xref: /linux-6.15/include/linux/mm.h (revision 4bedea94)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/config.h>
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16 
17 struct mempolicy;
18 struct anon_vma;
19 
20 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
21 extern unsigned long max_mapnr;
22 #endif
23 
24 extern unsigned long num_physpages;
25 extern void * high_memory;
26 extern unsigned long vmalloc_earlyreserve;
27 extern int page_cluster;
28 
29 #ifdef CONFIG_SYSCTL
30 extern int sysctl_legacy_va_layout;
31 #else
32 #define sysctl_legacy_va_layout 0
33 #endif
34 
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/atomic.h>
39 
40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
41 
42 /*
43  * Linux kernel virtual memory manager primitives.
44  * The idea being to have a "virtual" mm in the same way
45  * we have a virtual fs - giving a cleaner interface to the
46  * mm details, and allowing different kinds of memory mappings
47  * (from shared memory to executable loading to arbitrary
48  * mmap() functions).
49  */
50 
51 /*
52  * This struct defines a memory VMM memory area. There is one of these
53  * per VM-area/task.  A VM area is any part of the process virtual memory
54  * space that has a special rule for the page-fault handlers (ie a shared
55  * library, the executable area etc).
56  */
57 struct vm_area_struct {
58 	struct mm_struct * vm_mm;	/* The address space we belong to. */
59 	unsigned long vm_start;		/* Our start address within vm_mm. */
60 	unsigned long vm_end;		/* The first byte after our end address
61 					   within vm_mm. */
62 
63 	/* linked list of VM areas per task, sorted by address */
64 	struct vm_area_struct *vm_next;
65 
66 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
67 	unsigned long vm_flags;		/* Flags, listed below. */
68 
69 	struct rb_node vm_rb;
70 
71 	/*
72 	 * For areas with an address space and backing store,
73 	 * linkage into the address_space->i_mmap prio tree, or
74 	 * linkage to the list of like vmas hanging off its node, or
75 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
76 	 */
77 	union {
78 		struct {
79 			struct list_head list;
80 			void *parent;	/* aligns with prio_tree_node parent */
81 			struct vm_area_struct *head;
82 		} vm_set;
83 
84 		struct raw_prio_tree_node prio_tree_node;
85 	} shared;
86 
87 	/*
88 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
89 	 * list, after a COW of one of the file pages.  A MAP_SHARED vma
90 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
91 	 * or brk vma (with NULL file) can only be in an anon_vma list.
92 	 */
93 	struct list_head anon_vma_node;	/* Serialized by anon_vma->lock */
94 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
95 
96 	/* Function pointers to deal with this struct. */
97 	struct vm_operations_struct * vm_ops;
98 
99 	/* Information about our backing store: */
100 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
101 					   units, *not* PAGE_CACHE_SIZE */
102 	struct file * vm_file;		/* File we map to (can be NULL). */
103 	void * vm_private_data;		/* was vm_pte (shared mem) */
104 	unsigned long vm_truncate_count;/* truncate_count or restart_addr */
105 
106 #ifndef CONFIG_MMU
107 	atomic_t vm_usage;		/* refcount (VMAs shared if !MMU) */
108 #endif
109 #ifdef CONFIG_NUMA
110 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
111 #endif
112 };
113 
114 /*
115  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
116  * disabled, then there's a single shared list of VMAs maintained by the
117  * system, and mm's subscribe to these individually
118  */
119 struct vm_list_struct {
120 	struct vm_list_struct	*next;
121 	struct vm_area_struct	*vma;
122 };
123 
124 #ifndef CONFIG_MMU
125 extern struct rb_root nommu_vma_tree;
126 extern struct rw_semaphore nommu_vma_sem;
127 
128 extern unsigned int kobjsize(const void *objp);
129 #endif
130 
131 /*
132  * vm_flags..
133  */
134 #define VM_READ		0x00000001	/* currently active flags */
135 #define VM_WRITE	0x00000002
136 #define VM_EXEC		0x00000004
137 #define VM_SHARED	0x00000008
138 
139 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
140 #define VM_MAYWRITE	0x00000020
141 #define VM_MAYEXEC	0x00000040
142 #define VM_MAYSHARE	0x00000080
143 
144 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
145 #define VM_GROWSUP	0x00000200
146 #define VM_SHM		0x00000400	/* shared memory area, don't swap out */
147 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
148 
149 #define VM_EXECUTABLE	0x00001000
150 #define VM_LOCKED	0x00002000
151 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
152 
153 					/* Used by sys_madvise() */
154 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
155 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
156 
157 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
158 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
159 #define VM_RESERVED	0x00080000	/* Don't unmap it from swap_out */
160 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
161 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
162 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
163 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
164 
165 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
166 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
167 #endif
168 
169 #ifdef CONFIG_STACK_GROWSUP
170 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
171 #else
172 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
173 #endif
174 
175 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
176 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
177 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
178 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
179 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
180 
181 /*
182  * mapping from the currently active vm_flags protection bits (the
183  * low four bits) to a page protection mask..
184  */
185 extern pgprot_t protection_map[16];
186 
187 
188 /*
189  * These are the virtual MM functions - opening of an area, closing and
190  * unmapping it (needed to keep files on disk up-to-date etc), pointer
191  * to the functions called when a no-page or a wp-page exception occurs.
192  */
193 struct vm_operations_struct {
194 	void (*open)(struct vm_area_struct * area);
195 	void (*close)(struct vm_area_struct * area);
196 	struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
197 	int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
198 #ifdef CONFIG_NUMA
199 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
200 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
201 					unsigned long addr);
202 #endif
203 };
204 
205 struct mmu_gather;
206 struct inode;
207 
208 #ifdef ARCH_HAS_ATOMIC_UNSIGNED
209 typedef unsigned page_flags_t;
210 #else
211 typedef unsigned long page_flags_t;
212 #endif
213 
214 /*
215  * Each physical page in the system has a struct page associated with
216  * it to keep track of whatever it is we are using the page for at the
217  * moment. Note that we have no way to track which tasks are using
218  * a page.
219  */
220 struct page {
221 	page_flags_t flags;		/* Atomic flags, some possibly
222 					 * updated asynchronously */
223 	atomic_t _count;		/* Usage count, see below. */
224 	atomic_t _mapcount;		/* Count of ptes mapped in mms,
225 					 * to show when page is mapped
226 					 * & limit reverse map searches.
227 					 */
228 	unsigned long private;		/* Mapping-private opaque data:
229 					 * usually used for buffer_heads
230 					 * if PagePrivate set; used for
231 					 * swp_entry_t if PageSwapCache
232 					 * When page is free, this indicates
233 					 * order in the buddy system.
234 					 */
235 	struct address_space *mapping;	/* If low bit clear, points to
236 					 * inode address_space, or NULL.
237 					 * If page mapped as anonymous
238 					 * memory, low bit is set, and
239 					 * it points to anon_vma object:
240 					 * see PAGE_MAPPING_ANON below.
241 					 */
242 	pgoff_t index;			/* Our offset within mapping. */
243 	struct list_head lru;		/* Pageout list, eg. active_list
244 					 * protected by zone->lru_lock !
245 					 */
246 	/*
247 	 * On machines where all RAM is mapped into kernel address space,
248 	 * we can simply calculate the virtual address. On machines with
249 	 * highmem some memory is mapped into kernel virtual memory
250 	 * dynamically, so we need a place to store that address.
251 	 * Note that this field could be 16 bits on x86 ... ;)
252 	 *
253 	 * Architectures with slow multiplication can define
254 	 * WANT_PAGE_VIRTUAL in asm/page.h
255 	 */
256 #if defined(WANT_PAGE_VIRTUAL)
257 	void *virtual;			/* Kernel virtual address (NULL if
258 					   not kmapped, ie. highmem) */
259 #endif /* WANT_PAGE_VIRTUAL */
260 };
261 
262 /*
263  * FIXME: take this include out, include page-flags.h in
264  * files which need it (119 of them)
265  */
266 #include <linux/page-flags.h>
267 
268 /*
269  * Methods to modify the page usage count.
270  *
271  * What counts for a page usage:
272  * - cache mapping   (page->mapping)
273  * - private data    (page->private)
274  * - page mapped in a task's page tables, each mapping
275  *   is counted separately
276  *
277  * Also, many kernel routines increase the page count before a critical
278  * routine so they can be sure the page doesn't go away from under them.
279  *
280  * Since 2.6.6 (approx), a free page has ->_count = -1.  This is so that we
281  * can use atomic_add_negative(-1, page->_count) to detect when the page
282  * becomes free and so that we can also use atomic_inc_and_test to atomically
283  * detect when we just tried to grab a ref on a page which some other CPU has
284  * already deemed to be freeable.
285  *
286  * NO code should make assumptions about this internal detail!  Use the provided
287  * macros which retain the old rules: page_count(page) == 0 is a free page.
288  */
289 
290 /*
291  * Drop a ref, return true if the logical refcount fell to zero (the page has
292  * no users)
293  */
294 #define put_page_testzero(p)				\
295 	({						\
296 		BUG_ON(page_count(p) == 0);		\
297 		atomic_add_negative(-1, &(p)->_count);	\
298 	})
299 
300 /*
301  * Grab a ref, return true if the page previously had a logical refcount of
302  * zero.  ie: returns true if we just grabbed an already-deemed-to-be-free page
303  */
304 #define get_page_testone(p)	atomic_inc_and_test(&(p)->_count)
305 
306 #define set_page_count(p,v) 	atomic_set(&(p)->_count, v - 1)
307 #define __put_page(p)		atomic_dec(&(p)->_count)
308 
309 extern void FASTCALL(__page_cache_release(struct page *));
310 
311 #ifdef CONFIG_HUGETLB_PAGE
312 
313 static inline int page_count(struct page *p)
314 {
315 	if (PageCompound(p))
316 		p = (struct page *)p->private;
317 	return atomic_read(&(p)->_count) + 1;
318 }
319 
320 static inline void get_page(struct page *page)
321 {
322 	if (unlikely(PageCompound(page)))
323 		page = (struct page *)page->private;
324 	atomic_inc(&page->_count);
325 }
326 
327 void put_page(struct page *page);
328 
329 #else		/* CONFIG_HUGETLB_PAGE */
330 
331 #define page_count(p)		(atomic_read(&(p)->_count) + 1)
332 
333 static inline void get_page(struct page *page)
334 {
335 	atomic_inc(&page->_count);
336 }
337 
338 static inline void put_page(struct page *page)
339 {
340 	if (!PageReserved(page) && put_page_testzero(page))
341 		__page_cache_release(page);
342 }
343 
344 #endif		/* CONFIG_HUGETLB_PAGE */
345 
346 /*
347  * Multiple processes may "see" the same page. E.g. for untouched
348  * mappings of /dev/null, all processes see the same page full of
349  * zeroes, and text pages of executables and shared libraries have
350  * only one copy in memory, at most, normally.
351  *
352  * For the non-reserved pages, page_count(page) denotes a reference count.
353  *   page_count() == 0 means the page is free.
354  *   page_count() == 1 means the page is used for exactly one purpose
355  *   (e.g. a private data page of one process).
356  *
357  * A page may be used for kmalloc() or anyone else who does a
358  * __get_free_page(). In this case the page_count() is at least 1, and
359  * all other fields are unused but should be 0 or NULL. The
360  * management of this page is the responsibility of the one who uses
361  * it.
362  *
363  * The other pages (we may call them "process pages") are completely
364  * managed by the Linux memory manager: I/O, buffers, swapping etc.
365  * The following discussion applies only to them.
366  *
367  * A page may belong to an inode's memory mapping. In this case,
368  * page->mapping is the pointer to the inode, and page->index is the
369  * file offset of the page, in units of PAGE_CACHE_SIZE.
370  *
371  * A page contains an opaque `private' member, which belongs to the
372  * page's address_space.  Usually, this is the address of a circular
373  * list of the page's disk buffers.
374  *
375  * For pages belonging to inodes, the page_count() is the number of
376  * attaches, plus 1 if `private' contains something, plus one for
377  * the page cache itself.
378  *
379  * All pages belonging to an inode are in these doubly linked lists:
380  * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
381  * using the page->list list_head. These fields are also used for
382  * freelist managemet (when page_count()==0).
383  *
384  * There is also a per-mapping radix tree mapping index to the page
385  * in memory if present. The tree is rooted at mapping->root.
386  *
387  * All process pages can do I/O:
388  * - inode pages may need to be read from disk,
389  * - inode pages which have been modified and are MAP_SHARED may need
390  *   to be written to disk,
391  * - private pages which have been modified may need to be swapped out
392  *   to swap space and (later) to be read back into memory.
393  */
394 
395 /*
396  * The zone field is never updated after free_area_init_core()
397  * sets it, so none of the operations on it need to be atomic.
398  */
399 
400 
401 /*
402  * page->flags layout:
403  *
404  * There are three possibilities for how page->flags get
405  * laid out.  The first is for the normal case, without
406  * sparsemem.  The second is for sparsemem when there is
407  * plenty of space for node and section.  The last is when
408  * we have run out of space and have to fall back to an
409  * alternate (slower) way of determining the node.
410  *
411  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
412  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
413  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
414  */
415 #ifdef CONFIG_SPARSEMEM
416 #define SECTIONS_WIDTH		SECTIONS_SHIFT
417 #else
418 #define SECTIONS_WIDTH		0
419 #endif
420 
421 #define ZONES_WIDTH		ZONES_SHIFT
422 
423 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
424 #define NODES_WIDTH		NODES_SHIFT
425 #else
426 #define NODES_WIDTH		0
427 #endif
428 
429 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
430 #define SECTIONS_PGOFF		((sizeof(page_flags_t)*8) - SECTIONS_WIDTH)
431 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
432 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
433 
434 /*
435  * We are going to use the flags for the page to node mapping if its in
436  * there.  This includes the case where there is no node, so it is implicit.
437  */
438 #define FLAGS_HAS_NODE		(NODES_WIDTH > 0 || NODES_SHIFT == 0)
439 
440 #ifndef PFN_SECTION_SHIFT
441 #define PFN_SECTION_SHIFT 0
442 #endif
443 
444 /*
445  * Define the bit shifts to access each section.  For non-existant
446  * sections we define the shift as 0; that plus a 0 mask ensures
447  * the compiler will optimise away reference to them.
448  */
449 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
450 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
451 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
452 
453 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
454 #if FLAGS_HAS_NODE
455 #define ZONETABLE_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
456 #else
457 #define ZONETABLE_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
458 #endif
459 #define ZONETABLE_PGSHIFT	ZONES_PGSHIFT
460 
461 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
462 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
463 #endif
464 
465 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
466 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
467 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
468 #define ZONETABLE_MASK		((1UL << ZONETABLE_SHIFT) - 1)
469 
470 static inline unsigned long page_zonenum(struct page *page)
471 {
472 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
473 }
474 
475 struct zone;
476 extern struct zone *zone_table[];
477 
478 static inline struct zone *page_zone(struct page *page)
479 {
480 	return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
481 			ZONETABLE_MASK];
482 }
483 
484 static inline unsigned long page_to_nid(struct page *page)
485 {
486 	if (FLAGS_HAS_NODE)
487 		return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
488 	else
489 		return page_zone(page)->zone_pgdat->node_id;
490 }
491 static inline unsigned long page_to_section(struct page *page)
492 {
493 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
494 }
495 
496 static inline void set_page_zone(struct page *page, unsigned long zone)
497 {
498 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
499 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
500 }
501 static inline void set_page_node(struct page *page, unsigned long node)
502 {
503 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
504 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
505 }
506 static inline void set_page_section(struct page *page, unsigned long section)
507 {
508 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
509 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
510 }
511 
512 static inline void set_page_links(struct page *page, unsigned long zone,
513 	unsigned long node, unsigned long pfn)
514 {
515 	set_page_zone(page, zone);
516 	set_page_node(page, node);
517 	set_page_section(page, pfn_to_section_nr(pfn));
518 }
519 
520 #ifndef CONFIG_DISCONTIGMEM
521 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
522 extern struct page *mem_map;
523 #endif
524 
525 static inline void *lowmem_page_address(struct page *page)
526 {
527 	return __va(page_to_pfn(page) << PAGE_SHIFT);
528 }
529 
530 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
531 #define HASHED_PAGE_VIRTUAL
532 #endif
533 
534 #if defined(WANT_PAGE_VIRTUAL)
535 #define page_address(page) ((page)->virtual)
536 #define set_page_address(page, address)			\
537 	do {						\
538 		(page)->virtual = (address);		\
539 	} while(0)
540 #define page_address_init()  do { } while(0)
541 #endif
542 
543 #if defined(HASHED_PAGE_VIRTUAL)
544 void *page_address(struct page *page);
545 void set_page_address(struct page *page, void *virtual);
546 void page_address_init(void);
547 #endif
548 
549 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
550 #define page_address(page) lowmem_page_address(page)
551 #define set_page_address(page, address)  do { } while(0)
552 #define page_address_init()  do { } while(0)
553 #endif
554 
555 /*
556  * On an anonymous page mapped into a user virtual memory area,
557  * page->mapping points to its anon_vma, not to a struct address_space;
558  * with the PAGE_MAPPING_ANON bit set to distinguish it.
559  *
560  * Please note that, confusingly, "page_mapping" refers to the inode
561  * address_space which maps the page from disk; whereas "page_mapped"
562  * refers to user virtual address space into which the page is mapped.
563  */
564 #define PAGE_MAPPING_ANON	1
565 
566 extern struct address_space swapper_space;
567 static inline struct address_space *page_mapping(struct page *page)
568 {
569 	struct address_space *mapping = page->mapping;
570 
571 	if (unlikely(PageSwapCache(page)))
572 		mapping = &swapper_space;
573 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
574 		mapping = NULL;
575 	return mapping;
576 }
577 
578 static inline int PageAnon(struct page *page)
579 {
580 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
581 }
582 
583 /*
584  * Return the pagecache index of the passed page.  Regular pagecache pages
585  * use ->index whereas swapcache pages use ->private
586  */
587 static inline pgoff_t page_index(struct page *page)
588 {
589 	if (unlikely(PageSwapCache(page)))
590 		return page->private;
591 	return page->index;
592 }
593 
594 /*
595  * The atomic page->_mapcount, like _count, starts from -1:
596  * so that transitions both from it and to it can be tracked,
597  * using atomic_inc_and_test and atomic_add_negative(-1).
598  */
599 static inline void reset_page_mapcount(struct page *page)
600 {
601 	atomic_set(&(page)->_mapcount, -1);
602 }
603 
604 static inline int page_mapcount(struct page *page)
605 {
606 	return atomic_read(&(page)->_mapcount) + 1;
607 }
608 
609 /*
610  * Return true if this page is mapped into pagetables.
611  */
612 static inline int page_mapped(struct page *page)
613 {
614 	return atomic_read(&(page)->_mapcount) >= 0;
615 }
616 
617 /*
618  * Error return values for the *_nopage functions
619  */
620 #define NOPAGE_SIGBUS	(NULL)
621 #define NOPAGE_OOM	((struct page *) (-1))
622 
623 /*
624  * Different kinds of faults, as returned by handle_mm_fault().
625  * Used to decide whether a process gets delivered SIGBUS or
626  * just gets major/minor fault counters bumped up.
627  */
628 #define VM_FAULT_OOM	(-1)
629 #define VM_FAULT_SIGBUS	0
630 #define VM_FAULT_MINOR	1
631 #define VM_FAULT_MAJOR	2
632 
633 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
634 
635 extern void show_free_areas(void);
636 
637 #ifdef CONFIG_SHMEM
638 struct page *shmem_nopage(struct vm_area_struct *vma,
639 			unsigned long address, int *type);
640 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
641 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
642 					unsigned long addr);
643 int shmem_lock(struct file *file, int lock, struct user_struct *user);
644 #else
645 #define shmem_nopage filemap_nopage
646 #define shmem_lock(a, b, c) 	({0;})	/* always in memory, no need to lock */
647 #define shmem_set_policy(a, b)	(0)
648 #define shmem_get_policy(a, b)	(NULL)
649 #endif
650 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
651 
652 int shmem_zero_setup(struct vm_area_struct *);
653 
654 static inline int can_do_mlock(void)
655 {
656 	if (capable(CAP_IPC_LOCK))
657 		return 1;
658 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
659 		return 1;
660 	return 0;
661 }
662 extern int user_shm_lock(size_t, struct user_struct *);
663 extern void user_shm_unlock(size_t, struct user_struct *);
664 
665 /*
666  * Parameter block passed down to zap_pte_range in exceptional cases.
667  */
668 struct zap_details {
669 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
670 	struct address_space *check_mapping;	/* Check page->mapping if set */
671 	pgoff_t	first_index;			/* Lowest page->index to unmap */
672 	pgoff_t last_index;			/* Highest page->index to unmap */
673 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
674 	unsigned long truncate_count;		/* Compare vm_truncate_count */
675 };
676 
677 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
678 		unsigned long size, struct zap_details *);
679 unsigned long unmap_vmas(struct mmu_gather **tlb, struct mm_struct *mm,
680 		struct vm_area_struct *start_vma, unsigned long start_addr,
681 		unsigned long end_addr, unsigned long *nr_accounted,
682 		struct zap_details *);
683 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
684 		unsigned long end, unsigned long floor, unsigned long ceiling);
685 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
686 		unsigned long floor, unsigned long ceiling);
687 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
688 			struct vm_area_struct *vma);
689 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
690 			unsigned long size, pgprot_t prot);
691 void unmap_mapping_range(struct address_space *mapping,
692 		loff_t const holebegin, loff_t const holelen, int even_cows);
693 
694 static inline void unmap_shared_mapping_range(struct address_space *mapping,
695 		loff_t const holebegin, loff_t const holelen)
696 {
697 	unmap_mapping_range(mapping, holebegin, holelen, 0);
698 }
699 
700 extern int vmtruncate(struct inode * inode, loff_t offset);
701 extern pud_t *FASTCALL(__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
702 extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address));
703 extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
704 extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
705 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
706 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
707 extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
708 extern int make_pages_present(unsigned long addr, unsigned long end);
709 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
710 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
711 
712 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
713 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
714 
715 int __set_page_dirty_buffers(struct page *page);
716 int __set_page_dirty_nobuffers(struct page *page);
717 int redirty_page_for_writepage(struct writeback_control *wbc,
718 				struct page *page);
719 int FASTCALL(set_page_dirty(struct page *page));
720 int set_page_dirty_lock(struct page *page);
721 int clear_page_dirty_for_io(struct page *page);
722 
723 extern unsigned long do_mremap(unsigned long addr,
724 			       unsigned long old_len, unsigned long new_len,
725 			       unsigned long flags, unsigned long new_addr);
726 
727 /*
728  * Prototype to add a shrinker callback for ageable caches.
729  *
730  * These functions are passed a count `nr_to_scan' and a gfpmask.  They should
731  * scan `nr_to_scan' objects, attempting to free them.
732  *
733  * The callback must return the number of objects which remain in the cache.
734  *
735  * The callback will be passed nr_to_scan == 0 when the VM is querying the
736  * cache size, so a fastpath for that case is appropriate.
737  */
738 typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask);
739 
740 /*
741  * Add an aging callback.  The int is the number of 'seeks' it takes
742  * to recreate one of the objects that these functions age.
743  */
744 
745 #define DEFAULT_SEEKS 2
746 struct shrinker;
747 extern struct shrinker *set_shrinker(int, shrinker_t);
748 extern void remove_shrinker(struct shrinker *shrinker);
749 
750 /*
751  * On a two-level or three-level page table, this ends up being trivial. Thus
752  * the inlining and the symmetry break with pte_alloc_map() that does all
753  * of this out-of-line.
754  */
755 /*
756  * The following ifdef needed to get the 4level-fixup.h header to work.
757  * Remove it when 4level-fixup.h has been removed.
758  */
759 #ifdef CONFIG_MMU
760 #ifndef __ARCH_HAS_4LEVEL_HACK
761 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
762 {
763 	if (pgd_none(*pgd))
764 		return __pud_alloc(mm, pgd, address);
765 	return pud_offset(pgd, address);
766 }
767 
768 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
769 {
770 	if (pud_none(*pud))
771 		return __pmd_alloc(mm, pud, address);
772 	return pmd_offset(pud, address);
773 }
774 #endif
775 #endif /* CONFIG_MMU */
776 
777 extern void free_area_init(unsigned long * zones_size);
778 extern void free_area_init_node(int nid, pg_data_t *pgdat,
779 	unsigned long * zones_size, unsigned long zone_start_pfn,
780 	unsigned long *zholes_size);
781 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
782 extern void mem_init(void);
783 extern void show_mem(void);
784 extern void si_meminfo(struct sysinfo * val);
785 extern void si_meminfo_node(struct sysinfo *val, int nid);
786 
787 #ifdef CONFIG_NUMA
788 extern void setup_per_cpu_pageset(void);
789 #else
790 static inline void setup_per_cpu_pageset(void) {}
791 #endif
792 
793 /* prio_tree.c */
794 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
795 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
796 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
797 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
798 	struct prio_tree_iter *iter);
799 
800 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
801 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
802 		(vma = vma_prio_tree_next(vma, iter)); )
803 
804 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
805 					struct list_head *list)
806 {
807 	vma->shared.vm_set.parent = NULL;
808 	list_add_tail(&vma->shared.vm_set.list, list);
809 }
810 
811 /* mmap.c */
812 extern int __vm_enough_memory(long pages, int cap_sys_admin);
813 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
814 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
815 extern struct vm_area_struct *vma_merge(struct mm_struct *,
816 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
817 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
818 	struct mempolicy *);
819 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
820 extern int split_vma(struct mm_struct *,
821 	struct vm_area_struct *, unsigned long addr, int new_below);
822 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
823 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
824 	struct rb_node **, struct rb_node *);
825 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
826 	unsigned long addr, unsigned long len, pgoff_t pgoff);
827 extern void exit_mmap(struct mm_struct *);
828 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
829 
830 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
831 
832 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
833 	unsigned long len, unsigned long prot,
834 	unsigned long flag, unsigned long pgoff);
835 
836 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
837 	unsigned long len, unsigned long prot,
838 	unsigned long flag, unsigned long offset)
839 {
840 	unsigned long ret = -EINVAL;
841 	if ((offset + PAGE_ALIGN(len)) < offset)
842 		goto out;
843 	if (!(offset & ~PAGE_MASK))
844 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
845 out:
846 	return ret;
847 }
848 
849 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
850 
851 extern unsigned long do_brk(unsigned long, unsigned long);
852 
853 /* filemap.c */
854 extern unsigned long page_unuse(struct page *);
855 extern void truncate_inode_pages(struct address_space *, loff_t);
856 
857 /* generic vm_area_ops exported for stackable file systems */
858 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
859 extern int filemap_populate(struct vm_area_struct *, unsigned long,
860 		unsigned long, pgprot_t, unsigned long, int);
861 
862 /* mm/page-writeback.c */
863 int write_one_page(struct page *page, int wait);
864 
865 /* readahead.c */
866 #define VM_MAX_READAHEAD	128	/* kbytes */
867 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
868 #define VM_MAX_CACHE_HIT    	256	/* max pages in a row in cache before
869 					 * turning readahead off */
870 
871 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
872 			unsigned long offset, unsigned long nr_to_read);
873 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
874 			unsigned long offset, unsigned long nr_to_read);
875 unsigned long  page_cache_readahead(struct address_space *mapping,
876 			  struct file_ra_state *ra,
877 			  struct file *filp,
878 			  unsigned long offset,
879 			  unsigned long size);
880 void handle_ra_miss(struct address_space *mapping,
881 		    struct file_ra_state *ra, pgoff_t offset);
882 unsigned long max_sane_readahead(unsigned long nr);
883 
884 /* Do stack extension */
885 extern int expand_stack(struct vm_area_struct * vma, unsigned long address);
886 
887 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
888 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
889 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
890 					     struct vm_area_struct **pprev);
891 
892 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
893    NULL if none.  Assume start_addr < end_addr. */
894 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
895 {
896 	struct vm_area_struct * vma = find_vma(mm,start_addr);
897 
898 	if (vma && end_addr <= vma->vm_start)
899 		vma = NULL;
900 	return vma;
901 }
902 
903 static inline unsigned long vma_pages(struct vm_area_struct *vma)
904 {
905 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
906 }
907 
908 extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
909 
910 extern struct page * vmalloc_to_page(void *addr);
911 extern unsigned long vmalloc_to_pfn(void *addr);
912 extern struct page * follow_page(struct mm_struct *mm, unsigned long address,
913 		int write);
914 extern int check_user_page_readable(struct mm_struct *mm, unsigned long address);
915 int remap_pfn_range(struct vm_area_struct *, unsigned long,
916 		unsigned long, unsigned long, pgprot_t);
917 
918 #ifdef CONFIG_PROC_FS
919 void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
920 #else
921 static inline void __vm_stat_account(struct mm_struct *mm,
922 			unsigned long flags, struct file *file, long pages)
923 {
924 }
925 #endif /* CONFIG_PROC_FS */
926 
927 static inline void vm_stat_account(struct vm_area_struct *vma)
928 {
929 	__vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
930 							vma_pages(vma));
931 }
932 
933 static inline void vm_stat_unaccount(struct vm_area_struct *vma)
934 {
935 	__vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
936 							-vma_pages(vma));
937 }
938 
939 /* update per process rss and vm hiwater data */
940 extern void update_mem_hiwater(struct task_struct *tsk);
941 
942 #ifndef CONFIG_DEBUG_PAGEALLOC
943 static inline void
944 kernel_map_pages(struct page *page, int numpages, int enable)
945 {
946 }
947 #endif
948 
949 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
950 #ifdef	__HAVE_ARCH_GATE_AREA
951 int in_gate_area_no_task(unsigned long addr);
952 int in_gate_area(struct task_struct *task, unsigned long addr);
953 #else
954 int in_gate_area_no_task(unsigned long addr);
955 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
956 #endif	/* __HAVE_ARCH_GATE_AREA */
957 
958 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
959 #define OOM_DISABLE -17
960 
961 #endif /* __KERNEL__ */
962 #endif /* _LINUX_MM_H */
963