1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 #ifdef CONFIG_64BIT 410 #define VM_DROPPABLE_BIT 40 411 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 412 #else 413 #define VM_DROPPABLE VM_NONE 414 #endif 415 416 #ifdef CONFIG_64BIT 417 /* VM is sealed, in vm_flags */ 418 #define VM_SEALED _BITUL(63) 419 #endif 420 421 /* Bits set in the VMA until the stack is in its final location */ 422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 423 424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 425 426 /* Common data flag combinations */ 427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 430 VM_MAYWRITE | VM_MAYEXEC) 431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 433 434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 436 #endif 437 438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 440 #endif 441 442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 443 444 #ifdef CONFIG_STACK_GROWSUP 445 #define VM_STACK VM_GROWSUP 446 #define VM_STACK_EARLY VM_GROWSDOWN 447 #else 448 #define VM_STACK VM_GROWSDOWN 449 #define VM_STACK_EARLY 0 450 #endif 451 452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 453 454 /* VMA basic access permission flags */ 455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 456 457 458 /* 459 * Special vmas that are non-mergable, non-mlock()able. 460 */ 461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 462 463 /* This mask prevents VMA from being scanned with khugepaged */ 464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 465 466 /* This mask defines which mm->def_flags a process can inherit its parent */ 467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 468 469 /* This mask represents all the VMA flag bits used by mlock */ 470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 471 472 /* Arch-specific flags to clear when updating VM flags on protection change */ 473 #ifndef VM_ARCH_CLEAR 474 # define VM_ARCH_CLEAR VM_NONE 475 #endif 476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 477 478 /* 479 * mapping from the currently active vm_flags protection bits (the 480 * low four bits) to a page protection mask.. 481 */ 482 483 /* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491 /** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505 { 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508 } 509 510 #define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 522 523 /* 524 * vm_fault is filled by the pagefault handler and passed to the vma's 525 * ->fault function. The vma's ->fault is responsible for returning a bitmask 526 * of VM_FAULT_xxx flags that give details about how the fault was handled. 527 * 528 * MM layer fills up gfp_mask for page allocations but fault handler might 529 * alter it if its implementation requires a different allocation context. 530 * 531 * pgoff should be used in favour of virtual_address, if possible. 532 */ 533 struct vm_fault { 534 const struct { 535 struct vm_area_struct *vma; /* Target VMA */ 536 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 537 pgoff_t pgoff; /* Logical page offset based on vma */ 538 unsigned long address; /* Faulting virtual address - masked */ 539 unsigned long real_address; /* Faulting virtual address - unmasked */ 540 }; 541 enum fault_flag flags; /* FAULT_FLAG_xxx flags 542 * XXX: should really be 'const' */ 543 pmd_t *pmd; /* Pointer to pmd entry matching 544 * the 'address' */ 545 pud_t *pud; /* Pointer to pud entry matching 546 * the 'address' 547 */ 548 union { 549 pte_t orig_pte; /* Value of PTE at the time of fault */ 550 pmd_t orig_pmd; /* Value of PMD at the time of fault, 551 * used by PMD fault only. 552 */ 553 }; 554 555 struct page *cow_page; /* Page handler may use for COW fault */ 556 struct page *page; /* ->fault handlers should return a 557 * page here, unless VM_FAULT_NOPAGE 558 * is set (which is also implied by 559 * VM_FAULT_ERROR). 560 */ 561 /* These three entries are valid only while holding ptl lock */ 562 pte_t *pte; /* Pointer to pte entry matching 563 * the 'address'. NULL if the page 564 * table hasn't been allocated. 565 */ 566 spinlock_t *ptl; /* Page table lock. 567 * Protects pte page table if 'pte' 568 * is not NULL, otherwise pmd. 569 */ 570 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 571 * vm_ops->map_pages() sets up a page 572 * table from atomic context. 573 * do_fault_around() pre-allocates 574 * page table to avoid allocation from 575 * atomic context. 576 */ 577 }; 578 579 /* 580 * These are the virtual MM functions - opening of an area, closing and 581 * unmapping it (needed to keep files on disk up-to-date etc), pointer 582 * to the functions called when a no-page or a wp-page exception occurs. 583 */ 584 struct vm_operations_struct { 585 void (*open)(struct vm_area_struct * area); 586 /** 587 * @close: Called when the VMA is being removed from the MM. 588 * Context: User context. May sleep. Caller holds mmap_lock. 589 */ 590 void (*close)(struct vm_area_struct * area); 591 /* Called any time before splitting to check if it's allowed */ 592 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 593 int (*mremap)(struct vm_area_struct *area); 594 /* 595 * Called by mprotect() to make driver-specific permission 596 * checks before mprotect() is finalised. The VMA must not 597 * be modified. Returns 0 if mprotect() can proceed. 598 */ 599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 600 unsigned long end, unsigned long newflags); 601 vm_fault_t (*fault)(struct vm_fault *vmf); 602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 603 vm_fault_t (*map_pages)(struct vm_fault *vmf, 604 pgoff_t start_pgoff, pgoff_t end_pgoff); 605 unsigned long (*pagesize)(struct vm_area_struct * area); 606 607 /* notification that a previously read-only page is about to become 608 * writable, if an error is returned it will cause a SIGBUS */ 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 610 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 613 614 /* called by access_process_vm when get_user_pages() fails, typically 615 * for use by special VMAs. See also generic_access_phys() for a generic 616 * implementation useful for any iomem mapping. 617 */ 618 int (*access)(struct vm_area_struct *vma, unsigned long addr, 619 void *buf, int len, int write); 620 621 /* Called by the /proc/PID/maps code to ask the vma whether it 622 * has a special name. Returning non-NULL will also cause this 623 * vma to be dumped unconditionally. */ 624 const char *(*name)(struct vm_area_struct *vma); 625 626 #ifdef CONFIG_NUMA 627 /* 628 * set_policy() op must add a reference to any non-NULL @new mempolicy 629 * to hold the policy upon return. Caller should pass NULL @new to 630 * remove a policy and fall back to surrounding context--i.e. do not 631 * install a MPOL_DEFAULT policy, nor the task or system default 632 * mempolicy. 633 */ 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 635 636 /* 637 * get_policy() op must add reference [mpol_get()] to any policy at 638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 639 * in mm/mempolicy.c will do this automatically. 640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 643 * must return NULL--i.e., do not "fallback" to task or system default 644 * policy. 645 */ 646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 647 unsigned long addr, pgoff_t *ilx); 648 #endif 649 /* 650 * Called by vm_normal_page() for special PTEs to find the 651 * page for @addr. This is useful if the default behavior 652 * (using pte_page()) would not find the correct page. 653 */ 654 struct page *(*find_special_page)(struct vm_area_struct *vma, 655 unsigned long addr); 656 }; 657 658 #ifdef CONFIG_NUMA_BALANCING 659 static inline void vma_numab_state_init(struct vm_area_struct *vma) 660 { 661 vma->numab_state = NULL; 662 } 663 static inline void vma_numab_state_free(struct vm_area_struct *vma) 664 { 665 kfree(vma->numab_state); 666 } 667 #else 668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 670 #endif /* CONFIG_NUMA_BALANCING */ 671 672 #ifdef CONFIG_PER_VMA_LOCK 673 /* 674 * Try to read-lock a vma. The function is allowed to occasionally yield false 675 * locked result to avoid performance overhead, in which case we fall back to 676 * using mmap_lock. The function should never yield false unlocked result. 677 */ 678 static inline bool vma_start_read(struct vm_area_struct *vma) 679 { 680 /* 681 * Check before locking. A race might cause false locked result. 682 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 683 * ACQUIRE semantics, because this is just a lockless check whose result 684 * we don't rely on for anything - the mm_lock_seq read against which we 685 * need ordering is below. 686 */ 687 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 688 return false; 689 690 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 691 return false; 692 693 /* 694 * Overflow might produce false locked result. 695 * False unlocked result is impossible because we modify and check 696 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 697 * modification invalidates all existing locks. 698 * 699 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 700 * racing with vma_end_write_all(), we only start reading from the VMA 701 * after it has been unlocked. 702 * This pairs with RELEASE semantics in vma_end_write_all(). 703 */ 704 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 705 up_read(&vma->vm_lock->lock); 706 return false; 707 } 708 return true; 709 } 710 711 static inline void vma_end_read(struct vm_area_struct *vma) 712 { 713 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 714 up_read(&vma->vm_lock->lock); 715 rcu_read_unlock(); 716 } 717 718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 720 { 721 mmap_assert_write_locked(vma->vm_mm); 722 723 /* 724 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 725 * mm->mm_lock_seq can't be concurrently modified. 726 */ 727 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 728 return (vma->vm_lock_seq == *mm_lock_seq); 729 } 730 731 /* 732 * Begin writing to a VMA. 733 * Exclude concurrent readers under the per-VMA lock until the currently 734 * write-locked mmap_lock is dropped or downgraded. 735 */ 736 static inline void vma_start_write(struct vm_area_struct *vma) 737 { 738 int mm_lock_seq; 739 740 if (__is_vma_write_locked(vma, &mm_lock_seq)) 741 return; 742 743 down_write(&vma->vm_lock->lock); 744 /* 745 * We should use WRITE_ONCE() here because we can have concurrent reads 746 * from the early lockless pessimistic check in vma_start_read(). 747 * We don't really care about the correctness of that early check, but 748 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 749 */ 750 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 751 up_write(&vma->vm_lock->lock); 752 } 753 754 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 755 { 756 int mm_lock_seq; 757 758 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 759 } 760 761 static inline void vma_assert_locked(struct vm_area_struct *vma) 762 { 763 if (!rwsem_is_locked(&vma->vm_lock->lock)) 764 vma_assert_write_locked(vma); 765 } 766 767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 768 { 769 /* When detaching vma should be write-locked */ 770 if (detached) 771 vma_assert_write_locked(vma); 772 vma->detached = detached; 773 } 774 775 static inline void release_fault_lock(struct vm_fault *vmf) 776 { 777 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 778 vma_end_read(vmf->vma); 779 else 780 mmap_read_unlock(vmf->vma->vm_mm); 781 } 782 783 static inline void assert_fault_locked(struct vm_fault *vmf) 784 { 785 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 786 vma_assert_locked(vmf->vma); 787 else 788 mmap_assert_locked(vmf->vma->vm_mm); 789 } 790 791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 792 unsigned long address); 793 794 #else /* CONFIG_PER_VMA_LOCK */ 795 796 static inline bool vma_start_read(struct vm_area_struct *vma) 797 { return false; } 798 static inline void vma_end_read(struct vm_area_struct *vma) {} 799 static inline void vma_start_write(struct vm_area_struct *vma) {} 800 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 801 { mmap_assert_write_locked(vma->vm_mm); } 802 static inline void vma_mark_detached(struct vm_area_struct *vma, 803 bool detached) {} 804 805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 806 unsigned long address) 807 { 808 return NULL; 809 } 810 811 static inline void vma_assert_locked(struct vm_area_struct *vma) 812 { 813 mmap_assert_locked(vma->vm_mm); 814 } 815 816 static inline void release_fault_lock(struct vm_fault *vmf) 817 { 818 mmap_read_unlock(vmf->vma->vm_mm); 819 } 820 821 static inline void assert_fault_locked(struct vm_fault *vmf) 822 { 823 mmap_assert_locked(vmf->vma->vm_mm); 824 } 825 826 #endif /* CONFIG_PER_VMA_LOCK */ 827 828 extern const struct vm_operations_struct vma_dummy_vm_ops; 829 830 /* 831 * WARNING: vma_init does not initialize vma->vm_lock. 832 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 833 */ 834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 835 { 836 memset(vma, 0, sizeof(*vma)); 837 vma->vm_mm = mm; 838 vma->vm_ops = &vma_dummy_vm_ops; 839 INIT_LIST_HEAD(&vma->anon_vma_chain); 840 vma_mark_detached(vma, false); 841 vma_numab_state_init(vma); 842 } 843 844 /* Use when VMA is not part of the VMA tree and needs no locking */ 845 static inline void vm_flags_init(struct vm_area_struct *vma, 846 vm_flags_t flags) 847 { 848 ACCESS_PRIVATE(vma, __vm_flags) = flags; 849 } 850 851 /* 852 * Use when VMA is part of the VMA tree and modifications need coordination 853 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 854 * it should be locked explicitly beforehand. 855 */ 856 static inline void vm_flags_reset(struct vm_area_struct *vma, 857 vm_flags_t flags) 858 { 859 vma_assert_write_locked(vma); 860 vm_flags_init(vma, flags); 861 } 862 863 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 864 vm_flags_t flags) 865 { 866 vma_assert_write_locked(vma); 867 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 868 } 869 870 static inline void vm_flags_set(struct vm_area_struct *vma, 871 vm_flags_t flags) 872 { 873 vma_start_write(vma); 874 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 875 } 876 877 static inline void vm_flags_clear(struct vm_area_struct *vma, 878 vm_flags_t flags) 879 { 880 vma_start_write(vma); 881 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 882 } 883 884 /* 885 * Use only if VMA is not part of the VMA tree or has no other users and 886 * therefore needs no locking. 887 */ 888 static inline void __vm_flags_mod(struct vm_area_struct *vma, 889 vm_flags_t set, vm_flags_t clear) 890 { 891 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 892 } 893 894 /* 895 * Use only when the order of set/clear operations is unimportant, otherwise 896 * use vm_flags_{set|clear} explicitly. 897 */ 898 static inline void vm_flags_mod(struct vm_area_struct *vma, 899 vm_flags_t set, vm_flags_t clear) 900 { 901 vma_start_write(vma); 902 __vm_flags_mod(vma, set, clear); 903 } 904 905 static inline void vma_set_anonymous(struct vm_area_struct *vma) 906 { 907 vma->vm_ops = NULL; 908 } 909 910 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 911 { 912 return !vma->vm_ops; 913 } 914 915 /* 916 * Indicate if the VMA is a heap for the given task; for 917 * /proc/PID/maps that is the heap of the main task. 918 */ 919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 920 { 921 return vma->vm_start < vma->vm_mm->brk && 922 vma->vm_end > vma->vm_mm->start_brk; 923 } 924 925 /* 926 * Indicate if the VMA is a stack for the given task; for 927 * /proc/PID/maps that is the stack of the main task. 928 */ 929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 930 { 931 /* 932 * We make no effort to guess what a given thread considers to be 933 * its "stack". It's not even well-defined for programs written 934 * languages like Go. 935 */ 936 return vma->vm_start <= vma->vm_mm->start_stack && 937 vma->vm_end >= vma->vm_mm->start_stack; 938 } 939 940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 941 { 942 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 943 944 if (!maybe_stack) 945 return false; 946 947 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 948 VM_STACK_INCOMPLETE_SETUP) 949 return true; 950 951 return false; 952 } 953 954 static inline bool vma_is_foreign(struct vm_area_struct *vma) 955 { 956 if (!current->mm) 957 return true; 958 959 if (current->mm != vma->vm_mm) 960 return true; 961 962 return false; 963 } 964 965 static inline bool vma_is_accessible(struct vm_area_struct *vma) 966 { 967 return vma->vm_flags & VM_ACCESS_FLAGS; 968 } 969 970 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 971 { 972 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 973 (VM_SHARED | VM_MAYWRITE); 974 } 975 976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 977 { 978 return is_shared_maywrite(vma->vm_flags); 979 } 980 981 static inline 982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 983 { 984 return mas_find(&vmi->mas, max - 1); 985 } 986 987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 988 { 989 /* 990 * Uses mas_find() to get the first VMA when the iterator starts. 991 * Calling mas_next() could skip the first entry. 992 */ 993 return mas_find(&vmi->mas, ULONG_MAX); 994 } 995 996 static inline 997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 998 { 999 return mas_next_range(&vmi->mas, ULONG_MAX); 1000 } 1001 1002 1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1004 { 1005 return mas_prev(&vmi->mas, 0); 1006 } 1007 1008 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1009 unsigned long start, unsigned long end, gfp_t gfp) 1010 { 1011 __mas_set_range(&vmi->mas, start, end - 1); 1012 mas_store_gfp(&vmi->mas, NULL, gfp); 1013 if (unlikely(mas_is_err(&vmi->mas))) 1014 return -ENOMEM; 1015 1016 return 0; 1017 } 1018 1019 /* Free any unused preallocations */ 1020 static inline void vma_iter_free(struct vma_iterator *vmi) 1021 { 1022 mas_destroy(&vmi->mas); 1023 } 1024 1025 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1026 struct vm_area_struct *vma) 1027 { 1028 vmi->mas.index = vma->vm_start; 1029 vmi->mas.last = vma->vm_end - 1; 1030 mas_store(&vmi->mas, vma); 1031 if (unlikely(mas_is_err(&vmi->mas))) 1032 return -ENOMEM; 1033 1034 return 0; 1035 } 1036 1037 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1038 { 1039 mas_pause(&vmi->mas); 1040 } 1041 1042 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1043 { 1044 mas_set(&vmi->mas, addr); 1045 } 1046 1047 #define for_each_vma(__vmi, __vma) \ 1048 while (((__vma) = vma_next(&(__vmi))) != NULL) 1049 1050 /* The MM code likes to work with exclusive end addresses */ 1051 #define for_each_vma_range(__vmi, __vma, __end) \ 1052 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1053 1054 #ifdef CONFIG_SHMEM 1055 /* 1056 * The vma_is_shmem is not inline because it is used only by slow 1057 * paths in userfault. 1058 */ 1059 bool vma_is_shmem(struct vm_area_struct *vma); 1060 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1061 #else 1062 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1063 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1064 #endif 1065 1066 int vma_is_stack_for_current(struct vm_area_struct *vma); 1067 1068 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1069 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1070 1071 struct mmu_gather; 1072 struct inode; 1073 1074 /* 1075 * compound_order() can be called without holding a reference, which means 1076 * that niceties like page_folio() don't work. These callers should be 1077 * prepared to handle wild return values. For example, PG_head may be 1078 * set before the order is initialised, or this may be a tail page. 1079 * See compaction.c for some good examples. 1080 */ 1081 static inline unsigned int compound_order(struct page *page) 1082 { 1083 struct folio *folio = (struct folio *)page; 1084 1085 if (!test_bit(PG_head, &folio->flags)) 1086 return 0; 1087 return folio->_flags_1 & 0xff; 1088 } 1089 1090 /** 1091 * folio_order - The allocation order of a folio. 1092 * @folio: The folio. 1093 * 1094 * A folio is composed of 2^order pages. See get_order() for the definition 1095 * of order. 1096 * 1097 * Return: The order of the folio. 1098 */ 1099 static inline unsigned int folio_order(const struct folio *folio) 1100 { 1101 if (!folio_test_large(folio)) 1102 return 0; 1103 return folio->_flags_1 & 0xff; 1104 } 1105 1106 #include <linux/huge_mm.h> 1107 1108 /* 1109 * Methods to modify the page usage count. 1110 * 1111 * What counts for a page usage: 1112 * - cache mapping (page->mapping) 1113 * - private data (page->private) 1114 * - page mapped in a task's page tables, each mapping 1115 * is counted separately 1116 * 1117 * Also, many kernel routines increase the page count before a critical 1118 * routine so they can be sure the page doesn't go away from under them. 1119 */ 1120 1121 /* 1122 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1123 */ 1124 static inline int put_page_testzero(struct page *page) 1125 { 1126 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1127 return page_ref_dec_and_test(page); 1128 } 1129 1130 static inline int folio_put_testzero(struct folio *folio) 1131 { 1132 return put_page_testzero(&folio->page); 1133 } 1134 1135 /* 1136 * Try to grab a ref unless the page has a refcount of zero, return false if 1137 * that is the case. 1138 * This can be called when MMU is off so it must not access 1139 * any of the virtual mappings. 1140 */ 1141 static inline bool get_page_unless_zero(struct page *page) 1142 { 1143 return page_ref_add_unless(page, 1, 0); 1144 } 1145 1146 static inline struct folio *folio_get_nontail_page(struct page *page) 1147 { 1148 if (unlikely(!get_page_unless_zero(page))) 1149 return NULL; 1150 return (struct folio *)page; 1151 } 1152 1153 extern int page_is_ram(unsigned long pfn); 1154 1155 enum { 1156 REGION_INTERSECTS, 1157 REGION_DISJOINT, 1158 REGION_MIXED, 1159 }; 1160 1161 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1162 unsigned long desc); 1163 1164 /* Support for virtually mapped pages */ 1165 struct page *vmalloc_to_page(const void *addr); 1166 unsigned long vmalloc_to_pfn(const void *addr); 1167 1168 /* 1169 * Determine if an address is within the vmalloc range 1170 * 1171 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1172 * is no special casing required. 1173 */ 1174 #ifdef CONFIG_MMU 1175 extern bool is_vmalloc_addr(const void *x); 1176 extern int is_vmalloc_or_module_addr(const void *x); 1177 #else 1178 static inline bool is_vmalloc_addr(const void *x) 1179 { 1180 return false; 1181 } 1182 static inline int is_vmalloc_or_module_addr(const void *x) 1183 { 1184 return 0; 1185 } 1186 #endif 1187 1188 /* 1189 * How many times the entire folio is mapped as a single unit (eg by a 1190 * PMD or PUD entry). This is probably not what you want, except for 1191 * debugging purposes or implementation of other core folio_*() primitives. 1192 */ 1193 static inline int folio_entire_mapcount(const struct folio *folio) 1194 { 1195 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1196 return atomic_read(&folio->_entire_mapcount) + 1; 1197 } 1198 1199 static inline int folio_large_mapcount(const struct folio *folio) 1200 { 1201 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1202 return atomic_read(&folio->_large_mapcount) + 1; 1203 } 1204 1205 /** 1206 * folio_mapcount() - Number of mappings of this folio. 1207 * @folio: The folio. 1208 * 1209 * The folio mapcount corresponds to the number of present user page table 1210 * entries that reference any part of a folio. Each such present user page 1211 * table entry must be paired with exactly on folio reference. 1212 * 1213 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1214 * exactly once. 1215 * 1216 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1217 * references the entire folio counts exactly once, even when such special 1218 * page table entries are comprised of multiple ordinary page table entries. 1219 * 1220 * Will report 0 for pages which cannot be mapped into userspace, such as 1221 * slab, page tables and similar. 1222 * 1223 * Return: The number of times this folio is mapped. 1224 */ 1225 static inline int folio_mapcount(const struct folio *folio) 1226 { 1227 int mapcount; 1228 1229 if (likely(!folio_test_large(folio))) { 1230 mapcount = atomic_read(&folio->_mapcount) + 1; 1231 /* Handle page_has_type() pages */ 1232 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1233 mapcount = 0; 1234 return mapcount; 1235 } 1236 return folio_large_mapcount(folio); 1237 } 1238 1239 /** 1240 * folio_mapped - Is this folio mapped into userspace? 1241 * @folio: The folio. 1242 * 1243 * Return: True if any page in this folio is referenced by user page tables. 1244 */ 1245 static inline bool folio_mapped(const struct folio *folio) 1246 { 1247 return folio_mapcount(folio) >= 1; 1248 } 1249 1250 /* 1251 * Return true if this page is mapped into pagetables. 1252 * For compound page it returns true if any sub-page of compound page is mapped, 1253 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1254 */ 1255 static inline bool page_mapped(const struct page *page) 1256 { 1257 return folio_mapped(page_folio(page)); 1258 } 1259 1260 static inline struct page *virt_to_head_page(const void *x) 1261 { 1262 struct page *page = virt_to_page(x); 1263 1264 return compound_head(page); 1265 } 1266 1267 static inline struct folio *virt_to_folio(const void *x) 1268 { 1269 struct page *page = virt_to_page(x); 1270 1271 return page_folio(page); 1272 } 1273 1274 void __folio_put(struct folio *folio); 1275 1276 void put_pages_list(struct list_head *pages); 1277 1278 void split_page(struct page *page, unsigned int order); 1279 void folio_copy(struct folio *dst, struct folio *src); 1280 int folio_mc_copy(struct folio *dst, struct folio *src); 1281 1282 unsigned long nr_free_buffer_pages(void); 1283 1284 /* Returns the number of bytes in this potentially compound page. */ 1285 static inline unsigned long page_size(struct page *page) 1286 { 1287 return PAGE_SIZE << compound_order(page); 1288 } 1289 1290 /* Returns the number of bits needed for the number of bytes in a page */ 1291 static inline unsigned int page_shift(struct page *page) 1292 { 1293 return PAGE_SHIFT + compound_order(page); 1294 } 1295 1296 /** 1297 * thp_order - Order of a transparent huge page. 1298 * @page: Head page of a transparent huge page. 1299 */ 1300 static inline unsigned int thp_order(struct page *page) 1301 { 1302 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1303 return compound_order(page); 1304 } 1305 1306 /** 1307 * thp_size - Size of a transparent huge page. 1308 * @page: Head page of a transparent huge page. 1309 * 1310 * Return: Number of bytes in this page. 1311 */ 1312 static inline unsigned long thp_size(struct page *page) 1313 { 1314 return PAGE_SIZE << thp_order(page); 1315 } 1316 1317 #ifdef CONFIG_MMU 1318 /* 1319 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1320 * servicing faults for write access. In the normal case, do always want 1321 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1322 * that do not have writing enabled, when used by access_process_vm. 1323 */ 1324 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1325 { 1326 if (likely(vma->vm_flags & VM_WRITE)) 1327 pte = pte_mkwrite(pte, vma); 1328 return pte; 1329 } 1330 1331 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1332 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1333 struct page *page, unsigned int nr, unsigned long addr); 1334 1335 vm_fault_t finish_fault(struct vm_fault *vmf); 1336 #endif 1337 1338 /* 1339 * Multiple processes may "see" the same page. E.g. for untouched 1340 * mappings of /dev/null, all processes see the same page full of 1341 * zeroes, and text pages of executables and shared libraries have 1342 * only one copy in memory, at most, normally. 1343 * 1344 * For the non-reserved pages, page_count(page) denotes a reference count. 1345 * page_count() == 0 means the page is free. page->lru is then used for 1346 * freelist management in the buddy allocator. 1347 * page_count() > 0 means the page has been allocated. 1348 * 1349 * Pages are allocated by the slab allocator in order to provide memory 1350 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1351 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1352 * unless a particular usage is carefully commented. (the responsibility of 1353 * freeing the kmalloc memory is the caller's, of course). 1354 * 1355 * A page may be used by anyone else who does a __get_free_page(). 1356 * In this case, page_count still tracks the references, and should only 1357 * be used through the normal accessor functions. The top bits of page->flags 1358 * and page->virtual store page management information, but all other fields 1359 * are unused and could be used privately, carefully. The management of this 1360 * page is the responsibility of the one who allocated it, and those who have 1361 * subsequently been given references to it. 1362 * 1363 * The other pages (we may call them "pagecache pages") are completely 1364 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1365 * The following discussion applies only to them. 1366 * 1367 * A pagecache page contains an opaque `private' member, which belongs to the 1368 * page's address_space. Usually, this is the address of a circular list of 1369 * the page's disk buffers. PG_private must be set to tell the VM to call 1370 * into the filesystem to release these pages. 1371 * 1372 * A page may belong to an inode's memory mapping. In this case, page->mapping 1373 * is the pointer to the inode, and page->index is the file offset of the page, 1374 * in units of PAGE_SIZE. 1375 * 1376 * If pagecache pages are not associated with an inode, they are said to be 1377 * anonymous pages. These may become associated with the swapcache, and in that 1378 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1379 * 1380 * In either case (swapcache or inode backed), the pagecache itself holds one 1381 * reference to the page. Setting PG_private should also increment the 1382 * refcount. The each user mapping also has a reference to the page. 1383 * 1384 * The pagecache pages are stored in a per-mapping radix tree, which is 1385 * rooted at mapping->i_pages, and indexed by offset. 1386 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1387 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1388 * 1389 * All pagecache pages may be subject to I/O: 1390 * - inode pages may need to be read from disk, 1391 * - inode pages which have been modified and are MAP_SHARED may need 1392 * to be written back to the inode on disk, 1393 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1394 * modified may need to be swapped out to swap space and (later) to be read 1395 * back into memory. 1396 */ 1397 1398 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1399 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1400 1401 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1402 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1403 { 1404 if (!static_branch_unlikely(&devmap_managed_key)) 1405 return false; 1406 if (!folio_is_zone_device(folio)) 1407 return false; 1408 return __put_devmap_managed_folio_refs(folio, refs); 1409 } 1410 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1411 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1412 { 1413 return false; 1414 } 1415 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1416 1417 /* 127: arbitrary random number, small enough to assemble well */ 1418 #define folio_ref_zero_or_close_to_overflow(folio) \ 1419 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1420 1421 /** 1422 * folio_get - Increment the reference count on a folio. 1423 * @folio: The folio. 1424 * 1425 * Context: May be called in any context, as long as you know that 1426 * you have a refcount on the folio. If you do not already have one, 1427 * folio_try_get() may be the right interface for you to use. 1428 */ 1429 static inline void folio_get(struct folio *folio) 1430 { 1431 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1432 folio_ref_inc(folio); 1433 } 1434 1435 static inline void get_page(struct page *page) 1436 { 1437 folio_get(page_folio(page)); 1438 } 1439 1440 static inline __must_check bool try_get_page(struct page *page) 1441 { 1442 page = compound_head(page); 1443 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1444 return false; 1445 page_ref_inc(page); 1446 return true; 1447 } 1448 1449 /** 1450 * folio_put - Decrement the reference count on a folio. 1451 * @folio: The folio. 1452 * 1453 * If the folio's reference count reaches zero, the memory will be 1454 * released back to the page allocator and may be used by another 1455 * allocation immediately. Do not access the memory or the struct folio 1456 * after calling folio_put() unless you can be sure that it wasn't the 1457 * last reference. 1458 * 1459 * Context: May be called in process or interrupt context, but not in NMI 1460 * context. May be called while holding a spinlock. 1461 */ 1462 static inline void folio_put(struct folio *folio) 1463 { 1464 if (folio_put_testzero(folio)) 1465 __folio_put(folio); 1466 } 1467 1468 /** 1469 * folio_put_refs - Reduce the reference count on a folio. 1470 * @folio: The folio. 1471 * @refs: The amount to subtract from the folio's reference count. 1472 * 1473 * If the folio's reference count reaches zero, the memory will be 1474 * released back to the page allocator and may be used by another 1475 * allocation immediately. Do not access the memory or the struct folio 1476 * after calling folio_put_refs() unless you can be sure that these weren't 1477 * the last references. 1478 * 1479 * Context: May be called in process or interrupt context, but not in NMI 1480 * context. May be called while holding a spinlock. 1481 */ 1482 static inline void folio_put_refs(struct folio *folio, int refs) 1483 { 1484 if (folio_ref_sub_and_test(folio, refs)) 1485 __folio_put(folio); 1486 } 1487 1488 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1489 1490 /* 1491 * union release_pages_arg - an array of pages or folios 1492 * 1493 * release_pages() releases a simple array of multiple pages, and 1494 * accepts various different forms of said page array: either 1495 * a regular old boring array of pages, an array of folios, or 1496 * an array of encoded page pointers. 1497 * 1498 * The transparent union syntax for this kind of "any of these 1499 * argument types" is all kinds of ugly, so look away. 1500 */ 1501 typedef union { 1502 struct page **pages; 1503 struct folio **folios; 1504 struct encoded_page **encoded_pages; 1505 } release_pages_arg __attribute__ ((__transparent_union__)); 1506 1507 void release_pages(release_pages_arg, int nr); 1508 1509 /** 1510 * folios_put - Decrement the reference count on an array of folios. 1511 * @folios: The folios. 1512 * 1513 * Like folio_put(), but for a batch of folios. This is more efficient 1514 * than writing the loop yourself as it will optimise the locks which need 1515 * to be taken if the folios are freed. The folios batch is returned 1516 * empty and ready to be reused for another batch; there is no need to 1517 * reinitialise it. 1518 * 1519 * Context: May be called in process or interrupt context, but not in NMI 1520 * context. May be called while holding a spinlock. 1521 */ 1522 static inline void folios_put(struct folio_batch *folios) 1523 { 1524 folios_put_refs(folios, NULL); 1525 } 1526 1527 static inline void put_page(struct page *page) 1528 { 1529 struct folio *folio = page_folio(page); 1530 1531 /* 1532 * For some devmap managed pages we need to catch refcount transition 1533 * from 2 to 1: 1534 */ 1535 if (put_devmap_managed_folio_refs(folio, 1)) 1536 return; 1537 folio_put(folio); 1538 } 1539 1540 /* 1541 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1542 * the page's refcount so that two separate items are tracked: the original page 1543 * reference count, and also a new count of how many pin_user_pages() calls were 1544 * made against the page. ("gup-pinned" is another term for the latter). 1545 * 1546 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1547 * distinct from normal pages. As such, the unpin_user_page() call (and its 1548 * variants) must be used in order to release gup-pinned pages. 1549 * 1550 * Choice of value: 1551 * 1552 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1553 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1554 * simpler, due to the fact that adding an even power of two to the page 1555 * refcount has the effect of using only the upper N bits, for the code that 1556 * counts up using the bias value. This means that the lower bits are left for 1557 * the exclusive use of the original code that increments and decrements by one 1558 * (or at least, by much smaller values than the bias value). 1559 * 1560 * Of course, once the lower bits overflow into the upper bits (and this is 1561 * OK, because subtraction recovers the original values), then visual inspection 1562 * no longer suffices to directly view the separate counts. However, for normal 1563 * applications that don't have huge page reference counts, this won't be an 1564 * issue. 1565 * 1566 * Locking: the lockless algorithm described in folio_try_get_rcu() 1567 * provides safe operation for get_user_pages(), folio_mkclean() and 1568 * other calls that race to set up page table entries. 1569 */ 1570 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1571 1572 void unpin_user_page(struct page *page); 1573 void unpin_folio(struct folio *folio); 1574 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1575 bool make_dirty); 1576 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1577 bool make_dirty); 1578 void unpin_user_pages(struct page **pages, unsigned long npages); 1579 void unpin_folios(struct folio **folios, unsigned long nfolios); 1580 1581 static inline bool is_cow_mapping(vm_flags_t flags) 1582 { 1583 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1584 } 1585 1586 #ifndef CONFIG_MMU 1587 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1588 { 1589 /* 1590 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1591 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1592 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1593 * underlying memory if ptrace is active, so this is only possible if 1594 * ptrace does not apply. Note that there is no mprotect() to upgrade 1595 * write permissions later. 1596 */ 1597 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1598 } 1599 #endif 1600 1601 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1602 #define SECTION_IN_PAGE_FLAGS 1603 #endif 1604 1605 /* 1606 * The identification function is mainly used by the buddy allocator for 1607 * determining if two pages could be buddies. We are not really identifying 1608 * the zone since we could be using the section number id if we do not have 1609 * node id available in page flags. 1610 * We only guarantee that it will return the same value for two combinable 1611 * pages in a zone. 1612 */ 1613 static inline int page_zone_id(struct page *page) 1614 { 1615 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1616 } 1617 1618 #ifdef NODE_NOT_IN_PAGE_FLAGS 1619 int page_to_nid(const struct page *page); 1620 #else 1621 static inline int page_to_nid(const struct page *page) 1622 { 1623 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1624 } 1625 #endif 1626 1627 static inline int folio_nid(const struct folio *folio) 1628 { 1629 return page_to_nid(&folio->page); 1630 } 1631 1632 #ifdef CONFIG_NUMA_BALANCING 1633 /* page access time bits needs to hold at least 4 seconds */ 1634 #define PAGE_ACCESS_TIME_MIN_BITS 12 1635 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1636 #define PAGE_ACCESS_TIME_BUCKETS \ 1637 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1638 #else 1639 #define PAGE_ACCESS_TIME_BUCKETS 0 1640 #endif 1641 1642 #define PAGE_ACCESS_TIME_MASK \ 1643 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1644 1645 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1646 { 1647 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1648 } 1649 1650 static inline int cpupid_to_pid(int cpupid) 1651 { 1652 return cpupid & LAST__PID_MASK; 1653 } 1654 1655 static inline int cpupid_to_cpu(int cpupid) 1656 { 1657 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1658 } 1659 1660 static inline int cpupid_to_nid(int cpupid) 1661 { 1662 return cpu_to_node(cpupid_to_cpu(cpupid)); 1663 } 1664 1665 static inline bool cpupid_pid_unset(int cpupid) 1666 { 1667 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1668 } 1669 1670 static inline bool cpupid_cpu_unset(int cpupid) 1671 { 1672 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1673 } 1674 1675 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1676 { 1677 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1678 } 1679 1680 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1681 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1682 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1683 { 1684 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1685 } 1686 1687 static inline int folio_last_cpupid(struct folio *folio) 1688 { 1689 return folio->_last_cpupid; 1690 } 1691 static inline void page_cpupid_reset_last(struct page *page) 1692 { 1693 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1694 } 1695 #else 1696 static inline int folio_last_cpupid(struct folio *folio) 1697 { 1698 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1699 } 1700 1701 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1702 1703 static inline void page_cpupid_reset_last(struct page *page) 1704 { 1705 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1706 } 1707 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1708 1709 static inline int folio_xchg_access_time(struct folio *folio, int time) 1710 { 1711 int last_time; 1712 1713 last_time = folio_xchg_last_cpupid(folio, 1714 time >> PAGE_ACCESS_TIME_BUCKETS); 1715 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1716 } 1717 1718 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1719 { 1720 unsigned int pid_bit; 1721 1722 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1723 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1724 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1725 } 1726 } 1727 1728 bool folio_use_access_time(struct folio *folio); 1729 #else /* !CONFIG_NUMA_BALANCING */ 1730 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1731 { 1732 return folio_nid(folio); /* XXX */ 1733 } 1734 1735 static inline int folio_xchg_access_time(struct folio *folio, int time) 1736 { 1737 return 0; 1738 } 1739 1740 static inline int folio_last_cpupid(struct folio *folio) 1741 { 1742 return folio_nid(folio); /* XXX */ 1743 } 1744 1745 static inline int cpupid_to_nid(int cpupid) 1746 { 1747 return -1; 1748 } 1749 1750 static inline int cpupid_to_pid(int cpupid) 1751 { 1752 return -1; 1753 } 1754 1755 static inline int cpupid_to_cpu(int cpupid) 1756 { 1757 return -1; 1758 } 1759 1760 static inline int cpu_pid_to_cpupid(int nid, int pid) 1761 { 1762 return -1; 1763 } 1764 1765 static inline bool cpupid_pid_unset(int cpupid) 1766 { 1767 return true; 1768 } 1769 1770 static inline void page_cpupid_reset_last(struct page *page) 1771 { 1772 } 1773 1774 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1775 { 1776 return false; 1777 } 1778 1779 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1780 { 1781 } 1782 static inline bool folio_use_access_time(struct folio *folio) 1783 { 1784 return false; 1785 } 1786 #endif /* CONFIG_NUMA_BALANCING */ 1787 1788 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1789 1790 /* 1791 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1792 * setting tags for all pages to native kernel tag value 0xff, as the default 1793 * value 0x00 maps to 0xff. 1794 */ 1795 1796 static inline u8 page_kasan_tag(const struct page *page) 1797 { 1798 u8 tag = KASAN_TAG_KERNEL; 1799 1800 if (kasan_enabled()) { 1801 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1802 tag ^= 0xff; 1803 } 1804 1805 return tag; 1806 } 1807 1808 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1809 { 1810 unsigned long old_flags, flags; 1811 1812 if (!kasan_enabled()) 1813 return; 1814 1815 tag ^= 0xff; 1816 old_flags = READ_ONCE(page->flags); 1817 do { 1818 flags = old_flags; 1819 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1820 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1821 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1822 } 1823 1824 static inline void page_kasan_tag_reset(struct page *page) 1825 { 1826 if (kasan_enabled()) 1827 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1828 } 1829 1830 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1831 1832 static inline u8 page_kasan_tag(const struct page *page) 1833 { 1834 return 0xff; 1835 } 1836 1837 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1838 static inline void page_kasan_tag_reset(struct page *page) { } 1839 1840 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1841 1842 static inline struct zone *page_zone(const struct page *page) 1843 { 1844 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1845 } 1846 1847 static inline pg_data_t *page_pgdat(const struct page *page) 1848 { 1849 return NODE_DATA(page_to_nid(page)); 1850 } 1851 1852 static inline struct zone *folio_zone(const struct folio *folio) 1853 { 1854 return page_zone(&folio->page); 1855 } 1856 1857 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1858 { 1859 return page_pgdat(&folio->page); 1860 } 1861 1862 #ifdef SECTION_IN_PAGE_FLAGS 1863 static inline void set_page_section(struct page *page, unsigned long section) 1864 { 1865 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1866 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1867 } 1868 1869 static inline unsigned long page_to_section(const struct page *page) 1870 { 1871 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1872 } 1873 #endif 1874 1875 /** 1876 * folio_pfn - Return the Page Frame Number of a folio. 1877 * @folio: The folio. 1878 * 1879 * A folio may contain multiple pages. The pages have consecutive 1880 * Page Frame Numbers. 1881 * 1882 * Return: The Page Frame Number of the first page in the folio. 1883 */ 1884 static inline unsigned long folio_pfn(struct folio *folio) 1885 { 1886 return page_to_pfn(&folio->page); 1887 } 1888 1889 static inline struct folio *pfn_folio(unsigned long pfn) 1890 { 1891 return page_folio(pfn_to_page(pfn)); 1892 } 1893 1894 /** 1895 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1896 * @folio: The folio. 1897 * 1898 * This function checks if a folio has been pinned via a call to 1899 * a function in the pin_user_pages() family. 1900 * 1901 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1902 * because it means "definitely not pinned for DMA", but true means "probably 1903 * pinned for DMA, but possibly a false positive due to having at least 1904 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1905 * 1906 * False positives are OK, because: a) it's unlikely for a folio to 1907 * get that many refcounts, and b) all the callers of this routine are 1908 * expected to be able to deal gracefully with a false positive. 1909 * 1910 * For large folios, the result will be exactly correct. That's because 1911 * we have more tracking data available: the _pincount field is used 1912 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1913 * 1914 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1915 * 1916 * Return: True, if it is likely that the folio has been "dma-pinned". 1917 * False, if the folio is definitely not dma-pinned. 1918 */ 1919 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1920 { 1921 if (folio_test_large(folio)) 1922 return atomic_read(&folio->_pincount) > 0; 1923 1924 /* 1925 * folio_ref_count() is signed. If that refcount overflows, then 1926 * folio_ref_count() returns a negative value, and callers will avoid 1927 * further incrementing the refcount. 1928 * 1929 * Here, for that overflow case, use the sign bit to count a little 1930 * bit higher via unsigned math, and thus still get an accurate result. 1931 */ 1932 return ((unsigned int)folio_ref_count(folio)) >= 1933 GUP_PIN_COUNTING_BIAS; 1934 } 1935 1936 /* 1937 * This should most likely only be called during fork() to see whether we 1938 * should break the cow immediately for an anon page on the src mm. 1939 * 1940 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1941 */ 1942 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1943 struct folio *folio) 1944 { 1945 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1946 1947 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1948 return false; 1949 1950 return folio_maybe_dma_pinned(folio); 1951 } 1952 1953 /** 1954 * is_zero_page - Query if a page is a zero page 1955 * @page: The page to query 1956 * 1957 * This returns true if @page is one of the permanent zero pages. 1958 */ 1959 static inline bool is_zero_page(const struct page *page) 1960 { 1961 return is_zero_pfn(page_to_pfn(page)); 1962 } 1963 1964 /** 1965 * is_zero_folio - Query if a folio is a zero page 1966 * @folio: The folio to query 1967 * 1968 * This returns true if @folio is one of the permanent zero pages. 1969 */ 1970 static inline bool is_zero_folio(const struct folio *folio) 1971 { 1972 return is_zero_page(&folio->page); 1973 } 1974 1975 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1976 #ifdef CONFIG_MIGRATION 1977 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1978 { 1979 #ifdef CONFIG_CMA 1980 int mt = folio_migratetype(folio); 1981 1982 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1983 return false; 1984 #endif 1985 /* The zero page can be "pinned" but gets special handling. */ 1986 if (is_zero_folio(folio)) 1987 return true; 1988 1989 /* Coherent device memory must always allow eviction. */ 1990 if (folio_is_device_coherent(folio)) 1991 return false; 1992 1993 /* Otherwise, non-movable zone folios can be pinned. */ 1994 return !folio_is_zone_movable(folio); 1995 1996 } 1997 #else 1998 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1999 { 2000 return true; 2001 } 2002 #endif 2003 2004 static inline void set_page_zone(struct page *page, enum zone_type zone) 2005 { 2006 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2007 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2008 } 2009 2010 static inline void set_page_node(struct page *page, unsigned long node) 2011 { 2012 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2013 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2014 } 2015 2016 static inline void set_page_links(struct page *page, enum zone_type zone, 2017 unsigned long node, unsigned long pfn) 2018 { 2019 set_page_zone(page, zone); 2020 set_page_node(page, node); 2021 #ifdef SECTION_IN_PAGE_FLAGS 2022 set_page_section(page, pfn_to_section_nr(pfn)); 2023 #endif 2024 } 2025 2026 /** 2027 * folio_nr_pages - The number of pages in the folio. 2028 * @folio: The folio. 2029 * 2030 * Return: A positive power of two. 2031 */ 2032 static inline long folio_nr_pages(const struct folio *folio) 2033 { 2034 if (!folio_test_large(folio)) 2035 return 1; 2036 #ifdef CONFIG_64BIT 2037 return folio->_folio_nr_pages; 2038 #else 2039 return 1L << (folio->_flags_1 & 0xff); 2040 #endif 2041 } 2042 2043 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2045 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2046 #else 2047 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2048 #endif 2049 2050 /* 2051 * compound_nr() returns the number of pages in this potentially compound 2052 * page. compound_nr() can be called on a tail page, and is defined to 2053 * return 1 in that case. 2054 */ 2055 static inline unsigned long compound_nr(struct page *page) 2056 { 2057 struct folio *folio = (struct folio *)page; 2058 2059 if (!test_bit(PG_head, &folio->flags)) 2060 return 1; 2061 #ifdef CONFIG_64BIT 2062 return folio->_folio_nr_pages; 2063 #else 2064 return 1L << (folio->_flags_1 & 0xff); 2065 #endif 2066 } 2067 2068 /** 2069 * thp_nr_pages - The number of regular pages in this huge page. 2070 * @page: The head page of a huge page. 2071 */ 2072 static inline int thp_nr_pages(struct page *page) 2073 { 2074 return folio_nr_pages((struct folio *)page); 2075 } 2076 2077 /** 2078 * folio_next - Move to the next physical folio. 2079 * @folio: The folio we're currently operating on. 2080 * 2081 * If you have physically contiguous memory which may span more than 2082 * one folio (eg a &struct bio_vec), use this function to move from one 2083 * folio to the next. Do not use it if the memory is only virtually 2084 * contiguous as the folios are almost certainly not adjacent to each 2085 * other. This is the folio equivalent to writing ``page++``. 2086 * 2087 * Context: We assume that the folios are refcounted and/or locked at a 2088 * higher level and do not adjust the reference counts. 2089 * Return: The next struct folio. 2090 */ 2091 static inline struct folio *folio_next(struct folio *folio) 2092 { 2093 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2094 } 2095 2096 /** 2097 * folio_shift - The size of the memory described by this folio. 2098 * @folio: The folio. 2099 * 2100 * A folio represents a number of bytes which is a power-of-two in size. 2101 * This function tells you which power-of-two the folio is. See also 2102 * folio_size() and folio_order(). 2103 * 2104 * Context: The caller should have a reference on the folio to prevent 2105 * it from being split. It is not necessary for the folio to be locked. 2106 * Return: The base-2 logarithm of the size of this folio. 2107 */ 2108 static inline unsigned int folio_shift(const struct folio *folio) 2109 { 2110 return PAGE_SHIFT + folio_order(folio); 2111 } 2112 2113 /** 2114 * folio_size - The number of bytes in a folio. 2115 * @folio: The folio. 2116 * 2117 * Context: The caller should have a reference on the folio to prevent 2118 * it from being split. It is not necessary for the folio to be locked. 2119 * Return: The number of bytes in this folio. 2120 */ 2121 static inline size_t folio_size(const struct folio *folio) 2122 { 2123 return PAGE_SIZE << folio_order(folio); 2124 } 2125 2126 /** 2127 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2128 * tables of more than one MM 2129 * @folio: The folio. 2130 * 2131 * This function checks if the folio is currently mapped into more than one 2132 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2133 * ("mapped exclusively"). 2134 * 2135 * For KSM folios, this function also returns "mapped shared" when a folio is 2136 * mapped multiple times into the same MM, because the individual page mappings 2137 * are independent. 2138 * 2139 * As precise information is not easily available for all folios, this function 2140 * estimates the number of MMs ("sharers") that are currently mapping a folio 2141 * using the number of times the first page of the folio is currently mapped 2142 * into page tables. 2143 * 2144 * For small anonymous folios and anonymous hugetlb folios, the return 2145 * value will be exactly correct: non-KSM folios can only be mapped at most once 2146 * into an MM, and they cannot be partially mapped. KSM folios are 2147 * considered shared even if mapped multiple times into the same MM. 2148 * 2149 * For other folios, the result can be fuzzy: 2150 * #. For partially-mappable large folios (THP), the return value can wrongly 2151 * indicate "mapped exclusively" (false negative) when the folio is 2152 * only partially mapped into at least one MM. 2153 * #. For pagecache folios (including hugetlb), the return value can wrongly 2154 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2155 * cover the same file range. 2156 * 2157 * Further, this function only considers current page table mappings that 2158 * are tracked using the folio mapcount(s). 2159 * 2160 * This function does not consider: 2161 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2162 * pagecache, temporary unmapping for migration). 2163 * #. If the folio is mapped differently (VM_PFNMAP). 2164 * #. If hugetlb page table sharing applies. Callers might want to check 2165 * hugetlb_pmd_shared(). 2166 * 2167 * Return: Whether the folio is estimated to be mapped into more than one MM. 2168 */ 2169 static inline bool folio_likely_mapped_shared(struct folio *folio) 2170 { 2171 int mapcount = folio_mapcount(folio); 2172 2173 /* Only partially-mappable folios require more care. */ 2174 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2175 return mapcount > 1; 2176 2177 /* A single mapping implies "mapped exclusively". */ 2178 if (mapcount <= 1) 2179 return false; 2180 2181 /* If any page is mapped more than once we treat it "mapped shared". */ 2182 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2183 return true; 2184 2185 /* Let's guess based on the first subpage. */ 2186 return atomic_read(&folio->_mapcount) > 0; 2187 } 2188 2189 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2190 static inline int arch_make_folio_accessible(struct folio *folio) 2191 { 2192 return 0; 2193 } 2194 #endif 2195 2196 /* 2197 * Some inline functions in vmstat.h depend on page_zone() 2198 */ 2199 #include <linux/vmstat.h> 2200 2201 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2202 #define HASHED_PAGE_VIRTUAL 2203 #endif 2204 2205 #if defined(WANT_PAGE_VIRTUAL) 2206 static inline void *page_address(const struct page *page) 2207 { 2208 return page->virtual; 2209 } 2210 static inline void set_page_address(struct page *page, void *address) 2211 { 2212 page->virtual = address; 2213 } 2214 #define page_address_init() do { } while(0) 2215 #endif 2216 2217 #if defined(HASHED_PAGE_VIRTUAL) 2218 void *page_address(const struct page *page); 2219 void set_page_address(struct page *page, void *virtual); 2220 void page_address_init(void); 2221 #endif 2222 2223 static __always_inline void *lowmem_page_address(const struct page *page) 2224 { 2225 return page_to_virt(page); 2226 } 2227 2228 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2229 #define page_address(page) lowmem_page_address(page) 2230 #define set_page_address(page, address) do { } while(0) 2231 #define page_address_init() do { } while(0) 2232 #endif 2233 2234 static inline void *folio_address(const struct folio *folio) 2235 { 2236 return page_address(&folio->page); 2237 } 2238 2239 /* 2240 * Return true only if the page has been allocated with 2241 * ALLOC_NO_WATERMARKS and the low watermark was not 2242 * met implying that the system is under some pressure. 2243 */ 2244 static inline bool page_is_pfmemalloc(const struct page *page) 2245 { 2246 /* 2247 * lru.next has bit 1 set if the page is allocated from the 2248 * pfmemalloc reserves. Callers may simply overwrite it if 2249 * they do not need to preserve that information. 2250 */ 2251 return (uintptr_t)page->lru.next & BIT(1); 2252 } 2253 2254 /* 2255 * Return true only if the folio has been allocated with 2256 * ALLOC_NO_WATERMARKS and the low watermark was not 2257 * met implying that the system is under some pressure. 2258 */ 2259 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2260 { 2261 /* 2262 * lru.next has bit 1 set if the page is allocated from the 2263 * pfmemalloc reserves. Callers may simply overwrite it if 2264 * they do not need to preserve that information. 2265 */ 2266 return (uintptr_t)folio->lru.next & BIT(1); 2267 } 2268 2269 /* 2270 * Only to be called by the page allocator on a freshly allocated 2271 * page. 2272 */ 2273 static inline void set_page_pfmemalloc(struct page *page) 2274 { 2275 page->lru.next = (void *)BIT(1); 2276 } 2277 2278 static inline void clear_page_pfmemalloc(struct page *page) 2279 { 2280 page->lru.next = NULL; 2281 } 2282 2283 /* 2284 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2285 */ 2286 extern void pagefault_out_of_memory(void); 2287 2288 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2289 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2290 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2291 2292 /* 2293 * Parameter block passed down to zap_pte_range in exceptional cases. 2294 */ 2295 struct zap_details { 2296 struct folio *single_folio; /* Locked folio to be unmapped */ 2297 bool even_cows; /* Zap COWed private pages too? */ 2298 zap_flags_t zap_flags; /* Extra flags for zapping */ 2299 }; 2300 2301 /* 2302 * Whether to drop the pte markers, for example, the uffd-wp information for 2303 * file-backed memory. This should only be specified when we will completely 2304 * drop the page in the mm, either by truncation or unmapping of the vma. By 2305 * default, the flag is not set. 2306 */ 2307 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2308 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2309 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2310 2311 #ifdef CONFIG_SCHED_MM_CID 2312 void sched_mm_cid_before_execve(struct task_struct *t); 2313 void sched_mm_cid_after_execve(struct task_struct *t); 2314 void sched_mm_cid_fork(struct task_struct *t); 2315 void sched_mm_cid_exit_signals(struct task_struct *t); 2316 static inline int task_mm_cid(struct task_struct *t) 2317 { 2318 return t->mm_cid; 2319 } 2320 #else 2321 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2322 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2323 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2324 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2325 static inline int task_mm_cid(struct task_struct *t) 2326 { 2327 /* 2328 * Use the processor id as a fall-back when the mm cid feature is 2329 * disabled. This provides functional per-cpu data structure accesses 2330 * in user-space, althrough it won't provide the memory usage benefits. 2331 */ 2332 return raw_smp_processor_id(); 2333 } 2334 #endif 2335 2336 #ifdef CONFIG_MMU 2337 extern bool can_do_mlock(void); 2338 #else 2339 static inline bool can_do_mlock(void) { return false; } 2340 #endif 2341 extern int user_shm_lock(size_t, struct ucounts *); 2342 extern void user_shm_unlock(size_t, struct ucounts *); 2343 2344 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2345 pte_t pte); 2346 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2347 pte_t pte); 2348 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2349 unsigned long addr, pmd_t pmd); 2350 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2351 pmd_t pmd); 2352 2353 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2354 unsigned long size); 2355 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2356 unsigned long size, struct zap_details *details); 2357 static inline void zap_vma_pages(struct vm_area_struct *vma) 2358 { 2359 zap_page_range_single(vma, vma->vm_start, 2360 vma->vm_end - vma->vm_start, NULL); 2361 } 2362 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2363 struct vm_area_struct *start_vma, unsigned long start, 2364 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2365 2366 struct mmu_notifier_range; 2367 2368 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2369 unsigned long end, unsigned long floor, unsigned long ceiling); 2370 int 2371 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2372 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2373 pte_t **ptepp, spinlock_t **ptlp); 2374 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2375 void *buf, int len, int write); 2376 2377 extern void truncate_pagecache(struct inode *inode, loff_t new); 2378 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2379 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2380 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2381 int generic_error_remove_folio(struct address_space *mapping, 2382 struct folio *folio); 2383 2384 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2385 unsigned long address, struct pt_regs *regs); 2386 2387 #ifdef CONFIG_MMU 2388 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2389 unsigned long address, unsigned int flags, 2390 struct pt_regs *regs); 2391 extern int fixup_user_fault(struct mm_struct *mm, 2392 unsigned long address, unsigned int fault_flags, 2393 bool *unlocked); 2394 void unmap_mapping_pages(struct address_space *mapping, 2395 pgoff_t start, pgoff_t nr, bool even_cows); 2396 void unmap_mapping_range(struct address_space *mapping, 2397 loff_t const holebegin, loff_t const holelen, int even_cows); 2398 #else 2399 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2400 unsigned long address, unsigned int flags, 2401 struct pt_regs *regs) 2402 { 2403 /* should never happen if there's no MMU */ 2404 BUG(); 2405 return VM_FAULT_SIGBUS; 2406 } 2407 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2408 unsigned int fault_flags, bool *unlocked) 2409 { 2410 /* should never happen if there's no MMU */ 2411 BUG(); 2412 return -EFAULT; 2413 } 2414 static inline void unmap_mapping_pages(struct address_space *mapping, 2415 pgoff_t start, pgoff_t nr, bool even_cows) { } 2416 static inline void unmap_mapping_range(struct address_space *mapping, 2417 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2418 #endif 2419 2420 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2421 loff_t const holebegin, loff_t const holelen) 2422 { 2423 unmap_mapping_range(mapping, holebegin, holelen, 0); 2424 } 2425 2426 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2427 unsigned long addr); 2428 2429 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2430 void *buf, int len, unsigned int gup_flags); 2431 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2432 void *buf, int len, unsigned int gup_flags); 2433 2434 long get_user_pages_remote(struct mm_struct *mm, 2435 unsigned long start, unsigned long nr_pages, 2436 unsigned int gup_flags, struct page **pages, 2437 int *locked); 2438 long pin_user_pages_remote(struct mm_struct *mm, 2439 unsigned long start, unsigned long nr_pages, 2440 unsigned int gup_flags, struct page **pages, 2441 int *locked); 2442 2443 /* 2444 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2445 */ 2446 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2447 unsigned long addr, 2448 int gup_flags, 2449 struct vm_area_struct **vmap) 2450 { 2451 struct page *page; 2452 struct vm_area_struct *vma; 2453 int got; 2454 2455 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2456 return ERR_PTR(-EINVAL); 2457 2458 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2459 2460 if (got < 0) 2461 return ERR_PTR(got); 2462 2463 vma = vma_lookup(mm, addr); 2464 if (WARN_ON_ONCE(!vma)) { 2465 put_page(page); 2466 return ERR_PTR(-EINVAL); 2467 } 2468 2469 *vmap = vma; 2470 return page; 2471 } 2472 2473 long get_user_pages(unsigned long start, unsigned long nr_pages, 2474 unsigned int gup_flags, struct page **pages); 2475 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2476 unsigned int gup_flags, struct page **pages); 2477 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2478 struct page **pages, unsigned int gup_flags); 2479 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2480 struct page **pages, unsigned int gup_flags); 2481 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2482 struct folio **folios, unsigned int max_folios, 2483 pgoff_t *offset); 2484 2485 int get_user_pages_fast(unsigned long start, int nr_pages, 2486 unsigned int gup_flags, struct page **pages); 2487 int pin_user_pages_fast(unsigned long start, int nr_pages, 2488 unsigned int gup_flags, struct page **pages); 2489 void folio_add_pin(struct folio *folio); 2490 2491 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2492 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2493 struct task_struct *task, bool bypass_rlim); 2494 2495 struct kvec; 2496 struct page *get_dump_page(unsigned long addr); 2497 2498 bool folio_mark_dirty(struct folio *folio); 2499 bool set_page_dirty(struct page *page); 2500 int set_page_dirty_lock(struct page *page); 2501 2502 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2503 2504 /* 2505 * Flags used by change_protection(). For now we make it a bitmap so 2506 * that we can pass in multiple flags just like parameters. However 2507 * for now all the callers are only use one of the flags at the same 2508 * time. 2509 */ 2510 /* 2511 * Whether we should manually check if we can map individual PTEs writable, 2512 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2513 * PTEs automatically in a writable mapping. 2514 */ 2515 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2516 /* Whether this protection change is for NUMA hints */ 2517 #define MM_CP_PROT_NUMA (1UL << 1) 2518 /* Whether this change is for write protecting */ 2519 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2520 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2521 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2522 MM_CP_UFFD_WP_RESOLVE) 2523 2524 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2525 pte_t pte); 2526 extern long change_protection(struct mmu_gather *tlb, 2527 struct vm_area_struct *vma, unsigned long start, 2528 unsigned long end, unsigned long cp_flags); 2529 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2530 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2531 unsigned long start, unsigned long end, unsigned long newflags); 2532 2533 /* 2534 * doesn't attempt to fault and will return short. 2535 */ 2536 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2537 unsigned int gup_flags, struct page **pages); 2538 2539 static inline bool get_user_page_fast_only(unsigned long addr, 2540 unsigned int gup_flags, struct page **pagep) 2541 { 2542 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2543 } 2544 /* 2545 * per-process(per-mm_struct) statistics. 2546 */ 2547 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2548 { 2549 return percpu_counter_read_positive(&mm->rss_stat[member]); 2550 } 2551 2552 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2553 2554 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2555 { 2556 percpu_counter_add(&mm->rss_stat[member], value); 2557 2558 mm_trace_rss_stat(mm, member); 2559 } 2560 2561 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2562 { 2563 percpu_counter_inc(&mm->rss_stat[member]); 2564 2565 mm_trace_rss_stat(mm, member); 2566 } 2567 2568 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2569 { 2570 percpu_counter_dec(&mm->rss_stat[member]); 2571 2572 mm_trace_rss_stat(mm, member); 2573 } 2574 2575 /* Optimized variant when folio is already known not to be anon */ 2576 static inline int mm_counter_file(struct folio *folio) 2577 { 2578 if (folio_test_swapbacked(folio)) 2579 return MM_SHMEMPAGES; 2580 return MM_FILEPAGES; 2581 } 2582 2583 static inline int mm_counter(struct folio *folio) 2584 { 2585 if (folio_test_anon(folio)) 2586 return MM_ANONPAGES; 2587 return mm_counter_file(folio); 2588 } 2589 2590 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2591 { 2592 return get_mm_counter(mm, MM_FILEPAGES) + 2593 get_mm_counter(mm, MM_ANONPAGES) + 2594 get_mm_counter(mm, MM_SHMEMPAGES); 2595 } 2596 2597 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2598 { 2599 return max(mm->hiwater_rss, get_mm_rss(mm)); 2600 } 2601 2602 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2603 { 2604 return max(mm->hiwater_vm, mm->total_vm); 2605 } 2606 2607 static inline void update_hiwater_rss(struct mm_struct *mm) 2608 { 2609 unsigned long _rss = get_mm_rss(mm); 2610 2611 if ((mm)->hiwater_rss < _rss) 2612 (mm)->hiwater_rss = _rss; 2613 } 2614 2615 static inline void update_hiwater_vm(struct mm_struct *mm) 2616 { 2617 if (mm->hiwater_vm < mm->total_vm) 2618 mm->hiwater_vm = mm->total_vm; 2619 } 2620 2621 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2622 { 2623 mm->hiwater_rss = get_mm_rss(mm); 2624 } 2625 2626 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2627 struct mm_struct *mm) 2628 { 2629 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2630 2631 if (*maxrss < hiwater_rss) 2632 *maxrss = hiwater_rss; 2633 } 2634 2635 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2636 static inline int pte_special(pte_t pte) 2637 { 2638 return 0; 2639 } 2640 2641 static inline pte_t pte_mkspecial(pte_t pte) 2642 { 2643 return pte; 2644 } 2645 #endif 2646 2647 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2648 static inline int pte_devmap(pte_t pte) 2649 { 2650 return 0; 2651 } 2652 #endif 2653 2654 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2655 spinlock_t **ptl); 2656 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2657 spinlock_t **ptl) 2658 { 2659 pte_t *ptep; 2660 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2661 return ptep; 2662 } 2663 2664 #ifdef __PAGETABLE_P4D_FOLDED 2665 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2666 unsigned long address) 2667 { 2668 return 0; 2669 } 2670 #else 2671 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2672 #endif 2673 2674 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2675 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2676 unsigned long address) 2677 { 2678 return 0; 2679 } 2680 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2681 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2682 2683 #else 2684 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2685 2686 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2687 { 2688 if (mm_pud_folded(mm)) 2689 return; 2690 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2691 } 2692 2693 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2694 { 2695 if (mm_pud_folded(mm)) 2696 return; 2697 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2698 } 2699 #endif 2700 2701 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2702 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2703 unsigned long address) 2704 { 2705 return 0; 2706 } 2707 2708 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2709 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2710 2711 #else 2712 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2713 2714 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2715 { 2716 if (mm_pmd_folded(mm)) 2717 return; 2718 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2719 } 2720 2721 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2722 { 2723 if (mm_pmd_folded(mm)) 2724 return; 2725 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2726 } 2727 #endif 2728 2729 #ifdef CONFIG_MMU 2730 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2731 { 2732 atomic_long_set(&mm->pgtables_bytes, 0); 2733 } 2734 2735 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2736 { 2737 return atomic_long_read(&mm->pgtables_bytes); 2738 } 2739 2740 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2741 { 2742 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2743 } 2744 2745 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2746 { 2747 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2748 } 2749 #else 2750 2751 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2752 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2753 { 2754 return 0; 2755 } 2756 2757 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2758 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2759 #endif 2760 2761 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2762 int __pte_alloc_kernel(pmd_t *pmd); 2763 2764 #if defined(CONFIG_MMU) 2765 2766 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2767 unsigned long address) 2768 { 2769 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2770 NULL : p4d_offset(pgd, address); 2771 } 2772 2773 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2774 unsigned long address) 2775 { 2776 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2777 NULL : pud_offset(p4d, address); 2778 } 2779 2780 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2781 { 2782 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2783 NULL: pmd_offset(pud, address); 2784 } 2785 #endif /* CONFIG_MMU */ 2786 2787 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2788 { 2789 return page_ptdesc(virt_to_page(x)); 2790 } 2791 2792 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2793 { 2794 return page_to_virt(ptdesc_page(pt)); 2795 } 2796 2797 static inline void *ptdesc_address(const struct ptdesc *pt) 2798 { 2799 return folio_address(ptdesc_folio(pt)); 2800 } 2801 2802 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2803 { 2804 return folio_test_reserved(ptdesc_folio(pt)); 2805 } 2806 2807 /** 2808 * pagetable_alloc - Allocate pagetables 2809 * @gfp: GFP flags 2810 * @order: desired pagetable order 2811 * 2812 * pagetable_alloc allocates memory for page tables as well as a page table 2813 * descriptor to describe that memory. 2814 * 2815 * Return: The ptdesc describing the allocated page tables. 2816 */ 2817 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2818 { 2819 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2820 2821 return page_ptdesc(page); 2822 } 2823 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2824 2825 /** 2826 * pagetable_free - Free pagetables 2827 * @pt: The page table descriptor 2828 * 2829 * pagetable_free frees the memory of all page tables described by a page 2830 * table descriptor and the memory for the descriptor itself. 2831 */ 2832 static inline void pagetable_free(struct ptdesc *pt) 2833 { 2834 struct page *page = ptdesc_page(pt); 2835 2836 __free_pages(page, compound_order(page)); 2837 } 2838 2839 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2840 #if ALLOC_SPLIT_PTLOCKS 2841 void __init ptlock_cache_init(void); 2842 bool ptlock_alloc(struct ptdesc *ptdesc); 2843 void ptlock_free(struct ptdesc *ptdesc); 2844 2845 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2846 { 2847 return ptdesc->ptl; 2848 } 2849 #else /* ALLOC_SPLIT_PTLOCKS */ 2850 static inline void ptlock_cache_init(void) 2851 { 2852 } 2853 2854 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2855 { 2856 return true; 2857 } 2858 2859 static inline void ptlock_free(struct ptdesc *ptdesc) 2860 { 2861 } 2862 2863 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2864 { 2865 return &ptdesc->ptl; 2866 } 2867 #endif /* ALLOC_SPLIT_PTLOCKS */ 2868 2869 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2870 { 2871 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2872 } 2873 2874 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2875 { 2876 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2877 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2878 return ptlock_ptr(virt_to_ptdesc(pte)); 2879 } 2880 2881 static inline bool ptlock_init(struct ptdesc *ptdesc) 2882 { 2883 /* 2884 * prep_new_page() initialize page->private (and therefore page->ptl) 2885 * with 0. Make sure nobody took it in use in between. 2886 * 2887 * It can happen if arch try to use slab for page table allocation: 2888 * slab code uses page->slab_cache, which share storage with page->ptl. 2889 */ 2890 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2891 if (!ptlock_alloc(ptdesc)) 2892 return false; 2893 spin_lock_init(ptlock_ptr(ptdesc)); 2894 return true; 2895 } 2896 2897 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2898 /* 2899 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2900 */ 2901 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2902 { 2903 return &mm->page_table_lock; 2904 } 2905 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2906 { 2907 return &mm->page_table_lock; 2908 } 2909 static inline void ptlock_cache_init(void) {} 2910 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2911 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2912 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2913 2914 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2915 { 2916 struct folio *folio = ptdesc_folio(ptdesc); 2917 2918 if (!ptlock_init(ptdesc)) 2919 return false; 2920 __folio_set_pgtable(folio); 2921 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2922 return true; 2923 } 2924 2925 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2926 { 2927 struct folio *folio = ptdesc_folio(ptdesc); 2928 2929 ptlock_free(ptdesc); 2930 __folio_clear_pgtable(folio); 2931 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2932 } 2933 2934 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2935 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2936 { 2937 return __pte_offset_map(pmd, addr, NULL); 2938 } 2939 2940 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2941 unsigned long addr, spinlock_t **ptlp); 2942 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2943 unsigned long addr, spinlock_t **ptlp) 2944 { 2945 pte_t *pte; 2946 2947 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2948 return pte; 2949 } 2950 2951 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2952 unsigned long addr, spinlock_t **ptlp); 2953 2954 #define pte_unmap_unlock(pte, ptl) do { \ 2955 spin_unlock(ptl); \ 2956 pte_unmap(pte); \ 2957 } while (0) 2958 2959 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2960 2961 #define pte_alloc_map(mm, pmd, address) \ 2962 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2963 2964 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2965 (pte_alloc(mm, pmd) ? \ 2966 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2967 2968 #define pte_alloc_kernel(pmd, address) \ 2969 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2970 NULL: pte_offset_kernel(pmd, address)) 2971 2972 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 2973 2974 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2975 { 2976 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2977 return virt_to_page((void *)((unsigned long) pmd & mask)); 2978 } 2979 2980 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 2981 { 2982 return page_ptdesc(pmd_pgtable_page(pmd)); 2983 } 2984 2985 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2986 { 2987 return ptlock_ptr(pmd_ptdesc(pmd)); 2988 } 2989 2990 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 2991 { 2992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2993 ptdesc->pmd_huge_pte = NULL; 2994 #endif 2995 return ptlock_init(ptdesc); 2996 } 2997 2998 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 2999 { 3000 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3001 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3002 #endif 3003 ptlock_free(ptdesc); 3004 } 3005 3006 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3007 3008 #else 3009 3010 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3011 { 3012 return &mm->page_table_lock; 3013 } 3014 3015 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3016 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3017 3018 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3019 3020 #endif 3021 3022 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3023 { 3024 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3025 spin_lock(ptl); 3026 return ptl; 3027 } 3028 3029 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3030 { 3031 struct folio *folio = ptdesc_folio(ptdesc); 3032 3033 if (!pmd_ptlock_init(ptdesc)) 3034 return false; 3035 __folio_set_pgtable(folio); 3036 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3037 return true; 3038 } 3039 3040 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3041 { 3042 struct folio *folio = ptdesc_folio(ptdesc); 3043 3044 pmd_ptlock_free(ptdesc); 3045 __folio_clear_pgtable(folio); 3046 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3047 } 3048 3049 /* 3050 * No scalability reason to split PUD locks yet, but follow the same pattern 3051 * as the PMD locks to make it easier if we decide to. The VM should not be 3052 * considered ready to switch to split PUD locks yet; there may be places 3053 * which need to be converted from page_table_lock. 3054 */ 3055 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3056 { 3057 return &mm->page_table_lock; 3058 } 3059 3060 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3061 { 3062 spinlock_t *ptl = pud_lockptr(mm, pud); 3063 3064 spin_lock(ptl); 3065 return ptl; 3066 } 3067 3068 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3069 { 3070 struct folio *folio = ptdesc_folio(ptdesc); 3071 3072 __folio_set_pgtable(folio); 3073 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3074 } 3075 3076 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3077 { 3078 struct folio *folio = ptdesc_folio(ptdesc); 3079 3080 __folio_clear_pgtable(folio); 3081 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3082 } 3083 3084 extern void __init pagecache_init(void); 3085 extern void free_initmem(void); 3086 3087 /* 3088 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3089 * into the buddy system. The freed pages will be poisoned with pattern 3090 * "poison" if it's within range [0, UCHAR_MAX]. 3091 * Return pages freed into the buddy system. 3092 */ 3093 extern unsigned long free_reserved_area(void *start, void *end, 3094 int poison, const char *s); 3095 3096 extern void adjust_managed_page_count(struct page *page, long count); 3097 3098 extern void reserve_bootmem_region(phys_addr_t start, 3099 phys_addr_t end, int nid); 3100 3101 /* Free the reserved page into the buddy system, so it gets managed. */ 3102 void free_reserved_page(struct page *page); 3103 #define free_highmem_page(page) free_reserved_page(page) 3104 3105 static inline void mark_page_reserved(struct page *page) 3106 { 3107 SetPageReserved(page); 3108 adjust_managed_page_count(page, -1); 3109 } 3110 3111 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3112 { 3113 free_reserved_page(ptdesc_page(pt)); 3114 } 3115 3116 /* 3117 * Default method to free all the __init memory into the buddy system. 3118 * The freed pages will be poisoned with pattern "poison" if it's within 3119 * range [0, UCHAR_MAX]. 3120 * Return pages freed into the buddy system. 3121 */ 3122 static inline unsigned long free_initmem_default(int poison) 3123 { 3124 extern char __init_begin[], __init_end[]; 3125 3126 return free_reserved_area(&__init_begin, &__init_end, 3127 poison, "unused kernel image (initmem)"); 3128 } 3129 3130 static inline unsigned long get_num_physpages(void) 3131 { 3132 int nid; 3133 unsigned long phys_pages = 0; 3134 3135 for_each_online_node(nid) 3136 phys_pages += node_present_pages(nid); 3137 3138 return phys_pages; 3139 } 3140 3141 /* 3142 * Using memblock node mappings, an architecture may initialise its 3143 * zones, allocate the backing mem_map and account for memory holes in an 3144 * architecture independent manner. 3145 * 3146 * An architecture is expected to register range of page frames backed by 3147 * physical memory with memblock_add[_node]() before calling 3148 * free_area_init() passing in the PFN each zone ends at. At a basic 3149 * usage, an architecture is expected to do something like 3150 * 3151 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3152 * max_highmem_pfn}; 3153 * for_each_valid_physical_page_range() 3154 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3155 * free_area_init(max_zone_pfns); 3156 */ 3157 void free_area_init(unsigned long *max_zone_pfn); 3158 unsigned long node_map_pfn_alignment(void); 3159 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3160 unsigned long end_pfn); 3161 extern void get_pfn_range_for_nid(unsigned int nid, 3162 unsigned long *start_pfn, unsigned long *end_pfn); 3163 3164 #ifndef CONFIG_NUMA 3165 static inline int early_pfn_to_nid(unsigned long pfn) 3166 { 3167 return 0; 3168 } 3169 #else 3170 /* please see mm/page_alloc.c */ 3171 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3172 #endif 3173 3174 extern void mem_init(void); 3175 extern void __init mmap_init(void); 3176 3177 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3178 static inline void show_mem(void) 3179 { 3180 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3181 } 3182 extern long si_mem_available(void); 3183 extern void si_meminfo(struct sysinfo * val); 3184 extern void si_meminfo_node(struct sysinfo *val, int nid); 3185 3186 extern __printf(3, 4) 3187 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3188 3189 extern void setup_per_cpu_pageset(void); 3190 3191 /* nommu.c */ 3192 extern atomic_long_t mmap_pages_allocated; 3193 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3194 3195 /* interval_tree.c */ 3196 void vma_interval_tree_insert(struct vm_area_struct *node, 3197 struct rb_root_cached *root); 3198 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3199 struct vm_area_struct *prev, 3200 struct rb_root_cached *root); 3201 void vma_interval_tree_remove(struct vm_area_struct *node, 3202 struct rb_root_cached *root); 3203 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3204 unsigned long start, unsigned long last); 3205 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3206 unsigned long start, unsigned long last); 3207 3208 #define vma_interval_tree_foreach(vma, root, start, last) \ 3209 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3210 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3211 3212 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3213 struct rb_root_cached *root); 3214 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3215 struct rb_root_cached *root); 3216 struct anon_vma_chain * 3217 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3218 unsigned long start, unsigned long last); 3219 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3220 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3221 #ifdef CONFIG_DEBUG_VM_RB 3222 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3223 #endif 3224 3225 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3226 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3227 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3228 3229 /* mmap.c */ 3230 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3231 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3232 extern void exit_mmap(struct mm_struct *); 3233 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3234 3235 static inline int check_data_rlimit(unsigned long rlim, 3236 unsigned long new, 3237 unsigned long start, 3238 unsigned long end_data, 3239 unsigned long start_data) 3240 { 3241 if (rlim < RLIM_INFINITY) { 3242 if (((new - start) + (end_data - start_data)) > rlim) 3243 return -ENOSPC; 3244 } 3245 3246 return 0; 3247 } 3248 3249 extern int mm_take_all_locks(struct mm_struct *mm); 3250 extern void mm_drop_all_locks(struct mm_struct *mm); 3251 3252 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3253 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3254 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3255 extern struct file *get_task_exe_file(struct task_struct *task); 3256 3257 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3258 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3259 3260 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3261 const struct vm_special_mapping *sm); 3262 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3263 unsigned long addr, unsigned long len, 3264 unsigned long flags, 3265 const struct vm_special_mapping *spec); 3266 /* This is an obsolete alternative to _install_special_mapping. */ 3267 extern int install_special_mapping(struct mm_struct *mm, 3268 unsigned long addr, unsigned long len, 3269 unsigned long flags, struct page **pages); 3270 3271 unsigned long randomize_stack_top(unsigned long stack_top); 3272 unsigned long randomize_page(unsigned long start, unsigned long range); 3273 3274 unsigned long 3275 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3276 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3277 3278 static inline unsigned long 3279 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3280 unsigned long pgoff, unsigned long flags) 3281 { 3282 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3283 } 3284 3285 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3286 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3287 struct list_head *uf); 3288 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3289 unsigned long len, unsigned long prot, unsigned long flags, 3290 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3291 struct list_head *uf); 3292 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3293 unsigned long start, size_t len, struct list_head *uf, 3294 bool unlock); 3295 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3296 struct list_head *uf); 3297 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3298 3299 #ifdef CONFIG_MMU 3300 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3301 unsigned long start, unsigned long end, 3302 struct list_head *uf, bool unlock); 3303 extern int __mm_populate(unsigned long addr, unsigned long len, 3304 int ignore_errors); 3305 static inline void mm_populate(unsigned long addr, unsigned long len) 3306 { 3307 /* Ignore errors */ 3308 (void) __mm_populate(addr, len, 1); 3309 } 3310 #else 3311 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3312 #endif 3313 3314 /* This takes the mm semaphore itself */ 3315 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3316 extern int vm_munmap(unsigned long, size_t); 3317 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3318 unsigned long, unsigned long, 3319 unsigned long, unsigned long); 3320 3321 struct vm_unmapped_area_info { 3322 #define VM_UNMAPPED_AREA_TOPDOWN 1 3323 unsigned long flags; 3324 unsigned long length; 3325 unsigned long low_limit; 3326 unsigned long high_limit; 3327 unsigned long align_mask; 3328 unsigned long align_offset; 3329 unsigned long start_gap; 3330 }; 3331 3332 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3333 3334 /* truncate.c */ 3335 extern void truncate_inode_pages(struct address_space *, loff_t); 3336 extern void truncate_inode_pages_range(struct address_space *, 3337 loff_t lstart, loff_t lend); 3338 extern void truncate_inode_pages_final(struct address_space *); 3339 3340 /* generic vm_area_ops exported for stackable file systems */ 3341 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3342 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3343 pgoff_t start_pgoff, pgoff_t end_pgoff); 3344 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3345 3346 extern unsigned long stack_guard_gap; 3347 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3348 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3349 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3350 3351 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3352 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3353 3354 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3355 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3356 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3357 struct vm_area_struct **pprev); 3358 3359 /* 3360 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3361 * NULL if none. Assume start_addr < end_addr. 3362 */ 3363 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3364 unsigned long start_addr, unsigned long end_addr); 3365 3366 /** 3367 * vma_lookup() - Find a VMA at a specific address 3368 * @mm: The process address space. 3369 * @addr: The user address. 3370 * 3371 * Return: The vm_area_struct at the given address, %NULL otherwise. 3372 */ 3373 static inline 3374 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3375 { 3376 return mtree_load(&mm->mm_mt, addr); 3377 } 3378 3379 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3380 { 3381 if (vma->vm_flags & VM_GROWSDOWN) 3382 return stack_guard_gap; 3383 3384 /* See reasoning around the VM_SHADOW_STACK definition */ 3385 if (vma->vm_flags & VM_SHADOW_STACK) 3386 return PAGE_SIZE; 3387 3388 return 0; 3389 } 3390 3391 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3392 { 3393 unsigned long gap = stack_guard_start_gap(vma); 3394 unsigned long vm_start = vma->vm_start; 3395 3396 vm_start -= gap; 3397 if (vm_start > vma->vm_start) 3398 vm_start = 0; 3399 return vm_start; 3400 } 3401 3402 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3403 { 3404 unsigned long vm_end = vma->vm_end; 3405 3406 if (vma->vm_flags & VM_GROWSUP) { 3407 vm_end += stack_guard_gap; 3408 if (vm_end < vma->vm_end) 3409 vm_end = -PAGE_SIZE; 3410 } 3411 return vm_end; 3412 } 3413 3414 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3415 { 3416 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3417 } 3418 3419 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3420 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3421 unsigned long vm_start, unsigned long vm_end) 3422 { 3423 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3424 3425 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3426 vma = NULL; 3427 3428 return vma; 3429 } 3430 3431 static inline bool range_in_vma(struct vm_area_struct *vma, 3432 unsigned long start, unsigned long end) 3433 { 3434 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3435 } 3436 3437 #ifdef CONFIG_MMU 3438 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3439 void vma_set_page_prot(struct vm_area_struct *vma); 3440 #else 3441 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3442 { 3443 return __pgprot(0); 3444 } 3445 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3446 { 3447 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3448 } 3449 #endif 3450 3451 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3452 3453 #ifdef CONFIG_NUMA_BALANCING 3454 unsigned long change_prot_numa(struct vm_area_struct *vma, 3455 unsigned long start, unsigned long end); 3456 #endif 3457 3458 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3459 unsigned long addr); 3460 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3461 unsigned long pfn, unsigned long size, pgprot_t); 3462 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3463 unsigned long pfn, unsigned long size, pgprot_t prot); 3464 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3465 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3466 struct page **pages, unsigned long *num); 3467 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3468 unsigned long num); 3469 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3470 unsigned long num); 3471 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3472 unsigned long pfn); 3473 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3474 unsigned long pfn, pgprot_t pgprot); 3475 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3476 pfn_t pfn); 3477 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3478 unsigned long addr, pfn_t pfn); 3479 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3480 3481 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3482 unsigned long addr, struct page *page) 3483 { 3484 int err = vm_insert_page(vma, addr, page); 3485 3486 if (err == -ENOMEM) 3487 return VM_FAULT_OOM; 3488 if (err < 0 && err != -EBUSY) 3489 return VM_FAULT_SIGBUS; 3490 3491 return VM_FAULT_NOPAGE; 3492 } 3493 3494 #ifndef io_remap_pfn_range 3495 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3496 unsigned long addr, unsigned long pfn, 3497 unsigned long size, pgprot_t prot) 3498 { 3499 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3500 } 3501 #endif 3502 3503 static inline vm_fault_t vmf_error(int err) 3504 { 3505 if (err == -ENOMEM) 3506 return VM_FAULT_OOM; 3507 else if (err == -EHWPOISON) 3508 return VM_FAULT_HWPOISON; 3509 return VM_FAULT_SIGBUS; 3510 } 3511 3512 /* 3513 * Convert errno to return value for ->page_mkwrite() calls. 3514 * 3515 * This should eventually be merged with vmf_error() above, but will need a 3516 * careful audit of all vmf_error() callers. 3517 */ 3518 static inline vm_fault_t vmf_fs_error(int err) 3519 { 3520 if (err == 0) 3521 return VM_FAULT_LOCKED; 3522 if (err == -EFAULT || err == -EAGAIN) 3523 return VM_FAULT_NOPAGE; 3524 if (err == -ENOMEM) 3525 return VM_FAULT_OOM; 3526 /* -ENOSPC, -EDQUOT, -EIO ... */ 3527 return VM_FAULT_SIGBUS; 3528 } 3529 3530 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3531 { 3532 if (vm_fault & VM_FAULT_OOM) 3533 return -ENOMEM; 3534 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3535 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3536 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3537 return -EFAULT; 3538 return 0; 3539 } 3540 3541 /* 3542 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3543 * a (NUMA hinting) fault is required. 3544 */ 3545 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3546 unsigned int flags) 3547 { 3548 /* 3549 * If callers don't want to honor NUMA hinting faults, no need to 3550 * determine if we would actually have to trigger a NUMA hinting fault. 3551 */ 3552 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3553 return true; 3554 3555 /* 3556 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3557 * 3558 * Requiring a fault here even for inaccessible VMAs would mean that 3559 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3560 * refuses to process NUMA hinting faults in inaccessible VMAs. 3561 */ 3562 return !vma_is_accessible(vma); 3563 } 3564 3565 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3566 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3567 unsigned long size, pte_fn_t fn, void *data); 3568 extern int apply_to_existing_page_range(struct mm_struct *mm, 3569 unsigned long address, unsigned long size, 3570 pte_fn_t fn, void *data); 3571 3572 #ifdef CONFIG_PAGE_POISONING 3573 extern void __kernel_poison_pages(struct page *page, int numpages); 3574 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3575 extern bool _page_poisoning_enabled_early; 3576 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3577 static inline bool page_poisoning_enabled(void) 3578 { 3579 return _page_poisoning_enabled_early; 3580 } 3581 /* 3582 * For use in fast paths after init_mem_debugging() has run, or when a 3583 * false negative result is not harmful when called too early. 3584 */ 3585 static inline bool page_poisoning_enabled_static(void) 3586 { 3587 return static_branch_unlikely(&_page_poisoning_enabled); 3588 } 3589 static inline void kernel_poison_pages(struct page *page, int numpages) 3590 { 3591 if (page_poisoning_enabled_static()) 3592 __kernel_poison_pages(page, numpages); 3593 } 3594 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3595 { 3596 if (page_poisoning_enabled_static()) 3597 __kernel_unpoison_pages(page, numpages); 3598 } 3599 #else 3600 static inline bool page_poisoning_enabled(void) { return false; } 3601 static inline bool page_poisoning_enabled_static(void) { return false; } 3602 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3603 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3604 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3605 #endif 3606 3607 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3608 static inline bool want_init_on_alloc(gfp_t flags) 3609 { 3610 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3611 &init_on_alloc)) 3612 return true; 3613 return flags & __GFP_ZERO; 3614 } 3615 3616 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3617 static inline bool want_init_on_free(void) 3618 { 3619 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3620 &init_on_free); 3621 } 3622 3623 extern bool _debug_pagealloc_enabled_early; 3624 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3625 3626 static inline bool debug_pagealloc_enabled(void) 3627 { 3628 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3629 _debug_pagealloc_enabled_early; 3630 } 3631 3632 /* 3633 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3634 * or when a false negative result is not harmful when called too early. 3635 */ 3636 static inline bool debug_pagealloc_enabled_static(void) 3637 { 3638 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3639 return false; 3640 3641 return static_branch_unlikely(&_debug_pagealloc_enabled); 3642 } 3643 3644 /* 3645 * To support DEBUG_PAGEALLOC architecture must ensure that 3646 * __kernel_map_pages() never fails 3647 */ 3648 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3649 #ifdef CONFIG_DEBUG_PAGEALLOC 3650 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3651 { 3652 if (debug_pagealloc_enabled_static()) 3653 __kernel_map_pages(page, numpages, 1); 3654 } 3655 3656 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3657 { 3658 if (debug_pagealloc_enabled_static()) 3659 __kernel_map_pages(page, numpages, 0); 3660 } 3661 3662 extern unsigned int _debug_guardpage_minorder; 3663 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3664 3665 static inline unsigned int debug_guardpage_minorder(void) 3666 { 3667 return _debug_guardpage_minorder; 3668 } 3669 3670 static inline bool debug_guardpage_enabled(void) 3671 { 3672 return static_branch_unlikely(&_debug_guardpage_enabled); 3673 } 3674 3675 static inline bool page_is_guard(struct page *page) 3676 { 3677 if (!debug_guardpage_enabled()) 3678 return false; 3679 3680 return PageGuard(page); 3681 } 3682 3683 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3684 static inline bool set_page_guard(struct zone *zone, struct page *page, 3685 unsigned int order) 3686 { 3687 if (!debug_guardpage_enabled()) 3688 return false; 3689 return __set_page_guard(zone, page, order); 3690 } 3691 3692 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3693 static inline void clear_page_guard(struct zone *zone, struct page *page, 3694 unsigned int order) 3695 { 3696 if (!debug_guardpage_enabled()) 3697 return; 3698 __clear_page_guard(zone, page, order); 3699 } 3700 3701 #else /* CONFIG_DEBUG_PAGEALLOC */ 3702 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3703 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3704 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3705 static inline bool debug_guardpage_enabled(void) { return false; } 3706 static inline bool page_is_guard(struct page *page) { return false; } 3707 static inline bool set_page_guard(struct zone *zone, struct page *page, 3708 unsigned int order) { return false; } 3709 static inline void clear_page_guard(struct zone *zone, struct page *page, 3710 unsigned int order) {} 3711 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3712 3713 #ifdef __HAVE_ARCH_GATE_AREA 3714 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3715 extern int in_gate_area_no_mm(unsigned long addr); 3716 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3717 #else 3718 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3719 { 3720 return NULL; 3721 } 3722 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3723 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3724 { 3725 return 0; 3726 } 3727 #endif /* __HAVE_ARCH_GATE_AREA */ 3728 3729 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3730 3731 #ifdef CONFIG_SYSCTL 3732 extern int sysctl_drop_caches; 3733 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3734 loff_t *); 3735 #endif 3736 3737 void drop_slab(void); 3738 3739 #ifndef CONFIG_MMU 3740 #define randomize_va_space 0 3741 #else 3742 extern int randomize_va_space; 3743 #endif 3744 3745 const char * arch_vma_name(struct vm_area_struct *vma); 3746 #ifdef CONFIG_MMU 3747 void print_vma_addr(char *prefix, unsigned long rip); 3748 #else 3749 static inline void print_vma_addr(char *prefix, unsigned long rip) 3750 { 3751 } 3752 #endif 3753 3754 void *sparse_buffer_alloc(unsigned long size); 3755 struct page * __populate_section_memmap(unsigned long pfn, 3756 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3757 struct dev_pagemap *pgmap); 3758 void pmd_init(void *addr); 3759 void pud_init(void *addr); 3760 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3761 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3762 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3763 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3764 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3765 struct vmem_altmap *altmap, struct page *reuse); 3766 void *vmemmap_alloc_block(unsigned long size, int node); 3767 struct vmem_altmap; 3768 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3769 struct vmem_altmap *altmap); 3770 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3771 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3772 unsigned long addr, unsigned long next); 3773 int vmemmap_check_pmd(pmd_t *pmd, int node, 3774 unsigned long addr, unsigned long next); 3775 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3776 int node, struct vmem_altmap *altmap); 3777 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3778 int node, struct vmem_altmap *altmap); 3779 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3780 struct vmem_altmap *altmap); 3781 void vmemmap_populate_print_last(void); 3782 #ifdef CONFIG_MEMORY_HOTPLUG 3783 void vmemmap_free(unsigned long start, unsigned long end, 3784 struct vmem_altmap *altmap); 3785 #endif 3786 3787 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3788 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3789 { 3790 /* number of pfns from base where pfn_to_page() is valid */ 3791 if (altmap) 3792 return altmap->reserve + altmap->free; 3793 return 0; 3794 } 3795 3796 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3797 unsigned long nr_pfns) 3798 { 3799 altmap->alloc -= nr_pfns; 3800 } 3801 #else 3802 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3803 { 3804 return 0; 3805 } 3806 3807 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3808 unsigned long nr_pfns) 3809 { 3810 } 3811 #endif 3812 3813 #define VMEMMAP_RESERVE_NR 2 3814 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3815 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3816 struct dev_pagemap *pgmap) 3817 { 3818 unsigned long nr_pages; 3819 unsigned long nr_vmemmap_pages; 3820 3821 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3822 return false; 3823 3824 nr_pages = pgmap_vmemmap_nr(pgmap); 3825 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3826 /* 3827 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3828 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3829 */ 3830 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3831 } 3832 /* 3833 * If we don't have an architecture override, use the generic rule 3834 */ 3835 #ifndef vmemmap_can_optimize 3836 #define vmemmap_can_optimize __vmemmap_can_optimize 3837 #endif 3838 3839 #else 3840 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3841 struct dev_pagemap *pgmap) 3842 { 3843 return false; 3844 } 3845 #endif 3846 3847 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3848 unsigned long nr_pages); 3849 3850 enum mf_flags { 3851 MF_COUNT_INCREASED = 1 << 0, 3852 MF_ACTION_REQUIRED = 1 << 1, 3853 MF_MUST_KILL = 1 << 2, 3854 MF_SOFT_OFFLINE = 1 << 3, 3855 MF_UNPOISON = 1 << 4, 3856 MF_SW_SIMULATED = 1 << 5, 3857 MF_NO_RETRY = 1 << 6, 3858 MF_MEM_PRE_REMOVE = 1 << 7, 3859 }; 3860 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3861 unsigned long count, int mf_flags); 3862 extern int memory_failure(unsigned long pfn, int flags); 3863 extern void memory_failure_queue_kick(int cpu); 3864 extern int unpoison_memory(unsigned long pfn); 3865 extern atomic_long_t num_poisoned_pages __read_mostly; 3866 extern int soft_offline_page(unsigned long pfn, int flags); 3867 #ifdef CONFIG_MEMORY_FAILURE 3868 /* 3869 * Sysfs entries for memory failure handling statistics. 3870 */ 3871 extern const struct attribute_group memory_failure_attr_group; 3872 extern void memory_failure_queue(unsigned long pfn, int flags); 3873 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3874 bool *migratable_cleared); 3875 void num_poisoned_pages_inc(unsigned long pfn); 3876 void num_poisoned_pages_sub(unsigned long pfn, long i); 3877 #else 3878 static inline void memory_failure_queue(unsigned long pfn, int flags) 3879 { 3880 } 3881 3882 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3883 bool *migratable_cleared) 3884 { 3885 return 0; 3886 } 3887 3888 static inline void num_poisoned_pages_inc(unsigned long pfn) 3889 { 3890 } 3891 3892 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3893 { 3894 } 3895 #endif 3896 3897 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3898 extern void memblk_nr_poison_inc(unsigned long pfn); 3899 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3900 #else 3901 static inline void memblk_nr_poison_inc(unsigned long pfn) 3902 { 3903 } 3904 3905 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3906 { 3907 } 3908 #endif 3909 3910 #ifndef arch_memory_failure 3911 static inline int arch_memory_failure(unsigned long pfn, int flags) 3912 { 3913 return -ENXIO; 3914 } 3915 #endif 3916 3917 #ifndef arch_is_platform_page 3918 static inline bool arch_is_platform_page(u64 paddr) 3919 { 3920 return false; 3921 } 3922 #endif 3923 3924 /* 3925 * Error handlers for various types of pages. 3926 */ 3927 enum mf_result { 3928 MF_IGNORED, /* Error: cannot be handled */ 3929 MF_FAILED, /* Error: handling failed */ 3930 MF_DELAYED, /* Will be handled later */ 3931 MF_RECOVERED, /* Successfully recovered */ 3932 }; 3933 3934 enum mf_action_page_type { 3935 MF_MSG_KERNEL, 3936 MF_MSG_KERNEL_HIGH_ORDER, 3937 MF_MSG_DIFFERENT_COMPOUND, 3938 MF_MSG_HUGE, 3939 MF_MSG_FREE_HUGE, 3940 MF_MSG_GET_HWPOISON, 3941 MF_MSG_UNMAP_FAILED, 3942 MF_MSG_DIRTY_SWAPCACHE, 3943 MF_MSG_CLEAN_SWAPCACHE, 3944 MF_MSG_DIRTY_MLOCKED_LRU, 3945 MF_MSG_CLEAN_MLOCKED_LRU, 3946 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3947 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3948 MF_MSG_DIRTY_LRU, 3949 MF_MSG_CLEAN_LRU, 3950 MF_MSG_TRUNCATED_LRU, 3951 MF_MSG_BUDDY, 3952 MF_MSG_DAX, 3953 MF_MSG_UNSPLIT_THP, 3954 MF_MSG_ALREADY_POISONED, 3955 MF_MSG_UNKNOWN, 3956 }; 3957 3958 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3959 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 3960 int copy_user_large_folio(struct folio *dst, struct folio *src, 3961 unsigned long addr_hint, 3962 struct vm_area_struct *vma); 3963 long copy_folio_from_user(struct folio *dst_folio, 3964 const void __user *usr_src, 3965 bool allow_pagefault); 3966 3967 /** 3968 * vma_is_special_huge - Are transhuge page-table entries considered special? 3969 * @vma: Pointer to the struct vm_area_struct to consider 3970 * 3971 * Whether transhuge page-table entries are considered "special" following 3972 * the definition in vm_normal_page(). 3973 * 3974 * Return: true if transhuge page-table entries should be considered special, 3975 * false otherwise. 3976 */ 3977 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3978 { 3979 return vma_is_dax(vma) || (vma->vm_file && 3980 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3981 } 3982 3983 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3984 3985 #if MAX_NUMNODES > 1 3986 void __init setup_nr_node_ids(void); 3987 #else 3988 static inline void setup_nr_node_ids(void) {} 3989 #endif 3990 3991 extern int memcmp_pages(struct page *page1, struct page *page2); 3992 3993 static inline int pages_identical(struct page *page1, struct page *page2) 3994 { 3995 return !memcmp_pages(page1, page2); 3996 } 3997 3998 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3999 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4000 pgoff_t first_index, pgoff_t nr, 4001 pgoff_t bitmap_pgoff, 4002 unsigned long *bitmap, 4003 pgoff_t *start, 4004 pgoff_t *end); 4005 4006 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4007 pgoff_t first_index, pgoff_t nr); 4008 #endif 4009 4010 extern int sysctl_nr_trim_pages; 4011 4012 #ifdef CONFIG_PRINTK 4013 void mem_dump_obj(void *object); 4014 #else 4015 static inline void mem_dump_obj(void *object) {} 4016 #endif 4017 4018 /** 4019 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4020 * handle them. 4021 * @seals: the seals to check 4022 * @vma: the vma to operate on 4023 * 4024 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4025 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4026 */ 4027 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4028 { 4029 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4030 /* 4031 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4032 * write seals are active. 4033 */ 4034 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4035 return -EPERM; 4036 4037 /* 4038 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4039 * MAP_SHARED and read-only, take care to not allow mprotect to 4040 * revert protections on such mappings. Do this only for shared 4041 * mappings. For private mappings, don't need to mask 4042 * VM_MAYWRITE as we still want them to be COW-writable. 4043 */ 4044 if (vma->vm_flags & VM_SHARED) 4045 vm_flags_clear(vma, VM_MAYWRITE); 4046 } 4047 4048 return 0; 4049 } 4050 4051 #ifdef CONFIG_ANON_VMA_NAME 4052 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4053 unsigned long len_in, 4054 struct anon_vma_name *anon_name); 4055 #else 4056 static inline int 4057 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4058 unsigned long len_in, struct anon_vma_name *anon_name) { 4059 return 0; 4060 } 4061 #endif 4062 4063 #ifdef CONFIG_UNACCEPTED_MEMORY 4064 4065 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4066 void accept_memory(phys_addr_t start, unsigned long size); 4067 4068 #else 4069 4070 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4071 unsigned long size) 4072 { 4073 return false; 4074 } 4075 4076 static inline void accept_memory(phys_addr_t start, unsigned long size) 4077 { 4078 } 4079 4080 #endif 4081 4082 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4083 { 4084 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4085 } 4086 4087 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4088 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4089 4090 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4091 4092 #endif /* _LINUX_MM_H */ 4093