1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 16 struct mempolicy; 17 struct anon_vma; 18 struct file_ra_state; 19 struct user_struct; 20 struct writeback_control; 21 22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23 extern unsigned long max_mapnr; 24 #endif 25 26 extern unsigned long num_physpages; 27 extern void * high_memory; 28 extern int page_cluster; 29 30 #ifdef CONFIG_SYSCTL 31 extern int sysctl_legacy_va_layout; 32 #else 33 #define sysctl_legacy_va_layout 0 34 #endif 35 36 #include <asm/page.h> 37 #include <asm/pgtable.h> 38 #include <asm/processor.h> 39 40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 41 42 /* 43 * Linux kernel virtual memory manager primitives. 44 * The idea being to have a "virtual" mm in the same way 45 * we have a virtual fs - giving a cleaner interface to the 46 * mm details, and allowing different kinds of memory mappings 47 * (from shared memory to executable loading to arbitrary 48 * mmap() functions). 49 */ 50 51 extern struct kmem_cache *vm_area_cachep; 52 53 /* 54 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 55 * disabled, then there's a single shared list of VMAs maintained by the 56 * system, and mm's subscribe to these individually 57 */ 58 struct vm_list_struct { 59 struct vm_list_struct *next; 60 struct vm_area_struct *vma; 61 }; 62 63 #ifndef CONFIG_MMU 64 extern struct rb_root nommu_vma_tree; 65 extern struct rw_semaphore nommu_vma_sem; 66 67 extern unsigned int kobjsize(const void *objp); 68 #endif 69 70 /* 71 * vm_flags.. 72 */ 73 #define VM_READ 0x00000001 /* currently active flags */ 74 #define VM_WRITE 0x00000002 75 #define VM_EXEC 0x00000004 76 #define VM_SHARED 0x00000008 77 78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 79 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 80 #define VM_MAYWRITE 0x00000020 81 #define VM_MAYEXEC 0x00000040 82 #define VM_MAYSHARE 0x00000080 83 84 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 85 #define VM_GROWSUP 0x00000200 86 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 87 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 88 89 #define VM_EXECUTABLE 0x00001000 90 #define VM_LOCKED 0x00002000 91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 92 93 /* Used by sys_madvise() */ 94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 96 97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 99 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 103 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 104 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 105 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 106 107 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 108 109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 111 #endif 112 113 #ifdef CONFIG_STACK_GROWSUP 114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 115 #else 116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117 #endif 118 119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 124 125 /* 126 * mapping from the currently active vm_flags protection bits (the 127 * low four bits) to a page protection mask.. 128 */ 129 extern pgprot_t protection_map[16]; 130 131 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 132 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 133 134 135 /* 136 * vm_fault is filled by the the pagefault handler and passed to the vma's 137 * ->fault function. The vma's ->fault is responsible for returning a bitmask 138 * of VM_FAULT_xxx flags that give details about how the fault was handled. 139 * 140 * pgoff should be used in favour of virtual_address, if possible. If pgoff 141 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 142 * mapping support. 143 */ 144 struct vm_fault { 145 unsigned int flags; /* FAULT_FLAG_xxx flags */ 146 pgoff_t pgoff; /* Logical page offset based on vma */ 147 void __user *virtual_address; /* Faulting virtual address */ 148 149 struct page *page; /* ->fault handlers should return a 150 * page here, unless VM_FAULT_NOPAGE 151 * is set (which is also implied by 152 * VM_FAULT_ERROR). 153 */ 154 }; 155 156 /* 157 * These are the virtual MM functions - opening of an area, closing and 158 * unmapping it (needed to keep files on disk up-to-date etc), pointer 159 * to the functions called when a no-page or a wp-page exception occurs. 160 */ 161 struct vm_operations_struct { 162 void (*open)(struct vm_area_struct * area); 163 void (*close)(struct vm_area_struct * area); 164 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 165 struct page *(*nopage)(struct vm_area_struct *area, 166 unsigned long address, int *type); 167 unsigned long (*nopfn)(struct vm_area_struct *area, 168 unsigned long address); 169 170 /* notification that a previously read-only page is about to become 171 * writable, if an error is returned it will cause a SIGBUS */ 172 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 173 #ifdef CONFIG_NUMA 174 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 175 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 176 unsigned long addr); 177 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 178 const nodemask_t *to, unsigned long flags); 179 #endif 180 }; 181 182 struct mmu_gather; 183 struct inode; 184 185 #define page_private(page) ((page)->private) 186 #define set_page_private(page, v) ((page)->private = (v)) 187 188 /* 189 * FIXME: take this include out, include page-flags.h in 190 * files which need it (119 of them) 191 */ 192 #include <linux/page-flags.h> 193 194 #ifdef CONFIG_DEBUG_VM 195 #define VM_BUG_ON(cond) BUG_ON(cond) 196 #else 197 #define VM_BUG_ON(condition) do { } while(0) 198 #endif 199 200 /* 201 * Methods to modify the page usage count. 202 * 203 * What counts for a page usage: 204 * - cache mapping (page->mapping) 205 * - private data (page->private) 206 * - page mapped in a task's page tables, each mapping 207 * is counted separately 208 * 209 * Also, many kernel routines increase the page count before a critical 210 * routine so they can be sure the page doesn't go away from under them. 211 */ 212 213 /* 214 * Drop a ref, return true if the refcount fell to zero (the page has no users) 215 */ 216 static inline int put_page_testzero(struct page *page) 217 { 218 VM_BUG_ON(atomic_read(&page->_count) == 0); 219 return atomic_dec_and_test(&page->_count); 220 } 221 222 /* 223 * Try to grab a ref unless the page has a refcount of zero, return false if 224 * that is the case. 225 */ 226 static inline int get_page_unless_zero(struct page *page) 227 { 228 VM_BUG_ON(PageCompound(page)); 229 return atomic_inc_not_zero(&page->_count); 230 } 231 232 static inline struct page *compound_head(struct page *page) 233 { 234 if (unlikely(PageTail(page))) 235 return page->first_page; 236 return page; 237 } 238 239 static inline int page_count(struct page *page) 240 { 241 return atomic_read(&compound_head(page)->_count); 242 } 243 244 static inline void get_page(struct page *page) 245 { 246 page = compound_head(page); 247 VM_BUG_ON(atomic_read(&page->_count) == 0); 248 atomic_inc(&page->_count); 249 } 250 251 static inline struct page *virt_to_head_page(const void *x) 252 { 253 struct page *page = virt_to_page(x); 254 return compound_head(page); 255 } 256 257 /* 258 * Setup the page count before being freed into the page allocator for 259 * the first time (boot or memory hotplug) 260 */ 261 static inline void init_page_count(struct page *page) 262 { 263 atomic_set(&page->_count, 1); 264 } 265 266 void put_page(struct page *page); 267 void put_pages_list(struct list_head *pages); 268 269 void split_page(struct page *page, unsigned int order); 270 271 /* 272 * Compound pages have a destructor function. Provide a 273 * prototype for that function and accessor functions. 274 * These are _only_ valid on the head of a PG_compound page. 275 */ 276 typedef void compound_page_dtor(struct page *); 277 278 static inline void set_compound_page_dtor(struct page *page, 279 compound_page_dtor *dtor) 280 { 281 page[1].lru.next = (void *)dtor; 282 } 283 284 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 285 { 286 return (compound_page_dtor *)page[1].lru.next; 287 } 288 289 static inline int compound_order(struct page *page) 290 { 291 if (!PageHead(page)) 292 return 0; 293 return (unsigned long)page[1].lru.prev; 294 } 295 296 static inline void set_compound_order(struct page *page, unsigned long order) 297 { 298 page[1].lru.prev = (void *)order; 299 } 300 301 /* 302 * Multiple processes may "see" the same page. E.g. for untouched 303 * mappings of /dev/null, all processes see the same page full of 304 * zeroes, and text pages of executables and shared libraries have 305 * only one copy in memory, at most, normally. 306 * 307 * For the non-reserved pages, page_count(page) denotes a reference count. 308 * page_count() == 0 means the page is free. page->lru is then used for 309 * freelist management in the buddy allocator. 310 * page_count() > 0 means the page has been allocated. 311 * 312 * Pages are allocated by the slab allocator in order to provide memory 313 * to kmalloc and kmem_cache_alloc. In this case, the management of the 314 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 315 * unless a particular usage is carefully commented. (the responsibility of 316 * freeing the kmalloc memory is the caller's, of course). 317 * 318 * A page may be used by anyone else who does a __get_free_page(). 319 * In this case, page_count still tracks the references, and should only 320 * be used through the normal accessor functions. The top bits of page->flags 321 * and page->virtual store page management information, but all other fields 322 * are unused and could be used privately, carefully. The management of this 323 * page is the responsibility of the one who allocated it, and those who have 324 * subsequently been given references to it. 325 * 326 * The other pages (we may call them "pagecache pages") are completely 327 * managed by the Linux memory manager: I/O, buffers, swapping etc. 328 * The following discussion applies only to them. 329 * 330 * A pagecache page contains an opaque `private' member, which belongs to the 331 * page's address_space. Usually, this is the address of a circular list of 332 * the page's disk buffers. PG_private must be set to tell the VM to call 333 * into the filesystem to release these pages. 334 * 335 * A page may belong to an inode's memory mapping. In this case, page->mapping 336 * is the pointer to the inode, and page->index is the file offset of the page, 337 * in units of PAGE_CACHE_SIZE. 338 * 339 * If pagecache pages are not associated with an inode, they are said to be 340 * anonymous pages. These may become associated with the swapcache, and in that 341 * case PG_swapcache is set, and page->private is an offset into the swapcache. 342 * 343 * In either case (swapcache or inode backed), the pagecache itself holds one 344 * reference to the page. Setting PG_private should also increment the 345 * refcount. The each user mapping also has a reference to the page. 346 * 347 * The pagecache pages are stored in a per-mapping radix tree, which is 348 * rooted at mapping->page_tree, and indexed by offset. 349 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 350 * lists, we instead now tag pages as dirty/writeback in the radix tree. 351 * 352 * All pagecache pages may be subject to I/O: 353 * - inode pages may need to be read from disk, 354 * - inode pages which have been modified and are MAP_SHARED may need 355 * to be written back to the inode on disk, 356 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 357 * modified may need to be swapped out to swap space and (later) to be read 358 * back into memory. 359 */ 360 361 /* 362 * The zone field is never updated after free_area_init_core() 363 * sets it, so none of the operations on it need to be atomic. 364 */ 365 366 367 /* 368 * page->flags layout: 369 * 370 * There are three possibilities for how page->flags get 371 * laid out. The first is for the normal case, without 372 * sparsemem. The second is for sparsemem when there is 373 * plenty of space for node and section. The last is when 374 * we have run out of space and have to fall back to an 375 * alternate (slower) way of determining the node. 376 * 377 * No sparsemem: | NODE | ZONE | ... | FLAGS | 378 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 379 * no space for node: | SECTION | ZONE | ... | FLAGS | 380 */ 381 #ifdef CONFIG_SPARSEMEM 382 #define SECTIONS_WIDTH SECTIONS_SHIFT 383 #else 384 #define SECTIONS_WIDTH 0 385 #endif 386 387 #define ZONES_WIDTH ZONES_SHIFT 388 389 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 390 #define NODES_WIDTH NODES_SHIFT 391 #else 392 #define NODES_WIDTH 0 393 #endif 394 395 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 396 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 397 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 398 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 399 400 /* 401 * We are going to use the flags for the page to node mapping if its in 402 * there. This includes the case where there is no node, so it is implicit. 403 */ 404 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 405 #define NODE_NOT_IN_PAGE_FLAGS 406 #endif 407 408 #ifndef PFN_SECTION_SHIFT 409 #define PFN_SECTION_SHIFT 0 410 #endif 411 412 /* 413 * Define the bit shifts to access each section. For non-existant 414 * sections we define the shift as 0; that plus a 0 mask ensures 415 * the compiler will optimise away reference to them. 416 */ 417 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 418 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 419 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 420 421 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 422 #ifdef NODE_NOT_IN_PAGEFLAGS 423 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 424 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 425 SECTIONS_PGOFF : ZONES_PGOFF) 426 #else 427 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 428 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 429 NODES_PGOFF : ZONES_PGOFF) 430 #endif 431 432 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 433 434 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 435 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 436 #endif 437 438 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 439 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 440 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 441 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 442 443 static inline enum zone_type page_zonenum(struct page *page) 444 { 445 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 446 } 447 448 /* 449 * The identification function is only used by the buddy allocator for 450 * determining if two pages could be buddies. We are not really 451 * identifying a zone since we could be using a the section number 452 * id if we have not node id available in page flags. 453 * We guarantee only that it will return the same value for two 454 * combinable pages in a zone. 455 */ 456 static inline int page_zone_id(struct page *page) 457 { 458 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 459 } 460 461 static inline int zone_to_nid(struct zone *zone) 462 { 463 #ifdef CONFIG_NUMA 464 return zone->node; 465 #else 466 return 0; 467 #endif 468 } 469 470 #ifdef NODE_NOT_IN_PAGE_FLAGS 471 extern int page_to_nid(struct page *page); 472 #else 473 static inline int page_to_nid(struct page *page) 474 { 475 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 476 } 477 #endif 478 479 static inline struct zone *page_zone(struct page *page) 480 { 481 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 482 } 483 484 static inline unsigned long page_to_section(struct page *page) 485 { 486 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 487 } 488 489 static inline void set_page_zone(struct page *page, enum zone_type zone) 490 { 491 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 492 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 493 } 494 495 static inline void set_page_node(struct page *page, unsigned long node) 496 { 497 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 498 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 499 } 500 501 static inline void set_page_section(struct page *page, unsigned long section) 502 { 503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 505 } 506 507 static inline void set_page_links(struct page *page, enum zone_type zone, 508 unsigned long node, unsigned long pfn) 509 { 510 set_page_zone(page, zone); 511 set_page_node(page, node); 512 set_page_section(page, pfn_to_section_nr(pfn)); 513 } 514 515 /* 516 * Some inline functions in vmstat.h depend on page_zone() 517 */ 518 #include <linux/vmstat.h> 519 520 static __always_inline void *lowmem_page_address(struct page *page) 521 { 522 return __va(page_to_pfn(page) << PAGE_SHIFT); 523 } 524 525 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 526 #define HASHED_PAGE_VIRTUAL 527 #endif 528 529 #if defined(WANT_PAGE_VIRTUAL) 530 #define page_address(page) ((page)->virtual) 531 #define set_page_address(page, address) \ 532 do { \ 533 (page)->virtual = (address); \ 534 } while(0) 535 #define page_address_init() do { } while(0) 536 #endif 537 538 #if defined(HASHED_PAGE_VIRTUAL) 539 void *page_address(struct page *page); 540 void set_page_address(struct page *page, void *virtual); 541 void page_address_init(void); 542 #endif 543 544 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 545 #define page_address(page) lowmem_page_address(page) 546 #define set_page_address(page, address) do { } while(0) 547 #define page_address_init() do { } while(0) 548 #endif 549 550 /* 551 * On an anonymous page mapped into a user virtual memory area, 552 * page->mapping points to its anon_vma, not to a struct address_space; 553 * with the PAGE_MAPPING_ANON bit set to distinguish it. 554 * 555 * Please note that, confusingly, "page_mapping" refers to the inode 556 * address_space which maps the page from disk; whereas "page_mapped" 557 * refers to user virtual address space into which the page is mapped. 558 */ 559 #define PAGE_MAPPING_ANON 1 560 561 extern struct address_space swapper_space; 562 static inline struct address_space *page_mapping(struct page *page) 563 { 564 struct address_space *mapping = page->mapping; 565 566 VM_BUG_ON(PageSlab(page)); 567 if (unlikely(PageSwapCache(page))) 568 mapping = &swapper_space; 569 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 570 mapping = NULL; 571 return mapping; 572 } 573 574 static inline int PageAnon(struct page *page) 575 { 576 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 577 } 578 579 /* 580 * Return the pagecache index of the passed page. Regular pagecache pages 581 * use ->index whereas swapcache pages use ->private 582 */ 583 static inline pgoff_t page_index(struct page *page) 584 { 585 if (unlikely(PageSwapCache(page))) 586 return page_private(page); 587 return page->index; 588 } 589 590 /* 591 * The atomic page->_mapcount, like _count, starts from -1: 592 * so that transitions both from it and to it can be tracked, 593 * using atomic_inc_and_test and atomic_add_negative(-1). 594 */ 595 static inline void reset_page_mapcount(struct page *page) 596 { 597 atomic_set(&(page)->_mapcount, -1); 598 } 599 600 static inline int page_mapcount(struct page *page) 601 { 602 return atomic_read(&(page)->_mapcount) + 1; 603 } 604 605 /* 606 * Return true if this page is mapped into pagetables. 607 */ 608 static inline int page_mapped(struct page *page) 609 { 610 return atomic_read(&(page)->_mapcount) >= 0; 611 } 612 613 /* 614 * Error return values for the *_nopage functions 615 */ 616 #define NOPAGE_SIGBUS (NULL) 617 #define NOPAGE_OOM ((struct page *) (-1)) 618 619 /* 620 * Error return values for the *_nopfn functions 621 */ 622 #define NOPFN_SIGBUS ((unsigned long) -1) 623 #define NOPFN_OOM ((unsigned long) -2) 624 #define NOPFN_REFAULT ((unsigned long) -3) 625 626 /* 627 * Different kinds of faults, as returned by handle_mm_fault(). 628 * Used to decide whether a process gets delivered SIGBUS or 629 * just gets major/minor fault counters bumped up. 630 */ 631 632 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 633 634 #define VM_FAULT_OOM 0x0001 635 #define VM_FAULT_SIGBUS 0x0002 636 #define VM_FAULT_MAJOR 0x0004 637 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 638 639 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 640 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 641 642 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 643 644 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 645 646 extern void show_free_areas(void); 647 648 #ifdef CONFIG_SHMEM 649 int shmem_lock(struct file *file, int lock, struct user_struct *user); 650 #else 651 static inline int shmem_lock(struct file *file, int lock, 652 struct user_struct *user) 653 { 654 return 0; 655 } 656 #endif 657 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 658 659 int shmem_zero_setup(struct vm_area_struct *); 660 661 #ifndef CONFIG_MMU 662 extern unsigned long shmem_get_unmapped_area(struct file *file, 663 unsigned long addr, 664 unsigned long len, 665 unsigned long pgoff, 666 unsigned long flags); 667 #endif 668 669 extern int can_do_mlock(void); 670 extern int user_shm_lock(size_t, struct user_struct *); 671 extern void user_shm_unlock(size_t, struct user_struct *); 672 673 /* 674 * Parameter block passed down to zap_pte_range in exceptional cases. 675 */ 676 struct zap_details { 677 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 678 struct address_space *check_mapping; /* Check page->mapping if set */ 679 pgoff_t first_index; /* Lowest page->index to unmap */ 680 pgoff_t last_index; /* Highest page->index to unmap */ 681 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 682 unsigned long truncate_count; /* Compare vm_truncate_count */ 683 }; 684 685 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 686 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 687 unsigned long size, struct zap_details *); 688 unsigned long unmap_vmas(struct mmu_gather **tlb, 689 struct vm_area_struct *start_vma, unsigned long start_addr, 690 unsigned long end_addr, unsigned long *nr_accounted, 691 struct zap_details *); 692 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 693 unsigned long end, unsigned long floor, unsigned long ceiling); 694 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 695 unsigned long floor, unsigned long ceiling); 696 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 697 struct vm_area_struct *vma); 698 void unmap_mapping_range(struct address_space *mapping, 699 loff_t const holebegin, loff_t const holelen, int even_cows); 700 701 static inline void unmap_shared_mapping_range(struct address_space *mapping, 702 loff_t const holebegin, loff_t const holelen) 703 { 704 unmap_mapping_range(mapping, holebegin, holelen, 0); 705 } 706 707 extern int vmtruncate(struct inode * inode, loff_t offset); 708 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 709 710 #ifdef CONFIG_MMU 711 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 712 unsigned long address, int write_access); 713 #else 714 static inline int handle_mm_fault(struct mm_struct *mm, 715 struct vm_area_struct *vma, unsigned long address, 716 int write_access) 717 { 718 /* should never happen if there's no MMU */ 719 BUG(); 720 return VM_FAULT_SIGBUS; 721 } 722 #endif 723 724 extern int make_pages_present(unsigned long addr, unsigned long end); 725 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 726 727 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 728 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 729 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 730 731 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 732 extern void do_invalidatepage(struct page *page, unsigned long offset); 733 734 int __set_page_dirty_nobuffers(struct page *page); 735 int __set_page_dirty_no_writeback(struct page *page); 736 int redirty_page_for_writepage(struct writeback_control *wbc, 737 struct page *page); 738 int FASTCALL(set_page_dirty(struct page *page)); 739 int set_page_dirty_lock(struct page *page); 740 int clear_page_dirty_for_io(struct page *page); 741 742 extern unsigned long move_page_tables(struct vm_area_struct *vma, 743 unsigned long old_addr, struct vm_area_struct *new_vma, 744 unsigned long new_addr, unsigned long len); 745 extern unsigned long do_mremap(unsigned long addr, 746 unsigned long old_len, unsigned long new_len, 747 unsigned long flags, unsigned long new_addr); 748 extern int mprotect_fixup(struct vm_area_struct *vma, 749 struct vm_area_struct **pprev, unsigned long start, 750 unsigned long end, unsigned long newflags); 751 752 /* 753 * A callback you can register to apply pressure to ageable caches. 754 * 755 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 756 * look through the least-recently-used 'nr_to_scan' entries and 757 * attempt to free them up. It should return the number of objects 758 * which remain in the cache. If it returns -1, it means it cannot do 759 * any scanning at this time (eg. there is a risk of deadlock). 760 * 761 * The 'gfpmask' refers to the allocation we are currently trying to 762 * fulfil. 763 * 764 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 765 * querying the cache size, so a fastpath for that case is appropriate. 766 */ 767 struct shrinker { 768 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 769 int seeks; /* seeks to recreate an obj */ 770 771 /* These are for internal use */ 772 struct list_head list; 773 long nr; /* objs pending delete */ 774 }; 775 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 776 extern void register_shrinker(struct shrinker *); 777 extern void unregister_shrinker(struct shrinker *); 778 779 int vma_wants_writenotify(struct vm_area_struct *vma); 780 781 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 782 783 #ifdef __PAGETABLE_PUD_FOLDED 784 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 785 unsigned long address) 786 { 787 return 0; 788 } 789 #else 790 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 791 #endif 792 793 #ifdef __PAGETABLE_PMD_FOLDED 794 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 795 unsigned long address) 796 { 797 return 0; 798 } 799 #else 800 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 801 #endif 802 803 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 804 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 805 806 /* 807 * The following ifdef needed to get the 4level-fixup.h header to work. 808 * Remove it when 4level-fixup.h has been removed. 809 */ 810 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 811 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 812 { 813 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 814 NULL: pud_offset(pgd, address); 815 } 816 817 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 818 { 819 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 820 NULL: pmd_offset(pud, address); 821 } 822 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 823 824 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 825 /* 826 * We tuck a spinlock to guard each pagetable page into its struct page, 827 * at page->private, with BUILD_BUG_ON to make sure that this will not 828 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 829 * When freeing, reset page->mapping so free_pages_check won't complain. 830 */ 831 #define __pte_lockptr(page) &((page)->ptl) 832 #define pte_lock_init(_page) do { \ 833 spin_lock_init(__pte_lockptr(_page)); \ 834 } while (0) 835 #define pte_lock_deinit(page) ((page)->mapping = NULL) 836 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 837 #else 838 /* 839 * We use mm->page_table_lock to guard all pagetable pages of the mm. 840 */ 841 #define pte_lock_init(page) do {} while (0) 842 #define pte_lock_deinit(page) do {} while (0) 843 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 844 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 845 846 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 847 ({ \ 848 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 849 pte_t *__pte = pte_offset_map(pmd, address); \ 850 *(ptlp) = __ptl; \ 851 spin_lock(__ptl); \ 852 __pte; \ 853 }) 854 855 #define pte_unmap_unlock(pte, ptl) do { \ 856 spin_unlock(ptl); \ 857 pte_unmap(pte); \ 858 } while (0) 859 860 #define pte_alloc_map(mm, pmd, address) \ 861 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 862 NULL: pte_offset_map(pmd, address)) 863 864 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 865 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 866 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 867 868 #define pte_alloc_kernel(pmd, address) \ 869 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 870 NULL: pte_offset_kernel(pmd, address)) 871 872 extern void free_area_init(unsigned long * zones_size); 873 extern void free_area_init_node(int nid, pg_data_t *pgdat, 874 unsigned long * zones_size, unsigned long zone_start_pfn, 875 unsigned long *zholes_size); 876 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 877 /* 878 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 879 * zones, allocate the backing mem_map and account for memory holes in a more 880 * architecture independent manner. This is a substitute for creating the 881 * zone_sizes[] and zholes_size[] arrays and passing them to 882 * free_area_init_node() 883 * 884 * An architecture is expected to register range of page frames backed by 885 * physical memory with add_active_range() before calling 886 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 887 * usage, an architecture is expected to do something like 888 * 889 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 890 * max_highmem_pfn}; 891 * for_each_valid_physical_page_range() 892 * add_active_range(node_id, start_pfn, end_pfn) 893 * free_area_init_nodes(max_zone_pfns); 894 * 895 * If the architecture guarantees that there are no holes in the ranges 896 * registered with add_active_range(), free_bootmem_active_regions() 897 * will call free_bootmem_node() for each registered physical page range. 898 * Similarly sparse_memory_present_with_active_regions() calls 899 * memory_present() for each range when SPARSEMEM is enabled. 900 * 901 * See mm/page_alloc.c for more information on each function exposed by 902 * CONFIG_ARCH_POPULATES_NODE_MAP 903 */ 904 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 905 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 906 unsigned long end_pfn); 907 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 908 unsigned long new_end_pfn); 909 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 910 unsigned long end_pfn); 911 extern void remove_all_active_ranges(void); 912 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 913 unsigned long end_pfn); 914 extern void get_pfn_range_for_nid(unsigned int nid, 915 unsigned long *start_pfn, unsigned long *end_pfn); 916 extern unsigned long find_min_pfn_with_active_regions(void); 917 extern unsigned long find_max_pfn_with_active_regions(void); 918 extern void free_bootmem_with_active_regions(int nid, 919 unsigned long max_low_pfn); 920 extern void sparse_memory_present_with_active_regions(int nid); 921 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 922 extern int early_pfn_to_nid(unsigned long pfn); 923 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 925 extern void set_dma_reserve(unsigned long new_dma_reserve); 926 extern void memmap_init_zone(unsigned long, int, unsigned long, 927 unsigned long, enum memmap_context); 928 extern void setup_per_zone_pages_min(void); 929 extern void mem_init(void); 930 extern void show_mem(void); 931 extern void si_meminfo(struct sysinfo * val); 932 extern void si_meminfo_node(struct sysinfo *val, int nid); 933 934 #ifdef CONFIG_NUMA 935 extern void setup_per_cpu_pageset(void); 936 #else 937 static inline void setup_per_cpu_pageset(void) {} 938 #endif 939 940 /* prio_tree.c */ 941 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 942 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 943 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 944 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 945 struct prio_tree_iter *iter); 946 947 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 948 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 949 (vma = vma_prio_tree_next(vma, iter)); ) 950 951 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 952 struct list_head *list) 953 { 954 vma->shared.vm_set.parent = NULL; 955 list_add_tail(&vma->shared.vm_set.list, list); 956 } 957 958 /* mmap.c */ 959 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 960 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 961 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 962 extern struct vm_area_struct *vma_merge(struct mm_struct *, 963 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 964 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 965 struct mempolicy *); 966 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 967 extern int split_vma(struct mm_struct *, 968 struct vm_area_struct *, unsigned long addr, int new_below); 969 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 970 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 971 struct rb_node **, struct rb_node *); 972 extern void unlink_file_vma(struct vm_area_struct *); 973 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 974 unsigned long addr, unsigned long len, pgoff_t pgoff); 975 extern void exit_mmap(struct mm_struct *); 976 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 977 extern int install_special_mapping(struct mm_struct *mm, 978 unsigned long addr, unsigned long len, 979 unsigned long flags, struct page **pages); 980 981 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 982 983 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 984 unsigned long len, unsigned long prot, 985 unsigned long flag, unsigned long pgoff); 986 extern unsigned long mmap_region(struct file *file, unsigned long addr, 987 unsigned long len, unsigned long flags, 988 unsigned int vm_flags, unsigned long pgoff, 989 int accountable); 990 991 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 992 unsigned long len, unsigned long prot, 993 unsigned long flag, unsigned long offset) 994 { 995 unsigned long ret = -EINVAL; 996 if ((offset + PAGE_ALIGN(len)) < offset) 997 goto out; 998 if (!(offset & ~PAGE_MASK)) 999 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1000 out: 1001 return ret; 1002 } 1003 1004 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1005 1006 extern unsigned long do_brk(unsigned long, unsigned long); 1007 1008 /* filemap.c */ 1009 extern unsigned long page_unuse(struct page *); 1010 extern void truncate_inode_pages(struct address_space *, loff_t); 1011 extern void truncate_inode_pages_range(struct address_space *, 1012 loff_t lstart, loff_t lend); 1013 1014 /* generic vm_area_ops exported for stackable file systems */ 1015 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1016 1017 /* mm/page-writeback.c */ 1018 int write_one_page(struct page *page, int wait); 1019 1020 /* readahead.c */ 1021 #define VM_MAX_READAHEAD 128 /* kbytes */ 1022 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1023 1024 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1025 pgoff_t offset, unsigned long nr_to_read); 1026 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1027 pgoff_t offset, unsigned long nr_to_read); 1028 1029 void page_cache_sync_readahead(struct address_space *mapping, 1030 struct file_ra_state *ra, 1031 struct file *filp, 1032 pgoff_t offset, 1033 unsigned long size); 1034 1035 void page_cache_async_readahead(struct address_space *mapping, 1036 struct file_ra_state *ra, 1037 struct file *filp, 1038 struct page *pg, 1039 pgoff_t offset, 1040 unsigned long size); 1041 1042 unsigned long max_sane_readahead(unsigned long nr); 1043 1044 /* Do stack extension */ 1045 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1046 #ifdef CONFIG_IA64 1047 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1048 #endif 1049 extern int expand_stack_downwards(struct vm_area_struct *vma, 1050 unsigned long address); 1051 1052 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1053 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1054 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1055 struct vm_area_struct **pprev); 1056 1057 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1058 NULL if none. Assume start_addr < end_addr. */ 1059 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1060 { 1061 struct vm_area_struct * vma = find_vma(mm,start_addr); 1062 1063 if (vma && end_addr <= vma->vm_start) 1064 vma = NULL; 1065 return vma; 1066 } 1067 1068 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1069 { 1070 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1071 } 1072 1073 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1074 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1075 struct page *vmalloc_to_page(void *addr); 1076 unsigned long vmalloc_to_pfn(void *addr); 1077 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1078 unsigned long pfn, unsigned long size, pgprot_t); 1079 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1080 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1081 unsigned long pfn); 1082 1083 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1084 unsigned int foll_flags); 1085 #define FOLL_WRITE 0x01 /* check pte is writable */ 1086 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1087 #define FOLL_GET 0x04 /* do get_page on page */ 1088 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1089 1090 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, 1091 void *data); 1092 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1093 unsigned long size, pte_fn_t fn, void *data); 1094 1095 #ifdef CONFIG_PROC_FS 1096 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1097 #else 1098 static inline void vm_stat_account(struct mm_struct *mm, 1099 unsigned long flags, struct file *file, long pages) 1100 { 1101 } 1102 #endif /* CONFIG_PROC_FS */ 1103 1104 #ifndef CONFIG_DEBUG_PAGEALLOC 1105 static inline void 1106 kernel_map_pages(struct page *page, int numpages, int enable) {} 1107 #endif 1108 1109 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1110 #ifdef __HAVE_ARCH_GATE_AREA 1111 int in_gate_area_no_task(unsigned long addr); 1112 int in_gate_area(struct task_struct *task, unsigned long addr); 1113 #else 1114 int in_gate_area_no_task(unsigned long addr); 1115 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1116 #endif /* __HAVE_ARCH_GATE_AREA */ 1117 1118 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1119 void __user *, size_t *, loff_t *); 1120 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1121 unsigned long lru_pages); 1122 void drop_pagecache(void); 1123 void drop_slab(void); 1124 1125 #ifndef CONFIG_MMU 1126 #define randomize_va_space 0 1127 #else 1128 extern int randomize_va_space; 1129 #endif 1130 1131 const char * arch_vma_name(struct vm_area_struct *vma); 1132 1133 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1134 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1135 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1136 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1137 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1138 void *vmemmap_alloc_block(unsigned long size, int node); 1139 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1140 int vmemmap_populate_basepages(struct page *start_page, 1141 unsigned long pages, int node); 1142 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1143 1144 #endif /* __KERNEL__ */ 1145 #endif /* _LINUX_MM_H */ 1146