xref: /linux-6.15/include/linux/mm.h (revision 5bdd5fbb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37 
38 void init_mm_internals(void);
39 
40 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42 
43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 	max_mapnr = limit;
46 }
47 #else
48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50 
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
54 
55 #ifdef CONFIG_SYSCTL
56 extern int sysctl_legacy_va_layout;
57 #else
58 #define sysctl_legacy_va_layout 0
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
70 #endif
71 
72 #include <asm/page.h>
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
75 
76 #ifndef __pa_symbol
77 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #endif
79 
80 #ifndef page_to_virt
81 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
82 #endif
83 
84 #ifndef lm_alias
85 #define lm_alias(x)	__va(__pa_symbol(x))
86 #endif
87 
88 /*
89  * To prevent common memory management code establishing
90  * a zero page mapping on a read fault.
91  * This macro should be defined within <asm/pgtable.h>.
92  * s390 does this to prevent multiplexing of hardware bits
93  * related to the physical page in case of virtualization.
94  */
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X)	(0)
97 #endif
98 
99 /*
100  * On some architectures it is expensive to call memset() for small sizes.
101  * Those architectures should provide their own implementation of "struct page"
102  * zeroing by defining this macro in <asm/pgtable.h>.
103  */
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
106 #endif
107 
108 /*
109  * Default maximum number of active map areas, this limits the number of vmas
110  * per mm struct. Users can overwrite this number by sysctl but there is a
111  * problem.
112  *
113  * When a program's coredump is generated as ELF format, a section is created
114  * per a vma. In ELF, the number of sections is represented in unsigned short.
115  * This means the number of sections should be smaller than 65535 at coredump.
116  * Because the kernel adds some informative sections to a image of program at
117  * generating coredump, we need some margin. The number of extra sections is
118  * 1-3 now and depends on arch. We use "5" as safe margin, here.
119  *
120  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121  * not a hard limit any more. Although some userspace tools can be surprised by
122  * that.
123  */
124 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
125 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126 
127 extern int sysctl_max_map_count;
128 
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
131 
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
135 
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 				    size_t *, loff_t *);
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 				    size_t *, loff_t *);
140 
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142 
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145 
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148 
149 /*
150  * Linux kernel virtual memory manager primitives.
151  * The idea being to have a "virtual" mm in the same way
152  * we have a virtual fs - giving a cleaner interface to the
153  * mm details, and allowing different kinds of memory mappings
154  * (from shared memory to executable loading to arbitrary
155  * mmap() functions).
156  */
157 
158 extern struct kmem_cache *vm_area_cachep;
159 
160 #ifndef CONFIG_MMU
161 extern struct rb_root nommu_region_tree;
162 extern struct rw_semaphore nommu_region_sem;
163 
164 extern unsigned int kobjsize(const void *objp);
165 #endif
166 
167 /*
168  * vm_flags in vm_area_struct, see mm_types.h.
169  * When changing, update also include/trace/events/mmflags.h
170  */
171 #define VM_NONE		0x00000000
172 
173 #define VM_READ		0x00000001	/* currently active flags */
174 #define VM_WRITE	0x00000002
175 #define VM_EXEC		0x00000004
176 #define VM_SHARED	0x00000008
177 
178 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
179 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
180 #define VM_MAYWRITE	0x00000020
181 #define VM_MAYEXEC	0x00000040
182 #define VM_MAYSHARE	0x00000080
183 
184 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
185 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
186 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
187 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
188 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
189 
190 #define VM_LOCKED	0x00002000
191 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
192 
193 					/* Used by sys_madvise() */
194 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
195 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
196 
197 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
198 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
199 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
200 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
201 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
202 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
203 #define VM_SYNC		0x00800000	/* Synchronous page faults */
204 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
205 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
206 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
207 
208 #ifdef CONFIG_MEM_SOFT_DIRTY
209 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
210 #else
211 # define VM_SOFTDIRTY	0
212 #endif
213 
214 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
215 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
216 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
217 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
218 
219 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
220 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
221 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
226 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
227 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
228 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
229 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
230 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
231 
232 #ifdef CONFIG_ARCH_HAS_PKEYS
233 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
234 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
235 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
236 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
237 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
238 #ifdef CONFIG_PPC
239 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
240 #else
241 # define VM_PKEY_BIT4  0
242 #endif
243 #endif /* CONFIG_ARCH_HAS_PKEYS */
244 
245 #if defined(CONFIG_X86)
246 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
247 #elif defined(CONFIG_PPC)
248 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
249 #elif defined(CONFIG_PARISC)
250 # define VM_GROWSUP	VM_ARCH_1
251 #elif defined(CONFIG_IA64)
252 # define VM_GROWSUP	VM_ARCH_1
253 #elif defined(CONFIG_SPARC64)
254 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
255 # define VM_ARCH_CLEAR	VM_SPARC_ADI
256 #elif !defined(CONFIG_MMU)
257 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
258 #endif
259 
260 #if defined(CONFIG_X86_INTEL_MPX)
261 /* MPX specific bounds table or bounds directory */
262 # define VM_MPX		VM_HIGH_ARCH_4
263 #else
264 # define VM_MPX		VM_NONE
265 #endif
266 
267 #ifndef VM_GROWSUP
268 # define VM_GROWSUP	VM_NONE
269 #endif
270 
271 /* Bits set in the VMA until the stack is in its final location */
272 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
273 
274 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
275 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
276 #endif
277 
278 #ifdef CONFIG_STACK_GROWSUP
279 #define VM_STACK	VM_GROWSUP
280 #else
281 #define VM_STACK	VM_GROWSDOWN
282 #endif
283 
284 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
285 
286 /*
287  * Special vmas that are non-mergable, non-mlock()able.
288  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
289  */
290 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
291 
292 /* This mask defines which mm->def_flags a process can inherit its parent */
293 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
294 
295 /* This mask is used to clear all the VMA flags used by mlock */
296 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
297 
298 /* Arch-specific flags to clear when updating VM flags on protection change */
299 #ifndef VM_ARCH_CLEAR
300 # define VM_ARCH_CLEAR	VM_NONE
301 #endif
302 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
303 
304 /*
305  * mapping from the currently active vm_flags protection bits (the
306  * low four bits) to a page protection mask..
307  */
308 extern pgprot_t protection_map[16];
309 
310 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
311 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
312 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
313 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
314 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
315 #define FAULT_FLAG_TRIED	0x20	/* Second try */
316 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
317 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
318 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
319 
320 #define FAULT_FLAG_TRACE \
321 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
322 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
323 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
324 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
325 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
326 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
327 	{ FAULT_FLAG_USER,		"USER" }, \
328 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
329 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
330 
331 /*
332  * vm_fault is filled by the the pagefault handler and passed to the vma's
333  * ->fault function. The vma's ->fault is responsible for returning a bitmask
334  * of VM_FAULT_xxx flags that give details about how the fault was handled.
335  *
336  * MM layer fills up gfp_mask for page allocations but fault handler might
337  * alter it if its implementation requires a different allocation context.
338  *
339  * pgoff should be used in favour of virtual_address, if possible.
340  */
341 struct vm_fault {
342 	struct vm_area_struct *vma;	/* Target VMA */
343 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
344 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
345 	pgoff_t pgoff;			/* Logical page offset based on vma */
346 	unsigned long address;		/* Faulting virtual address */
347 	pmd_t *pmd;			/* Pointer to pmd entry matching
348 					 * the 'address' */
349 	pud_t *pud;			/* Pointer to pud entry matching
350 					 * the 'address'
351 					 */
352 	pte_t orig_pte;			/* Value of PTE at the time of fault */
353 
354 	struct page *cow_page;		/* Page handler may use for COW fault */
355 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
356 	struct page *page;		/* ->fault handlers should return a
357 					 * page here, unless VM_FAULT_NOPAGE
358 					 * is set (which is also implied by
359 					 * VM_FAULT_ERROR).
360 					 */
361 	/* These three entries are valid only while holding ptl lock */
362 	pte_t *pte;			/* Pointer to pte entry matching
363 					 * the 'address'. NULL if the page
364 					 * table hasn't been allocated.
365 					 */
366 	spinlock_t *ptl;		/* Page table lock.
367 					 * Protects pte page table if 'pte'
368 					 * is not NULL, otherwise pmd.
369 					 */
370 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
371 					 * vm_ops->map_pages() calls
372 					 * alloc_set_pte() from atomic context.
373 					 * do_fault_around() pre-allocates
374 					 * page table to avoid allocation from
375 					 * atomic context.
376 					 */
377 };
378 
379 /* page entry size for vm->huge_fault() */
380 enum page_entry_size {
381 	PE_SIZE_PTE = 0,
382 	PE_SIZE_PMD,
383 	PE_SIZE_PUD,
384 };
385 
386 /*
387  * These are the virtual MM functions - opening of an area, closing and
388  * unmapping it (needed to keep files on disk up-to-date etc), pointer
389  * to the functions called when a no-page or a wp-page exception occurs.
390  */
391 struct vm_operations_struct {
392 	void (*open)(struct vm_area_struct * area);
393 	void (*close)(struct vm_area_struct * area);
394 	int (*split)(struct vm_area_struct * area, unsigned long addr);
395 	int (*mremap)(struct vm_area_struct * area);
396 	vm_fault_t (*fault)(struct vm_fault *vmf);
397 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
398 			enum page_entry_size pe_size);
399 	void (*map_pages)(struct vm_fault *vmf,
400 			pgoff_t start_pgoff, pgoff_t end_pgoff);
401 	unsigned long (*pagesize)(struct vm_area_struct * area);
402 
403 	/* notification that a previously read-only page is about to become
404 	 * writable, if an error is returned it will cause a SIGBUS */
405 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
406 
407 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
408 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
409 
410 	/* called by access_process_vm when get_user_pages() fails, typically
411 	 * for use by special VMAs that can switch between memory and hardware
412 	 */
413 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
414 		      void *buf, int len, int write);
415 
416 	/* Called by the /proc/PID/maps code to ask the vma whether it
417 	 * has a special name.  Returning non-NULL will also cause this
418 	 * vma to be dumped unconditionally. */
419 	const char *(*name)(struct vm_area_struct *vma);
420 
421 #ifdef CONFIG_NUMA
422 	/*
423 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
424 	 * to hold the policy upon return.  Caller should pass NULL @new to
425 	 * remove a policy and fall back to surrounding context--i.e. do not
426 	 * install a MPOL_DEFAULT policy, nor the task or system default
427 	 * mempolicy.
428 	 */
429 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
430 
431 	/*
432 	 * get_policy() op must add reference [mpol_get()] to any policy at
433 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
434 	 * in mm/mempolicy.c will do this automatically.
435 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
436 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
437 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
438 	 * must return NULL--i.e., do not "fallback" to task or system default
439 	 * policy.
440 	 */
441 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
442 					unsigned long addr);
443 #endif
444 	/*
445 	 * Called by vm_normal_page() for special PTEs to find the
446 	 * page for @addr.  This is useful if the default behavior
447 	 * (using pte_page()) would not find the correct page.
448 	 */
449 	struct page *(*find_special_page)(struct vm_area_struct *vma,
450 					  unsigned long addr);
451 };
452 
453 struct mmu_gather;
454 struct inode;
455 
456 #define page_private(page)		((page)->private)
457 #define set_page_private(page, v)	((page)->private = (v))
458 
459 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
460 static inline int pmd_devmap(pmd_t pmd)
461 {
462 	return 0;
463 }
464 static inline int pud_devmap(pud_t pud)
465 {
466 	return 0;
467 }
468 static inline int pgd_devmap(pgd_t pgd)
469 {
470 	return 0;
471 }
472 #endif
473 
474 /*
475  * FIXME: take this include out, include page-flags.h in
476  * files which need it (119 of them)
477  */
478 #include <linux/page-flags.h>
479 #include <linux/huge_mm.h>
480 
481 /*
482  * Methods to modify the page usage count.
483  *
484  * What counts for a page usage:
485  * - cache mapping   (page->mapping)
486  * - private data    (page->private)
487  * - page mapped in a task's page tables, each mapping
488  *   is counted separately
489  *
490  * Also, many kernel routines increase the page count before a critical
491  * routine so they can be sure the page doesn't go away from under them.
492  */
493 
494 /*
495  * Drop a ref, return true if the refcount fell to zero (the page has no users)
496  */
497 static inline int put_page_testzero(struct page *page)
498 {
499 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
500 	return page_ref_dec_and_test(page);
501 }
502 
503 /*
504  * Try to grab a ref unless the page has a refcount of zero, return false if
505  * that is the case.
506  * This can be called when MMU is off so it must not access
507  * any of the virtual mappings.
508  */
509 static inline int get_page_unless_zero(struct page *page)
510 {
511 	return page_ref_add_unless(page, 1, 0);
512 }
513 
514 extern int page_is_ram(unsigned long pfn);
515 
516 enum {
517 	REGION_INTERSECTS,
518 	REGION_DISJOINT,
519 	REGION_MIXED,
520 };
521 
522 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
523 		      unsigned long desc);
524 
525 /* Support for virtually mapped pages */
526 struct page *vmalloc_to_page(const void *addr);
527 unsigned long vmalloc_to_pfn(const void *addr);
528 
529 /*
530  * Determine if an address is within the vmalloc range
531  *
532  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
533  * is no special casing required.
534  */
535 static inline bool is_vmalloc_addr(const void *x)
536 {
537 #ifdef CONFIG_MMU
538 	unsigned long addr = (unsigned long)x;
539 
540 	return addr >= VMALLOC_START && addr < VMALLOC_END;
541 #else
542 	return false;
543 #endif
544 }
545 #ifdef CONFIG_MMU
546 extern int is_vmalloc_or_module_addr(const void *x);
547 #else
548 static inline int is_vmalloc_or_module_addr(const void *x)
549 {
550 	return 0;
551 }
552 #endif
553 
554 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
555 static inline void *kvmalloc(size_t size, gfp_t flags)
556 {
557 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
558 }
559 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
560 {
561 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
562 }
563 static inline void *kvzalloc(size_t size, gfp_t flags)
564 {
565 	return kvmalloc(size, flags | __GFP_ZERO);
566 }
567 
568 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
569 {
570 	size_t bytes;
571 
572 	if (unlikely(check_mul_overflow(n, size, &bytes)))
573 		return NULL;
574 
575 	return kvmalloc(bytes, flags);
576 }
577 
578 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
579 {
580 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
581 }
582 
583 extern void kvfree(const void *addr);
584 
585 static inline atomic_t *compound_mapcount_ptr(struct page *page)
586 {
587 	return &page[1].compound_mapcount;
588 }
589 
590 static inline int compound_mapcount(struct page *page)
591 {
592 	VM_BUG_ON_PAGE(!PageCompound(page), page);
593 	page = compound_head(page);
594 	return atomic_read(compound_mapcount_ptr(page)) + 1;
595 }
596 
597 /*
598  * The atomic page->_mapcount, starts from -1: so that transitions
599  * both from it and to it can be tracked, using atomic_inc_and_test
600  * and atomic_add_negative(-1).
601  */
602 static inline void page_mapcount_reset(struct page *page)
603 {
604 	atomic_set(&(page)->_mapcount, -1);
605 }
606 
607 int __page_mapcount(struct page *page);
608 
609 static inline int page_mapcount(struct page *page)
610 {
611 	VM_BUG_ON_PAGE(PageSlab(page), page);
612 
613 	if (unlikely(PageCompound(page)))
614 		return __page_mapcount(page);
615 	return atomic_read(&page->_mapcount) + 1;
616 }
617 
618 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
619 int total_mapcount(struct page *page);
620 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
621 #else
622 static inline int total_mapcount(struct page *page)
623 {
624 	return page_mapcount(page);
625 }
626 static inline int page_trans_huge_mapcount(struct page *page,
627 					   int *total_mapcount)
628 {
629 	int mapcount = page_mapcount(page);
630 	if (total_mapcount)
631 		*total_mapcount = mapcount;
632 	return mapcount;
633 }
634 #endif
635 
636 static inline struct page *virt_to_head_page(const void *x)
637 {
638 	struct page *page = virt_to_page(x);
639 
640 	return compound_head(page);
641 }
642 
643 void __put_page(struct page *page);
644 
645 void put_pages_list(struct list_head *pages);
646 
647 void split_page(struct page *page, unsigned int order);
648 
649 /*
650  * Compound pages have a destructor function.  Provide a
651  * prototype for that function and accessor functions.
652  * These are _only_ valid on the head of a compound page.
653  */
654 typedef void compound_page_dtor(struct page *);
655 
656 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
657 enum compound_dtor_id {
658 	NULL_COMPOUND_DTOR,
659 	COMPOUND_PAGE_DTOR,
660 #ifdef CONFIG_HUGETLB_PAGE
661 	HUGETLB_PAGE_DTOR,
662 #endif
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 	TRANSHUGE_PAGE_DTOR,
665 #endif
666 	NR_COMPOUND_DTORS,
667 };
668 extern compound_page_dtor * const compound_page_dtors[];
669 
670 static inline void set_compound_page_dtor(struct page *page,
671 		enum compound_dtor_id compound_dtor)
672 {
673 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
674 	page[1].compound_dtor = compound_dtor;
675 }
676 
677 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
678 {
679 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
680 	return compound_page_dtors[page[1].compound_dtor];
681 }
682 
683 static inline unsigned int compound_order(struct page *page)
684 {
685 	if (!PageHead(page))
686 		return 0;
687 	return page[1].compound_order;
688 }
689 
690 static inline void set_compound_order(struct page *page, unsigned int order)
691 {
692 	page[1].compound_order = order;
693 }
694 
695 void free_compound_page(struct page *page);
696 
697 #ifdef CONFIG_MMU
698 /*
699  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
700  * servicing faults for write access.  In the normal case, do always want
701  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
702  * that do not have writing enabled, when used by access_process_vm.
703  */
704 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
705 {
706 	if (likely(vma->vm_flags & VM_WRITE))
707 		pte = pte_mkwrite(pte);
708 	return pte;
709 }
710 
711 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
712 		struct page *page);
713 int finish_fault(struct vm_fault *vmf);
714 int finish_mkwrite_fault(struct vm_fault *vmf);
715 #endif
716 
717 /*
718  * Multiple processes may "see" the same page. E.g. for untouched
719  * mappings of /dev/null, all processes see the same page full of
720  * zeroes, and text pages of executables and shared libraries have
721  * only one copy in memory, at most, normally.
722  *
723  * For the non-reserved pages, page_count(page) denotes a reference count.
724  *   page_count() == 0 means the page is free. page->lru is then used for
725  *   freelist management in the buddy allocator.
726  *   page_count() > 0  means the page has been allocated.
727  *
728  * Pages are allocated by the slab allocator in order to provide memory
729  * to kmalloc and kmem_cache_alloc. In this case, the management of the
730  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
731  * unless a particular usage is carefully commented. (the responsibility of
732  * freeing the kmalloc memory is the caller's, of course).
733  *
734  * A page may be used by anyone else who does a __get_free_page().
735  * In this case, page_count still tracks the references, and should only
736  * be used through the normal accessor functions. The top bits of page->flags
737  * and page->virtual store page management information, but all other fields
738  * are unused and could be used privately, carefully. The management of this
739  * page is the responsibility of the one who allocated it, and those who have
740  * subsequently been given references to it.
741  *
742  * The other pages (we may call them "pagecache pages") are completely
743  * managed by the Linux memory manager: I/O, buffers, swapping etc.
744  * The following discussion applies only to them.
745  *
746  * A pagecache page contains an opaque `private' member, which belongs to the
747  * page's address_space. Usually, this is the address of a circular list of
748  * the page's disk buffers. PG_private must be set to tell the VM to call
749  * into the filesystem to release these pages.
750  *
751  * A page may belong to an inode's memory mapping. In this case, page->mapping
752  * is the pointer to the inode, and page->index is the file offset of the page,
753  * in units of PAGE_SIZE.
754  *
755  * If pagecache pages are not associated with an inode, they are said to be
756  * anonymous pages. These may become associated with the swapcache, and in that
757  * case PG_swapcache is set, and page->private is an offset into the swapcache.
758  *
759  * In either case (swapcache or inode backed), the pagecache itself holds one
760  * reference to the page. Setting PG_private should also increment the
761  * refcount. The each user mapping also has a reference to the page.
762  *
763  * The pagecache pages are stored in a per-mapping radix tree, which is
764  * rooted at mapping->i_pages, and indexed by offset.
765  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
766  * lists, we instead now tag pages as dirty/writeback in the radix tree.
767  *
768  * All pagecache pages may be subject to I/O:
769  * - inode pages may need to be read from disk,
770  * - inode pages which have been modified and are MAP_SHARED may need
771  *   to be written back to the inode on disk,
772  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
773  *   modified may need to be swapped out to swap space and (later) to be read
774  *   back into memory.
775  */
776 
777 /*
778  * The zone field is never updated after free_area_init_core()
779  * sets it, so none of the operations on it need to be atomic.
780  */
781 
782 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
783 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
784 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
785 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
786 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
787 
788 /*
789  * Define the bit shifts to access each section.  For non-existent
790  * sections we define the shift as 0; that plus a 0 mask ensures
791  * the compiler will optimise away reference to them.
792  */
793 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
794 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
795 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
796 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
797 
798 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
799 #ifdef NODE_NOT_IN_PAGE_FLAGS
800 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
801 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
802 						SECTIONS_PGOFF : ZONES_PGOFF)
803 #else
804 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
805 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
806 						NODES_PGOFF : ZONES_PGOFF)
807 #endif
808 
809 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
810 
811 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
812 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
813 #endif
814 
815 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
816 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
817 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
818 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
819 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
820 
821 static inline enum zone_type page_zonenum(const struct page *page)
822 {
823 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
824 }
825 
826 #ifdef CONFIG_ZONE_DEVICE
827 static inline bool is_zone_device_page(const struct page *page)
828 {
829 	return page_zonenum(page) == ZONE_DEVICE;
830 }
831 #else
832 static inline bool is_zone_device_page(const struct page *page)
833 {
834 	return false;
835 }
836 #endif
837 
838 #ifdef CONFIG_DEV_PAGEMAP_OPS
839 void dev_pagemap_get_ops(void);
840 void dev_pagemap_put_ops(void);
841 void __put_devmap_managed_page(struct page *page);
842 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
843 static inline bool put_devmap_managed_page(struct page *page)
844 {
845 	if (!static_branch_unlikely(&devmap_managed_key))
846 		return false;
847 	if (!is_zone_device_page(page))
848 		return false;
849 	switch (page->pgmap->type) {
850 	case MEMORY_DEVICE_PRIVATE:
851 	case MEMORY_DEVICE_PUBLIC:
852 	case MEMORY_DEVICE_FS_DAX:
853 		__put_devmap_managed_page(page);
854 		return true;
855 	default:
856 		break;
857 	}
858 	return false;
859 }
860 
861 static inline bool is_device_private_page(const struct page *page)
862 {
863 	return is_zone_device_page(page) &&
864 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
865 }
866 
867 static inline bool is_device_public_page(const struct page *page)
868 {
869 	return is_zone_device_page(page) &&
870 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
871 }
872 
873 #else /* CONFIG_DEV_PAGEMAP_OPS */
874 static inline void dev_pagemap_get_ops(void)
875 {
876 }
877 
878 static inline void dev_pagemap_put_ops(void)
879 {
880 }
881 
882 static inline bool put_devmap_managed_page(struct page *page)
883 {
884 	return false;
885 }
886 
887 static inline bool is_device_private_page(const struct page *page)
888 {
889 	return false;
890 }
891 
892 static inline bool is_device_public_page(const struct page *page)
893 {
894 	return false;
895 }
896 #endif /* CONFIG_DEV_PAGEMAP_OPS */
897 
898 static inline void get_page(struct page *page)
899 {
900 	page = compound_head(page);
901 	/*
902 	 * Getting a normal page or the head of a compound page
903 	 * requires to already have an elevated page->_refcount.
904 	 */
905 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
906 	page_ref_inc(page);
907 }
908 
909 static inline void put_page(struct page *page)
910 {
911 	page = compound_head(page);
912 
913 	/*
914 	 * For devmap managed pages we need to catch refcount transition from
915 	 * 2 to 1, when refcount reach one it means the page is free and we
916 	 * need to inform the device driver through callback. See
917 	 * include/linux/memremap.h and HMM for details.
918 	 */
919 	if (put_devmap_managed_page(page))
920 		return;
921 
922 	if (put_page_testzero(page))
923 		__put_page(page);
924 }
925 
926 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
927 #define SECTION_IN_PAGE_FLAGS
928 #endif
929 
930 /*
931  * The identification function is mainly used by the buddy allocator for
932  * determining if two pages could be buddies. We are not really identifying
933  * the zone since we could be using the section number id if we do not have
934  * node id available in page flags.
935  * We only guarantee that it will return the same value for two combinable
936  * pages in a zone.
937  */
938 static inline int page_zone_id(struct page *page)
939 {
940 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
941 }
942 
943 static inline int zone_to_nid(struct zone *zone)
944 {
945 #ifdef CONFIG_NUMA
946 	return zone->node;
947 #else
948 	return 0;
949 #endif
950 }
951 
952 #ifdef NODE_NOT_IN_PAGE_FLAGS
953 extern int page_to_nid(const struct page *page);
954 #else
955 static inline int page_to_nid(const struct page *page)
956 {
957 	struct page *p = (struct page *)page;
958 
959 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
960 }
961 #endif
962 
963 #ifdef CONFIG_NUMA_BALANCING
964 static inline int cpu_pid_to_cpupid(int cpu, int pid)
965 {
966 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
967 }
968 
969 static inline int cpupid_to_pid(int cpupid)
970 {
971 	return cpupid & LAST__PID_MASK;
972 }
973 
974 static inline int cpupid_to_cpu(int cpupid)
975 {
976 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
977 }
978 
979 static inline int cpupid_to_nid(int cpupid)
980 {
981 	return cpu_to_node(cpupid_to_cpu(cpupid));
982 }
983 
984 static inline bool cpupid_pid_unset(int cpupid)
985 {
986 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
987 }
988 
989 static inline bool cpupid_cpu_unset(int cpupid)
990 {
991 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
992 }
993 
994 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
995 {
996 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
997 }
998 
999 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1000 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1001 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1002 {
1003 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1004 }
1005 
1006 static inline int page_cpupid_last(struct page *page)
1007 {
1008 	return page->_last_cpupid;
1009 }
1010 static inline void page_cpupid_reset_last(struct page *page)
1011 {
1012 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1013 }
1014 #else
1015 static inline int page_cpupid_last(struct page *page)
1016 {
1017 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1018 }
1019 
1020 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1021 
1022 static inline void page_cpupid_reset_last(struct page *page)
1023 {
1024 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1025 }
1026 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1027 #else /* !CONFIG_NUMA_BALANCING */
1028 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1029 {
1030 	return page_to_nid(page); /* XXX */
1031 }
1032 
1033 static inline int page_cpupid_last(struct page *page)
1034 {
1035 	return page_to_nid(page); /* XXX */
1036 }
1037 
1038 static inline int cpupid_to_nid(int cpupid)
1039 {
1040 	return -1;
1041 }
1042 
1043 static inline int cpupid_to_pid(int cpupid)
1044 {
1045 	return -1;
1046 }
1047 
1048 static inline int cpupid_to_cpu(int cpupid)
1049 {
1050 	return -1;
1051 }
1052 
1053 static inline int cpu_pid_to_cpupid(int nid, int pid)
1054 {
1055 	return -1;
1056 }
1057 
1058 static inline bool cpupid_pid_unset(int cpupid)
1059 {
1060 	return 1;
1061 }
1062 
1063 static inline void page_cpupid_reset_last(struct page *page)
1064 {
1065 }
1066 
1067 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1068 {
1069 	return false;
1070 }
1071 #endif /* CONFIG_NUMA_BALANCING */
1072 
1073 static inline struct zone *page_zone(const struct page *page)
1074 {
1075 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1076 }
1077 
1078 static inline pg_data_t *page_pgdat(const struct page *page)
1079 {
1080 	return NODE_DATA(page_to_nid(page));
1081 }
1082 
1083 #ifdef SECTION_IN_PAGE_FLAGS
1084 static inline void set_page_section(struct page *page, unsigned long section)
1085 {
1086 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1087 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1088 }
1089 
1090 static inline unsigned long page_to_section(const struct page *page)
1091 {
1092 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1093 }
1094 #endif
1095 
1096 static inline void set_page_zone(struct page *page, enum zone_type zone)
1097 {
1098 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1099 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1100 }
1101 
1102 static inline void set_page_node(struct page *page, unsigned long node)
1103 {
1104 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1105 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1106 }
1107 
1108 static inline void set_page_links(struct page *page, enum zone_type zone,
1109 	unsigned long node, unsigned long pfn)
1110 {
1111 	set_page_zone(page, zone);
1112 	set_page_node(page, node);
1113 #ifdef SECTION_IN_PAGE_FLAGS
1114 	set_page_section(page, pfn_to_section_nr(pfn));
1115 #endif
1116 }
1117 
1118 #ifdef CONFIG_MEMCG
1119 static inline struct mem_cgroup *page_memcg(struct page *page)
1120 {
1121 	return page->mem_cgroup;
1122 }
1123 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1124 {
1125 	WARN_ON_ONCE(!rcu_read_lock_held());
1126 	return READ_ONCE(page->mem_cgroup);
1127 }
1128 #else
1129 static inline struct mem_cgroup *page_memcg(struct page *page)
1130 {
1131 	return NULL;
1132 }
1133 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1134 {
1135 	WARN_ON_ONCE(!rcu_read_lock_held());
1136 	return NULL;
1137 }
1138 #endif
1139 
1140 /*
1141  * Some inline functions in vmstat.h depend on page_zone()
1142  */
1143 #include <linux/vmstat.h>
1144 
1145 static __always_inline void *lowmem_page_address(const struct page *page)
1146 {
1147 	return page_to_virt(page);
1148 }
1149 
1150 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1151 #define HASHED_PAGE_VIRTUAL
1152 #endif
1153 
1154 #if defined(WANT_PAGE_VIRTUAL)
1155 static inline void *page_address(const struct page *page)
1156 {
1157 	return page->virtual;
1158 }
1159 static inline void set_page_address(struct page *page, void *address)
1160 {
1161 	page->virtual = address;
1162 }
1163 #define page_address_init()  do { } while(0)
1164 #endif
1165 
1166 #if defined(HASHED_PAGE_VIRTUAL)
1167 void *page_address(const struct page *page);
1168 void set_page_address(struct page *page, void *virtual);
1169 void page_address_init(void);
1170 #endif
1171 
1172 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1173 #define page_address(page) lowmem_page_address(page)
1174 #define set_page_address(page, address)  do { } while(0)
1175 #define page_address_init()  do { } while(0)
1176 #endif
1177 
1178 extern void *page_rmapping(struct page *page);
1179 extern struct anon_vma *page_anon_vma(struct page *page);
1180 extern struct address_space *page_mapping(struct page *page);
1181 
1182 extern struct address_space *__page_file_mapping(struct page *);
1183 
1184 static inline
1185 struct address_space *page_file_mapping(struct page *page)
1186 {
1187 	if (unlikely(PageSwapCache(page)))
1188 		return __page_file_mapping(page);
1189 
1190 	return page->mapping;
1191 }
1192 
1193 extern pgoff_t __page_file_index(struct page *page);
1194 
1195 /*
1196  * Return the pagecache index of the passed page.  Regular pagecache pages
1197  * use ->index whereas swapcache pages use swp_offset(->private)
1198  */
1199 static inline pgoff_t page_index(struct page *page)
1200 {
1201 	if (unlikely(PageSwapCache(page)))
1202 		return __page_file_index(page);
1203 	return page->index;
1204 }
1205 
1206 bool page_mapped(struct page *page);
1207 struct address_space *page_mapping(struct page *page);
1208 struct address_space *page_mapping_file(struct page *page);
1209 
1210 /*
1211  * Return true only if the page has been allocated with
1212  * ALLOC_NO_WATERMARKS and the low watermark was not
1213  * met implying that the system is under some pressure.
1214  */
1215 static inline bool page_is_pfmemalloc(struct page *page)
1216 {
1217 	/*
1218 	 * Page index cannot be this large so this must be
1219 	 * a pfmemalloc page.
1220 	 */
1221 	return page->index == -1UL;
1222 }
1223 
1224 /*
1225  * Only to be called by the page allocator on a freshly allocated
1226  * page.
1227  */
1228 static inline void set_page_pfmemalloc(struct page *page)
1229 {
1230 	page->index = -1UL;
1231 }
1232 
1233 static inline void clear_page_pfmemalloc(struct page *page)
1234 {
1235 	page->index = 0;
1236 }
1237 
1238 /*
1239  * Different kinds of faults, as returned by handle_mm_fault().
1240  * Used to decide whether a process gets delivered SIGBUS or
1241  * just gets major/minor fault counters bumped up.
1242  */
1243 
1244 #define VM_FAULT_OOM	0x0001
1245 #define VM_FAULT_SIGBUS	0x0002
1246 #define VM_FAULT_MAJOR	0x0004
1247 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1248 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1249 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1250 #define VM_FAULT_SIGSEGV 0x0040
1251 
1252 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1253 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1254 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1255 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1256 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1257 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1258 					 * and needs fsync() to complete (for
1259 					 * synchronous page faults in DAX) */
1260 
1261 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1262 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1263 			 VM_FAULT_FALLBACK)
1264 
1265 #define VM_FAULT_RESULT_TRACE \
1266 	{ VM_FAULT_OOM,			"OOM" }, \
1267 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1268 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1269 	{ VM_FAULT_WRITE,		"WRITE" }, \
1270 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1271 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1272 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1273 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1274 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1275 	{ VM_FAULT_RETRY,		"RETRY" }, \
1276 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1277 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1278 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1279 
1280 /* Encode hstate index for a hwpoisoned large page */
1281 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1282 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1283 
1284 /*
1285  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1286  */
1287 extern void pagefault_out_of_memory(void);
1288 
1289 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1290 
1291 /*
1292  * Flags passed to show_mem() and show_free_areas() to suppress output in
1293  * various contexts.
1294  */
1295 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1296 
1297 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1298 
1299 extern bool can_do_mlock(void);
1300 extern int user_shm_lock(size_t, struct user_struct *);
1301 extern void user_shm_unlock(size_t, struct user_struct *);
1302 
1303 /*
1304  * Parameter block passed down to zap_pte_range in exceptional cases.
1305  */
1306 struct zap_details {
1307 	struct address_space *check_mapping;	/* Check page->mapping if set */
1308 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1309 	pgoff_t last_index;			/* Highest page->index to unmap */
1310 };
1311 
1312 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1313 			     pte_t pte, bool with_public_device);
1314 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1315 
1316 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1317 				pmd_t pmd);
1318 
1319 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1320 		  unsigned long size);
1321 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1322 		    unsigned long size);
1323 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1324 		unsigned long start, unsigned long end);
1325 
1326 /**
1327  * mm_walk - callbacks for walk_page_range
1328  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1329  *	       this handler should only handle pud_trans_huge() puds.
1330  *	       the pmd_entry or pte_entry callbacks will be used for
1331  *	       regular PUDs.
1332  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1333  *	       this handler is required to be able to handle
1334  *	       pmd_trans_huge() pmds.  They may simply choose to
1335  *	       split_huge_page() instead of handling it explicitly.
1336  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1337  * @pte_hole: if set, called for each hole at all levels
1338  * @hugetlb_entry: if set, called for each hugetlb entry
1339  * @test_walk: caller specific callback function to determine whether
1340  *             we walk over the current vma or not. Returning 0
1341  *             value means "do page table walk over the current vma,"
1342  *             and a negative one means "abort current page table walk
1343  *             right now." 1 means "skip the current vma."
1344  * @mm:        mm_struct representing the target process of page table walk
1345  * @vma:       vma currently walked (NULL if walking outside vmas)
1346  * @private:   private data for callbacks' usage
1347  *
1348  * (see the comment on walk_page_range() for more details)
1349  */
1350 struct mm_walk {
1351 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1352 			 unsigned long next, struct mm_walk *walk);
1353 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1354 			 unsigned long next, struct mm_walk *walk);
1355 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1356 			 unsigned long next, struct mm_walk *walk);
1357 	int (*pte_hole)(unsigned long addr, unsigned long next,
1358 			struct mm_walk *walk);
1359 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1360 			     unsigned long addr, unsigned long next,
1361 			     struct mm_walk *walk);
1362 	int (*test_walk)(unsigned long addr, unsigned long next,
1363 			struct mm_walk *walk);
1364 	struct mm_struct *mm;
1365 	struct vm_area_struct *vma;
1366 	void *private;
1367 };
1368 
1369 int walk_page_range(unsigned long addr, unsigned long end,
1370 		struct mm_walk *walk);
1371 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1372 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1373 		unsigned long end, unsigned long floor, unsigned long ceiling);
1374 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1375 			struct vm_area_struct *vma);
1376 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1377 			     unsigned long *start, unsigned long *end,
1378 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1379 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1380 	unsigned long *pfn);
1381 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1382 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1383 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1384 			void *buf, int len, int write);
1385 
1386 extern void truncate_pagecache(struct inode *inode, loff_t new);
1387 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1388 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1389 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1390 int truncate_inode_page(struct address_space *mapping, struct page *page);
1391 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1392 int invalidate_inode_page(struct page *page);
1393 
1394 #ifdef CONFIG_MMU
1395 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1396 		unsigned int flags);
1397 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1398 			    unsigned long address, unsigned int fault_flags,
1399 			    bool *unlocked);
1400 void unmap_mapping_pages(struct address_space *mapping,
1401 		pgoff_t start, pgoff_t nr, bool even_cows);
1402 void unmap_mapping_range(struct address_space *mapping,
1403 		loff_t const holebegin, loff_t const holelen, int even_cows);
1404 #else
1405 static inline int handle_mm_fault(struct vm_area_struct *vma,
1406 		unsigned long address, unsigned int flags)
1407 {
1408 	/* should never happen if there's no MMU */
1409 	BUG();
1410 	return VM_FAULT_SIGBUS;
1411 }
1412 static inline int fixup_user_fault(struct task_struct *tsk,
1413 		struct mm_struct *mm, unsigned long address,
1414 		unsigned int fault_flags, bool *unlocked)
1415 {
1416 	/* should never happen if there's no MMU */
1417 	BUG();
1418 	return -EFAULT;
1419 }
1420 static inline void unmap_mapping_pages(struct address_space *mapping,
1421 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1422 static inline void unmap_mapping_range(struct address_space *mapping,
1423 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1424 #endif
1425 
1426 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1427 		loff_t const holebegin, loff_t const holelen)
1428 {
1429 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1430 }
1431 
1432 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1433 		void *buf, int len, unsigned int gup_flags);
1434 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1435 		void *buf, int len, unsigned int gup_flags);
1436 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1437 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1438 
1439 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1440 			    unsigned long start, unsigned long nr_pages,
1441 			    unsigned int gup_flags, struct page **pages,
1442 			    struct vm_area_struct **vmas, int *locked);
1443 long get_user_pages(unsigned long start, unsigned long nr_pages,
1444 			    unsigned int gup_flags, struct page **pages,
1445 			    struct vm_area_struct **vmas);
1446 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1447 		    unsigned int gup_flags, struct page **pages, int *locked);
1448 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1449 		    struct page **pages, unsigned int gup_flags);
1450 #ifdef CONFIG_FS_DAX
1451 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1452 			    unsigned int gup_flags, struct page **pages,
1453 			    struct vm_area_struct **vmas);
1454 #else
1455 static inline long get_user_pages_longterm(unsigned long start,
1456 		unsigned long nr_pages, unsigned int gup_flags,
1457 		struct page **pages, struct vm_area_struct **vmas)
1458 {
1459 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1460 }
1461 #endif /* CONFIG_FS_DAX */
1462 
1463 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1464 			struct page **pages);
1465 
1466 /* Container for pinned pfns / pages */
1467 struct frame_vector {
1468 	unsigned int nr_allocated;	/* Number of frames we have space for */
1469 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1470 	bool got_ref;		/* Did we pin pages by getting page ref? */
1471 	bool is_pfns;		/* Does array contain pages or pfns? */
1472 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1473 				 * pfns_vector_pages() or pfns_vector_pfns()
1474 				 * for access */
1475 };
1476 
1477 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1478 void frame_vector_destroy(struct frame_vector *vec);
1479 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1480 		     unsigned int gup_flags, struct frame_vector *vec);
1481 void put_vaddr_frames(struct frame_vector *vec);
1482 int frame_vector_to_pages(struct frame_vector *vec);
1483 void frame_vector_to_pfns(struct frame_vector *vec);
1484 
1485 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1486 {
1487 	return vec->nr_frames;
1488 }
1489 
1490 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1491 {
1492 	if (vec->is_pfns) {
1493 		int err = frame_vector_to_pages(vec);
1494 
1495 		if (err)
1496 			return ERR_PTR(err);
1497 	}
1498 	return (struct page **)(vec->ptrs);
1499 }
1500 
1501 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1502 {
1503 	if (!vec->is_pfns)
1504 		frame_vector_to_pfns(vec);
1505 	return (unsigned long *)(vec->ptrs);
1506 }
1507 
1508 struct kvec;
1509 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1510 			struct page **pages);
1511 int get_kernel_page(unsigned long start, int write, struct page **pages);
1512 struct page *get_dump_page(unsigned long addr);
1513 
1514 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1515 extern void do_invalidatepage(struct page *page, unsigned int offset,
1516 			      unsigned int length);
1517 
1518 void __set_page_dirty(struct page *, struct address_space *, int warn);
1519 int __set_page_dirty_nobuffers(struct page *page);
1520 int __set_page_dirty_no_writeback(struct page *page);
1521 int redirty_page_for_writepage(struct writeback_control *wbc,
1522 				struct page *page);
1523 void account_page_dirtied(struct page *page, struct address_space *mapping);
1524 void account_page_cleaned(struct page *page, struct address_space *mapping,
1525 			  struct bdi_writeback *wb);
1526 int set_page_dirty(struct page *page);
1527 int set_page_dirty_lock(struct page *page);
1528 void __cancel_dirty_page(struct page *page);
1529 static inline void cancel_dirty_page(struct page *page)
1530 {
1531 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1532 	if (PageDirty(page))
1533 		__cancel_dirty_page(page);
1534 }
1535 int clear_page_dirty_for_io(struct page *page);
1536 
1537 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1538 
1539 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1540 {
1541 	return !vma->vm_ops;
1542 }
1543 
1544 #ifdef CONFIG_SHMEM
1545 /*
1546  * The vma_is_shmem is not inline because it is used only by slow
1547  * paths in userfault.
1548  */
1549 bool vma_is_shmem(struct vm_area_struct *vma);
1550 #else
1551 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1552 #endif
1553 
1554 int vma_is_stack_for_current(struct vm_area_struct *vma);
1555 
1556 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1557 		unsigned long old_addr, struct vm_area_struct *new_vma,
1558 		unsigned long new_addr, unsigned long len,
1559 		bool need_rmap_locks);
1560 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1561 			      unsigned long end, pgprot_t newprot,
1562 			      int dirty_accountable, int prot_numa);
1563 extern int mprotect_fixup(struct vm_area_struct *vma,
1564 			  struct vm_area_struct **pprev, unsigned long start,
1565 			  unsigned long end, unsigned long newflags);
1566 
1567 /*
1568  * doesn't attempt to fault and will return short.
1569  */
1570 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1571 			  struct page **pages);
1572 /*
1573  * per-process(per-mm_struct) statistics.
1574  */
1575 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1576 {
1577 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1578 
1579 #ifdef SPLIT_RSS_COUNTING
1580 	/*
1581 	 * counter is updated in asynchronous manner and may go to minus.
1582 	 * But it's never be expected number for users.
1583 	 */
1584 	if (val < 0)
1585 		val = 0;
1586 #endif
1587 	return (unsigned long)val;
1588 }
1589 
1590 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1591 {
1592 	atomic_long_add(value, &mm->rss_stat.count[member]);
1593 }
1594 
1595 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1596 {
1597 	atomic_long_inc(&mm->rss_stat.count[member]);
1598 }
1599 
1600 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1601 {
1602 	atomic_long_dec(&mm->rss_stat.count[member]);
1603 }
1604 
1605 /* Optimized variant when page is already known not to be PageAnon */
1606 static inline int mm_counter_file(struct page *page)
1607 {
1608 	if (PageSwapBacked(page))
1609 		return MM_SHMEMPAGES;
1610 	return MM_FILEPAGES;
1611 }
1612 
1613 static inline int mm_counter(struct page *page)
1614 {
1615 	if (PageAnon(page))
1616 		return MM_ANONPAGES;
1617 	return mm_counter_file(page);
1618 }
1619 
1620 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1621 {
1622 	return get_mm_counter(mm, MM_FILEPAGES) +
1623 		get_mm_counter(mm, MM_ANONPAGES) +
1624 		get_mm_counter(mm, MM_SHMEMPAGES);
1625 }
1626 
1627 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1628 {
1629 	return max(mm->hiwater_rss, get_mm_rss(mm));
1630 }
1631 
1632 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1633 {
1634 	return max(mm->hiwater_vm, mm->total_vm);
1635 }
1636 
1637 static inline void update_hiwater_rss(struct mm_struct *mm)
1638 {
1639 	unsigned long _rss = get_mm_rss(mm);
1640 
1641 	if ((mm)->hiwater_rss < _rss)
1642 		(mm)->hiwater_rss = _rss;
1643 }
1644 
1645 static inline void update_hiwater_vm(struct mm_struct *mm)
1646 {
1647 	if (mm->hiwater_vm < mm->total_vm)
1648 		mm->hiwater_vm = mm->total_vm;
1649 }
1650 
1651 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1652 {
1653 	mm->hiwater_rss = get_mm_rss(mm);
1654 }
1655 
1656 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1657 					 struct mm_struct *mm)
1658 {
1659 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1660 
1661 	if (*maxrss < hiwater_rss)
1662 		*maxrss = hiwater_rss;
1663 }
1664 
1665 #if defined(SPLIT_RSS_COUNTING)
1666 void sync_mm_rss(struct mm_struct *mm);
1667 #else
1668 static inline void sync_mm_rss(struct mm_struct *mm)
1669 {
1670 }
1671 #endif
1672 
1673 #ifndef __HAVE_ARCH_PTE_DEVMAP
1674 static inline int pte_devmap(pte_t pte)
1675 {
1676 	return 0;
1677 }
1678 #endif
1679 
1680 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1681 
1682 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1683 			       spinlock_t **ptl);
1684 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1685 				    spinlock_t **ptl)
1686 {
1687 	pte_t *ptep;
1688 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1689 	return ptep;
1690 }
1691 
1692 #ifdef __PAGETABLE_P4D_FOLDED
1693 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1694 						unsigned long address)
1695 {
1696 	return 0;
1697 }
1698 #else
1699 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1700 #endif
1701 
1702 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1703 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1704 						unsigned long address)
1705 {
1706 	return 0;
1707 }
1708 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1709 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1710 
1711 #else
1712 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1713 
1714 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1715 {
1716 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1717 }
1718 
1719 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1720 {
1721 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1722 }
1723 #endif
1724 
1725 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1726 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1727 						unsigned long address)
1728 {
1729 	return 0;
1730 }
1731 
1732 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1733 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1734 
1735 #else
1736 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1737 
1738 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1739 {
1740 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1741 }
1742 
1743 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1744 {
1745 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1746 }
1747 #endif
1748 
1749 #ifdef CONFIG_MMU
1750 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1751 {
1752 	atomic_long_set(&mm->pgtables_bytes, 0);
1753 }
1754 
1755 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1756 {
1757 	return atomic_long_read(&mm->pgtables_bytes);
1758 }
1759 
1760 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1761 {
1762 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1763 }
1764 
1765 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1766 {
1767 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1768 }
1769 #else
1770 
1771 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1772 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1773 {
1774 	return 0;
1775 }
1776 
1777 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1778 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1779 #endif
1780 
1781 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1782 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1783 
1784 /*
1785  * The following ifdef needed to get the 4level-fixup.h header to work.
1786  * Remove it when 4level-fixup.h has been removed.
1787  */
1788 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1789 
1790 #ifndef __ARCH_HAS_5LEVEL_HACK
1791 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1792 		unsigned long address)
1793 {
1794 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1795 		NULL : p4d_offset(pgd, address);
1796 }
1797 
1798 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1799 		unsigned long address)
1800 {
1801 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1802 		NULL : pud_offset(p4d, address);
1803 }
1804 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1805 
1806 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1807 {
1808 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1809 		NULL: pmd_offset(pud, address);
1810 }
1811 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1812 
1813 #if USE_SPLIT_PTE_PTLOCKS
1814 #if ALLOC_SPLIT_PTLOCKS
1815 void __init ptlock_cache_init(void);
1816 extern bool ptlock_alloc(struct page *page);
1817 extern void ptlock_free(struct page *page);
1818 
1819 static inline spinlock_t *ptlock_ptr(struct page *page)
1820 {
1821 	return page->ptl;
1822 }
1823 #else /* ALLOC_SPLIT_PTLOCKS */
1824 static inline void ptlock_cache_init(void)
1825 {
1826 }
1827 
1828 static inline bool ptlock_alloc(struct page *page)
1829 {
1830 	return true;
1831 }
1832 
1833 static inline void ptlock_free(struct page *page)
1834 {
1835 }
1836 
1837 static inline spinlock_t *ptlock_ptr(struct page *page)
1838 {
1839 	return &page->ptl;
1840 }
1841 #endif /* ALLOC_SPLIT_PTLOCKS */
1842 
1843 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1844 {
1845 	return ptlock_ptr(pmd_page(*pmd));
1846 }
1847 
1848 static inline bool ptlock_init(struct page *page)
1849 {
1850 	/*
1851 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1852 	 * with 0. Make sure nobody took it in use in between.
1853 	 *
1854 	 * It can happen if arch try to use slab for page table allocation:
1855 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1856 	 */
1857 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1858 	if (!ptlock_alloc(page))
1859 		return false;
1860 	spin_lock_init(ptlock_ptr(page));
1861 	return true;
1862 }
1863 
1864 /* Reset page->mapping so free_pages_check won't complain. */
1865 static inline void pte_lock_deinit(struct page *page)
1866 {
1867 	page->mapping = NULL;
1868 	ptlock_free(page);
1869 }
1870 
1871 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1872 /*
1873  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1874  */
1875 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1876 {
1877 	return &mm->page_table_lock;
1878 }
1879 static inline void ptlock_cache_init(void) {}
1880 static inline bool ptlock_init(struct page *page) { return true; }
1881 static inline void pte_lock_deinit(struct page *page) {}
1882 #endif /* USE_SPLIT_PTE_PTLOCKS */
1883 
1884 static inline void pgtable_init(void)
1885 {
1886 	ptlock_cache_init();
1887 	pgtable_cache_init();
1888 }
1889 
1890 static inline bool pgtable_page_ctor(struct page *page)
1891 {
1892 	if (!ptlock_init(page))
1893 		return false;
1894 	__SetPageTable(page);
1895 	inc_zone_page_state(page, NR_PAGETABLE);
1896 	return true;
1897 }
1898 
1899 static inline void pgtable_page_dtor(struct page *page)
1900 {
1901 	pte_lock_deinit(page);
1902 	__ClearPageTable(page);
1903 	dec_zone_page_state(page, NR_PAGETABLE);
1904 }
1905 
1906 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1907 ({							\
1908 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1909 	pte_t *__pte = pte_offset_map(pmd, address);	\
1910 	*(ptlp) = __ptl;				\
1911 	spin_lock(__ptl);				\
1912 	__pte;						\
1913 })
1914 
1915 #define pte_unmap_unlock(pte, ptl)	do {		\
1916 	spin_unlock(ptl);				\
1917 	pte_unmap(pte);					\
1918 } while (0)
1919 
1920 #define pte_alloc(mm, pmd, address)			\
1921 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1922 
1923 #define pte_alloc_map(mm, pmd, address)			\
1924 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1925 
1926 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1927 	(pte_alloc(mm, pmd, address) ?			\
1928 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1929 
1930 #define pte_alloc_kernel(pmd, address)			\
1931 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1932 		NULL: pte_offset_kernel(pmd, address))
1933 
1934 #if USE_SPLIT_PMD_PTLOCKS
1935 
1936 static struct page *pmd_to_page(pmd_t *pmd)
1937 {
1938 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1939 	return virt_to_page((void *)((unsigned long) pmd & mask));
1940 }
1941 
1942 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1943 {
1944 	return ptlock_ptr(pmd_to_page(pmd));
1945 }
1946 
1947 static inline bool pgtable_pmd_page_ctor(struct page *page)
1948 {
1949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1950 	page->pmd_huge_pte = NULL;
1951 #endif
1952 	return ptlock_init(page);
1953 }
1954 
1955 static inline void pgtable_pmd_page_dtor(struct page *page)
1956 {
1957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1958 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1959 #endif
1960 	ptlock_free(page);
1961 }
1962 
1963 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1964 
1965 #else
1966 
1967 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1968 {
1969 	return &mm->page_table_lock;
1970 }
1971 
1972 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1973 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1974 
1975 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1976 
1977 #endif
1978 
1979 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1980 {
1981 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1982 	spin_lock(ptl);
1983 	return ptl;
1984 }
1985 
1986 /*
1987  * No scalability reason to split PUD locks yet, but follow the same pattern
1988  * as the PMD locks to make it easier if we decide to.  The VM should not be
1989  * considered ready to switch to split PUD locks yet; there may be places
1990  * which need to be converted from page_table_lock.
1991  */
1992 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1993 {
1994 	return &mm->page_table_lock;
1995 }
1996 
1997 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1998 {
1999 	spinlock_t *ptl = pud_lockptr(mm, pud);
2000 
2001 	spin_lock(ptl);
2002 	return ptl;
2003 }
2004 
2005 extern void __init pagecache_init(void);
2006 extern void free_area_init(unsigned long * zones_size);
2007 extern void free_area_init_node(int nid, unsigned long * zones_size,
2008 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2009 extern void free_initmem(void);
2010 
2011 /*
2012  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2013  * into the buddy system. The freed pages will be poisoned with pattern
2014  * "poison" if it's within range [0, UCHAR_MAX].
2015  * Return pages freed into the buddy system.
2016  */
2017 extern unsigned long free_reserved_area(void *start, void *end,
2018 					int poison, char *s);
2019 
2020 #ifdef	CONFIG_HIGHMEM
2021 /*
2022  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2023  * and totalram_pages.
2024  */
2025 extern void free_highmem_page(struct page *page);
2026 #endif
2027 
2028 extern void adjust_managed_page_count(struct page *page, long count);
2029 extern void mem_init_print_info(const char *str);
2030 
2031 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2032 
2033 /* Free the reserved page into the buddy system, so it gets managed. */
2034 static inline void __free_reserved_page(struct page *page)
2035 {
2036 	ClearPageReserved(page);
2037 	init_page_count(page);
2038 	__free_page(page);
2039 }
2040 
2041 static inline void free_reserved_page(struct page *page)
2042 {
2043 	__free_reserved_page(page);
2044 	adjust_managed_page_count(page, 1);
2045 }
2046 
2047 static inline void mark_page_reserved(struct page *page)
2048 {
2049 	SetPageReserved(page);
2050 	adjust_managed_page_count(page, -1);
2051 }
2052 
2053 /*
2054  * Default method to free all the __init memory into the buddy system.
2055  * The freed pages will be poisoned with pattern "poison" if it's within
2056  * range [0, UCHAR_MAX].
2057  * Return pages freed into the buddy system.
2058  */
2059 static inline unsigned long free_initmem_default(int poison)
2060 {
2061 	extern char __init_begin[], __init_end[];
2062 
2063 	return free_reserved_area(&__init_begin, &__init_end,
2064 				  poison, "unused kernel");
2065 }
2066 
2067 static inline unsigned long get_num_physpages(void)
2068 {
2069 	int nid;
2070 	unsigned long phys_pages = 0;
2071 
2072 	for_each_online_node(nid)
2073 		phys_pages += node_present_pages(nid);
2074 
2075 	return phys_pages;
2076 }
2077 
2078 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2079 /*
2080  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2081  * zones, allocate the backing mem_map and account for memory holes in a more
2082  * architecture independent manner. This is a substitute for creating the
2083  * zone_sizes[] and zholes_size[] arrays and passing them to
2084  * free_area_init_node()
2085  *
2086  * An architecture is expected to register range of page frames backed by
2087  * physical memory with memblock_add[_node]() before calling
2088  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2089  * usage, an architecture is expected to do something like
2090  *
2091  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2092  * 							 max_highmem_pfn};
2093  * for_each_valid_physical_page_range()
2094  * 	memblock_add_node(base, size, nid)
2095  * free_area_init_nodes(max_zone_pfns);
2096  *
2097  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2098  * registered physical page range.  Similarly
2099  * sparse_memory_present_with_active_regions() calls memory_present() for
2100  * each range when SPARSEMEM is enabled.
2101  *
2102  * See mm/page_alloc.c for more information on each function exposed by
2103  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2104  */
2105 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2106 unsigned long node_map_pfn_alignment(void);
2107 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2108 						unsigned long end_pfn);
2109 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2110 						unsigned long end_pfn);
2111 extern void get_pfn_range_for_nid(unsigned int nid,
2112 			unsigned long *start_pfn, unsigned long *end_pfn);
2113 extern unsigned long find_min_pfn_with_active_regions(void);
2114 extern void free_bootmem_with_active_regions(int nid,
2115 						unsigned long max_low_pfn);
2116 extern void sparse_memory_present_with_active_regions(int nid);
2117 
2118 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2119 
2120 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2121     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2122 static inline int __early_pfn_to_nid(unsigned long pfn,
2123 					struct mminit_pfnnid_cache *state)
2124 {
2125 	return 0;
2126 }
2127 #else
2128 /* please see mm/page_alloc.c */
2129 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2130 /* there is a per-arch backend function. */
2131 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2132 					struct mminit_pfnnid_cache *state);
2133 #endif
2134 
2135 #ifdef CONFIG_HAVE_MEMBLOCK
2136 void zero_resv_unavail(void);
2137 #else
2138 static inline void zero_resv_unavail(void) {}
2139 #endif
2140 
2141 extern void set_dma_reserve(unsigned long new_dma_reserve);
2142 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2143 		enum memmap_context, struct vmem_altmap *);
2144 extern void setup_per_zone_wmarks(void);
2145 extern int __meminit init_per_zone_wmark_min(void);
2146 extern void mem_init(void);
2147 extern void __init mmap_init(void);
2148 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2149 extern long si_mem_available(void);
2150 extern void si_meminfo(struct sysinfo * val);
2151 extern void si_meminfo_node(struct sysinfo *val, int nid);
2152 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2153 extern unsigned long arch_reserved_kernel_pages(void);
2154 #endif
2155 
2156 extern __printf(3, 4)
2157 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2158 
2159 extern void setup_per_cpu_pageset(void);
2160 
2161 extern void zone_pcp_update(struct zone *zone);
2162 extern void zone_pcp_reset(struct zone *zone);
2163 
2164 /* page_alloc.c */
2165 extern int min_free_kbytes;
2166 extern int watermark_scale_factor;
2167 
2168 /* nommu.c */
2169 extern atomic_long_t mmap_pages_allocated;
2170 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2171 
2172 /* interval_tree.c */
2173 void vma_interval_tree_insert(struct vm_area_struct *node,
2174 			      struct rb_root_cached *root);
2175 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2176 				    struct vm_area_struct *prev,
2177 				    struct rb_root_cached *root);
2178 void vma_interval_tree_remove(struct vm_area_struct *node,
2179 			      struct rb_root_cached *root);
2180 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2181 				unsigned long start, unsigned long last);
2182 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2183 				unsigned long start, unsigned long last);
2184 
2185 #define vma_interval_tree_foreach(vma, root, start, last)		\
2186 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2187 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2188 
2189 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2190 				   struct rb_root_cached *root);
2191 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2192 				   struct rb_root_cached *root);
2193 struct anon_vma_chain *
2194 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2195 				  unsigned long start, unsigned long last);
2196 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2197 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2198 #ifdef CONFIG_DEBUG_VM_RB
2199 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2200 #endif
2201 
2202 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2203 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2204 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2205 
2206 /* mmap.c */
2207 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2208 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2209 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2210 	struct vm_area_struct *expand);
2211 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2212 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2213 {
2214 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2215 }
2216 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2217 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2218 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2219 	struct mempolicy *, struct vm_userfaultfd_ctx);
2220 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2221 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2222 	unsigned long addr, int new_below);
2223 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2224 	unsigned long addr, int new_below);
2225 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2226 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2227 	struct rb_node **, struct rb_node *);
2228 extern void unlink_file_vma(struct vm_area_struct *);
2229 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2230 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2231 	bool *need_rmap_locks);
2232 extern void exit_mmap(struct mm_struct *);
2233 
2234 static inline int check_data_rlimit(unsigned long rlim,
2235 				    unsigned long new,
2236 				    unsigned long start,
2237 				    unsigned long end_data,
2238 				    unsigned long start_data)
2239 {
2240 	if (rlim < RLIM_INFINITY) {
2241 		if (((new - start) + (end_data - start_data)) > rlim)
2242 			return -ENOSPC;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 extern int mm_take_all_locks(struct mm_struct *mm);
2249 extern void mm_drop_all_locks(struct mm_struct *mm);
2250 
2251 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2252 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2253 extern struct file *get_task_exe_file(struct task_struct *task);
2254 
2255 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2256 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2257 
2258 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2259 				   const struct vm_special_mapping *sm);
2260 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2261 				   unsigned long addr, unsigned long len,
2262 				   unsigned long flags,
2263 				   const struct vm_special_mapping *spec);
2264 /* This is an obsolete alternative to _install_special_mapping. */
2265 extern int install_special_mapping(struct mm_struct *mm,
2266 				   unsigned long addr, unsigned long len,
2267 				   unsigned long flags, struct page **pages);
2268 
2269 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2270 
2271 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2272 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2273 	struct list_head *uf);
2274 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2275 	unsigned long len, unsigned long prot, unsigned long flags,
2276 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2277 	struct list_head *uf);
2278 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2279 		     struct list_head *uf);
2280 
2281 static inline unsigned long
2282 do_mmap_pgoff(struct file *file, unsigned long addr,
2283 	unsigned long len, unsigned long prot, unsigned long flags,
2284 	unsigned long pgoff, unsigned long *populate,
2285 	struct list_head *uf)
2286 {
2287 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2288 }
2289 
2290 #ifdef CONFIG_MMU
2291 extern int __mm_populate(unsigned long addr, unsigned long len,
2292 			 int ignore_errors);
2293 static inline void mm_populate(unsigned long addr, unsigned long len)
2294 {
2295 	/* Ignore errors */
2296 	(void) __mm_populate(addr, len, 1);
2297 }
2298 #else
2299 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2300 #endif
2301 
2302 /* These take the mm semaphore themselves */
2303 extern int __must_check vm_brk(unsigned long, unsigned long);
2304 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2305 extern int vm_munmap(unsigned long, size_t);
2306 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2307         unsigned long, unsigned long,
2308         unsigned long, unsigned long);
2309 
2310 struct vm_unmapped_area_info {
2311 #define VM_UNMAPPED_AREA_TOPDOWN 1
2312 	unsigned long flags;
2313 	unsigned long length;
2314 	unsigned long low_limit;
2315 	unsigned long high_limit;
2316 	unsigned long align_mask;
2317 	unsigned long align_offset;
2318 };
2319 
2320 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2321 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2322 
2323 /*
2324  * Search for an unmapped address range.
2325  *
2326  * We are looking for a range that:
2327  * - does not intersect with any VMA;
2328  * - is contained within the [low_limit, high_limit) interval;
2329  * - is at least the desired size.
2330  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2331  */
2332 static inline unsigned long
2333 vm_unmapped_area(struct vm_unmapped_area_info *info)
2334 {
2335 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2336 		return unmapped_area_topdown(info);
2337 	else
2338 		return unmapped_area(info);
2339 }
2340 
2341 /* truncate.c */
2342 extern void truncate_inode_pages(struct address_space *, loff_t);
2343 extern void truncate_inode_pages_range(struct address_space *,
2344 				       loff_t lstart, loff_t lend);
2345 extern void truncate_inode_pages_final(struct address_space *);
2346 
2347 /* generic vm_area_ops exported for stackable file systems */
2348 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2349 extern void filemap_map_pages(struct vm_fault *vmf,
2350 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2351 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2352 
2353 /* mm/page-writeback.c */
2354 int __must_check write_one_page(struct page *page);
2355 void task_dirty_inc(struct task_struct *tsk);
2356 
2357 /* readahead.c */
2358 #define VM_MAX_READAHEAD	128	/* kbytes */
2359 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2360 
2361 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2362 			pgoff_t offset, unsigned long nr_to_read);
2363 
2364 void page_cache_sync_readahead(struct address_space *mapping,
2365 			       struct file_ra_state *ra,
2366 			       struct file *filp,
2367 			       pgoff_t offset,
2368 			       unsigned long size);
2369 
2370 void page_cache_async_readahead(struct address_space *mapping,
2371 				struct file_ra_state *ra,
2372 				struct file *filp,
2373 				struct page *pg,
2374 				pgoff_t offset,
2375 				unsigned long size);
2376 
2377 extern unsigned long stack_guard_gap;
2378 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2379 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2380 
2381 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2382 extern int expand_downwards(struct vm_area_struct *vma,
2383 		unsigned long address);
2384 #if VM_GROWSUP
2385 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2386 #else
2387   #define expand_upwards(vma, address) (0)
2388 #endif
2389 
2390 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2391 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2392 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2393 					     struct vm_area_struct **pprev);
2394 
2395 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2396    NULL if none.  Assume start_addr < end_addr. */
2397 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2398 {
2399 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2400 
2401 	if (vma && end_addr <= vma->vm_start)
2402 		vma = NULL;
2403 	return vma;
2404 }
2405 
2406 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2407 {
2408 	unsigned long vm_start = vma->vm_start;
2409 
2410 	if (vma->vm_flags & VM_GROWSDOWN) {
2411 		vm_start -= stack_guard_gap;
2412 		if (vm_start > vma->vm_start)
2413 			vm_start = 0;
2414 	}
2415 	return vm_start;
2416 }
2417 
2418 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2419 {
2420 	unsigned long vm_end = vma->vm_end;
2421 
2422 	if (vma->vm_flags & VM_GROWSUP) {
2423 		vm_end += stack_guard_gap;
2424 		if (vm_end < vma->vm_end)
2425 			vm_end = -PAGE_SIZE;
2426 	}
2427 	return vm_end;
2428 }
2429 
2430 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2431 {
2432 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2433 }
2434 
2435 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2436 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2437 				unsigned long vm_start, unsigned long vm_end)
2438 {
2439 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2440 
2441 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2442 		vma = NULL;
2443 
2444 	return vma;
2445 }
2446 
2447 #ifdef CONFIG_MMU
2448 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2449 void vma_set_page_prot(struct vm_area_struct *vma);
2450 #else
2451 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2452 {
2453 	return __pgprot(0);
2454 }
2455 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2456 {
2457 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2458 }
2459 #endif
2460 
2461 #ifdef CONFIG_NUMA_BALANCING
2462 unsigned long change_prot_numa(struct vm_area_struct *vma,
2463 			unsigned long start, unsigned long end);
2464 #endif
2465 
2466 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2467 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2468 			unsigned long pfn, unsigned long size, pgprot_t);
2469 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2470 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2471 			unsigned long pfn);
2472 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2473 			unsigned long pfn, pgprot_t pgprot);
2474 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2475 			pfn_t pfn);
2476 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2477 		unsigned long addr, pfn_t pfn);
2478 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2479 
2480 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2481 				unsigned long addr, struct page *page)
2482 {
2483 	int err = vm_insert_page(vma, addr, page);
2484 
2485 	if (err == -ENOMEM)
2486 		return VM_FAULT_OOM;
2487 	if (err < 0 && err != -EBUSY)
2488 		return VM_FAULT_SIGBUS;
2489 
2490 	return VM_FAULT_NOPAGE;
2491 }
2492 
2493 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2494 				unsigned long addr, pfn_t pfn)
2495 {
2496 	int err = vm_insert_mixed(vma, addr, pfn);
2497 
2498 	if (err == -ENOMEM)
2499 		return VM_FAULT_OOM;
2500 	if (err < 0 && err != -EBUSY)
2501 		return VM_FAULT_SIGBUS;
2502 
2503 	return VM_FAULT_NOPAGE;
2504 }
2505 
2506 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2507 			unsigned long addr, unsigned long pfn)
2508 {
2509 	int err = vm_insert_pfn(vma, addr, pfn);
2510 
2511 	if (err == -ENOMEM)
2512 		return VM_FAULT_OOM;
2513 	if (err < 0 && err != -EBUSY)
2514 		return VM_FAULT_SIGBUS;
2515 
2516 	return VM_FAULT_NOPAGE;
2517 }
2518 
2519 static inline vm_fault_t vmf_error(int err)
2520 {
2521 	if (err == -ENOMEM)
2522 		return VM_FAULT_OOM;
2523 	return VM_FAULT_SIGBUS;
2524 }
2525 
2526 struct page *follow_page_mask(struct vm_area_struct *vma,
2527 			      unsigned long address, unsigned int foll_flags,
2528 			      unsigned int *page_mask);
2529 
2530 static inline struct page *follow_page(struct vm_area_struct *vma,
2531 		unsigned long address, unsigned int foll_flags)
2532 {
2533 	unsigned int unused_page_mask;
2534 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2535 }
2536 
2537 #define FOLL_WRITE	0x01	/* check pte is writable */
2538 #define FOLL_TOUCH	0x02	/* mark page accessed */
2539 #define FOLL_GET	0x04	/* do get_page on page */
2540 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2541 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2542 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2543 				 * and return without waiting upon it */
2544 #define FOLL_POPULATE	0x40	/* fault in page */
2545 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2546 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2547 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2548 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2549 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2550 #define FOLL_MLOCK	0x1000	/* lock present pages */
2551 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2552 #define FOLL_COW	0x4000	/* internal GUP flag */
2553 #define FOLL_ANON	0x8000	/* don't do file mappings */
2554 
2555 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2556 {
2557 	if (vm_fault & VM_FAULT_OOM)
2558 		return -ENOMEM;
2559 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2560 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2561 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2562 		return -EFAULT;
2563 	return 0;
2564 }
2565 
2566 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2567 			void *data);
2568 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2569 			       unsigned long size, pte_fn_t fn, void *data);
2570 
2571 
2572 #ifdef CONFIG_PAGE_POISONING
2573 extern bool page_poisoning_enabled(void);
2574 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2575 #else
2576 static inline bool page_poisoning_enabled(void) { return false; }
2577 static inline void kernel_poison_pages(struct page *page, int numpages,
2578 					int enable) { }
2579 #endif
2580 
2581 #ifdef CONFIG_DEBUG_PAGEALLOC
2582 extern bool _debug_pagealloc_enabled;
2583 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2584 
2585 static inline bool debug_pagealloc_enabled(void)
2586 {
2587 	return _debug_pagealloc_enabled;
2588 }
2589 
2590 static inline void
2591 kernel_map_pages(struct page *page, int numpages, int enable)
2592 {
2593 	if (!debug_pagealloc_enabled())
2594 		return;
2595 
2596 	__kernel_map_pages(page, numpages, enable);
2597 }
2598 #ifdef CONFIG_HIBERNATION
2599 extern bool kernel_page_present(struct page *page);
2600 #endif	/* CONFIG_HIBERNATION */
2601 #else	/* CONFIG_DEBUG_PAGEALLOC */
2602 static inline void
2603 kernel_map_pages(struct page *page, int numpages, int enable) {}
2604 #ifdef CONFIG_HIBERNATION
2605 static inline bool kernel_page_present(struct page *page) { return true; }
2606 #endif	/* CONFIG_HIBERNATION */
2607 static inline bool debug_pagealloc_enabled(void)
2608 {
2609 	return false;
2610 }
2611 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2612 
2613 #ifdef __HAVE_ARCH_GATE_AREA
2614 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2615 extern int in_gate_area_no_mm(unsigned long addr);
2616 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2617 #else
2618 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2619 {
2620 	return NULL;
2621 }
2622 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2623 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2624 {
2625 	return 0;
2626 }
2627 #endif	/* __HAVE_ARCH_GATE_AREA */
2628 
2629 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2630 
2631 #ifdef CONFIG_SYSCTL
2632 extern int sysctl_drop_caches;
2633 int drop_caches_sysctl_handler(struct ctl_table *, int,
2634 					void __user *, size_t *, loff_t *);
2635 #endif
2636 
2637 void drop_slab(void);
2638 void drop_slab_node(int nid);
2639 
2640 #ifndef CONFIG_MMU
2641 #define randomize_va_space 0
2642 #else
2643 extern int randomize_va_space;
2644 #endif
2645 
2646 const char * arch_vma_name(struct vm_area_struct *vma);
2647 void print_vma_addr(char *prefix, unsigned long rip);
2648 
2649 void sparse_mem_maps_populate_node(struct page **map_map,
2650 				   unsigned long pnum_begin,
2651 				   unsigned long pnum_end,
2652 				   unsigned long map_count,
2653 				   int nodeid);
2654 
2655 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2656 		struct vmem_altmap *altmap);
2657 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2658 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2659 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2660 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2661 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2662 void *vmemmap_alloc_block(unsigned long size, int node);
2663 struct vmem_altmap;
2664 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2665 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2666 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2667 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2668 			       int node);
2669 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2670 		struct vmem_altmap *altmap);
2671 void vmemmap_populate_print_last(void);
2672 #ifdef CONFIG_MEMORY_HOTPLUG
2673 void vmemmap_free(unsigned long start, unsigned long end,
2674 		struct vmem_altmap *altmap);
2675 #endif
2676 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2677 				  unsigned long nr_pages);
2678 
2679 enum mf_flags {
2680 	MF_COUNT_INCREASED = 1 << 0,
2681 	MF_ACTION_REQUIRED = 1 << 1,
2682 	MF_MUST_KILL = 1 << 2,
2683 	MF_SOFT_OFFLINE = 1 << 3,
2684 };
2685 extern int memory_failure(unsigned long pfn, int flags);
2686 extern void memory_failure_queue(unsigned long pfn, int flags);
2687 extern int unpoison_memory(unsigned long pfn);
2688 extern int get_hwpoison_page(struct page *page);
2689 #define put_hwpoison_page(page)	put_page(page)
2690 extern int sysctl_memory_failure_early_kill;
2691 extern int sysctl_memory_failure_recovery;
2692 extern void shake_page(struct page *p, int access);
2693 extern atomic_long_t num_poisoned_pages __read_mostly;
2694 extern int soft_offline_page(struct page *page, int flags);
2695 
2696 
2697 /*
2698  * Error handlers for various types of pages.
2699  */
2700 enum mf_result {
2701 	MF_IGNORED,	/* Error: cannot be handled */
2702 	MF_FAILED,	/* Error: handling failed */
2703 	MF_DELAYED,	/* Will be handled later */
2704 	MF_RECOVERED,	/* Successfully recovered */
2705 };
2706 
2707 enum mf_action_page_type {
2708 	MF_MSG_KERNEL,
2709 	MF_MSG_KERNEL_HIGH_ORDER,
2710 	MF_MSG_SLAB,
2711 	MF_MSG_DIFFERENT_COMPOUND,
2712 	MF_MSG_POISONED_HUGE,
2713 	MF_MSG_HUGE,
2714 	MF_MSG_FREE_HUGE,
2715 	MF_MSG_NON_PMD_HUGE,
2716 	MF_MSG_UNMAP_FAILED,
2717 	MF_MSG_DIRTY_SWAPCACHE,
2718 	MF_MSG_CLEAN_SWAPCACHE,
2719 	MF_MSG_DIRTY_MLOCKED_LRU,
2720 	MF_MSG_CLEAN_MLOCKED_LRU,
2721 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2722 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2723 	MF_MSG_DIRTY_LRU,
2724 	MF_MSG_CLEAN_LRU,
2725 	MF_MSG_TRUNCATED_LRU,
2726 	MF_MSG_BUDDY,
2727 	MF_MSG_BUDDY_2ND,
2728 	MF_MSG_UNKNOWN,
2729 };
2730 
2731 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2732 extern void clear_huge_page(struct page *page,
2733 			    unsigned long addr_hint,
2734 			    unsigned int pages_per_huge_page);
2735 extern void copy_user_huge_page(struct page *dst, struct page *src,
2736 				unsigned long addr, struct vm_area_struct *vma,
2737 				unsigned int pages_per_huge_page);
2738 extern long copy_huge_page_from_user(struct page *dst_page,
2739 				const void __user *usr_src,
2740 				unsigned int pages_per_huge_page,
2741 				bool allow_pagefault);
2742 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2743 
2744 extern struct page_ext_operations debug_guardpage_ops;
2745 
2746 #ifdef CONFIG_DEBUG_PAGEALLOC
2747 extern unsigned int _debug_guardpage_minorder;
2748 extern bool _debug_guardpage_enabled;
2749 
2750 static inline unsigned int debug_guardpage_minorder(void)
2751 {
2752 	return _debug_guardpage_minorder;
2753 }
2754 
2755 static inline bool debug_guardpage_enabled(void)
2756 {
2757 	return _debug_guardpage_enabled;
2758 }
2759 
2760 static inline bool page_is_guard(struct page *page)
2761 {
2762 	struct page_ext *page_ext;
2763 
2764 	if (!debug_guardpage_enabled())
2765 		return false;
2766 
2767 	page_ext = lookup_page_ext(page);
2768 	if (unlikely(!page_ext))
2769 		return false;
2770 
2771 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2772 }
2773 #else
2774 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2775 static inline bool debug_guardpage_enabled(void) { return false; }
2776 static inline bool page_is_guard(struct page *page) { return false; }
2777 #endif /* CONFIG_DEBUG_PAGEALLOC */
2778 
2779 #if MAX_NUMNODES > 1
2780 void __init setup_nr_node_ids(void);
2781 #else
2782 static inline void setup_nr_node_ids(void) {}
2783 #endif
2784 
2785 #endif /* __KERNEL__ */
2786 #endif /* _LINUX_MM_H */
2787