1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC64) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 #ifdef CONFIG_64BIT 410 #define VM_DROPPABLE_BIT 40 411 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 412 #elif defined(CONFIG_PPC32) 413 #define VM_DROPPABLE VM_ARCH_1 414 #else 415 #define VM_DROPPABLE VM_NONE 416 #endif 417 418 #ifdef CONFIG_64BIT 419 /* VM is sealed, in vm_flags */ 420 #define VM_SEALED _BITUL(63) 421 #endif 422 423 /* Bits set in the VMA until the stack is in its final location */ 424 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 425 426 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 427 428 /* Common data flag combinations */ 429 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 430 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 431 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 432 VM_MAYWRITE | VM_MAYEXEC) 433 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 434 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 435 436 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 437 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 438 #endif 439 440 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 441 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 442 #endif 443 444 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 445 446 #ifdef CONFIG_STACK_GROWSUP 447 #define VM_STACK VM_GROWSUP 448 #define VM_STACK_EARLY VM_GROWSDOWN 449 #else 450 #define VM_STACK VM_GROWSDOWN 451 #define VM_STACK_EARLY 0 452 #endif 453 454 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 455 456 /* VMA basic access permission flags */ 457 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 458 459 460 /* 461 * Special vmas that are non-mergable, non-mlock()able. 462 */ 463 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 464 465 /* This mask prevents VMA from being scanned with khugepaged */ 466 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 467 468 /* This mask defines which mm->def_flags a process can inherit its parent */ 469 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 470 471 /* This mask represents all the VMA flag bits used by mlock */ 472 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 473 474 /* Arch-specific flags to clear when updating VM flags on protection change */ 475 #ifndef VM_ARCH_CLEAR 476 # define VM_ARCH_CLEAR VM_NONE 477 #endif 478 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 479 480 /* 481 * mapping from the currently active vm_flags protection bits (the 482 * low four bits) to a page protection mask.. 483 */ 484 485 /* 486 * The default fault flags that should be used by most of the 487 * arch-specific page fault handlers. 488 */ 489 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 490 FAULT_FLAG_KILLABLE | \ 491 FAULT_FLAG_INTERRUPTIBLE) 492 493 /** 494 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 495 * @flags: Fault flags. 496 * 497 * This is mostly used for places where we want to try to avoid taking 498 * the mmap_lock for too long a time when waiting for another condition 499 * to change, in which case we can try to be polite to release the 500 * mmap_lock in the first round to avoid potential starvation of other 501 * processes that would also want the mmap_lock. 502 * 503 * Return: true if the page fault allows retry and this is the first 504 * attempt of the fault handling; false otherwise. 505 */ 506 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 507 { 508 return (flags & FAULT_FLAG_ALLOW_RETRY) && 509 (!(flags & FAULT_FLAG_TRIED)); 510 } 511 512 #define FAULT_FLAG_TRACE \ 513 { FAULT_FLAG_WRITE, "WRITE" }, \ 514 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 515 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 516 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 517 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 518 { FAULT_FLAG_TRIED, "TRIED" }, \ 519 { FAULT_FLAG_USER, "USER" }, \ 520 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 521 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 522 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 523 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 524 525 /* 526 * vm_fault is filled by the pagefault handler and passed to the vma's 527 * ->fault function. The vma's ->fault is responsible for returning a bitmask 528 * of VM_FAULT_xxx flags that give details about how the fault was handled. 529 * 530 * MM layer fills up gfp_mask for page allocations but fault handler might 531 * alter it if its implementation requires a different allocation context. 532 * 533 * pgoff should be used in favour of virtual_address, if possible. 534 */ 535 struct vm_fault { 536 const struct { 537 struct vm_area_struct *vma; /* Target VMA */ 538 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 539 pgoff_t pgoff; /* Logical page offset based on vma */ 540 unsigned long address; /* Faulting virtual address - masked */ 541 unsigned long real_address; /* Faulting virtual address - unmasked */ 542 }; 543 enum fault_flag flags; /* FAULT_FLAG_xxx flags 544 * XXX: should really be 'const' */ 545 pmd_t *pmd; /* Pointer to pmd entry matching 546 * the 'address' */ 547 pud_t *pud; /* Pointer to pud entry matching 548 * the 'address' 549 */ 550 union { 551 pte_t orig_pte; /* Value of PTE at the time of fault */ 552 pmd_t orig_pmd; /* Value of PMD at the time of fault, 553 * used by PMD fault only. 554 */ 555 }; 556 557 struct page *cow_page; /* Page handler may use for COW fault */ 558 struct page *page; /* ->fault handlers should return a 559 * page here, unless VM_FAULT_NOPAGE 560 * is set (which is also implied by 561 * VM_FAULT_ERROR). 562 */ 563 /* These three entries are valid only while holding ptl lock */ 564 pte_t *pte; /* Pointer to pte entry matching 565 * the 'address'. NULL if the page 566 * table hasn't been allocated. 567 */ 568 spinlock_t *ptl; /* Page table lock. 569 * Protects pte page table if 'pte' 570 * is not NULL, otherwise pmd. 571 */ 572 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 573 * vm_ops->map_pages() sets up a page 574 * table from atomic context. 575 * do_fault_around() pre-allocates 576 * page table to avoid allocation from 577 * atomic context. 578 */ 579 }; 580 581 /* 582 * These are the virtual MM functions - opening of an area, closing and 583 * unmapping it (needed to keep files on disk up-to-date etc), pointer 584 * to the functions called when a no-page or a wp-page exception occurs. 585 */ 586 struct vm_operations_struct { 587 void (*open)(struct vm_area_struct * area); 588 /** 589 * @close: Called when the VMA is being removed from the MM. 590 * Context: User context. May sleep. Caller holds mmap_lock. 591 */ 592 void (*close)(struct vm_area_struct * area); 593 /* Called any time before splitting to check if it's allowed */ 594 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 595 int (*mremap)(struct vm_area_struct *area); 596 /* 597 * Called by mprotect() to make driver-specific permission 598 * checks before mprotect() is finalised. The VMA must not 599 * be modified. Returns 0 if mprotect() can proceed. 600 */ 601 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 602 unsigned long end, unsigned long newflags); 603 vm_fault_t (*fault)(struct vm_fault *vmf); 604 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 605 vm_fault_t (*map_pages)(struct vm_fault *vmf, 606 pgoff_t start_pgoff, pgoff_t end_pgoff); 607 unsigned long (*pagesize)(struct vm_area_struct * area); 608 609 /* notification that a previously read-only page is about to become 610 * writable, if an error is returned it will cause a SIGBUS */ 611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 612 613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 615 616 /* called by access_process_vm when get_user_pages() fails, typically 617 * for use by special VMAs. See also generic_access_phys() for a generic 618 * implementation useful for any iomem mapping. 619 */ 620 int (*access)(struct vm_area_struct *vma, unsigned long addr, 621 void *buf, int len, int write); 622 623 /* Called by the /proc/PID/maps code to ask the vma whether it 624 * has a special name. Returning non-NULL will also cause this 625 * vma to be dumped unconditionally. */ 626 const char *(*name)(struct vm_area_struct *vma); 627 628 #ifdef CONFIG_NUMA 629 /* 630 * set_policy() op must add a reference to any non-NULL @new mempolicy 631 * to hold the policy upon return. Caller should pass NULL @new to 632 * remove a policy and fall back to surrounding context--i.e. do not 633 * install a MPOL_DEFAULT policy, nor the task or system default 634 * mempolicy. 635 */ 636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 637 638 /* 639 * get_policy() op must add reference [mpol_get()] to any policy at 640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 641 * in mm/mempolicy.c will do this automatically. 642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 645 * must return NULL--i.e., do not "fallback" to task or system default 646 * policy. 647 */ 648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 649 unsigned long addr, pgoff_t *ilx); 650 #endif 651 /* 652 * Called by vm_normal_page() for special PTEs to find the 653 * page for @addr. This is useful if the default behavior 654 * (using pte_page()) would not find the correct page. 655 */ 656 struct page *(*find_special_page)(struct vm_area_struct *vma, 657 unsigned long addr); 658 }; 659 660 #ifdef CONFIG_NUMA_BALANCING 661 static inline void vma_numab_state_init(struct vm_area_struct *vma) 662 { 663 vma->numab_state = NULL; 664 } 665 static inline void vma_numab_state_free(struct vm_area_struct *vma) 666 { 667 kfree(vma->numab_state); 668 } 669 #else 670 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 671 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 672 #endif /* CONFIG_NUMA_BALANCING */ 673 674 #ifdef CONFIG_PER_VMA_LOCK 675 /* 676 * Try to read-lock a vma. The function is allowed to occasionally yield false 677 * locked result to avoid performance overhead, in which case we fall back to 678 * using mmap_lock. The function should never yield false unlocked result. 679 */ 680 static inline bool vma_start_read(struct vm_area_struct *vma) 681 { 682 /* 683 * Check before locking. A race might cause false locked result. 684 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 685 * ACQUIRE semantics, because this is just a lockless check whose result 686 * we don't rely on for anything - the mm_lock_seq read against which we 687 * need ordering is below. 688 */ 689 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 690 return false; 691 692 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 693 return false; 694 695 /* 696 * Overflow might produce false locked result. 697 * False unlocked result is impossible because we modify and check 698 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 699 * modification invalidates all existing locks. 700 * 701 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 702 * racing with vma_end_write_all(), we only start reading from the VMA 703 * after it has been unlocked. 704 * This pairs with RELEASE semantics in vma_end_write_all(). 705 */ 706 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 707 up_read(&vma->vm_lock->lock); 708 return false; 709 } 710 return true; 711 } 712 713 static inline void vma_end_read(struct vm_area_struct *vma) 714 { 715 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 716 up_read(&vma->vm_lock->lock); 717 rcu_read_unlock(); 718 } 719 720 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 721 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 722 { 723 mmap_assert_write_locked(vma->vm_mm); 724 725 /* 726 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 727 * mm->mm_lock_seq can't be concurrently modified. 728 */ 729 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 730 return (vma->vm_lock_seq == *mm_lock_seq); 731 } 732 733 /* 734 * Begin writing to a VMA. 735 * Exclude concurrent readers under the per-VMA lock until the currently 736 * write-locked mmap_lock is dropped or downgraded. 737 */ 738 static inline void vma_start_write(struct vm_area_struct *vma) 739 { 740 int mm_lock_seq; 741 742 if (__is_vma_write_locked(vma, &mm_lock_seq)) 743 return; 744 745 down_write(&vma->vm_lock->lock); 746 /* 747 * We should use WRITE_ONCE() here because we can have concurrent reads 748 * from the early lockless pessimistic check in vma_start_read(). 749 * We don't really care about the correctness of that early check, but 750 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 751 */ 752 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 753 up_write(&vma->vm_lock->lock); 754 } 755 756 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 757 { 758 int mm_lock_seq; 759 760 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 761 } 762 763 static inline void vma_assert_locked(struct vm_area_struct *vma) 764 { 765 if (!rwsem_is_locked(&vma->vm_lock->lock)) 766 vma_assert_write_locked(vma); 767 } 768 769 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 770 { 771 /* When detaching vma should be write-locked */ 772 if (detached) 773 vma_assert_write_locked(vma); 774 vma->detached = detached; 775 } 776 777 static inline void release_fault_lock(struct vm_fault *vmf) 778 { 779 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 780 vma_end_read(vmf->vma); 781 else 782 mmap_read_unlock(vmf->vma->vm_mm); 783 } 784 785 static inline void assert_fault_locked(struct vm_fault *vmf) 786 { 787 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 788 vma_assert_locked(vmf->vma); 789 else 790 mmap_assert_locked(vmf->vma->vm_mm); 791 } 792 793 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 794 unsigned long address); 795 796 #else /* CONFIG_PER_VMA_LOCK */ 797 798 static inline bool vma_start_read(struct vm_area_struct *vma) 799 { return false; } 800 static inline void vma_end_read(struct vm_area_struct *vma) {} 801 static inline void vma_start_write(struct vm_area_struct *vma) {} 802 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 803 { mmap_assert_write_locked(vma->vm_mm); } 804 static inline void vma_mark_detached(struct vm_area_struct *vma, 805 bool detached) {} 806 807 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 808 unsigned long address) 809 { 810 return NULL; 811 } 812 813 static inline void vma_assert_locked(struct vm_area_struct *vma) 814 { 815 mmap_assert_locked(vma->vm_mm); 816 } 817 818 static inline void release_fault_lock(struct vm_fault *vmf) 819 { 820 mmap_read_unlock(vmf->vma->vm_mm); 821 } 822 823 static inline void assert_fault_locked(struct vm_fault *vmf) 824 { 825 mmap_assert_locked(vmf->vma->vm_mm); 826 } 827 828 #endif /* CONFIG_PER_VMA_LOCK */ 829 830 extern const struct vm_operations_struct vma_dummy_vm_ops; 831 832 /* 833 * WARNING: vma_init does not initialize vma->vm_lock. 834 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 835 */ 836 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 837 { 838 memset(vma, 0, sizeof(*vma)); 839 vma->vm_mm = mm; 840 vma->vm_ops = &vma_dummy_vm_ops; 841 INIT_LIST_HEAD(&vma->anon_vma_chain); 842 vma_mark_detached(vma, false); 843 vma_numab_state_init(vma); 844 } 845 846 /* Use when VMA is not part of the VMA tree and needs no locking */ 847 static inline void vm_flags_init(struct vm_area_struct *vma, 848 vm_flags_t flags) 849 { 850 ACCESS_PRIVATE(vma, __vm_flags) = flags; 851 } 852 853 /* 854 * Use when VMA is part of the VMA tree and modifications need coordination 855 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 856 * it should be locked explicitly beforehand. 857 */ 858 static inline void vm_flags_reset(struct vm_area_struct *vma, 859 vm_flags_t flags) 860 { 861 vma_assert_write_locked(vma); 862 vm_flags_init(vma, flags); 863 } 864 865 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 866 vm_flags_t flags) 867 { 868 vma_assert_write_locked(vma); 869 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 870 } 871 872 static inline void vm_flags_set(struct vm_area_struct *vma, 873 vm_flags_t flags) 874 { 875 vma_start_write(vma); 876 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 877 } 878 879 static inline void vm_flags_clear(struct vm_area_struct *vma, 880 vm_flags_t flags) 881 { 882 vma_start_write(vma); 883 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 884 } 885 886 /* 887 * Use only if VMA is not part of the VMA tree or has no other users and 888 * therefore needs no locking. 889 */ 890 static inline void __vm_flags_mod(struct vm_area_struct *vma, 891 vm_flags_t set, vm_flags_t clear) 892 { 893 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 894 } 895 896 /* 897 * Use only when the order of set/clear operations is unimportant, otherwise 898 * use vm_flags_{set|clear} explicitly. 899 */ 900 static inline void vm_flags_mod(struct vm_area_struct *vma, 901 vm_flags_t set, vm_flags_t clear) 902 { 903 vma_start_write(vma); 904 __vm_flags_mod(vma, set, clear); 905 } 906 907 static inline void vma_set_anonymous(struct vm_area_struct *vma) 908 { 909 vma->vm_ops = NULL; 910 } 911 912 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 913 { 914 return !vma->vm_ops; 915 } 916 917 /* 918 * Indicate if the VMA is a heap for the given task; for 919 * /proc/PID/maps that is the heap of the main task. 920 */ 921 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 922 { 923 return vma->vm_start < vma->vm_mm->brk && 924 vma->vm_end > vma->vm_mm->start_brk; 925 } 926 927 /* 928 * Indicate if the VMA is a stack for the given task; for 929 * /proc/PID/maps that is the stack of the main task. 930 */ 931 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 932 { 933 /* 934 * We make no effort to guess what a given thread considers to be 935 * its "stack". It's not even well-defined for programs written 936 * languages like Go. 937 */ 938 return vma->vm_start <= vma->vm_mm->start_stack && 939 vma->vm_end >= vma->vm_mm->start_stack; 940 } 941 942 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 943 { 944 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 945 946 if (!maybe_stack) 947 return false; 948 949 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 950 VM_STACK_INCOMPLETE_SETUP) 951 return true; 952 953 return false; 954 } 955 956 static inline bool vma_is_foreign(struct vm_area_struct *vma) 957 { 958 if (!current->mm) 959 return true; 960 961 if (current->mm != vma->vm_mm) 962 return true; 963 964 return false; 965 } 966 967 static inline bool vma_is_accessible(struct vm_area_struct *vma) 968 { 969 return vma->vm_flags & VM_ACCESS_FLAGS; 970 } 971 972 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 973 { 974 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 975 (VM_SHARED | VM_MAYWRITE); 976 } 977 978 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 979 { 980 return is_shared_maywrite(vma->vm_flags); 981 } 982 983 static inline 984 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 985 { 986 return mas_find(&vmi->mas, max - 1); 987 } 988 989 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 990 { 991 /* 992 * Uses mas_find() to get the first VMA when the iterator starts. 993 * Calling mas_next() could skip the first entry. 994 */ 995 return mas_find(&vmi->mas, ULONG_MAX); 996 } 997 998 static inline 999 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1000 { 1001 return mas_next_range(&vmi->mas, ULONG_MAX); 1002 } 1003 1004 1005 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1006 { 1007 return mas_prev(&vmi->mas, 0); 1008 } 1009 1010 static inline 1011 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 1012 { 1013 return mas_prev_range(&vmi->mas, 0); 1014 } 1015 1016 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1017 { 1018 return vmi->mas.index; 1019 } 1020 1021 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1022 { 1023 return vmi->mas.last + 1; 1024 } 1025 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1026 unsigned long count) 1027 { 1028 return mas_expected_entries(&vmi->mas, count); 1029 } 1030 1031 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1032 unsigned long start, unsigned long end, gfp_t gfp) 1033 { 1034 __mas_set_range(&vmi->mas, start, end - 1); 1035 mas_store_gfp(&vmi->mas, NULL, gfp); 1036 if (unlikely(mas_is_err(&vmi->mas))) 1037 return -ENOMEM; 1038 1039 return 0; 1040 } 1041 1042 /* Free any unused preallocations */ 1043 static inline void vma_iter_free(struct vma_iterator *vmi) 1044 { 1045 mas_destroy(&vmi->mas); 1046 } 1047 1048 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1049 struct vm_area_struct *vma) 1050 { 1051 vmi->mas.index = vma->vm_start; 1052 vmi->mas.last = vma->vm_end - 1; 1053 mas_store(&vmi->mas, vma); 1054 if (unlikely(mas_is_err(&vmi->mas))) 1055 return -ENOMEM; 1056 1057 return 0; 1058 } 1059 1060 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1061 { 1062 mas_pause(&vmi->mas); 1063 } 1064 1065 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1066 { 1067 mas_set(&vmi->mas, addr); 1068 } 1069 1070 #define for_each_vma(__vmi, __vma) \ 1071 while (((__vma) = vma_next(&(__vmi))) != NULL) 1072 1073 /* The MM code likes to work with exclusive end addresses */ 1074 #define for_each_vma_range(__vmi, __vma, __end) \ 1075 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1076 1077 #ifdef CONFIG_SHMEM 1078 /* 1079 * The vma_is_shmem is not inline because it is used only by slow 1080 * paths in userfault. 1081 */ 1082 bool vma_is_shmem(struct vm_area_struct *vma); 1083 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1084 #else 1085 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1086 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1087 #endif 1088 1089 int vma_is_stack_for_current(struct vm_area_struct *vma); 1090 1091 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1092 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1093 1094 struct mmu_gather; 1095 struct inode; 1096 1097 /* 1098 * compound_order() can be called without holding a reference, which means 1099 * that niceties like page_folio() don't work. These callers should be 1100 * prepared to handle wild return values. For example, PG_head may be 1101 * set before the order is initialised, or this may be a tail page. 1102 * See compaction.c for some good examples. 1103 */ 1104 static inline unsigned int compound_order(struct page *page) 1105 { 1106 struct folio *folio = (struct folio *)page; 1107 1108 if (!test_bit(PG_head, &folio->flags)) 1109 return 0; 1110 return folio->_flags_1 & 0xff; 1111 } 1112 1113 /** 1114 * folio_order - The allocation order of a folio. 1115 * @folio: The folio. 1116 * 1117 * A folio is composed of 2^order pages. See get_order() for the definition 1118 * of order. 1119 * 1120 * Return: The order of the folio. 1121 */ 1122 static inline unsigned int folio_order(const struct folio *folio) 1123 { 1124 if (!folio_test_large(folio)) 1125 return 0; 1126 return folio->_flags_1 & 0xff; 1127 } 1128 1129 #include <linux/huge_mm.h> 1130 1131 /* 1132 * Methods to modify the page usage count. 1133 * 1134 * What counts for a page usage: 1135 * - cache mapping (page->mapping) 1136 * - private data (page->private) 1137 * - page mapped in a task's page tables, each mapping 1138 * is counted separately 1139 * 1140 * Also, many kernel routines increase the page count before a critical 1141 * routine so they can be sure the page doesn't go away from under them. 1142 */ 1143 1144 /* 1145 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1146 */ 1147 static inline int put_page_testzero(struct page *page) 1148 { 1149 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1150 return page_ref_dec_and_test(page); 1151 } 1152 1153 static inline int folio_put_testzero(struct folio *folio) 1154 { 1155 return put_page_testzero(&folio->page); 1156 } 1157 1158 /* 1159 * Try to grab a ref unless the page has a refcount of zero, return false if 1160 * that is the case. 1161 * This can be called when MMU is off so it must not access 1162 * any of the virtual mappings. 1163 */ 1164 static inline bool get_page_unless_zero(struct page *page) 1165 { 1166 return page_ref_add_unless(page, 1, 0); 1167 } 1168 1169 static inline struct folio *folio_get_nontail_page(struct page *page) 1170 { 1171 if (unlikely(!get_page_unless_zero(page))) 1172 return NULL; 1173 return (struct folio *)page; 1174 } 1175 1176 extern int page_is_ram(unsigned long pfn); 1177 1178 enum { 1179 REGION_INTERSECTS, 1180 REGION_DISJOINT, 1181 REGION_MIXED, 1182 }; 1183 1184 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1185 unsigned long desc); 1186 1187 /* Support for virtually mapped pages */ 1188 struct page *vmalloc_to_page(const void *addr); 1189 unsigned long vmalloc_to_pfn(const void *addr); 1190 1191 /* 1192 * Determine if an address is within the vmalloc range 1193 * 1194 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1195 * is no special casing required. 1196 */ 1197 #ifdef CONFIG_MMU 1198 extern bool is_vmalloc_addr(const void *x); 1199 extern int is_vmalloc_or_module_addr(const void *x); 1200 #else 1201 static inline bool is_vmalloc_addr(const void *x) 1202 { 1203 return false; 1204 } 1205 static inline int is_vmalloc_or_module_addr(const void *x) 1206 { 1207 return 0; 1208 } 1209 #endif 1210 1211 /* 1212 * How many times the entire folio is mapped as a single unit (eg by a 1213 * PMD or PUD entry). This is probably not what you want, except for 1214 * debugging purposes or implementation of other core folio_*() primitives. 1215 */ 1216 static inline int folio_entire_mapcount(const struct folio *folio) 1217 { 1218 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1219 return atomic_read(&folio->_entire_mapcount) + 1; 1220 } 1221 1222 static inline int folio_large_mapcount(const struct folio *folio) 1223 { 1224 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1225 return atomic_read(&folio->_large_mapcount) + 1; 1226 } 1227 1228 /** 1229 * folio_mapcount() - Number of mappings of this folio. 1230 * @folio: The folio. 1231 * 1232 * The folio mapcount corresponds to the number of present user page table 1233 * entries that reference any part of a folio. Each such present user page 1234 * table entry must be paired with exactly on folio reference. 1235 * 1236 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1237 * exactly once. 1238 * 1239 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1240 * references the entire folio counts exactly once, even when such special 1241 * page table entries are comprised of multiple ordinary page table entries. 1242 * 1243 * Will report 0 for pages which cannot be mapped into userspace, such as 1244 * slab, page tables and similar. 1245 * 1246 * Return: The number of times this folio is mapped. 1247 */ 1248 static inline int folio_mapcount(const struct folio *folio) 1249 { 1250 int mapcount; 1251 1252 if (likely(!folio_test_large(folio))) { 1253 mapcount = atomic_read(&folio->_mapcount) + 1; 1254 /* Handle page_has_type() pages */ 1255 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1256 mapcount = 0; 1257 return mapcount; 1258 } 1259 return folio_large_mapcount(folio); 1260 } 1261 1262 /** 1263 * folio_mapped - Is this folio mapped into userspace? 1264 * @folio: The folio. 1265 * 1266 * Return: True if any page in this folio is referenced by user page tables. 1267 */ 1268 static inline bool folio_mapped(const struct folio *folio) 1269 { 1270 return folio_mapcount(folio) >= 1; 1271 } 1272 1273 /* 1274 * Return true if this page is mapped into pagetables. 1275 * For compound page it returns true if any sub-page of compound page is mapped, 1276 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1277 */ 1278 static inline bool page_mapped(const struct page *page) 1279 { 1280 return folio_mapped(page_folio(page)); 1281 } 1282 1283 static inline struct page *virt_to_head_page(const void *x) 1284 { 1285 struct page *page = virt_to_page(x); 1286 1287 return compound_head(page); 1288 } 1289 1290 static inline struct folio *virt_to_folio(const void *x) 1291 { 1292 struct page *page = virt_to_page(x); 1293 1294 return page_folio(page); 1295 } 1296 1297 void __folio_put(struct folio *folio); 1298 1299 void put_pages_list(struct list_head *pages); 1300 1301 void split_page(struct page *page, unsigned int order); 1302 void folio_copy(struct folio *dst, struct folio *src); 1303 int folio_mc_copy(struct folio *dst, struct folio *src); 1304 1305 unsigned long nr_free_buffer_pages(void); 1306 1307 /* Returns the number of bytes in this potentially compound page. */ 1308 static inline unsigned long page_size(struct page *page) 1309 { 1310 return PAGE_SIZE << compound_order(page); 1311 } 1312 1313 /* Returns the number of bits needed for the number of bytes in a page */ 1314 static inline unsigned int page_shift(struct page *page) 1315 { 1316 return PAGE_SHIFT + compound_order(page); 1317 } 1318 1319 /** 1320 * thp_order - Order of a transparent huge page. 1321 * @page: Head page of a transparent huge page. 1322 */ 1323 static inline unsigned int thp_order(struct page *page) 1324 { 1325 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1326 return compound_order(page); 1327 } 1328 1329 /** 1330 * thp_size - Size of a transparent huge page. 1331 * @page: Head page of a transparent huge page. 1332 * 1333 * Return: Number of bytes in this page. 1334 */ 1335 static inline unsigned long thp_size(struct page *page) 1336 { 1337 return PAGE_SIZE << thp_order(page); 1338 } 1339 1340 #ifdef CONFIG_MMU 1341 /* 1342 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1343 * servicing faults for write access. In the normal case, do always want 1344 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1345 * that do not have writing enabled, when used by access_process_vm. 1346 */ 1347 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1348 { 1349 if (likely(vma->vm_flags & VM_WRITE)) 1350 pte = pte_mkwrite(pte, vma); 1351 return pte; 1352 } 1353 1354 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1355 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1356 struct page *page, unsigned int nr, unsigned long addr); 1357 1358 vm_fault_t finish_fault(struct vm_fault *vmf); 1359 #endif 1360 1361 /* 1362 * Multiple processes may "see" the same page. E.g. for untouched 1363 * mappings of /dev/null, all processes see the same page full of 1364 * zeroes, and text pages of executables and shared libraries have 1365 * only one copy in memory, at most, normally. 1366 * 1367 * For the non-reserved pages, page_count(page) denotes a reference count. 1368 * page_count() == 0 means the page is free. page->lru is then used for 1369 * freelist management in the buddy allocator. 1370 * page_count() > 0 means the page has been allocated. 1371 * 1372 * Pages are allocated by the slab allocator in order to provide memory 1373 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1374 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1375 * unless a particular usage is carefully commented. (the responsibility of 1376 * freeing the kmalloc memory is the caller's, of course). 1377 * 1378 * A page may be used by anyone else who does a __get_free_page(). 1379 * In this case, page_count still tracks the references, and should only 1380 * be used through the normal accessor functions. The top bits of page->flags 1381 * and page->virtual store page management information, but all other fields 1382 * are unused and could be used privately, carefully. The management of this 1383 * page is the responsibility of the one who allocated it, and those who have 1384 * subsequently been given references to it. 1385 * 1386 * The other pages (we may call them "pagecache pages") are completely 1387 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1388 * The following discussion applies only to them. 1389 * 1390 * A pagecache page contains an opaque `private' member, which belongs to the 1391 * page's address_space. Usually, this is the address of a circular list of 1392 * the page's disk buffers. PG_private must be set to tell the VM to call 1393 * into the filesystem to release these pages. 1394 * 1395 * A page may belong to an inode's memory mapping. In this case, page->mapping 1396 * is the pointer to the inode, and page->index is the file offset of the page, 1397 * in units of PAGE_SIZE. 1398 * 1399 * If pagecache pages are not associated with an inode, they are said to be 1400 * anonymous pages. These may become associated with the swapcache, and in that 1401 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1402 * 1403 * In either case (swapcache or inode backed), the pagecache itself holds one 1404 * reference to the page. Setting PG_private should also increment the 1405 * refcount. The each user mapping also has a reference to the page. 1406 * 1407 * The pagecache pages are stored in a per-mapping radix tree, which is 1408 * rooted at mapping->i_pages, and indexed by offset. 1409 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1410 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1411 * 1412 * All pagecache pages may be subject to I/O: 1413 * - inode pages may need to be read from disk, 1414 * - inode pages which have been modified and are MAP_SHARED may need 1415 * to be written back to the inode on disk, 1416 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1417 * modified may need to be swapped out to swap space and (later) to be read 1418 * back into memory. 1419 */ 1420 1421 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1422 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1423 1424 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1425 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1426 { 1427 if (!static_branch_unlikely(&devmap_managed_key)) 1428 return false; 1429 if (!folio_is_zone_device(folio)) 1430 return false; 1431 return __put_devmap_managed_folio_refs(folio, refs); 1432 } 1433 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1434 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1435 { 1436 return false; 1437 } 1438 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1439 1440 /* 127: arbitrary random number, small enough to assemble well */ 1441 #define folio_ref_zero_or_close_to_overflow(folio) \ 1442 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1443 1444 /** 1445 * folio_get - Increment the reference count on a folio. 1446 * @folio: The folio. 1447 * 1448 * Context: May be called in any context, as long as you know that 1449 * you have a refcount on the folio. If you do not already have one, 1450 * folio_try_get() may be the right interface for you to use. 1451 */ 1452 static inline void folio_get(struct folio *folio) 1453 { 1454 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1455 folio_ref_inc(folio); 1456 } 1457 1458 static inline void get_page(struct page *page) 1459 { 1460 folio_get(page_folio(page)); 1461 } 1462 1463 static inline __must_check bool try_get_page(struct page *page) 1464 { 1465 page = compound_head(page); 1466 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1467 return false; 1468 page_ref_inc(page); 1469 return true; 1470 } 1471 1472 /** 1473 * folio_put - Decrement the reference count on a folio. 1474 * @folio: The folio. 1475 * 1476 * If the folio's reference count reaches zero, the memory will be 1477 * released back to the page allocator and may be used by another 1478 * allocation immediately. Do not access the memory or the struct folio 1479 * after calling folio_put() unless you can be sure that it wasn't the 1480 * last reference. 1481 * 1482 * Context: May be called in process or interrupt context, but not in NMI 1483 * context. May be called while holding a spinlock. 1484 */ 1485 static inline void folio_put(struct folio *folio) 1486 { 1487 if (folio_put_testzero(folio)) 1488 __folio_put(folio); 1489 } 1490 1491 /** 1492 * folio_put_refs - Reduce the reference count on a folio. 1493 * @folio: The folio. 1494 * @refs: The amount to subtract from the folio's reference count. 1495 * 1496 * If the folio's reference count reaches zero, the memory will be 1497 * released back to the page allocator and may be used by another 1498 * allocation immediately. Do not access the memory or the struct folio 1499 * after calling folio_put_refs() unless you can be sure that these weren't 1500 * the last references. 1501 * 1502 * Context: May be called in process or interrupt context, but not in NMI 1503 * context. May be called while holding a spinlock. 1504 */ 1505 static inline void folio_put_refs(struct folio *folio, int refs) 1506 { 1507 if (folio_ref_sub_and_test(folio, refs)) 1508 __folio_put(folio); 1509 } 1510 1511 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1512 1513 /* 1514 * union release_pages_arg - an array of pages or folios 1515 * 1516 * release_pages() releases a simple array of multiple pages, and 1517 * accepts various different forms of said page array: either 1518 * a regular old boring array of pages, an array of folios, or 1519 * an array of encoded page pointers. 1520 * 1521 * The transparent union syntax for this kind of "any of these 1522 * argument types" is all kinds of ugly, so look away. 1523 */ 1524 typedef union { 1525 struct page **pages; 1526 struct folio **folios; 1527 struct encoded_page **encoded_pages; 1528 } release_pages_arg __attribute__ ((__transparent_union__)); 1529 1530 void release_pages(release_pages_arg, int nr); 1531 1532 /** 1533 * folios_put - Decrement the reference count on an array of folios. 1534 * @folios: The folios. 1535 * 1536 * Like folio_put(), but for a batch of folios. This is more efficient 1537 * than writing the loop yourself as it will optimise the locks which need 1538 * to be taken if the folios are freed. The folios batch is returned 1539 * empty and ready to be reused for another batch; there is no need to 1540 * reinitialise it. 1541 * 1542 * Context: May be called in process or interrupt context, but not in NMI 1543 * context. May be called while holding a spinlock. 1544 */ 1545 static inline void folios_put(struct folio_batch *folios) 1546 { 1547 folios_put_refs(folios, NULL); 1548 } 1549 1550 static inline void put_page(struct page *page) 1551 { 1552 struct folio *folio = page_folio(page); 1553 1554 /* 1555 * For some devmap managed pages we need to catch refcount transition 1556 * from 2 to 1: 1557 */ 1558 if (put_devmap_managed_folio_refs(folio, 1)) 1559 return; 1560 folio_put(folio); 1561 } 1562 1563 /* 1564 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1565 * the page's refcount so that two separate items are tracked: the original page 1566 * reference count, and also a new count of how many pin_user_pages() calls were 1567 * made against the page. ("gup-pinned" is another term for the latter). 1568 * 1569 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1570 * distinct from normal pages. As such, the unpin_user_page() call (and its 1571 * variants) must be used in order to release gup-pinned pages. 1572 * 1573 * Choice of value: 1574 * 1575 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1576 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1577 * simpler, due to the fact that adding an even power of two to the page 1578 * refcount has the effect of using only the upper N bits, for the code that 1579 * counts up using the bias value. This means that the lower bits are left for 1580 * the exclusive use of the original code that increments and decrements by one 1581 * (or at least, by much smaller values than the bias value). 1582 * 1583 * Of course, once the lower bits overflow into the upper bits (and this is 1584 * OK, because subtraction recovers the original values), then visual inspection 1585 * no longer suffices to directly view the separate counts. However, for normal 1586 * applications that don't have huge page reference counts, this won't be an 1587 * issue. 1588 * 1589 * Locking: the lockless algorithm described in folio_try_get_rcu() 1590 * provides safe operation for get_user_pages(), folio_mkclean() and 1591 * other calls that race to set up page table entries. 1592 */ 1593 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1594 1595 void unpin_user_page(struct page *page); 1596 void unpin_folio(struct folio *folio); 1597 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1598 bool make_dirty); 1599 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1600 bool make_dirty); 1601 void unpin_user_pages(struct page **pages, unsigned long npages); 1602 void unpin_folios(struct folio **folios, unsigned long nfolios); 1603 1604 static inline bool is_cow_mapping(vm_flags_t flags) 1605 { 1606 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1607 } 1608 1609 #ifndef CONFIG_MMU 1610 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1611 { 1612 /* 1613 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1614 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1615 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1616 * underlying memory if ptrace is active, so this is only possible if 1617 * ptrace does not apply. Note that there is no mprotect() to upgrade 1618 * write permissions later. 1619 */ 1620 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1621 } 1622 #endif 1623 1624 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1625 #define SECTION_IN_PAGE_FLAGS 1626 #endif 1627 1628 /* 1629 * The identification function is mainly used by the buddy allocator for 1630 * determining if two pages could be buddies. We are not really identifying 1631 * the zone since we could be using the section number id if we do not have 1632 * node id available in page flags. 1633 * We only guarantee that it will return the same value for two combinable 1634 * pages in a zone. 1635 */ 1636 static inline int page_zone_id(struct page *page) 1637 { 1638 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1639 } 1640 1641 #ifdef NODE_NOT_IN_PAGE_FLAGS 1642 int page_to_nid(const struct page *page); 1643 #else 1644 static inline int page_to_nid(const struct page *page) 1645 { 1646 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1647 } 1648 #endif 1649 1650 static inline int folio_nid(const struct folio *folio) 1651 { 1652 return page_to_nid(&folio->page); 1653 } 1654 1655 #ifdef CONFIG_NUMA_BALANCING 1656 /* page access time bits needs to hold at least 4 seconds */ 1657 #define PAGE_ACCESS_TIME_MIN_BITS 12 1658 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1659 #define PAGE_ACCESS_TIME_BUCKETS \ 1660 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1661 #else 1662 #define PAGE_ACCESS_TIME_BUCKETS 0 1663 #endif 1664 1665 #define PAGE_ACCESS_TIME_MASK \ 1666 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1667 1668 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1669 { 1670 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1671 } 1672 1673 static inline int cpupid_to_pid(int cpupid) 1674 { 1675 return cpupid & LAST__PID_MASK; 1676 } 1677 1678 static inline int cpupid_to_cpu(int cpupid) 1679 { 1680 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1681 } 1682 1683 static inline int cpupid_to_nid(int cpupid) 1684 { 1685 return cpu_to_node(cpupid_to_cpu(cpupid)); 1686 } 1687 1688 static inline bool cpupid_pid_unset(int cpupid) 1689 { 1690 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1691 } 1692 1693 static inline bool cpupid_cpu_unset(int cpupid) 1694 { 1695 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1696 } 1697 1698 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1699 { 1700 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1701 } 1702 1703 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1704 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1705 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1706 { 1707 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1708 } 1709 1710 static inline int folio_last_cpupid(struct folio *folio) 1711 { 1712 return folio->_last_cpupid; 1713 } 1714 static inline void page_cpupid_reset_last(struct page *page) 1715 { 1716 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1717 } 1718 #else 1719 static inline int folio_last_cpupid(struct folio *folio) 1720 { 1721 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1722 } 1723 1724 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1725 1726 static inline void page_cpupid_reset_last(struct page *page) 1727 { 1728 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1729 } 1730 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1731 1732 static inline int folio_xchg_access_time(struct folio *folio, int time) 1733 { 1734 int last_time; 1735 1736 last_time = folio_xchg_last_cpupid(folio, 1737 time >> PAGE_ACCESS_TIME_BUCKETS); 1738 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1739 } 1740 1741 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1742 { 1743 unsigned int pid_bit; 1744 1745 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1746 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1747 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1748 } 1749 } 1750 #else /* !CONFIG_NUMA_BALANCING */ 1751 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1752 { 1753 return folio_nid(folio); /* XXX */ 1754 } 1755 1756 static inline int folio_xchg_access_time(struct folio *folio, int time) 1757 { 1758 return 0; 1759 } 1760 1761 static inline int folio_last_cpupid(struct folio *folio) 1762 { 1763 return folio_nid(folio); /* XXX */ 1764 } 1765 1766 static inline int cpupid_to_nid(int cpupid) 1767 { 1768 return -1; 1769 } 1770 1771 static inline int cpupid_to_pid(int cpupid) 1772 { 1773 return -1; 1774 } 1775 1776 static inline int cpupid_to_cpu(int cpupid) 1777 { 1778 return -1; 1779 } 1780 1781 static inline int cpu_pid_to_cpupid(int nid, int pid) 1782 { 1783 return -1; 1784 } 1785 1786 static inline bool cpupid_pid_unset(int cpupid) 1787 { 1788 return true; 1789 } 1790 1791 static inline void page_cpupid_reset_last(struct page *page) 1792 { 1793 } 1794 1795 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1796 { 1797 return false; 1798 } 1799 1800 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1801 { 1802 } 1803 #endif /* CONFIG_NUMA_BALANCING */ 1804 1805 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1806 1807 /* 1808 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1809 * setting tags for all pages to native kernel tag value 0xff, as the default 1810 * value 0x00 maps to 0xff. 1811 */ 1812 1813 static inline u8 page_kasan_tag(const struct page *page) 1814 { 1815 u8 tag = KASAN_TAG_KERNEL; 1816 1817 if (kasan_enabled()) { 1818 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1819 tag ^= 0xff; 1820 } 1821 1822 return tag; 1823 } 1824 1825 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1826 { 1827 unsigned long old_flags, flags; 1828 1829 if (!kasan_enabled()) 1830 return; 1831 1832 tag ^= 0xff; 1833 old_flags = READ_ONCE(page->flags); 1834 do { 1835 flags = old_flags; 1836 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1837 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1838 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1839 } 1840 1841 static inline void page_kasan_tag_reset(struct page *page) 1842 { 1843 if (kasan_enabled()) 1844 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1845 } 1846 1847 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1848 1849 static inline u8 page_kasan_tag(const struct page *page) 1850 { 1851 return 0xff; 1852 } 1853 1854 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1855 static inline void page_kasan_tag_reset(struct page *page) { } 1856 1857 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1858 1859 static inline struct zone *page_zone(const struct page *page) 1860 { 1861 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1862 } 1863 1864 static inline pg_data_t *page_pgdat(const struct page *page) 1865 { 1866 return NODE_DATA(page_to_nid(page)); 1867 } 1868 1869 static inline struct zone *folio_zone(const struct folio *folio) 1870 { 1871 return page_zone(&folio->page); 1872 } 1873 1874 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1875 { 1876 return page_pgdat(&folio->page); 1877 } 1878 1879 #ifdef SECTION_IN_PAGE_FLAGS 1880 static inline void set_page_section(struct page *page, unsigned long section) 1881 { 1882 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1883 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1884 } 1885 1886 static inline unsigned long page_to_section(const struct page *page) 1887 { 1888 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1889 } 1890 #endif 1891 1892 /** 1893 * folio_pfn - Return the Page Frame Number of a folio. 1894 * @folio: The folio. 1895 * 1896 * A folio may contain multiple pages. The pages have consecutive 1897 * Page Frame Numbers. 1898 * 1899 * Return: The Page Frame Number of the first page in the folio. 1900 */ 1901 static inline unsigned long folio_pfn(struct folio *folio) 1902 { 1903 return page_to_pfn(&folio->page); 1904 } 1905 1906 static inline struct folio *pfn_folio(unsigned long pfn) 1907 { 1908 return page_folio(pfn_to_page(pfn)); 1909 } 1910 1911 /** 1912 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1913 * @folio: The folio. 1914 * 1915 * This function checks if a folio has been pinned via a call to 1916 * a function in the pin_user_pages() family. 1917 * 1918 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1919 * because it means "definitely not pinned for DMA", but true means "probably 1920 * pinned for DMA, but possibly a false positive due to having at least 1921 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1922 * 1923 * False positives are OK, because: a) it's unlikely for a folio to 1924 * get that many refcounts, and b) all the callers of this routine are 1925 * expected to be able to deal gracefully with a false positive. 1926 * 1927 * For large folios, the result will be exactly correct. That's because 1928 * we have more tracking data available: the _pincount field is used 1929 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1930 * 1931 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1932 * 1933 * Return: True, if it is likely that the folio has been "dma-pinned". 1934 * False, if the folio is definitely not dma-pinned. 1935 */ 1936 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1937 { 1938 if (folio_test_large(folio)) 1939 return atomic_read(&folio->_pincount) > 0; 1940 1941 /* 1942 * folio_ref_count() is signed. If that refcount overflows, then 1943 * folio_ref_count() returns a negative value, and callers will avoid 1944 * further incrementing the refcount. 1945 * 1946 * Here, for that overflow case, use the sign bit to count a little 1947 * bit higher via unsigned math, and thus still get an accurate result. 1948 */ 1949 return ((unsigned int)folio_ref_count(folio)) >= 1950 GUP_PIN_COUNTING_BIAS; 1951 } 1952 1953 /* 1954 * This should most likely only be called during fork() to see whether we 1955 * should break the cow immediately for an anon page on the src mm. 1956 * 1957 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1958 */ 1959 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1960 struct folio *folio) 1961 { 1962 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1963 1964 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1965 return false; 1966 1967 return folio_maybe_dma_pinned(folio); 1968 } 1969 1970 /** 1971 * is_zero_page - Query if a page is a zero page 1972 * @page: The page to query 1973 * 1974 * This returns true if @page is one of the permanent zero pages. 1975 */ 1976 static inline bool is_zero_page(const struct page *page) 1977 { 1978 return is_zero_pfn(page_to_pfn(page)); 1979 } 1980 1981 /** 1982 * is_zero_folio - Query if a folio is a zero page 1983 * @folio: The folio to query 1984 * 1985 * This returns true if @folio is one of the permanent zero pages. 1986 */ 1987 static inline bool is_zero_folio(const struct folio *folio) 1988 { 1989 return is_zero_page(&folio->page); 1990 } 1991 1992 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1993 #ifdef CONFIG_MIGRATION 1994 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1995 { 1996 #ifdef CONFIG_CMA 1997 int mt = folio_migratetype(folio); 1998 1999 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2000 return false; 2001 #endif 2002 /* The zero page can be "pinned" but gets special handling. */ 2003 if (is_zero_folio(folio)) 2004 return true; 2005 2006 /* Coherent device memory must always allow eviction. */ 2007 if (folio_is_device_coherent(folio)) 2008 return false; 2009 2010 /* Otherwise, non-movable zone folios can be pinned. */ 2011 return !folio_is_zone_movable(folio); 2012 2013 } 2014 #else 2015 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2016 { 2017 return true; 2018 } 2019 #endif 2020 2021 static inline void set_page_zone(struct page *page, enum zone_type zone) 2022 { 2023 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2024 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2025 } 2026 2027 static inline void set_page_node(struct page *page, unsigned long node) 2028 { 2029 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2030 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2031 } 2032 2033 static inline void set_page_links(struct page *page, enum zone_type zone, 2034 unsigned long node, unsigned long pfn) 2035 { 2036 set_page_zone(page, zone); 2037 set_page_node(page, node); 2038 #ifdef SECTION_IN_PAGE_FLAGS 2039 set_page_section(page, pfn_to_section_nr(pfn)); 2040 #endif 2041 } 2042 2043 /** 2044 * folio_nr_pages - The number of pages in the folio. 2045 * @folio: The folio. 2046 * 2047 * Return: A positive power of two. 2048 */ 2049 static inline long folio_nr_pages(const struct folio *folio) 2050 { 2051 if (!folio_test_large(folio)) 2052 return 1; 2053 #ifdef CONFIG_64BIT 2054 return folio->_folio_nr_pages; 2055 #else 2056 return 1L << (folio->_flags_1 & 0xff); 2057 #endif 2058 } 2059 2060 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2061 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2062 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2063 #else 2064 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2065 #endif 2066 2067 /* 2068 * compound_nr() returns the number of pages in this potentially compound 2069 * page. compound_nr() can be called on a tail page, and is defined to 2070 * return 1 in that case. 2071 */ 2072 static inline unsigned long compound_nr(struct page *page) 2073 { 2074 struct folio *folio = (struct folio *)page; 2075 2076 if (!test_bit(PG_head, &folio->flags)) 2077 return 1; 2078 #ifdef CONFIG_64BIT 2079 return folio->_folio_nr_pages; 2080 #else 2081 return 1L << (folio->_flags_1 & 0xff); 2082 #endif 2083 } 2084 2085 /** 2086 * thp_nr_pages - The number of regular pages in this huge page. 2087 * @page: The head page of a huge page. 2088 */ 2089 static inline int thp_nr_pages(struct page *page) 2090 { 2091 return folio_nr_pages((struct folio *)page); 2092 } 2093 2094 /** 2095 * folio_next - Move to the next physical folio. 2096 * @folio: The folio we're currently operating on. 2097 * 2098 * If you have physically contiguous memory which may span more than 2099 * one folio (eg a &struct bio_vec), use this function to move from one 2100 * folio to the next. Do not use it if the memory is only virtually 2101 * contiguous as the folios are almost certainly not adjacent to each 2102 * other. This is the folio equivalent to writing ``page++``. 2103 * 2104 * Context: We assume that the folios are refcounted and/or locked at a 2105 * higher level and do not adjust the reference counts. 2106 * Return: The next struct folio. 2107 */ 2108 static inline struct folio *folio_next(struct folio *folio) 2109 { 2110 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2111 } 2112 2113 /** 2114 * folio_shift - The size of the memory described by this folio. 2115 * @folio: The folio. 2116 * 2117 * A folio represents a number of bytes which is a power-of-two in size. 2118 * This function tells you which power-of-two the folio is. See also 2119 * folio_size() and folio_order(). 2120 * 2121 * Context: The caller should have a reference on the folio to prevent 2122 * it from being split. It is not necessary for the folio to be locked. 2123 * Return: The base-2 logarithm of the size of this folio. 2124 */ 2125 static inline unsigned int folio_shift(const struct folio *folio) 2126 { 2127 return PAGE_SHIFT + folio_order(folio); 2128 } 2129 2130 /** 2131 * folio_size - The number of bytes in a folio. 2132 * @folio: The folio. 2133 * 2134 * Context: The caller should have a reference on the folio to prevent 2135 * it from being split. It is not necessary for the folio to be locked. 2136 * Return: The number of bytes in this folio. 2137 */ 2138 static inline size_t folio_size(const struct folio *folio) 2139 { 2140 return PAGE_SIZE << folio_order(folio); 2141 } 2142 2143 /** 2144 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2145 * tables of more than one MM 2146 * @folio: The folio. 2147 * 2148 * This function checks if the folio is currently mapped into more than one 2149 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2150 * ("mapped exclusively"). 2151 * 2152 * As precise information is not easily available for all folios, this function 2153 * estimates the number of MMs ("sharers") that are currently mapping a folio 2154 * using the number of times the first page of the folio is currently mapped 2155 * into page tables. 2156 * 2157 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios, 2158 * the return value will be exactly correct, because they can only be mapped 2159 * at most once into an MM, and they cannot be partially mapped. 2160 * 2161 * For other folios, the result can be fuzzy: 2162 * #. For partially-mappable large folios (THP), the return value can wrongly 2163 * indicate "mapped exclusively" (false negative) when the folio is 2164 * only partially mapped into at least one MM. 2165 * #. For pagecache folios (including hugetlb), the return value can wrongly 2166 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2167 * cover the same file range. 2168 * #. For (small) KSM folios, the return value can wrongly indicate "mapped 2169 * shared" (false positive), when the folio is mapped multiple times into 2170 * the same MM. 2171 * 2172 * Further, this function only considers current page table mappings that 2173 * are tracked using the folio mapcount(s). 2174 * 2175 * This function does not consider: 2176 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2177 * pagecache, temporary unmapping for migration). 2178 * #. If the folio is mapped differently (VM_PFNMAP). 2179 * #. If hugetlb page table sharing applies. Callers might want to check 2180 * hugetlb_pmd_shared(). 2181 * 2182 * Return: Whether the folio is estimated to be mapped into more than one MM. 2183 */ 2184 static inline bool folio_likely_mapped_shared(struct folio *folio) 2185 { 2186 int mapcount = folio_mapcount(folio); 2187 2188 /* Only partially-mappable folios require more care. */ 2189 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2190 return mapcount > 1; 2191 2192 /* A single mapping implies "mapped exclusively". */ 2193 if (mapcount <= 1) 2194 return false; 2195 2196 /* If any page is mapped more than once we treat it "mapped shared". */ 2197 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2198 return true; 2199 2200 /* Let's guess based on the first subpage. */ 2201 return atomic_read(&folio->_mapcount) > 0; 2202 } 2203 2204 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2205 static inline int arch_make_page_accessible(struct page *page) 2206 { 2207 return 0; 2208 } 2209 #endif 2210 2211 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2212 static inline int arch_make_folio_accessible(struct folio *folio) 2213 { 2214 int ret; 2215 long i, nr = folio_nr_pages(folio); 2216 2217 for (i = 0; i < nr; i++) { 2218 ret = arch_make_page_accessible(folio_page(folio, i)); 2219 if (ret) 2220 break; 2221 } 2222 2223 return ret; 2224 } 2225 #endif 2226 2227 /* 2228 * Some inline functions in vmstat.h depend on page_zone() 2229 */ 2230 #include <linux/vmstat.h> 2231 2232 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2233 #define HASHED_PAGE_VIRTUAL 2234 #endif 2235 2236 #if defined(WANT_PAGE_VIRTUAL) 2237 static inline void *page_address(const struct page *page) 2238 { 2239 return page->virtual; 2240 } 2241 static inline void set_page_address(struct page *page, void *address) 2242 { 2243 page->virtual = address; 2244 } 2245 #define page_address_init() do { } while(0) 2246 #endif 2247 2248 #if defined(HASHED_PAGE_VIRTUAL) 2249 void *page_address(const struct page *page); 2250 void set_page_address(struct page *page, void *virtual); 2251 void page_address_init(void); 2252 #endif 2253 2254 static __always_inline void *lowmem_page_address(const struct page *page) 2255 { 2256 return page_to_virt(page); 2257 } 2258 2259 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2260 #define page_address(page) lowmem_page_address(page) 2261 #define set_page_address(page, address) do { } while(0) 2262 #define page_address_init() do { } while(0) 2263 #endif 2264 2265 static inline void *folio_address(const struct folio *folio) 2266 { 2267 return page_address(&folio->page); 2268 } 2269 2270 /* 2271 * Return true only if the page has been allocated with 2272 * ALLOC_NO_WATERMARKS and the low watermark was not 2273 * met implying that the system is under some pressure. 2274 */ 2275 static inline bool page_is_pfmemalloc(const struct page *page) 2276 { 2277 /* 2278 * lru.next has bit 1 set if the page is allocated from the 2279 * pfmemalloc reserves. Callers may simply overwrite it if 2280 * they do not need to preserve that information. 2281 */ 2282 return (uintptr_t)page->lru.next & BIT(1); 2283 } 2284 2285 /* 2286 * Return true only if the folio has been allocated with 2287 * ALLOC_NO_WATERMARKS and the low watermark was not 2288 * met implying that the system is under some pressure. 2289 */ 2290 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2291 { 2292 /* 2293 * lru.next has bit 1 set if the page is allocated from the 2294 * pfmemalloc reserves. Callers may simply overwrite it if 2295 * they do not need to preserve that information. 2296 */ 2297 return (uintptr_t)folio->lru.next & BIT(1); 2298 } 2299 2300 /* 2301 * Only to be called by the page allocator on a freshly allocated 2302 * page. 2303 */ 2304 static inline void set_page_pfmemalloc(struct page *page) 2305 { 2306 page->lru.next = (void *)BIT(1); 2307 } 2308 2309 static inline void clear_page_pfmemalloc(struct page *page) 2310 { 2311 page->lru.next = NULL; 2312 } 2313 2314 /* 2315 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2316 */ 2317 extern void pagefault_out_of_memory(void); 2318 2319 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2320 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2321 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2322 2323 /* 2324 * Parameter block passed down to zap_pte_range in exceptional cases. 2325 */ 2326 struct zap_details { 2327 struct folio *single_folio; /* Locked folio to be unmapped */ 2328 bool even_cows; /* Zap COWed private pages too? */ 2329 zap_flags_t zap_flags; /* Extra flags for zapping */ 2330 }; 2331 2332 /* 2333 * Whether to drop the pte markers, for example, the uffd-wp information for 2334 * file-backed memory. This should only be specified when we will completely 2335 * drop the page in the mm, either by truncation or unmapping of the vma. By 2336 * default, the flag is not set. 2337 */ 2338 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2339 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2340 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2341 2342 #ifdef CONFIG_SCHED_MM_CID 2343 void sched_mm_cid_before_execve(struct task_struct *t); 2344 void sched_mm_cid_after_execve(struct task_struct *t); 2345 void sched_mm_cid_fork(struct task_struct *t); 2346 void sched_mm_cid_exit_signals(struct task_struct *t); 2347 static inline int task_mm_cid(struct task_struct *t) 2348 { 2349 return t->mm_cid; 2350 } 2351 #else 2352 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2353 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2354 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2355 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2356 static inline int task_mm_cid(struct task_struct *t) 2357 { 2358 /* 2359 * Use the processor id as a fall-back when the mm cid feature is 2360 * disabled. This provides functional per-cpu data structure accesses 2361 * in user-space, althrough it won't provide the memory usage benefits. 2362 */ 2363 return raw_smp_processor_id(); 2364 } 2365 #endif 2366 2367 #ifdef CONFIG_MMU 2368 extern bool can_do_mlock(void); 2369 #else 2370 static inline bool can_do_mlock(void) { return false; } 2371 #endif 2372 extern int user_shm_lock(size_t, struct ucounts *); 2373 extern void user_shm_unlock(size_t, struct ucounts *); 2374 2375 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2376 pte_t pte); 2377 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2378 pte_t pte); 2379 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2380 unsigned long addr, pmd_t pmd); 2381 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2382 pmd_t pmd); 2383 2384 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2385 unsigned long size); 2386 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2387 unsigned long size, struct zap_details *details); 2388 static inline void zap_vma_pages(struct vm_area_struct *vma) 2389 { 2390 zap_page_range_single(vma, vma->vm_start, 2391 vma->vm_end - vma->vm_start, NULL); 2392 } 2393 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2394 struct vm_area_struct *start_vma, unsigned long start, 2395 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2396 2397 struct mmu_notifier_range; 2398 2399 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2400 unsigned long end, unsigned long floor, unsigned long ceiling); 2401 int 2402 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2403 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2404 pte_t **ptepp, spinlock_t **ptlp); 2405 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2406 void *buf, int len, int write); 2407 2408 extern void truncate_pagecache(struct inode *inode, loff_t new); 2409 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2410 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2411 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2412 int generic_error_remove_folio(struct address_space *mapping, 2413 struct folio *folio); 2414 2415 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2416 unsigned long address, struct pt_regs *regs); 2417 2418 #ifdef CONFIG_MMU 2419 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2420 unsigned long address, unsigned int flags, 2421 struct pt_regs *regs); 2422 extern int fixup_user_fault(struct mm_struct *mm, 2423 unsigned long address, unsigned int fault_flags, 2424 bool *unlocked); 2425 void unmap_mapping_pages(struct address_space *mapping, 2426 pgoff_t start, pgoff_t nr, bool even_cows); 2427 void unmap_mapping_range(struct address_space *mapping, 2428 loff_t const holebegin, loff_t const holelen, int even_cows); 2429 #else 2430 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2431 unsigned long address, unsigned int flags, 2432 struct pt_regs *regs) 2433 { 2434 /* should never happen if there's no MMU */ 2435 BUG(); 2436 return VM_FAULT_SIGBUS; 2437 } 2438 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2439 unsigned int fault_flags, bool *unlocked) 2440 { 2441 /* should never happen if there's no MMU */ 2442 BUG(); 2443 return -EFAULT; 2444 } 2445 static inline void unmap_mapping_pages(struct address_space *mapping, 2446 pgoff_t start, pgoff_t nr, bool even_cows) { } 2447 static inline void unmap_mapping_range(struct address_space *mapping, 2448 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2449 #endif 2450 2451 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2452 loff_t const holebegin, loff_t const holelen) 2453 { 2454 unmap_mapping_range(mapping, holebegin, holelen, 0); 2455 } 2456 2457 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2458 unsigned long addr); 2459 2460 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2461 void *buf, int len, unsigned int gup_flags); 2462 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2463 void *buf, int len, unsigned int gup_flags); 2464 2465 long get_user_pages_remote(struct mm_struct *mm, 2466 unsigned long start, unsigned long nr_pages, 2467 unsigned int gup_flags, struct page **pages, 2468 int *locked); 2469 long pin_user_pages_remote(struct mm_struct *mm, 2470 unsigned long start, unsigned long nr_pages, 2471 unsigned int gup_flags, struct page **pages, 2472 int *locked); 2473 2474 /* 2475 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2476 */ 2477 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2478 unsigned long addr, 2479 int gup_flags, 2480 struct vm_area_struct **vmap) 2481 { 2482 struct page *page; 2483 struct vm_area_struct *vma; 2484 int got; 2485 2486 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2487 return ERR_PTR(-EINVAL); 2488 2489 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2490 2491 if (got < 0) 2492 return ERR_PTR(got); 2493 2494 vma = vma_lookup(mm, addr); 2495 if (WARN_ON_ONCE(!vma)) { 2496 put_page(page); 2497 return ERR_PTR(-EINVAL); 2498 } 2499 2500 *vmap = vma; 2501 return page; 2502 } 2503 2504 long get_user_pages(unsigned long start, unsigned long nr_pages, 2505 unsigned int gup_flags, struct page **pages); 2506 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2507 unsigned int gup_flags, struct page **pages); 2508 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2509 struct page **pages, unsigned int gup_flags); 2510 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2511 struct page **pages, unsigned int gup_flags); 2512 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2513 struct folio **folios, unsigned int max_folios, 2514 pgoff_t *offset); 2515 2516 int get_user_pages_fast(unsigned long start, int nr_pages, 2517 unsigned int gup_flags, struct page **pages); 2518 int pin_user_pages_fast(unsigned long start, int nr_pages, 2519 unsigned int gup_flags, struct page **pages); 2520 void folio_add_pin(struct folio *folio); 2521 2522 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2523 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2524 struct task_struct *task, bool bypass_rlim); 2525 2526 struct kvec; 2527 struct page *get_dump_page(unsigned long addr); 2528 2529 bool folio_mark_dirty(struct folio *folio); 2530 bool set_page_dirty(struct page *page); 2531 int set_page_dirty_lock(struct page *page); 2532 2533 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2534 2535 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2536 unsigned long old_addr, struct vm_area_struct *new_vma, 2537 unsigned long new_addr, unsigned long len, 2538 bool need_rmap_locks, bool for_stack); 2539 2540 /* 2541 * Flags used by change_protection(). For now we make it a bitmap so 2542 * that we can pass in multiple flags just like parameters. However 2543 * for now all the callers are only use one of the flags at the same 2544 * time. 2545 */ 2546 /* 2547 * Whether we should manually check if we can map individual PTEs writable, 2548 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2549 * PTEs automatically in a writable mapping. 2550 */ 2551 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2552 /* Whether this protection change is for NUMA hints */ 2553 #define MM_CP_PROT_NUMA (1UL << 1) 2554 /* Whether this change is for write protecting */ 2555 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2556 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2557 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2558 MM_CP_UFFD_WP_RESOLVE) 2559 2560 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2561 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2562 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2563 { 2564 /* 2565 * We want to check manually if we can change individual PTEs writable 2566 * if we can't do that automatically for all PTEs in a mapping. For 2567 * private mappings, that's always the case when we have write 2568 * permissions as we properly have to handle COW. 2569 */ 2570 if (vma->vm_flags & VM_SHARED) 2571 return vma_wants_writenotify(vma, vma->vm_page_prot); 2572 return !!(vma->vm_flags & VM_WRITE); 2573 2574 } 2575 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2576 pte_t pte); 2577 extern long change_protection(struct mmu_gather *tlb, 2578 struct vm_area_struct *vma, unsigned long start, 2579 unsigned long end, unsigned long cp_flags); 2580 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2581 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2582 unsigned long start, unsigned long end, unsigned long newflags); 2583 2584 /* 2585 * doesn't attempt to fault and will return short. 2586 */ 2587 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2588 unsigned int gup_flags, struct page **pages); 2589 2590 static inline bool get_user_page_fast_only(unsigned long addr, 2591 unsigned int gup_flags, struct page **pagep) 2592 { 2593 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2594 } 2595 /* 2596 * per-process(per-mm_struct) statistics. 2597 */ 2598 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2599 { 2600 return percpu_counter_read_positive(&mm->rss_stat[member]); 2601 } 2602 2603 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2604 2605 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2606 { 2607 percpu_counter_add(&mm->rss_stat[member], value); 2608 2609 mm_trace_rss_stat(mm, member); 2610 } 2611 2612 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2613 { 2614 percpu_counter_inc(&mm->rss_stat[member]); 2615 2616 mm_trace_rss_stat(mm, member); 2617 } 2618 2619 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2620 { 2621 percpu_counter_dec(&mm->rss_stat[member]); 2622 2623 mm_trace_rss_stat(mm, member); 2624 } 2625 2626 /* Optimized variant when folio is already known not to be anon */ 2627 static inline int mm_counter_file(struct folio *folio) 2628 { 2629 if (folio_test_swapbacked(folio)) 2630 return MM_SHMEMPAGES; 2631 return MM_FILEPAGES; 2632 } 2633 2634 static inline int mm_counter(struct folio *folio) 2635 { 2636 if (folio_test_anon(folio)) 2637 return MM_ANONPAGES; 2638 return mm_counter_file(folio); 2639 } 2640 2641 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2642 { 2643 return get_mm_counter(mm, MM_FILEPAGES) + 2644 get_mm_counter(mm, MM_ANONPAGES) + 2645 get_mm_counter(mm, MM_SHMEMPAGES); 2646 } 2647 2648 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2649 { 2650 return max(mm->hiwater_rss, get_mm_rss(mm)); 2651 } 2652 2653 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2654 { 2655 return max(mm->hiwater_vm, mm->total_vm); 2656 } 2657 2658 static inline void update_hiwater_rss(struct mm_struct *mm) 2659 { 2660 unsigned long _rss = get_mm_rss(mm); 2661 2662 if ((mm)->hiwater_rss < _rss) 2663 (mm)->hiwater_rss = _rss; 2664 } 2665 2666 static inline void update_hiwater_vm(struct mm_struct *mm) 2667 { 2668 if (mm->hiwater_vm < mm->total_vm) 2669 mm->hiwater_vm = mm->total_vm; 2670 } 2671 2672 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2673 { 2674 mm->hiwater_rss = get_mm_rss(mm); 2675 } 2676 2677 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2678 struct mm_struct *mm) 2679 { 2680 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2681 2682 if (*maxrss < hiwater_rss) 2683 *maxrss = hiwater_rss; 2684 } 2685 2686 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2687 static inline int pte_special(pte_t pte) 2688 { 2689 return 0; 2690 } 2691 2692 static inline pte_t pte_mkspecial(pte_t pte) 2693 { 2694 return pte; 2695 } 2696 #endif 2697 2698 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2699 static inline int pte_devmap(pte_t pte) 2700 { 2701 return 0; 2702 } 2703 #endif 2704 2705 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2706 spinlock_t **ptl); 2707 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2708 spinlock_t **ptl) 2709 { 2710 pte_t *ptep; 2711 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2712 return ptep; 2713 } 2714 2715 #ifdef __PAGETABLE_P4D_FOLDED 2716 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2717 unsigned long address) 2718 { 2719 return 0; 2720 } 2721 #else 2722 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2723 #endif 2724 2725 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2726 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2727 unsigned long address) 2728 { 2729 return 0; 2730 } 2731 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2732 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2733 2734 #else 2735 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2736 2737 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2738 { 2739 if (mm_pud_folded(mm)) 2740 return; 2741 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2742 } 2743 2744 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2745 { 2746 if (mm_pud_folded(mm)) 2747 return; 2748 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2749 } 2750 #endif 2751 2752 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2753 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2754 unsigned long address) 2755 { 2756 return 0; 2757 } 2758 2759 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2760 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2761 2762 #else 2763 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2764 2765 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2766 { 2767 if (mm_pmd_folded(mm)) 2768 return; 2769 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2770 } 2771 2772 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2773 { 2774 if (mm_pmd_folded(mm)) 2775 return; 2776 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2777 } 2778 #endif 2779 2780 #ifdef CONFIG_MMU 2781 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2782 { 2783 atomic_long_set(&mm->pgtables_bytes, 0); 2784 } 2785 2786 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2787 { 2788 return atomic_long_read(&mm->pgtables_bytes); 2789 } 2790 2791 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2792 { 2793 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2794 } 2795 2796 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2797 { 2798 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2799 } 2800 #else 2801 2802 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2803 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2804 { 2805 return 0; 2806 } 2807 2808 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2809 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2810 #endif 2811 2812 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2813 int __pte_alloc_kernel(pmd_t *pmd); 2814 2815 #if defined(CONFIG_MMU) 2816 2817 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2818 unsigned long address) 2819 { 2820 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2821 NULL : p4d_offset(pgd, address); 2822 } 2823 2824 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2825 unsigned long address) 2826 { 2827 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2828 NULL : pud_offset(p4d, address); 2829 } 2830 2831 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2832 { 2833 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2834 NULL: pmd_offset(pud, address); 2835 } 2836 #endif /* CONFIG_MMU */ 2837 2838 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2839 { 2840 return page_ptdesc(virt_to_page(x)); 2841 } 2842 2843 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2844 { 2845 return page_to_virt(ptdesc_page(pt)); 2846 } 2847 2848 static inline void *ptdesc_address(const struct ptdesc *pt) 2849 { 2850 return folio_address(ptdesc_folio(pt)); 2851 } 2852 2853 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2854 { 2855 return folio_test_reserved(ptdesc_folio(pt)); 2856 } 2857 2858 /** 2859 * pagetable_alloc - Allocate pagetables 2860 * @gfp: GFP flags 2861 * @order: desired pagetable order 2862 * 2863 * pagetable_alloc allocates memory for page tables as well as a page table 2864 * descriptor to describe that memory. 2865 * 2866 * Return: The ptdesc describing the allocated page tables. 2867 */ 2868 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2869 { 2870 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2871 2872 return page_ptdesc(page); 2873 } 2874 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2875 2876 /** 2877 * pagetable_free - Free pagetables 2878 * @pt: The page table descriptor 2879 * 2880 * pagetable_free frees the memory of all page tables described by a page 2881 * table descriptor and the memory for the descriptor itself. 2882 */ 2883 static inline void pagetable_free(struct ptdesc *pt) 2884 { 2885 struct page *page = ptdesc_page(pt); 2886 2887 __free_pages(page, compound_order(page)); 2888 } 2889 2890 #if USE_SPLIT_PTE_PTLOCKS 2891 #if ALLOC_SPLIT_PTLOCKS 2892 void __init ptlock_cache_init(void); 2893 bool ptlock_alloc(struct ptdesc *ptdesc); 2894 void ptlock_free(struct ptdesc *ptdesc); 2895 2896 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2897 { 2898 return ptdesc->ptl; 2899 } 2900 #else /* ALLOC_SPLIT_PTLOCKS */ 2901 static inline void ptlock_cache_init(void) 2902 { 2903 } 2904 2905 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2906 { 2907 return true; 2908 } 2909 2910 static inline void ptlock_free(struct ptdesc *ptdesc) 2911 { 2912 } 2913 2914 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2915 { 2916 return &ptdesc->ptl; 2917 } 2918 #endif /* ALLOC_SPLIT_PTLOCKS */ 2919 2920 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2921 { 2922 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2923 } 2924 2925 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2926 { 2927 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2928 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2929 return ptlock_ptr(virt_to_ptdesc(pte)); 2930 } 2931 2932 static inline bool ptlock_init(struct ptdesc *ptdesc) 2933 { 2934 /* 2935 * prep_new_page() initialize page->private (and therefore page->ptl) 2936 * with 0. Make sure nobody took it in use in between. 2937 * 2938 * It can happen if arch try to use slab for page table allocation: 2939 * slab code uses page->slab_cache, which share storage with page->ptl. 2940 */ 2941 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2942 if (!ptlock_alloc(ptdesc)) 2943 return false; 2944 spin_lock_init(ptlock_ptr(ptdesc)); 2945 return true; 2946 } 2947 2948 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2949 /* 2950 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2951 */ 2952 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2953 { 2954 return &mm->page_table_lock; 2955 } 2956 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2957 { 2958 return &mm->page_table_lock; 2959 } 2960 static inline void ptlock_cache_init(void) {} 2961 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2962 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2963 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2964 2965 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2966 { 2967 struct folio *folio = ptdesc_folio(ptdesc); 2968 2969 if (!ptlock_init(ptdesc)) 2970 return false; 2971 __folio_set_pgtable(folio); 2972 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2973 return true; 2974 } 2975 2976 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2977 { 2978 struct folio *folio = ptdesc_folio(ptdesc); 2979 2980 ptlock_free(ptdesc); 2981 __folio_clear_pgtable(folio); 2982 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2983 } 2984 2985 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2986 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2987 { 2988 return __pte_offset_map(pmd, addr, NULL); 2989 } 2990 2991 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2992 unsigned long addr, spinlock_t **ptlp); 2993 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2994 unsigned long addr, spinlock_t **ptlp) 2995 { 2996 pte_t *pte; 2997 2998 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2999 return pte; 3000 } 3001 3002 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3003 unsigned long addr, spinlock_t **ptlp); 3004 3005 #define pte_unmap_unlock(pte, ptl) do { \ 3006 spin_unlock(ptl); \ 3007 pte_unmap(pte); \ 3008 } while (0) 3009 3010 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3011 3012 #define pte_alloc_map(mm, pmd, address) \ 3013 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3014 3015 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3016 (pte_alloc(mm, pmd) ? \ 3017 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3018 3019 #define pte_alloc_kernel(pmd, address) \ 3020 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3021 NULL: pte_offset_kernel(pmd, address)) 3022 3023 #if USE_SPLIT_PMD_PTLOCKS 3024 3025 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3026 { 3027 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3028 return virt_to_page((void *)((unsigned long) pmd & mask)); 3029 } 3030 3031 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3032 { 3033 return page_ptdesc(pmd_pgtable_page(pmd)); 3034 } 3035 3036 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3037 { 3038 return ptlock_ptr(pmd_ptdesc(pmd)); 3039 } 3040 3041 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3042 { 3043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3044 ptdesc->pmd_huge_pte = NULL; 3045 #endif 3046 return ptlock_init(ptdesc); 3047 } 3048 3049 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3050 { 3051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3052 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3053 #endif 3054 ptlock_free(ptdesc); 3055 } 3056 3057 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3058 3059 #else 3060 3061 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3062 { 3063 return &mm->page_table_lock; 3064 } 3065 3066 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3067 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3068 3069 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3070 3071 #endif 3072 3073 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3074 { 3075 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3076 spin_lock(ptl); 3077 return ptl; 3078 } 3079 3080 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3081 { 3082 struct folio *folio = ptdesc_folio(ptdesc); 3083 3084 if (!pmd_ptlock_init(ptdesc)) 3085 return false; 3086 __folio_set_pgtable(folio); 3087 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3088 return true; 3089 } 3090 3091 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3092 { 3093 struct folio *folio = ptdesc_folio(ptdesc); 3094 3095 pmd_ptlock_free(ptdesc); 3096 __folio_clear_pgtable(folio); 3097 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3098 } 3099 3100 /* 3101 * No scalability reason to split PUD locks yet, but follow the same pattern 3102 * as the PMD locks to make it easier if we decide to. The VM should not be 3103 * considered ready to switch to split PUD locks yet; there may be places 3104 * which need to be converted from page_table_lock. 3105 */ 3106 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3107 { 3108 return &mm->page_table_lock; 3109 } 3110 3111 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3112 { 3113 spinlock_t *ptl = pud_lockptr(mm, pud); 3114 3115 spin_lock(ptl); 3116 return ptl; 3117 } 3118 3119 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3120 { 3121 struct folio *folio = ptdesc_folio(ptdesc); 3122 3123 __folio_set_pgtable(folio); 3124 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3125 } 3126 3127 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3128 { 3129 struct folio *folio = ptdesc_folio(ptdesc); 3130 3131 __folio_clear_pgtable(folio); 3132 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3133 } 3134 3135 extern void __init pagecache_init(void); 3136 extern void free_initmem(void); 3137 3138 /* 3139 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3140 * into the buddy system. The freed pages will be poisoned with pattern 3141 * "poison" if it's within range [0, UCHAR_MAX]. 3142 * Return pages freed into the buddy system. 3143 */ 3144 extern unsigned long free_reserved_area(void *start, void *end, 3145 int poison, const char *s); 3146 3147 extern void adjust_managed_page_count(struct page *page, long count); 3148 3149 extern void reserve_bootmem_region(phys_addr_t start, 3150 phys_addr_t end, int nid); 3151 3152 /* Free the reserved page into the buddy system, so it gets managed. */ 3153 void free_reserved_page(struct page *page); 3154 #define free_highmem_page(page) free_reserved_page(page) 3155 3156 static inline void mark_page_reserved(struct page *page) 3157 { 3158 SetPageReserved(page); 3159 adjust_managed_page_count(page, -1); 3160 } 3161 3162 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3163 { 3164 free_reserved_page(ptdesc_page(pt)); 3165 } 3166 3167 /* 3168 * Default method to free all the __init memory into the buddy system. 3169 * The freed pages will be poisoned with pattern "poison" if it's within 3170 * range [0, UCHAR_MAX]. 3171 * Return pages freed into the buddy system. 3172 */ 3173 static inline unsigned long free_initmem_default(int poison) 3174 { 3175 extern char __init_begin[], __init_end[]; 3176 3177 return free_reserved_area(&__init_begin, &__init_end, 3178 poison, "unused kernel image (initmem)"); 3179 } 3180 3181 static inline unsigned long get_num_physpages(void) 3182 { 3183 int nid; 3184 unsigned long phys_pages = 0; 3185 3186 for_each_online_node(nid) 3187 phys_pages += node_present_pages(nid); 3188 3189 return phys_pages; 3190 } 3191 3192 /* 3193 * Using memblock node mappings, an architecture may initialise its 3194 * zones, allocate the backing mem_map and account for memory holes in an 3195 * architecture independent manner. 3196 * 3197 * An architecture is expected to register range of page frames backed by 3198 * physical memory with memblock_add[_node]() before calling 3199 * free_area_init() passing in the PFN each zone ends at. At a basic 3200 * usage, an architecture is expected to do something like 3201 * 3202 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3203 * max_highmem_pfn}; 3204 * for_each_valid_physical_page_range() 3205 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3206 * free_area_init(max_zone_pfns); 3207 */ 3208 void free_area_init(unsigned long *max_zone_pfn); 3209 unsigned long node_map_pfn_alignment(void); 3210 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3211 unsigned long end_pfn); 3212 extern void get_pfn_range_for_nid(unsigned int nid, 3213 unsigned long *start_pfn, unsigned long *end_pfn); 3214 3215 #ifndef CONFIG_NUMA 3216 static inline int early_pfn_to_nid(unsigned long pfn) 3217 { 3218 return 0; 3219 } 3220 #else 3221 /* please see mm/page_alloc.c */ 3222 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3223 #endif 3224 3225 extern void mem_init(void); 3226 extern void __init mmap_init(void); 3227 3228 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3229 static inline void show_mem(void) 3230 { 3231 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3232 } 3233 extern long si_mem_available(void); 3234 extern void si_meminfo(struct sysinfo * val); 3235 extern void si_meminfo_node(struct sysinfo *val, int nid); 3236 3237 extern __printf(3, 4) 3238 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3239 3240 extern void setup_per_cpu_pageset(void); 3241 3242 /* nommu.c */ 3243 extern atomic_long_t mmap_pages_allocated; 3244 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3245 3246 /* interval_tree.c */ 3247 void vma_interval_tree_insert(struct vm_area_struct *node, 3248 struct rb_root_cached *root); 3249 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3250 struct vm_area_struct *prev, 3251 struct rb_root_cached *root); 3252 void vma_interval_tree_remove(struct vm_area_struct *node, 3253 struct rb_root_cached *root); 3254 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3255 unsigned long start, unsigned long last); 3256 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3257 unsigned long start, unsigned long last); 3258 3259 #define vma_interval_tree_foreach(vma, root, start, last) \ 3260 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3261 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3262 3263 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3264 struct rb_root_cached *root); 3265 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3266 struct rb_root_cached *root); 3267 struct anon_vma_chain * 3268 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3269 unsigned long start, unsigned long last); 3270 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3271 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3272 #ifdef CONFIG_DEBUG_VM_RB 3273 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3274 #endif 3275 3276 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3277 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3278 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3279 3280 /* mmap.c */ 3281 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3282 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3283 unsigned long start, unsigned long end, pgoff_t pgoff, 3284 struct vm_area_struct *next); 3285 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3286 unsigned long start, unsigned long end, pgoff_t pgoff); 3287 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3288 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3289 extern void unlink_file_vma(struct vm_area_struct *); 3290 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3291 unsigned long addr, unsigned long len, pgoff_t pgoff, 3292 bool *need_rmap_locks); 3293 extern void exit_mmap(struct mm_struct *); 3294 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3295 struct vm_area_struct *prev, 3296 struct vm_area_struct *vma, 3297 unsigned long start, unsigned long end, 3298 unsigned long vm_flags, 3299 struct mempolicy *policy, 3300 struct vm_userfaultfd_ctx uffd_ctx, 3301 struct anon_vma_name *anon_name); 3302 3303 /* We are about to modify the VMA's flags. */ 3304 static inline struct vm_area_struct 3305 *vma_modify_flags(struct vma_iterator *vmi, 3306 struct vm_area_struct *prev, 3307 struct vm_area_struct *vma, 3308 unsigned long start, unsigned long end, 3309 unsigned long new_flags) 3310 { 3311 return vma_modify(vmi, prev, vma, start, end, new_flags, 3312 vma_policy(vma), vma->vm_userfaultfd_ctx, 3313 anon_vma_name(vma)); 3314 } 3315 3316 /* We are about to modify the VMA's flags and/or anon_name. */ 3317 static inline struct vm_area_struct 3318 *vma_modify_flags_name(struct vma_iterator *vmi, 3319 struct vm_area_struct *prev, 3320 struct vm_area_struct *vma, 3321 unsigned long start, 3322 unsigned long end, 3323 unsigned long new_flags, 3324 struct anon_vma_name *new_name) 3325 { 3326 return vma_modify(vmi, prev, vma, start, end, new_flags, 3327 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3328 } 3329 3330 /* We are about to modify the VMA's memory policy. */ 3331 static inline struct vm_area_struct 3332 *vma_modify_policy(struct vma_iterator *vmi, 3333 struct vm_area_struct *prev, 3334 struct vm_area_struct *vma, 3335 unsigned long start, unsigned long end, 3336 struct mempolicy *new_pol) 3337 { 3338 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3339 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3340 } 3341 3342 /* We are about to modify the VMA's flags and/or uffd context. */ 3343 static inline struct vm_area_struct 3344 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3345 struct vm_area_struct *prev, 3346 struct vm_area_struct *vma, 3347 unsigned long start, unsigned long end, 3348 unsigned long new_flags, 3349 struct vm_userfaultfd_ctx new_ctx) 3350 { 3351 return vma_modify(vmi, prev, vma, start, end, new_flags, 3352 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3353 } 3354 3355 static inline int check_data_rlimit(unsigned long rlim, 3356 unsigned long new, 3357 unsigned long start, 3358 unsigned long end_data, 3359 unsigned long start_data) 3360 { 3361 if (rlim < RLIM_INFINITY) { 3362 if (((new - start) + (end_data - start_data)) > rlim) 3363 return -ENOSPC; 3364 } 3365 3366 return 0; 3367 } 3368 3369 extern int mm_take_all_locks(struct mm_struct *mm); 3370 extern void mm_drop_all_locks(struct mm_struct *mm); 3371 3372 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3373 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3374 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3375 extern struct file *get_task_exe_file(struct task_struct *task); 3376 3377 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3378 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3379 3380 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3381 const struct vm_special_mapping *sm); 3382 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3383 unsigned long addr, unsigned long len, 3384 unsigned long flags, 3385 const struct vm_special_mapping *spec); 3386 /* This is an obsolete alternative to _install_special_mapping. */ 3387 extern int install_special_mapping(struct mm_struct *mm, 3388 unsigned long addr, unsigned long len, 3389 unsigned long flags, struct page **pages); 3390 3391 unsigned long randomize_stack_top(unsigned long stack_top); 3392 unsigned long randomize_page(unsigned long start, unsigned long range); 3393 3394 unsigned long 3395 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3396 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3397 3398 static inline unsigned long 3399 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3400 unsigned long pgoff, unsigned long flags) 3401 { 3402 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3403 } 3404 3405 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3406 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3407 struct list_head *uf); 3408 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3409 unsigned long len, unsigned long prot, unsigned long flags, 3410 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3411 struct list_head *uf); 3412 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3413 unsigned long start, size_t len, struct list_head *uf, 3414 bool unlock); 3415 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3416 struct list_head *uf); 3417 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3418 3419 #ifdef CONFIG_MMU 3420 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3421 unsigned long start, unsigned long end, 3422 struct list_head *uf, bool unlock); 3423 extern int __mm_populate(unsigned long addr, unsigned long len, 3424 int ignore_errors); 3425 static inline void mm_populate(unsigned long addr, unsigned long len) 3426 { 3427 /* Ignore errors */ 3428 (void) __mm_populate(addr, len, 1); 3429 } 3430 #else 3431 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3432 #endif 3433 3434 /* This takes the mm semaphore itself */ 3435 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3436 extern int vm_munmap(unsigned long, size_t); 3437 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3438 unsigned long, unsigned long, 3439 unsigned long, unsigned long); 3440 3441 struct vm_unmapped_area_info { 3442 #define VM_UNMAPPED_AREA_TOPDOWN 1 3443 unsigned long flags; 3444 unsigned long length; 3445 unsigned long low_limit; 3446 unsigned long high_limit; 3447 unsigned long align_mask; 3448 unsigned long align_offset; 3449 unsigned long start_gap; 3450 }; 3451 3452 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3453 3454 /* truncate.c */ 3455 extern void truncate_inode_pages(struct address_space *, loff_t); 3456 extern void truncate_inode_pages_range(struct address_space *, 3457 loff_t lstart, loff_t lend); 3458 extern void truncate_inode_pages_final(struct address_space *); 3459 3460 /* generic vm_area_ops exported for stackable file systems */ 3461 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3462 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3463 pgoff_t start_pgoff, pgoff_t end_pgoff); 3464 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3465 3466 extern unsigned long stack_guard_gap; 3467 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3468 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3469 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3470 3471 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3472 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3473 3474 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3475 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3476 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3477 struct vm_area_struct **pprev); 3478 3479 /* 3480 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3481 * NULL if none. Assume start_addr < end_addr. 3482 */ 3483 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3484 unsigned long start_addr, unsigned long end_addr); 3485 3486 /** 3487 * vma_lookup() - Find a VMA at a specific address 3488 * @mm: The process address space. 3489 * @addr: The user address. 3490 * 3491 * Return: The vm_area_struct at the given address, %NULL otherwise. 3492 */ 3493 static inline 3494 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3495 { 3496 return mtree_load(&mm->mm_mt, addr); 3497 } 3498 3499 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3500 { 3501 if (vma->vm_flags & VM_GROWSDOWN) 3502 return stack_guard_gap; 3503 3504 /* See reasoning around the VM_SHADOW_STACK definition */ 3505 if (vma->vm_flags & VM_SHADOW_STACK) 3506 return PAGE_SIZE; 3507 3508 return 0; 3509 } 3510 3511 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3512 { 3513 unsigned long gap = stack_guard_start_gap(vma); 3514 unsigned long vm_start = vma->vm_start; 3515 3516 vm_start -= gap; 3517 if (vm_start > vma->vm_start) 3518 vm_start = 0; 3519 return vm_start; 3520 } 3521 3522 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3523 { 3524 unsigned long vm_end = vma->vm_end; 3525 3526 if (vma->vm_flags & VM_GROWSUP) { 3527 vm_end += stack_guard_gap; 3528 if (vm_end < vma->vm_end) 3529 vm_end = -PAGE_SIZE; 3530 } 3531 return vm_end; 3532 } 3533 3534 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3535 { 3536 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3537 } 3538 3539 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3540 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3541 unsigned long vm_start, unsigned long vm_end) 3542 { 3543 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3544 3545 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3546 vma = NULL; 3547 3548 return vma; 3549 } 3550 3551 static inline bool range_in_vma(struct vm_area_struct *vma, 3552 unsigned long start, unsigned long end) 3553 { 3554 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3555 } 3556 3557 #ifdef CONFIG_MMU 3558 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3559 void vma_set_page_prot(struct vm_area_struct *vma); 3560 #else 3561 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3562 { 3563 return __pgprot(0); 3564 } 3565 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3566 { 3567 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3568 } 3569 #endif 3570 3571 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3572 3573 #ifdef CONFIG_NUMA_BALANCING 3574 unsigned long change_prot_numa(struct vm_area_struct *vma, 3575 unsigned long start, unsigned long end); 3576 #endif 3577 3578 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3579 unsigned long addr); 3580 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3581 unsigned long pfn, unsigned long size, pgprot_t); 3582 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3583 unsigned long pfn, unsigned long size, pgprot_t prot); 3584 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3585 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3586 struct page **pages, unsigned long *num); 3587 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3588 unsigned long num); 3589 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3590 unsigned long num); 3591 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3592 unsigned long pfn); 3593 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3594 unsigned long pfn, pgprot_t pgprot); 3595 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3596 pfn_t pfn); 3597 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3598 unsigned long addr, pfn_t pfn); 3599 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3600 3601 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3602 unsigned long addr, struct page *page) 3603 { 3604 int err = vm_insert_page(vma, addr, page); 3605 3606 if (err == -ENOMEM) 3607 return VM_FAULT_OOM; 3608 if (err < 0 && err != -EBUSY) 3609 return VM_FAULT_SIGBUS; 3610 3611 return VM_FAULT_NOPAGE; 3612 } 3613 3614 #ifndef io_remap_pfn_range 3615 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3616 unsigned long addr, unsigned long pfn, 3617 unsigned long size, pgprot_t prot) 3618 { 3619 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3620 } 3621 #endif 3622 3623 static inline vm_fault_t vmf_error(int err) 3624 { 3625 if (err == -ENOMEM) 3626 return VM_FAULT_OOM; 3627 else if (err == -EHWPOISON) 3628 return VM_FAULT_HWPOISON; 3629 return VM_FAULT_SIGBUS; 3630 } 3631 3632 /* 3633 * Convert errno to return value for ->page_mkwrite() calls. 3634 * 3635 * This should eventually be merged with vmf_error() above, but will need a 3636 * careful audit of all vmf_error() callers. 3637 */ 3638 static inline vm_fault_t vmf_fs_error(int err) 3639 { 3640 if (err == 0) 3641 return VM_FAULT_LOCKED; 3642 if (err == -EFAULT || err == -EAGAIN) 3643 return VM_FAULT_NOPAGE; 3644 if (err == -ENOMEM) 3645 return VM_FAULT_OOM; 3646 /* -ENOSPC, -EDQUOT, -EIO ... */ 3647 return VM_FAULT_SIGBUS; 3648 } 3649 3650 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3651 unsigned int foll_flags); 3652 3653 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3654 { 3655 if (vm_fault & VM_FAULT_OOM) 3656 return -ENOMEM; 3657 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3658 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3659 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3660 return -EFAULT; 3661 return 0; 3662 } 3663 3664 /* 3665 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3666 * a (NUMA hinting) fault is required. 3667 */ 3668 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3669 unsigned int flags) 3670 { 3671 /* 3672 * If callers don't want to honor NUMA hinting faults, no need to 3673 * determine if we would actually have to trigger a NUMA hinting fault. 3674 */ 3675 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3676 return true; 3677 3678 /* 3679 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3680 * 3681 * Requiring a fault here even for inaccessible VMAs would mean that 3682 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3683 * refuses to process NUMA hinting faults in inaccessible VMAs. 3684 */ 3685 return !vma_is_accessible(vma); 3686 } 3687 3688 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3689 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3690 unsigned long size, pte_fn_t fn, void *data); 3691 extern int apply_to_existing_page_range(struct mm_struct *mm, 3692 unsigned long address, unsigned long size, 3693 pte_fn_t fn, void *data); 3694 3695 #ifdef CONFIG_PAGE_POISONING 3696 extern void __kernel_poison_pages(struct page *page, int numpages); 3697 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3698 extern bool _page_poisoning_enabled_early; 3699 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3700 static inline bool page_poisoning_enabled(void) 3701 { 3702 return _page_poisoning_enabled_early; 3703 } 3704 /* 3705 * For use in fast paths after init_mem_debugging() has run, or when a 3706 * false negative result is not harmful when called too early. 3707 */ 3708 static inline bool page_poisoning_enabled_static(void) 3709 { 3710 return static_branch_unlikely(&_page_poisoning_enabled); 3711 } 3712 static inline void kernel_poison_pages(struct page *page, int numpages) 3713 { 3714 if (page_poisoning_enabled_static()) 3715 __kernel_poison_pages(page, numpages); 3716 } 3717 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3718 { 3719 if (page_poisoning_enabled_static()) 3720 __kernel_unpoison_pages(page, numpages); 3721 } 3722 #else 3723 static inline bool page_poisoning_enabled(void) { return false; } 3724 static inline bool page_poisoning_enabled_static(void) { return false; } 3725 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3726 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3727 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3728 #endif 3729 3730 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3731 static inline bool want_init_on_alloc(gfp_t flags) 3732 { 3733 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3734 &init_on_alloc)) 3735 return true; 3736 return flags & __GFP_ZERO; 3737 } 3738 3739 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3740 static inline bool want_init_on_free(void) 3741 { 3742 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3743 &init_on_free); 3744 } 3745 3746 extern bool _debug_pagealloc_enabled_early; 3747 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3748 3749 static inline bool debug_pagealloc_enabled(void) 3750 { 3751 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3752 _debug_pagealloc_enabled_early; 3753 } 3754 3755 /* 3756 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3757 * or when a false negative result is not harmful when called too early. 3758 */ 3759 static inline bool debug_pagealloc_enabled_static(void) 3760 { 3761 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3762 return false; 3763 3764 return static_branch_unlikely(&_debug_pagealloc_enabled); 3765 } 3766 3767 /* 3768 * To support DEBUG_PAGEALLOC architecture must ensure that 3769 * __kernel_map_pages() never fails 3770 */ 3771 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3772 #ifdef CONFIG_DEBUG_PAGEALLOC 3773 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3774 { 3775 if (debug_pagealloc_enabled_static()) 3776 __kernel_map_pages(page, numpages, 1); 3777 } 3778 3779 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3780 { 3781 if (debug_pagealloc_enabled_static()) 3782 __kernel_map_pages(page, numpages, 0); 3783 } 3784 3785 extern unsigned int _debug_guardpage_minorder; 3786 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3787 3788 static inline unsigned int debug_guardpage_minorder(void) 3789 { 3790 return _debug_guardpage_minorder; 3791 } 3792 3793 static inline bool debug_guardpage_enabled(void) 3794 { 3795 return static_branch_unlikely(&_debug_guardpage_enabled); 3796 } 3797 3798 static inline bool page_is_guard(struct page *page) 3799 { 3800 if (!debug_guardpage_enabled()) 3801 return false; 3802 3803 return PageGuard(page); 3804 } 3805 3806 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3807 static inline bool set_page_guard(struct zone *zone, struct page *page, 3808 unsigned int order) 3809 { 3810 if (!debug_guardpage_enabled()) 3811 return false; 3812 return __set_page_guard(zone, page, order); 3813 } 3814 3815 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3816 static inline void clear_page_guard(struct zone *zone, struct page *page, 3817 unsigned int order) 3818 { 3819 if (!debug_guardpage_enabled()) 3820 return; 3821 __clear_page_guard(zone, page, order); 3822 } 3823 3824 #else /* CONFIG_DEBUG_PAGEALLOC */ 3825 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3826 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3827 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3828 static inline bool debug_guardpage_enabled(void) { return false; } 3829 static inline bool page_is_guard(struct page *page) { return false; } 3830 static inline bool set_page_guard(struct zone *zone, struct page *page, 3831 unsigned int order) { return false; } 3832 static inline void clear_page_guard(struct zone *zone, struct page *page, 3833 unsigned int order) {} 3834 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3835 3836 #ifdef __HAVE_ARCH_GATE_AREA 3837 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3838 extern int in_gate_area_no_mm(unsigned long addr); 3839 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3840 #else 3841 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3842 { 3843 return NULL; 3844 } 3845 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3846 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3847 { 3848 return 0; 3849 } 3850 #endif /* __HAVE_ARCH_GATE_AREA */ 3851 3852 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3853 3854 #ifdef CONFIG_SYSCTL 3855 extern int sysctl_drop_caches; 3856 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3857 loff_t *); 3858 #endif 3859 3860 void drop_slab(void); 3861 3862 #ifndef CONFIG_MMU 3863 #define randomize_va_space 0 3864 #else 3865 extern int randomize_va_space; 3866 #endif 3867 3868 const char * arch_vma_name(struct vm_area_struct *vma); 3869 #ifdef CONFIG_MMU 3870 void print_vma_addr(char *prefix, unsigned long rip); 3871 #else 3872 static inline void print_vma_addr(char *prefix, unsigned long rip) 3873 { 3874 } 3875 #endif 3876 3877 void *sparse_buffer_alloc(unsigned long size); 3878 struct page * __populate_section_memmap(unsigned long pfn, 3879 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3880 struct dev_pagemap *pgmap); 3881 void pmd_init(void *addr); 3882 void pud_init(void *addr); 3883 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3884 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3885 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3886 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3887 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3888 struct vmem_altmap *altmap, struct page *reuse); 3889 void *vmemmap_alloc_block(unsigned long size, int node); 3890 struct vmem_altmap; 3891 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3892 struct vmem_altmap *altmap); 3893 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3894 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3895 unsigned long addr, unsigned long next); 3896 int vmemmap_check_pmd(pmd_t *pmd, int node, 3897 unsigned long addr, unsigned long next); 3898 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3899 int node, struct vmem_altmap *altmap); 3900 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3901 int node, struct vmem_altmap *altmap); 3902 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3903 struct vmem_altmap *altmap); 3904 void vmemmap_populate_print_last(void); 3905 #ifdef CONFIG_MEMORY_HOTPLUG 3906 void vmemmap_free(unsigned long start, unsigned long end, 3907 struct vmem_altmap *altmap); 3908 #endif 3909 3910 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3911 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3912 { 3913 /* number of pfns from base where pfn_to_page() is valid */ 3914 if (altmap) 3915 return altmap->reserve + altmap->free; 3916 return 0; 3917 } 3918 3919 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3920 unsigned long nr_pfns) 3921 { 3922 altmap->alloc -= nr_pfns; 3923 } 3924 #else 3925 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3926 { 3927 return 0; 3928 } 3929 3930 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3931 unsigned long nr_pfns) 3932 { 3933 } 3934 #endif 3935 3936 #define VMEMMAP_RESERVE_NR 2 3937 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3938 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3939 struct dev_pagemap *pgmap) 3940 { 3941 unsigned long nr_pages; 3942 unsigned long nr_vmemmap_pages; 3943 3944 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3945 return false; 3946 3947 nr_pages = pgmap_vmemmap_nr(pgmap); 3948 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3949 /* 3950 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3951 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3952 */ 3953 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3954 } 3955 /* 3956 * If we don't have an architecture override, use the generic rule 3957 */ 3958 #ifndef vmemmap_can_optimize 3959 #define vmemmap_can_optimize __vmemmap_can_optimize 3960 #endif 3961 3962 #else 3963 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3964 struct dev_pagemap *pgmap) 3965 { 3966 return false; 3967 } 3968 #endif 3969 3970 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3971 unsigned long nr_pages); 3972 3973 enum mf_flags { 3974 MF_COUNT_INCREASED = 1 << 0, 3975 MF_ACTION_REQUIRED = 1 << 1, 3976 MF_MUST_KILL = 1 << 2, 3977 MF_SOFT_OFFLINE = 1 << 3, 3978 MF_UNPOISON = 1 << 4, 3979 MF_SW_SIMULATED = 1 << 5, 3980 MF_NO_RETRY = 1 << 6, 3981 MF_MEM_PRE_REMOVE = 1 << 7, 3982 }; 3983 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3984 unsigned long count, int mf_flags); 3985 extern int memory_failure(unsigned long pfn, int flags); 3986 extern void memory_failure_queue_kick(int cpu); 3987 extern int unpoison_memory(unsigned long pfn); 3988 extern atomic_long_t num_poisoned_pages __read_mostly; 3989 extern int soft_offline_page(unsigned long pfn, int flags); 3990 #ifdef CONFIG_MEMORY_FAILURE 3991 /* 3992 * Sysfs entries for memory failure handling statistics. 3993 */ 3994 extern const struct attribute_group memory_failure_attr_group; 3995 extern void memory_failure_queue(unsigned long pfn, int flags); 3996 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3997 bool *migratable_cleared); 3998 void num_poisoned_pages_inc(unsigned long pfn); 3999 void num_poisoned_pages_sub(unsigned long pfn, long i); 4000 #else 4001 static inline void memory_failure_queue(unsigned long pfn, int flags) 4002 { 4003 } 4004 4005 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4006 bool *migratable_cleared) 4007 { 4008 return 0; 4009 } 4010 4011 static inline void num_poisoned_pages_inc(unsigned long pfn) 4012 { 4013 } 4014 4015 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4016 { 4017 } 4018 #endif 4019 4020 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4021 extern void memblk_nr_poison_inc(unsigned long pfn); 4022 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4023 #else 4024 static inline void memblk_nr_poison_inc(unsigned long pfn) 4025 { 4026 } 4027 4028 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4029 { 4030 } 4031 #endif 4032 4033 #ifndef arch_memory_failure 4034 static inline int arch_memory_failure(unsigned long pfn, int flags) 4035 { 4036 return -ENXIO; 4037 } 4038 #endif 4039 4040 #ifndef arch_is_platform_page 4041 static inline bool arch_is_platform_page(u64 paddr) 4042 { 4043 return false; 4044 } 4045 #endif 4046 4047 /* 4048 * Error handlers for various types of pages. 4049 */ 4050 enum mf_result { 4051 MF_IGNORED, /* Error: cannot be handled */ 4052 MF_FAILED, /* Error: handling failed */ 4053 MF_DELAYED, /* Will be handled later */ 4054 MF_RECOVERED, /* Successfully recovered */ 4055 }; 4056 4057 enum mf_action_page_type { 4058 MF_MSG_KERNEL, 4059 MF_MSG_KERNEL_HIGH_ORDER, 4060 MF_MSG_DIFFERENT_COMPOUND, 4061 MF_MSG_HUGE, 4062 MF_MSG_FREE_HUGE, 4063 MF_MSG_GET_HWPOISON, 4064 MF_MSG_UNMAP_FAILED, 4065 MF_MSG_DIRTY_SWAPCACHE, 4066 MF_MSG_CLEAN_SWAPCACHE, 4067 MF_MSG_DIRTY_MLOCKED_LRU, 4068 MF_MSG_CLEAN_MLOCKED_LRU, 4069 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4070 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4071 MF_MSG_DIRTY_LRU, 4072 MF_MSG_CLEAN_LRU, 4073 MF_MSG_TRUNCATED_LRU, 4074 MF_MSG_BUDDY, 4075 MF_MSG_DAX, 4076 MF_MSG_UNSPLIT_THP, 4077 MF_MSG_ALREADY_POISONED, 4078 MF_MSG_UNKNOWN, 4079 }; 4080 4081 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4082 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4083 int copy_user_large_folio(struct folio *dst, struct folio *src, 4084 unsigned long addr_hint, 4085 struct vm_area_struct *vma); 4086 long copy_folio_from_user(struct folio *dst_folio, 4087 const void __user *usr_src, 4088 bool allow_pagefault); 4089 4090 /** 4091 * vma_is_special_huge - Are transhuge page-table entries considered special? 4092 * @vma: Pointer to the struct vm_area_struct to consider 4093 * 4094 * Whether transhuge page-table entries are considered "special" following 4095 * the definition in vm_normal_page(). 4096 * 4097 * Return: true if transhuge page-table entries should be considered special, 4098 * false otherwise. 4099 */ 4100 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4101 { 4102 return vma_is_dax(vma) || (vma->vm_file && 4103 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4104 } 4105 4106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4107 4108 #if MAX_NUMNODES > 1 4109 void __init setup_nr_node_ids(void); 4110 #else 4111 static inline void setup_nr_node_ids(void) {} 4112 #endif 4113 4114 extern int memcmp_pages(struct page *page1, struct page *page2); 4115 4116 static inline int pages_identical(struct page *page1, struct page *page2) 4117 { 4118 return !memcmp_pages(page1, page2); 4119 } 4120 4121 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4122 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4123 pgoff_t first_index, pgoff_t nr, 4124 pgoff_t bitmap_pgoff, 4125 unsigned long *bitmap, 4126 pgoff_t *start, 4127 pgoff_t *end); 4128 4129 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4130 pgoff_t first_index, pgoff_t nr); 4131 #endif 4132 4133 extern int sysctl_nr_trim_pages; 4134 4135 #ifdef CONFIG_PRINTK 4136 void mem_dump_obj(void *object); 4137 #else 4138 static inline void mem_dump_obj(void *object) {} 4139 #endif 4140 4141 /** 4142 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4143 * handle them. 4144 * @seals: the seals to check 4145 * @vma: the vma to operate on 4146 * 4147 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4148 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4149 */ 4150 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4151 { 4152 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4153 /* 4154 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4155 * write seals are active. 4156 */ 4157 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4158 return -EPERM; 4159 4160 /* 4161 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4162 * MAP_SHARED and read-only, take care to not allow mprotect to 4163 * revert protections on such mappings. Do this only for shared 4164 * mappings. For private mappings, don't need to mask 4165 * VM_MAYWRITE as we still want them to be COW-writable. 4166 */ 4167 if (vma->vm_flags & VM_SHARED) 4168 vm_flags_clear(vma, VM_MAYWRITE); 4169 } 4170 4171 return 0; 4172 } 4173 4174 #ifdef CONFIG_ANON_VMA_NAME 4175 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4176 unsigned long len_in, 4177 struct anon_vma_name *anon_name); 4178 #else 4179 static inline int 4180 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4181 unsigned long len_in, struct anon_vma_name *anon_name) { 4182 return 0; 4183 } 4184 #endif 4185 4186 #ifdef CONFIG_UNACCEPTED_MEMORY 4187 4188 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4189 void accept_memory(phys_addr_t start, phys_addr_t end); 4190 4191 #else 4192 4193 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4194 phys_addr_t end) 4195 { 4196 return false; 4197 } 4198 4199 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4200 { 4201 } 4202 4203 #endif 4204 4205 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4206 { 4207 phys_addr_t paddr = pfn << PAGE_SHIFT; 4208 4209 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4210 } 4211 4212 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4213 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4214 4215 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4216 4217 #endif /* _LINUX_MM_H */ 4218