xref: /linux-6.15/include/linux/mm.h (revision 53cee505)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC64)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 #ifdef CONFIG_64BIT
410 #define VM_DROPPABLE_BIT	40
411 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
412 #elif defined(CONFIG_PPC32)
413 #define VM_DROPPABLE		VM_ARCH_1
414 #else
415 #define VM_DROPPABLE		VM_NONE
416 #endif
417 
418 #ifdef CONFIG_64BIT
419 /* VM is sealed, in vm_flags */
420 #define VM_SEALED	_BITUL(63)
421 #endif
422 
423 /* Bits set in the VMA until the stack is in its final location */
424 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
425 
426 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
427 
428 /* Common data flag combinations */
429 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
430 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
432 				 VM_MAYWRITE | VM_MAYEXEC)
433 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
434 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
435 
436 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
437 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
438 #endif
439 
440 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
441 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
442 #endif
443 
444 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
445 
446 #ifdef CONFIG_STACK_GROWSUP
447 #define VM_STACK	VM_GROWSUP
448 #define VM_STACK_EARLY	VM_GROWSDOWN
449 #else
450 #define VM_STACK	VM_GROWSDOWN
451 #define VM_STACK_EARLY	0
452 #endif
453 
454 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
455 
456 /* VMA basic access permission flags */
457 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
458 
459 
460 /*
461  * Special vmas that are non-mergable, non-mlock()able.
462  */
463 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
464 
465 /* This mask prevents VMA from being scanned with khugepaged */
466 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
467 
468 /* This mask defines which mm->def_flags a process can inherit its parent */
469 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
470 
471 /* This mask represents all the VMA flag bits used by mlock */
472 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
473 
474 /* Arch-specific flags to clear when updating VM flags on protection change */
475 #ifndef VM_ARCH_CLEAR
476 # define VM_ARCH_CLEAR	VM_NONE
477 #endif
478 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
479 
480 /*
481  * mapping from the currently active vm_flags protection bits (the
482  * low four bits) to a page protection mask..
483  */
484 
485 /*
486  * The default fault flags that should be used by most of the
487  * arch-specific page fault handlers.
488  */
489 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
490 			     FAULT_FLAG_KILLABLE | \
491 			     FAULT_FLAG_INTERRUPTIBLE)
492 
493 /**
494  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
495  * @flags: Fault flags.
496  *
497  * This is mostly used for places where we want to try to avoid taking
498  * the mmap_lock for too long a time when waiting for another condition
499  * to change, in which case we can try to be polite to release the
500  * mmap_lock in the first round to avoid potential starvation of other
501  * processes that would also want the mmap_lock.
502  *
503  * Return: true if the page fault allows retry and this is the first
504  * attempt of the fault handling; false otherwise.
505  */
506 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
507 {
508 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
509 	    (!(flags & FAULT_FLAG_TRIED));
510 }
511 
512 #define FAULT_FLAG_TRACE \
513 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
514 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
515 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
516 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
517 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
518 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
519 	{ FAULT_FLAG_USER,		"USER" }, \
520 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
521 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
522 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
523 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
524 
525 /*
526  * vm_fault is filled by the pagefault handler and passed to the vma's
527  * ->fault function. The vma's ->fault is responsible for returning a bitmask
528  * of VM_FAULT_xxx flags that give details about how the fault was handled.
529  *
530  * MM layer fills up gfp_mask for page allocations but fault handler might
531  * alter it if its implementation requires a different allocation context.
532  *
533  * pgoff should be used in favour of virtual_address, if possible.
534  */
535 struct vm_fault {
536 	const struct {
537 		struct vm_area_struct *vma;	/* Target VMA */
538 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
539 		pgoff_t pgoff;			/* Logical page offset based on vma */
540 		unsigned long address;		/* Faulting virtual address - masked */
541 		unsigned long real_address;	/* Faulting virtual address - unmasked */
542 	};
543 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
544 					 * XXX: should really be 'const' */
545 	pmd_t *pmd;			/* Pointer to pmd entry matching
546 					 * the 'address' */
547 	pud_t *pud;			/* Pointer to pud entry matching
548 					 * the 'address'
549 					 */
550 	union {
551 		pte_t orig_pte;		/* Value of PTE at the time of fault */
552 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
553 					 * used by PMD fault only.
554 					 */
555 	};
556 
557 	struct page *cow_page;		/* Page handler may use for COW fault */
558 	struct page *page;		/* ->fault handlers should return a
559 					 * page here, unless VM_FAULT_NOPAGE
560 					 * is set (which is also implied by
561 					 * VM_FAULT_ERROR).
562 					 */
563 	/* These three entries are valid only while holding ptl lock */
564 	pte_t *pte;			/* Pointer to pte entry matching
565 					 * the 'address'. NULL if the page
566 					 * table hasn't been allocated.
567 					 */
568 	spinlock_t *ptl;		/* Page table lock.
569 					 * Protects pte page table if 'pte'
570 					 * is not NULL, otherwise pmd.
571 					 */
572 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
573 					 * vm_ops->map_pages() sets up a page
574 					 * table from atomic context.
575 					 * do_fault_around() pre-allocates
576 					 * page table to avoid allocation from
577 					 * atomic context.
578 					 */
579 };
580 
581 /*
582  * These are the virtual MM functions - opening of an area, closing and
583  * unmapping it (needed to keep files on disk up-to-date etc), pointer
584  * to the functions called when a no-page or a wp-page exception occurs.
585  */
586 struct vm_operations_struct {
587 	void (*open)(struct vm_area_struct * area);
588 	/**
589 	 * @close: Called when the VMA is being removed from the MM.
590 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
591 	 */
592 	void (*close)(struct vm_area_struct * area);
593 	/* Called any time before splitting to check if it's allowed */
594 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
595 	int (*mremap)(struct vm_area_struct *area);
596 	/*
597 	 * Called by mprotect() to make driver-specific permission
598 	 * checks before mprotect() is finalised.   The VMA must not
599 	 * be modified.  Returns 0 if mprotect() can proceed.
600 	 */
601 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
602 			unsigned long end, unsigned long newflags);
603 	vm_fault_t (*fault)(struct vm_fault *vmf);
604 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
605 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
606 			pgoff_t start_pgoff, pgoff_t end_pgoff);
607 	unsigned long (*pagesize)(struct vm_area_struct * area);
608 
609 	/* notification that a previously read-only page is about to become
610 	 * writable, if an error is returned it will cause a SIGBUS */
611 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
612 
613 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
614 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
615 
616 	/* called by access_process_vm when get_user_pages() fails, typically
617 	 * for use by special VMAs. See also generic_access_phys() for a generic
618 	 * implementation useful for any iomem mapping.
619 	 */
620 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
621 		      void *buf, int len, int write);
622 
623 	/* Called by the /proc/PID/maps code to ask the vma whether it
624 	 * has a special name.  Returning non-NULL will also cause this
625 	 * vma to be dumped unconditionally. */
626 	const char *(*name)(struct vm_area_struct *vma);
627 
628 #ifdef CONFIG_NUMA
629 	/*
630 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
631 	 * to hold the policy upon return.  Caller should pass NULL @new to
632 	 * remove a policy and fall back to surrounding context--i.e. do not
633 	 * install a MPOL_DEFAULT policy, nor the task or system default
634 	 * mempolicy.
635 	 */
636 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637 
638 	/*
639 	 * get_policy() op must add reference [mpol_get()] to any policy at
640 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
641 	 * in mm/mempolicy.c will do this automatically.
642 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
643 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
644 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
645 	 * must return NULL--i.e., do not "fallback" to task or system default
646 	 * policy.
647 	 */
648 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
649 					unsigned long addr, pgoff_t *ilx);
650 #endif
651 	/*
652 	 * Called by vm_normal_page() for special PTEs to find the
653 	 * page for @addr.  This is useful if the default behavior
654 	 * (using pte_page()) would not find the correct page.
655 	 */
656 	struct page *(*find_special_page)(struct vm_area_struct *vma,
657 					  unsigned long addr);
658 };
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 static inline void vma_numab_state_init(struct vm_area_struct *vma)
662 {
663 	vma->numab_state = NULL;
664 }
665 static inline void vma_numab_state_free(struct vm_area_struct *vma)
666 {
667 	kfree(vma->numab_state);
668 }
669 #else
670 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
671 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
672 #endif /* CONFIG_NUMA_BALANCING */
673 
674 #ifdef CONFIG_PER_VMA_LOCK
675 /*
676  * Try to read-lock a vma. The function is allowed to occasionally yield false
677  * locked result to avoid performance overhead, in which case we fall back to
678  * using mmap_lock. The function should never yield false unlocked result.
679  */
680 static inline bool vma_start_read(struct vm_area_struct *vma)
681 {
682 	/*
683 	 * Check before locking. A race might cause false locked result.
684 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
685 	 * ACQUIRE semantics, because this is just a lockless check whose result
686 	 * we don't rely on for anything - the mm_lock_seq read against which we
687 	 * need ordering is below.
688 	 */
689 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
690 		return false;
691 
692 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
693 		return false;
694 
695 	/*
696 	 * Overflow might produce false locked result.
697 	 * False unlocked result is impossible because we modify and check
698 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
699 	 * modification invalidates all existing locks.
700 	 *
701 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
702 	 * racing with vma_end_write_all(), we only start reading from the VMA
703 	 * after it has been unlocked.
704 	 * This pairs with RELEASE semantics in vma_end_write_all().
705 	 */
706 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
707 		up_read(&vma->vm_lock->lock);
708 		return false;
709 	}
710 	return true;
711 }
712 
713 static inline void vma_end_read(struct vm_area_struct *vma)
714 {
715 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
716 	up_read(&vma->vm_lock->lock);
717 	rcu_read_unlock();
718 }
719 
720 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
721 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
722 {
723 	mmap_assert_write_locked(vma->vm_mm);
724 
725 	/*
726 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
727 	 * mm->mm_lock_seq can't be concurrently modified.
728 	 */
729 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
730 	return (vma->vm_lock_seq == *mm_lock_seq);
731 }
732 
733 /*
734  * Begin writing to a VMA.
735  * Exclude concurrent readers under the per-VMA lock until the currently
736  * write-locked mmap_lock is dropped or downgraded.
737  */
738 static inline void vma_start_write(struct vm_area_struct *vma)
739 {
740 	int mm_lock_seq;
741 
742 	if (__is_vma_write_locked(vma, &mm_lock_seq))
743 		return;
744 
745 	down_write(&vma->vm_lock->lock);
746 	/*
747 	 * We should use WRITE_ONCE() here because we can have concurrent reads
748 	 * from the early lockless pessimistic check in vma_start_read().
749 	 * We don't really care about the correctness of that early check, but
750 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
751 	 */
752 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
753 	up_write(&vma->vm_lock->lock);
754 }
755 
756 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
757 {
758 	int mm_lock_seq;
759 
760 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
761 }
762 
763 static inline void vma_assert_locked(struct vm_area_struct *vma)
764 {
765 	if (!rwsem_is_locked(&vma->vm_lock->lock))
766 		vma_assert_write_locked(vma);
767 }
768 
769 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
770 {
771 	/* When detaching vma should be write-locked */
772 	if (detached)
773 		vma_assert_write_locked(vma);
774 	vma->detached = detached;
775 }
776 
777 static inline void release_fault_lock(struct vm_fault *vmf)
778 {
779 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
780 		vma_end_read(vmf->vma);
781 	else
782 		mmap_read_unlock(vmf->vma->vm_mm);
783 }
784 
785 static inline void assert_fault_locked(struct vm_fault *vmf)
786 {
787 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
788 		vma_assert_locked(vmf->vma);
789 	else
790 		mmap_assert_locked(vmf->vma->vm_mm);
791 }
792 
793 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
794 					  unsigned long address);
795 
796 #else /* CONFIG_PER_VMA_LOCK */
797 
798 static inline bool vma_start_read(struct vm_area_struct *vma)
799 		{ return false; }
800 static inline void vma_end_read(struct vm_area_struct *vma) {}
801 static inline void vma_start_write(struct vm_area_struct *vma) {}
802 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
803 		{ mmap_assert_write_locked(vma->vm_mm); }
804 static inline void vma_mark_detached(struct vm_area_struct *vma,
805 				     bool detached) {}
806 
807 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
808 		unsigned long address)
809 {
810 	return NULL;
811 }
812 
813 static inline void vma_assert_locked(struct vm_area_struct *vma)
814 {
815 	mmap_assert_locked(vma->vm_mm);
816 }
817 
818 static inline void release_fault_lock(struct vm_fault *vmf)
819 {
820 	mmap_read_unlock(vmf->vma->vm_mm);
821 }
822 
823 static inline void assert_fault_locked(struct vm_fault *vmf)
824 {
825 	mmap_assert_locked(vmf->vma->vm_mm);
826 }
827 
828 #endif /* CONFIG_PER_VMA_LOCK */
829 
830 extern const struct vm_operations_struct vma_dummy_vm_ops;
831 
832 /*
833  * WARNING: vma_init does not initialize vma->vm_lock.
834  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
835  */
836 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
837 {
838 	memset(vma, 0, sizeof(*vma));
839 	vma->vm_mm = mm;
840 	vma->vm_ops = &vma_dummy_vm_ops;
841 	INIT_LIST_HEAD(&vma->anon_vma_chain);
842 	vma_mark_detached(vma, false);
843 	vma_numab_state_init(vma);
844 }
845 
846 /* Use when VMA is not part of the VMA tree and needs no locking */
847 static inline void vm_flags_init(struct vm_area_struct *vma,
848 				 vm_flags_t flags)
849 {
850 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
851 }
852 
853 /*
854  * Use when VMA is part of the VMA tree and modifications need coordination
855  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
856  * it should be locked explicitly beforehand.
857  */
858 static inline void vm_flags_reset(struct vm_area_struct *vma,
859 				  vm_flags_t flags)
860 {
861 	vma_assert_write_locked(vma);
862 	vm_flags_init(vma, flags);
863 }
864 
865 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
866 				       vm_flags_t flags)
867 {
868 	vma_assert_write_locked(vma);
869 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
870 }
871 
872 static inline void vm_flags_set(struct vm_area_struct *vma,
873 				vm_flags_t flags)
874 {
875 	vma_start_write(vma);
876 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
877 }
878 
879 static inline void vm_flags_clear(struct vm_area_struct *vma,
880 				  vm_flags_t flags)
881 {
882 	vma_start_write(vma);
883 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
884 }
885 
886 /*
887  * Use only if VMA is not part of the VMA tree or has no other users and
888  * therefore needs no locking.
889  */
890 static inline void __vm_flags_mod(struct vm_area_struct *vma,
891 				  vm_flags_t set, vm_flags_t clear)
892 {
893 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
894 }
895 
896 /*
897  * Use only when the order of set/clear operations is unimportant, otherwise
898  * use vm_flags_{set|clear} explicitly.
899  */
900 static inline void vm_flags_mod(struct vm_area_struct *vma,
901 				vm_flags_t set, vm_flags_t clear)
902 {
903 	vma_start_write(vma);
904 	__vm_flags_mod(vma, set, clear);
905 }
906 
907 static inline void vma_set_anonymous(struct vm_area_struct *vma)
908 {
909 	vma->vm_ops = NULL;
910 }
911 
912 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
913 {
914 	return !vma->vm_ops;
915 }
916 
917 /*
918  * Indicate if the VMA is a heap for the given task; for
919  * /proc/PID/maps that is the heap of the main task.
920  */
921 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
922 {
923 	return vma->vm_start < vma->vm_mm->brk &&
924 		vma->vm_end > vma->vm_mm->start_brk;
925 }
926 
927 /*
928  * Indicate if the VMA is a stack for the given task; for
929  * /proc/PID/maps that is the stack of the main task.
930  */
931 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
932 {
933 	/*
934 	 * We make no effort to guess what a given thread considers to be
935 	 * its "stack".  It's not even well-defined for programs written
936 	 * languages like Go.
937 	 */
938 	return vma->vm_start <= vma->vm_mm->start_stack &&
939 		vma->vm_end >= vma->vm_mm->start_stack;
940 }
941 
942 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
943 {
944 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
945 
946 	if (!maybe_stack)
947 		return false;
948 
949 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
950 						VM_STACK_INCOMPLETE_SETUP)
951 		return true;
952 
953 	return false;
954 }
955 
956 static inline bool vma_is_foreign(struct vm_area_struct *vma)
957 {
958 	if (!current->mm)
959 		return true;
960 
961 	if (current->mm != vma->vm_mm)
962 		return true;
963 
964 	return false;
965 }
966 
967 static inline bool vma_is_accessible(struct vm_area_struct *vma)
968 {
969 	return vma->vm_flags & VM_ACCESS_FLAGS;
970 }
971 
972 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
973 {
974 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
975 		(VM_SHARED | VM_MAYWRITE);
976 }
977 
978 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
979 {
980 	return is_shared_maywrite(vma->vm_flags);
981 }
982 
983 static inline
984 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
985 {
986 	return mas_find(&vmi->mas, max - 1);
987 }
988 
989 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
990 {
991 	/*
992 	 * Uses mas_find() to get the first VMA when the iterator starts.
993 	 * Calling mas_next() could skip the first entry.
994 	 */
995 	return mas_find(&vmi->mas, ULONG_MAX);
996 }
997 
998 static inline
999 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1000 {
1001 	return mas_next_range(&vmi->mas, ULONG_MAX);
1002 }
1003 
1004 
1005 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1006 {
1007 	return mas_prev(&vmi->mas, 0);
1008 }
1009 
1010 static inline
1011 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1012 {
1013 	return mas_prev_range(&vmi->mas, 0);
1014 }
1015 
1016 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1017 {
1018 	return vmi->mas.index;
1019 }
1020 
1021 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1022 {
1023 	return vmi->mas.last + 1;
1024 }
1025 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1026 				      unsigned long count)
1027 {
1028 	return mas_expected_entries(&vmi->mas, count);
1029 }
1030 
1031 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1032 			unsigned long start, unsigned long end, gfp_t gfp)
1033 {
1034 	__mas_set_range(&vmi->mas, start, end - 1);
1035 	mas_store_gfp(&vmi->mas, NULL, gfp);
1036 	if (unlikely(mas_is_err(&vmi->mas)))
1037 		return -ENOMEM;
1038 
1039 	return 0;
1040 }
1041 
1042 /* Free any unused preallocations */
1043 static inline void vma_iter_free(struct vma_iterator *vmi)
1044 {
1045 	mas_destroy(&vmi->mas);
1046 }
1047 
1048 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1049 				      struct vm_area_struct *vma)
1050 {
1051 	vmi->mas.index = vma->vm_start;
1052 	vmi->mas.last = vma->vm_end - 1;
1053 	mas_store(&vmi->mas, vma);
1054 	if (unlikely(mas_is_err(&vmi->mas)))
1055 		return -ENOMEM;
1056 
1057 	return 0;
1058 }
1059 
1060 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1061 {
1062 	mas_pause(&vmi->mas);
1063 }
1064 
1065 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1066 {
1067 	mas_set(&vmi->mas, addr);
1068 }
1069 
1070 #define for_each_vma(__vmi, __vma)					\
1071 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1072 
1073 /* The MM code likes to work with exclusive end addresses */
1074 #define for_each_vma_range(__vmi, __vma, __end)				\
1075 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1076 
1077 #ifdef CONFIG_SHMEM
1078 /*
1079  * The vma_is_shmem is not inline because it is used only by slow
1080  * paths in userfault.
1081  */
1082 bool vma_is_shmem(struct vm_area_struct *vma);
1083 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1084 #else
1085 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1086 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1087 #endif
1088 
1089 int vma_is_stack_for_current(struct vm_area_struct *vma);
1090 
1091 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1092 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1093 
1094 struct mmu_gather;
1095 struct inode;
1096 
1097 /*
1098  * compound_order() can be called without holding a reference, which means
1099  * that niceties like page_folio() don't work.  These callers should be
1100  * prepared to handle wild return values.  For example, PG_head may be
1101  * set before the order is initialised, or this may be a tail page.
1102  * See compaction.c for some good examples.
1103  */
1104 static inline unsigned int compound_order(struct page *page)
1105 {
1106 	struct folio *folio = (struct folio *)page;
1107 
1108 	if (!test_bit(PG_head, &folio->flags))
1109 		return 0;
1110 	return folio->_flags_1 & 0xff;
1111 }
1112 
1113 /**
1114  * folio_order - The allocation order of a folio.
1115  * @folio: The folio.
1116  *
1117  * A folio is composed of 2^order pages.  See get_order() for the definition
1118  * of order.
1119  *
1120  * Return: The order of the folio.
1121  */
1122 static inline unsigned int folio_order(const struct folio *folio)
1123 {
1124 	if (!folio_test_large(folio))
1125 		return 0;
1126 	return folio->_flags_1 & 0xff;
1127 }
1128 
1129 #include <linux/huge_mm.h>
1130 
1131 /*
1132  * Methods to modify the page usage count.
1133  *
1134  * What counts for a page usage:
1135  * - cache mapping   (page->mapping)
1136  * - private data    (page->private)
1137  * - page mapped in a task's page tables, each mapping
1138  *   is counted separately
1139  *
1140  * Also, many kernel routines increase the page count before a critical
1141  * routine so they can be sure the page doesn't go away from under them.
1142  */
1143 
1144 /*
1145  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1146  */
1147 static inline int put_page_testzero(struct page *page)
1148 {
1149 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1150 	return page_ref_dec_and_test(page);
1151 }
1152 
1153 static inline int folio_put_testzero(struct folio *folio)
1154 {
1155 	return put_page_testzero(&folio->page);
1156 }
1157 
1158 /*
1159  * Try to grab a ref unless the page has a refcount of zero, return false if
1160  * that is the case.
1161  * This can be called when MMU is off so it must not access
1162  * any of the virtual mappings.
1163  */
1164 static inline bool get_page_unless_zero(struct page *page)
1165 {
1166 	return page_ref_add_unless(page, 1, 0);
1167 }
1168 
1169 static inline struct folio *folio_get_nontail_page(struct page *page)
1170 {
1171 	if (unlikely(!get_page_unless_zero(page)))
1172 		return NULL;
1173 	return (struct folio *)page;
1174 }
1175 
1176 extern int page_is_ram(unsigned long pfn);
1177 
1178 enum {
1179 	REGION_INTERSECTS,
1180 	REGION_DISJOINT,
1181 	REGION_MIXED,
1182 };
1183 
1184 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1185 		      unsigned long desc);
1186 
1187 /* Support for virtually mapped pages */
1188 struct page *vmalloc_to_page(const void *addr);
1189 unsigned long vmalloc_to_pfn(const void *addr);
1190 
1191 /*
1192  * Determine if an address is within the vmalloc range
1193  *
1194  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1195  * is no special casing required.
1196  */
1197 #ifdef CONFIG_MMU
1198 extern bool is_vmalloc_addr(const void *x);
1199 extern int is_vmalloc_or_module_addr(const void *x);
1200 #else
1201 static inline bool is_vmalloc_addr(const void *x)
1202 {
1203 	return false;
1204 }
1205 static inline int is_vmalloc_or_module_addr(const void *x)
1206 {
1207 	return 0;
1208 }
1209 #endif
1210 
1211 /*
1212  * How many times the entire folio is mapped as a single unit (eg by a
1213  * PMD or PUD entry).  This is probably not what you want, except for
1214  * debugging purposes or implementation of other core folio_*() primitives.
1215  */
1216 static inline int folio_entire_mapcount(const struct folio *folio)
1217 {
1218 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1219 	return atomic_read(&folio->_entire_mapcount) + 1;
1220 }
1221 
1222 static inline int folio_large_mapcount(const struct folio *folio)
1223 {
1224 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1225 	return atomic_read(&folio->_large_mapcount) + 1;
1226 }
1227 
1228 /**
1229  * folio_mapcount() - Number of mappings of this folio.
1230  * @folio: The folio.
1231  *
1232  * The folio mapcount corresponds to the number of present user page table
1233  * entries that reference any part of a folio. Each such present user page
1234  * table entry must be paired with exactly on folio reference.
1235  *
1236  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1237  * exactly once.
1238  *
1239  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1240  * references the entire folio counts exactly once, even when such special
1241  * page table entries are comprised of multiple ordinary page table entries.
1242  *
1243  * Will report 0 for pages which cannot be mapped into userspace, such as
1244  * slab, page tables and similar.
1245  *
1246  * Return: The number of times this folio is mapped.
1247  */
1248 static inline int folio_mapcount(const struct folio *folio)
1249 {
1250 	int mapcount;
1251 
1252 	if (likely(!folio_test_large(folio))) {
1253 		mapcount = atomic_read(&folio->_mapcount) + 1;
1254 		/* Handle page_has_type() pages */
1255 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1256 			mapcount = 0;
1257 		return mapcount;
1258 	}
1259 	return folio_large_mapcount(folio);
1260 }
1261 
1262 /**
1263  * folio_mapped - Is this folio mapped into userspace?
1264  * @folio: The folio.
1265  *
1266  * Return: True if any page in this folio is referenced by user page tables.
1267  */
1268 static inline bool folio_mapped(const struct folio *folio)
1269 {
1270 	return folio_mapcount(folio) >= 1;
1271 }
1272 
1273 /*
1274  * Return true if this page is mapped into pagetables.
1275  * For compound page it returns true if any sub-page of compound page is mapped,
1276  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1277  */
1278 static inline bool page_mapped(const struct page *page)
1279 {
1280 	return folio_mapped(page_folio(page));
1281 }
1282 
1283 static inline struct page *virt_to_head_page(const void *x)
1284 {
1285 	struct page *page = virt_to_page(x);
1286 
1287 	return compound_head(page);
1288 }
1289 
1290 static inline struct folio *virt_to_folio(const void *x)
1291 {
1292 	struct page *page = virt_to_page(x);
1293 
1294 	return page_folio(page);
1295 }
1296 
1297 void __folio_put(struct folio *folio);
1298 
1299 void put_pages_list(struct list_head *pages);
1300 
1301 void split_page(struct page *page, unsigned int order);
1302 void folio_copy(struct folio *dst, struct folio *src);
1303 int folio_mc_copy(struct folio *dst, struct folio *src);
1304 
1305 unsigned long nr_free_buffer_pages(void);
1306 
1307 /* Returns the number of bytes in this potentially compound page. */
1308 static inline unsigned long page_size(struct page *page)
1309 {
1310 	return PAGE_SIZE << compound_order(page);
1311 }
1312 
1313 /* Returns the number of bits needed for the number of bytes in a page */
1314 static inline unsigned int page_shift(struct page *page)
1315 {
1316 	return PAGE_SHIFT + compound_order(page);
1317 }
1318 
1319 /**
1320  * thp_order - Order of a transparent huge page.
1321  * @page: Head page of a transparent huge page.
1322  */
1323 static inline unsigned int thp_order(struct page *page)
1324 {
1325 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1326 	return compound_order(page);
1327 }
1328 
1329 /**
1330  * thp_size - Size of a transparent huge page.
1331  * @page: Head page of a transparent huge page.
1332  *
1333  * Return: Number of bytes in this page.
1334  */
1335 static inline unsigned long thp_size(struct page *page)
1336 {
1337 	return PAGE_SIZE << thp_order(page);
1338 }
1339 
1340 #ifdef CONFIG_MMU
1341 /*
1342  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1343  * servicing faults for write access.  In the normal case, do always want
1344  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1345  * that do not have writing enabled, when used by access_process_vm.
1346  */
1347 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1348 {
1349 	if (likely(vma->vm_flags & VM_WRITE))
1350 		pte = pte_mkwrite(pte, vma);
1351 	return pte;
1352 }
1353 
1354 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1355 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1356 		struct page *page, unsigned int nr, unsigned long addr);
1357 
1358 vm_fault_t finish_fault(struct vm_fault *vmf);
1359 #endif
1360 
1361 /*
1362  * Multiple processes may "see" the same page. E.g. for untouched
1363  * mappings of /dev/null, all processes see the same page full of
1364  * zeroes, and text pages of executables and shared libraries have
1365  * only one copy in memory, at most, normally.
1366  *
1367  * For the non-reserved pages, page_count(page) denotes a reference count.
1368  *   page_count() == 0 means the page is free. page->lru is then used for
1369  *   freelist management in the buddy allocator.
1370  *   page_count() > 0  means the page has been allocated.
1371  *
1372  * Pages are allocated by the slab allocator in order to provide memory
1373  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1374  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1375  * unless a particular usage is carefully commented. (the responsibility of
1376  * freeing the kmalloc memory is the caller's, of course).
1377  *
1378  * A page may be used by anyone else who does a __get_free_page().
1379  * In this case, page_count still tracks the references, and should only
1380  * be used through the normal accessor functions. The top bits of page->flags
1381  * and page->virtual store page management information, but all other fields
1382  * are unused and could be used privately, carefully. The management of this
1383  * page is the responsibility of the one who allocated it, and those who have
1384  * subsequently been given references to it.
1385  *
1386  * The other pages (we may call them "pagecache pages") are completely
1387  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1388  * The following discussion applies only to them.
1389  *
1390  * A pagecache page contains an opaque `private' member, which belongs to the
1391  * page's address_space. Usually, this is the address of a circular list of
1392  * the page's disk buffers. PG_private must be set to tell the VM to call
1393  * into the filesystem to release these pages.
1394  *
1395  * A page may belong to an inode's memory mapping. In this case, page->mapping
1396  * is the pointer to the inode, and page->index is the file offset of the page,
1397  * in units of PAGE_SIZE.
1398  *
1399  * If pagecache pages are not associated with an inode, they are said to be
1400  * anonymous pages. These may become associated with the swapcache, and in that
1401  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1402  *
1403  * In either case (swapcache or inode backed), the pagecache itself holds one
1404  * reference to the page. Setting PG_private should also increment the
1405  * refcount. The each user mapping also has a reference to the page.
1406  *
1407  * The pagecache pages are stored in a per-mapping radix tree, which is
1408  * rooted at mapping->i_pages, and indexed by offset.
1409  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1410  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1411  *
1412  * All pagecache pages may be subject to I/O:
1413  * - inode pages may need to be read from disk,
1414  * - inode pages which have been modified and are MAP_SHARED may need
1415  *   to be written back to the inode on disk,
1416  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1417  *   modified may need to be swapped out to swap space and (later) to be read
1418  *   back into memory.
1419  */
1420 
1421 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1422 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1423 
1424 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1425 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1426 {
1427 	if (!static_branch_unlikely(&devmap_managed_key))
1428 		return false;
1429 	if (!folio_is_zone_device(folio))
1430 		return false;
1431 	return __put_devmap_managed_folio_refs(folio, refs);
1432 }
1433 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1434 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1435 {
1436 	return false;
1437 }
1438 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1439 
1440 /* 127: arbitrary random number, small enough to assemble well */
1441 #define folio_ref_zero_or_close_to_overflow(folio) \
1442 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1443 
1444 /**
1445  * folio_get - Increment the reference count on a folio.
1446  * @folio: The folio.
1447  *
1448  * Context: May be called in any context, as long as you know that
1449  * you have a refcount on the folio.  If you do not already have one,
1450  * folio_try_get() may be the right interface for you to use.
1451  */
1452 static inline void folio_get(struct folio *folio)
1453 {
1454 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1455 	folio_ref_inc(folio);
1456 }
1457 
1458 static inline void get_page(struct page *page)
1459 {
1460 	folio_get(page_folio(page));
1461 }
1462 
1463 static inline __must_check bool try_get_page(struct page *page)
1464 {
1465 	page = compound_head(page);
1466 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1467 		return false;
1468 	page_ref_inc(page);
1469 	return true;
1470 }
1471 
1472 /**
1473  * folio_put - Decrement the reference count on a folio.
1474  * @folio: The folio.
1475  *
1476  * If the folio's reference count reaches zero, the memory will be
1477  * released back to the page allocator and may be used by another
1478  * allocation immediately.  Do not access the memory or the struct folio
1479  * after calling folio_put() unless you can be sure that it wasn't the
1480  * last reference.
1481  *
1482  * Context: May be called in process or interrupt context, but not in NMI
1483  * context.  May be called while holding a spinlock.
1484  */
1485 static inline void folio_put(struct folio *folio)
1486 {
1487 	if (folio_put_testzero(folio))
1488 		__folio_put(folio);
1489 }
1490 
1491 /**
1492  * folio_put_refs - Reduce the reference count on a folio.
1493  * @folio: The folio.
1494  * @refs: The amount to subtract from the folio's reference count.
1495  *
1496  * If the folio's reference count reaches zero, the memory will be
1497  * released back to the page allocator and may be used by another
1498  * allocation immediately.  Do not access the memory or the struct folio
1499  * after calling folio_put_refs() unless you can be sure that these weren't
1500  * the last references.
1501  *
1502  * Context: May be called in process or interrupt context, but not in NMI
1503  * context.  May be called while holding a spinlock.
1504  */
1505 static inline void folio_put_refs(struct folio *folio, int refs)
1506 {
1507 	if (folio_ref_sub_and_test(folio, refs))
1508 		__folio_put(folio);
1509 }
1510 
1511 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1512 
1513 /*
1514  * union release_pages_arg - an array of pages or folios
1515  *
1516  * release_pages() releases a simple array of multiple pages, and
1517  * accepts various different forms of said page array: either
1518  * a regular old boring array of pages, an array of folios, or
1519  * an array of encoded page pointers.
1520  *
1521  * The transparent union syntax for this kind of "any of these
1522  * argument types" is all kinds of ugly, so look away.
1523  */
1524 typedef union {
1525 	struct page **pages;
1526 	struct folio **folios;
1527 	struct encoded_page **encoded_pages;
1528 } release_pages_arg __attribute__ ((__transparent_union__));
1529 
1530 void release_pages(release_pages_arg, int nr);
1531 
1532 /**
1533  * folios_put - Decrement the reference count on an array of folios.
1534  * @folios: The folios.
1535  *
1536  * Like folio_put(), but for a batch of folios.  This is more efficient
1537  * than writing the loop yourself as it will optimise the locks which need
1538  * to be taken if the folios are freed.  The folios batch is returned
1539  * empty and ready to be reused for another batch; there is no need to
1540  * reinitialise it.
1541  *
1542  * Context: May be called in process or interrupt context, but not in NMI
1543  * context.  May be called while holding a spinlock.
1544  */
1545 static inline void folios_put(struct folio_batch *folios)
1546 {
1547 	folios_put_refs(folios, NULL);
1548 }
1549 
1550 static inline void put_page(struct page *page)
1551 {
1552 	struct folio *folio = page_folio(page);
1553 
1554 	/*
1555 	 * For some devmap managed pages we need to catch refcount transition
1556 	 * from 2 to 1:
1557 	 */
1558 	if (put_devmap_managed_folio_refs(folio, 1))
1559 		return;
1560 	folio_put(folio);
1561 }
1562 
1563 /*
1564  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1565  * the page's refcount so that two separate items are tracked: the original page
1566  * reference count, and also a new count of how many pin_user_pages() calls were
1567  * made against the page. ("gup-pinned" is another term for the latter).
1568  *
1569  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1570  * distinct from normal pages. As such, the unpin_user_page() call (and its
1571  * variants) must be used in order to release gup-pinned pages.
1572  *
1573  * Choice of value:
1574  *
1575  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1576  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1577  * simpler, due to the fact that adding an even power of two to the page
1578  * refcount has the effect of using only the upper N bits, for the code that
1579  * counts up using the bias value. This means that the lower bits are left for
1580  * the exclusive use of the original code that increments and decrements by one
1581  * (or at least, by much smaller values than the bias value).
1582  *
1583  * Of course, once the lower bits overflow into the upper bits (and this is
1584  * OK, because subtraction recovers the original values), then visual inspection
1585  * no longer suffices to directly view the separate counts. However, for normal
1586  * applications that don't have huge page reference counts, this won't be an
1587  * issue.
1588  *
1589  * Locking: the lockless algorithm described in folio_try_get_rcu()
1590  * provides safe operation for get_user_pages(), folio_mkclean() and
1591  * other calls that race to set up page table entries.
1592  */
1593 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1594 
1595 void unpin_user_page(struct page *page);
1596 void unpin_folio(struct folio *folio);
1597 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1598 				 bool make_dirty);
1599 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1600 				      bool make_dirty);
1601 void unpin_user_pages(struct page **pages, unsigned long npages);
1602 void unpin_folios(struct folio **folios, unsigned long nfolios);
1603 
1604 static inline bool is_cow_mapping(vm_flags_t flags)
1605 {
1606 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1607 }
1608 
1609 #ifndef CONFIG_MMU
1610 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1611 {
1612 	/*
1613 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1614 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1615 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1616 	 * underlying memory if ptrace is active, so this is only possible if
1617 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1618 	 * write permissions later.
1619 	 */
1620 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1621 }
1622 #endif
1623 
1624 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1625 #define SECTION_IN_PAGE_FLAGS
1626 #endif
1627 
1628 /*
1629  * The identification function is mainly used by the buddy allocator for
1630  * determining if two pages could be buddies. We are not really identifying
1631  * the zone since we could be using the section number id if we do not have
1632  * node id available in page flags.
1633  * We only guarantee that it will return the same value for two combinable
1634  * pages in a zone.
1635  */
1636 static inline int page_zone_id(struct page *page)
1637 {
1638 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1639 }
1640 
1641 #ifdef NODE_NOT_IN_PAGE_FLAGS
1642 int page_to_nid(const struct page *page);
1643 #else
1644 static inline int page_to_nid(const struct page *page)
1645 {
1646 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1647 }
1648 #endif
1649 
1650 static inline int folio_nid(const struct folio *folio)
1651 {
1652 	return page_to_nid(&folio->page);
1653 }
1654 
1655 #ifdef CONFIG_NUMA_BALANCING
1656 /* page access time bits needs to hold at least 4 seconds */
1657 #define PAGE_ACCESS_TIME_MIN_BITS	12
1658 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1659 #define PAGE_ACCESS_TIME_BUCKETS				\
1660 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1661 #else
1662 #define PAGE_ACCESS_TIME_BUCKETS	0
1663 #endif
1664 
1665 #define PAGE_ACCESS_TIME_MASK				\
1666 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1667 
1668 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1669 {
1670 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1671 }
1672 
1673 static inline int cpupid_to_pid(int cpupid)
1674 {
1675 	return cpupid & LAST__PID_MASK;
1676 }
1677 
1678 static inline int cpupid_to_cpu(int cpupid)
1679 {
1680 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1681 }
1682 
1683 static inline int cpupid_to_nid(int cpupid)
1684 {
1685 	return cpu_to_node(cpupid_to_cpu(cpupid));
1686 }
1687 
1688 static inline bool cpupid_pid_unset(int cpupid)
1689 {
1690 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1691 }
1692 
1693 static inline bool cpupid_cpu_unset(int cpupid)
1694 {
1695 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1696 }
1697 
1698 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1699 {
1700 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1701 }
1702 
1703 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1704 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1705 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1706 {
1707 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1708 }
1709 
1710 static inline int folio_last_cpupid(struct folio *folio)
1711 {
1712 	return folio->_last_cpupid;
1713 }
1714 static inline void page_cpupid_reset_last(struct page *page)
1715 {
1716 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1717 }
1718 #else
1719 static inline int folio_last_cpupid(struct folio *folio)
1720 {
1721 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1722 }
1723 
1724 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1725 
1726 static inline void page_cpupid_reset_last(struct page *page)
1727 {
1728 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1729 }
1730 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1731 
1732 static inline int folio_xchg_access_time(struct folio *folio, int time)
1733 {
1734 	int last_time;
1735 
1736 	last_time = folio_xchg_last_cpupid(folio,
1737 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1738 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1739 }
1740 
1741 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1742 {
1743 	unsigned int pid_bit;
1744 
1745 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1746 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1747 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1748 	}
1749 }
1750 #else /* !CONFIG_NUMA_BALANCING */
1751 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1752 {
1753 	return folio_nid(folio); /* XXX */
1754 }
1755 
1756 static inline int folio_xchg_access_time(struct folio *folio, int time)
1757 {
1758 	return 0;
1759 }
1760 
1761 static inline int folio_last_cpupid(struct folio *folio)
1762 {
1763 	return folio_nid(folio); /* XXX */
1764 }
1765 
1766 static inline int cpupid_to_nid(int cpupid)
1767 {
1768 	return -1;
1769 }
1770 
1771 static inline int cpupid_to_pid(int cpupid)
1772 {
1773 	return -1;
1774 }
1775 
1776 static inline int cpupid_to_cpu(int cpupid)
1777 {
1778 	return -1;
1779 }
1780 
1781 static inline int cpu_pid_to_cpupid(int nid, int pid)
1782 {
1783 	return -1;
1784 }
1785 
1786 static inline bool cpupid_pid_unset(int cpupid)
1787 {
1788 	return true;
1789 }
1790 
1791 static inline void page_cpupid_reset_last(struct page *page)
1792 {
1793 }
1794 
1795 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1796 {
1797 	return false;
1798 }
1799 
1800 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1801 {
1802 }
1803 #endif /* CONFIG_NUMA_BALANCING */
1804 
1805 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1806 
1807 /*
1808  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1809  * setting tags for all pages to native kernel tag value 0xff, as the default
1810  * value 0x00 maps to 0xff.
1811  */
1812 
1813 static inline u8 page_kasan_tag(const struct page *page)
1814 {
1815 	u8 tag = KASAN_TAG_KERNEL;
1816 
1817 	if (kasan_enabled()) {
1818 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1819 		tag ^= 0xff;
1820 	}
1821 
1822 	return tag;
1823 }
1824 
1825 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1826 {
1827 	unsigned long old_flags, flags;
1828 
1829 	if (!kasan_enabled())
1830 		return;
1831 
1832 	tag ^= 0xff;
1833 	old_flags = READ_ONCE(page->flags);
1834 	do {
1835 		flags = old_flags;
1836 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1837 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1838 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1839 }
1840 
1841 static inline void page_kasan_tag_reset(struct page *page)
1842 {
1843 	if (kasan_enabled())
1844 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1845 }
1846 
1847 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1848 
1849 static inline u8 page_kasan_tag(const struct page *page)
1850 {
1851 	return 0xff;
1852 }
1853 
1854 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1855 static inline void page_kasan_tag_reset(struct page *page) { }
1856 
1857 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1858 
1859 static inline struct zone *page_zone(const struct page *page)
1860 {
1861 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1862 }
1863 
1864 static inline pg_data_t *page_pgdat(const struct page *page)
1865 {
1866 	return NODE_DATA(page_to_nid(page));
1867 }
1868 
1869 static inline struct zone *folio_zone(const struct folio *folio)
1870 {
1871 	return page_zone(&folio->page);
1872 }
1873 
1874 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1875 {
1876 	return page_pgdat(&folio->page);
1877 }
1878 
1879 #ifdef SECTION_IN_PAGE_FLAGS
1880 static inline void set_page_section(struct page *page, unsigned long section)
1881 {
1882 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1883 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1884 }
1885 
1886 static inline unsigned long page_to_section(const struct page *page)
1887 {
1888 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1889 }
1890 #endif
1891 
1892 /**
1893  * folio_pfn - Return the Page Frame Number of a folio.
1894  * @folio: The folio.
1895  *
1896  * A folio may contain multiple pages.  The pages have consecutive
1897  * Page Frame Numbers.
1898  *
1899  * Return: The Page Frame Number of the first page in the folio.
1900  */
1901 static inline unsigned long folio_pfn(struct folio *folio)
1902 {
1903 	return page_to_pfn(&folio->page);
1904 }
1905 
1906 static inline struct folio *pfn_folio(unsigned long pfn)
1907 {
1908 	return page_folio(pfn_to_page(pfn));
1909 }
1910 
1911 /**
1912  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1913  * @folio: The folio.
1914  *
1915  * This function checks if a folio has been pinned via a call to
1916  * a function in the pin_user_pages() family.
1917  *
1918  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1919  * because it means "definitely not pinned for DMA", but true means "probably
1920  * pinned for DMA, but possibly a false positive due to having at least
1921  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1922  *
1923  * False positives are OK, because: a) it's unlikely for a folio to
1924  * get that many refcounts, and b) all the callers of this routine are
1925  * expected to be able to deal gracefully with a false positive.
1926  *
1927  * For large folios, the result will be exactly correct. That's because
1928  * we have more tracking data available: the _pincount field is used
1929  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1930  *
1931  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1932  *
1933  * Return: True, if it is likely that the folio has been "dma-pinned".
1934  * False, if the folio is definitely not dma-pinned.
1935  */
1936 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1937 {
1938 	if (folio_test_large(folio))
1939 		return atomic_read(&folio->_pincount) > 0;
1940 
1941 	/*
1942 	 * folio_ref_count() is signed. If that refcount overflows, then
1943 	 * folio_ref_count() returns a negative value, and callers will avoid
1944 	 * further incrementing the refcount.
1945 	 *
1946 	 * Here, for that overflow case, use the sign bit to count a little
1947 	 * bit higher via unsigned math, and thus still get an accurate result.
1948 	 */
1949 	return ((unsigned int)folio_ref_count(folio)) >=
1950 		GUP_PIN_COUNTING_BIAS;
1951 }
1952 
1953 /*
1954  * This should most likely only be called during fork() to see whether we
1955  * should break the cow immediately for an anon page on the src mm.
1956  *
1957  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1958  */
1959 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1960 					  struct folio *folio)
1961 {
1962 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1963 
1964 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1965 		return false;
1966 
1967 	return folio_maybe_dma_pinned(folio);
1968 }
1969 
1970 /**
1971  * is_zero_page - Query if a page is a zero page
1972  * @page: The page to query
1973  *
1974  * This returns true if @page is one of the permanent zero pages.
1975  */
1976 static inline bool is_zero_page(const struct page *page)
1977 {
1978 	return is_zero_pfn(page_to_pfn(page));
1979 }
1980 
1981 /**
1982  * is_zero_folio - Query if a folio is a zero page
1983  * @folio: The folio to query
1984  *
1985  * This returns true if @folio is one of the permanent zero pages.
1986  */
1987 static inline bool is_zero_folio(const struct folio *folio)
1988 {
1989 	return is_zero_page(&folio->page);
1990 }
1991 
1992 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1993 #ifdef CONFIG_MIGRATION
1994 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1995 {
1996 #ifdef CONFIG_CMA
1997 	int mt = folio_migratetype(folio);
1998 
1999 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2000 		return false;
2001 #endif
2002 	/* The zero page can be "pinned" but gets special handling. */
2003 	if (is_zero_folio(folio))
2004 		return true;
2005 
2006 	/* Coherent device memory must always allow eviction. */
2007 	if (folio_is_device_coherent(folio))
2008 		return false;
2009 
2010 	/* Otherwise, non-movable zone folios can be pinned. */
2011 	return !folio_is_zone_movable(folio);
2012 
2013 }
2014 #else
2015 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2016 {
2017 	return true;
2018 }
2019 #endif
2020 
2021 static inline void set_page_zone(struct page *page, enum zone_type zone)
2022 {
2023 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2024 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2025 }
2026 
2027 static inline void set_page_node(struct page *page, unsigned long node)
2028 {
2029 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2030 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2031 }
2032 
2033 static inline void set_page_links(struct page *page, enum zone_type zone,
2034 	unsigned long node, unsigned long pfn)
2035 {
2036 	set_page_zone(page, zone);
2037 	set_page_node(page, node);
2038 #ifdef SECTION_IN_PAGE_FLAGS
2039 	set_page_section(page, pfn_to_section_nr(pfn));
2040 #endif
2041 }
2042 
2043 /**
2044  * folio_nr_pages - The number of pages in the folio.
2045  * @folio: The folio.
2046  *
2047  * Return: A positive power of two.
2048  */
2049 static inline long folio_nr_pages(const struct folio *folio)
2050 {
2051 	if (!folio_test_large(folio))
2052 		return 1;
2053 #ifdef CONFIG_64BIT
2054 	return folio->_folio_nr_pages;
2055 #else
2056 	return 1L << (folio->_flags_1 & 0xff);
2057 #endif
2058 }
2059 
2060 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2061 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2062 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2063 #else
2064 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2065 #endif
2066 
2067 /*
2068  * compound_nr() returns the number of pages in this potentially compound
2069  * page.  compound_nr() can be called on a tail page, and is defined to
2070  * return 1 in that case.
2071  */
2072 static inline unsigned long compound_nr(struct page *page)
2073 {
2074 	struct folio *folio = (struct folio *)page;
2075 
2076 	if (!test_bit(PG_head, &folio->flags))
2077 		return 1;
2078 #ifdef CONFIG_64BIT
2079 	return folio->_folio_nr_pages;
2080 #else
2081 	return 1L << (folio->_flags_1 & 0xff);
2082 #endif
2083 }
2084 
2085 /**
2086  * thp_nr_pages - The number of regular pages in this huge page.
2087  * @page: The head page of a huge page.
2088  */
2089 static inline int thp_nr_pages(struct page *page)
2090 {
2091 	return folio_nr_pages((struct folio *)page);
2092 }
2093 
2094 /**
2095  * folio_next - Move to the next physical folio.
2096  * @folio: The folio we're currently operating on.
2097  *
2098  * If you have physically contiguous memory which may span more than
2099  * one folio (eg a &struct bio_vec), use this function to move from one
2100  * folio to the next.  Do not use it if the memory is only virtually
2101  * contiguous as the folios are almost certainly not adjacent to each
2102  * other.  This is the folio equivalent to writing ``page++``.
2103  *
2104  * Context: We assume that the folios are refcounted and/or locked at a
2105  * higher level and do not adjust the reference counts.
2106  * Return: The next struct folio.
2107  */
2108 static inline struct folio *folio_next(struct folio *folio)
2109 {
2110 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2111 }
2112 
2113 /**
2114  * folio_shift - The size of the memory described by this folio.
2115  * @folio: The folio.
2116  *
2117  * A folio represents a number of bytes which is a power-of-two in size.
2118  * This function tells you which power-of-two the folio is.  See also
2119  * folio_size() and folio_order().
2120  *
2121  * Context: The caller should have a reference on the folio to prevent
2122  * it from being split.  It is not necessary for the folio to be locked.
2123  * Return: The base-2 logarithm of the size of this folio.
2124  */
2125 static inline unsigned int folio_shift(const struct folio *folio)
2126 {
2127 	return PAGE_SHIFT + folio_order(folio);
2128 }
2129 
2130 /**
2131  * folio_size - The number of bytes in a folio.
2132  * @folio: The folio.
2133  *
2134  * Context: The caller should have a reference on the folio to prevent
2135  * it from being split.  It is not necessary for the folio to be locked.
2136  * Return: The number of bytes in this folio.
2137  */
2138 static inline size_t folio_size(const struct folio *folio)
2139 {
2140 	return PAGE_SIZE << folio_order(folio);
2141 }
2142 
2143 /**
2144  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2145  *				tables of more than one MM
2146  * @folio: The folio.
2147  *
2148  * This function checks if the folio is currently mapped into more than one
2149  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2150  * ("mapped exclusively").
2151  *
2152  * As precise information is not easily available for all folios, this function
2153  * estimates the number of MMs ("sharers") that are currently mapping a folio
2154  * using the number of times the first page of the folio is currently mapped
2155  * into page tables.
2156  *
2157  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2158  * the return value will be exactly correct, because they can only be mapped
2159  * at most once into an MM, and they cannot be partially mapped.
2160  *
2161  * For other folios, the result can be fuzzy:
2162  *    #. For partially-mappable large folios (THP), the return value can wrongly
2163  *       indicate "mapped exclusively" (false negative) when the folio is
2164  *       only partially mapped into at least one MM.
2165  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2166  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2167  *       cover the same file range.
2168  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2169  *       shared" (false positive), when the folio is mapped multiple times into
2170  *       the same MM.
2171  *
2172  * Further, this function only considers current page table mappings that
2173  * are tracked using the folio mapcount(s).
2174  *
2175  * This function does not consider:
2176  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2177  *       pagecache, temporary unmapping for migration).
2178  *    #. If the folio is mapped differently (VM_PFNMAP).
2179  *    #. If hugetlb page table sharing applies. Callers might want to check
2180  *       hugetlb_pmd_shared().
2181  *
2182  * Return: Whether the folio is estimated to be mapped into more than one MM.
2183  */
2184 static inline bool folio_likely_mapped_shared(struct folio *folio)
2185 {
2186 	int mapcount = folio_mapcount(folio);
2187 
2188 	/* Only partially-mappable folios require more care. */
2189 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2190 		return mapcount > 1;
2191 
2192 	/* A single mapping implies "mapped exclusively". */
2193 	if (mapcount <= 1)
2194 		return false;
2195 
2196 	/* If any page is mapped more than once we treat it "mapped shared". */
2197 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2198 		return true;
2199 
2200 	/* Let's guess based on the first subpage. */
2201 	return atomic_read(&folio->_mapcount) > 0;
2202 }
2203 
2204 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2205 static inline int arch_make_page_accessible(struct page *page)
2206 {
2207 	return 0;
2208 }
2209 #endif
2210 
2211 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2212 static inline int arch_make_folio_accessible(struct folio *folio)
2213 {
2214 	int ret;
2215 	long i, nr = folio_nr_pages(folio);
2216 
2217 	for (i = 0; i < nr; i++) {
2218 		ret = arch_make_page_accessible(folio_page(folio, i));
2219 		if (ret)
2220 			break;
2221 	}
2222 
2223 	return ret;
2224 }
2225 #endif
2226 
2227 /*
2228  * Some inline functions in vmstat.h depend on page_zone()
2229  */
2230 #include <linux/vmstat.h>
2231 
2232 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2233 #define HASHED_PAGE_VIRTUAL
2234 #endif
2235 
2236 #if defined(WANT_PAGE_VIRTUAL)
2237 static inline void *page_address(const struct page *page)
2238 {
2239 	return page->virtual;
2240 }
2241 static inline void set_page_address(struct page *page, void *address)
2242 {
2243 	page->virtual = address;
2244 }
2245 #define page_address_init()  do { } while(0)
2246 #endif
2247 
2248 #if defined(HASHED_PAGE_VIRTUAL)
2249 void *page_address(const struct page *page);
2250 void set_page_address(struct page *page, void *virtual);
2251 void page_address_init(void);
2252 #endif
2253 
2254 static __always_inline void *lowmem_page_address(const struct page *page)
2255 {
2256 	return page_to_virt(page);
2257 }
2258 
2259 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2260 #define page_address(page) lowmem_page_address(page)
2261 #define set_page_address(page, address)  do { } while(0)
2262 #define page_address_init()  do { } while(0)
2263 #endif
2264 
2265 static inline void *folio_address(const struct folio *folio)
2266 {
2267 	return page_address(&folio->page);
2268 }
2269 
2270 /*
2271  * Return true only if the page has been allocated with
2272  * ALLOC_NO_WATERMARKS and the low watermark was not
2273  * met implying that the system is under some pressure.
2274  */
2275 static inline bool page_is_pfmemalloc(const struct page *page)
2276 {
2277 	/*
2278 	 * lru.next has bit 1 set if the page is allocated from the
2279 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2280 	 * they do not need to preserve that information.
2281 	 */
2282 	return (uintptr_t)page->lru.next & BIT(1);
2283 }
2284 
2285 /*
2286  * Return true only if the folio has been allocated with
2287  * ALLOC_NO_WATERMARKS and the low watermark was not
2288  * met implying that the system is under some pressure.
2289  */
2290 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2291 {
2292 	/*
2293 	 * lru.next has bit 1 set if the page is allocated from the
2294 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2295 	 * they do not need to preserve that information.
2296 	 */
2297 	return (uintptr_t)folio->lru.next & BIT(1);
2298 }
2299 
2300 /*
2301  * Only to be called by the page allocator on a freshly allocated
2302  * page.
2303  */
2304 static inline void set_page_pfmemalloc(struct page *page)
2305 {
2306 	page->lru.next = (void *)BIT(1);
2307 }
2308 
2309 static inline void clear_page_pfmemalloc(struct page *page)
2310 {
2311 	page->lru.next = NULL;
2312 }
2313 
2314 /*
2315  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2316  */
2317 extern void pagefault_out_of_memory(void);
2318 
2319 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2320 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2321 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2322 
2323 /*
2324  * Parameter block passed down to zap_pte_range in exceptional cases.
2325  */
2326 struct zap_details {
2327 	struct folio *single_folio;	/* Locked folio to be unmapped */
2328 	bool even_cows;			/* Zap COWed private pages too? */
2329 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2330 };
2331 
2332 /*
2333  * Whether to drop the pte markers, for example, the uffd-wp information for
2334  * file-backed memory.  This should only be specified when we will completely
2335  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2336  * default, the flag is not set.
2337  */
2338 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2339 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2340 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2341 
2342 #ifdef CONFIG_SCHED_MM_CID
2343 void sched_mm_cid_before_execve(struct task_struct *t);
2344 void sched_mm_cid_after_execve(struct task_struct *t);
2345 void sched_mm_cid_fork(struct task_struct *t);
2346 void sched_mm_cid_exit_signals(struct task_struct *t);
2347 static inline int task_mm_cid(struct task_struct *t)
2348 {
2349 	return t->mm_cid;
2350 }
2351 #else
2352 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2353 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2354 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2355 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2356 static inline int task_mm_cid(struct task_struct *t)
2357 {
2358 	/*
2359 	 * Use the processor id as a fall-back when the mm cid feature is
2360 	 * disabled. This provides functional per-cpu data structure accesses
2361 	 * in user-space, althrough it won't provide the memory usage benefits.
2362 	 */
2363 	return raw_smp_processor_id();
2364 }
2365 #endif
2366 
2367 #ifdef CONFIG_MMU
2368 extern bool can_do_mlock(void);
2369 #else
2370 static inline bool can_do_mlock(void) { return false; }
2371 #endif
2372 extern int user_shm_lock(size_t, struct ucounts *);
2373 extern void user_shm_unlock(size_t, struct ucounts *);
2374 
2375 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2376 			     pte_t pte);
2377 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2378 			     pte_t pte);
2379 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2380 				  unsigned long addr, pmd_t pmd);
2381 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2382 				pmd_t pmd);
2383 
2384 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2385 		  unsigned long size);
2386 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2387 			   unsigned long size, struct zap_details *details);
2388 static inline void zap_vma_pages(struct vm_area_struct *vma)
2389 {
2390 	zap_page_range_single(vma, vma->vm_start,
2391 			      vma->vm_end - vma->vm_start, NULL);
2392 }
2393 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2394 		struct vm_area_struct *start_vma, unsigned long start,
2395 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2396 
2397 struct mmu_notifier_range;
2398 
2399 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2400 		unsigned long end, unsigned long floor, unsigned long ceiling);
2401 int
2402 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2403 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2404 	       pte_t **ptepp, spinlock_t **ptlp);
2405 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2406 			void *buf, int len, int write);
2407 
2408 extern void truncate_pagecache(struct inode *inode, loff_t new);
2409 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2410 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2411 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2412 int generic_error_remove_folio(struct address_space *mapping,
2413 		struct folio *folio);
2414 
2415 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2416 		unsigned long address, struct pt_regs *regs);
2417 
2418 #ifdef CONFIG_MMU
2419 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2420 				  unsigned long address, unsigned int flags,
2421 				  struct pt_regs *regs);
2422 extern int fixup_user_fault(struct mm_struct *mm,
2423 			    unsigned long address, unsigned int fault_flags,
2424 			    bool *unlocked);
2425 void unmap_mapping_pages(struct address_space *mapping,
2426 		pgoff_t start, pgoff_t nr, bool even_cows);
2427 void unmap_mapping_range(struct address_space *mapping,
2428 		loff_t const holebegin, loff_t const holelen, int even_cows);
2429 #else
2430 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2431 					 unsigned long address, unsigned int flags,
2432 					 struct pt_regs *regs)
2433 {
2434 	/* should never happen if there's no MMU */
2435 	BUG();
2436 	return VM_FAULT_SIGBUS;
2437 }
2438 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2439 		unsigned int fault_flags, bool *unlocked)
2440 {
2441 	/* should never happen if there's no MMU */
2442 	BUG();
2443 	return -EFAULT;
2444 }
2445 static inline void unmap_mapping_pages(struct address_space *mapping,
2446 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2447 static inline void unmap_mapping_range(struct address_space *mapping,
2448 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2449 #endif
2450 
2451 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2452 		loff_t const holebegin, loff_t const holelen)
2453 {
2454 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2455 }
2456 
2457 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2458 						unsigned long addr);
2459 
2460 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2461 		void *buf, int len, unsigned int gup_flags);
2462 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2463 		void *buf, int len, unsigned int gup_flags);
2464 
2465 long get_user_pages_remote(struct mm_struct *mm,
2466 			   unsigned long start, unsigned long nr_pages,
2467 			   unsigned int gup_flags, struct page **pages,
2468 			   int *locked);
2469 long pin_user_pages_remote(struct mm_struct *mm,
2470 			   unsigned long start, unsigned long nr_pages,
2471 			   unsigned int gup_flags, struct page **pages,
2472 			   int *locked);
2473 
2474 /*
2475  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2476  */
2477 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2478 						    unsigned long addr,
2479 						    int gup_flags,
2480 						    struct vm_area_struct **vmap)
2481 {
2482 	struct page *page;
2483 	struct vm_area_struct *vma;
2484 	int got;
2485 
2486 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2487 		return ERR_PTR(-EINVAL);
2488 
2489 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2490 
2491 	if (got < 0)
2492 		return ERR_PTR(got);
2493 
2494 	vma = vma_lookup(mm, addr);
2495 	if (WARN_ON_ONCE(!vma)) {
2496 		put_page(page);
2497 		return ERR_PTR(-EINVAL);
2498 	}
2499 
2500 	*vmap = vma;
2501 	return page;
2502 }
2503 
2504 long get_user_pages(unsigned long start, unsigned long nr_pages,
2505 		    unsigned int gup_flags, struct page **pages);
2506 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2507 		    unsigned int gup_flags, struct page **pages);
2508 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2509 		    struct page **pages, unsigned int gup_flags);
2510 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2511 		    struct page **pages, unsigned int gup_flags);
2512 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2513 		      struct folio **folios, unsigned int max_folios,
2514 		      pgoff_t *offset);
2515 
2516 int get_user_pages_fast(unsigned long start, int nr_pages,
2517 			unsigned int gup_flags, struct page **pages);
2518 int pin_user_pages_fast(unsigned long start, int nr_pages,
2519 			unsigned int gup_flags, struct page **pages);
2520 void folio_add_pin(struct folio *folio);
2521 
2522 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2523 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2524 			struct task_struct *task, bool bypass_rlim);
2525 
2526 struct kvec;
2527 struct page *get_dump_page(unsigned long addr);
2528 
2529 bool folio_mark_dirty(struct folio *folio);
2530 bool set_page_dirty(struct page *page);
2531 int set_page_dirty_lock(struct page *page);
2532 
2533 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2534 
2535 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2536 		unsigned long old_addr, struct vm_area_struct *new_vma,
2537 		unsigned long new_addr, unsigned long len,
2538 		bool need_rmap_locks, bool for_stack);
2539 
2540 /*
2541  * Flags used by change_protection().  For now we make it a bitmap so
2542  * that we can pass in multiple flags just like parameters.  However
2543  * for now all the callers are only use one of the flags at the same
2544  * time.
2545  */
2546 /*
2547  * Whether we should manually check if we can map individual PTEs writable,
2548  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2549  * PTEs automatically in a writable mapping.
2550  */
2551 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2552 /* Whether this protection change is for NUMA hints */
2553 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2554 /* Whether this change is for write protecting */
2555 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2556 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2557 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2558 					    MM_CP_UFFD_WP_RESOLVE)
2559 
2560 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2561 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2562 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2563 {
2564 	/*
2565 	 * We want to check manually if we can change individual PTEs writable
2566 	 * if we can't do that automatically for all PTEs in a mapping. For
2567 	 * private mappings, that's always the case when we have write
2568 	 * permissions as we properly have to handle COW.
2569 	 */
2570 	if (vma->vm_flags & VM_SHARED)
2571 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2572 	return !!(vma->vm_flags & VM_WRITE);
2573 
2574 }
2575 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2576 			     pte_t pte);
2577 extern long change_protection(struct mmu_gather *tlb,
2578 			      struct vm_area_struct *vma, unsigned long start,
2579 			      unsigned long end, unsigned long cp_flags);
2580 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2581 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2582 	  unsigned long start, unsigned long end, unsigned long newflags);
2583 
2584 /*
2585  * doesn't attempt to fault and will return short.
2586  */
2587 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2588 			     unsigned int gup_flags, struct page **pages);
2589 
2590 static inline bool get_user_page_fast_only(unsigned long addr,
2591 			unsigned int gup_flags, struct page **pagep)
2592 {
2593 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2594 }
2595 /*
2596  * per-process(per-mm_struct) statistics.
2597  */
2598 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2599 {
2600 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2601 }
2602 
2603 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2604 
2605 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2606 {
2607 	percpu_counter_add(&mm->rss_stat[member], value);
2608 
2609 	mm_trace_rss_stat(mm, member);
2610 }
2611 
2612 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2613 {
2614 	percpu_counter_inc(&mm->rss_stat[member]);
2615 
2616 	mm_trace_rss_stat(mm, member);
2617 }
2618 
2619 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2620 {
2621 	percpu_counter_dec(&mm->rss_stat[member]);
2622 
2623 	mm_trace_rss_stat(mm, member);
2624 }
2625 
2626 /* Optimized variant when folio is already known not to be anon */
2627 static inline int mm_counter_file(struct folio *folio)
2628 {
2629 	if (folio_test_swapbacked(folio))
2630 		return MM_SHMEMPAGES;
2631 	return MM_FILEPAGES;
2632 }
2633 
2634 static inline int mm_counter(struct folio *folio)
2635 {
2636 	if (folio_test_anon(folio))
2637 		return MM_ANONPAGES;
2638 	return mm_counter_file(folio);
2639 }
2640 
2641 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2642 {
2643 	return get_mm_counter(mm, MM_FILEPAGES) +
2644 		get_mm_counter(mm, MM_ANONPAGES) +
2645 		get_mm_counter(mm, MM_SHMEMPAGES);
2646 }
2647 
2648 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2649 {
2650 	return max(mm->hiwater_rss, get_mm_rss(mm));
2651 }
2652 
2653 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2654 {
2655 	return max(mm->hiwater_vm, mm->total_vm);
2656 }
2657 
2658 static inline void update_hiwater_rss(struct mm_struct *mm)
2659 {
2660 	unsigned long _rss = get_mm_rss(mm);
2661 
2662 	if ((mm)->hiwater_rss < _rss)
2663 		(mm)->hiwater_rss = _rss;
2664 }
2665 
2666 static inline void update_hiwater_vm(struct mm_struct *mm)
2667 {
2668 	if (mm->hiwater_vm < mm->total_vm)
2669 		mm->hiwater_vm = mm->total_vm;
2670 }
2671 
2672 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2673 {
2674 	mm->hiwater_rss = get_mm_rss(mm);
2675 }
2676 
2677 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2678 					 struct mm_struct *mm)
2679 {
2680 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2681 
2682 	if (*maxrss < hiwater_rss)
2683 		*maxrss = hiwater_rss;
2684 }
2685 
2686 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2687 static inline int pte_special(pte_t pte)
2688 {
2689 	return 0;
2690 }
2691 
2692 static inline pte_t pte_mkspecial(pte_t pte)
2693 {
2694 	return pte;
2695 }
2696 #endif
2697 
2698 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2699 static inline int pte_devmap(pte_t pte)
2700 {
2701 	return 0;
2702 }
2703 #endif
2704 
2705 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2706 			       spinlock_t **ptl);
2707 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2708 				    spinlock_t **ptl)
2709 {
2710 	pte_t *ptep;
2711 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2712 	return ptep;
2713 }
2714 
2715 #ifdef __PAGETABLE_P4D_FOLDED
2716 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2717 						unsigned long address)
2718 {
2719 	return 0;
2720 }
2721 #else
2722 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2723 #endif
2724 
2725 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2726 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2727 						unsigned long address)
2728 {
2729 	return 0;
2730 }
2731 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2732 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2733 
2734 #else
2735 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2736 
2737 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2738 {
2739 	if (mm_pud_folded(mm))
2740 		return;
2741 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2742 }
2743 
2744 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2745 {
2746 	if (mm_pud_folded(mm))
2747 		return;
2748 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2749 }
2750 #endif
2751 
2752 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2753 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2754 						unsigned long address)
2755 {
2756 	return 0;
2757 }
2758 
2759 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2760 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2761 
2762 #else
2763 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2764 
2765 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2766 {
2767 	if (mm_pmd_folded(mm))
2768 		return;
2769 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2770 }
2771 
2772 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2773 {
2774 	if (mm_pmd_folded(mm))
2775 		return;
2776 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2777 }
2778 #endif
2779 
2780 #ifdef CONFIG_MMU
2781 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2782 {
2783 	atomic_long_set(&mm->pgtables_bytes, 0);
2784 }
2785 
2786 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2787 {
2788 	return atomic_long_read(&mm->pgtables_bytes);
2789 }
2790 
2791 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2792 {
2793 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2794 }
2795 
2796 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2797 {
2798 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2799 }
2800 #else
2801 
2802 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2803 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2804 {
2805 	return 0;
2806 }
2807 
2808 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2809 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2810 #endif
2811 
2812 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2813 int __pte_alloc_kernel(pmd_t *pmd);
2814 
2815 #if defined(CONFIG_MMU)
2816 
2817 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2818 		unsigned long address)
2819 {
2820 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2821 		NULL : p4d_offset(pgd, address);
2822 }
2823 
2824 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2825 		unsigned long address)
2826 {
2827 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2828 		NULL : pud_offset(p4d, address);
2829 }
2830 
2831 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2832 {
2833 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2834 		NULL: pmd_offset(pud, address);
2835 }
2836 #endif /* CONFIG_MMU */
2837 
2838 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2839 {
2840 	return page_ptdesc(virt_to_page(x));
2841 }
2842 
2843 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2844 {
2845 	return page_to_virt(ptdesc_page(pt));
2846 }
2847 
2848 static inline void *ptdesc_address(const struct ptdesc *pt)
2849 {
2850 	return folio_address(ptdesc_folio(pt));
2851 }
2852 
2853 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2854 {
2855 	return folio_test_reserved(ptdesc_folio(pt));
2856 }
2857 
2858 /**
2859  * pagetable_alloc - Allocate pagetables
2860  * @gfp:    GFP flags
2861  * @order:  desired pagetable order
2862  *
2863  * pagetable_alloc allocates memory for page tables as well as a page table
2864  * descriptor to describe that memory.
2865  *
2866  * Return: The ptdesc describing the allocated page tables.
2867  */
2868 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2869 {
2870 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2871 
2872 	return page_ptdesc(page);
2873 }
2874 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2875 
2876 /**
2877  * pagetable_free - Free pagetables
2878  * @pt:	The page table descriptor
2879  *
2880  * pagetable_free frees the memory of all page tables described by a page
2881  * table descriptor and the memory for the descriptor itself.
2882  */
2883 static inline void pagetable_free(struct ptdesc *pt)
2884 {
2885 	struct page *page = ptdesc_page(pt);
2886 
2887 	__free_pages(page, compound_order(page));
2888 }
2889 
2890 #if USE_SPLIT_PTE_PTLOCKS
2891 #if ALLOC_SPLIT_PTLOCKS
2892 void __init ptlock_cache_init(void);
2893 bool ptlock_alloc(struct ptdesc *ptdesc);
2894 void ptlock_free(struct ptdesc *ptdesc);
2895 
2896 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2897 {
2898 	return ptdesc->ptl;
2899 }
2900 #else /* ALLOC_SPLIT_PTLOCKS */
2901 static inline void ptlock_cache_init(void)
2902 {
2903 }
2904 
2905 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2906 {
2907 	return true;
2908 }
2909 
2910 static inline void ptlock_free(struct ptdesc *ptdesc)
2911 {
2912 }
2913 
2914 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2915 {
2916 	return &ptdesc->ptl;
2917 }
2918 #endif /* ALLOC_SPLIT_PTLOCKS */
2919 
2920 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2921 {
2922 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2923 }
2924 
2925 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2926 {
2927 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2928 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2929 	return ptlock_ptr(virt_to_ptdesc(pte));
2930 }
2931 
2932 static inline bool ptlock_init(struct ptdesc *ptdesc)
2933 {
2934 	/*
2935 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2936 	 * with 0. Make sure nobody took it in use in between.
2937 	 *
2938 	 * It can happen if arch try to use slab for page table allocation:
2939 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2940 	 */
2941 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2942 	if (!ptlock_alloc(ptdesc))
2943 		return false;
2944 	spin_lock_init(ptlock_ptr(ptdesc));
2945 	return true;
2946 }
2947 
2948 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2949 /*
2950  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2951  */
2952 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2953 {
2954 	return &mm->page_table_lock;
2955 }
2956 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2957 {
2958 	return &mm->page_table_lock;
2959 }
2960 static inline void ptlock_cache_init(void) {}
2961 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2962 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2963 #endif /* USE_SPLIT_PTE_PTLOCKS */
2964 
2965 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2966 {
2967 	struct folio *folio = ptdesc_folio(ptdesc);
2968 
2969 	if (!ptlock_init(ptdesc))
2970 		return false;
2971 	__folio_set_pgtable(folio);
2972 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2973 	return true;
2974 }
2975 
2976 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2977 {
2978 	struct folio *folio = ptdesc_folio(ptdesc);
2979 
2980 	ptlock_free(ptdesc);
2981 	__folio_clear_pgtable(folio);
2982 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2983 }
2984 
2985 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2986 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2987 {
2988 	return __pte_offset_map(pmd, addr, NULL);
2989 }
2990 
2991 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2992 			unsigned long addr, spinlock_t **ptlp);
2993 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2994 			unsigned long addr, spinlock_t **ptlp)
2995 {
2996 	pte_t *pte;
2997 
2998 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2999 	return pte;
3000 }
3001 
3002 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3003 			unsigned long addr, spinlock_t **ptlp);
3004 
3005 #define pte_unmap_unlock(pte, ptl)	do {		\
3006 	spin_unlock(ptl);				\
3007 	pte_unmap(pte);					\
3008 } while (0)
3009 
3010 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3011 
3012 #define pte_alloc_map(mm, pmd, address)			\
3013 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3014 
3015 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3016 	(pte_alloc(mm, pmd) ?			\
3017 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3018 
3019 #define pte_alloc_kernel(pmd, address)			\
3020 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3021 		NULL: pte_offset_kernel(pmd, address))
3022 
3023 #if USE_SPLIT_PMD_PTLOCKS
3024 
3025 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3026 {
3027 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3028 	return virt_to_page((void *)((unsigned long) pmd & mask));
3029 }
3030 
3031 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3032 {
3033 	return page_ptdesc(pmd_pgtable_page(pmd));
3034 }
3035 
3036 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3037 {
3038 	return ptlock_ptr(pmd_ptdesc(pmd));
3039 }
3040 
3041 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3042 {
3043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3044 	ptdesc->pmd_huge_pte = NULL;
3045 #endif
3046 	return ptlock_init(ptdesc);
3047 }
3048 
3049 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3050 {
3051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3052 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3053 #endif
3054 	ptlock_free(ptdesc);
3055 }
3056 
3057 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3058 
3059 #else
3060 
3061 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3062 {
3063 	return &mm->page_table_lock;
3064 }
3065 
3066 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3067 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3068 
3069 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3070 
3071 #endif
3072 
3073 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3074 {
3075 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3076 	spin_lock(ptl);
3077 	return ptl;
3078 }
3079 
3080 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3081 {
3082 	struct folio *folio = ptdesc_folio(ptdesc);
3083 
3084 	if (!pmd_ptlock_init(ptdesc))
3085 		return false;
3086 	__folio_set_pgtable(folio);
3087 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3088 	return true;
3089 }
3090 
3091 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3092 {
3093 	struct folio *folio = ptdesc_folio(ptdesc);
3094 
3095 	pmd_ptlock_free(ptdesc);
3096 	__folio_clear_pgtable(folio);
3097 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3098 }
3099 
3100 /*
3101  * No scalability reason to split PUD locks yet, but follow the same pattern
3102  * as the PMD locks to make it easier if we decide to.  The VM should not be
3103  * considered ready to switch to split PUD locks yet; there may be places
3104  * which need to be converted from page_table_lock.
3105  */
3106 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3107 {
3108 	return &mm->page_table_lock;
3109 }
3110 
3111 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3112 {
3113 	spinlock_t *ptl = pud_lockptr(mm, pud);
3114 
3115 	spin_lock(ptl);
3116 	return ptl;
3117 }
3118 
3119 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3120 {
3121 	struct folio *folio = ptdesc_folio(ptdesc);
3122 
3123 	__folio_set_pgtable(folio);
3124 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3125 }
3126 
3127 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3128 {
3129 	struct folio *folio = ptdesc_folio(ptdesc);
3130 
3131 	__folio_clear_pgtable(folio);
3132 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3133 }
3134 
3135 extern void __init pagecache_init(void);
3136 extern void free_initmem(void);
3137 
3138 /*
3139  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3140  * into the buddy system. The freed pages will be poisoned with pattern
3141  * "poison" if it's within range [0, UCHAR_MAX].
3142  * Return pages freed into the buddy system.
3143  */
3144 extern unsigned long free_reserved_area(void *start, void *end,
3145 					int poison, const char *s);
3146 
3147 extern void adjust_managed_page_count(struct page *page, long count);
3148 
3149 extern void reserve_bootmem_region(phys_addr_t start,
3150 				   phys_addr_t end, int nid);
3151 
3152 /* Free the reserved page into the buddy system, so it gets managed. */
3153 void free_reserved_page(struct page *page);
3154 #define free_highmem_page(page) free_reserved_page(page)
3155 
3156 static inline void mark_page_reserved(struct page *page)
3157 {
3158 	SetPageReserved(page);
3159 	adjust_managed_page_count(page, -1);
3160 }
3161 
3162 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3163 {
3164 	free_reserved_page(ptdesc_page(pt));
3165 }
3166 
3167 /*
3168  * Default method to free all the __init memory into the buddy system.
3169  * The freed pages will be poisoned with pattern "poison" if it's within
3170  * range [0, UCHAR_MAX].
3171  * Return pages freed into the buddy system.
3172  */
3173 static inline unsigned long free_initmem_default(int poison)
3174 {
3175 	extern char __init_begin[], __init_end[];
3176 
3177 	return free_reserved_area(&__init_begin, &__init_end,
3178 				  poison, "unused kernel image (initmem)");
3179 }
3180 
3181 static inline unsigned long get_num_physpages(void)
3182 {
3183 	int nid;
3184 	unsigned long phys_pages = 0;
3185 
3186 	for_each_online_node(nid)
3187 		phys_pages += node_present_pages(nid);
3188 
3189 	return phys_pages;
3190 }
3191 
3192 /*
3193  * Using memblock node mappings, an architecture may initialise its
3194  * zones, allocate the backing mem_map and account for memory holes in an
3195  * architecture independent manner.
3196  *
3197  * An architecture is expected to register range of page frames backed by
3198  * physical memory with memblock_add[_node]() before calling
3199  * free_area_init() passing in the PFN each zone ends at. At a basic
3200  * usage, an architecture is expected to do something like
3201  *
3202  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3203  * 							 max_highmem_pfn};
3204  * for_each_valid_physical_page_range()
3205  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3206  * free_area_init(max_zone_pfns);
3207  */
3208 void free_area_init(unsigned long *max_zone_pfn);
3209 unsigned long node_map_pfn_alignment(void);
3210 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3211 						unsigned long end_pfn);
3212 extern void get_pfn_range_for_nid(unsigned int nid,
3213 			unsigned long *start_pfn, unsigned long *end_pfn);
3214 
3215 #ifndef CONFIG_NUMA
3216 static inline int early_pfn_to_nid(unsigned long pfn)
3217 {
3218 	return 0;
3219 }
3220 #else
3221 /* please see mm/page_alloc.c */
3222 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3223 #endif
3224 
3225 extern void mem_init(void);
3226 extern void __init mmap_init(void);
3227 
3228 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3229 static inline void show_mem(void)
3230 {
3231 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3232 }
3233 extern long si_mem_available(void);
3234 extern void si_meminfo(struct sysinfo * val);
3235 extern void si_meminfo_node(struct sysinfo *val, int nid);
3236 
3237 extern __printf(3, 4)
3238 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3239 
3240 extern void setup_per_cpu_pageset(void);
3241 
3242 /* nommu.c */
3243 extern atomic_long_t mmap_pages_allocated;
3244 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3245 
3246 /* interval_tree.c */
3247 void vma_interval_tree_insert(struct vm_area_struct *node,
3248 			      struct rb_root_cached *root);
3249 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3250 				    struct vm_area_struct *prev,
3251 				    struct rb_root_cached *root);
3252 void vma_interval_tree_remove(struct vm_area_struct *node,
3253 			      struct rb_root_cached *root);
3254 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3255 				unsigned long start, unsigned long last);
3256 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3257 				unsigned long start, unsigned long last);
3258 
3259 #define vma_interval_tree_foreach(vma, root, start, last)		\
3260 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3261 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3262 
3263 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3264 				   struct rb_root_cached *root);
3265 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3266 				   struct rb_root_cached *root);
3267 struct anon_vma_chain *
3268 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 				  unsigned long start, unsigned long last);
3270 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3271 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3272 #ifdef CONFIG_DEBUG_VM_RB
3273 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3274 #endif
3275 
3276 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3277 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3278 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3279 
3280 /* mmap.c */
3281 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3282 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3283 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3284 		      struct vm_area_struct *next);
3285 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3286 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3287 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3288 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3289 extern void unlink_file_vma(struct vm_area_struct *);
3290 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3291 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3292 	bool *need_rmap_locks);
3293 extern void exit_mmap(struct mm_struct *);
3294 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3295 				  struct vm_area_struct *prev,
3296 				  struct vm_area_struct *vma,
3297 				  unsigned long start, unsigned long end,
3298 				  unsigned long vm_flags,
3299 				  struct mempolicy *policy,
3300 				  struct vm_userfaultfd_ctx uffd_ctx,
3301 				  struct anon_vma_name *anon_name);
3302 
3303 /* We are about to modify the VMA's flags. */
3304 static inline struct vm_area_struct
3305 *vma_modify_flags(struct vma_iterator *vmi,
3306 		  struct vm_area_struct *prev,
3307 		  struct vm_area_struct *vma,
3308 		  unsigned long start, unsigned long end,
3309 		  unsigned long new_flags)
3310 {
3311 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3312 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3313 			  anon_vma_name(vma));
3314 }
3315 
3316 /* We are about to modify the VMA's flags and/or anon_name. */
3317 static inline struct vm_area_struct
3318 *vma_modify_flags_name(struct vma_iterator *vmi,
3319 		       struct vm_area_struct *prev,
3320 		       struct vm_area_struct *vma,
3321 		       unsigned long start,
3322 		       unsigned long end,
3323 		       unsigned long new_flags,
3324 		       struct anon_vma_name *new_name)
3325 {
3326 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3327 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3328 }
3329 
3330 /* We are about to modify the VMA's memory policy. */
3331 static inline struct vm_area_struct
3332 *vma_modify_policy(struct vma_iterator *vmi,
3333 		   struct vm_area_struct *prev,
3334 		   struct vm_area_struct *vma,
3335 		   unsigned long start, unsigned long end,
3336 		   struct mempolicy *new_pol)
3337 {
3338 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3339 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3340 }
3341 
3342 /* We are about to modify the VMA's flags and/or uffd context. */
3343 static inline struct vm_area_struct
3344 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3345 		       struct vm_area_struct *prev,
3346 		       struct vm_area_struct *vma,
3347 		       unsigned long start, unsigned long end,
3348 		       unsigned long new_flags,
3349 		       struct vm_userfaultfd_ctx new_ctx)
3350 {
3351 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3352 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3353 }
3354 
3355 static inline int check_data_rlimit(unsigned long rlim,
3356 				    unsigned long new,
3357 				    unsigned long start,
3358 				    unsigned long end_data,
3359 				    unsigned long start_data)
3360 {
3361 	if (rlim < RLIM_INFINITY) {
3362 		if (((new - start) + (end_data - start_data)) > rlim)
3363 			return -ENOSPC;
3364 	}
3365 
3366 	return 0;
3367 }
3368 
3369 extern int mm_take_all_locks(struct mm_struct *mm);
3370 extern void mm_drop_all_locks(struct mm_struct *mm);
3371 
3372 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3373 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3374 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3375 extern struct file *get_task_exe_file(struct task_struct *task);
3376 
3377 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3378 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3379 
3380 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3381 				   const struct vm_special_mapping *sm);
3382 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3383 				   unsigned long addr, unsigned long len,
3384 				   unsigned long flags,
3385 				   const struct vm_special_mapping *spec);
3386 /* This is an obsolete alternative to _install_special_mapping. */
3387 extern int install_special_mapping(struct mm_struct *mm,
3388 				   unsigned long addr, unsigned long len,
3389 				   unsigned long flags, struct page **pages);
3390 
3391 unsigned long randomize_stack_top(unsigned long stack_top);
3392 unsigned long randomize_page(unsigned long start, unsigned long range);
3393 
3394 unsigned long
3395 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3396 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3397 
3398 static inline unsigned long
3399 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3400 		  unsigned long pgoff, unsigned long flags)
3401 {
3402 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3403 }
3404 
3405 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3406 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3407 	struct list_head *uf);
3408 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3409 	unsigned long len, unsigned long prot, unsigned long flags,
3410 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3411 	struct list_head *uf);
3412 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3413 			 unsigned long start, size_t len, struct list_head *uf,
3414 			 bool unlock);
3415 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3416 		     struct list_head *uf);
3417 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3418 
3419 #ifdef CONFIG_MMU
3420 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3421 			 unsigned long start, unsigned long end,
3422 			 struct list_head *uf, bool unlock);
3423 extern int __mm_populate(unsigned long addr, unsigned long len,
3424 			 int ignore_errors);
3425 static inline void mm_populate(unsigned long addr, unsigned long len)
3426 {
3427 	/* Ignore errors */
3428 	(void) __mm_populate(addr, len, 1);
3429 }
3430 #else
3431 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3432 #endif
3433 
3434 /* This takes the mm semaphore itself */
3435 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3436 extern int vm_munmap(unsigned long, size_t);
3437 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3438         unsigned long, unsigned long,
3439         unsigned long, unsigned long);
3440 
3441 struct vm_unmapped_area_info {
3442 #define VM_UNMAPPED_AREA_TOPDOWN 1
3443 	unsigned long flags;
3444 	unsigned long length;
3445 	unsigned long low_limit;
3446 	unsigned long high_limit;
3447 	unsigned long align_mask;
3448 	unsigned long align_offset;
3449 	unsigned long start_gap;
3450 };
3451 
3452 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3453 
3454 /* truncate.c */
3455 extern void truncate_inode_pages(struct address_space *, loff_t);
3456 extern void truncate_inode_pages_range(struct address_space *,
3457 				       loff_t lstart, loff_t lend);
3458 extern void truncate_inode_pages_final(struct address_space *);
3459 
3460 /* generic vm_area_ops exported for stackable file systems */
3461 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3462 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3463 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3464 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3465 
3466 extern unsigned long stack_guard_gap;
3467 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3468 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3469 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3470 
3471 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3472 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3473 
3474 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3475 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3476 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3477 					     struct vm_area_struct **pprev);
3478 
3479 /*
3480  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3481  * NULL if none.  Assume start_addr < end_addr.
3482  */
3483 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3484 			unsigned long start_addr, unsigned long end_addr);
3485 
3486 /**
3487  * vma_lookup() - Find a VMA at a specific address
3488  * @mm: The process address space.
3489  * @addr: The user address.
3490  *
3491  * Return: The vm_area_struct at the given address, %NULL otherwise.
3492  */
3493 static inline
3494 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3495 {
3496 	return mtree_load(&mm->mm_mt, addr);
3497 }
3498 
3499 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3500 {
3501 	if (vma->vm_flags & VM_GROWSDOWN)
3502 		return stack_guard_gap;
3503 
3504 	/* See reasoning around the VM_SHADOW_STACK definition */
3505 	if (vma->vm_flags & VM_SHADOW_STACK)
3506 		return PAGE_SIZE;
3507 
3508 	return 0;
3509 }
3510 
3511 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3512 {
3513 	unsigned long gap = stack_guard_start_gap(vma);
3514 	unsigned long vm_start = vma->vm_start;
3515 
3516 	vm_start -= gap;
3517 	if (vm_start > vma->vm_start)
3518 		vm_start = 0;
3519 	return vm_start;
3520 }
3521 
3522 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3523 {
3524 	unsigned long vm_end = vma->vm_end;
3525 
3526 	if (vma->vm_flags & VM_GROWSUP) {
3527 		vm_end += stack_guard_gap;
3528 		if (vm_end < vma->vm_end)
3529 			vm_end = -PAGE_SIZE;
3530 	}
3531 	return vm_end;
3532 }
3533 
3534 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3535 {
3536 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3537 }
3538 
3539 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3540 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3541 				unsigned long vm_start, unsigned long vm_end)
3542 {
3543 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3544 
3545 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3546 		vma = NULL;
3547 
3548 	return vma;
3549 }
3550 
3551 static inline bool range_in_vma(struct vm_area_struct *vma,
3552 				unsigned long start, unsigned long end)
3553 {
3554 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3555 }
3556 
3557 #ifdef CONFIG_MMU
3558 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3559 void vma_set_page_prot(struct vm_area_struct *vma);
3560 #else
3561 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3562 {
3563 	return __pgprot(0);
3564 }
3565 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3566 {
3567 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3568 }
3569 #endif
3570 
3571 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3572 
3573 #ifdef CONFIG_NUMA_BALANCING
3574 unsigned long change_prot_numa(struct vm_area_struct *vma,
3575 			unsigned long start, unsigned long end);
3576 #endif
3577 
3578 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3579 		unsigned long addr);
3580 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3581 			unsigned long pfn, unsigned long size, pgprot_t);
3582 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3583 		unsigned long pfn, unsigned long size, pgprot_t prot);
3584 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3585 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3586 			struct page **pages, unsigned long *num);
3587 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3588 				unsigned long num);
3589 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3590 				unsigned long num);
3591 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3592 			unsigned long pfn);
3593 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3594 			unsigned long pfn, pgprot_t pgprot);
3595 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3596 			pfn_t pfn);
3597 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3598 		unsigned long addr, pfn_t pfn);
3599 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3600 
3601 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3602 				unsigned long addr, struct page *page)
3603 {
3604 	int err = vm_insert_page(vma, addr, page);
3605 
3606 	if (err == -ENOMEM)
3607 		return VM_FAULT_OOM;
3608 	if (err < 0 && err != -EBUSY)
3609 		return VM_FAULT_SIGBUS;
3610 
3611 	return VM_FAULT_NOPAGE;
3612 }
3613 
3614 #ifndef io_remap_pfn_range
3615 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3616 				     unsigned long addr, unsigned long pfn,
3617 				     unsigned long size, pgprot_t prot)
3618 {
3619 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3620 }
3621 #endif
3622 
3623 static inline vm_fault_t vmf_error(int err)
3624 {
3625 	if (err == -ENOMEM)
3626 		return VM_FAULT_OOM;
3627 	else if (err == -EHWPOISON)
3628 		return VM_FAULT_HWPOISON;
3629 	return VM_FAULT_SIGBUS;
3630 }
3631 
3632 /*
3633  * Convert errno to return value for ->page_mkwrite() calls.
3634  *
3635  * This should eventually be merged with vmf_error() above, but will need a
3636  * careful audit of all vmf_error() callers.
3637  */
3638 static inline vm_fault_t vmf_fs_error(int err)
3639 {
3640 	if (err == 0)
3641 		return VM_FAULT_LOCKED;
3642 	if (err == -EFAULT || err == -EAGAIN)
3643 		return VM_FAULT_NOPAGE;
3644 	if (err == -ENOMEM)
3645 		return VM_FAULT_OOM;
3646 	/* -ENOSPC, -EDQUOT, -EIO ... */
3647 	return VM_FAULT_SIGBUS;
3648 }
3649 
3650 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3651 			 unsigned int foll_flags);
3652 
3653 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3654 {
3655 	if (vm_fault & VM_FAULT_OOM)
3656 		return -ENOMEM;
3657 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3658 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3659 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3660 		return -EFAULT;
3661 	return 0;
3662 }
3663 
3664 /*
3665  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3666  * a (NUMA hinting) fault is required.
3667  */
3668 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3669 					   unsigned int flags)
3670 {
3671 	/*
3672 	 * If callers don't want to honor NUMA hinting faults, no need to
3673 	 * determine if we would actually have to trigger a NUMA hinting fault.
3674 	 */
3675 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3676 		return true;
3677 
3678 	/*
3679 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3680 	 *
3681 	 * Requiring a fault here even for inaccessible VMAs would mean that
3682 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3683 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3684 	 */
3685 	return !vma_is_accessible(vma);
3686 }
3687 
3688 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3689 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3690 			       unsigned long size, pte_fn_t fn, void *data);
3691 extern int apply_to_existing_page_range(struct mm_struct *mm,
3692 				   unsigned long address, unsigned long size,
3693 				   pte_fn_t fn, void *data);
3694 
3695 #ifdef CONFIG_PAGE_POISONING
3696 extern void __kernel_poison_pages(struct page *page, int numpages);
3697 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3698 extern bool _page_poisoning_enabled_early;
3699 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3700 static inline bool page_poisoning_enabled(void)
3701 {
3702 	return _page_poisoning_enabled_early;
3703 }
3704 /*
3705  * For use in fast paths after init_mem_debugging() has run, or when a
3706  * false negative result is not harmful when called too early.
3707  */
3708 static inline bool page_poisoning_enabled_static(void)
3709 {
3710 	return static_branch_unlikely(&_page_poisoning_enabled);
3711 }
3712 static inline void kernel_poison_pages(struct page *page, int numpages)
3713 {
3714 	if (page_poisoning_enabled_static())
3715 		__kernel_poison_pages(page, numpages);
3716 }
3717 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3718 {
3719 	if (page_poisoning_enabled_static())
3720 		__kernel_unpoison_pages(page, numpages);
3721 }
3722 #else
3723 static inline bool page_poisoning_enabled(void) { return false; }
3724 static inline bool page_poisoning_enabled_static(void) { return false; }
3725 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3726 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3727 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3728 #endif
3729 
3730 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3731 static inline bool want_init_on_alloc(gfp_t flags)
3732 {
3733 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3734 				&init_on_alloc))
3735 		return true;
3736 	return flags & __GFP_ZERO;
3737 }
3738 
3739 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3740 static inline bool want_init_on_free(void)
3741 {
3742 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3743 				   &init_on_free);
3744 }
3745 
3746 extern bool _debug_pagealloc_enabled_early;
3747 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3748 
3749 static inline bool debug_pagealloc_enabled(void)
3750 {
3751 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3752 		_debug_pagealloc_enabled_early;
3753 }
3754 
3755 /*
3756  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3757  * or when a false negative result is not harmful when called too early.
3758  */
3759 static inline bool debug_pagealloc_enabled_static(void)
3760 {
3761 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3762 		return false;
3763 
3764 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3765 }
3766 
3767 /*
3768  * To support DEBUG_PAGEALLOC architecture must ensure that
3769  * __kernel_map_pages() never fails
3770  */
3771 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3772 #ifdef CONFIG_DEBUG_PAGEALLOC
3773 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3774 {
3775 	if (debug_pagealloc_enabled_static())
3776 		__kernel_map_pages(page, numpages, 1);
3777 }
3778 
3779 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3780 {
3781 	if (debug_pagealloc_enabled_static())
3782 		__kernel_map_pages(page, numpages, 0);
3783 }
3784 
3785 extern unsigned int _debug_guardpage_minorder;
3786 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3787 
3788 static inline unsigned int debug_guardpage_minorder(void)
3789 {
3790 	return _debug_guardpage_minorder;
3791 }
3792 
3793 static inline bool debug_guardpage_enabled(void)
3794 {
3795 	return static_branch_unlikely(&_debug_guardpage_enabled);
3796 }
3797 
3798 static inline bool page_is_guard(struct page *page)
3799 {
3800 	if (!debug_guardpage_enabled())
3801 		return false;
3802 
3803 	return PageGuard(page);
3804 }
3805 
3806 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3807 static inline bool set_page_guard(struct zone *zone, struct page *page,
3808 				  unsigned int order)
3809 {
3810 	if (!debug_guardpage_enabled())
3811 		return false;
3812 	return __set_page_guard(zone, page, order);
3813 }
3814 
3815 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3816 static inline void clear_page_guard(struct zone *zone, struct page *page,
3817 				    unsigned int order)
3818 {
3819 	if (!debug_guardpage_enabled())
3820 		return;
3821 	__clear_page_guard(zone, page, order);
3822 }
3823 
3824 #else	/* CONFIG_DEBUG_PAGEALLOC */
3825 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3826 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3827 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3828 static inline bool debug_guardpage_enabled(void) { return false; }
3829 static inline bool page_is_guard(struct page *page) { return false; }
3830 static inline bool set_page_guard(struct zone *zone, struct page *page,
3831 			unsigned int order) { return false; }
3832 static inline void clear_page_guard(struct zone *zone, struct page *page,
3833 				unsigned int order) {}
3834 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3835 
3836 #ifdef __HAVE_ARCH_GATE_AREA
3837 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3838 extern int in_gate_area_no_mm(unsigned long addr);
3839 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3840 #else
3841 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3842 {
3843 	return NULL;
3844 }
3845 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3846 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3847 {
3848 	return 0;
3849 }
3850 #endif	/* __HAVE_ARCH_GATE_AREA */
3851 
3852 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3853 
3854 #ifdef CONFIG_SYSCTL
3855 extern int sysctl_drop_caches;
3856 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3857 		loff_t *);
3858 #endif
3859 
3860 void drop_slab(void);
3861 
3862 #ifndef CONFIG_MMU
3863 #define randomize_va_space 0
3864 #else
3865 extern int randomize_va_space;
3866 #endif
3867 
3868 const char * arch_vma_name(struct vm_area_struct *vma);
3869 #ifdef CONFIG_MMU
3870 void print_vma_addr(char *prefix, unsigned long rip);
3871 #else
3872 static inline void print_vma_addr(char *prefix, unsigned long rip)
3873 {
3874 }
3875 #endif
3876 
3877 void *sparse_buffer_alloc(unsigned long size);
3878 struct page * __populate_section_memmap(unsigned long pfn,
3879 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3880 		struct dev_pagemap *pgmap);
3881 void pmd_init(void *addr);
3882 void pud_init(void *addr);
3883 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3884 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3885 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3886 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3887 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3888 			    struct vmem_altmap *altmap, struct page *reuse);
3889 void *vmemmap_alloc_block(unsigned long size, int node);
3890 struct vmem_altmap;
3891 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3892 			      struct vmem_altmap *altmap);
3893 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3894 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3895 		     unsigned long addr, unsigned long next);
3896 int vmemmap_check_pmd(pmd_t *pmd, int node,
3897 		      unsigned long addr, unsigned long next);
3898 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3899 			       int node, struct vmem_altmap *altmap);
3900 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3901 			       int node, struct vmem_altmap *altmap);
3902 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3903 		struct vmem_altmap *altmap);
3904 void vmemmap_populate_print_last(void);
3905 #ifdef CONFIG_MEMORY_HOTPLUG
3906 void vmemmap_free(unsigned long start, unsigned long end,
3907 		struct vmem_altmap *altmap);
3908 #endif
3909 
3910 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3911 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3912 {
3913 	/* number of pfns from base where pfn_to_page() is valid */
3914 	if (altmap)
3915 		return altmap->reserve + altmap->free;
3916 	return 0;
3917 }
3918 
3919 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3920 				    unsigned long nr_pfns)
3921 {
3922 	altmap->alloc -= nr_pfns;
3923 }
3924 #else
3925 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3926 {
3927 	return 0;
3928 }
3929 
3930 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3931 				    unsigned long nr_pfns)
3932 {
3933 }
3934 #endif
3935 
3936 #define VMEMMAP_RESERVE_NR	2
3937 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3938 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3939 					  struct dev_pagemap *pgmap)
3940 {
3941 	unsigned long nr_pages;
3942 	unsigned long nr_vmemmap_pages;
3943 
3944 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3945 		return false;
3946 
3947 	nr_pages = pgmap_vmemmap_nr(pgmap);
3948 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3949 	/*
3950 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3951 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3952 	 */
3953 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3954 }
3955 /*
3956  * If we don't have an architecture override, use the generic rule
3957  */
3958 #ifndef vmemmap_can_optimize
3959 #define vmemmap_can_optimize __vmemmap_can_optimize
3960 #endif
3961 
3962 #else
3963 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3964 					   struct dev_pagemap *pgmap)
3965 {
3966 	return false;
3967 }
3968 #endif
3969 
3970 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3971 				  unsigned long nr_pages);
3972 
3973 enum mf_flags {
3974 	MF_COUNT_INCREASED = 1 << 0,
3975 	MF_ACTION_REQUIRED = 1 << 1,
3976 	MF_MUST_KILL = 1 << 2,
3977 	MF_SOFT_OFFLINE = 1 << 3,
3978 	MF_UNPOISON = 1 << 4,
3979 	MF_SW_SIMULATED = 1 << 5,
3980 	MF_NO_RETRY = 1 << 6,
3981 	MF_MEM_PRE_REMOVE = 1 << 7,
3982 };
3983 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3984 		      unsigned long count, int mf_flags);
3985 extern int memory_failure(unsigned long pfn, int flags);
3986 extern void memory_failure_queue_kick(int cpu);
3987 extern int unpoison_memory(unsigned long pfn);
3988 extern atomic_long_t num_poisoned_pages __read_mostly;
3989 extern int soft_offline_page(unsigned long pfn, int flags);
3990 #ifdef CONFIG_MEMORY_FAILURE
3991 /*
3992  * Sysfs entries for memory failure handling statistics.
3993  */
3994 extern const struct attribute_group memory_failure_attr_group;
3995 extern void memory_failure_queue(unsigned long pfn, int flags);
3996 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3997 					bool *migratable_cleared);
3998 void num_poisoned_pages_inc(unsigned long pfn);
3999 void num_poisoned_pages_sub(unsigned long pfn, long i);
4000 #else
4001 static inline void memory_failure_queue(unsigned long pfn, int flags)
4002 {
4003 }
4004 
4005 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4006 					bool *migratable_cleared)
4007 {
4008 	return 0;
4009 }
4010 
4011 static inline void num_poisoned_pages_inc(unsigned long pfn)
4012 {
4013 }
4014 
4015 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4016 {
4017 }
4018 #endif
4019 
4020 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4021 extern void memblk_nr_poison_inc(unsigned long pfn);
4022 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4023 #else
4024 static inline void memblk_nr_poison_inc(unsigned long pfn)
4025 {
4026 }
4027 
4028 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4029 {
4030 }
4031 #endif
4032 
4033 #ifndef arch_memory_failure
4034 static inline int arch_memory_failure(unsigned long pfn, int flags)
4035 {
4036 	return -ENXIO;
4037 }
4038 #endif
4039 
4040 #ifndef arch_is_platform_page
4041 static inline bool arch_is_platform_page(u64 paddr)
4042 {
4043 	return false;
4044 }
4045 #endif
4046 
4047 /*
4048  * Error handlers for various types of pages.
4049  */
4050 enum mf_result {
4051 	MF_IGNORED,	/* Error: cannot be handled */
4052 	MF_FAILED,	/* Error: handling failed */
4053 	MF_DELAYED,	/* Will be handled later */
4054 	MF_RECOVERED,	/* Successfully recovered */
4055 };
4056 
4057 enum mf_action_page_type {
4058 	MF_MSG_KERNEL,
4059 	MF_MSG_KERNEL_HIGH_ORDER,
4060 	MF_MSG_DIFFERENT_COMPOUND,
4061 	MF_MSG_HUGE,
4062 	MF_MSG_FREE_HUGE,
4063 	MF_MSG_GET_HWPOISON,
4064 	MF_MSG_UNMAP_FAILED,
4065 	MF_MSG_DIRTY_SWAPCACHE,
4066 	MF_MSG_CLEAN_SWAPCACHE,
4067 	MF_MSG_DIRTY_MLOCKED_LRU,
4068 	MF_MSG_CLEAN_MLOCKED_LRU,
4069 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4070 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4071 	MF_MSG_DIRTY_LRU,
4072 	MF_MSG_CLEAN_LRU,
4073 	MF_MSG_TRUNCATED_LRU,
4074 	MF_MSG_BUDDY,
4075 	MF_MSG_DAX,
4076 	MF_MSG_UNSPLIT_THP,
4077 	MF_MSG_ALREADY_POISONED,
4078 	MF_MSG_UNKNOWN,
4079 };
4080 
4081 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4082 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4083 int copy_user_large_folio(struct folio *dst, struct folio *src,
4084 			  unsigned long addr_hint,
4085 			  struct vm_area_struct *vma);
4086 long copy_folio_from_user(struct folio *dst_folio,
4087 			   const void __user *usr_src,
4088 			   bool allow_pagefault);
4089 
4090 /**
4091  * vma_is_special_huge - Are transhuge page-table entries considered special?
4092  * @vma: Pointer to the struct vm_area_struct to consider
4093  *
4094  * Whether transhuge page-table entries are considered "special" following
4095  * the definition in vm_normal_page().
4096  *
4097  * Return: true if transhuge page-table entries should be considered special,
4098  * false otherwise.
4099  */
4100 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4101 {
4102 	return vma_is_dax(vma) || (vma->vm_file &&
4103 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4104 }
4105 
4106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4107 
4108 #if MAX_NUMNODES > 1
4109 void __init setup_nr_node_ids(void);
4110 #else
4111 static inline void setup_nr_node_ids(void) {}
4112 #endif
4113 
4114 extern int memcmp_pages(struct page *page1, struct page *page2);
4115 
4116 static inline int pages_identical(struct page *page1, struct page *page2)
4117 {
4118 	return !memcmp_pages(page1, page2);
4119 }
4120 
4121 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4122 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4123 						pgoff_t first_index, pgoff_t nr,
4124 						pgoff_t bitmap_pgoff,
4125 						unsigned long *bitmap,
4126 						pgoff_t *start,
4127 						pgoff_t *end);
4128 
4129 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4130 				      pgoff_t first_index, pgoff_t nr);
4131 #endif
4132 
4133 extern int sysctl_nr_trim_pages;
4134 
4135 #ifdef CONFIG_PRINTK
4136 void mem_dump_obj(void *object);
4137 #else
4138 static inline void mem_dump_obj(void *object) {}
4139 #endif
4140 
4141 /**
4142  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4143  *                    handle them.
4144  * @seals: the seals to check
4145  * @vma: the vma to operate on
4146  *
4147  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4148  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4149  */
4150 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4151 {
4152 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4153 		/*
4154 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4155 		 * write seals are active.
4156 		 */
4157 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4158 			return -EPERM;
4159 
4160 		/*
4161 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4162 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4163 		 * revert protections on such mappings. Do this only for shared
4164 		 * mappings. For private mappings, don't need to mask
4165 		 * VM_MAYWRITE as we still want them to be COW-writable.
4166 		 */
4167 		if (vma->vm_flags & VM_SHARED)
4168 			vm_flags_clear(vma, VM_MAYWRITE);
4169 	}
4170 
4171 	return 0;
4172 }
4173 
4174 #ifdef CONFIG_ANON_VMA_NAME
4175 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4176 			  unsigned long len_in,
4177 			  struct anon_vma_name *anon_name);
4178 #else
4179 static inline int
4180 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4181 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4182 	return 0;
4183 }
4184 #endif
4185 
4186 #ifdef CONFIG_UNACCEPTED_MEMORY
4187 
4188 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4189 void accept_memory(phys_addr_t start, phys_addr_t end);
4190 
4191 #else
4192 
4193 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4194 						    phys_addr_t end)
4195 {
4196 	return false;
4197 }
4198 
4199 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4200 {
4201 }
4202 
4203 #endif
4204 
4205 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4206 {
4207 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4208 
4209 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4210 }
4211 
4212 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4213 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4214 
4215 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4216 
4217 #endif /* _LINUX_MM_H */
4218