flags);
1900 
1901 int get_user_pages_fast(unsigned long start, int nr_pages,
1902 			unsigned int gup_flags, struct page **pages);
1903 int pin_user_pages_fast(unsigned long start, int nr_pages,
1904 			unsigned int gup_flags, struct page **pages);
1905 
1906 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1907 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1908 			struct task_struct *task, bool bypass_rlim);
1909 
1910 struct kvec;
1911 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1912 			struct page **pages);
1913 struct page *get_dump_page(unsigned long addr);
1914 
1915 extern void do_invalidatepage(struct page *page, unsigned int offset,
1916 			      unsigned int length);
1917 
1918 bool folio_mark_dirty(struct folio *folio);
1919 bool set_page_dirty(struct page *page);
1920 int set_page_dirty_lock(struct page *page);
1921 
1922 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1923 
1924 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1925 		unsigned long old_addr, struct vm_area_struct *new_vma,
1926 		unsigned long new_addr, unsigned long len,
1927 		bool need_rmap_locks);
1928 
1929 /*
1930  * Flags used by change_protection().  For now we make it a bitmap so
1931  * that we can pass in multiple flags just like parameters.  However
1932  * for now all the callers are only use one of the flags at the same
1933  * time.
1934  */
1935 /* Whether we should allow dirty bit accounting */
1936 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1937 /* Whether this protection change is for NUMA hints */
1938 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1939 /* Whether this change is for write protecting */
1940 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1941 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1942 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1943 					    MM_CP_UFFD_WP_RESOLVE)
1944 
1945 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1946 			      unsigned long end, pgprot_t newprot,
1947 			      unsigned long cp_flags);
1948 extern int mprotect_fixup(struct vm_area_struct *vma,
1949 			  struct vm_area_struct **pprev, unsigned long start,
1950 			  unsigned long end, unsigned long newflags);
1951 
1952 /*
1953  * doesn't attempt to fault and will return short.
1954  */
1955 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1956 			     unsigned int gup_flags, struct page **pages);
1957 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1958 			     unsigned int gup_flags, struct page **pages);
1959 
1960 static inline bool get_user_page_fast_only(unsigned long addr,
1961 			unsigned int gup_flags, struct page **pagep)
1962 {
1963 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1964 }
1965 /*
1966  * per-process(per-mm_struct) statistics.
1967  */
1968 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1969 {
1970 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1971 
1972 #ifdef SPLIT_RSS_COUNTING
1973 	/*
1974 	 * counter is updated in asynchronous manner and may go to minus.
1975 	 * But it's never be expected number for users.
1976 	 */
1977 	if (val < 0)
1978 		val = 0;
1979 #endif
1980 	return (unsigned long)val;
1981 }
1982 
1983 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1984 
1985 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1986 {
1987 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1988 
1989 	mm_trace_rss_stat(mm, member, count);
1990 }
1991 
1992 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1993 {
1994 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1995 
1996 	mm_trace_rss_stat(mm, member, count);
1997 }
1998 
1999 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2000 {
2001 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2002 
2003 	mm_trace_rss_stat(mm, member, count);
2004 }
2005 
2006 /* Optimized variant when page is already known not to be PageAnon */
2007 static inline int mm_counter_file(struct page *page)
2008 {
2009 	if (PageSwapBacked(page))
2010 		return MM_SHMEMPAGES;
2011 	return MM_FILEPAGES;
2012 }
2013 
2014 static inline int mm_counter(struct page *page)
2015 {
2016 	if (PageAnon(page))
2017 		return MM_ANONPAGES;
2018 	return mm_counter_file(page);
2019 }
2020 
2021 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2022 {
2023 	return get_mm_counter(mm, MM_FILEPAGES) +
2024 		get_mm_counter(mm, MM_ANONPAGES) +
2025 		get_mm_counter(mm, MM_SHMEMPAGES);
2026 }
2027 
2028 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2029 {
2030 	return max(mm->hiwater_rss, get_mm_rss(mm));
2031 }
2032 
2033 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2034 {
2035 	return max(mm->hiwater_vm, mm->total_vm);
2036 }
2037 
2038 static inline void update_hiwater_rss(struct mm_struct *mm)
2039 {
2040 	unsigned long _rss = get_mm_rss(mm);
2041 
2042 	if ((mm)->hiwater_rss < _rss)
2043 		(mm)->hiwater_rss = _rss;
2044 }
2045 
2046 static inline void update_hiwater_vm(struct mm_struct *mm)
2047 {
2048 	if (mm->hiwater_vm < mm->total_vm)
2049 		mm->hiwater_vm = mm->total_vm;
2050 }
2051 
2052 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2053 {
2054 	mm->hiwater_rss = get_mm_rss(mm);
2055 }
2056 
2057 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2058 					 struct mm_struct *mm)
2059 {
2060 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2061 
2062 	if (*maxrss < hiwater_rss)
2063 		*maxrss = hiwater_rss;
2064 }
2065 
2066 #if defined(SPLIT_RSS_COUNTING)
2067 void sync_mm_rss(struct mm_struct *mm);
2068 #else
2069 static inline void sync_mm_rss(struct mm_struct *mm)
2070 {
2071 }
2072 #endif
2073 
2074 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2075 static inline int pte_special(pte_t pte)
2076 {
2077 	return 0;
2078 }
2079 
2080 static inline pte_t pte_mkspecial(pte_t pte)
2081 {
2082 	return pte;
2083 }
2084 #endif
2085 
2086 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2087 static inline int pte_devmap(pte_t pte)
2088 {
2089 	return 0;
2090 }
2091 #endif
2092 
2093 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2094 
2095 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2096 			       spinlock_t **ptl);
2097 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2098 				    spinlock_t **ptl)
2099 {
2100 	pte_t *ptep;
2101 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2102 	return ptep;
2103 }
2104 
2105 #ifdef __PAGETABLE_P4D_FOLDED
2106 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2107 						unsigned long address)
2108 {
2109 	return 0;
2110 }
2111 #else
2112 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2113 #endif
2114 
2115 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2116 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2117 						unsigned long address)
2118 {
2119 	return 0;
2120 }
2121 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2122 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2123 
2124 #else
2125 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2126 
2127 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2128 {
2129 	if (mm_pud_folded(mm))
2130 		return;
2131 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2132 }
2133 
2134 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2135 {
2136 	if (mm_pud_folded(mm))
2137 		return;
2138 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2139 }
2140 #endif
2141 
2142 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2143 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2144 						unsigned long address)
2145 {
2146 	return 0;
2147 }
2148 
2149 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2150 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2151 
2152 #else
2153 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2154 
2155 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2156 {
2157 	if (mm_pmd_folded(mm))
2158 		return;
2159 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2160 }
2161 
2162 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2163 {
2164 	if (mm_pmd_folded(mm))
2165 		return;
2166 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2167 }
2168 #endif
2169 
2170 #ifdef CONFIG_MMU
2171 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2172 {
2173 	atomic_long_set(&mm->pgtables_bytes, 0);
2174 }
2175 
2176 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2177 {
2178 	return atomic_long_read(&mm->pgtables_bytes);
2179 }
2180 
2181 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2182 {
2183 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2184 }
2185 
2186 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2187 {
2188 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2189 }
2190 #else
2191 
2192 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2193 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2194 {
2195 	return 0;
2196 }
2197 
2198 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2199 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2200 #endif
2201 
2202 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2203 int __pte_alloc_kernel(pmd_t *pmd);
2204 
2205 #if defined(CONFIG_MMU)
2206 
2207 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2208 		unsigned long address)
2209 {
2210 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2211 		NULL : p4d_offset(pgd, address);
2212 }
2213 
2214 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2215 		unsigned long address)
2216 {
2217 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2218 		NULL : pud_offset(p4d, address);
2219 }
2220 
2221 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2222 {
2223 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2224 		NULL: pmd_offset(pud, address);
2225 }
2226 #endif /* CONFIG_MMU */
2227 
2228 #if USE_SPLIT_PTE_PTLOCKS
2229 #if ALLOC_SPLIT_PTLOCKS
2230 void __init ptlock_cache_init(void);
2231 extern bool ptlock_alloc(struct page *page);
2232 extern void ptlock_free(struct page *page);
2233 
2234 static inline spinlock_t *ptlock_ptr(struct page *page)
2235 {
2236 	return page->ptl;
2237 }
2238 #else /* ALLOC_SPLIT_PTLOCKS */
2239 static inline void ptlock_cache_init(void)
2240 {
2241 }
2242 
2243 static inline bool ptlock_alloc(struct page *page)
2244 {
2245 	return true;
2246 }
2247 
2248 static inline void ptlock_free(struct page *page)
2249 {
2250 }
2251 
2252 static inline spinlock_t *ptlock_ptr(struct page *page)
2253 {
2254 	return &page->ptl;
2255 }
2256 #endif /* ALLOC_SPLIT_PTLOCKS */
2257 
2258 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2259 {
2260 	return ptlock_ptr(pmd_page(*pmd));
2261 }
2262 
2263 static inline bool ptlock_init(struct page *page)
2264 {
2265 	/*
2266 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2267 	 * with 0. Make sure nobody took it in use in between.
2268 	 *
2269 	 * It can happen if arch try to use slab for page table allocation:
2270 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2271 	 */
2272 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2273 	if (!ptlock_alloc(page))
2274 		return false;
2275 	spin_lock_init(ptlock_ptr(page));
2276 	return true;
2277 }
2278 
2279 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2280 /*
2281  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2282  */
2283 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2284 {
2285 	return &mm->page_table_lock;
2286 }
2287 static inline void ptlock_cache_init(void) {}
2288 static inline bool ptlock_init(struct page *page) { return true; }
2289 static inline void ptlock_free(struct page *page) {}
2290 #endif /* USE_SPLIT_PTE_PTLOCKS */
2291 
2292 static inline void pgtable_init(void)
2293 {
2294 	ptlock_cache_init();
2295 	pgtable_cache_init();
2296 }
2297 
2298 static inline bool pgtable_pte_page_ctor(struct page *page)
2299 {
2300 	if (!ptlock_init(page))
2301 		return false;
2302 	__SetPageTable(page);
2303 	inc_lruvec_page_state(page, NR_PAGETABLE);
2304 	return true;
2305 }
2306 
2307 static inline void pgtable_pte_page_dtor(struct page *page)
2308 {
2309 	ptlock_free(page);
2310 	__ClearPageTable(page);
2311 	dec_lruvec_page_state(page, NR_PAGETABLE);
2312 }
2313 
2314 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2315 ({							\
2316 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2317 	pte_t *__pte = pte_offset_map(pmd, address);	\
2318 	*(ptlp) = __ptl;				\
2319 	spin_lock(__ptl);				\
2320 	__pte;						\
2321 })
2322 
2323 #define pte_unmap_unlock(pte, ptl)	do {		\
2324 	spin_unlock(ptl);				\
2325 	pte_unmap(pte);					\
2326 } while (0)
2327 
2328 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2329 
2330 #define pte_alloc_map(mm, pmd, address)			\
2331 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2332 
2333 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2334 	(pte_alloc(mm, pmd) ?			\
2335 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2336 
2337 #define pte_alloc_kernel(pmd, address)			\
2338 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2339 		NULL: pte_offset_kernel(pmd, address))
2340 
2341 #if USE_SPLIT_PMD_PTLOCKS
2342 
2343 static struct page *pmd_to_page(pmd_t *pmd)
2344 {
2345 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2346 	return virt_to_page((void *)((unsigned long) pmd & mask));
2347 }
2348 
2349 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2350 {
2351 	return ptlock_ptr(pmd_to_page(pmd));
2352 }
2353 
2354 static inline bool pmd_ptlock_init(struct page *page)
2355 {
2356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2357 	page->pmd_huge_pte = NULL;
2358 #endif
2359 	return ptlock_init(page);
2360 }
2361 
2362 static inline void pmd_ptlock_free(struct page *page)
2363 {
2364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2365 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2366 #endif
2367 	ptlock_free(page);
2368 }
2369 
2370 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2371 
2372 #else
2373 
2374 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2375 {
2376 	return &mm->page_table_lock;
2377 }
2378 
2379 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2380 static inline void pmd_ptlock_free(struct page *page) {}
2381 
2382 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2383 
2384 #endif
2385 
2386 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2387 {
2388 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2389 	spin_lock(ptl);
2390 	return ptl;
2391 }
2392 
2393 static inline bool pgtable_pmd_page_ctor(struct page *page)
2394 {
2395 	if (!pmd_ptlock_init(page))
2396 		return false;
2397 	__SetPageTable(page);
2398 	inc_lruvec_page_state(page, NR_PAGETABLE);
2399 	return true;
2400 }
2401 
2402 static inline void pgtable_pmd_page_dtor(struct page *page)
2403 {
2404 	pmd_ptlock_free(page);
2405 	__ClearPageTable(page);
2406 	dec_lruvec_page_state(page, NR_PAGETABLE);
2407 }
2408 
2409 /*
2410  * No scalability reason to split PUD locks yet, but follow the same pattern
2411  * as the PMD locks to make it easier if we decide to.  The VM should not be
2412  * considered ready to switch to split PUD locks yet; there may be places
2413  * which need to be converted from page_table_lock.
2414  */
2415 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2416 {
2417 	return &mm->page_table_lock;
2418 }
2419 
2420 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2421 {
2422 	spinlock_t *ptl = pud_lockptr(mm, pud);
2423 
2424 	spin_lock(ptl);
2425 	return ptl;
2426 }
2427 
2428 extern void __init pagecache_init(void);
2429 extern void __init free_area_init_memoryless_node(int nid);
2430 extern void free_initmem(void);
2431 
2432 /*
2433  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2434  * into the buddy system. The freed pages will be poisoned with pattern
2435  * "poison" if it's within range [0, UCHAR_MAX].
2436  * Return pages freed into the buddy system.
2437  */
2438 extern unsigned long free_reserved_area(void *start, void *end,
2439 					int poison, const char *s);
2440 
2441 extern void adjust_managed_page_count(struct page *page, long count);
2442 extern void mem_init_print_info(void);
2443 
2444 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2445 
2446 /* Free the reserved page into the buddy system, so it gets managed. */
2447 static inline void free_reserved_page(struct page *page)
2448 {
2449 	ClearPageReserved(page);
2450 	init_page_count(page);
2451 	__free_page(page);
2452 	adjust_managed_page_count(page, 1);
2453 }
2454 #define free_highmem_page(page) free_reserved_page(page)
2455 
2456 static inline void mark_page_reserved(struct page *page)
2457 {
2458 	SetPageReserved(page);
2459 	adjust_managed_page_count(page, -1);
2460 }
2461 
2462 /*
2463  * Default method to free all the __init memory into the buddy system.
2464  * The freed pages will be poisoned with pattern "poison" if it's within
2465  * range [0, UCHAR_MAX].
2466  * Return pages freed into the buddy system.
2467  */
2468 static inline unsigned long free_initmem_default(int poison)
2469 {
2470 	extern char __init_begin[], __init_end[];
2471 
2472 	return free_reserved_area(&__init_begin, &__init_end,
2473 				  poison, "unused kernel image (initmem)");
2474 }
2475 
2476 static inline unsigned long get_num_physpages(void)
2477 {
2478 	int nid;
2479 	unsigned long phys_pages = 0;
2480 
2481 	for_each_online_node(nid)
2482 		phys_pages += node_present_pages(nid);
2483 
2484 	return phys_pages;
2485 }
2486 
2487 /*
2488  * Using memblock node mappings, an architecture may initialise its
2489  * zones, allocate the backing mem_map and account for memory holes in an
2490  * architecture independent manner.
2491  *
2492  * An architecture is expected to register range of page frames backed by
2493  * physical memory with memblock_add[_node]() before calling
2494  * free_area_init() passing in the PFN each zone ends at. At a basic
2495  * usage, an architecture is expected to do something like
2496  *
2497  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2498  * 							 max_highmem_pfn};
2499  * for_each_valid_physical_page_range()
2500  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2501  * free_area_init(max_zone_pfns);
2502  */
2503 void free_area_init(unsigned long *max_zone_pfn);
2504 unsigned long node_map_pfn_alignment(void);
2505 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2506 						unsigned long end_pfn);
2507 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2508 						unsigned long end_pfn);
2509 extern void get_pfn_range_for_nid(unsigned int nid,
2510 			unsigned long *start_pfn, unsigned long *end_pfn);
2511 extern unsigned long find_min_pfn_with_active_regions(void);
2512 
2513 #ifndef CONFIG_NUMA
2514 static inline int early_pfn_to_nid(unsigned long pfn)
2515 {
2516 	return 0;
2517 }
2518 #else
2519 /* please see mm/page_alloc.c */
2520 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2521 #endif
2522 
2523 extern void set_dma_reserve(unsigned long new_dma_reserve);
2524 extern void memmap_init_range(unsigned long, int, unsigned long,
2525 		unsigned long, unsigned long, enum meminit_context,
2526 		struct vmem_altmap *, int migratetype);
2527 extern void setup_per_zone_wmarks(void);
2528 extern void calculate_min_free_kbytes(void);
2529 extern int __meminit init_per_zone_wmark_min(void);
2530 extern void mem_init(void);
2531 extern void __init mmap_init(void);
2532 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2533 extern long si_mem_available(void);
2534 extern void si_meminfo(struct sysinfo * val);
2535 extern void si_meminfo_node(struct sysinfo *val, int nid);
2536 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2537 extern unsigned long arch_reserved_kernel_pages(void);
2538 #endif
2539 
2540 extern __printf(3, 4)
2541 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2542 
2543 extern void setup_per_cpu_pageset(void);
2544 
2545 /* page_alloc.c */
2546 extern int min_free_kbytes;
2547 extern int watermark_boost_factor;
2548 extern int watermark_scale_factor;
2549 extern bool arch_has_descending_max_zone_pfns(void);
2550 
2551 /* nommu.c */
2552 extern atomic_long_t mmap_pages_allocated;
2553 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2554 
2555 /* interval_tree.c */
2556 void vma_interval_tree_insert(struct vm_area_struct *node,
2557 			      struct rb_root_cached *root);
2558 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2559 				    struct vm_area_struct *prev,
2560 				    struct rb_root_cached *root);
2561 void vma_interval_tree_remove(struct vm_area_struct *node,
2562 			      struct rb_root_cached *root);
2563 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2564 				unsigned long start, unsigned long last);
2565 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2566 				unsigned long start, unsigned long last);
2567 
2568 #define vma_interval_tree_foreach(vma, root, start, last)		\
2569 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2570 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2571 
2572 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2573 				   struct rb_root_cached *root);
2574 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2575 				   struct rb_root_cached *root);
2576 struct anon_vma_chain *
2577 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2578 				  unsigned long start, unsigned long last);
2579 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2580 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2581 #ifdef CONFIG_DEBUG_VM_RB
2582 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2583 #endif
2584 
2585 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2586 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2587 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2588 
2589 /* mmap.c */
2590 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2591 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2592 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2593 	struct vm_area_struct *expand);
2594 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2595 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2596 {
2597 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2598 }
2599 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2600 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2601 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2602 	struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
2603 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2604 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2605 	unsigned long addr, int new_below);
2606 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2607 	unsigned long addr, int new_below);
2608 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2609 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2610 	struct rb_node **, struct rb_node *);
2611 extern void unlink_file_vma(struct vm_area_struct *);
2612 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2613 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2614 	bool *need_rmap_locks);
2615 extern void exit_mmap(struct mm_struct *);
2616 
2617 static inline int check_data_rlimit(unsigned long rlim,
2618 				    unsigned long new,
2619 				    unsigned long start,
2620 				    unsigned long end_data,
2621 				    unsigned long start_data)
2622 {
2623 	if (rlim < RLIM_INFINITY) {
2624 		if (((new - start) + (end_data - start_data)) > rlim)
2625 			return -ENOSPC;
2626 	}
2627 
2628 	return 0;
2629 }
2630 
2631 extern int mm_take_all_locks(struct mm_struct *mm);
2632 extern void mm_drop_all_locks(struct mm_struct *mm);
2633 
2634 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2635 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2636 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2637 extern struct file *get_task_exe_file(struct task_struct *task);
2638 
2639 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2640 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2641 
2642 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2643 				   const struct vm_special_mapping *sm);
2644 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2645 				   unsigned long addr, unsigned long len,
2646 				   unsigned long flags,
2647 				   const struct vm_special_mapping *spec);
2648 /* This is an obsolete alternative to _install_special_mapping. */
2649 extern int install_special_mapping(struct mm_struct *mm,
2650 				   unsigned long addr, unsigned long len,
2651 				   unsigned long flags, struct page **pages);
2652 
2653 unsigned long randomize_stack_top(unsigned long stack_top);
2654 
2655 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2656 
2657 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2658 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2659 	struct list_head *uf);
2660 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2661 	unsigned long len, unsigned long prot, unsigned long flags,
2662 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2663 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2664 		       struct list_head *uf, bool downgrade);
2665 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2666 		     struct list_head *uf);
2667 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2668 
2669 #ifdef CONFIG_MMU
2670 extern int __mm_populate(unsigned long addr, unsigned long len,
2671 			 int ignore_errors);
2672 static inline void mm_populate(unsigned long addr, unsigned long len)
2673 {
2674 	/* Ignore errors */
2675 	(void) __mm_populate(addr, len, 1);
2676 }
2677 #else
2678 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2679 #endif
2680 
2681 /* These take the mm semaphore themselves */
2682 extern int __must_check vm_brk(unsigned long, unsigned long);
2683 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2684 extern int vm_munmap(unsigned long, size_t);
2685 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2686         unsigned long, unsigned long,
2687         unsigned long, unsigned long);
2688 
2689 struct vm_unmapped_area_info {
2690 #define VM_UNMAPPED_AREA_TOPDOWN 1
2691 	unsigned long flags;
2692 	unsigned long length;
2693 	unsigned long low_limit;
2694 	unsigned long high_limit;
2695 	unsigned long align_mask;
2696 	unsigned long align_offset;
2697 };
2698 
2699 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2700 
2701 /* truncate.c */
2702 extern void truncate_inode_pages(struct address_space *, loff_t);
2703 extern void truncate_inode_pages_range(struct address_space *,
2704 				       loff_t lstart, loff_t lend);
2705 extern void truncate_inode_pages_final(struct address_space *);
2706 
2707 /* generic vm_area_ops exported for stackable file systems */
2708 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2709 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2710 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2711 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2712 
2713 extern unsigned long stack_guard_gap;
2714 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2715 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2716 
2717 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2718 extern int expand_downwards(struct vm_area_struct *vma,
2719 		unsigned long address);
2720 #if VM_GROWSUP
2721 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2722 #else
2723   #define expand_upwards(vma, address) (0)
2724 #endif
2725 
2726 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2727 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2728 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2729 					     struct vm_area_struct **pprev);
2730 
2731 /**
2732  * find_vma_intersection() - Look up the first VMA which intersects the interval
2733  * @mm: The process address space.
2734  * @start_addr: The inclusive start user address.
2735  * @end_addr: The exclusive end user address.
2736  *
2737  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2738  * start_addr < end_addr.
2739  */
2740 static inline
2741 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2742 					     unsigned long start_addr,
2743 					     unsigned long end_addr)
2744 {
2745 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2746 
2747 	if (vma && end_addr <= vma->vm_start)
2748 		vma = NULL;
2749 	return vma;
2750 }
2751 
2752 /**
2753  * vma_lookup() - Find a VMA at a specific address
2754  * @mm: The process address space.
2755  * @addr: The user address.
2756  *
2757  * Return: The vm_area_struct at the given address, %NULL otherwise.
2758  */
2759 static inline
2760 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2761 {
2762 	struct vm_area_struct *vma = find_vma(mm, addr);
2763 
2764 	if (vma && addr < vma->vm_start)
2765 		vma = NULL;
2766 
2767 	return vma;
2768 }
2769 
2770 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2771 {
2772 	unsigned long vm_start = vma->vm_start;
2773 
2774 	if (vma->vm_flags & VM_GROWSDOWN) {
2775 		vm_start -= stack_guard_gap;
2776 		if (vm_start > vma->vm_start)
2777 			vm_start = 0;
2778 	}
2779 	return vm_start;
2780 }
2781 
2782 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2783 {
2784 	unsigned long vm_end = vma->vm_end;
2785 
2786 	if (vma->vm_flags & VM_GROWSUP) {
2787 		vm_end += stack_guard_gap;
2788 		if (vm_end < vma->vm_end)
2789 			vm_end = -PAGE_SIZE;
2790 	}
2791 	return vm_end;
2792 }
2793 
2794 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2795 {
2796 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2797 }
2798 
2799 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2800 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2801 				unsigned long vm_start, unsigned long vm_end)
2802 {
2803 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2804 
2805 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2806 		vma = NULL;
2807 
2808 	return vma;
2809 }
2810 
2811 static inline bool range_in_vma(struct vm_area_struct *vma,
2812 				unsigned long start, unsigned long end)
2813 {
2814 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2815 }
2816 
2817 #ifdef CONFIG_MMU
2818 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2819 void vma_set_page_prot(struct vm_area_struct *vma);
2820 #else
2821 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2822 {
2823 	return __pgprot(0);
2824 }
2825 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2826 {
2827 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2828 }
2829 #endif
2830 
2831 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2832 
2833 #ifdef CONFIG_NUMA_BALANCING
2834 unsigned long change_prot_numa(struct vm_area_struct *vma,
2835 			unsigned long start, unsigned long end);
2836 #endif
2837 
2838 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2839 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2840 			unsigned long pfn, unsigned long size, pgprot_t);
2841 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2842 		unsigned long pfn, unsigned long size, pgprot_t prot);
2843 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2844 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2845 			struct page **pages, unsigned long *num);
2846 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2847 				unsigned long num);
2848 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2849 				unsigned long num);
2850 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2851 			unsigned long pfn);
2852 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2853 			unsigned long pfn, pgprot_t pgprot);
2854 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2855 			pfn_t pfn);
2856 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2857 			pfn_t pfn, pgprot_t pgprot);
2858 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2859 		unsigned long addr, pfn_t pfn);
2860 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2861 
2862 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2863 				unsigned long addr, struct page *page)
2864 {
2865 	int err = vm_insert_page(vma, addr, page);
2866 
2867 	if (err == -ENOMEM)
2868 		return VM_FAULT_OOM;
2869 	if (err < 0 && err != -EBUSY)
2870 		return VM_FAULT_SIGBUS;
2871 
2872 	return VM_FAULT_NOPAGE;
2873 }
2874 
2875 #ifndef io_remap_pfn_range
2876 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2877 				     unsigned long addr, unsigned long pfn,
2878 				     unsigned long size, pgprot_t prot)
2879 {
2880 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2881 }
2882 #endif
2883 
2884 static inline vm_fault_t vmf_error(int err)
2885 {
2886 	if (err == -ENOMEM)
2887 		return VM_FAULT_OOM;
2888 	return VM_FAULT_SIGBUS;
2889 }
2890 
2891 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2892 			 unsigned int foll_flags);
2893 
2894 #define FOLL_WRITE	0x01	/* check pte is writable */
2895 #define FOLL_TOUCH	0x02	/* mark page accessed */
2896 #define FOLL_GET	0x04	/* do get_page on page */
2897 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2898 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2899 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2900 				 * and return without waiting upon it */
2901 #define FOLL_POPULATE	0x40	/* fault in pages (with FOLL_MLOCK) */
2902 #define FOLL_NOFAULT	0x80	/* do not fault in pages */
2903 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2904 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2905 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2906 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2907 #define FOLL_MLOCK	0x1000	/* lock present pages */
2908 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2909 #define FOLL_COW	0x4000	/* internal GUP flag */
2910 #define FOLL_ANON	0x8000	/* don't do file mappings */
2911 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2912 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2913 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2914 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2915 
2916 /*
2917  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2918  * other. Here is what they mean, and how to use them:
2919  *
2920  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2921  * period _often_ under userspace control.  This is in contrast to
2922  * iov_iter_get_pages(), whose usages are transient.
2923  *
2924  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2925  * lifetime enforced by the filesystem and we need guarantees that longterm
2926  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2927  * the filesystem.  Ideas for this coordination include revoking the longterm
2928  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2929  * added after the problem with filesystems was found FS DAX VMAs are
2930  * specifically failed.  Filesystem pages are still subject to bugs and use of
2931  * FOLL_LONGTERM should be avoided on those pages.
2932  *
2933  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2934  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2935  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2936  * is due to an incompatibility with the FS DAX check and
2937  * FAULT_FLAG_ALLOW_RETRY.
2938  *
2939  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2940  * that region.  And so, CMA attempts to migrate the page before pinning, when
2941  * FOLL_LONGTERM is specified.
2942  *
2943  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2944  * but an additional pin counting system) will be invoked. This is intended for
2945  * anything that gets a page reference and then touches page data (for example,
2946  * Direct IO). This lets the filesystem know that some non-file-system entity is
2947  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2948  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2949  * a call to unpin_user_page().
2950  *
2951  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2952  * and separate refcounting mechanisms, however, and that means that each has
2953  * its own acquire and release mechanisms:
2954  *
2955  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2956  *
2957  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2958  *
2959  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2960  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2961  * calls applied to them, and that's perfectly OK. This is a constraint on the
2962  * callers, not on the pages.)
2963  *
2964  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2965  * directly by the caller. That's in order to help avoid mismatches when
2966  * releasing pages: get_user_pages*() pages must be released via put_page(),
2967  * while pin_user_pages*() pages must be released via unpin_user_page().
2968  *
2969  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2970  */
2971 
2972 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2973 {
2974 	if (vm_fault & VM_FAULT_OOM)
2975 		return -ENOMEM;
2976 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2977 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2978 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2979 		return -EFAULT;
2980 	return 0;
2981 }
2982 
2983 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2984 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2985 			       unsigned long size, pte_fn_t fn, void *data);
2986 extern int apply_to_existing_page_range(struct mm_struct *mm,
2987 				   unsigned long address, unsigned long size,
2988 				   pte_fn_t fn, void *data);
2989 
2990 extern void init_mem_debugging_and_hardening(void);
2991 #ifdef CONFIG_PAGE_POISONING
2992 extern void __kernel_poison_pages(struct page *page, int numpages);
2993 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2994 extern bool _page_poisoning_enabled_early;
2995 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2996 static inline bool page_poisoning_enabled(void)
2997 {
2998 	return _page_poisoning_enabled_early;
2999 }
3000 /*
3001  * For use in fast paths after init_mem_debugging() has run, or when a
3002  * false negative result is not harmful when called too early.
3003  */
3004 static inline bool page_poisoning_enabled_static(void)
3005 {
3006 	return static_branch_unlikely(&_page_poisoning_enabled);
3007 }
3008 static inline void kernel_poison_pages(struct page *page, int numpages)
3009 {
3010 	if (page_poisoning_enabled_static())
3011 		__kernel_poison_pages(page, numpages);
3012 }
3013 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3014 {
3015 	if (page_poisoning_enabled_static())
3016 		__kernel_unpoison_pages(page, numpages);
3017 }
3018 #else
3019 static inline bool page_poisoning_enabled(void) { return false; }
3020 static inline bool page_poisoning_enabled_static(void) { return false; }
3021 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3022 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3023 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3024 #endif
3025 
3026 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3027 static inline bool want_init_on_alloc(gfp_t flags)
3028 {
3029 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3030 				&init_on_alloc))
3031 		return true;
3032 	return flags & __GFP_ZERO;
3033 }
3034 
3035 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3036 static inline bool want_init_on_free(void)
3037 {
3038 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3039 				   &init_on_free);
3040 }
3041 
3042 extern bool _debug_pagealloc_enabled_early;
3043 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3044 
3045 static inline bool debug_pagealloc_enabled(void)
3046 {
3047 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3048 		_debug_pagealloc_enabled_early;
3049 }
3050 
3051 /*
3052  * For use in fast paths after init_debug_pagealloc() has run, or when a
3053  * false negative result is not harmful when called too early.
3054  */
3055 static inline bool debug_pagealloc_enabled_static(void)
3056 {
3057 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3058 		return false;
3059 
3060 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3061 }
3062 
3063 #ifdef CONFIG_DEBUG_PAGEALLOC
3064 /*
3065  * To support DEBUG_PAGEALLOC architecture must ensure that
3066  * __kernel_map_pages() never fails
3067  */
3068 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3069 
3070 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3071 {
3072 	if (debug_pagealloc_enabled_static())
3073 		__kernel_map_pages(page, numpages, 1);
3074 }
3075 
3076 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3077 {
3078 	if (debug_pagealloc_enabled_static())
3079 		__kernel_map_pages(page, numpages, 0);
3080 }
3081 #else	/* CONFIG_DEBUG_PAGEALLOC */
3082 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3083 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3084 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3085 
3086 #ifdef __HAVE_ARCH_GATE_AREA
3087 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3088 extern int in_gate_area_no_mm(unsigned long addr);
3089 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3090 #else
3091 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3092 {
3093 	return NULL;
3094 }
3095 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3096 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3097 {
3098 	return 0;
3099 }
3100 #endif	/* __HAVE_ARCH_GATE_AREA */
3101 
3102 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3103 
3104 #ifdef CONFIG_SYSCTL
3105 extern int sysctl_drop_caches;
3106 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3107 		loff_t *);
3108 #endif
3109 
3110 void drop_slab(void);
3111 
3112 #ifndef CONFIG_MMU
3113 #define randomize_va_space 0
3114 #else
3115 extern int randomize_va_space;
3116 #endif
3117 
3118 const char * arch_vma_name(struct vm_area_struct *vma);
3119 #ifdef CONFIG_MMU
3120 void print_vma_addr(char *prefix, unsigned long rip);
3121 #else
3122 static inline void print_vma_addr(char *prefix, unsigned long rip)
3123 {
3124 }
3125 #endif
3126 
3127 int vmemmap_remap_free(unsigned long start, unsigned long end,
3128 		       unsigned long reuse);
3129 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3130 			unsigned long reuse, gfp_t gfp_mask);
3131 
3132 void *sparse_buffer_alloc(unsigned long size);
3133 struct page * __populate_section_memmap(unsigned long pfn,
3134 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3135 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3136 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3137 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3138 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3139 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3140 			    struct vmem_altmap *altmap);
3141 void *vmemmap_alloc_block(unsigned long size, int node);
3142 struct vmem_altmap;
3143 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3144 			      struct vmem_altmap *altmap);
3145 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3146 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3147 			       int node, struct vmem_altmap *altmap);
3148 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3149 		struct vmem_altmap *altmap);
3150 void vmemmap_populate_print_last(void);
3151 #ifdef CONFIG_MEMORY_HOTPLUG
3152 void vmemmap_free(unsigned long start, unsigned long end,
3153 		struct vmem_altmap *altmap);
3154 #endif
3155 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3156 				  unsigned long nr_pages);
3157 
3158 enum mf_flags {
3159 	MF_COUNT_INCREASED = 1 << 0,
3160 	MF_ACTION_REQUIRED = 1 << 1,
3161 	MF_MUST_KILL = 1 << 2,
3162 	MF_SOFT_OFFLINE = 1 << 3,
3163 	MF_UNPOISON = 1 << 4,
3164 };
3165 extern int memory_failure(unsigned long pfn, int flags);
3166 extern void memory_failure_queue(unsigned long pfn, int flags);
3167 extern void memory_failure_queue_kick(int cpu);
3168 extern int unpoison_memory(unsigned long pfn);
3169 extern int sysctl_memory_failure_early_kill;
3170 extern int sysctl_memory_failure_recovery;
3171 extern void shake_page(struct page *p);
3172 extern atomic_long_t num_poisoned_pages __read_mostly;
3173 extern int soft_offline_page(unsigned long pfn, int flags);
3174 
3175 #ifndef arch_memory_failure
3176 static inline int arch_memory_failure(unsigned long pfn, int flags)
3177 {
3178 	return -ENXIO;
3179 }
3180 #endif
3181 
3182 #ifndef arch_is_platform_page
3183 static inline bool arch_is_platform_page(u64 paddr)
3184 {
3185 	return false;
3186 }
3187 #endif
3188 
3189 /*
3190  * Error handlers for various types of pages.
3191  */
3192 enum mf_result {
3193 	MF_IGNORED,	/* Error: cannot be handled */
3194 	MF_FAILED,	/* Error: handling failed */
3195 	MF_DELAYED,	/* Will be handled later */
3196 	MF_RECOVERED,	/* Successfully recovered */
3197 };
3198 
3199 enum mf_action_page_type {
3200 	MF_MSG_KERNEL,
3201 	MF_MSG_KERNEL_HIGH_ORDER,
3202 	MF_MSG_SLAB,
3203 	MF_MSG_DIFFERENT_COMPOUND,
3204 	MF_MSG_HUGE,
3205 	MF_MSG_FREE_HUGE,
3206 	MF_MSG_NON_PMD_HUGE,
3207 	MF_MSG_UNMAP_FAILED,
3208 	MF_MSG_DIRTY_SWAPCACHE,
3209 	MF_MSG_CLEAN_SWAPCACHE,
3210 	MF_MSG_DIRTY_MLOCKED_LRU,
3211 	MF_MSG_CLEAN_MLOCKED_LRU,
3212 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3213 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3214 	MF_MSG_DIRTY_LRU,
3215 	MF_MSG_CLEAN_LRU,
3216 	MF_MSG_TRUNCATED_LRU,
3217 	MF_MSG_BUDDY,
3218 	MF_MSG_DAX,
3219 	MF_MSG_UNSPLIT_THP,
3220 	MF_MSG_UNKNOWN,
3221 };
3222 
3223 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3224 extern void clear_huge_page(struct page *page,
3225 			    unsigned long addr_hint,
3226 			    unsigned int pages_per_huge_page);
3227 extern void copy_user_huge_page(struct page *dst, struct page *src,
3228 				unsigned long addr_hint,
3229 				struct vm_area_struct *vma,
3230 				unsigned int pages_per_huge_page);
3231 extern long copy_huge_page_from_user(struct page *dst_page,
3232 				const void __user *usr_src,
3233 				unsigned int pages_per_huge_page,
3234 				bool allow_pagefault);
3235 
3236 /**
3237  * vma_is_special_huge - Are transhuge page-table entries considered special?
3238  * @vma: Pointer to the struct vm_area_struct to consider
3239  *
3240  * Whether transhuge page-table entries are considered "special" following
3241  * the definition in vm_normal_page().
3242  *
3243  * Return: true if transhuge page-table entries should be considered special,
3244  * false otherwise.
3245  */
3246 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3247 {
3248 	return vma_is_dax(vma) || (vma->vm_file &&
3249 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3250 }
3251 
3252 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3253 
3254 #ifdef CONFIG_DEBUG_PAGEALLOC
3255 extern unsigned int _debug_guardpage_minorder;
3256 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3257 
3258 static inline unsigned int debug_guardpage_minorder(void)
3259 {
3260 	return _debug_guardpage_minorder;
3261 }
3262 
3263 static inline bool debug_guardpage_enabled(void)
3264 {
3265 	return static_branch_unlikely(&_debug_guardpage_enabled);
3266 }
3267 
3268 static inline bool page_is_guard(struct page *page)
3269 {
3270 	if (!debug_guardpage_enabled())
3271 		return false;
3272 
3273 	return PageGuard(page);
3274 }
3275 #else
3276 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3277 static inline bool debug_guardpage_enabled(void) { return false; }
3278 static inline bool page_is_guard(struct page *page) { return false; }
3279 #endif /* CONFIG_DEBUG_PAGEALLOC */
3280 
3281 #if MAX_NUMNODES > 1
3282 void __init setup_nr_node_ids(void);
3283 #else
3284 static inline void setup_nr_node_ids(void) {}
3285 #endif
3286 
3287 extern int memcmp_pages(struct page *page1, struct page *page2);
3288 
3289 static inline int pages_identical(struct page *page1, struct page *page2)
3290 {
3291 	return !memcmp_pages(page1, page2);
3292 }
3293 
3294 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3295 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3296 						pgoff_t first_index, pgoff_t nr,
3297 						pgoff_t bitmap_pgoff,
3298 						unsigned long *bitmap,
3299 						pgoff_t *start,
3300 						pgoff_t *end);
3301 
3302 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3303 				      pgoff_t first_index, pgoff_t nr);
3304 #endif
3305 
3306 extern int sysctl_nr_trim_pages;
3307 
3308 #ifdef CONFIG_PRINTK
3309 void mem_dump_obj(void *object);
3310 #else
3311 static inline void mem_dump_obj(void *object) {}
3312 #endif
3313 
3314 /**
3315  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3316  * @seals: the seals to check
3317  * @vma: the vma to operate on
3318  *
3319  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3320  * the vma flags.  Return 0 if check pass, or <0 for errors.
3321  */
3322 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3323 {
3324 	if (seals & F_SEAL_FUTURE_WRITE) {
3325 		/*
3326 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3327 		 * "future write" seal active.
3328 		 */
3329 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3330 			return -EPERM;
3331 
3332 		/*
3333 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3334 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3335 		 * revert protections on such mappings. Do this only for shared
3336 		 * mappings. For private mappings, don't need to mask
3337 		 * VM_MAYWRITE as we still want them to be COW-writable.
3338 		 */
3339 		if (vma->vm_flags & VM_SHARED)
3340 			vma->vm_flags &= ~(VM_MAYWRITE);
3341 	}
3342 
3343 	return 0;
3344 }
3345 
3346 #ifdef CONFIG_ANON_VMA_NAME
3347 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3348 			  unsigned long len_in, const char *name);
3349 #else
3350 static inline int
3351 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3352 		      unsigned long len_in, const char *name) {
3353 	return 0;
3354 }
3355 #endif
3356 
3357 #endif /* __KERNEL__ */
3358 #endif /* _LINUX_MM_H */
3359