1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for architectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statements if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180 } 181 #else 182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183 #endif 184 185 /* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201 #define MAPCOUNT_ELF_CORE_MARGIN (5) 202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204 extern int sysctl_max_map_count; 205 206 extern unsigned long sysctl_user_reserve_kbytes; 207 extern unsigned long sysctl_admin_reserve_kbytes; 208 209 extern int sysctl_overcommit_memory; 210 extern int sysctl_overcommit_ratio; 211 extern unsigned long sysctl_overcommit_kbytes; 212 213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 /* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 229 #else 230 #define nth_page(page,n) ((page) + (n)) 231 #endif 232 233 /* to align the pointer to the (next) page boundary */ 234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 235 236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 240 241 /* 242 * Linux kernel virtual memory manager primitives. 243 * The idea being to have a "virtual" mm in the same way 244 * we have a virtual fs - giving a cleaner interface to the 245 * mm details, and allowing different kinds of memory mappings 246 * (from shared memory to executable loading to arbitrary 247 * mmap() functions). 248 */ 249 250 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 251 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 252 void vm_area_free(struct vm_area_struct *); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 281 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 282 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 283 284 #define VM_LOCKED 0x00002000 285 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 286 287 /* Used by sys_madvise() */ 288 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 289 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 290 291 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 292 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 293 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 294 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 295 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 296 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 297 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 298 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 299 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 300 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 301 302 #ifdef CONFIG_MEM_SOFT_DIRTY 303 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 304 #else 305 # define VM_SOFTDIRTY 0 306 #endif 307 308 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 309 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 310 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 311 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 312 313 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 314 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 315 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 316 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 317 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 320 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 321 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 322 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 323 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 324 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 325 326 #ifdef CONFIG_ARCH_HAS_PKEYS 327 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 328 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 329 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 330 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 331 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 332 #ifdef CONFIG_PPC 333 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 334 #else 335 # define VM_PKEY_BIT4 0 336 #endif 337 #endif /* CONFIG_ARCH_HAS_PKEYS */ 338 339 #if defined(CONFIG_X86) 340 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 341 #elif defined(CONFIG_PPC) 342 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 343 #elif defined(CONFIG_PARISC) 344 # define VM_GROWSUP VM_ARCH_1 345 #elif defined(CONFIG_IA64) 346 # define VM_GROWSUP VM_ARCH_1 347 #elif defined(CONFIG_SPARC64) 348 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 349 # define VM_ARCH_CLEAR VM_SPARC_ADI 350 #elif defined(CONFIG_ARM64) 351 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 352 # define VM_ARCH_CLEAR VM_ARM64_BTI 353 #elif !defined(CONFIG_MMU) 354 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 355 #endif 356 357 #if defined(CONFIG_ARM64_MTE) 358 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 359 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 360 #else 361 # define VM_MTE VM_NONE 362 # define VM_MTE_ALLOWED VM_NONE 363 #endif 364 365 #ifndef VM_GROWSUP 366 # define VM_GROWSUP VM_NONE 367 #endif 368 369 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 370 # define VM_UFFD_MINOR_BIT 37 371 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 372 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 373 # define VM_UFFD_MINOR VM_NONE 374 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 375 376 /* Bits set in the VMA until the stack is in its final location */ 377 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 378 379 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 380 381 /* Common data flag combinations */ 382 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 383 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 384 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 385 VM_MAYWRITE | VM_MAYEXEC) 386 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 388 389 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 390 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 391 #endif 392 393 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 394 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 395 #endif 396 397 #ifdef CONFIG_STACK_GROWSUP 398 #define VM_STACK VM_GROWSUP 399 #else 400 #define VM_STACK VM_GROWSDOWN 401 #endif 402 403 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 404 405 /* VMA basic access permission flags */ 406 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 407 408 409 /* 410 * Special vmas that are non-mergable, non-mlock()able. 411 */ 412 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 413 414 /* This mask prevents VMA from being scanned with khugepaged */ 415 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 416 417 /* This mask defines which mm->def_flags a process can inherit its parent */ 418 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 419 420 /* This mask is used to clear all the VMA flags used by mlock */ 421 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 422 423 /* Arch-specific flags to clear when updating VM flags on protection change */ 424 #ifndef VM_ARCH_CLEAR 425 # define VM_ARCH_CLEAR VM_NONE 426 #endif 427 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 428 429 /* 430 * mapping from the currently active vm_flags protection bits (the 431 * low four bits) to a page protection mask.. 432 */ 433 extern pgprot_t protection_map[16]; 434 435 /** 436 * enum fault_flag - Fault flag definitions. 437 * @FAULT_FLAG_WRITE: Fault was a write fault. 438 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 439 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 440 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 441 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 442 * @FAULT_FLAG_TRIED: The fault has been tried once. 443 * @FAULT_FLAG_USER: The fault originated in userspace. 444 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 445 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 446 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 447 * 448 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 449 * whether we would allow page faults to retry by specifying these two 450 * fault flags correctly. Currently there can be three legal combinations: 451 * 452 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 453 * this is the first try 454 * 455 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 456 * we've already tried at least once 457 * 458 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 459 * 460 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 461 * be used. Note that page faults can be allowed to retry for multiple times, 462 * in which case we'll have an initial fault with flags (a) then later on 463 * continuous faults with flags (b). We should always try to detect pending 464 * signals before a retry to make sure the continuous page faults can still be 465 * interrupted if necessary. 466 */ 467 enum fault_flag { 468 FAULT_FLAG_WRITE = 1 << 0, 469 FAULT_FLAG_MKWRITE = 1 << 1, 470 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 471 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 472 FAULT_FLAG_KILLABLE = 1 << 4, 473 FAULT_FLAG_TRIED = 1 << 5, 474 FAULT_FLAG_USER = 1 << 6, 475 FAULT_FLAG_REMOTE = 1 << 7, 476 FAULT_FLAG_INSTRUCTION = 1 << 8, 477 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 478 }; 479 480 /* 481 * The default fault flags that should be used by most of the 482 * arch-specific page fault handlers. 483 */ 484 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 485 FAULT_FLAG_KILLABLE | \ 486 FAULT_FLAG_INTERRUPTIBLE) 487 488 /** 489 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 490 * @flags: Fault flags. 491 * 492 * This is mostly used for places where we want to try to avoid taking 493 * the mmap_lock for too long a time when waiting for another condition 494 * to change, in which case we can try to be polite to release the 495 * mmap_lock in the first round to avoid potential starvation of other 496 * processes that would also want the mmap_lock. 497 * 498 * Return: true if the page fault allows retry and this is the first 499 * attempt of the fault handling; false otherwise. 500 */ 501 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 502 { 503 return (flags & FAULT_FLAG_ALLOW_RETRY) && 504 (!(flags & FAULT_FLAG_TRIED)); 505 } 506 507 #define FAULT_FLAG_TRACE \ 508 { FAULT_FLAG_WRITE, "WRITE" }, \ 509 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 510 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 511 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 512 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 513 { FAULT_FLAG_TRIED, "TRIED" }, \ 514 { FAULT_FLAG_USER, "USER" }, \ 515 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 516 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 517 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 518 519 /* 520 * vm_fault is filled by the pagefault handler and passed to the vma's 521 * ->fault function. The vma's ->fault is responsible for returning a bitmask 522 * of VM_FAULT_xxx flags that give details about how the fault was handled. 523 * 524 * MM layer fills up gfp_mask for page allocations but fault handler might 525 * alter it if its implementation requires a different allocation context. 526 * 527 * pgoff should be used in favour of virtual_address, if possible. 528 */ 529 struct vm_fault { 530 const struct { 531 struct vm_area_struct *vma; /* Target VMA */ 532 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 533 pgoff_t pgoff; /* Logical page offset based on vma */ 534 unsigned long address; /* Faulting virtual address */ 535 }; 536 enum fault_flag flags; /* FAULT_FLAG_xxx flags 537 * XXX: should really be 'const' */ 538 pmd_t *pmd; /* Pointer to pmd entry matching 539 * the 'address' */ 540 pud_t *pud; /* Pointer to pud entry matching 541 * the 'address' 542 */ 543 union { 544 pte_t orig_pte; /* Value of PTE at the time of fault */ 545 pmd_t orig_pmd; /* Value of PMD at the time of fault, 546 * used by PMD fault only. 547 */ 548 }; 549 550 struct page *cow_page; /* Page handler may use for COW fault */ 551 struct page *page; /* ->fault handlers should return a 552 * page here, unless VM_FAULT_NOPAGE 553 * is set (which is also implied by 554 * VM_FAULT_ERROR). 555 */ 556 /* These three entries are valid only while holding ptl lock */ 557 pte_t *pte; /* Pointer to pte entry matching 558 * the 'address'. NULL if the page 559 * table hasn't been allocated. 560 */ 561 spinlock_t *ptl; /* Page table lock. 562 * Protects pte page table if 'pte' 563 * is not NULL, otherwise pmd. 564 */ 565 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 566 * vm_ops->map_pages() sets up a page 567 * table from atomic context. 568 * do_fault_around() pre-allocates 569 * page table to avoid allocation from 570 * atomic context. 571 */ 572 }; 573 574 /* page entry size for vm->huge_fault() */ 575 enum page_entry_size { 576 PE_SIZE_PTE = 0, 577 PE_SIZE_PMD, 578 PE_SIZE_PUD, 579 }; 580 581 /* 582 * These are the virtual MM functions - opening of an area, closing and 583 * unmapping it (needed to keep files on disk up-to-date etc), pointer 584 * to the functions called when a no-page or a wp-page exception occurs. 585 */ 586 struct vm_operations_struct { 587 void (*open)(struct vm_area_struct * area); 588 void (*close)(struct vm_area_struct * area); 589 /* Called any time before splitting to check if it's allowed */ 590 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 591 int (*mremap)(struct vm_area_struct *area); 592 /* 593 * Called by mprotect() to make driver-specific permission 594 * checks before mprotect() is finalised. The VMA must not 595 * be modified. Returns 0 if eprotect() can proceed. 596 */ 597 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 598 unsigned long end, unsigned long newflags); 599 vm_fault_t (*fault)(struct vm_fault *vmf); 600 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 601 enum page_entry_size pe_size); 602 vm_fault_t (*map_pages)(struct vm_fault *vmf, 603 pgoff_t start_pgoff, pgoff_t end_pgoff); 604 unsigned long (*pagesize)(struct vm_area_struct * area); 605 606 /* notification that a previously read-only page is about to become 607 * writable, if an error is returned it will cause a SIGBUS */ 608 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 609 610 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 611 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 612 613 /* called by access_process_vm when get_user_pages() fails, typically 614 * for use by special VMAs. See also generic_access_phys() for a generic 615 * implementation useful for any iomem mapping. 616 */ 617 int (*access)(struct vm_area_struct *vma, unsigned long addr, 618 void *buf, int len, int write); 619 620 /* Called by the /proc/PID/maps code to ask the vma whether it 621 * has a special name. Returning non-NULL will also cause this 622 * vma to be dumped unconditionally. */ 623 const char *(*name)(struct vm_area_struct *vma); 624 625 #ifdef CONFIG_NUMA 626 /* 627 * set_policy() op must add a reference to any non-NULL @new mempolicy 628 * to hold the policy upon return. Caller should pass NULL @new to 629 * remove a policy and fall back to surrounding context--i.e. do not 630 * install a MPOL_DEFAULT policy, nor the task or system default 631 * mempolicy. 632 */ 633 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 634 635 /* 636 * get_policy() op must add reference [mpol_get()] to any policy at 637 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 638 * in mm/mempolicy.c will do this automatically. 639 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 640 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 641 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 642 * must return NULL--i.e., do not "fallback" to task or system default 643 * policy. 644 */ 645 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 646 unsigned long addr); 647 #endif 648 /* 649 * Called by vm_normal_page() for special PTEs to find the 650 * page for @addr. This is useful if the default behavior 651 * (using pte_page()) would not find the correct page. 652 */ 653 struct page *(*find_special_page)(struct vm_area_struct *vma, 654 unsigned long addr); 655 }; 656 657 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 658 { 659 static const struct vm_operations_struct dummy_vm_ops = {}; 660 661 memset(vma, 0, sizeof(*vma)); 662 vma->vm_mm = mm; 663 vma->vm_ops = &dummy_vm_ops; 664 INIT_LIST_HEAD(&vma->anon_vma_chain); 665 } 666 667 static inline void vma_set_anonymous(struct vm_area_struct *vma) 668 { 669 vma->vm_ops = NULL; 670 } 671 672 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 673 { 674 return !vma->vm_ops; 675 } 676 677 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 678 { 679 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 680 681 if (!maybe_stack) 682 return false; 683 684 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 685 VM_STACK_INCOMPLETE_SETUP) 686 return true; 687 688 return false; 689 } 690 691 static inline bool vma_is_foreign(struct vm_area_struct *vma) 692 { 693 if (!current->mm) 694 return true; 695 696 if (current->mm != vma->vm_mm) 697 return true; 698 699 return false; 700 } 701 702 static inline bool vma_is_accessible(struct vm_area_struct *vma) 703 { 704 return vma->vm_flags & VM_ACCESS_FLAGS; 705 } 706 707 #ifdef CONFIG_SHMEM 708 /* 709 * The vma_is_shmem is not inline because it is used only by slow 710 * paths in userfault. 711 */ 712 bool vma_is_shmem(struct vm_area_struct *vma); 713 #else 714 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 715 #endif 716 717 int vma_is_stack_for_current(struct vm_area_struct *vma); 718 719 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 720 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 721 722 struct mmu_gather; 723 struct inode; 724 725 #include <linux/huge_mm.h> 726 727 /* 728 * Methods to modify the page usage count. 729 * 730 * What counts for a page usage: 731 * - cache mapping (page->mapping) 732 * - private data (page->private) 733 * - page mapped in a task's page tables, each mapping 734 * is counted separately 735 * 736 * Also, many kernel routines increase the page count before a critical 737 * routine so they can be sure the page doesn't go away from under them. 738 */ 739 740 /* 741 * Drop a ref, return true if the refcount fell to zero (the page has no users) 742 */ 743 static inline int put_page_testzero(struct page *page) 744 { 745 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 746 return page_ref_dec_and_test(page); 747 } 748 749 /* 750 * Try to grab a ref unless the page has a refcount of zero, return false if 751 * that is the case. 752 * This can be called when MMU is off so it must not access 753 * any of the virtual mappings. 754 */ 755 static inline int get_page_unless_zero(struct page *page) 756 { 757 return page_ref_add_unless(page, 1, 0); 758 } 759 760 extern int page_is_ram(unsigned long pfn); 761 762 enum { 763 REGION_INTERSECTS, 764 REGION_DISJOINT, 765 REGION_MIXED, 766 }; 767 768 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 769 unsigned long desc); 770 771 /* Support for virtually mapped pages */ 772 struct page *vmalloc_to_page(const void *addr); 773 unsigned long vmalloc_to_pfn(const void *addr); 774 775 /* 776 * Determine if an address is within the vmalloc range 777 * 778 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 779 * is no special casing required. 780 */ 781 782 #ifndef is_ioremap_addr 783 #define is_ioremap_addr(x) is_vmalloc_addr(x) 784 #endif 785 786 #ifdef CONFIG_MMU 787 extern bool is_vmalloc_addr(const void *x); 788 extern int is_vmalloc_or_module_addr(const void *x); 789 #else 790 static inline bool is_vmalloc_addr(const void *x) 791 { 792 return false; 793 } 794 static inline int is_vmalloc_or_module_addr(const void *x) 795 { 796 return 0; 797 } 798 #endif 799 800 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 801 static inline void *kvmalloc(size_t size, gfp_t flags) 802 { 803 return kvmalloc_node(size, flags, NUMA_NO_NODE); 804 } 805 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 806 { 807 return kvmalloc_node(size, flags | __GFP_ZERO, node); 808 } 809 static inline void *kvzalloc(size_t size, gfp_t flags) 810 { 811 return kvmalloc(size, flags | __GFP_ZERO); 812 } 813 814 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 815 { 816 size_t bytes; 817 818 if (unlikely(check_mul_overflow(n, size, &bytes))) 819 return NULL; 820 821 return kvmalloc(bytes, flags); 822 } 823 824 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 825 { 826 return kvmalloc_array(n, size, flags | __GFP_ZERO); 827 } 828 829 extern void kvfree(const void *addr); 830 extern void kvfree_sensitive(const void *addr, size_t len); 831 832 static inline int head_compound_mapcount(struct page *head) 833 { 834 return atomic_read(compound_mapcount_ptr(head)) + 1; 835 } 836 837 /* 838 * Mapcount of compound page as a whole, does not include mapped sub-pages. 839 * 840 * Must be called only for compound pages or any their tail sub-pages. 841 */ 842 static inline int compound_mapcount(struct page *page) 843 { 844 VM_BUG_ON_PAGE(!PageCompound(page), page); 845 page = compound_head(page); 846 return head_compound_mapcount(page); 847 } 848 849 /* 850 * The atomic page->_mapcount, starts from -1: so that transitions 851 * both from it and to it can be tracked, using atomic_inc_and_test 852 * and atomic_add_negative(-1). 853 */ 854 static inline void page_mapcount_reset(struct page *page) 855 { 856 atomic_set(&(page)->_mapcount, -1); 857 } 858 859 int __page_mapcount(struct page *page); 860 861 /* 862 * Mapcount of 0-order page; when compound sub-page, includes 863 * compound_mapcount(). 864 * 865 * Result is undefined for pages which cannot be mapped into userspace. 866 * For example SLAB or special types of pages. See function page_has_type(). 867 * They use this place in struct page differently. 868 */ 869 static inline int page_mapcount(struct page *page) 870 { 871 if (unlikely(PageCompound(page))) 872 return __page_mapcount(page); 873 return atomic_read(&page->_mapcount) + 1; 874 } 875 876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 877 int total_mapcount(struct page *page); 878 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 879 #else 880 static inline int total_mapcount(struct page *page) 881 { 882 return page_mapcount(page); 883 } 884 static inline int page_trans_huge_mapcount(struct page *page, 885 int *total_mapcount) 886 { 887 int mapcount = page_mapcount(page); 888 if (total_mapcount) 889 *total_mapcount = mapcount; 890 return mapcount; 891 } 892 #endif 893 894 static inline struct page *virt_to_head_page(const void *x) 895 { 896 struct page *page = virt_to_page(x); 897 898 return compound_head(page); 899 } 900 901 void __put_page(struct page *page); 902 903 void put_pages_list(struct list_head *pages); 904 905 void split_page(struct page *page, unsigned int order); 906 907 /* 908 * Compound pages have a destructor function. Provide a 909 * prototype for that function and accessor functions. 910 * These are _only_ valid on the head of a compound page. 911 */ 912 typedef void compound_page_dtor(struct page *); 913 914 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 915 enum compound_dtor_id { 916 NULL_COMPOUND_DTOR, 917 COMPOUND_PAGE_DTOR, 918 #ifdef CONFIG_HUGETLB_PAGE 919 HUGETLB_PAGE_DTOR, 920 #endif 921 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 922 TRANSHUGE_PAGE_DTOR, 923 #endif 924 NR_COMPOUND_DTORS, 925 }; 926 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 927 928 static inline void set_compound_page_dtor(struct page *page, 929 enum compound_dtor_id compound_dtor) 930 { 931 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 932 page[1].compound_dtor = compound_dtor; 933 } 934 935 static inline void destroy_compound_page(struct page *page) 936 { 937 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 938 compound_page_dtors[page[1].compound_dtor](page); 939 } 940 941 static inline unsigned int compound_order(struct page *page) 942 { 943 if (!PageHead(page)) 944 return 0; 945 return page[1].compound_order; 946 } 947 948 static inline bool hpage_pincount_available(struct page *page) 949 { 950 /* 951 * Can the page->hpage_pinned_refcount field be used? That field is in 952 * the 3rd page of the compound page, so the smallest (2-page) compound 953 * pages cannot support it. 954 */ 955 page = compound_head(page); 956 return PageCompound(page) && compound_order(page) > 1; 957 } 958 959 static inline int head_compound_pincount(struct page *head) 960 { 961 return atomic_read(compound_pincount_ptr(head)); 962 } 963 964 static inline int compound_pincount(struct page *page) 965 { 966 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 967 page = compound_head(page); 968 return head_compound_pincount(page); 969 } 970 971 static inline void set_compound_order(struct page *page, unsigned int order) 972 { 973 page[1].compound_order = order; 974 page[1].compound_nr = 1U << order; 975 } 976 977 /* Returns the number of pages in this potentially compound page. */ 978 static inline unsigned long compound_nr(struct page *page) 979 { 980 if (!PageHead(page)) 981 return 1; 982 return page[1].compound_nr; 983 } 984 985 /* Returns the number of bytes in this potentially compound page. */ 986 static inline unsigned long page_size(struct page *page) 987 { 988 return PAGE_SIZE << compound_order(page); 989 } 990 991 /* Returns the number of bits needed for the number of bytes in a page */ 992 static inline unsigned int page_shift(struct page *page) 993 { 994 return PAGE_SHIFT + compound_order(page); 995 } 996 997 void free_compound_page(struct page *page); 998 999 #ifdef CONFIG_MMU 1000 /* 1001 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1002 * servicing faults for write access. In the normal case, do always want 1003 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1004 * that do not have writing enabled, when used by access_process_vm. 1005 */ 1006 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1007 { 1008 if (likely(vma->vm_flags & VM_WRITE)) 1009 pte = pte_mkwrite(pte); 1010 return pte; 1011 } 1012 1013 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1014 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1015 1016 vm_fault_t finish_fault(struct vm_fault *vmf); 1017 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1018 #endif 1019 1020 /* 1021 * Multiple processes may "see" the same page. E.g. for untouched 1022 * mappings of /dev/null, all processes see the same page full of 1023 * zeroes, and text pages of executables and shared libraries have 1024 * only one copy in memory, at most, normally. 1025 * 1026 * For the non-reserved pages, page_count(page) denotes a reference count. 1027 * page_count() == 0 means the page is free. page->lru is then used for 1028 * freelist management in the buddy allocator. 1029 * page_count() > 0 means the page has been allocated. 1030 * 1031 * Pages are allocated by the slab allocator in order to provide memory 1032 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1033 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1034 * unless a particular usage is carefully commented. (the responsibility of 1035 * freeing the kmalloc memory is the caller's, of course). 1036 * 1037 * A page may be used by anyone else who does a __get_free_page(). 1038 * In this case, page_count still tracks the references, and should only 1039 * be used through the normal accessor functions. The top bits of page->flags 1040 * and page->virtual store page management information, but all other fields 1041 * are unused and could be used privately, carefully. The management of this 1042 * page is the responsibility of the one who allocated it, and those who have 1043 * subsequently been given references to it. 1044 * 1045 * The other pages (we may call them "pagecache pages") are completely 1046 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1047 * The following discussion applies only to them. 1048 * 1049 * A pagecache page contains an opaque `private' member, which belongs to the 1050 * page's address_space. Usually, this is the address of a circular list of 1051 * the page's disk buffers. PG_private must be set to tell the VM to call 1052 * into the filesystem to release these pages. 1053 * 1054 * A page may belong to an inode's memory mapping. In this case, page->mapping 1055 * is the pointer to the inode, and page->index is the file offset of the page, 1056 * in units of PAGE_SIZE. 1057 * 1058 * If pagecache pages are not associated with an inode, they are said to be 1059 * anonymous pages. These may become associated with the swapcache, and in that 1060 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1061 * 1062 * In either case (swapcache or inode backed), the pagecache itself holds one 1063 * reference to the page. Setting PG_private should also increment the 1064 * refcount. The each user mapping also has a reference to the page. 1065 * 1066 * The pagecache pages are stored in a per-mapping radix tree, which is 1067 * rooted at mapping->i_pages, and indexed by offset. 1068 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1069 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1070 * 1071 * All pagecache pages may be subject to I/O: 1072 * - inode pages may need to be read from disk, 1073 * - inode pages which have been modified and are MAP_SHARED may need 1074 * to be written back to the inode on disk, 1075 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1076 * modified may need to be swapped out to swap space and (later) to be read 1077 * back into memory. 1078 */ 1079 1080 /* 1081 * The zone field is never updated after free_area_init_core() 1082 * sets it, so none of the operations on it need to be atomic. 1083 */ 1084 1085 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1086 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1087 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1088 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1089 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1090 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1091 1092 /* 1093 * Define the bit shifts to access each section. For non-existent 1094 * sections we define the shift as 0; that plus a 0 mask ensures 1095 * the compiler will optimise away reference to them. 1096 */ 1097 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1098 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1099 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1100 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1101 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1102 1103 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1104 #ifdef NODE_NOT_IN_PAGE_FLAGS 1105 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1106 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1107 SECTIONS_PGOFF : ZONES_PGOFF) 1108 #else 1109 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1110 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1111 NODES_PGOFF : ZONES_PGOFF) 1112 #endif 1113 1114 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1115 1116 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1117 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1118 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1119 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1120 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1121 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1122 1123 static inline enum zone_type page_zonenum(const struct page *page) 1124 { 1125 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1126 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1127 } 1128 1129 #ifdef CONFIG_ZONE_DEVICE 1130 static inline bool is_zone_device_page(const struct page *page) 1131 { 1132 return page_zonenum(page) == ZONE_DEVICE; 1133 } 1134 extern void memmap_init_zone_device(struct zone *, unsigned long, 1135 unsigned long, struct dev_pagemap *); 1136 #else 1137 static inline bool is_zone_device_page(const struct page *page) 1138 { 1139 return false; 1140 } 1141 #endif 1142 1143 static inline bool is_zone_movable_page(const struct page *page) 1144 { 1145 return page_zonenum(page) == ZONE_MOVABLE; 1146 } 1147 1148 #ifdef CONFIG_DEV_PAGEMAP_OPS 1149 void free_devmap_managed_page(struct page *page); 1150 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1151 1152 static inline bool page_is_devmap_managed(struct page *page) 1153 { 1154 if (!static_branch_unlikely(&devmap_managed_key)) 1155 return false; 1156 if (!is_zone_device_page(page)) 1157 return false; 1158 switch (page->pgmap->type) { 1159 case MEMORY_DEVICE_PRIVATE: 1160 case MEMORY_DEVICE_FS_DAX: 1161 return true; 1162 default: 1163 break; 1164 } 1165 return false; 1166 } 1167 1168 void put_devmap_managed_page(struct page *page); 1169 1170 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1171 static inline bool page_is_devmap_managed(struct page *page) 1172 { 1173 return false; 1174 } 1175 1176 static inline void put_devmap_managed_page(struct page *page) 1177 { 1178 } 1179 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1180 1181 static inline bool is_device_private_page(const struct page *page) 1182 { 1183 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1184 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1185 is_zone_device_page(page) && 1186 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1187 } 1188 1189 static inline bool is_pci_p2pdma_page(const struct page *page) 1190 { 1191 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1192 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1193 is_zone_device_page(page) && 1194 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1195 } 1196 1197 /* 127: arbitrary random number, small enough to assemble well */ 1198 #define page_ref_zero_or_close_to_overflow(page) \ 1199 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1200 1201 static inline void get_page(struct page *page) 1202 { 1203 page = compound_head(page); 1204 /* 1205 * Getting a normal page or the head of a compound page 1206 * requires to already have an elevated page->_refcount. 1207 */ 1208 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1209 page_ref_inc(page); 1210 } 1211 1212 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1213 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1214 unsigned int flags); 1215 1216 1217 static inline __must_check bool try_get_page(struct page *page) 1218 { 1219 page = compound_head(page); 1220 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1221 return false; 1222 page_ref_inc(page); 1223 return true; 1224 } 1225 1226 static inline void put_page(struct page *page) 1227 { 1228 page = compound_head(page); 1229 1230 /* 1231 * For devmap managed pages we need to catch refcount transition from 1232 * 2 to 1, when refcount reach one it means the page is free and we 1233 * need to inform the device driver through callback. See 1234 * include/linux/memremap.h and HMM for details. 1235 */ 1236 if (page_is_devmap_managed(page)) { 1237 put_devmap_managed_page(page); 1238 return; 1239 } 1240 1241 if (put_page_testzero(page)) 1242 __put_page(page); 1243 } 1244 1245 /* 1246 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1247 * the page's refcount so that two separate items are tracked: the original page 1248 * reference count, and also a new count of how many pin_user_pages() calls were 1249 * made against the page. ("gup-pinned" is another term for the latter). 1250 * 1251 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1252 * distinct from normal pages. As such, the unpin_user_page() call (and its 1253 * variants) must be used in order to release gup-pinned pages. 1254 * 1255 * Choice of value: 1256 * 1257 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1258 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1259 * simpler, due to the fact that adding an even power of two to the page 1260 * refcount has the effect of using only the upper N bits, for the code that 1261 * counts up using the bias value. This means that the lower bits are left for 1262 * the exclusive use of the original code that increments and decrements by one 1263 * (or at least, by much smaller values than the bias value). 1264 * 1265 * Of course, once the lower bits overflow into the upper bits (and this is 1266 * OK, because subtraction recovers the original values), then visual inspection 1267 * no longer suffices to directly view the separate counts. However, for normal 1268 * applications that don't have huge page reference counts, this won't be an 1269 * issue. 1270 * 1271 * Locking: the lockless algorithm described in page_cache_get_speculative() 1272 * and page_cache_gup_pin_speculative() provides safe operation for 1273 * get_user_pages and page_mkclean and other calls that race to set up page 1274 * table entries. 1275 */ 1276 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1277 1278 void unpin_user_page(struct page *page); 1279 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1280 bool make_dirty); 1281 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1282 bool make_dirty); 1283 void unpin_user_pages(struct page **pages, unsigned long npages); 1284 1285 /** 1286 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1287 * @page: The page. 1288 * 1289 * This function checks if a page has been pinned via a call to 1290 * a function in the pin_user_pages() family. 1291 * 1292 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1293 * because it means "definitely not pinned for DMA", but true means "probably 1294 * pinned for DMA, but possibly a false positive due to having at least 1295 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1296 * 1297 * False positives are OK, because: a) it's unlikely for a page to get that many 1298 * refcounts, and b) all the callers of this routine are expected to be able to 1299 * deal gracefully with a false positive. 1300 * 1301 * For huge pages, the result will be exactly correct. That's because we have 1302 * more tracking data available: the 3rd struct page in the compound page is 1303 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1304 * scheme). 1305 * 1306 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1307 * 1308 * Return: True, if it is likely that the page has been "dma-pinned". 1309 * False, if the page is definitely not dma-pinned. 1310 */ 1311 static inline bool page_maybe_dma_pinned(struct page *page) 1312 { 1313 if (hpage_pincount_available(page)) 1314 return compound_pincount(page) > 0; 1315 1316 /* 1317 * page_ref_count() is signed. If that refcount overflows, then 1318 * page_ref_count() returns a negative value, and callers will avoid 1319 * further incrementing the refcount. 1320 * 1321 * Here, for that overflow case, use the signed bit to count a little 1322 * bit higher via unsigned math, and thus still get an accurate result. 1323 */ 1324 return ((unsigned int)page_ref_count(compound_head(page))) >= 1325 GUP_PIN_COUNTING_BIAS; 1326 } 1327 1328 static inline bool is_cow_mapping(vm_flags_t flags) 1329 { 1330 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1331 } 1332 1333 /* 1334 * This should most likely only be called during fork() to see whether we 1335 * should break the cow immediately for a page on the src mm. 1336 */ 1337 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1338 struct page *page) 1339 { 1340 if (!is_cow_mapping(vma->vm_flags)) 1341 return false; 1342 1343 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1344 return false; 1345 1346 return page_maybe_dma_pinned(page); 1347 } 1348 1349 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1350 #define SECTION_IN_PAGE_FLAGS 1351 #endif 1352 1353 /* 1354 * The identification function is mainly used by the buddy allocator for 1355 * determining if two pages could be buddies. We are not really identifying 1356 * the zone since we could be using the section number id if we do not have 1357 * node id available in page flags. 1358 * We only guarantee that it will return the same value for two combinable 1359 * pages in a zone. 1360 */ 1361 static inline int page_zone_id(struct page *page) 1362 { 1363 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1364 } 1365 1366 #ifdef NODE_NOT_IN_PAGE_FLAGS 1367 extern int page_to_nid(const struct page *page); 1368 #else 1369 static inline int page_to_nid(const struct page *page) 1370 { 1371 struct page *p = (struct page *)page; 1372 1373 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1374 } 1375 #endif 1376 1377 #ifdef CONFIG_NUMA_BALANCING 1378 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1379 { 1380 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1381 } 1382 1383 static inline int cpupid_to_pid(int cpupid) 1384 { 1385 return cpupid & LAST__PID_MASK; 1386 } 1387 1388 static inline int cpupid_to_cpu(int cpupid) 1389 { 1390 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1391 } 1392 1393 static inline int cpupid_to_nid(int cpupid) 1394 { 1395 return cpu_to_node(cpupid_to_cpu(cpupid)); 1396 } 1397 1398 static inline bool cpupid_pid_unset(int cpupid) 1399 { 1400 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1401 } 1402 1403 static inline bool cpupid_cpu_unset(int cpupid) 1404 { 1405 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1406 } 1407 1408 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1409 { 1410 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1411 } 1412 1413 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1414 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1415 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1416 { 1417 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1418 } 1419 1420 static inline int page_cpupid_last(struct page *page) 1421 { 1422 return page->_last_cpupid; 1423 } 1424 static inline void page_cpupid_reset_last(struct page *page) 1425 { 1426 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1427 } 1428 #else 1429 static inline int page_cpupid_last(struct page *page) 1430 { 1431 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1432 } 1433 1434 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1435 1436 static inline void page_cpupid_reset_last(struct page *page) 1437 { 1438 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1439 } 1440 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1441 #else /* !CONFIG_NUMA_BALANCING */ 1442 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1443 { 1444 return page_to_nid(page); /* XXX */ 1445 } 1446 1447 static inline int page_cpupid_last(struct page *page) 1448 { 1449 return page_to_nid(page); /* XXX */ 1450 } 1451 1452 static inline int cpupid_to_nid(int cpupid) 1453 { 1454 return -1; 1455 } 1456 1457 static inline int cpupid_to_pid(int cpupid) 1458 { 1459 return -1; 1460 } 1461 1462 static inline int cpupid_to_cpu(int cpupid) 1463 { 1464 return -1; 1465 } 1466 1467 static inline int cpu_pid_to_cpupid(int nid, int pid) 1468 { 1469 return -1; 1470 } 1471 1472 static inline bool cpupid_pid_unset(int cpupid) 1473 { 1474 return true; 1475 } 1476 1477 static inline void page_cpupid_reset_last(struct page *page) 1478 { 1479 } 1480 1481 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1482 { 1483 return false; 1484 } 1485 #endif /* CONFIG_NUMA_BALANCING */ 1486 1487 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1488 1489 /* 1490 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1491 * setting tags for all pages to native kernel tag value 0xff, as the default 1492 * value 0x00 maps to 0xff. 1493 */ 1494 1495 static inline u8 page_kasan_tag(const struct page *page) 1496 { 1497 u8 tag = 0xff; 1498 1499 if (kasan_enabled()) { 1500 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1501 tag ^= 0xff; 1502 } 1503 1504 return tag; 1505 } 1506 1507 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1508 { 1509 if (kasan_enabled()) { 1510 tag ^= 0xff; 1511 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1512 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1513 } 1514 } 1515 1516 static inline void page_kasan_tag_reset(struct page *page) 1517 { 1518 if (kasan_enabled()) 1519 page_kasan_tag_set(page, 0xff); 1520 } 1521 1522 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1523 1524 static inline u8 page_kasan_tag(const struct page *page) 1525 { 1526 return 0xff; 1527 } 1528 1529 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1530 static inline void page_kasan_tag_reset(struct page *page) { } 1531 1532 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1533 1534 static inline struct zone *page_zone(const struct page *page) 1535 { 1536 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1537 } 1538 1539 static inline pg_data_t *page_pgdat(const struct page *page) 1540 { 1541 return NODE_DATA(page_to_nid(page)); 1542 } 1543 1544 #ifdef SECTION_IN_PAGE_FLAGS 1545 static inline void set_page_section(struct page *page, unsigned long section) 1546 { 1547 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1548 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1549 } 1550 1551 static inline unsigned long page_to_section(const struct page *page) 1552 { 1553 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1554 } 1555 #endif 1556 1557 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1558 #ifdef CONFIG_MIGRATION 1559 static inline bool is_pinnable_page(struct page *page) 1560 { 1561 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1562 is_zero_pfn(page_to_pfn(page)); 1563 } 1564 #else 1565 static inline bool is_pinnable_page(struct page *page) 1566 { 1567 return true; 1568 } 1569 #endif 1570 1571 static inline void set_page_zone(struct page *page, enum zone_type zone) 1572 { 1573 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1574 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1575 } 1576 1577 static inline void set_page_node(struct page *page, unsigned long node) 1578 { 1579 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1580 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1581 } 1582 1583 static inline void set_page_links(struct page *page, enum zone_type zone, 1584 unsigned long node, unsigned long pfn) 1585 { 1586 set_page_zone(page, zone); 1587 set_page_node(page, node); 1588 #ifdef SECTION_IN_PAGE_FLAGS 1589 set_page_section(page, pfn_to_section_nr(pfn)); 1590 #endif 1591 } 1592 1593 /* 1594 * Some inline functions in vmstat.h depend on page_zone() 1595 */ 1596 #include <linux/vmstat.h> 1597 1598 static __always_inline void *lowmem_page_address(const struct page *page) 1599 { 1600 return page_to_virt(page); 1601 } 1602 1603 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1604 #define HASHED_PAGE_VIRTUAL 1605 #endif 1606 1607 #if defined(WANT_PAGE_VIRTUAL) 1608 static inline void *page_address(const struct page *page) 1609 { 1610 return page->virtual; 1611 } 1612 static inline void set_page_address(struct page *page, void *address) 1613 { 1614 page->virtual = address; 1615 } 1616 #define page_address_init() do { } while(0) 1617 #endif 1618 1619 #if defined(HASHED_PAGE_VIRTUAL) 1620 void *page_address(const struct page *page); 1621 void set_page_address(struct page *page, void *virtual); 1622 void page_address_init(void); 1623 #endif 1624 1625 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1626 #define page_address(page) lowmem_page_address(page) 1627 #define set_page_address(page, address) do { } while(0) 1628 #define page_address_init() do { } while(0) 1629 #endif 1630 1631 extern void *page_rmapping(struct page *page); 1632 extern struct anon_vma *page_anon_vma(struct page *page); 1633 extern struct address_space *page_mapping(struct page *page); 1634 1635 extern struct address_space *__page_file_mapping(struct page *); 1636 1637 static inline 1638 struct address_space *page_file_mapping(struct page *page) 1639 { 1640 if (unlikely(PageSwapCache(page))) 1641 return __page_file_mapping(page); 1642 1643 return page->mapping; 1644 } 1645 1646 extern pgoff_t __page_file_index(struct page *page); 1647 1648 /* 1649 * Return the pagecache index of the passed page. Regular pagecache pages 1650 * use ->index whereas swapcache pages use swp_offset(->private) 1651 */ 1652 static inline pgoff_t page_index(struct page *page) 1653 { 1654 if (unlikely(PageSwapCache(page))) 1655 return __page_file_index(page); 1656 return page->index; 1657 } 1658 1659 bool page_mapped(struct page *page); 1660 struct address_space *page_mapping(struct page *page); 1661 1662 /* 1663 * Return true only if the page has been allocated with 1664 * ALLOC_NO_WATERMARKS and the low watermark was not 1665 * met implying that the system is under some pressure. 1666 */ 1667 static inline bool page_is_pfmemalloc(const struct page *page) 1668 { 1669 /* 1670 * lru.next has bit 1 set if the page is allocated from the 1671 * pfmemalloc reserves. Callers may simply overwrite it if 1672 * they do not need to preserve that information. 1673 */ 1674 return (uintptr_t)page->lru.next & BIT(1); 1675 } 1676 1677 /* 1678 * Only to be called by the page allocator on a freshly allocated 1679 * page. 1680 */ 1681 static inline void set_page_pfmemalloc(struct page *page) 1682 { 1683 page->lru.next = (void *)BIT(1); 1684 } 1685 1686 static inline void clear_page_pfmemalloc(struct page *page) 1687 { 1688 page->lru.next = NULL; 1689 } 1690 1691 /* 1692 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1693 */ 1694 extern void pagefault_out_of_memory(void); 1695 1696 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1697 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1698 1699 /* 1700 * Flags passed to show_mem() and show_free_areas() to suppress output in 1701 * various contexts. 1702 */ 1703 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1704 1705 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1706 1707 #ifdef CONFIG_MMU 1708 extern bool can_do_mlock(void); 1709 #else 1710 static inline bool can_do_mlock(void) { return false; } 1711 #endif 1712 extern int user_shm_lock(size_t, struct ucounts *); 1713 extern void user_shm_unlock(size_t, struct ucounts *); 1714 1715 /* 1716 * Parameter block passed down to zap_pte_range in exceptional cases. 1717 */ 1718 struct zap_details { 1719 struct address_space *check_mapping; /* Check page->mapping if set */ 1720 pgoff_t first_index; /* Lowest page->index to unmap */ 1721 pgoff_t last_index; /* Highest page->index to unmap */ 1722 struct page *single_page; /* Locked page to be unmapped */ 1723 }; 1724 1725 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1726 pte_t pte); 1727 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1728 pmd_t pmd); 1729 1730 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1731 unsigned long size); 1732 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1733 unsigned long size); 1734 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1735 unsigned long start, unsigned long end); 1736 1737 struct mmu_notifier_range; 1738 1739 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1740 unsigned long end, unsigned long floor, unsigned long ceiling); 1741 int 1742 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1743 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1744 struct mmu_notifier_range *range, pte_t **ptepp, 1745 pmd_t **pmdpp, spinlock_t **ptlp); 1746 int follow_pte(struct mm_struct *mm, unsigned long address, 1747 pte_t **ptepp, spinlock_t **ptlp); 1748 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1749 unsigned long *pfn); 1750 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1751 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1752 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1753 void *buf, int len, int write); 1754 1755 extern void truncate_pagecache(struct inode *inode, loff_t new); 1756 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1757 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1758 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1759 int truncate_inode_page(struct address_space *mapping, struct page *page); 1760 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1761 int invalidate_inode_page(struct page *page); 1762 1763 #ifdef CONFIG_MMU 1764 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1765 unsigned long address, unsigned int flags, 1766 struct pt_regs *regs); 1767 extern int fixup_user_fault(struct mm_struct *mm, 1768 unsigned long address, unsigned int fault_flags, 1769 bool *unlocked); 1770 void unmap_mapping_page(struct page *page); 1771 void unmap_mapping_pages(struct address_space *mapping, 1772 pgoff_t start, pgoff_t nr, bool even_cows); 1773 void unmap_mapping_range(struct address_space *mapping, 1774 loff_t const holebegin, loff_t const holelen, int even_cows); 1775 #else 1776 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1777 unsigned long address, unsigned int flags, 1778 struct pt_regs *regs) 1779 { 1780 /* should never happen if there's no MMU */ 1781 BUG(); 1782 return VM_FAULT_SIGBUS; 1783 } 1784 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1785 unsigned int fault_flags, bool *unlocked) 1786 { 1787 /* should never happen if there's no MMU */ 1788 BUG(); 1789 return -EFAULT; 1790 } 1791 static inline void unmap_mapping_page(struct page *page) { } 1792 static inline void unmap_mapping_pages(struct address_space *mapping, 1793 pgoff_t start, pgoff_t nr, bool even_cows) { } 1794 static inline void unmap_mapping_range(struct address_space *mapping, 1795 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1796 #endif 1797 1798 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1799 loff_t const holebegin, loff_t const holelen) 1800 { 1801 unmap_mapping_range(mapping, holebegin, holelen, 0); 1802 } 1803 1804 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1805 void *buf, int len, unsigned int gup_flags); 1806 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1807 void *buf, int len, unsigned int gup_flags); 1808 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1809 void *buf, int len, unsigned int gup_flags); 1810 1811 long get_user_pages_remote(struct mm_struct *mm, 1812 unsigned long start, unsigned long nr_pages, 1813 unsigned int gup_flags, struct page **pages, 1814 struct vm_area_struct **vmas, int *locked); 1815 long pin_user_pages_remote(struct mm_struct *mm, 1816 unsigned long start, unsigned long nr_pages, 1817 unsigned int gup_flags, struct page **pages, 1818 struct vm_area_struct **vmas, int *locked); 1819 long get_user_pages(unsigned long start, unsigned long nr_pages, 1820 unsigned int gup_flags, struct page **pages, 1821 struct vm_area_struct **vmas); 1822 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1823 unsigned int gup_flags, struct page **pages, 1824 struct vm_area_struct **vmas); 1825 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1826 unsigned int gup_flags, struct page **pages, int *locked); 1827 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1828 unsigned int gup_flags, struct page **pages, int *locked); 1829 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1830 struct page **pages, unsigned int gup_flags); 1831 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1832 struct page **pages, unsigned int gup_flags); 1833 1834 int get_user_pages_fast(unsigned long start, int nr_pages, 1835 unsigned int gup_flags, struct page **pages); 1836 int pin_user_pages_fast(unsigned long start, int nr_pages, 1837 unsigned int gup_flags, struct page **pages); 1838 1839 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1840 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1841 struct task_struct *task, bool bypass_rlim); 1842 1843 struct kvec; 1844 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1845 struct page **pages); 1846 int get_kernel_page(unsigned long start, int write, struct page **pages); 1847 struct page *get_dump_page(unsigned long addr); 1848 1849 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1850 extern void do_invalidatepage(struct page *page, unsigned int offset, 1851 unsigned int length); 1852 1853 int redirty_page_for_writepage(struct writeback_control *wbc, 1854 struct page *page); 1855 void account_page_cleaned(struct page *page, struct address_space *mapping, 1856 struct bdi_writeback *wb); 1857 int set_page_dirty(struct page *page); 1858 int set_page_dirty_lock(struct page *page); 1859 void __cancel_dirty_page(struct page *page); 1860 static inline void cancel_dirty_page(struct page *page) 1861 { 1862 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1863 if (PageDirty(page)) 1864 __cancel_dirty_page(page); 1865 } 1866 int clear_page_dirty_for_io(struct page *page); 1867 1868 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1869 1870 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1871 unsigned long old_addr, struct vm_area_struct *new_vma, 1872 unsigned long new_addr, unsigned long len, 1873 bool need_rmap_locks); 1874 1875 /* 1876 * Flags used by change_protection(). For now we make it a bitmap so 1877 * that we can pass in multiple flags just like parameters. However 1878 * for now all the callers are only use one of the flags at the same 1879 * time. 1880 */ 1881 /* Whether we should allow dirty bit accounting */ 1882 #define MM_CP_DIRTY_ACCT (1UL << 0) 1883 /* Whether this protection change is for NUMA hints */ 1884 #define MM_CP_PROT_NUMA (1UL << 1) 1885 /* Whether this change is for write protecting */ 1886 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1887 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1888 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1889 MM_CP_UFFD_WP_RESOLVE) 1890 1891 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1892 unsigned long end, pgprot_t newprot, 1893 unsigned long cp_flags); 1894 extern int mprotect_fixup(struct vm_area_struct *vma, 1895 struct vm_area_struct **pprev, unsigned long start, 1896 unsigned long end, unsigned long newflags); 1897 1898 /* 1899 * doesn't attempt to fault and will return short. 1900 */ 1901 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1902 unsigned int gup_flags, struct page **pages); 1903 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1904 unsigned int gup_flags, struct page **pages); 1905 1906 static inline bool get_user_page_fast_only(unsigned long addr, 1907 unsigned int gup_flags, struct page **pagep) 1908 { 1909 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1910 } 1911 /* 1912 * per-process(per-mm_struct) statistics. 1913 */ 1914 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1915 { 1916 long val = atomic_long_read(&mm->rss_stat.count[member]); 1917 1918 #ifdef SPLIT_RSS_COUNTING 1919 /* 1920 * counter is updated in asynchronous manner and may go to minus. 1921 * But it's never be expected number for users. 1922 */ 1923 if (val < 0) 1924 val = 0; 1925 #endif 1926 return (unsigned long)val; 1927 } 1928 1929 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1930 1931 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1932 { 1933 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1934 1935 mm_trace_rss_stat(mm, member, count); 1936 } 1937 1938 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1939 { 1940 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1941 1942 mm_trace_rss_stat(mm, member, count); 1943 } 1944 1945 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1946 { 1947 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1948 1949 mm_trace_rss_stat(mm, member, count); 1950 } 1951 1952 /* Optimized variant when page is already known not to be PageAnon */ 1953 static inline int mm_counter_file(struct page *page) 1954 { 1955 if (PageSwapBacked(page)) 1956 return MM_SHMEMPAGES; 1957 return MM_FILEPAGES; 1958 } 1959 1960 static inline int mm_counter(struct page *page) 1961 { 1962 if (PageAnon(page)) 1963 return MM_ANONPAGES; 1964 return mm_counter_file(page); 1965 } 1966 1967 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1968 { 1969 return get_mm_counter(mm, MM_FILEPAGES) + 1970 get_mm_counter(mm, MM_ANONPAGES) + 1971 get_mm_counter(mm, MM_SHMEMPAGES); 1972 } 1973 1974 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1975 { 1976 return max(mm->hiwater_rss, get_mm_rss(mm)); 1977 } 1978 1979 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1980 { 1981 return max(mm->hiwater_vm, mm->total_vm); 1982 } 1983 1984 static inline void update_hiwater_rss(struct mm_struct *mm) 1985 { 1986 unsigned long _rss = get_mm_rss(mm); 1987 1988 if ((mm)->hiwater_rss < _rss) 1989 (mm)->hiwater_rss = _rss; 1990 } 1991 1992 static inline void update_hiwater_vm(struct mm_struct *mm) 1993 { 1994 if (mm->hiwater_vm < mm->total_vm) 1995 mm->hiwater_vm = mm->total_vm; 1996 } 1997 1998 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1999 { 2000 mm->hiwater_rss = get_mm_rss(mm); 2001 } 2002 2003 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2004 struct mm_struct *mm) 2005 { 2006 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2007 2008 if (*maxrss < hiwater_rss) 2009 *maxrss = hiwater_rss; 2010 } 2011 2012 #if defined(SPLIT_RSS_COUNTING) 2013 void sync_mm_rss(struct mm_struct *mm); 2014 #else 2015 static inline void sync_mm_rss(struct mm_struct *mm) 2016 { 2017 } 2018 #endif 2019 2020 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2021 static inline int pte_special(pte_t pte) 2022 { 2023 return 0; 2024 } 2025 2026 static inline pte_t pte_mkspecial(pte_t pte) 2027 { 2028 return pte; 2029 } 2030 #endif 2031 2032 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2033 static inline int pte_devmap(pte_t pte) 2034 { 2035 return 0; 2036 } 2037 #endif 2038 2039 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2040 2041 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2042 spinlock_t **ptl); 2043 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2044 spinlock_t **ptl) 2045 { 2046 pte_t *ptep; 2047 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2048 return ptep; 2049 } 2050 2051 #ifdef __PAGETABLE_P4D_FOLDED 2052 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2053 unsigned long address) 2054 { 2055 return 0; 2056 } 2057 #else 2058 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2059 #endif 2060 2061 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2062 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2063 unsigned long address) 2064 { 2065 return 0; 2066 } 2067 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2068 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2069 2070 #else 2071 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2072 2073 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2074 { 2075 if (mm_pud_folded(mm)) 2076 return; 2077 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2078 } 2079 2080 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2081 { 2082 if (mm_pud_folded(mm)) 2083 return; 2084 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2085 } 2086 #endif 2087 2088 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2089 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2090 unsigned long address) 2091 { 2092 return 0; 2093 } 2094 2095 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2096 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2097 2098 #else 2099 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2100 2101 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2102 { 2103 if (mm_pmd_folded(mm)) 2104 return; 2105 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2106 } 2107 2108 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2109 { 2110 if (mm_pmd_folded(mm)) 2111 return; 2112 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2113 } 2114 #endif 2115 2116 #ifdef CONFIG_MMU 2117 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2118 { 2119 atomic_long_set(&mm->pgtables_bytes, 0); 2120 } 2121 2122 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2123 { 2124 return atomic_long_read(&mm->pgtables_bytes); 2125 } 2126 2127 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2128 { 2129 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2130 } 2131 2132 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2133 { 2134 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2135 } 2136 #else 2137 2138 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2139 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2140 { 2141 return 0; 2142 } 2143 2144 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2145 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2146 #endif 2147 2148 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2149 int __pte_alloc_kernel(pmd_t *pmd); 2150 2151 #if defined(CONFIG_MMU) 2152 2153 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2154 unsigned long address) 2155 { 2156 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2157 NULL : p4d_offset(pgd, address); 2158 } 2159 2160 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2161 unsigned long address) 2162 { 2163 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2164 NULL : pud_offset(p4d, address); 2165 } 2166 2167 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2168 { 2169 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2170 NULL: pmd_offset(pud, address); 2171 } 2172 #endif /* CONFIG_MMU */ 2173 2174 #if USE_SPLIT_PTE_PTLOCKS 2175 #if ALLOC_SPLIT_PTLOCKS 2176 void __init ptlock_cache_init(void); 2177 extern bool ptlock_alloc(struct page *page); 2178 extern void ptlock_free(struct page *page); 2179 2180 static inline spinlock_t *ptlock_ptr(struct page *page) 2181 { 2182 return page->ptl; 2183 } 2184 #else /* ALLOC_SPLIT_PTLOCKS */ 2185 static inline void ptlock_cache_init(void) 2186 { 2187 } 2188 2189 static inline bool ptlock_alloc(struct page *page) 2190 { 2191 return true; 2192 } 2193 2194 static inline void ptlock_free(struct page *page) 2195 { 2196 } 2197 2198 static inline spinlock_t *ptlock_ptr(struct page *page) 2199 { 2200 return &page->ptl; 2201 } 2202 #endif /* ALLOC_SPLIT_PTLOCKS */ 2203 2204 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2205 { 2206 return ptlock_ptr(pmd_page(*pmd)); 2207 } 2208 2209 static inline bool ptlock_init(struct page *page) 2210 { 2211 /* 2212 * prep_new_page() initialize page->private (and therefore page->ptl) 2213 * with 0. Make sure nobody took it in use in between. 2214 * 2215 * It can happen if arch try to use slab for page table allocation: 2216 * slab code uses page->slab_cache, which share storage with page->ptl. 2217 */ 2218 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2219 if (!ptlock_alloc(page)) 2220 return false; 2221 spin_lock_init(ptlock_ptr(page)); 2222 return true; 2223 } 2224 2225 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2226 /* 2227 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2228 */ 2229 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2230 { 2231 return &mm->page_table_lock; 2232 } 2233 static inline void ptlock_cache_init(void) {} 2234 static inline bool ptlock_init(struct page *page) { return true; } 2235 static inline void ptlock_free(struct page *page) {} 2236 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2237 2238 static inline void pgtable_init(void) 2239 { 2240 ptlock_cache_init(); 2241 pgtable_cache_init(); 2242 } 2243 2244 static inline bool pgtable_pte_page_ctor(struct page *page) 2245 { 2246 if (!ptlock_init(page)) 2247 return false; 2248 __SetPageTable(page); 2249 inc_lruvec_page_state(page, NR_PAGETABLE); 2250 return true; 2251 } 2252 2253 static inline void pgtable_pte_page_dtor(struct page *page) 2254 { 2255 ptlock_free(page); 2256 __ClearPageTable(page); 2257 dec_lruvec_page_state(page, NR_PAGETABLE); 2258 } 2259 2260 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2261 ({ \ 2262 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2263 pte_t *__pte = pte_offset_map(pmd, address); \ 2264 *(ptlp) = __ptl; \ 2265 spin_lock(__ptl); \ 2266 __pte; \ 2267 }) 2268 2269 #define pte_unmap_unlock(pte, ptl) do { \ 2270 spin_unlock(ptl); \ 2271 pte_unmap(pte); \ 2272 } while (0) 2273 2274 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2275 2276 #define pte_alloc_map(mm, pmd, address) \ 2277 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2278 2279 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2280 (pte_alloc(mm, pmd) ? \ 2281 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2282 2283 #define pte_alloc_kernel(pmd, address) \ 2284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2285 NULL: pte_offset_kernel(pmd, address)) 2286 2287 #if USE_SPLIT_PMD_PTLOCKS 2288 2289 static struct page *pmd_to_page(pmd_t *pmd) 2290 { 2291 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2292 return virt_to_page((void *)((unsigned long) pmd & mask)); 2293 } 2294 2295 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2296 { 2297 return ptlock_ptr(pmd_to_page(pmd)); 2298 } 2299 2300 static inline bool pmd_ptlock_init(struct page *page) 2301 { 2302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2303 page->pmd_huge_pte = NULL; 2304 #endif 2305 return ptlock_init(page); 2306 } 2307 2308 static inline void pmd_ptlock_free(struct page *page) 2309 { 2310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2311 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2312 #endif 2313 ptlock_free(page); 2314 } 2315 2316 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2317 2318 #else 2319 2320 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2321 { 2322 return &mm->page_table_lock; 2323 } 2324 2325 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2326 static inline void pmd_ptlock_free(struct page *page) {} 2327 2328 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2329 2330 #endif 2331 2332 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2333 { 2334 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2335 spin_lock(ptl); 2336 return ptl; 2337 } 2338 2339 static inline bool pgtable_pmd_page_ctor(struct page *page) 2340 { 2341 if (!pmd_ptlock_init(page)) 2342 return false; 2343 __SetPageTable(page); 2344 inc_lruvec_page_state(page, NR_PAGETABLE); 2345 return true; 2346 } 2347 2348 static inline void pgtable_pmd_page_dtor(struct page *page) 2349 { 2350 pmd_ptlock_free(page); 2351 __ClearPageTable(page); 2352 dec_lruvec_page_state(page, NR_PAGETABLE); 2353 } 2354 2355 /* 2356 * No scalability reason to split PUD locks yet, but follow the same pattern 2357 * as the PMD locks to make it easier if we decide to. The VM should not be 2358 * considered ready to switch to split PUD locks yet; there may be places 2359 * which need to be converted from page_table_lock. 2360 */ 2361 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2362 { 2363 return &mm->page_table_lock; 2364 } 2365 2366 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2367 { 2368 spinlock_t *ptl = pud_lockptr(mm, pud); 2369 2370 spin_lock(ptl); 2371 return ptl; 2372 } 2373 2374 extern void __init pagecache_init(void); 2375 extern void __init free_area_init_memoryless_node(int nid); 2376 extern void free_initmem(void); 2377 2378 /* 2379 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2380 * into the buddy system. The freed pages will be poisoned with pattern 2381 * "poison" if it's within range [0, UCHAR_MAX]. 2382 * Return pages freed into the buddy system. 2383 */ 2384 extern unsigned long free_reserved_area(void *start, void *end, 2385 int poison, const char *s); 2386 2387 extern void adjust_managed_page_count(struct page *page, long count); 2388 extern void mem_init_print_info(void); 2389 2390 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2391 2392 /* Free the reserved page into the buddy system, so it gets managed. */ 2393 static inline void free_reserved_page(struct page *page) 2394 { 2395 ClearPageReserved(page); 2396 init_page_count(page); 2397 __free_page(page); 2398 adjust_managed_page_count(page, 1); 2399 } 2400 #define free_highmem_page(page) free_reserved_page(page) 2401 2402 static inline void mark_page_reserved(struct page *page) 2403 { 2404 SetPageReserved(page); 2405 adjust_managed_page_count(page, -1); 2406 } 2407 2408 /* 2409 * Default method to free all the __init memory into the buddy system. 2410 * The freed pages will be poisoned with pattern "poison" if it's within 2411 * range [0, UCHAR_MAX]. 2412 * Return pages freed into the buddy system. 2413 */ 2414 static inline unsigned long free_initmem_default(int poison) 2415 { 2416 extern char __init_begin[], __init_end[]; 2417 2418 return free_reserved_area(&__init_begin, &__init_end, 2419 poison, "unused kernel image (initmem)"); 2420 } 2421 2422 static inline unsigned long get_num_physpages(void) 2423 { 2424 int nid; 2425 unsigned long phys_pages = 0; 2426 2427 for_each_online_node(nid) 2428 phys_pages += node_present_pages(nid); 2429 2430 return phys_pages; 2431 } 2432 2433 /* 2434 * Using memblock node mappings, an architecture may initialise its 2435 * zones, allocate the backing mem_map and account for memory holes in an 2436 * architecture independent manner. 2437 * 2438 * An architecture is expected to register range of page frames backed by 2439 * physical memory with memblock_add[_node]() before calling 2440 * free_area_init() passing in the PFN each zone ends at. At a basic 2441 * usage, an architecture is expected to do something like 2442 * 2443 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2444 * max_highmem_pfn}; 2445 * for_each_valid_physical_page_range() 2446 * memblock_add_node(base, size, nid) 2447 * free_area_init(max_zone_pfns); 2448 */ 2449 void free_area_init(unsigned long *max_zone_pfn); 2450 unsigned long node_map_pfn_alignment(void); 2451 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2452 unsigned long end_pfn); 2453 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2454 unsigned long end_pfn); 2455 extern void get_pfn_range_for_nid(unsigned int nid, 2456 unsigned long *start_pfn, unsigned long *end_pfn); 2457 extern unsigned long find_min_pfn_with_active_regions(void); 2458 2459 #ifndef CONFIG_NUMA 2460 static inline int early_pfn_to_nid(unsigned long pfn) 2461 { 2462 return 0; 2463 } 2464 #else 2465 /* please see mm/page_alloc.c */ 2466 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2467 #endif 2468 2469 extern void set_dma_reserve(unsigned long new_dma_reserve); 2470 extern void memmap_init_range(unsigned long, int, unsigned long, 2471 unsigned long, unsigned long, enum meminit_context, 2472 struct vmem_altmap *, int migratetype); 2473 extern void setup_per_zone_wmarks(void); 2474 extern int __meminit init_per_zone_wmark_min(void); 2475 extern void mem_init(void); 2476 extern void __init mmap_init(void); 2477 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2478 extern long si_mem_available(void); 2479 extern void si_meminfo(struct sysinfo * val); 2480 extern void si_meminfo_node(struct sysinfo *val, int nid); 2481 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2482 extern unsigned long arch_reserved_kernel_pages(void); 2483 #endif 2484 2485 extern __printf(3, 4) 2486 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2487 2488 extern void setup_per_cpu_pageset(void); 2489 2490 /* page_alloc.c */ 2491 extern int min_free_kbytes; 2492 extern int watermark_boost_factor; 2493 extern int watermark_scale_factor; 2494 extern bool arch_has_descending_max_zone_pfns(void); 2495 2496 /* nommu.c */ 2497 extern atomic_long_t mmap_pages_allocated; 2498 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2499 2500 /* interval_tree.c */ 2501 void vma_interval_tree_insert(struct vm_area_struct *node, 2502 struct rb_root_cached *root); 2503 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2504 struct vm_area_struct *prev, 2505 struct rb_root_cached *root); 2506 void vma_interval_tree_remove(struct vm_area_struct *node, 2507 struct rb_root_cached *root); 2508 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2509 unsigned long start, unsigned long last); 2510 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2511 unsigned long start, unsigned long last); 2512 2513 #define vma_interval_tree_foreach(vma, root, start, last) \ 2514 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2515 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2516 2517 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2518 struct rb_root_cached *root); 2519 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2520 struct rb_root_cached *root); 2521 struct anon_vma_chain * 2522 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2523 unsigned long start, unsigned long last); 2524 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2525 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2526 #ifdef CONFIG_DEBUG_VM_RB 2527 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2528 #endif 2529 2530 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2531 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2532 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2533 2534 /* mmap.c */ 2535 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2536 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2537 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2538 struct vm_area_struct *expand); 2539 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2540 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2541 { 2542 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2543 } 2544 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2545 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2546 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2547 struct mempolicy *, struct vm_userfaultfd_ctx); 2548 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2549 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2550 unsigned long addr, int new_below); 2551 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2552 unsigned long addr, int new_below); 2553 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2554 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2555 struct rb_node **, struct rb_node *); 2556 extern void unlink_file_vma(struct vm_area_struct *); 2557 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2558 unsigned long addr, unsigned long len, pgoff_t pgoff, 2559 bool *need_rmap_locks); 2560 extern void exit_mmap(struct mm_struct *); 2561 2562 static inline int check_data_rlimit(unsigned long rlim, 2563 unsigned long new, 2564 unsigned long start, 2565 unsigned long end_data, 2566 unsigned long start_data) 2567 { 2568 if (rlim < RLIM_INFINITY) { 2569 if (((new - start) + (end_data - start_data)) > rlim) 2570 return -ENOSPC; 2571 } 2572 2573 return 0; 2574 } 2575 2576 extern int mm_take_all_locks(struct mm_struct *mm); 2577 extern void mm_drop_all_locks(struct mm_struct *mm); 2578 2579 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2580 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2581 extern struct file *get_task_exe_file(struct task_struct *task); 2582 2583 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2584 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2585 2586 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2587 const struct vm_special_mapping *sm); 2588 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2589 unsigned long addr, unsigned long len, 2590 unsigned long flags, 2591 const struct vm_special_mapping *spec); 2592 /* This is an obsolete alternative to _install_special_mapping. */ 2593 extern int install_special_mapping(struct mm_struct *mm, 2594 unsigned long addr, unsigned long len, 2595 unsigned long flags, struct page **pages); 2596 2597 unsigned long randomize_stack_top(unsigned long stack_top); 2598 2599 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2600 2601 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2602 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2603 struct list_head *uf); 2604 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2605 unsigned long len, unsigned long prot, unsigned long flags, 2606 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2607 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2608 struct list_head *uf, bool downgrade); 2609 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2610 struct list_head *uf); 2611 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2612 2613 #ifdef CONFIG_MMU 2614 extern int __mm_populate(unsigned long addr, unsigned long len, 2615 int ignore_errors); 2616 static inline void mm_populate(unsigned long addr, unsigned long len) 2617 { 2618 /* Ignore errors */ 2619 (void) __mm_populate(addr, len, 1); 2620 } 2621 #else 2622 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2623 #endif 2624 2625 /* These take the mm semaphore themselves */ 2626 extern int __must_check vm_brk(unsigned long, unsigned long); 2627 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2628 extern int vm_munmap(unsigned long, size_t); 2629 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2630 unsigned long, unsigned long, 2631 unsigned long, unsigned long); 2632 2633 struct vm_unmapped_area_info { 2634 #define VM_UNMAPPED_AREA_TOPDOWN 1 2635 unsigned long flags; 2636 unsigned long length; 2637 unsigned long low_limit; 2638 unsigned long high_limit; 2639 unsigned long align_mask; 2640 unsigned long align_offset; 2641 }; 2642 2643 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2644 2645 /* truncate.c */ 2646 extern void truncate_inode_pages(struct address_space *, loff_t); 2647 extern void truncate_inode_pages_range(struct address_space *, 2648 loff_t lstart, loff_t lend); 2649 extern void truncate_inode_pages_final(struct address_space *); 2650 2651 /* generic vm_area_ops exported for stackable file systems */ 2652 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2653 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2654 pgoff_t start_pgoff, pgoff_t end_pgoff); 2655 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2656 2657 /* mm/page-writeback.c */ 2658 int __must_check write_one_page(struct page *page); 2659 void task_dirty_inc(struct task_struct *tsk); 2660 2661 extern unsigned long stack_guard_gap; 2662 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2663 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2664 2665 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2666 extern int expand_downwards(struct vm_area_struct *vma, 2667 unsigned long address); 2668 #if VM_GROWSUP 2669 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2670 #else 2671 #define expand_upwards(vma, address) (0) 2672 #endif 2673 2674 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2675 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2676 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2677 struct vm_area_struct **pprev); 2678 2679 /** 2680 * find_vma_intersection() - Look up the first VMA which intersects the interval 2681 * @mm: The process address space. 2682 * @start_addr: The inclusive start user address. 2683 * @end_addr: The exclusive end user address. 2684 * 2685 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2686 * start_addr < end_addr. 2687 */ 2688 static inline 2689 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2690 unsigned long start_addr, 2691 unsigned long end_addr) 2692 { 2693 struct vm_area_struct *vma = find_vma(mm, start_addr); 2694 2695 if (vma && end_addr <= vma->vm_start) 2696 vma = NULL; 2697 return vma; 2698 } 2699 2700 /** 2701 * vma_lookup() - Find a VMA at a specific address 2702 * @mm: The process address space. 2703 * @addr: The user address. 2704 * 2705 * Return: The vm_area_struct at the given address, %NULL otherwise. 2706 */ 2707 static inline 2708 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2709 { 2710 struct vm_area_struct *vma = find_vma(mm, addr); 2711 2712 if (vma && addr < vma->vm_start) 2713 vma = NULL; 2714 2715 return vma; 2716 } 2717 2718 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2719 { 2720 unsigned long vm_start = vma->vm_start; 2721 2722 if (vma->vm_flags & VM_GROWSDOWN) { 2723 vm_start -= stack_guard_gap; 2724 if (vm_start > vma->vm_start) 2725 vm_start = 0; 2726 } 2727 return vm_start; 2728 } 2729 2730 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2731 { 2732 unsigned long vm_end = vma->vm_end; 2733 2734 if (vma->vm_flags & VM_GROWSUP) { 2735 vm_end += stack_guard_gap; 2736 if (vm_end < vma->vm_end) 2737 vm_end = -PAGE_SIZE; 2738 } 2739 return vm_end; 2740 } 2741 2742 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2743 { 2744 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2745 } 2746 2747 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2748 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2749 unsigned long vm_start, unsigned long vm_end) 2750 { 2751 struct vm_area_struct *vma = find_vma(mm, vm_start); 2752 2753 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2754 vma = NULL; 2755 2756 return vma; 2757 } 2758 2759 static inline bool range_in_vma(struct vm_area_struct *vma, 2760 unsigned long start, unsigned long end) 2761 { 2762 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2763 } 2764 2765 #ifdef CONFIG_MMU 2766 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2767 void vma_set_page_prot(struct vm_area_struct *vma); 2768 #else 2769 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2770 { 2771 return __pgprot(0); 2772 } 2773 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2774 { 2775 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2776 } 2777 #endif 2778 2779 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2780 2781 #ifdef CONFIG_NUMA_BALANCING 2782 unsigned long change_prot_numa(struct vm_area_struct *vma, 2783 unsigned long start, unsigned long end); 2784 #endif 2785 2786 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2787 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2788 unsigned long pfn, unsigned long size, pgprot_t); 2789 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2790 unsigned long pfn, unsigned long size, pgprot_t prot); 2791 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2792 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2793 struct page **pages, unsigned long *num); 2794 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2795 unsigned long num); 2796 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2797 unsigned long num); 2798 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2799 unsigned long pfn); 2800 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2801 unsigned long pfn, pgprot_t pgprot); 2802 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2803 pfn_t pfn); 2804 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2805 pfn_t pfn, pgprot_t pgprot); 2806 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2807 unsigned long addr, pfn_t pfn); 2808 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2809 2810 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2811 unsigned long addr, struct page *page) 2812 { 2813 int err = vm_insert_page(vma, addr, page); 2814 2815 if (err == -ENOMEM) 2816 return VM_FAULT_OOM; 2817 if (err < 0 && err != -EBUSY) 2818 return VM_FAULT_SIGBUS; 2819 2820 return VM_FAULT_NOPAGE; 2821 } 2822 2823 #ifndef io_remap_pfn_range 2824 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2825 unsigned long addr, unsigned long pfn, 2826 unsigned long size, pgprot_t prot) 2827 { 2828 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2829 } 2830 #endif 2831 2832 static inline vm_fault_t vmf_error(int err) 2833 { 2834 if (err == -ENOMEM) 2835 return VM_FAULT_OOM; 2836 return VM_FAULT_SIGBUS; 2837 } 2838 2839 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2840 unsigned int foll_flags); 2841 2842 #define FOLL_WRITE 0x01 /* check pte is writable */ 2843 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2844 #define FOLL_GET 0x04 /* do get_page on page */ 2845 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2846 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2847 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2848 * and return without waiting upon it */ 2849 #define FOLL_POPULATE 0x40 /* fault in page */ 2850 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2851 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2852 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2853 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2854 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2855 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2856 #define FOLL_COW 0x4000 /* internal GUP flag */ 2857 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2858 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2859 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2860 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2861 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2862 2863 /* 2864 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2865 * other. Here is what they mean, and how to use them: 2866 * 2867 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2868 * period _often_ under userspace control. This is in contrast to 2869 * iov_iter_get_pages(), whose usages are transient. 2870 * 2871 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2872 * lifetime enforced by the filesystem and we need guarantees that longterm 2873 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2874 * the filesystem. Ideas for this coordination include revoking the longterm 2875 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2876 * added after the problem with filesystems was found FS DAX VMAs are 2877 * specifically failed. Filesystem pages are still subject to bugs and use of 2878 * FOLL_LONGTERM should be avoided on those pages. 2879 * 2880 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2881 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2882 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2883 * is due to an incompatibility with the FS DAX check and 2884 * FAULT_FLAG_ALLOW_RETRY. 2885 * 2886 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2887 * that region. And so, CMA attempts to migrate the page before pinning, when 2888 * FOLL_LONGTERM is specified. 2889 * 2890 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2891 * but an additional pin counting system) will be invoked. This is intended for 2892 * anything that gets a page reference and then touches page data (for example, 2893 * Direct IO). This lets the filesystem know that some non-file-system entity is 2894 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2895 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2896 * a call to unpin_user_page(). 2897 * 2898 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2899 * and separate refcounting mechanisms, however, and that means that each has 2900 * its own acquire and release mechanisms: 2901 * 2902 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2903 * 2904 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2905 * 2906 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2907 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2908 * calls applied to them, and that's perfectly OK. This is a constraint on the 2909 * callers, not on the pages.) 2910 * 2911 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2912 * directly by the caller. That's in order to help avoid mismatches when 2913 * releasing pages: get_user_pages*() pages must be released via put_page(), 2914 * while pin_user_pages*() pages must be released via unpin_user_page(). 2915 * 2916 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2917 */ 2918 2919 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2920 { 2921 if (vm_fault & VM_FAULT_OOM) 2922 return -ENOMEM; 2923 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2924 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2925 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2926 return -EFAULT; 2927 return 0; 2928 } 2929 2930 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2931 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2932 unsigned long size, pte_fn_t fn, void *data); 2933 extern int apply_to_existing_page_range(struct mm_struct *mm, 2934 unsigned long address, unsigned long size, 2935 pte_fn_t fn, void *data); 2936 2937 extern void init_mem_debugging_and_hardening(void); 2938 #ifdef CONFIG_PAGE_POISONING 2939 extern void __kernel_poison_pages(struct page *page, int numpages); 2940 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2941 extern bool _page_poisoning_enabled_early; 2942 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2943 static inline bool page_poisoning_enabled(void) 2944 { 2945 return _page_poisoning_enabled_early; 2946 } 2947 /* 2948 * For use in fast paths after init_mem_debugging() has run, or when a 2949 * false negative result is not harmful when called too early. 2950 */ 2951 static inline bool page_poisoning_enabled_static(void) 2952 { 2953 return static_branch_unlikely(&_page_poisoning_enabled); 2954 } 2955 static inline void kernel_poison_pages(struct page *page, int numpages) 2956 { 2957 if (page_poisoning_enabled_static()) 2958 __kernel_poison_pages(page, numpages); 2959 } 2960 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2961 { 2962 if (page_poisoning_enabled_static()) 2963 __kernel_unpoison_pages(page, numpages); 2964 } 2965 #else 2966 static inline bool page_poisoning_enabled(void) { return false; } 2967 static inline bool page_poisoning_enabled_static(void) { return false; } 2968 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2969 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2970 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2971 #endif 2972 2973 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2974 static inline bool want_init_on_alloc(gfp_t flags) 2975 { 2976 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2977 &init_on_alloc)) 2978 return true; 2979 return flags & __GFP_ZERO; 2980 } 2981 2982 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2983 static inline bool want_init_on_free(void) 2984 { 2985 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2986 &init_on_free); 2987 } 2988 2989 extern bool _debug_pagealloc_enabled_early; 2990 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2991 2992 static inline bool debug_pagealloc_enabled(void) 2993 { 2994 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2995 _debug_pagealloc_enabled_early; 2996 } 2997 2998 /* 2999 * For use in fast paths after init_debug_pagealloc() has run, or when a 3000 * false negative result is not harmful when called too early. 3001 */ 3002 static inline bool debug_pagealloc_enabled_static(void) 3003 { 3004 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3005 return false; 3006 3007 return static_branch_unlikely(&_debug_pagealloc_enabled); 3008 } 3009 3010 #ifdef CONFIG_DEBUG_PAGEALLOC 3011 /* 3012 * To support DEBUG_PAGEALLOC architecture must ensure that 3013 * __kernel_map_pages() never fails 3014 */ 3015 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3016 3017 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3018 { 3019 if (debug_pagealloc_enabled_static()) 3020 __kernel_map_pages(page, numpages, 1); 3021 } 3022 3023 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3024 { 3025 if (debug_pagealloc_enabled_static()) 3026 __kernel_map_pages(page, numpages, 0); 3027 } 3028 #else /* CONFIG_DEBUG_PAGEALLOC */ 3029 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3030 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3031 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3032 3033 #ifdef __HAVE_ARCH_GATE_AREA 3034 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3035 extern int in_gate_area_no_mm(unsigned long addr); 3036 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3037 #else 3038 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3039 { 3040 return NULL; 3041 } 3042 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3043 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3044 { 3045 return 0; 3046 } 3047 #endif /* __HAVE_ARCH_GATE_AREA */ 3048 3049 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3050 3051 #ifdef CONFIG_SYSCTL 3052 extern int sysctl_drop_caches; 3053 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3054 loff_t *); 3055 #endif 3056 3057 void drop_slab(void); 3058 void drop_slab_node(int nid); 3059 3060 #ifndef CONFIG_MMU 3061 #define randomize_va_space 0 3062 #else 3063 extern int randomize_va_space; 3064 #endif 3065 3066 const char * arch_vma_name(struct vm_area_struct *vma); 3067 #ifdef CONFIG_MMU 3068 void print_vma_addr(char *prefix, unsigned long rip); 3069 #else 3070 static inline void print_vma_addr(char *prefix, unsigned long rip) 3071 { 3072 } 3073 #endif 3074 3075 int vmemmap_remap_free(unsigned long start, unsigned long end, 3076 unsigned long reuse); 3077 int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3078 unsigned long reuse, gfp_t gfp_mask); 3079 3080 void *sparse_buffer_alloc(unsigned long size); 3081 struct page * __populate_section_memmap(unsigned long pfn, 3082 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3083 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3084 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3085 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3086 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3087 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3088 struct vmem_altmap *altmap); 3089 void *vmemmap_alloc_block(unsigned long size, int node); 3090 struct vmem_altmap; 3091 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3092 struct vmem_altmap *altmap); 3093 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3094 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3095 int node, struct vmem_altmap *altmap); 3096 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3097 struct vmem_altmap *altmap); 3098 void vmemmap_populate_print_last(void); 3099 #ifdef CONFIG_MEMORY_HOTPLUG 3100 void vmemmap_free(unsigned long start, unsigned long end, 3101 struct vmem_altmap *altmap); 3102 #endif 3103 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3104 unsigned long nr_pages); 3105 3106 enum mf_flags { 3107 MF_COUNT_INCREASED = 1 << 0, 3108 MF_ACTION_REQUIRED = 1 << 1, 3109 MF_MUST_KILL = 1 << 2, 3110 MF_SOFT_OFFLINE = 1 << 3, 3111 }; 3112 extern int memory_failure(unsigned long pfn, int flags); 3113 extern void memory_failure_queue(unsigned long pfn, int flags); 3114 extern void memory_failure_queue_kick(int cpu); 3115 extern int unpoison_memory(unsigned long pfn); 3116 extern int sysctl_memory_failure_early_kill; 3117 extern int sysctl_memory_failure_recovery; 3118 extern void shake_page(struct page *p, int access); 3119 extern atomic_long_t num_poisoned_pages __read_mostly; 3120 extern int soft_offline_page(unsigned long pfn, int flags); 3121 3122 3123 /* 3124 * Error handlers for various types of pages. 3125 */ 3126 enum mf_result { 3127 MF_IGNORED, /* Error: cannot be handled */ 3128 MF_FAILED, /* Error: handling failed */ 3129 MF_DELAYED, /* Will be handled later */ 3130 MF_RECOVERED, /* Successfully recovered */ 3131 }; 3132 3133 enum mf_action_page_type { 3134 MF_MSG_KERNEL, 3135 MF_MSG_KERNEL_HIGH_ORDER, 3136 MF_MSG_SLAB, 3137 MF_MSG_DIFFERENT_COMPOUND, 3138 MF_MSG_POISONED_HUGE, 3139 MF_MSG_HUGE, 3140 MF_MSG_FREE_HUGE, 3141 MF_MSG_NON_PMD_HUGE, 3142 MF_MSG_UNMAP_FAILED, 3143 MF_MSG_DIRTY_SWAPCACHE, 3144 MF_MSG_CLEAN_SWAPCACHE, 3145 MF_MSG_DIRTY_MLOCKED_LRU, 3146 MF_MSG_CLEAN_MLOCKED_LRU, 3147 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3148 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3149 MF_MSG_DIRTY_LRU, 3150 MF_MSG_CLEAN_LRU, 3151 MF_MSG_TRUNCATED_LRU, 3152 MF_MSG_BUDDY, 3153 MF_MSG_BUDDY_2ND, 3154 MF_MSG_DAX, 3155 MF_MSG_UNSPLIT_THP, 3156 MF_MSG_UNKNOWN, 3157 }; 3158 3159 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3160 extern void clear_huge_page(struct page *page, 3161 unsigned long addr_hint, 3162 unsigned int pages_per_huge_page); 3163 extern void copy_user_huge_page(struct page *dst, struct page *src, 3164 unsigned long addr_hint, 3165 struct vm_area_struct *vma, 3166 unsigned int pages_per_huge_page); 3167 extern long copy_huge_page_from_user(struct page *dst_page, 3168 const void __user *usr_src, 3169 unsigned int pages_per_huge_page, 3170 bool allow_pagefault); 3171 3172 /** 3173 * vma_is_special_huge - Are transhuge page-table entries considered special? 3174 * @vma: Pointer to the struct vm_area_struct to consider 3175 * 3176 * Whether transhuge page-table entries are considered "special" following 3177 * the definition in vm_normal_page(). 3178 * 3179 * Return: true if transhuge page-table entries should be considered special, 3180 * false otherwise. 3181 */ 3182 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3183 { 3184 return vma_is_dax(vma) || (vma->vm_file && 3185 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3186 } 3187 3188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3189 3190 #ifdef CONFIG_DEBUG_PAGEALLOC 3191 extern unsigned int _debug_guardpage_minorder; 3192 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3193 3194 static inline unsigned int debug_guardpage_minorder(void) 3195 { 3196 return _debug_guardpage_minorder; 3197 } 3198 3199 static inline bool debug_guardpage_enabled(void) 3200 { 3201 return static_branch_unlikely(&_debug_guardpage_enabled); 3202 } 3203 3204 static inline bool page_is_guard(struct page *page) 3205 { 3206 if (!debug_guardpage_enabled()) 3207 return false; 3208 3209 return PageGuard(page); 3210 } 3211 #else 3212 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3213 static inline bool debug_guardpage_enabled(void) { return false; } 3214 static inline bool page_is_guard(struct page *page) { return false; } 3215 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3216 3217 #if MAX_NUMNODES > 1 3218 void __init setup_nr_node_ids(void); 3219 #else 3220 static inline void setup_nr_node_ids(void) {} 3221 #endif 3222 3223 extern int memcmp_pages(struct page *page1, struct page *page2); 3224 3225 static inline int pages_identical(struct page *page1, struct page *page2) 3226 { 3227 return !memcmp_pages(page1, page2); 3228 } 3229 3230 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3231 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3232 pgoff_t first_index, pgoff_t nr, 3233 pgoff_t bitmap_pgoff, 3234 unsigned long *bitmap, 3235 pgoff_t *start, 3236 pgoff_t *end); 3237 3238 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3239 pgoff_t first_index, pgoff_t nr); 3240 #endif 3241 3242 extern int sysctl_nr_trim_pages; 3243 3244 #ifdef CONFIG_PRINTK 3245 void mem_dump_obj(void *object); 3246 #else 3247 static inline void mem_dump_obj(void *object) {} 3248 #endif 3249 3250 /** 3251 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3252 * @seals: the seals to check 3253 * @vma: the vma to operate on 3254 * 3255 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3256 * the vma flags. Return 0 if check pass, or <0 for errors. 3257 */ 3258 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3259 { 3260 if (seals & F_SEAL_FUTURE_WRITE) { 3261 /* 3262 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3263 * "future write" seal active. 3264 */ 3265 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3266 return -EPERM; 3267 3268 /* 3269 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3270 * MAP_SHARED and read-only, take care to not allow mprotect to 3271 * revert protections on such mappings. Do this only for shared 3272 * mappings. For private mappings, don't need to mask 3273 * VM_MAYWRITE as we still want them to be COW-writable. 3274 */ 3275 if (vma->vm_flags & VM_SHARED) 3276 vma->vm_flags &= ~(VM_MAYWRITE); 3277 } 3278 3279 return 0; 3280 } 3281 3282 #endif /* __KERNEL__ */ 3283 #endif /* _LINUX_MM_H */ 3284