1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/sched.h> 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/config.h> 10 #include <linux/gfp.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/prio_tree.h> 15 #include <linux/fs.h> 16 17 struct mempolicy; 18 struct anon_vma; 19 20 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 21 extern unsigned long max_mapnr; 22 #endif 23 24 extern unsigned long num_physpages; 25 extern void * high_memory; 26 extern unsigned long vmalloc_earlyreserve; 27 extern int page_cluster; 28 29 #ifdef CONFIG_SYSCTL 30 extern int sysctl_legacy_va_layout; 31 #else 32 #define sysctl_legacy_va_layout 0 33 #endif 34 35 #include <asm/page.h> 36 #include <asm/pgtable.h> 37 #include <asm/processor.h> 38 #include <asm/atomic.h> 39 40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 41 42 /* 43 * Linux kernel virtual memory manager primitives. 44 * The idea being to have a "virtual" mm in the same way 45 * we have a virtual fs - giving a cleaner interface to the 46 * mm details, and allowing different kinds of memory mappings 47 * (from shared memory to executable loading to arbitrary 48 * mmap() functions). 49 */ 50 51 /* 52 * This struct defines a memory VMM memory area. There is one of these 53 * per VM-area/task. A VM area is any part of the process virtual memory 54 * space that has a special rule for the page-fault handlers (ie a shared 55 * library, the executable area etc). 56 */ 57 struct vm_area_struct { 58 struct mm_struct * vm_mm; /* The address space we belong to. */ 59 unsigned long vm_start; /* Our start address within vm_mm. */ 60 unsigned long vm_end; /* The first byte after our end address 61 within vm_mm. */ 62 63 /* linked list of VM areas per task, sorted by address */ 64 struct vm_area_struct *vm_next; 65 66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 67 unsigned long vm_flags; /* Flags, listed below. */ 68 69 struct rb_node vm_rb; 70 71 /* 72 * For areas with an address space and backing store, 73 * linkage into the address_space->i_mmap prio tree, or 74 * linkage to the list of like vmas hanging off its node, or 75 * linkage of vma in the address_space->i_mmap_nonlinear list. 76 */ 77 union { 78 struct { 79 struct list_head list; 80 void *parent; /* aligns with prio_tree_node parent */ 81 struct vm_area_struct *head; 82 } vm_set; 83 84 struct raw_prio_tree_node prio_tree_node; 85 } shared; 86 87 /* 88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 89 * list, after a COW of one of the file pages. A MAP_SHARED vma 90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 91 * or brk vma (with NULL file) can only be in an anon_vma list. 92 */ 93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 95 96 /* Function pointers to deal with this struct. */ 97 struct vm_operations_struct * vm_ops; 98 99 /* Information about our backing store: */ 100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 101 units, *not* PAGE_CACHE_SIZE */ 102 struct file * vm_file; /* File we map to (can be NULL). */ 103 void * vm_private_data; /* was vm_pte (shared mem) */ 104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 105 106 #ifndef CONFIG_MMU 107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 108 #endif 109 #ifdef CONFIG_NUMA 110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 111 #endif 112 }; 113 114 /* 115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 116 * disabled, then there's a single shared list of VMAs maintained by the 117 * system, and mm's subscribe to these individually 118 */ 119 struct vm_list_struct { 120 struct vm_list_struct *next; 121 struct vm_area_struct *vma; 122 }; 123 124 #ifndef CONFIG_MMU 125 extern struct rb_root nommu_vma_tree; 126 extern struct rw_semaphore nommu_vma_sem; 127 128 extern unsigned int kobjsize(const void *objp); 129 #endif 130 131 /* 132 * vm_flags.. 133 */ 134 #define VM_READ 0x00000001 /* currently active flags */ 135 #define VM_WRITE 0x00000002 136 #define VM_EXEC 0x00000004 137 #define VM_SHARED 0x00000008 138 139 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 140 #define VM_MAYWRITE 0x00000020 141 #define VM_MAYEXEC 0x00000040 142 #define VM_MAYSHARE 0x00000080 143 144 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 145 #define VM_GROWSUP 0x00000200 146 #define VM_SHM 0x00000400 /* shared memory area, don't swap out */ 147 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 148 149 #define VM_EXECUTABLE 0x00001000 150 #define VM_LOCKED 0x00002000 151 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 152 153 /* Used by sys_madvise() */ 154 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 155 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 156 157 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 158 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 159 #define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */ 160 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 161 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 162 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 163 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 164 165 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 166 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 167 #endif 168 169 #ifdef CONFIG_STACK_GROWSUP 170 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 171 #else 172 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 173 #endif 174 175 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 176 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 177 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 178 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 179 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 180 181 /* 182 * mapping from the currently active vm_flags protection bits (the 183 * low four bits) to a page protection mask.. 184 */ 185 extern pgprot_t protection_map[16]; 186 187 188 /* 189 * These are the virtual MM functions - opening of an area, closing and 190 * unmapping it (needed to keep files on disk up-to-date etc), pointer 191 * to the functions called when a no-page or a wp-page exception occurs. 192 */ 193 struct vm_operations_struct { 194 void (*open)(struct vm_area_struct * area); 195 void (*close)(struct vm_area_struct * area); 196 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 197 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 198 #ifdef CONFIG_NUMA 199 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 200 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 201 unsigned long addr); 202 #endif 203 }; 204 205 struct mmu_gather; 206 struct inode; 207 208 #ifdef ARCH_HAS_ATOMIC_UNSIGNED 209 typedef unsigned page_flags_t; 210 #else 211 typedef unsigned long page_flags_t; 212 #endif 213 214 /* 215 * Each physical page in the system has a struct page associated with 216 * it to keep track of whatever it is we are using the page for at the 217 * moment. Note that we have no way to track which tasks are using 218 * a page. 219 */ 220 struct page { 221 page_flags_t flags; /* Atomic flags, some possibly 222 * updated asynchronously */ 223 atomic_t _count; /* Usage count, see below. */ 224 atomic_t _mapcount; /* Count of ptes mapped in mms, 225 * to show when page is mapped 226 * & limit reverse map searches. 227 */ 228 unsigned long private; /* Mapping-private opaque data: 229 * usually used for buffer_heads 230 * if PagePrivate set; used for 231 * swp_entry_t if PageSwapCache 232 * When page is free, this indicates 233 * order in the buddy system. 234 */ 235 struct address_space *mapping; /* If low bit clear, points to 236 * inode address_space, or NULL. 237 * If page mapped as anonymous 238 * memory, low bit is set, and 239 * it points to anon_vma object: 240 * see PAGE_MAPPING_ANON below. 241 */ 242 pgoff_t index; /* Our offset within mapping. */ 243 struct list_head lru; /* Pageout list, eg. active_list 244 * protected by zone->lru_lock ! 245 */ 246 /* 247 * On machines where all RAM is mapped into kernel address space, 248 * we can simply calculate the virtual address. On machines with 249 * highmem some memory is mapped into kernel virtual memory 250 * dynamically, so we need a place to store that address. 251 * Note that this field could be 16 bits on x86 ... ;) 252 * 253 * Architectures with slow multiplication can define 254 * WANT_PAGE_VIRTUAL in asm/page.h 255 */ 256 #if defined(WANT_PAGE_VIRTUAL) 257 void *virtual; /* Kernel virtual address (NULL if 258 not kmapped, ie. highmem) */ 259 #endif /* WANT_PAGE_VIRTUAL */ 260 }; 261 262 /* 263 * FIXME: take this include out, include page-flags.h in 264 * files which need it (119 of them) 265 */ 266 #include <linux/page-flags.h> 267 268 /* 269 * Methods to modify the page usage count. 270 * 271 * What counts for a page usage: 272 * - cache mapping (page->mapping) 273 * - private data (page->private) 274 * - page mapped in a task's page tables, each mapping 275 * is counted separately 276 * 277 * Also, many kernel routines increase the page count before a critical 278 * routine so they can be sure the page doesn't go away from under them. 279 * 280 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we 281 * can use atomic_add_negative(-1, page->_count) to detect when the page 282 * becomes free and so that we can also use atomic_inc_and_test to atomically 283 * detect when we just tried to grab a ref on a page which some other CPU has 284 * already deemed to be freeable. 285 * 286 * NO code should make assumptions about this internal detail! Use the provided 287 * macros which retain the old rules: page_count(page) == 0 is a free page. 288 */ 289 290 /* 291 * Drop a ref, return true if the logical refcount fell to zero (the page has 292 * no users) 293 */ 294 #define put_page_testzero(p) \ 295 ({ \ 296 BUG_ON(page_count(p) == 0); \ 297 atomic_add_negative(-1, &(p)->_count); \ 298 }) 299 300 /* 301 * Grab a ref, return true if the page previously had a logical refcount of 302 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page 303 */ 304 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count) 305 306 #define set_page_count(p,v) atomic_set(&(p)->_count, v - 1) 307 #define __put_page(p) atomic_dec(&(p)->_count) 308 309 extern void FASTCALL(__page_cache_release(struct page *)); 310 311 #ifdef CONFIG_HUGETLB_PAGE 312 313 static inline int page_count(struct page *p) 314 { 315 if (PageCompound(p)) 316 p = (struct page *)p->private; 317 return atomic_read(&(p)->_count) + 1; 318 } 319 320 static inline void get_page(struct page *page) 321 { 322 if (unlikely(PageCompound(page))) 323 page = (struct page *)page->private; 324 atomic_inc(&page->_count); 325 } 326 327 void put_page(struct page *page); 328 329 #else /* CONFIG_HUGETLB_PAGE */ 330 331 #define page_count(p) (atomic_read(&(p)->_count) + 1) 332 333 static inline void get_page(struct page *page) 334 { 335 atomic_inc(&page->_count); 336 } 337 338 static inline void put_page(struct page *page) 339 { 340 if (!PageReserved(page) && put_page_testzero(page)) 341 __page_cache_release(page); 342 } 343 344 #endif /* CONFIG_HUGETLB_PAGE */ 345 346 /* 347 * Multiple processes may "see" the same page. E.g. for untouched 348 * mappings of /dev/null, all processes see the same page full of 349 * zeroes, and text pages of executables and shared libraries have 350 * only one copy in memory, at most, normally. 351 * 352 * For the non-reserved pages, page_count(page) denotes a reference count. 353 * page_count() == 0 means the page is free. 354 * page_count() == 1 means the page is used for exactly one purpose 355 * (e.g. a private data page of one process). 356 * 357 * A page may be used for kmalloc() or anyone else who does a 358 * __get_free_page(). In this case the page_count() is at least 1, and 359 * all other fields are unused but should be 0 or NULL. The 360 * management of this page is the responsibility of the one who uses 361 * it. 362 * 363 * The other pages (we may call them "process pages") are completely 364 * managed by the Linux memory manager: I/O, buffers, swapping etc. 365 * The following discussion applies only to them. 366 * 367 * A page may belong to an inode's memory mapping. In this case, 368 * page->mapping is the pointer to the inode, and page->index is the 369 * file offset of the page, in units of PAGE_CACHE_SIZE. 370 * 371 * A page contains an opaque `private' member, which belongs to the 372 * page's address_space. Usually, this is the address of a circular 373 * list of the page's disk buffers. 374 * 375 * For pages belonging to inodes, the page_count() is the number of 376 * attaches, plus 1 if `private' contains something, plus one for 377 * the page cache itself. 378 * 379 * All pages belonging to an inode are in these doubly linked lists: 380 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages; 381 * using the page->list list_head. These fields are also used for 382 * freelist managemet (when page_count()==0). 383 * 384 * There is also a per-mapping radix tree mapping index to the page 385 * in memory if present. The tree is rooted at mapping->root. 386 * 387 * All process pages can do I/O: 388 * - inode pages may need to be read from disk, 389 * - inode pages which have been modified and are MAP_SHARED may need 390 * to be written to disk, 391 * - private pages which have been modified may need to be swapped out 392 * to swap space and (later) to be read back into memory. 393 */ 394 395 /* 396 * The zone field is never updated after free_area_init_core() 397 * sets it, so none of the operations on it need to be atomic. 398 */ 399 400 401 /* 402 * page->flags layout: 403 * 404 * There are three possibilities for how page->flags get 405 * laid out. The first is for the normal case, without 406 * sparsemem. The second is for sparsemem when there is 407 * plenty of space for node and section. The last is when 408 * we have run out of space and have to fall back to an 409 * alternate (slower) way of determining the node. 410 * 411 * No sparsemem: | NODE | ZONE | ... | FLAGS | 412 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 413 * no space for node: | SECTION | ZONE | ... | FLAGS | 414 */ 415 #ifdef CONFIG_SPARSEMEM 416 #define SECTIONS_WIDTH SECTIONS_SHIFT 417 #else 418 #define SECTIONS_WIDTH 0 419 #endif 420 421 #define ZONES_WIDTH ZONES_SHIFT 422 423 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 424 #define NODES_WIDTH NODES_SHIFT 425 #else 426 #define NODES_WIDTH 0 427 #endif 428 429 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 430 #define SECTIONS_PGOFF ((sizeof(page_flags_t)*8) - SECTIONS_WIDTH) 431 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 432 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 433 434 /* 435 * We are going to use the flags for the page to node mapping if its in 436 * there. This includes the case where there is no node, so it is implicit. 437 */ 438 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 439 440 #ifndef PFN_SECTION_SHIFT 441 #define PFN_SECTION_SHIFT 0 442 #endif 443 444 /* 445 * Define the bit shifts to access each section. For non-existant 446 * sections we define the shift as 0; that plus a 0 mask ensures 447 * the compiler will optimise away reference to them. 448 */ 449 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 450 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 451 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 452 453 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 454 #if FLAGS_HAS_NODE 455 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 456 #else 457 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 458 #endif 459 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT 460 461 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 462 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 463 #endif 464 465 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 466 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 467 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 468 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 469 470 static inline unsigned long page_zonenum(struct page *page) 471 { 472 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 473 } 474 475 struct zone; 476 extern struct zone *zone_table[]; 477 478 static inline struct zone *page_zone(struct page *page) 479 { 480 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & 481 ZONETABLE_MASK]; 482 } 483 484 static inline unsigned long page_to_nid(struct page *page) 485 { 486 if (FLAGS_HAS_NODE) 487 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 488 else 489 return page_zone(page)->zone_pgdat->node_id; 490 } 491 static inline unsigned long page_to_section(struct page *page) 492 { 493 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 494 } 495 496 static inline void set_page_zone(struct page *page, unsigned long zone) 497 { 498 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 499 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 500 } 501 static inline void set_page_node(struct page *page, unsigned long node) 502 { 503 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 504 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 505 } 506 static inline void set_page_section(struct page *page, unsigned long section) 507 { 508 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 509 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 510 } 511 512 static inline void set_page_links(struct page *page, unsigned long zone, 513 unsigned long node, unsigned long pfn) 514 { 515 set_page_zone(page, zone); 516 set_page_node(page, node); 517 set_page_section(page, pfn_to_section_nr(pfn)); 518 } 519 520 #ifndef CONFIG_DISCONTIGMEM 521 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 522 extern struct page *mem_map; 523 #endif 524 525 static inline void *lowmem_page_address(struct page *page) 526 { 527 return __va(page_to_pfn(page) << PAGE_SHIFT); 528 } 529 530 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 531 #define HASHED_PAGE_VIRTUAL 532 #endif 533 534 #if defined(WANT_PAGE_VIRTUAL) 535 #define page_address(page) ((page)->virtual) 536 #define set_page_address(page, address) \ 537 do { \ 538 (page)->virtual = (address); \ 539 } while(0) 540 #define page_address_init() do { } while(0) 541 #endif 542 543 #if defined(HASHED_PAGE_VIRTUAL) 544 void *page_address(struct page *page); 545 void set_page_address(struct page *page, void *virtual); 546 void page_address_init(void); 547 #endif 548 549 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 550 #define page_address(page) lowmem_page_address(page) 551 #define set_page_address(page, address) do { } while(0) 552 #define page_address_init() do { } while(0) 553 #endif 554 555 /* 556 * On an anonymous page mapped into a user virtual memory area, 557 * page->mapping points to its anon_vma, not to a struct address_space; 558 * with the PAGE_MAPPING_ANON bit set to distinguish it. 559 * 560 * Please note that, confusingly, "page_mapping" refers to the inode 561 * address_space which maps the page from disk; whereas "page_mapped" 562 * refers to user virtual address space into which the page is mapped. 563 */ 564 #define PAGE_MAPPING_ANON 1 565 566 extern struct address_space swapper_space; 567 static inline struct address_space *page_mapping(struct page *page) 568 { 569 struct address_space *mapping = page->mapping; 570 571 if (unlikely(PageSwapCache(page))) 572 mapping = &swapper_space; 573 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 574 mapping = NULL; 575 return mapping; 576 } 577 578 static inline int PageAnon(struct page *page) 579 { 580 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 581 } 582 583 /* 584 * Return the pagecache index of the passed page. Regular pagecache pages 585 * use ->index whereas swapcache pages use ->private 586 */ 587 static inline pgoff_t page_index(struct page *page) 588 { 589 if (unlikely(PageSwapCache(page))) 590 return page->private; 591 return page->index; 592 } 593 594 /* 595 * The atomic page->_mapcount, like _count, starts from -1: 596 * so that transitions both from it and to it can be tracked, 597 * using atomic_inc_and_test and atomic_add_negative(-1). 598 */ 599 static inline void reset_page_mapcount(struct page *page) 600 { 601 atomic_set(&(page)->_mapcount, -1); 602 } 603 604 static inline int page_mapcount(struct page *page) 605 { 606 return atomic_read(&(page)->_mapcount) + 1; 607 } 608 609 /* 610 * Return true if this page is mapped into pagetables. 611 */ 612 static inline int page_mapped(struct page *page) 613 { 614 return atomic_read(&(page)->_mapcount) >= 0; 615 } 616 617 /* 618 * Error return values for the *_nopage functions 619 */ 620 #define NOPAGE_SIGBUS (NULL) 621 #define NOPAGE_OOM ((struct page *) (-1)) 622 623 /* 624 * Different kinds of faults, as returned by handle_mm_fault(). 625 * Used to decide whether a process gets delivered SIGBUS or 626 * just gets major/minor fault counters bumped up. 627 */ 628 #define VM_FAULT_OOM (-1) 629 #define VM_FAULT_SIGBUS 0 630 #define VM_FAULT_MINOR 1 631 #define VM_FAULT_MAJOR 2 632 633 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 634 635 extern void show_free_areas(void); 636 637 #ifdef CONFIG_SHMEM 638 struct page *shmem_nopage(struct vm_area_struct *vma, 639 unsigned long address, int *type); 640 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 641 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 642 unsigned long addr); 643 int shmem_lock(struct file *file, int lock, struct user_struct *user); 644 #else 645 #define shmem_nopage filemap_nopage 646 #define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */ 647 #define shmem_set_policy(a, b) (0) 648 #define shmem_get_policy(a, b) (NULL) 649 #endif 650 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 651 652 int shmem_zero_setup(struct vm_area_struct *); 653 654 static inline int can_do_mlock(void) 655 { 656 if (capable(CAP_IPC_LOCK)) 657 return 1; 658 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 659 return 1; 660 return 0; 661 } 662 extern int user_shm_lock(size_t, struct user_struct *); 663 extern void user_shm_unlock(size_t, struct user_struct *); 664 665 /* 666 * Parameter block passed down to zap_pte_range in exceptional cases. 667 */ 668 struct zap_details { 669 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 670 struct address_space *check_mapping; /* Check page->mapping if set */ 671 pgoff_t first_index; /* Lowest page->index to unmap */ 672 pgoff_t last_index; /* Highest page->index to unmap */ 673 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 674 unsigned long truncate_count; /* Compare vm_truncate_count */ 675 }; 676 677 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 678 unsigned long size, struct zap_details *); 679 unsigned long unmap_vmas(struct mmu_gather **tlb, struct mm_struct *mm, 680 struct vm_area_struct *start_vma, unsigned long start_addr, 681 unsigned long end_addr, unsigned long *nr_accounted, 682 struct zap_details *); 683 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 684 unsigned long end, unsigned long floor, unsigned long ceiling); 685 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 686 unsigned long floor, unsigned long ceiling); 687 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 688 struct vm_area_struct *vma); 689 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 690 unsigned long size, pgprot_t prot); 691 void unmap_mapping_range(struct address_space *mapping, 692 loff_t const holebegin, loff_t const holelen, int even_cows); 693 694 static inline void unmap_shared_mapping_range(struct address_space *mapping, 695 loff_t const holebegin, loff_t const holelen) 696 { 697 unmap_mapping_range(mapping, holebegin, holelen, 0); 698 } 699 700 extern int vmtruncate(struct inode * inode, loff_t offset); 701 extern pud_t *FASTCALL(__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)); 702 extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)); 703 extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); 704 extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); 705 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 706 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 707 extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access); 708 extern int make_pages_present(unsigned long addr, unsigned long end); 709 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 710 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 711 712 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 713 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 714 715 int __set_page_dirty_buffers(struct page *page); 716 int __set_page_dirty_nobuffers(struct page *page); 717 int redirty_page_for_writepage(struct writeback_control *wbc, 718 struct page *page); 719 int FASTCALL(set_page_dirty(struct page *page)); 720 int set_page_dirty_lock(struct page *page); 721 int clear_page_dirty_for_io(struct page *page); 722 723 extern unsigned long do_mremap(unsigned long addr, 724 unsigned long old_len, unsigned long new_len, 725 unsigned long flags, unsigned long new_addr); 726 727 /* 728 * Prototype to add a shrinker callback for ageable caches. 729 * 730 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 731 * scan `nr_to_scan' objects, attempting to free them. 732 * 733 * The callback must return the number of objects which remain in the cache. 734 * 735 * The callback will be passed nr_to_scan == 0 when the VM is querying the 736 * cache size, so a fastpath for that case is appropriate. 737 */ 738 typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask); 739 740 /* 741 * Add an aging callback. The int is the number of 'seeks' it takes 742 * to recreate one of the objects that these functions age. 743 */ 744 745 #define DEFAULT_SEEKS 2 746 struct shrinker; 747 extern struct shrinker *set_shrinker(int, shrinker_t); 748 extern void remove_shrinker(struct shrinker *shrinker); 749 750 /* 751 * On a two-level or three-level page table, this ends up being trivial. Thus 752 * the inlining and the symmetry break with pte_alloc_map() that does all 753 * of this out-of-line. 754 */ 755 /* 756 * The following ifdef needed to get the 4level-fixup.h header to work. 757 * Remove it when 4level-fixup.h has been removed. 758 */ 759 #ifdef CONFIG_MMU 760 #ifndef __ARCH_HAS_4LEVEL_HACK 761 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 762 { 763 if (pgd_none(*pgd)) 764 return __pud_alloc(mm, pgd, address); 765 return pud_offset(pgd, address); 766 } 767 768 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 769 { 770 if (pud_none(*pud)) 771 return __pmd_alloc(mm, pud, address); 772 return pmd_offset(pud, address); 773 } 774 #endif 775 #endif /* CONFIG_MMU */ 776 777 extern void free_area_init(unsigned long * zones_size); 778 extern void free_area_init_node(int nid, pg_data_t *pgdat, 779 unsigned long * zones_size, unsigned long zone_start_pfn, 780 unsigned long *zholes_size); 781 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 782 extern void mem_init(void); 783 extern void show_mem(void); 784 extern void si_meminfo(struct sysinfo * val); 785 extern void si_meminfo_node(struct sysinfo *val, int nid); 786 787 #ifdef CONFIG_NUMA 788 extern void setup_per_cpu_pageset(void); 789 #else 790 static inline void setup_per_cpu_pageset(void) {} 791 #endif 792 793 /* prio_tree.c */ 794 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 795 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 796 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 797 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 798 struct prio_tree_iter *iter); 799 800 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 801 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 802 (vma = vma_prio_tree_next(vma, iter)); ) 803 804 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 805 struct list_head *list) 806 { 807 vma->shared.vm_set.parent = NULL; 808 list_add_tail(&vma->shared.vm_set.list, list); 809 } 810 811 /* mmap.c */ 812 extern int __vm_enough_memory(long pages, int cap_sys_admin); 813 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 814 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 815 extern struct vm_area_struct *vma_merge(struct mm_struct *, 816 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 817 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 818 struct mempolicy *); 819 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 820 extern int split_vma(struct mm_struct *, 821 struct vm_area_struct *, unsigned long addr, int new_below); 822 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 823 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 824 struct rb_node **, struct rb_node *); 825 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 826 unsigned long addr, unsigned long len, pgoff_t pgoff); 827 extern void exit_mmap(struct mm_struct *); 828 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 829 830 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 831 832 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 833 unsigned long len, unsigned long prot, 834 unsigned long flag, unsigned long pgoff); 835 836 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 837 unsigned long len, unsigned long prot, 838 unsigned long flag, unsigned long offset) 839 { 840 unsigned long ret = -EINVAL; 841 if ((offset + PAGE_ALIGN(len)) < offset) 842 goto out; 843 if (!(offset & ~PAGE_MASK)) 844 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 845 out: 846 return ret; 847 } 848 849 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 850 851 extern unsigned long do_brk(unsigned long, unsigned long); 852 853 /* filemap.c */ 854 extern unsigned long page_unuse(struct page *); 855 extern void truncate_inode_pages(struct address_space *, loff_t); 856 857 /* generic vm_area_ops exported for stackable file systems */ 858 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 859 extern int filemap_populate(struct vm_area_struct *, unsigned long, 860 unsigned long, pgprot_t, unsigned long, int); 861 862 /* mm/page-writeback.c */ 863 int write_one_page(struct page *page, int wait); 864 865 /* readahead.c */ 866 #define VM_MAX_READAHEAD 128 /* kbytes */ 867 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 868 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 869 * turning readahead off */ 870 871 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 872 unsigned long offset, unsigned long nr_to_read); 873 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 874 unsigned long offset, unsigned long nr_to_read); 875 unsigned long page_cache_readahead(struct address_space *mapping, 876 struct file_ra_state *ra, 877 struct file *filp, 878 unsigned long offset, 879 unsigned long size); 880 void handle_ra_miss(struct address_space *mapping, 881 struct file_ra_state *ra, pgoff_t offset); 882 unsigned long max_sane_readahead(unsigned long nr); 883 884 /* Do stack extension */ 885 extern int expand_stack(struct vm_area_struct * vma, unsigned long address); 886 887 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 888 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 889 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 890 struct vm_area_struct **pprev); 891 892 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 893 NULL if none. Assume start_addr < end_addr. */ 894 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 895 { 896 struct vm_area_struct * vma = find_vma(mm,start_addr); 897 898 if (vma && end_addr <= vma->vm_start) 899 vma = NULL; 900 return vma; 901 } 902 903 static inline unsigned long vma_pages(struct vm_area_struct *vma) 904 { 905 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 906 } 907 908 extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr); 909 910 extern struct page * vmalloc_to_page(void *addr); 911 extern unsigned long vmalloc_to_pfn(void *addr); 912 extern struct page * follow_page(struct mm_struct *mm, unsigned long address, 913 int write); 914 extern int check_user_page_readable(struct mm_struct *mm, unsigned long address); 915 int remap_pfn_range(struct vm_area_struct *, unsigned long, 916 unsigned long, unsigned long, pgprot_t); 917 918 #ifdef CONFIG_PROC_FS 919 void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 920 #else 921 static inline void __vm_stat_account(struct mm_struct *mm, 922 unsigned long flags, struct file *file, long pages) 923 { 924 } 925 #endif /* CONFIG_PROC_FS */ 926 927 static inline void vm_stat_account(struct vm_area_struct *vma) 928 { 929 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, 930 vma_pages(vma)); 931 } 932 933 static inline void vm_stat_unaccount(struct vm_area_struct *vma) 934 { 935 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, 936 -vma_pages(vma)); 937 } 938 939 /* update per process rss and vm hiwater data */ 940 extern void update_mem_hiwater(struct task_struct *tsk); 941 942 #ifndef CONFIG_DEBUG_PAGEALLOC 943 static inline void 944 kernel_map_pages(struct page *page, int numpages, int enable) 945 { 946 } 947 #endif 948 949 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 950 #ifdef __HAVE_ARCH_GATE_AREA 951 int in_gate_area_no_task(unsigned long addr); 952 int in_gate_area(struct task_struct *task, unsigned long addr); 953 #else 954 int in_gate_area_no_task(unsigned long addr); 955 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 956 #endif /* __HAVE_ARCH_GATE_AREA */ 957 958 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 959 #define OOM_DISABLE -17 960 961 #endif /* __KERNEL__ */ 962 #endif /* _LINUX_MM_H */ 963