1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/security.h> 16 17 struct mempolicy; 18 struct anon_vma; 19 struct file_ra_state; 20 struct user_struct; 21 struct writeback_control; 22 23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24 extern unsigned long max_mapnr; 25 #endif 26 27 extern unsigned long num_physpages; 28 extern void * high_memory; 29 extern int page_cluster; 30 31 #ifdef CONFIG_SYSCTL 32 extern int sysctl_legacy_va_layout; 33 #else 34 #define sysctl_legacy_va_layout 0 35 #endif 36 37 #include <asm/page.h> 38 #include <asm/pgtable.h> 39 #include <asm/processor.h> 40 41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 42 43 /* 44 * Linux kernel virtual memory manager primitives. 45 * The idea being to have a "virtual" mm in the same way 46 * we have a virtual fs - giving a cleaner interface to the 47 * mm details, and allowing different kinds of memory mappings 48 * (from shared memory to executable loading to arbitrary 49 * mmap() functions). 50 */ 51 52 extern struct kmem_cache *vm_area_cachep; 53 54 /* 55 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 56 * disabled, then there's a single shared list of VMAs maintained by the 57 * system, and mm's subscribe to these individually 58 */ 59 struct vm_list_struct { 60 struct vm_list_struct *next; 61 struct vm_area_struct *vma; 62 }; 63 64 #ifndef CONFIG_MMU 65 extern struct rb_root nommu_vma_tree; 66 extern struct rw_semaphore nommu_vma_sem; 67 68 extern unsigned int kobjsize(const void *objp); 69 #endif 70 71 /* 72 * vm_flags.. 73 */ 74 #define VM_READ 0x00000001 /* currently active flags */ 75 #define VM_WRITE 0x00000002 76 #define VM_EXEC 0x00000004 77 #define VM_SHARED 0x00000008 78 79 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 80 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 81 #define VM_MAYWRITE 0x00000020 82 #define VM_MAYEXEC 0x00000040 83 #define VM_MAYSHARE 0x00000080 84 85 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 86 #define VM_GROWSUP 0x00000200 87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90 #define VM_EXECUTABLE 0x00001000 91 #define VM_LOCKED 0x00002000 92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 93 94 /* Used by sys_madvise() */ 95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 97 98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 100 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 101 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 104 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 105 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 106 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 107 108 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 109 110 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 111 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 112 #endif 113 114 #ifdef CONFIG_STACK_GROWSUP 115 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 116 #else 117 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 118 #endif 119 120 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 121 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 122 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 123 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 124 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 125 126 /* 127 * mapping from the currently active vm_flags protection bits (the 128 * low four bits) to a page protection mask.. 129 */ 130 extern pgprot_t protection_map[16]; 131 132 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 133 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 134 135 136 /* 137 * vm_fault is filled by the the pagefault handler and passed to the vma's 138 * ->fault function. The vma's ->fault is responsible for returning a bitmask 139 * of VM_FAULT_xxx flags that give details about how the fault was handled. 140 * 141 * pgoff should be used in favour of virtual_address, if possible. If pgoff 142 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 143 * mapping support. 144 */ 145 struct vm_fault { 146 unsigned int flags; /* FAULT_FLAG_xxx flags */ 147 pgoff_t pgoff; /* Logical page offset based on vma */ 148 void __user *virtual_address; /* Faulting virtual address */ 149 150 struct page *page; /* ->fault handlers should return a 151 * page here, unless VM_FAULT_NOPAGE 152 * is set (which is also implied by 153 * VM_FAULT_ERROR). 154 */ 155 }; 156 157 /* 158 * These are the virtual MM functions - opening of an area, closing and 159 * unmapping it (needed to keep files on disk up-to-date etc), pointer 160 * to the functions called when a no-page or a wp-page exception occurs. 161 */ 162 struct vm_operations_struct { 163 void (*open)(struct vm_area_struct * area); 164 void (*close)(struct vm_area_struct * area); 165 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 166 struct page *(*nopage)(struct vm_area_struct *area, 167 unsigned long address, int *type); 168 unsigned long (*nopfn)(struct vm_area_struct *area, 169 unsigned long address); 170 171 /* notification that a previously read-only page is about to become 172 * writable, if an error is returned it will cause a SIGBUS */ 173 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 174 #ifdef CONFIG_NUMA 175 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 176 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 177 unsigned long addr); 178 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 179 const nodemask_t *to, unsigned long flags); 180 #endif 181 }; 182 183 struct mmu_gather; 184 struct inode; 185 186 #define page_private(page) ((page)->private) 187 #define set_page_private(page, v) ((page)->private = (v)) 188 189 /* 190 * FIXME: take this include out, include page-flags.h in 191 * files which need it (119 of them) 192 */ 193 #include <linux/page-flags.h> 194 195 #ifdef CONFIG_DEBUG_VM 196 #define VM_BUG_ON(cond) BUG_ON(cond) 197 #else 198 #define VM_BUG_ON(condition) do { } while(0) 199 #endif 200 201 /* 202 * Methods to modify the page usage count. 203 * 204 * What counts for a page usage: 205 * - cache mapping (page->mapping) 206 * - private data (page->private) 207 * - page mapped in a task's page tables, each mapping 208 * is counted separately 209 * 210 * Also, many kernel routines increase the page count before a critical 211 * routine so they can be sure the page doesn't go away from under them. 212 */ 213 214 /* 215 * Drop a ref, return true if the refcount fell to zero (the page has no users) 216 */ 217 static inline int put_page_testzero(struct page *page) 218 { 219 VM_BUG_ON(atomic_read(&page->_count) == 0); 220 return atomic_dec_and_test(&page->_count); 221 } 222 223 /* 224 * Try to grab a ref unless the page has a refcount of zero, return false if 225 * that is the case. 226 */ 227 static inline int get_page_unless_zero(struct page *page) 228 { 229 VM_BUG_ON(PageCompound(page)); 230 return atomic_inc_not_zero(&page->_count); 231 } 232 233 static inline struct page *compound_head(struct page *page) 234 { 235 if (unlikely(PageTail(page))) 236 return page->first_page; 237 return page; 238 } 239 240 static inline int page_count(struct page *page) 241 { 242 return atomic_read(&compound_head(page)->_count); 243 } 244 245 static inline void get_page(struct page *page) 246 { 247 page = compound_head(page); 248 VM_BUG_ON(atomic_read(&page->_count) == 0); 249 atomic_inc(&page->_count); 250 } 251 252 static inline struct page *virt_to_head_page(const void *x) 253 { 254 struct page *page = virt_to_page(x); 255 return compound_head(page); 256 } 257 258 /* 259 * Setup the page count before being freed into the page allocator for 260 * the first time (boot or memory hotplug) 261 */ 262 static inline void init_page_count(struct page *page) 263 { 264 atomic_set(&page->_count, 1); 265 } 266 267 void put_page(struct page *page); 268 void put_pages_list(struct list_head *pages); 269 270 void split_page(struct page *page, unsigned int order); 271 272 /* 273 * Compound pages have a destructor function. Provide a 274 * prototype for that function and accessor functions. 275 * These are _only_ valid on the head of a PG_compound page. 276 */ 277 typedef void compound_page_dtor(struct page *); 278 279 static inline void set_compound_page_dtor(struct page *page, 280 compound_page_dtor *dtor) 281 { 282 page[1].lru.next = (void *)dtor; 283 } 284 285 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 286 { 287 return (compound_page_dtor *)page[1].lru.next; 288 } 289 290 static inline int compound_order(struct page *page) 291 { 292 if (!PageHead(page)) 293 return 0; 294 return (unsigned long)page[1].lru.prev; 295 } 296 297 static inline void set_compound_order(struct page *page, unsigned long order) 298 { 299 page[1].lru.prev = (void *)order; 300 } 301 302 /* 303 * Multiple processes may "see" the same page. E.g. for untouched 304 * mappings of /dev/null, all processes see the same page full of 305 * zeroes, and text pages of executables and shared libraries have 306 * only one copy in memory, at most, normally. 307 * 308 * For the non-reserved pages, page_count(page) denotes a reference count. 309 * page_count() == 0 means the page is free. page->lru is then used for 310 * freelist management in the buddy allocator. 311 * page_count() > 0 means the page has been allocated. 312 * 313 * Pages are allocated by the slab allocator in order to provide memory 314 * to kmalloc and kmem_cache_alloc. In this case, the management of the 315 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 316 * unless a particular usage is carefully commented. (the responsibility of 317 * freeing the kmalloc memory is the caller's, of course). 318 * 319 * A page may be used by anyone else who does a __get_free_page(). 320 * In this case, page_count still tracks the references, and should only 321 * be used through the normal accessor functions. The top bits of page->flags 322 * and page->virtual store page management information, but all other fields 323 * are unused and could be used privately, carefully. The management of this 324 * page is the responsibility of the one who allocated it, and those who have 325 * subsequently been given references to it. 326 * 327 * The other pages (we may call them "pagecache pages") are completely 328 * managed by the Linux memory manager: I/O, buffers, swapping etc. 329 * The following discussion applies only to them. 330 * 331 * A pagecache page contains an opaque `private' member, which belongs to the 332 * page's address_space. Usually, this is the address of a circular list of 333 * the page's disk buffers. PG_private must be set to tell the VM to call 334 * into the filesystem to release these pages. 335 * 336 * A page may belong to an inode's memory mapping. In this case, page->mapping 337 * is the pointer to the inode, and page->index is the file offset of the page, 338 * in units of PAGE_CACHE_SIZE. 339 * 340 * If pagecache pages are not associated with an inode, they are said to be 341 * anonymous pages. These may become associated with the swapcache, and in that 342 * case PG_swapcache is set, and page->private is an offset into the swapcache. 343 * 344 * In either case (swapcache or inode backed), the pagecache itself holds one 345 * reference to the page. Setting PG_private should also increment the 346 * refcount. The each user mapping also has a reference to the page. 347 * 348 * The pagecache pages are stored in a per-mapping radix tree, which is 349 * rooted at mapping->page_tree, and indexed by offset. 350 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 351 * lists, we instead now tag pages as dirty/writeback in the radix tree. 352 * 353 * All pagecache pages may be subject to I/O: 354 * - inode pages may need to be read from disk, 355 * - inode pages which have been modified and are MAP_SHARED may need 356 * to be written back to the inode on disk, 357 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 358 * modified may need to be swapped out to swap space and (later) to be read 359 * back into memory. 360 */ 361 362 /* 363 * The zone field is never updated after free_area_init_core() 364 * sets it, so none of the operations on it need to be atomic. 365 */ 366 367 368 /* 369 * page->flags layout: 370 * 371 * There are three possibilities for how page->flags get 372 * laid out. The first is for the normal case, without 373 * sparsemem. The second is for sparsemem when there is 374 * plenty of space for node and section. The last is when 375 * we have run out of space and have to fall back to an 376 * alternate (slower) way of determining the node. 377 * 378 * No sparsemem: | NODE | ZONE | ... | FLAGS | 379 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 380 * no space for node: | SECTION | ZONE | ... | FLAGS | 381 */ 382 #ifdef CONFIG_SPARSEMEM 383 #define SECTIONS_WIDTH SECTIONS_SHIFT 384 #else 385 #define SECTIONS_WIDTH 0 386 #endif 387 388 #define ZONES_WIDTH ZONES_SHIFT 389 390 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 391 #define NODES_WIDTH NODES_SHIFT 392 #else 393 #define NODES_WIDTH 0 394 #endif 395 396 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 397 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 398 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 399 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 400 401 /* 402 * We are going to use the flags for the page to node mapping if its in 403 * there. This includes the case where there is no node, so it is implicit. 404 */ 405 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 406 #define NODE_NOT_IN_PAGE_FLAGS 407 #endif 408 409 #ifndef PFN_SECTION_SHIFT 410 #define PFN_SECTION_SHIFT 0 411 #endif 412 413 /* 414 * Define the bit shifts to access each section. For non-existant 415 * sections we define the shift as 0; that plus a 0 mask ensures 416 * the compiler will optimise away reference to them. 417 */ 418 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 419 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 420 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 421 422 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 423 #ifdef NODE_NOT_IN_PAGEFLAGS 424 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 425 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 426 SECTIONS_PGOFF : ZONES_PGOFF) 427 #else 428 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 429 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 430 NODES_PGOFF : ZONES_PGOFF) 431 #endif 432 433 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 434 435 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 436 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 437 #endif 438 439 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 440 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 441 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 442 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 443 444 static inline enum zone_type page_zonenum(struct page *page) 445 { 446 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 447 } 448 449 /* 450 * The identification function is only used by the buddy allocator for 451 * determining if two pages could be buddies. We are not really 452 * identifying a zone since we could be using a the section number 453 * id if we have not node id available in page flags. 454 * We guarantee only that it will return the same value for two 455 * combinable pages in a zone. 456 */ 457 static inline int page_zone_id(struct page *page) 458 { 459 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 460 } 461 462 static inline int zone_to_nid(struct zone *zone) 463 { 464 #ifdef CONFIG_NUMA 465 return zone->node; 466 #else 467 return 0; 468 #endif 469 } 470 471 #ifdef NODE_NOT_IN_PAGE_FLAGS 472 extern int page_to_nid(struct page *page); 473 #else 474 static inline int page_to_nid(struct page *page) 475 { 476 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 477 } 478 #endif 479 480 static inline struct zone *page_zone(struct page *page) 481 { 482 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 483 } 484 485 static inline unsigned long page_to_section(struct page *page) 486 { 487 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 488 } 489 490 static inline void set_page_zone(struct page *page, enum zone_type zone) 491 { 492 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 493 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 494 } 495 496 static inline void set_page_node(struct page *page, unsigned long node) 497 { 498 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 499 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 500 } 501 502 static inline void set_page_section(struct page *page, unsigned long section) 503 { 504 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 505 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 506 } 507 508 static inline void set_page_links(struct page *page, enum zone_type zone, 509 unsigned long node, unsigned long pfn) 510 { 511 set_page_zone(page, zone); 512 set_page_node(page, node); 513 set_page_section(page, pfn_to_section_nr(pfn)); 514 } 515 516 /* 517 * If a hint addr is less than mmap_min_addr change hint to be as 518 * low as possible but still greater than mmap_min_addr 519 */ 520 static inline unsigned long round_hint_to_min(unsigned long hint) 521 { 522 #ifdef CONFIG_SECURITY 523 hint &= PAGE_MASK; 524 if (((void *)hint != NULL) && 525 (hint < mmap_min_addr)) 526 return PAGE_ALIGN(mmap_min_addr); 527 #endif 528 return hint; 529 } 530 531 /* 532 * Some inline functions in vmstat.h depend on page_zone() 533 */ 534 #include <linux/vmstat.h> 535 536 static __always_inline void *lowmem_page_address(struct page *page) 537 { 538 return __va(page_to_pfn(page) << PAGE_SHIFT); 539 } 540 541 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 542 #define HASHED_PAGE_VIRTUAL 543 #endif 544 545 #if defined(WANT_PAGE_VIRTUAL) 546 #define page_address(page) ((page)->virtual) 547 #define set_page_address(page, address) \ 548 do { \ 549 (page)->virtual = (address); \ 550 } while(0) 551 #define page_address_init() do { } while(0) 552 #endif 553 554 #if defined(HASHED_PAGE_VIRTUAL) 555 void *page_address(struct page *page); 556 void set_page_address(struct page *page, void *virtual); 557 void page_address_init(void); 558 #endif 559 560 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 561 #define page_address(page) lowmem_page_address(page) 562 #define set_page_address(page, address) do { } while(0) 563 #define page_address_init() do { } while(0) 564 #endif 565 566 /* 567 * On an anonymous page mapped into a user virtual memory area, 568 * page->mapping points to its anon_vma, not to a struct address_space; 569 * with the PAGE_MAPPING_ANON bit set to distinguish it. 570 * 571 * Please note that, confusingly, "page_mapping" refers to the inode 572 * address_space which maps the page from disk; whereas "page_mapped" 573 * refers to user virtual address space into which the page is mapped. 574 */ 575 #define PAGE_MAPPING_ANON 1 576 577 extern struct address_space swapper_space; 578 static inline struct address_space *page_mapping(struct page *page) 579 { 580 struct address_space *mapping = page->mapping; 581 582 VM_BUG_ON(PageSlab(page)); 583 if (unlikely(PageSwapCache(page))) 584 mapping = &swapper_space; 585 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 586 mapping = NULL; 587 return mapping; 588 } 589 590 static inline int PageAnon(struct page *page) 591 { 592 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 593 } 594 595 /* 596 * Return the pagecache index of the passed page. Regular pagecache pages 597 * use ->index whereas swapcache pages use ->private 598 */ 599 static inline pgoff_t page_index(struct page *page) 600 { 601 if (unlikely(PageSwapCache(page))) 602 return page_private(page); 603 return page->index; 604 } 605 606 /* 607 * The atomic page->_mapcount, like _count, starts from -1: 608 * so that transitions both from it and to it can be tracked, 609 * using atomic_inc_and_test and atomic_add_negative(-1). 610 */ 611 static inline void reset_page_mapcount(struct page *page) 612 { 613 atomic_set(&(page)->_mapcount, -1); 614 } 615 616 static inline int page_mapcount(struct page *page) 617 { 618 return atomic_read(&(page)->_mapcount) + 1; 619 } 620 621 /* 622 * Return true if this page is mapped into pagetables. 623 */ 624 static inline int page_mapped(struct page *page) 625 { 626 return atomic_read(&(page)->_mapcount) >= 0; 627 } 628 629 /* 630 * Error return values for the *_nopage functions 631 */ 632 #define NOPAGE_SIGBUS (NULL) 633 #define NOPAGE_OOM ((struct page *) (-1)) 634 635 /* 636 * Error return values for the *_nopfn functions 637 */ 638 #define NOPFN_SIGBUS ((unsigned long) -1) 639 #define NOPFN_OOM ((unsigned long) -2) 640 #define NOPFN_REFAULT ((unsigned long) -3) 641 642 /* 643 * Different kinds of faults, as returned by handle_mm_fault(). 644 * Used to decide whether a process gets delivered SIGBUS or 645 * just gets major/minor fault counters bumped up. 646 */ 647 648 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 649 650 #define VM_FAULT_OOM 0x0001 651 #define VM_FAULT_SIGBUS 0x0002 652 #define VM_FAULT_MAJOR 0x0004 653 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 654 655 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 656 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 657 658 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 659 660 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 661 662 extern void show_free_areas(void); 663 664 #ifdef CONFIG_SHMEM 665 int shmem_lock(struct file *file, int lock, struct user_struct *user); 666 #else 667 static inline int shmem_lock(struct file *file, int lock, 668 struct user_struct *user) 669 { 670 return 0; 671 } 672 #endif 673 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 674 675 int shmem_zero_setup(struct vm_area_struct *); 676 677 #ifndef CONFIG_MMU 678 extern unsigned long shmem_get_unmapped_area(struct file *file, 679 unsigned long addr, 680 unsigned long len, 681 unsigned long pgoff, 682 unsigned long flags); 683 #endif 684 685 extern int can_do_mlock(void); 686 extern int user_shm_lock(size_t, struct user_struct *); 687 extern void user_shm_unlock(size_t, struct user_struct *); 688 689 /* 690 * Parameter block passed down to zap_pte_range in exceptional cases. 691 */ 692 struct zap_details { 693 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 694 struct address_space *check_mapping; /* Check page->mapping if set */ 695 pgoff_t first_index; /* Lowest page->index to unmap */ 696 pgoff_t last_index; /* Highest page->index to unmap */ 697 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 698 unsigned long truncate_count; /* Compare vm_truncate_count */ 699 }; 700 701 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 702 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 703 unsigned long size, struct zap_details *); 704 unsigned long unmap_vmas(struct mmu_gather **tlb, 705 struct vm_area_struct *start_vma, unsigned long start_addr, 706 unsigned long end_addr, unsigned long *nr_accounted, 707 struct zap_details *); 708 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 709 unsigned long end, unsigned long floor, unsigned long ceiling); 710 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 711 unsigned long floor, unsigned long ceiling); 712 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 713 struct vm_area_struct *vma); 714 void unmap_mapping_range(struct address_space *mapping, 715 loff_t const holebegin, loff_t const holelen, int even_cows); 716 717 static inline void unmap_shared_mapping_range(struct address_space *mapping, 718 loff_t const holebegin, loff_t const holelen) 719 { 720 unmap_mapping_range(mapping, holebegin, holelen, 0); 721 } 722 723 extern int vmtruncate(struct inode * inode, loff_t offset); 724 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 725 726 #ifdef CONFIG_MMU 727 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 728 unsigned long address, int write_access); 729 #else 730 static inline int handle_mm_fault(struct mm_struct *mm, 731 struct vm_area_struct *vma, unsigned long address, 732 int write_access) 733 { 734 /* should never happen if there's no MMU */ 735 BUG(); 736 return VM_FAULT_SIGBUS; 737 } 738 #endif 739 740 extern int make_pages_present(unsigned long addr, unsigned long end); 741 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 742 743 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 744 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 745 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 746 747 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 748 extern void do_invalidatepage(struct page *page, unsigned long offset); 749 750 int __set_page_dirty_nobuffers(struct page *page); 751 int __set_page_dirty_no_writeback(struct page *page); 752 int redirty_page_for_writepage(struct writeback_control *wbc, 753 struct page *page); 754 int FASTCALL(set_page_dirty(struct page *page)); 755 int set_page_dirty_lock(struct page *page); 756 int clear_page_dirty_for_io(struct page *page); 757 758 extern unsigned long move_page_tables(struct vm_area_struct *vma, 759 unsigned long old_addr, struct vm_area_struct *new_vma, 760 unsigned long new_addr, unsigned long len); 761 extern unsigned long do_mremap(unsigned long addr, 762 unsigned long old_len, unsigned long new_len, 763 unsigned long flags, unsigned long new_addr); 764 extern int mprotect_fixup(struct vm_area_struct *vma, 765 struct vm_area_struct **pprev, unsigned long start, 766 unsigned long end, unsigned long newflags); 767 768 /* 769 * A callback you can register to apply pressure to ageable caches. 770 * 771 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 772 * look through the least-recently-used 'nr_to_scan' entries and 773 * attempt to free them up. It should return the number of objects 774 * which remain in the cache. If it returns -1, it means it cannot do 775 * any scanning at this time (eg. there is a risk of deadlock). 776 * 777 * The 'gfpmask' refers to the allocation we are currently trying to 778 * fulfil. 779 * 780 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 781 * querying the cache size, so a fastpath for that case is appropriate. 782 */ 783 struct shrinker { 784 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 785 int seeks; /* seeks to recreate an obj */ 786 787 /* These are for internal use */ 788 struct list_head list; 789 long nr; /* objs pending delete */ 790 }; 791 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 792 extern void register_shrinker(struct shrinker *); 793 extern void unregister_shrinker(struct shrinker *); 794 795 int vma_wants_writenotify(struct vm_area_struct *vma); 796 797 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 798 799 #ifdef __PAGETABLE_PUD_FOLDED 800 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 801 unsigned long address) 802 { 803 return 0; 804 } 805 #else 806 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 807 #endif 808 809 #ifdef __PAGETABLE_PMD_FOLDED 810 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 811 unsigned long address) 812 { 813 return 0; 814 } 815 #else 816 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 817 #endif 818 819 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 820 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 821 822 /* 823 * The following ifdef needed to get the 4level-fixup.h header to work. 824 * Remove it when 4level-fixup.h has been removed. 825 */ 826 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 827 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 828 { 829 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 830 NULL: pud_offset(pgd, address); 831 } 832 833 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 834 { 835 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 836 NULL: pmd_offset(pud, address); 837 } 838 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 839 840 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 841 /* 842 * We tuck a spinlock to guard each pagetable page into its struct page, 843 * at page->private, with BUILD_BUG_ON to make sure that this will not 844 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 845 * When freeing, reset page->mapping so free_pages_check won't complain. 846 */ 847 #define __pte_lockptr(page) &((page)->ptl) 848 #define pte_lock_init(_page) do { \ 849 spin_lock_init(__pte_lockptr(_page)); \ 850 } while (0) 851 #define pte_lock_deinit(page) ((page)->mapping = NULL) 852 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 853 #else 854 /* 855 * We use mm->page_table_lock to guard all pagetable pages of the mm. 856 */ 857 #define pte_lock_init(page) do {} while (0) 858 #define pte_lock_deinit(page) do {} while (0) 859 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 860 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 861 862 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 863 ({ \ 864 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 865 pte_t *__pte = pte_offset_map(pmd, address); \ 866 *(ptlp) = __ptl; \ 867 spin_lock(__ptl); \ 868 __pte; \ 869 }) 870 871 #define pte_unmap_unlock(pte, ptl) do { \ 872 spin_unlock(ptl); \ 873 pte_unmap(pte); \ 874 } while (0) 875 876 #define pte_alloc_map(mm, pmd, address) \ 877 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 878 NULL: pte_offset_map(pmd, address)) 879 880 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 881 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 882 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 883 884 #define pte_alloc_kernel(pmd, address) \ 885 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 886 NULL: pte_offset_kernel(pmd, address)) 887 888 extern void free_area_init(unsigned long * zones_size); 889 extern void free_area_init_node(int nid, pg_data_t *pgdat, 890 unsigned long * zones_size, unsigned long zone_start_pfn, 891 unsigned long *zholes_size); 892 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 893 /* 894 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 895 * zones, allocate the backing mem_map and account for memory holes in a more 896 * architecture independent manner. This is a substitute for creating the 897 * zone_sizes[] and zholes_size[] arrays and passing them to 898 * free_area_init_node() 899 * 900 * An architecture is expected to register range of page frames backed by 901 * physical memory with add_active_range() before calling 902 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 903 * usage, an architecture is expected to do something like 904 * 905 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 906 * max_highmem_pfn}; 907 * for_each_valid_physical_page_range() 908 * add_active_range(node_id, start_pfn, end_pfn) 909 * free_area_init_nodes(max_zone_pfns); 910 * 911 * If the architecture guarantees that there are no holes in the ranges 912 * registered with add_active_range(), free_bootmem_active_regions() 913 * will call free_bootmem_node() for each registered physical page range. 914 * Similarly sparse_memory_present_with_active_regions() calls 915 * memory_present() for each range when SPARSEMEM is enabled. 916 * 917 * See mm/page_alloc.c for more information on each function exposed by 918 * CONFIG_ARCH_POPULATES_NODE_MAP 919 */ 920 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 921 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 922 unsigned long end_pfn); 923 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 924 unsigned long new_end_pfn); 925 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 926 unsigned long end_pfn); 927 extern void remove_all_active_ranges(void); 928 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 929 unsigned long end_pfn); 930 extern void get_pfn_range_for_nid(unsigned int nid, 931 unsigned long *start_pfn, unsigned long *end_pfn); 932 extern unsigned long find_min_pfn_with_active_regions(void); 933 extern unsigned long find_max_pfn_with_active_regions(void); 934 extern void free_bootmem_with_active_regions(int nid, 935 unsigned long max_low_pfn); 936 extern void sparse_memory_present_with_active_regions(int nid); 937 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 938 extern int early_pfn_to_nid(unsigned long pfn); 939 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 940 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 941 extern void set_dma_reserve(unsigned long new_dma_reserve); 942 extern void memmap_init_zone(unsigned long, int, unsigned long, 943 unsigned long, enum memmap_context); 944 extern void setup_per_zone_pages_min(void); 945 extern void mem_init(void); 946 extern void show_mem(void); 947 extern void si_meminfo(struct sysinfo * val); 948 extern void si_meminfo_node(struct sysinfo *val, int nid); 949 950 #ifdef CONFIG_NUMA 951 extern void setup_per_cpu_pageset(void); 952 #else 953 static inline void setup_per_cpu_pageset(void) {} 954 #endif 955 956 /* prio_tree.c */ 957 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 958 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 959 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 960 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 961 struct prio_tree_iter *iter); 962 963 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 964 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 965 (vma = vma_prio_tree_next(vma, iter)); ) 966 967 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 968 struct list_head *list) 969 { 970 vma->shared.vm_set.parent = NULL; 971 list_add_tail(&vma->shared.vm_set.list, list); 972 } 973 974 /* mmap.c */ 975 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 976 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 977 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 978 extern struct vm_area_struct *vma_merge(struct mm_struct *, 979 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 980 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 981 struct mempolicy *); 982 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 983 extern int split_vma(struct mm_struct *, 984 struct vm_area_struct *, unsigned long addr, int new_below); 985 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 986 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 987 struct rb_node **, struct rb_node *); 988 extern void unlink_file_vma(struct vm_area_struct *); 989 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 990 unsigned long addr, unsigned long len, pgoff_t pgoff); 991 extern void exit_mmap(struct mm_struct *); 992 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 993 extern int install_special_mapping(struct mm_struct *mm, 994 unsigned long addr, unsigned long len, 995 unsigned long flags, struct page **pages); 996 997 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 998 999 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1000 unsigned long len, unsigned long prot, 1001 unsigned long flag, unsigned long pgoff); 1002 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1003 unsigned long len, unsigned long flags, 1004 unsigned int vm_flags, unsigned long pgoff, 1005 int accountable); 1006 1007 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1008 unsigned long len, unsigned long prot, 1009 unsigned long flag, unsigned long offset) 1010 { 1011 unsigned long ret = -EINVAL; 1012 if ((offset + PAGE_ALIGN(len)) < offset) 1013 goto out; 1014 if (!(offset & ~PAGE_MASK)) 1015 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1016 out: 1017 return ret; 1018 } 1019 1020 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1021 1022 extern unsigned long do_brk(unsigned long, unsigned long); 1023 1024 /* filemap.c */ 1025 extern unsigned long page_unuse(struct page *); 1026 extern void truncate_inode_pages(struct address_space *, loff_t); 1027 extern void truncate_inode_pages_range(struct address_space *, 1028 loff_t lstart, loff_t lend); 1029 1030 /* generic vm_area_ops exported for stackable file systems */ 1031 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1032 1033 /* mm/page-writeback.c */ 1034 int write_one_page(struct page *page, int wait); 1035 1036 /* readahead.c */ 1037 #define VM_MAX_READAHEAD 128 /* kbytes */ 1038 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1039 1040 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1041 pgoff_t offset, unsigned long nr_to_read); 1042 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1043 pgoff_t offset, unsigned long nr_to_read); 1044 1045 void page_cache_sync_readahead(struct address_space *mapping, 1046 struct file_ra_state *ra, 1047 struct file *filp, 1048 pgoff_t offset, 1049 unsigned long size); 1050 1051 void page_cache_async_readahead(struct address_space *mapping, 1052 struct file_ra_state *ra, 1053 struct file *filp, 1054 struct page *pg, 1055 pgoff_t offset, 1056 unsigned long size); 1057 1058 unsigned long max_sane_readahead(unsigned long nr); 1059 1060 /* Do stack extension */ 1061 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1062 #ifdef CONFIG_IA64 1063 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1064 #endif 1065 extern int expand_stack_downwards(struct vm_area_struct *vma, 1066 unsigned long address); 1067 1068 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1069 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1070 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1071 struct vm_area_struct **pprev); 1072 1073 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1074 NULL if none. Assume start_addr < end_addr. */ 1075 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1076 { 1077 struct vm_area_struct * vma = find_vma(mm,start_addr); 1078 1079 if (vma && end_addr <= vma->vm_start) 1080 vma = NULL; 1081 return vma; 1082 } 1083 1084 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1085 { 1086 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1087 } 1088 1089 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1090 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1091 struct page *vmalloc_to_page(void *addr); 1092 unsigned long vmalloc_to_pfn(void *addr); 1093 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1094 unsigned long pfn, unsigned long size, pgprot_t); 1095 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1096 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1097 unsigned long pfn); 1098 1099 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1100 unsigned int foll_flags); 1101 #define FOLL_WRITE 0x01 /* check pte is writable */ 1102 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1103 #define FOLL_GET 0x04 /* do get_page on page */ 1104 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1105 1106 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, 1107 void *data); 1108 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1109 unsigned long size, pte_fn_t fn, void *data); 1110 1111 #ifdef CONFIG_PROC_FS 1112 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1113 #else 1114 static inline void vm_stat_account(struct mm_struct *mm, 1115 unsigned long flags, struct file *file, long pages) 1116 { 1117 } 1118 #endif /* CONFIG_PROC_FS */ 1119 1120 #ifndef CONFIG_DEBUG_PAGEALLOC 1121 static inline void 1122 kernel_map_pages(struct page *page, int numpages, int enable) {} 1123 #endif 1124 1125 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1126 #ifdef __HAVE_ARCH_GATE_AREA 1127 int in_gate_area_no_task(unsigned long addr); 1128 int in_gate_area(struct task_struct *task, unsigned long addr); 1129 #else 1130 int in_gate_area_no_task(unsigned long addr); 1131 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1132 #endif /* __HAVE_ARCH_GATE_AREA */ 1133 1134 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1135 void __user *, size_t *, loff_t *); 1136 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1137 unsigned long lru_pages); 1138 void drop_pagecache(void); 1139 void drop_slab(void); 1140 1141 #ifndef CONFIG_MMU 1142 #define randomize_va_space 0 1143 #else 1144 extern int randomize_va_space; 1145 #endif 1146 1147 const char * arch_vma_name(struct vm_area_struct *vma); 1148 1149 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1150 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1151 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1152 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1153 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1154 void *vmemmap_alloc_block(unsigned long size, int node); 1155 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1156 int vmemmap_populate_basepages(struct page *start_page, 1157 unsigned long pages, int node); 1158 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1159 1160 #endif /* __KERNEL__ */ 1161 #endif /* _LINUX_MM_H */ 1162