1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 30 struct mempolicy; 31 struct anon_vma; 32 struct anon_vma_chain; 33 struct file_ra_state; 34 struct user_struct; 35 struct writeback_control; 36 struct bdi_writeback; 37 38 void init_mm_internals(void); 39 40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41 extern unsigned long max_mapnr; 42 43 static inline void set_max_mapnr(unsigned long limit) 44 { 45 max_mapnr = limit; 46 } 47 #else 48 static inline void set_max_mapnr(unsigned long limit) { } 49 #endif 50 51 extern unsigned long totalram_pages; 52 extern void * high_memory; 53 extern int page_cluster; 54 55 #ifdef CONFIG_SYSCTL 56 extern int sysctl_legacy_va_layout; 57 #else 58 #define sysctl_legacy_va_layout 0 59 #endif 60 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62 extern const int mmap_rnd_bits_min; 63 extern const int mmap_rnd_bits_max; 64 extern int mmap_rnd_bits __read_mostly; 65 #endif 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67 extern const int mmap_rnd_compat_bits_min; 68 extern const int mmap_rnd_compat_bits_max; 69 extern int mmap_rnd_compat_bits __read_mostly; 70 #endif 71 72 #include <asm/page.h> 73 #include <asm/pgtable.h> 74 #include <asm/processor.h> 75 76 #ifndef __pa_symbol 77 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78 #endif 79 80 #ifndef page_to_virt 81 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82 #endif 83 84 #ifndef lm_alias 85 #define lm_alias(x) __va(__pa_symbol(x)) 86 #endif 87 88 /* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95 #ifndef mm_forbids_zeropage 96 #define mm_forbids_zeropage(X) (0) 97 #endif 98 99 /* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104 #ifndef mm_zero_struct_page 105 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106 #endif 107 108 /* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124 #define MAPCOUNT_ELF_CORE_MARGIN (5) 125 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127 extern int sysctl_max_map_count; 128 129 extern unsigned long sysctl_user_reserve_kbytes; 130 extern unsigned long sysctl_admin_reserve_kbytes; 131 132 extern int sysctl_overcommit_memory; 133 extern int sysctl_overcommit_ratio; 134 extern unsigned long sysctl_overcommit_kbytes; 135 136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143 /* to align the pointer to the (next) page boundary */ 144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149 /* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 160 void vm_area_free(struct vm_area_struct *); 161 162 #ifndef CONFIG_MMU 163 extern struct rb_root nommu_region_tree; 164 extern struct rw_semaphore nommu_region_sem; 165 166 extern unsigned int kobjsize(const void *objp); 167 #endif 168 169 /* 170 * vm_flags in vm_area_struct, see mm_types.h. 171 * When changing, update also include/trace/events/mmflags.h 172 */ 173 #define VM_NONE 0x00000000 174 175 #define VM_READ 0x00000001 /* currently active flags */ 176 #define VM_WRITE 0x00000002 177 #define VM_EXEC 0x00000004 178 #define VM_SHARED 0x00000008 179 180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 181 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 182 #define VM_MAYWRITE 0x00000020 183 #define VM_MAYEXEC 0x00000040 184 #define VM_MAYSHARE 0x00000080 185 186 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 187 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 188 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 189 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 190 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 191 192 #define VM_LOCKED 0x00002000 193 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 194 195 /* Used by sys_madvise() */ 196 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 197 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 198 199 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 200 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 201 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 202 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 203 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 204 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 205 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 206 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 207 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 208 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 209 210 #ifdef CONFIG_MEM_SOFT_DIRTY 211 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 212 #else 213 # define VM_SOFTDIRTY 0 214 #endif 215 216 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 217 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 218 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 219 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 220 221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 222 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 223 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 224 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 225 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 226 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 227 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 228 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 229 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 230 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 231 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 233 234 #ifdef CONFIG_ARCH_HAS_PKEYS 235 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 236 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 237 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 238 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 239 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 240 #ifdef CONFIG_PPC 241 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 242 #else 243 # define VM_PKEY_BIT4 0 244 #endif 245 #endif /* CONFIG_ARCH_HAS_PKEYS */ 246 247 #if defined(CONFIG_X86) 248 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 249 #elif defined(CONFIG_PPC) 250 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 251 #elif defined(CONFIG_PARISC) 252 # define VM_GROWSUP VM_ARCH_1 253 #elif defined(CONFIG_IA64) 254 # define VM_GROWSUP VM_ARCH_1 255 #elif defined(CONFIG_SPARC64) 256 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 257 # define VM_ARCH_CLEAR VM_SPARC_ADI 258 #elif !defined(CONFIG_MMU) 259 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 260 #endif 261 262 #if defined(CONFIG_X86_INTEL_MPX) 263 /* MPX specific bounds table or bounds directory */ 264 # define VM_MPX VM_HIGH_ARCH_4 265 #else 266 # define VM_MPX VM_NONE 267 #endif 268 269 #ifndef VM_GROWSUP 270 # define VM_GROWSUP VM_NONE 271 #endif 272 273 /* Bits set in the VMA until the stack is in its final location */ 274 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 275 276 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 278 #endif 279 280 #ifdef CONFIG_STACK_GROWSUP 281 #define VM_STACK VM_GROWSUP 282 #else 283 #define VM_STACK VM_GROWSDOWN 284 #endif 285 286 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 287 288 /* 289 * Special vmas that are non-mergable, non-mlock()able. 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 291 */ 292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 293 294 /* This mask defines which mm->def_flags a process can inherit its parent */ 295 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 296 297 /* This mask is used to clear all the VMA flags used by mlock */ 298 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 299 300 /* Arch-specific flags to clear when updating VM flags on protection change */ 301 #ifndef VM_ARCH_CLEAR 302 # define VM_ARCH_CLEAR VM_NONE 303 #endif 304 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 305 306 /* 307 * mapping from the currently active vm_flags protection bits (the 308 * low four bits) to a page protection mask.. 309 */ 310 extern pgprot_t protection_map[16]; 311 312 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 313 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 314 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 315 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 316 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 317 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 318 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 319 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 320 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 321 322 #define FAULT_FLAG_TRACE \ 323 { FAULT_FLAG_WRITE, "WRITE" }, \ 324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 328 { FAULT_FLAG_TRIED, "TRIED" }, \ 329 { FAULT_FLAG_USER, "USER" }, \ 330 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 332 333 /* 334 * vm_fault is filled by the the pagefault handler and passed to the vma's 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask 336 * of VM_FAULT_xxx flags that give details about how the fault was handled. 337 * 338 * MM layer fills up gfp_mask for page allocations but fault handler might 339 * alter it if its implementation requires a different allocation context. 340 * 341 * pgoff should be used in favour of virtual_address, if possible. 342 */ 343 struct vm_fault { 344 struct vm_area_struct *vma; /* Target VMA */ 345 unsigned int flags; /* FAULT_FLAG_xxx flags */ 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 347 pgoff_t pgoff; /* Logical page offset based on vma */ 348 unsigned long address; /* Faulting virtual address */ 349 pmd_t *pmd; /* Pointer to pmd entry matching 350 * the 'address' */ 351 pud_t *pud; /* Pointer to pud entry matching 352 * the 'address' 353 */ 354 pte_t orig_pte; /* Value of PTE at the time of fault */ 355 356 struct page *cow_page; /* Page handler may use for COW fault */ 357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 358 struct page *page; /* ->fault handlers should return a 359 * page here, unless VM_FAULT_NOPAGE 360 * is set (which is also implied by 361 * VM_FAULT_ERROR). 362 */ 363 /* These three entries are valid only while holding ptl lock */ 364 pte_t *pte; /* Pointer to pte entry matching 365 * the 'address'. NULL if the page 366 * table hasn't been allocated. 367 */ 368 spinlock_t *ptl; /* Page table lock. 369 * Protects pte page table if 'pte' 370 * is not NULL, otherwise pmd. 371 */ 372 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 373 * vm_ops->map_pages() calls 374 * alloc_set_pte() from atomic context. 375 * do_fault_around() pre-allocates 376 * page table to avoid allocation from 377 * atomic context. 378 */ 379 }; 380 381 /* page entry size for vm->huge_fault() */ 382 enum page_entry_size { 383 PE_SIZE_PTE = 0, 384 PE_SIZE_PMD, 385 PE_SIZE_PUD, 386 }; 387 388 /* 389 * These are the virtual MM functions - opening of an area, closing and 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer 391 * to the functions called when a no-page or a wp-page exception occurs. 392 */ 393 struct vm_operations_struct { 394 void (*open)(struct vm_area_struct * area); 395 void (*close)(struct vm_area_struct * area); 396 int (*split)(struct vm_area_struct * area, unsigned long addr); 397 int (*mremap)(struct vm_area_struct * area); 398 vm_fault_t (*fault)(struct vm_fault *vmf); 399 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 400 enum page_entry_size pe_size); 401 void (*map_pages)(struct vm_fault *vmf, 402 pgoff_t start_pgoff, pgoff_t end_pgoff); 403 unsigned long (*pagesize)(struct vm_area_struct * area); 404 405 /* notification that a previously read-only page is about to become 406 * writable, if an error is returned it will cause a SIGBUS */ 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 408 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 411 412 /* called by access_process_vm when get_user_pages() fails, typically 413 * for use by special VMAs that can switch between memory and hardware 414 */ 415 int (*access)(struct vm_area_struct *vma, unsigned long addr, 416 void *buf, int len, int write); 417 418 /* Called by the /proc/PID/maps code to ask the vma whether it 419 * has a special name. Returning non-NULL will also cause this 420 * vma to be dumped unconditionally. */ 421 const char *(*name)(struct vm_area_struct *vma); 422 423 #ifdef CONFIG_NUMA 424 /* 425 * set_policy() op must add a reference to any non-NULL @new mempolicy 426 * to hold the policy upon return. Caller should pass NULL @new to 427 * remove a policy and fall back to surrounding context--i.e. do not 428 * install a MPOL_DEFAULT policy, nor the task or system default 429 * mempolicy. 430 */ 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 432 433 /* 434 * get_policy() op must add reference [mpol_get()] to any policy at 435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 436 * in mm/mempolicy.c will do this automatically. 437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 440 * must return NULL--i.e., do not "fallback" to task or system default 441 * policy. 442 */ 443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 444 unsigned long addr); 445 #endif 446 /* 447 * Called by vm_normal_page() for special PTEs to find the 448 * page for @addr. This is useful if the default behavior 449 * (using pte_page()) would not find the correct page. 450 */ 451 struct page *(*find_special_page)(struct vm_area_struct *vma, 452 unsigned long addr); 453 }; 454 455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 456 { 457 static const struct vm_operations_struct dummy_vm_ops = {}; 458 459 memset(vma, 0, sizeof(*vma)); 460 vma->vm_mm = mm; 461 vma->vm_ops = &dummy_vm_ops; 462 INIT_LIST_HEAD(&vma->anon_vma_chain); 463 } 464 465 static inline void vma_set_anonymous(struct vm_area_struct *vma) 466 { 467 vma->vm_ops = NULL; 468 } 469 470 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 471 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 472 473 struct mmu_gather; 474 struct inode; 475 476 #define page_private(page) ((page)->private) 477 #define set_page_private(page, v) ((page)->private = (v)) 478 479 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 480 static inline int pmd_devmap(pmd_t pmd) 481 { 482 return 0; 483 } 484 static inline int pud_devmap(pud_t pud) 485 { 486 return 0; 487 } 488 static inline int pgd_devmap(pgd_t pgd) 489 { 490 return 0; 491 } 492 #endif 493 494 /* 495 * FIXME: take this include out, include page-flags.h in 496 * files which need it (119 of them) 497 */ 498 #include <linux/page-flags.h> 499 #include <linux/huge_mm.h> 500 501 /* 502 * Methods to modify the page usage count. 503 * 504 * What counts for a page usage: 505 * - cache mapping (page->mapping) 506 * - private data (page->private) 507 * - page mapped in a task's page tables, each mapping 508 * is counted separately 509 * 510 * Also, many kernel routines increase the page count before a critical 511 * routine so they can be sure the page doesn't go away from under them. 512 */ 513 514 /* 515 * Drop a ref, return true if the refcount fell to zero (the page has no users) 516 */ 517 static inline int put_page_testzero(struct page *page) 518 { 519 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 520 return page_ref_dec_and_test(page); 521 } 522 523 /* 524 * Try to grab a ref unless the page has a refcount of zero, return false if 525 * that is the case. 526 * This can be called when MMU is off so it must not access 527 * any of the virtual mappings. 528 */ 529 static inline int get_page_unless_zero(struct page *page) 530 { 531 return page_ref_add_unless(page, 1, 0); 532 } 533 534 extern int page_is_ram(unsigned long pfn); 535 536 enum { 537 REGION_INTERSECTS, 538 REGION_DISJOINT, 539 REGION_MIXED, 540 }; 541 542 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 543 unsigned long desc); 544 545 /* Support for virtually mapped pages */ 546 struct page *vmalloc_to_page(const void *addr); 547 unsigned long vmalloc_to_pfn(const void *addr); 548 549 /* 550 * Determine if an address is within the vmalloc range 551 * 552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 553 * is no special casing required. 554 */ 555 static inline bool is_vmalloc_addr(const void *x) 556 { 557 #ifdef CONFIG_MMU 558 unsigned long addr = (unsigned long)x; 559 560 return addr >= VMALLOC_START && addr < VMALLOC_END; 561 #else 562 return false; 563 #endif 564 } 565 #ifdef CONFIG_MMU 566 extern int is_vmalloc_or_module_addr(const void *x); 567 #else 568 static inline int is_vmalloc_or_module_addr(const void *x) 569 { 570 return 0; 571 } 572 #endif 573 574 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 575 static inline void *kvmalloc(size_t size, gfp_t flags) 576 { 577 return kvmalloc_node(size, flags, NUMA_NO_NODE); 578 } 579 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 580 { 581 return kvmalloc_node(size, flags | __GFP_ZERO, node); 582 } 583 static inline void *kvzalloc(size_t size, gfp_t flags) 584 { 585 return kvmalloc(size, flags | __GFP_ZERO); 586 } 587 588 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 589 { 590 size_t bytes; 591 592 if (unlikely(check_mul_overflow(n, size, &bytes))) 593 return NULL; 594 595 return kvmalloc(bytes, flags); 596 } 597 598 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 599 { 600 return kvmalloc_array(n, size, flags | __GFP_ZERO); 601 } 602 603 extern void kvfree(const void *addr); 604 605 static inline atomic_t *compound_mapcount_ptr(struct page *page) 606 { 607 return &page[1].compound_mapcount; 608 } 609 610 static inline int compound_mapcount(struct page *page) 611 { 612 VM_BUG_ON_PAGE(!PageCompound(page), page); 613 page = compound_head(page); 614 return atomic_read(compound_mapcount_ptr(page)) + 1; 615 } 616 617 /* 618 * The atomic page->_mapcount, starts from -1: so that transitions 619 * both from it and to it can be tracked, using atomic_inc_and_test 620 * and atomic_add_negative(-1). 621 */ 622 static inline void page_mapcount_reset(struct page *page) 623 { 624 atomic_set(&(page)->_mapcount, -1); 625 } 626 627 int __page_mapcount(struct page *page); 628 629 static inline int page_mapcount(struct page *page) 630 { 631 VM_BUG_ON_PAGE(PageSlab(page), page); 632 633 if (unlikely(PageCompound(page))) 634 return __page_mapcount(page); 635 return atomic_read(&page->_mapcount) + 1; 636 } 637 638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 639 int total_mapcount(struct page *page); 640 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 641 #else 642 static inline int total_mapcount(struct page *page) 643 { 644 return page_mapcount(page); 645 } 646 static inline int page_trans_huge_mapcount(struct page *page, 647 int *total_mapcount) 648 { 649 int mapcount = page_mapcount(page); 650 if (total_mapcount) 651 *total_mapcount = mapcount; 652 return mapcount; 653 } 654 #endif 655 656 static inline struct page *virt_to_head_page(const void *x) 657 { 658 struct page *page = virt_to_page(x); 659 660 return compound_head(page); 661 } 662 663 void __put_page(struct page *page); 664 665 void put_pages_list(struct list_head *pages); 666 667 void split_page(struct page *page, unsigned int order); 668 669 /* 670 * Compound pages have a destructor function. Provide a 671 * prototype for that function and accessor functions. 672 * These are _only_ valid on the head of a compound page. 673 */ 674 typedef void compound_page_dtor(struct page *); 675 676 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 677 enum compound_dtor_id { 678 NULL_COMPOUND_DTOR, 679 COMPOUND_PAGE_DTOR, 680 #ifdef CONFIG_HUGETLB_PAGE 681 HUGETLB_PAGE_DTOR, 682 #endif 683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 TRANSHUGE_PAGE_DTOR, 685 #endif 686 NR_COMPOUND_DTORS, 687 }; 688 extern compound_page_dtor * const compound_page_dtors[]; 689 690 static inline void set_compound_page_dtor(struct page *page, 691 enum compound_dtor_id compound_dtor) 692 { 693 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 694 page[1].compound_dtor = compound_dtor; 695 } 696 697 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 698 { 699 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 700 return compound_page_dtors[page[1].compound_dtor]; 701 } 702 703 static inline unsigned int compound_order(struct page *page) 704 { 705 if (!PageHead(page)) 706 return 0; 707 return page[1].compound_order; 708 } 709 710 static inline void set_compound_order(struct page *page, unsigned int order) 711 { 712 page[1].compound_order = order; 713 } 714 715 void free_compound_page(struct page *page); 716 717 #ifdef CONFIG_MMU 718 /* 719 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 720 * servicing faults for write access. In the normal case, do always want 721 * pte_mkwrite. But get_user_pages can cause write faults for mappings 722 * that do not have writing enabled, when used by access_process_vm. 723 */ 724 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 725 { 726 if (likely(vma->vm_flags & VM_WRITE)) 727 pte = pte_mkwrite(pte); 728 return pte; 729 } 730 731 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 732 struct page *page); 733 vm_fault_t finish_fault(struct vm_fault *vmf); 734 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 735 #endif 736 737 /* 738 * Multiple processes may "see" the same page. E.g. for untouched 739 * mappings of /dev/null, all processes see the same page full of 740 * zeroes, and text pages of executables and shared libraries have 741 * only one copy in memory, at most, normally. 742 * 743 * For the non-reserved pages, page_count(page) denotes a reference count. 744 * page_count() == 0 means the page is free. page->lru is then used for 745 * freelist management in the buddy allocator. 746 * page_count() > 0 means the page has been allocated. 747 * 748 * Pages are allocated by the slab allocator in order to provide memory 749 * to kmalloc and kmem_cache_alloc. In this case, the management of the 750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 751 * unless a particular usage is carefully commented. (the responsibility of 752 * freeing the kmalloc memory is the caller's, of course). 753 * 754 * A page may be used by anyone else who does a __get_free_page(). 755 * In this case, page_count still tracks the references, and should only 756 * be used through the normal accessor functions. The top bits of page->flags 757 * and page->virtual store page management information, but all other fields 758 * are unused and could be used privately, carefully. The management of this 759 * page is the responsibility of the one who allocated it, and those who have 760 * subsequently been given references to it. 761 * 762 * The other pages (we may call them "pagecache pages") are completely 763 * managed by the Linux memory manager: I/O, buffers, swapping etc. 764 * The following discussion applies only to them. 765 * 766 * A pagecache page contains an opaque `private' member, which belongs to the 767 * page's address_space. Usually, this is the address of a circular list of 768 * the page's disk buffers. PG_private must be set to tell the VM to call 769 * into the filesystem to release these pages. 770 * 771 * A page may belong to an inode's memory mapping. In this case, page->mapping 772 * is the pointer to the inode, and page->index is the file offset of the page, 773 * in units of PAGE_SIZE. 774 * 775 * If pagecache pages are not associated with an inode, they are said to be 776 * anonymous pages. These may become associated with the swapcache, and in that 777 * case PG_swapcache is set, and page->private is an offset into the swapcache. 778 * 779 * In either case (swapcache or inode backed), the pagecache itself holds one 780 * reference to the page. Setting PG_private should also increment the 781 * refcount. The each user mapping also has a reference to the page. 782 * 783 * The pagecache pages are stored in a per-mapping radix tree, which is 784 * rooted at mapping->i_pages, and indexed by offset. 785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 786 * lists, we instead now tag pages as dirty/writeback in the radix tree. 787 * 788 * All pagecache pages may be subject to I/O: 789 * - inode pages may need to be read from disk, 790 * - inode pages which have been modified and are MAP_SHARED may need 791 * to be written back to the inode on disk, 792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 793 * modified may need to be swapped out to swap space and (later) to be read 794 * back into memory. 795 */ 796 797 /* 798 * The zone field is never updated after free_area_init_core() 799 * sets it, so none of the operations on it need to be atomic. 800 */ 801 802 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 803 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 804 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 805 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 806 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 807 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 808 809 /* 810 * Define the bit shifts to access each section. For non-existent 811 * sections we define the shift as 0; that plus a 0 mask ensures 812 * the compiler will optimise away reference to them. 813 */ 814 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 815 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 816 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 817 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 818 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 819 820 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 821 #ifdef NODE_NOT_IN_PAGE_FLAGS 822 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 823 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 824 SECTIONS_PGOFF : ZONES_PGOFF) 825 #else 826 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 827 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 828 NODES_PGOFF : ZONES_PGOFF) 829 #endif 830 831 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 832 833 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 834 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 835 #endif 836 837 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 838 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 839 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 840 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 841 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 842 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 843 844 static inline enum zone_type page_zonenum(const struct page *page) 845 { 846 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 847 } 848 849 #ifdef CONFIG_ZONE_DEVICE 850 static inline bool is_zone_device_page(const struct page *page) 851 { 852 return page_zonenum(page) == ZONE_DEVICE; 853 } 854 extern void memmap_init_zone_device(struct zone *, unsigned long, 855 unsigned long, struct dev_pagemap *); 856 #else 857 static inline bool is_zone_device_page(const struct page *page) 858 { 859 return false; 860 } 861 #endif 862 863 #ifdef CONFIG_DEV_PAGEMAP_OPS 864 void dev_pagemap_get_ops(void); 865 void dev_pagemap_put_ops(void); 866 void __put_devmap_managed_page(struct page *page); 867 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 868 static inline bool put_devmap_managed_page(struct page *page) 869 { 870 if (!static_branch_unlikely(&devmap_managed_key)) 871 return false; 872 if (!is_zone_device_page(page)) 873 return false; 874 switch (page->pgmap->type) { 875 case MEMORY_DEVICE_PRIVATE: 876 case MEMORY_DEVICE_PUBLIC: 877 case MEMORY_DEVICE_FS_DAX: 878 __put_devmap_managed_page(page); 879 return true; 880 default: 881 break; 882 } 883 return false; 884 } 885 886 static inline bool is_device_private_page(const struct page *page) 887 { 888 return is_zone_device_page(page) && 889 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 890 } 891 892 static inline bool is_device_public_page(const struct page *page) 893 { 894 return is_zone_device_page(page) && 895 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 896 } 897 898 #ifdef CONFIG_PCI_P2PDMA 899 static inline bool is_pci_p2pdma_page(const struct page *page) 900 { 901 return is_zone_device_page(page) && 902 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 903 } 904 #else /* CONFIG_PCI_P2PDMA */ 905 static inline bool is_pci_p2pdma_page(const struct page *page) 906 { 907 return false; 908 } 909 #endif /* CONFIG_PCI_P2PDMA */ 910 911 #else /* CONFIG_DEV_PAGEMAP_OPS */ 912 static inline void dev_pagemap_get_ops(void) 913 { 914 } 915 916 static inline void dev_pagemap_put_ops(void) 917 { 918 } 919 920 static inline bool put_devmap_managed_page(struct page *page) 921 { 922 return false; 923 } 924 925 static inline bool is_device_private_page(const struct page *page) 926 { 927 return false; 928 } 929 930 static inline bool is_device_public_page(const struct page *page) 931 { 932 return false; 933 } 934 935 static inline bool is_pci_p2pdma_page(const struct page *page) 936 { 937 return false; 938 } 939 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 940 941 static inline void get_page(struct page *page) 942 { 943 page = compound_head(page); 944 /* 945 * Getting a normal page or the head of a compound page 946 * requires to already have an elevated page->_refcount. 947 */ 948 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 949 page_ref_inc(page); 950 } 951 952 static inline void put_page(struct page *page) 953 { 954 page = compound_head(page); 955 956 /* 957 * For devmap managed pages we need to catch refcount transition from 958 * 2 to 1, when refcount reach one it means the page is free and we 959 * need to inform the device driver through callback. See 960 * include/linux/memremap.h and HMM for details. 961 */ 962 if (put_devmap_managed_page(page)) 963 return; 964 965 if (put_page_testzero(page)) 966 __put_page(page); 967 } 968 969 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 970 #define SECTION_IN_PAGE_FLAGS 971 #endif 972 973 /* 974 * The identification function is mainly used by the buddy allocator for 975 * determining if two pages could be buddies. We are not really identifying 976 * the zone since we could be using the section number id if we do not have 977 * node id available in page flags. 978 * We only guarantee that it will return the same value for two combinable 979 * pages in a zone. 980 */ 981 static inline int page_zone_id(struct page *page) 982 { 983 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 984 } 985 986 #ifdef NODE_NOT_IN_PAGE_FLAGS 987 extern int page_to_nid(const struct page *page); 988 #else 989 static inline int page_to_nid(const struct page *page) 990 { 991 struct page *p = (struct page *)page; 992 993 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 994 } 995 #endif 996 997 #ifdef CONFIG_NUMA_BALANCING 998 static inline int cpu_pid_to_cpupid(int cpu, int pid) 999 { 1000 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1001 } 1002 1003 static inline int cpupid_to_pid(int cpupid) 1004 { 1005 return cpupid & LAST__PID_MASK; 1006 } 1007 1008 static inline int cpupid_to_cpu(int cpupid) 1009 { 1010 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1011 } 1012 1013 static inline int cpupid_to_nid(int cpupid) 1014 { 1015 return cpu_to_node(cpupid_to_cpu(cpupid)); 1016 } 1017 1018 static inline bool cpupid_pid_unset(int cpupid) 1019 { 1020 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1021 } 1022 1023 static inline bool cpupid_cpu_unset(int cpupid) 1024 { 1025 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1026 } 1027 1028 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1029 { 1030 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1031 } 1032 1033 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1034 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1035 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1036 { 1037 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1038 } 1039 1040 static inline int page_cpupid_last(struct page *page) 1041 { 1042 return page->_last_cpupid; 1043 } 1044 static inline void page_cpupid_reset_last(struct page *page) 1045 { 1046 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1047 } 1048 #else 1049 static inline int page_cpupid_last(struct page *page) 1050 { 1051 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1052 } 1053 1054 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1055 1056 static inline void page_cpupid_reset_last(struct page *page) 1057 { 1058 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1059 } 1060 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1061 #else /* !CONFIG_NUMA_BALANCING */ 1062 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1063 { 1064 return page_to_nid(page); /* XXX */ 1065 } 1066 1067 static inline int page_cpupid_last(struct page *page) 1068 { 1069 return page_to_nid(page); /* XXX */ 1070 } 1071 1072 static inline int cpupid_to_nid(int cpupid) 1073 { 1074 return -1; 1075 } 1076 1077 static inline int cpupid_to_pid(int cpupid) 1078 { 1079 return -1; 1080 } 1081 1082 static inline int cpupid_to_cpu(int cpupid) 1083 { 1084 return -1; 1085 } 1086 1087 static inline int cpu_pid_to_cpupid(int nid, int pid) 1088 { 1089 return -1; 1090 } 1091 1092 static inline bool cpupid_pid_unset(int cpupid) 1093 { 1094 return 1; 1095 } 1096 1097 static inline void page_cpupid_reset_last(struct page *page) 1098 { 1099 } 1100 1101 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1102 { 1103 return false; 1104 } 1105 #endif /* CONFIG_NUMA_BALANCING */ 1106 1107 #ifdef CONFIG_KASAN_SW_TAGS 1108 static inline u8 page_kasan_tag(const struct page *page) 1109 { 1110 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1111 } 1112 1113 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1114 { 1115 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1116 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1117 } 1118 1119 static inline void page_kasan_tag_reset(struct page *page) 1120 { 1121 page_kasan_tag_set(page, 0xff); 1122 } 1123 #else 1124 static inline u8 page_kasan_tag(const struct page *page) 1125 { 1126 return 0xff; 1127 } 1128 1129 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1130 static inline void page_kasan_tag_reset(struct page *page) { } 1131 #endif 1132 1133 static inline struct zone *page_zone(const struct page *page) 1134 { 1135 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1136 } 1137 1138 static inline pg_data_t *page_pgdat(const struct page *page) 1139 { 1140 return NODE_DATA(page_to_nid(page)); 1141 } 1142 1143 #ifdef SECTION_IN_PAGE_FLAGS 1144 static inline void set_page_section(struct page *page, unsigned long section) 1145 { 1146 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1147 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1148 } 1149 1150 static inline unsigned long page_to_section(const struct page *page) 1151 { 1152 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1153 } 1154 #endif 1155 1156 static inline void set_page_zone(struct page *page, enum zone_type zone) 1157 { 1158 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1159 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1160 } 1161 1162 static inline void set_page_node(struct page *page, unsigned long node) 1163 { 1164 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1165 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1166 } 1167 1168 static inline void set_page_links(struct page *page, enum zone_type zone, 1169 unsigned long node, unsigned long pfn) 1170 { 1171 set_page_zone(page, zone); 1172 set_page_node(page, node); 1173 #ifdef SECTION_IN_PAGE_FLAGS 1174 set_page_section(page, pfn_to_section_nr(pfn)); 1175 #endif 1176 } 1177 1178 #ifdef CONFIG_MEMCG 1179 static inline struct mem_cgroup *page_memcg(struct page *page) 1180 { 1181 return page->mem_cgroup; 1182 } 1183 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1184 { 1185 WARN_ON_ONCE(!rcu_read_lock_held()); 1186 return READ_ONCE(page->mem_cgroup); 1187 } 1188 #else 1189 static inline struct mem_cgroup *page_memcg(struct page *page) 1190 { 1191 return NULL; 1192 } 1193 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1194 { 1195 WARN_ON_ONCE(!rcu_read_lock_held()); 1196 return NULL; 1197 } 1198 #endif 1199 1200 /* 1201 * Some inline functions in vmstat.h depend on page_zone() 1202 */ 1203 #include <linux/vmstat.h> 1204 1205 static __always_inline void *lowmem_page_address(const struct page *page) 1206 { 1207 return page_to_virt(page); 1208 } 1209 1210 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1211 #define HASHED_PAGE_VIRTUAL 1212 #endif 1213 1214 #if defined(WANT_PAGE_VIRTUAL) 1215 static inline void *page_address(const struct page *page) 1216 { 1217 return page->virtual; 1218 } 1219 static inline void set_page_address(struct page *page, void *address) 1220 { 1221 page->virtual = address; 1222 } 1223 #define page_address_init() do { } while(0) 1224 #endif 1225 1226 #if defined(HASHED_PAGE_VIRTUAL) 1227 void *page_address(const struct page *page); 1228 void set_page_address(struct page *page, void *virtual); 1229 void page_address_init(void); 1230 #endif 1231 1232 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1233 #define page_address(page) lowmem_page_address(page) 1234 #define set_page_address(page, address) do { } while(0) 1235 #define page_address_init() do { } while(0) 1236 #endif 1237 1238 extern void *page_rmapping(struct page *page); 1239 extern struct anon_vma *page_anon_vma(struct page *page); 1240 extern struct address_space *page_mapping(struct page *page); 1241 1242 extern struct address_space *__page_file_mapping(struct page *); 1243 1244 static inline 1245 struct address_space *page_file_mapping(struct page *page) 1246 { 1247 if (unlikely(PageSwapCache(page))) 1248 return __page_file_mapping(page); 1249 1250 return page->mapping; 1251 } 1252 1253 extern pgoff_t __page_file_index(struct page *page); 1254 1255 /* 1256 * Return the pagecache index of the passed page. Regular pagecache pages 1257 * use ->index whereas swapcache pages use swp_offset(->private) 1258 */ 1259 static inline pgoff_t page_index(struct page *page) 1260 { 1261 if (unlikely(PageSwapCache(page))) 1262 return __page_file_index(page); 1263 return page->index; 1264 } 1265 1266 bool page_mapped(struct page *page); 1267 struct address_space *page_mapping(struct page *page); 1268 struct address_space *page_mapping_file(struct page *page); 1269 1270 /* 1271 * Return true only if the page has been allocated with 1272 * ALLOC_NO_WATERMARKS and the low watermark was not 1273 * met implying that the system is under some pressure. 1274 */ 1275 static inline bool page_is_pfmemalloc(struct page *page) 1276 { 1277 /* 1278 * Page index cannot be this large so this must be 1279 * a pfmemalloc page. 1280 */ 1281 return page->index == -1UL; 1282 } 1283 1284 /* 1285 * Only to be called by the page allocator on a freshly allocated 1286 * page. 1287 */ 1288 static inline void set_page_pfmemalloc(struct page *page) 1289 { 1290 page->index = -1UL; 1291 } 1292 1293 static inline void clear_page_pfmemalloc(struct page *page) 1294 { 1295 page->index = 0; 1296 } 1297 1298 /* 1299 * Different kinds of faults, as returned by handle_mm_fault(). 1300 * Used to decide whether a process gets delivered SIGBUS or 1301 * just gets major/minor fault counters bumped up. 1302 */ 1303 1304 #define VM_FAULT_OOM 0x0001 1305 #define VM_FAULT_SIGBUS 0x0002 1306 #define VM_FAULT_MAJOR 0x0004 1307 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1308 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1309 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1310 #define VM_FAULT_SIGSEGV 0x0040 1311 1312 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1313 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1314 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1315 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1316 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1317 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1318 * and needs fsync() to complete (for 1319 * synchronous page faults in DAX) */ 1320 1321 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1322 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1323 VM_FAULT_FALLBACK) 1324 1325 #define VM_FAULT_RESULT_TRACE \ 1326 { VM_FAULT_OOM, "OOM" }, \ 1327 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1328 { VM_FAULT_MAJOR, "MAJOR" }, \ 1329 { VM_FAULT_WRITE, "WRITE" }, \ 1330 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1331 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1332 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1333 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1334 { VM_FAULT_LOCKED, "LOCKED" }, \ 1335 { VM_FAULT_RETRY, "RETRY" }, \ 1336 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1337 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1338 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1339 1340 /* Encode hstate index for a hwpoisoned large page */ 1341 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1342 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1343 1344 /* 1345 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1346 */ 1347 extern void pagefault_out_of_memory(void); 1348 1349 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1350 1351 /* 1352 * Flags passed to show_mem() and show_free_areas() to suppress output in 1353 * various contexts. 1354 */ 1355 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1356 1357 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1358 1359 extern bool can_do_mlock(void); 1360 extern int user_shm_lock(size_t, struct user_struct *); 1361 extern void user_shm_unlock(size_t, struct user_struct *); 1362 1363 /* 1364 * Parameter block passed down to zap_pte_range in exceptional cases. 1365 */ 1366 struct zap_details { 1367 struct address_space *check_mapping; /* Check page->mapping if set */ 1368 pgoff_t first_index; /* Lowest page->index to unmap */ 1369 pgoff_t last_index; /* Highest page->index to unmap */ 1370 }; 1371 1372 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1373 pte_t pte, bool with_public_device); 1374 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1375 1376 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1377 pmd_t pmd); 1378 1379 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1380 unsigned long size); 1381 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1382 unsigned long size); 1383 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1384 unsigned long start, unsigned long end); 1385 1386 /** 1387 * mm_walk - callbacks for walk_page_range 1388 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1389 * this handler should only handle pud_trans_huge() puds. 1390 * the pmd_entry or pte_entry callbacks will be used for 1391 * regular PUDs. 1392 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1393 * this handler is required to be able to handle 1394 * pmd_trans_huge() pmds. They may simply choose to 1395 * split_huge_page() instead of handling it explicitly. 1396 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1397 * @pte_hole: if set, called for each hole at all levels 1398 * @hugetlb_entry: if set, called for each hugetlb entry 1399 * @test_walk: caller specific callback function to determine whether 1400 * we walk over the current vma or not. Returning 0 1401 * value means "do page table walk over the current vma," 1402 * and a negative one means "abort current page table walk 1403 * right now." 1 means "skip the current vma." 1404 * @mm: mm_struct representing the target process of page table walk 1405 * @vma: vma currently walked (NULL if walking outside vmas) 1406 * @private: private data for callbacks' usage 1407 * 1408 * (see the comment on walk_page_range() for more details) 1409 */ 1410 struct mm_walk { 1411 int (*pud_entry)(pud_t *pud, unsigned long addr, 1412 unsigned long next, struct mm_walk *walk); 1413 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1414 unsigned long next, struct mm_walk *walk); 1415 int (*pte_entry)(pte_t *pte, unsigned long addr, 1416 unsigned long next, struct mm_walk *walk); 1417 int (*pte_hole)(unsigned long addr, unsigned long next, 1418 struct mm_walk *walk); 1419 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1420 unsigned long addr, unsigned long next, 1421 struct mm_walk *walk); 1422 int (*test_walk)(unsigned long addr, unsigned long next, 1423 struct mm_walk *walk); 1424 struct mm_struct *mm; 1425 struct vm_area_struct *vma; 1426 void *private; 1427 }; 1428 1429 int walk_page_range(unsigned long addr, unsigned long end, 1430 struct mm_walk *walk); 1431 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1432 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1433 unsigned long end, unsigned long floor, unsigned long ceiling); 1434 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1435 struct vm_area_struct *vma); 1436 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1437 unsigned long *start, unsigned long *end, 1438 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1439 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1440 unsigned long *pfn); 1441 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1442 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1443 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1444 void *buf, int len, int write); 1445 1446 extern void truncate_pagecache(struct inode *inode, loff_t new); 1447 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1448 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1449 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1450 int truncate_inode_page(struct address_space *mapping, struct page *page); 1451 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1452 int invalidate_inode_page(struct page *page); 1453 1454 #ifdef CONFIG_MMU 1455 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1456 unsigned long address, unsigned int flags); 1457 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1458 unsigned long address, unsigned int fault_flags, 1459 bool *unlocked); 1460 void unmap_mapping_pages(struct address_space *mapping, 1461 pgoff_t start, pgoff_t nr, bool even_cows); 1462 void unmap_mapping_range(struct address_space *mapping, 1463 loff_t const holebegin, loff_t const holelen, int even_cows); 1464 #else 1465 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1466 unsigned long address, unsigned int flags) 1467 { 1468 /* should never happen if there's no MMU */ 1469 BUG(); 1470 return VM_FAULT_SIGBUS; 1471 } 1472 static inline int fixup_user_fault(struct task_struct *tsk, 1473 struct mm_struct *mm, unsigned long address, 1474 unsigned int fault_flags, bool *unlocked) 1475 { 1476 /* should never happen if there's no MMU */ 1477 BUG(); 1478 return -EFAULT; 1479 } 1480 static inline void unmap_mapping_pages(struct address_space *mapping, 1481 pgoff_t start, pgoff_t nr, bool even_cows) { } 1482 static inline void unmap_mapping_range(struct address_space *mapping, 1483 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1484 #endif 1485 1486 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1487 loff_t const holebegin, loff_t const holelen) 1488 { 1489 unmap_mapping_range(mapping, holebegin, holelen, 0); 1490 } 1491 1492 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1493 void *buf, int len, unsigned int gup_flags); 1494 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1495 void *buf, int len, unsigned int gup_flags); 1496 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1497 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1498 1499 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1500 unsigned long start, unsigned long nr_pages, 1501 unsigned int gup_flags, struct page **pages, 1502 struct vm_area_struct **vmas, int *locked); 1503 long get_user_pages(unsigned long start, unsigned long nr_pages, 1504 unsigned int gup_flags, struct page **pages, 1505 struct vm_area_struct **vmas); 1506 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1507 unsigned int gup_flags, struct page **pages, int *locked); 1508 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1509 struct page **pages, unsigned int gup_flags); 1510 #ifdef CONFIG_FS_DAX 1511 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1512 unsigned int gup_flags, struct page **pages, 1513 struct vm_area_struct **vmas); 1514 #else 1515 static inline long get_user_pages_longterm(unsigned long start, 1516 unsigned long nr_pages, unsigned int gup_flags, 1517 struct page **pages, struct vm_area_struct **vmas) 1518 { 1519 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1520 } 1521 #endif /* CONFIG_FS_DAX */ 1522 1523 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1524 struct page **pages); 1525 1526 /* Container for pinned pfns / pages */ 1527 struct frame_vector { 1528 unsigned int nr_allocated; /* Number of frames we have space for */ 1529 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1530 bool got_ref; /* Did we pin pages by getting page ref? */ 1531 bool is_pfns; /* Does array contain pages or pfns? */ 1532 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1533 * pfns_vector_pages() or pfns_vector_pfns() 1534 * for access */ 1535 }; 1536 1537 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1538 void frame_vector_destroy(struct frame_vector *vec); 1539 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1540 unsigned int gup_flags, struct frame_vector *vec); 1541 void put_vaddr_frames(struct frame_vector *vec); 1542 int frame_vector_to_pages(struct frame_vector *vec); 1543 void frame_vector_to_pfns(struct frame_vector *vec); 1544 1545 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1546 { 1547 return vec->nr_frames; 1548 } 1549 1550 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1551 { 1552 if (vec->is_pfns) { 1553 int err = frame_vector_to_pages(vec); 1554 1555 if (err) 1556 return ERR_PTR(err); 1557 } 1558 return (struct page **)(vec->ptrs); 1559 } 1560 1561 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1562 { 1563 if (!vec->is_pfns) 1564 frame_vector_to_pfns(vec); 1565 return (unsigned long *)(vec->ptrs); 1566 } 1567 1568 struct kvec; 1569 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1570 struct page **pages); 1571 int get_kernel_page(unsigned long start, int write, struct page **pages); 1572 struct page *get_dump_page(unsigned long addr); 1573 1574 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1575 extern void do_invalidatepage(struct page *page, unsigned int offset, 1576 unsigned int length); 1577 1578 void __set_page_dirty(struct page *, struct address_space *, int warn); 1579 int __set_page_dirty_nobuffers(struct page *page); 1580 int __set_page_dirty_no_writeback(struct page *page); 1581 int redirty_page_for_writepage(struct writeback_control *wbc, 1582 struct page *page); 1583 void account_page_dirtied(struct page *page, struct address_space *mapping); 1584 void account_page_cleaned(struct page *page, struct address_space *mapping, 1585 struct bdi_writeback *wb); 1586 int set_page_dirty(struct page *page); 1587 int set_page_dirty_lock(struct page *page); 1588 void __cancel_dirty_page(struct page *page); 1589 static inline void cancel_dirty_page(struct page *page) 1590 { 1591 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1592 if (PageDirty(page)) 1593 __cancel_dirty_page(page); 1594 } 1595 int clear_page_dirty_for_io(struct page *page); 1596 1597 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1598 1599 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1600 { 1601 return !vma->vm_ops; 1602 } 1603 1604 #ifdef CONFIG_SHMEM 1605 /* 1606 * The vma_is_shmem is not inline because it is used only by slow 1607 * paths in userfault. 1608 */ 1609 bool vma_is_shmem(struct vm_area_struct *vma); 1610 #else 1611 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1612 #endif 1613 1614 int vma_is_stack_for_current(struct vm_area_struct *vma); 1615 1616 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1617 unsigned long old_addr, struct vm_area_struct *new_vma, 1618 unsigned long new_addr, unsigned long len, 1619 bool need_rmap_locks); 1620 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1621 unsigned long end, pgprot_t newprot, 1622 int dirty_accountable, int prot_numa); 1623 extern int mprotect_fixup(struct vm_area_struct *vma, 1624 struct vm_area_struct **pprev, unsigned long start, 1625 unsigned long end, unsigned long newflags); 1626 1627 /* 1628 * doesn't attempt to fault and will return short. 1629 */ 1630 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1631 struct page **pages); 1632 /* 1633 * per-process(per-mm_struct) statistics. 1634 */ 1635 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1636 { 1637 long val = atomic_long_read(&mm->rss_stat.count[member]); 1638 1639 #ifdef SPLIT_RSS_COUNTING 1640 /* 1641 * counter is updated in asynchronous manner and may go to minus. 1642 * But it's never be expected number for users. 1643 */ 1644 if (val < 0) 1645 val = 0; 1646 #endif 1647 return (unsigned long)val; 1648 } 1649 1650 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1651 { 1652 atomic_long_add(value, &mm->rss_stat.count[member]); 1653 } 1654 1655 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1656 { 1657 atomic_long_inc(&mm->rss_stat.count[member]); 1658 } 1659 1660 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1661 { 1662 atomic_long_dec(&mm->rss_stat.count[member]); 1663 } 1664 1665 /* Optimized variant when page is already known not to be PageAnon */ 1666 static inline int mm_counter_file(struct page *page) 1667 { 1668 if (PageSwapBacked(page)) 1669 return MM_SHMEMPAGES; 1670 return MM_FILEPAGES; 1671 } 1672 1673 static inline int mm_counter(struct page *page) 1674 { 1675 if (PageAnon(page)) 1676 return MM_ANONPAGES; 1677 return mm_counter_file(page); 1678 } 1679 1680 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1681 { 1682 return get_mm_counter(mm, MM_FILEPAGES) + 1683 get_mm_counter(mm, MM_ANONPAGES) + 1684 get_mm_counter(mm, MM_SHMEMPAGES); 1685 } 1686 1687 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1688 { 1689 return max(mm->hiwater_rss, get_mm_rss(mm)); 1690 } 1691 1692 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1693 { 1694 return max(mm->hiwater_vm, mm->total_vm); 1695 } 1696 1697 static inline void update_hiwater_rss(struct mm_struct *mm) 1698 { 1699 unsigned long _rss = get_mm_rss(mm); 1700 1701 if ((mm)->hiwater_rss < _rss) 1702 (mm)->hiwater_rss = _rss; 1703 } 1704 1705 static inline void update_hiwater_vm(struct mm_struct *mm) 1706 { 1707 if (mm->hiwater_vm < mm->total_vm) 1708 mm->hiwater_vm = mm->total_vm; 1709 } 1710 1711 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1712 { 1713 mm->hiwater_rss = get_mm_rss(mm); 1714 } 1715 1716 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1717 struct mm_struct *mm) 1718 { 1719 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1720 1721 if (*maxrss < hiwater_rss) 1722 *maxrss = hiwater_rss; 1723 } 1724 1725 #if defined(SPLIT_RSS_COUNTING) 1726 void sync_mm_rss(struct mm_struct *mm); 1727 #else 1728 static inline void sync_mm_rss(struct mm_struct *mm) 1729 { 1730 } 1731 #endif 1732 1733 #ifndef __HAVE_ARCH_PTE_DEVMAP 1734 static inline int pte_devmap(pte_t pte) 1735 { 1736 return 0; 1737 } 1738 #endif 1739 1740 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1741 1742 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1743 spinlock_t **ptl); 1744 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1745 spinlock_t **ptl) 1746 { 1747 pte_t *ptep; 1748 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1749 return ptep; 1750 } 1751 1752 #ifdef __PAGETABLE_P4D_FOLDED 1753 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1754 unsigned long address) 1755 { 1756 return 0; 1757 } 1758 #else 1759 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1760 #endif 1761 1762 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1763 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1764 unsigned long address) 1765 { 1766 return 0; 1767 } 1768 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1769 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1770 1771 #else 1772 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1773 1774 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1775 { 1776 if (mm_pud_folded(mm)) 1777 return; 1778 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1779 } 1780 1781 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1782 { 1783 if (mm_pud_folded(mm)) 1784 return; 1785 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1786 } 1787 #endif 1788 1789 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1790 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1791 unsigned long address) 1792 { 1793 return 0; 1794 } 1795 1796 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1797 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1798 1799 #else 1800 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1801 1802 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1803 { 1804 if (mm_pmd_folded(mm)) 1805 return; 1806 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1807 } 1808 1809 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1810 { 1811 if (mm_pmd_folded(mm)) 1812 return; 1813 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1814 } 1815 #endif 1816 1817 #ifdef CONFIG_MMU 1818 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1819 { 1820 atomic_long_set(&mm->pgtables_bytes, 0); 1821 } 1822 1823 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1824 { 1825 return atomic_long_read(&mm->pgtables_bytes); 1826 } 1827 1828 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1829 { 1830 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1831 } 1832 1833 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1834 { 1835 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1836 } 1837 #else 1838 1839 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1840 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1841 { 1842 return 0; 1843 } 1844 1845 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1846 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1847 #endif 1848 1849 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1850 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1851 1852 /* 1853 * The following ifdef needed to get the 4level-fixup.h header to work. 1854 * Remove it when 4level-fixup.h has been removed. 1855 */ 1856 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1857 1858 #ifndef __ARCH_HAS_5LEVEL_HACK 1859 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1860 unsigned long address) 1861 { 1862 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1863 NULL : p4d_offset(pgd, address); 1864 } 1865 1866 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1867 unsigned long address) 1868 { 1869 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1870 NULL : pud_offset(p4d, address); 1871 } 1872 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1873 1874 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1875 { 1876 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1877 NULL: pmd_offset(pud, address); 1878 } 1879 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1880 1881 #if USE_SPLIT_PTE_PTLOCKS 1882 #if ALLOC_SPLIT_PTLOCKS 1883 void __init ptlock_cache_init(void); 1884 extern bool ptlock_alloc(struct page *page); 1885 extern void ptlock_free(struct page *page); 1886 1887 static inline spinlock_t *ptlock_ptr(struct page *page) 1888 { 1889 return page->ptl; 1890 } 1891 #else /* ALLOC_SPLIT_PTLOCKS */ 1892 static inline void ptlock_cache_init(void) 1893 { 1894 } 1895 1896 static inline bool ptlock_alloc(struct page *page) 1897 { 1898 return true; 1899 } 1900 1901 static inline void ptlock_free(struct page *page) 1902 { 1903 } 1904 1905 static inline spinlock_t *ptlock_ptr(struct page *page) 1906 { 1907 return &page->ptl; 1908 } 1909 #endif /* ALLOC_SPLIT_PTLOCKS */ 1910 1911 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1912 { 1913 return ptlock_ptr(pmd_page(*pmd)); 1914 } 1915 1916 static inline bool ptlock_init(struct page *page) 1917 { 1918 /* 1919 * prep_new_page() initialize page->private (and therefore page->ptl) 1920 * with 0. Make sure nobody took it in use in between. 1921 * 1922 * It can happen if arch try to use slab for page table allocation: 1923 * slab code uses page->slab_cache, which share storage with page->ptl. 1924 */ 1925 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1926 if (!ptlock_alloc(page)) 1927 return false; 1928 spin_lock_init(ptlock_ptr(page)); 1929 return true; 1930 } 1931 1932 /* Reset page->mapping so free_pages_check won't complain. */ 1933 static inline void pte_lock_deinit(struct page *page) 1934 { 1935 page->mapping = NULL; 1936 ptlock_free(page); 1937 } 1938 1939 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1940 /* 1941 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1942 */ 1943 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1944 { 1945 return &mm->page_table_lock; 1946 } 1947 static inline void ptlock_cache_init(void) {} 1948 static inline bool ptlock_init(struct page *page) { return true; } 1949 static inline void pte_lock_deinit(struct page *page) {} 1950 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1951 1952 static inline void pgtable_init(void) 1953 { 1954 ptlock_cache_init(); 1955 pgtable_cache_init(); 1956 } 1957 1958 static inline bool pgtable_page_ctor(struct page *page) 1959 { 1960 if (!ptlock_init(page)) 1961 return false; 1962 __SetPageTable(page); 1963 inc_zone_page_state(page, NR_PAGETABLE); 1964 return true; 1965 } 1966 1967 static inline void pgtable_page_dtor(struct page *page) 1968 { 1969 pte_lock_deinit(page); 1970 __ClearPageTable(page); 1971 dec_zone_page_state(page, NR_PAGETABLE); 1972 } 1973 1974 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1975 ({ \ 1976 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1977 pte_t *__pte = pte_offset_map(pmd, address); \ 1978 *(ptlp) = __ptl; \ 1979 spin_lock(__ptl); \ 1980 __pte; \ 1981 }) 1982 1983 #define pte_unmap_unlock(pte, ptl) do { \ 1984 spin_unlock(ptl); \ 1985 pte_unmap(pte); \ 1986 } while (0) 1987 1988 #define pte_alloc(mm, pmd, address) \ 1989 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1990 1991 #define pte_alloc_map(mm, pmd, address) \ 1992 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1993 1994 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1995 (pte_alloc(mm, pmd, address) ? \ 1996 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1997 1998 #define pte_alloc_kernel(pmd, address) \ 1999 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 2000 NULL: pte_offset_kernel(pmd, address)) 2001 2002 #if USE_SPLIT_PMD_PTLOCKS 2003 2004 static struct page *pmd_to_page(pmd_t *pmd) 2005 { 2006 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2007 return virt_to_page((void *)((unsigned long) pmd & mask)); 2008 } 2009 2010 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2011 { 2012 return ptlock_ptr(pmd_to_page(pmd)); 2013 } 2014 2015 static inline bool pgtable_pmd_page_ctor(struct page *page) 2016 { 2017 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2018 page->pmd_huge_pte = NULL; 2019 #endif 2020 return ptlock_init(page); 2021 } 2022 2023 static inline void pgtable_pmd_page_dtor(struct page *page) 2024 { 2025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2026 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2027 #endif 2028 ptlock_free(page); 2029 } 2030 2031 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2032 2033 #else 2034 2035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2036 { 2037 return &mm->page_table_lock; 2038 } 2039 2040 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2041 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2042 2043 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2044 2045 #endif 2046 2047 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2048 { 2049 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2050 spin_lock(ptl); 2051 return ptl; 2052 } 2053 2054 /* 2055 * No scalability reason to split PUD locks yet, but follow the same pattern 2056 * as the PMD locks to make it easier if we decide to. The VM should not be 2057 * considered ready to switch to split PUD locks yet; there may be places 2058 * which need to be converted from page_table_lock. 2059 */ 2060 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2061 { 2062 return &mm->page_table_lock; 2063 } 2064 2065 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2066 { 2067 spinlock_t *ptl = pud_lockptr(mm, pud); 2068 2069 spin_lock(ptl); 2070 return ptl; 2071 } 2072 2073 extern void __init pagecache_init(void); 2074 extern void free_area_init(unsigned long * zones_size); 2075 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2076 unsigned long zone_start_pfn, unsigned long *zholes_size); 2077 extern void free_initmem(void); 2078 2079 /* 2080 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2081 * into the buddy system. The freed pages will be poisoned with pattern 2082 * "poison" if it's within range [0, UCHAR_MAX]. 2083 * Return pages freed into the buddy system. 2084 */ 2085 extern unsigned long free_reserved_area(void *start, void *end, 2086 int poison, char *s); 2087 2088 #ifdef CONFIG_HIGHMEM 2089 /* 2090 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2091 * and totalram_pages. 2092 */ 2093 extern void free_highmem_page(struct page *page); 2094 #endif 2095 2096 extern void adjust_managed_page_count(struct page *page, long count); 2097 extern void mem_init_print_info(const char *str); 2098 2099 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2100 2101 /* Free the reserved page into the buddy system, so it gets managed. */ 2102 static inline void __free_reserved_page(struct page *page) 2103 { 2104 ClearPageReserved(page); 2105 init_page_count(page); 2106 __free_page(page); 2107 } 2108 2109 static inline void free_reserved_page(struct page *page) 2110 { 2111 __free_reserved_page(page); 2112 adjust_managed_page_count(page, 1); 2113 } 2114 2115 static inline void mark_page_reserved(struct page *page) 2116 { 2117 SetPageReserved(page); 2118 adjust_managed_page_count(page, -1); 2119 } 2120 2121 /* 2122 * Default method to free all the __init memory into the buddy system. 2123 * The freed pages will be poisoned with pattern "poison" if it's within 2124 * range [0, UCHAR_MAX]. 2125 * Return pages freed into the buddy system. 2126 */ 2127 static inline unsigned long free_initmem_default(int poison) 2128 { 2129 extern char __init_begin[], __init_end[]; 2130 2131 return free_reserved_area(&__init_begin, &__init_end, 2132 poison, "unused kernel"); 2133 } 2134 2135 static inline unsigned long get_num_physpages(void) 2136 { 2137 int nid; 2138 unsigned long phys_pages = 0; 2139 2140 for_each_online_node(nid) 2141 phys_pages += node_present_pages(nid); 2142 2143 return phys_pages; 2144 } 2145 2146 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2147 /* 2148 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2149 * zones, allocate the backing mem_map and account for memory holes in a more 2150 * architecture independent manner. This is a substitute for creating the 2151 * zone_sizes[] and zholes_size[] arrays and passing them to 2152 * free_area_init_node() 2153 * 2154 * An architecture is expected to register range of page frames backed by 2155 * physical memory with memblock_add[_node]() before calling 2156 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2157 * usage, an architecture is expected to do something like 2158 * 2159 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2160 * max_highmem_pfn}; 2161 * for_each_valid_physical_page_range() 2162 * memblock_add_node(base, size, nid) 2163 * free_area_init_nodes(max_zone_pfns); 2164 * 2165 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2166 * registered physical page range. Similarly 2167 * sparse_memory_present_with_active_regions() calls memory_present() for 2168 * each range when SPARSEMEM is enabled. 2169 * 2170 * See mm/page_alloc.c for more information on each function exposed by 2171 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2172 */ 2173 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2174 unsigned long node_map_pfn_alignment(void); 2175 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2176 unsigned long end_pfn); 2177 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2178 unsigned long end_pfn); 2179 extern void get_pfn_range_for_nid(unsigned int nid, 2180 unsigned long *start_pfn, unsigned long *end_pfn); 2181 extern unsigned long find_min_pfn_with_active_regions(void); 2182 extern void free_bootmem_with_active_regions(int nid, 2183 unsigned long max_low_pfn); 2184 extern void sparse_memory_present_with_active_regions(int nid); 2185 2186 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2187 2188 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2189 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2190 static inline int __early_pfn_to_nid(unsigned long pfn, 2191 struct mminit_pfnnid_cache *state) 2192 { 2193 return 0; 2194 } 2195 #else 2196 /* please see mm/page_alloc.c */ 2197 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2198 /* there is a per-arch backend function. */ 2199 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2200 struct mminit_pfnnid_cache *state); 2201 #endif 2202 2203 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2204 void zero_resv_unavail(void); 2205 #else 2206 static inline void zero_resv_unavail(void) {} 2207 #endif 2208 2209 extern void set_dma_reserve(unsigned long new_dma_reserve); 2210 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2211 enum memmap_context, struct vmem_altmap *); 2212 extern void setup_per_zone_wmarks(void); 2213 extern int __meminit init_per_zone_wmark_min(void); 2214 extern void mem_init(void); 2215 extern void __init mmap_init(void); 2216 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2217 extern long si_mem_available(void); 2218 extern void si_meminfo(struct sysinfo * val); 2219 extern void si_meminfo_node(struct sysinfo *val, int nid); 2220 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2221 extern unsigned long arch_reserved_kernel_pages(void); 2222 #endif 2223 2224 extern __printf(3, 4) 2225 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2226 2227 extern void setup_per_cpu_pageset(void); 2228 2229 extern void zone_pcp_update(struct zone *zone); 2230 extern void zone_pcp_reset(struct zone *zone); 2231 2232 /* page_alloc.c */ 2233 extern int min_free_kbytes; 2234 extern int watermark_scale_factor; 2235 2236 /* nommu.c */ 2237 extern atomic_long_t mmap_pages_allocated; 2238 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2239 2240 /* interval_tree.c */ 2241 void vma_interval_tree_insert(struct vm_area_struct *node, 2242 struct rb_root_cached *root); 2243 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2244 struct vm_area_struct *prev, 2245 struct rb_root_cached *root); 2246 void vma_interval_tree_remove(struct vm_area_struct *node, 2247 struct rb_root_cached *root); 2248 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2249 unsigned long start, unsigned long last); 2250 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2251 unsigned long start, unsigned long last); 2252 2253 #define vma_interval_tree_foreach(vma, root, start, last) \ 2254 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2255 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2256 2257 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2258 struct rb_root_cached *root); 2259 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2260 struct rb_root_cached *root); 2261 struct anon_vma_chain * 2262 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2263 unsigned long start, unsigned long last); 2264 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2265 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2266 #ifdef CONFIG_DEBUG_VM_RB 2267 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2268 #endif 2269 2270 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2271 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2272 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2273 2274 /* mmap.c */ 2275 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2276 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2277 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2278 struct vm_area_struct *expand); 2279 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2280 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2281 { 2282 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2283 } 2284 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2285 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2286 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2287 struct mempolicy *, struct vm_userfaultfd_ctx); 2288 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2289 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2290 unsigned long addr, int new_below); 2291 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2292 unsigned long addr, int new_below); 2293 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2294 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2295 struct rb_node **, struct rb_node *); 2296 extern void unlink_file_vma(struct vm_area_struct *); 2297 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2298 unsigned long addr, unsigned long len, pgoff_t pgoff, 2299 bool *need_rmap_locks); 2300 extern void exit_mmap(struct mm_struct *); 2301 2302 static inline int check_data_rlimit(unsigned long rlim, 2303 unsigned long new, 2304 unsigned long start, 2305 unsigned long end_data, 2306 unsigned long start_data) 2307 { 2308 if (rlim < RLIM_INFINITY) { 2309 if (((new - start) + (end_data - start_data)) > rlim) 2310 return -ENOSPC; 2311 } 2312 2313 return 0; 2314 } 2315 2316 extern int mm_take_all_locks(struct mm_struct *mm); 2317 extern void mm_drop_all_locks(struct mm_struct *mm); 2318 2319 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2320 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2321 extern struct file *get_task_exe_file(struct task_struct *task); 2322 2323 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2324 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2325 2326 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2327 const struct vm_special_mapping *sm); 2328 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2329 unsigned long addr, unsigned long len, 2330 unsigned long flags, 2331 const struct vm_special_mapping *spec); 2332 /* This is an obsolete alternative to _install_special_mapping. */ 2333 extern int install_special_mapping(struct mm_struct *mm, 2334 unsigned long addr, unsigned long len, 2335 unsigned long flags, struct page **pages); 2336 2337 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2338 2339 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2340 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2341 struct list_head *uf); 2342 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2343 unsigned long len, unsigned long prot, unsigned long flags, 2344 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2345 struct list_head *uf); 2346 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2347 struct list_head *uf, bool downgrade); 2348 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2349 struct list_head *uf); 2350 2351 static inline unsigned long 2352 do_mmap_pgoff(struct file *file, unsigned long addr, 2353 unsigned long len, unsigned long prot, unsigned long flags, 2354 unsigned long pgoff, unsigned long *populate, 2355 struct list_head *uf) 2356 { 2357 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2358 } 2359 2360 #ifdef CONFIG_MMU 2361 extern int __mm_populate(unsigned long addr, unsigned long len, 2362 int ignore_errors); 2363 static inline void mm_populate(unsigned long addr, unsigned long len) 2364 { 2365 /* Ignore errors */ 2366 (void) __mm_populate(addr, len, 1); 2367 } 2368 #else 2369 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2370 #endif 2371 2372 /* These take the mm semaphore themselves */ 2373 extern int __must_check vm_brk(unsigned long, unsigned long); 2374 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2375 extern int vm_munmap(unsigned long, size_t); 2376 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2377 unsigned long, unsigned long, 2378 unsigned long, unsigned long); 2379 2380 struct vm_unmapped_area_info { 2381 #define VM_UNMAPPED_AREA_TOPDOWN 1 2382 unsigned long flags; 2383 unsigned long length; 2384 unsigned long low_limit; 2385 unsigned long high_limit; 2386 unsigned long align_mask; 2387 unsigned long align_offset; 2388 }; 2389 2390 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2391 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2392 2393 /* 2394 * Search for an unmapped address range. 2395 * 2396 * We are looking for a range that: 2397 * - does not intersect with any VMA; 2398 * - is contained within the [low_limit, high_limit) interval; 2399 * - is at least the desired size. 2400 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2401 */ 2402 static inline unsigned long 2403 vm_unmapped_area(struct vm_unmapped_area_info *info) 2404 { 2405 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2406 return unmapped_area_topdown(info); 2407 else 2408 return unmapped_area(info); 2409 } 2410 2411 /* truncate.c */ 2412 extern void truncate_inode_pages(struct address_space *, loff_t); 2413 extern void truncate_inode_pages_range(struct address_space *, 2414 loff_t lstart, loff_t lend); 2415 extern void truncate_inode_pages_final(struct address_space *); 2416 2417 /* generic vm_area_ops exported for stackable file systems */ 2418 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2419 extern void filemap_map_pages(struct vm_fault *vmf, 2420 pgoff_t start_pgoff, pgoff_t end_pgoff); 2421 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2422 2423 /* mm/page-writeback.c */ 2424 int __must_check write_one_page(struct page *page); 2425 void task_dirty_inc(struct task_struct *tsk); 2426 2427 /* readahead.c */ 2428 #define VM_MAX_READAHEAD 128 /* kbytes */ 2429 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2430 2431 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2432 pgoff_t offset, unsigned long nr_to_read); 2433 2434 void page_cache_sync_readahead(struct address_space *mapping, 2435 struct file_ra_state *ra, 2436 struct file *filp, 2437 pgoff_t offset, 2438 unsigned long size); 2439 2440 void page_cache_async_readahead(struct address_space *mapping, 2441 struct file_ra_state *ra, 2442 struct file *filp, 2443 struct page *pg, 2444 pgoff_t offset, 2445 unsigned long size); 2446 2447 extern unsigned long stack_guard_gap; 2448 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2449 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2450 2451 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2452 extern int expand_downwards(struct vm_area_struct *vma, 2453 unsigned long address); 2454 #if VM_GROWSUP 2455 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2456 #else 2457 #define expand_upwards(vma, address) (0) 2458 #endif 2459 2460 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2461 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2462 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2463 struct vm_area_struct **pprev); 2464 2465 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2466 NULL if none. Assume start_addr < end_addr. */ 2467 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2468 { 2469 struct vm_area_struct * vma = find_vma(mm,start_addr); 2470 2471 if (vma && end_addr <= vma->vm_start) 2472 vma = NULL; 2473 return vma; 2474 } 2475 2476 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2477 { 2478 unsigned long vm_start = vma->vm_start; 2479 2480 if (vma->vm_flags & VM_GROWSDOWN) { 2481 vm_start -= stack_guard_gap; 2482 if (vm_start > vma->vm_start) 2483 vm_start = 0; 2484 } 2485 return vm_start; 2486 } 2487 2488 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2489 { 2490 unsigned long vm_end = vma->vm_end; 2491 2492 if (vma->vm_flags & VM_GROWSUP) { 2493 vm_end += stack_guard_gap; 2494 if (vm_end < vma->vm_end) 2495 vm_end = -PAGE_SIZE; 2496 } 2497 return vm_end; 2498 } 2499 2500 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2501 { 2502 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2503 } 2504 2505 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2506 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2507 unsigned long vm_start, unsigned long vm_end) 2508 { 2509 struct vm_area_struct *vma = find_vma(mm, vm_start); 2510 2511 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2512 vma = NULL; 2513 2514 return vma; 2515 } 2516 2517 static inline bool range_in_vma(struct vm_area_struct *vma, 2518 unsigned long start, unsigned long end) 2519 { 2520 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2521 } 2522 2523 #ifdef CONFIG_MMU 2524 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2525 void vma_set_page_prot(struct vm_area_struct *vma); 2526 #else 2527 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2528 { 2529 return __pgprot(0); 2530 } 2531 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2532 { 2533 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2534 } 2535 #endif 2536 2537 #ifdef CONFIG_NUMA_BALANCING 2538 unsigned long change_prot_numa(struct vm_area_struct *vma, 2539 unsigned long start, unsigned long end); 2540 #endif 2541 2542 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2543 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2544 unsigned long pfn, unsigned long size, pgprot_t); 2545 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2546 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2547 unsigned long pfn); 2548 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2549 unsigned long pfn, pgprot_t pgprot); 2550 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2551 pfn_t pfn); 2552 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2553 unsigned long addr, pfn_t pfn); 2554 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2555 2556 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2557 unsigned long addr, struct page *page) 2558 { 2559 int err = vm_insert_page(vma, addr, page); 2560 2561 if (err == -ENOMEM) 2562 return VM_FAULT_OOM; 2563 if (err < 0 && err != -EBUSY) 2564 return VM_FAULT_SIGBUS; 2565 2566 return VM_FAULT_NOPAGE; 2567 } 2568 2569 static inline vm_fault_t vmf_error(int err) 2570 { 2571 if (err == -ENOMEM) 2572 return VM_FAULT_OOM; 2573 return VM_FAULT_SIGBUS; 2574 } 2575 2576 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2577 unsigned int foll_flags); 2578 2579 #define FOLL_WRITE 0x01 /* check pte is writable */ 2580 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2581 #define FOLL_GET 0x04 /* do get_page on page */ 2582 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2583 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2584 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2585 * and return without waiting upon it */ 2586 #define FOLL_POPULATE 0x40 /* fault in page */ 2587 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2588 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2589 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2590 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2591 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2592 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2593 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2594 #define FOLL_COW 0x4000 /* internal GUP flag */ 2595 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2596 2597 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2598 { 2599 if (vm_fault & VM_FAULT_OOM) 2600 return -ENOMEM; 2601 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2602 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2603 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2604 return -EFAULT; 2605 return 0; 2606 } 2607 2608 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2609 void *data); 2610 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2611 unsigned long size, pte_fn_t fn, void *data); 2612 2613 2614 #ifdef CONFIG_PAGE_POISONING 2615 extern bool page_poisoning_enabled(void); 2616 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2617 #else 2618 static inline bool page_poisoning_enabled(void) { return false; } 2619 static inline void kernel_poison_pages(struct page *page, int numpages, 2620 int enable) { } 2621 #endif 2622 2623 #ifdef CONFIG_DEBUG_PAGEALLOC 2624 extern bool _debug_pagealloc_enabled; 2625 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2626 2627 static inline bool debug_pagealloc_enabled(void) 2628 { 2629 return _debug_pagealloc_enabled; 2630 } 2631 2632 static inline void 2633 kernel_map_pages(struct page *page, int numpages, int enable) 2634 { 2635 if (!debug_pagealloc_enabled()) 2636 return; 2637 2638 __kernel_map_pages(page, numpages, enable); 2639 } 2640 #ifdef CONFIG_HIBERNATION 2641 extern bool kernel_page_present(struct page *page); 2642 #endif /* CONFIG_HIBERNATION */ 2643 #else /* CONFIG_DEBUG_PAGEALLOC */ 2644 static inline void 2645 kernel_map_pages(struct page *page, int numpages, int enable) {} 2646 #ifdef CONFIG_HIBERNATION 2647 static inline bool kernel_page_present(struct page *page) { return true; } 2648 #endif /* CONFIG_HIBERNATION */ 2649 static inline bool debug_pagealloc_enabled(void) 2650 { 2651 return false; 2652 } 2653 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2654 2655 #ifdef __HAVE_ARCH_GATE_AREA 2656 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2657 extern int in_gate_area_no_mm(unsigned long addr); 2658 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2659 #else 2660 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2661 { 2662 return NULL; 2663 } 2664 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2665 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2666 { 2667 return 0; 2668 } 2669 #endif /* __HAVE_ARCH_GATE_AREA */ 2670 2671 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2672 2673 #ifdef CONFIG_SYSCTL 2674 extern int sysctl_drop_caches; 2675 int drop_caches_sysctl_handler(struct ctl_table *, int, 2676 void __user *, size_t *, loff_t *); 2677 #endif 2678 2679 void drop_slab(void); 2680 void drop_slab_node(int nid); 2681 2682 #ifndef CONFIG_MMU 2683 #define randomize_va_space 0 2684 #else 2685 extern int randomize_va_space; 2686 #endif 2687 2688 const char * arch_vma_name(struct vm_area_struct *vma); 2689 void print_vma_addr(char *prefix, unsigned long rip); 2690 2691 void *sparse_buffer_alloc(unsigned long size); 2692 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2693 struct vmem_altmap *altmap); 2694 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2695 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2696 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2697 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2698 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2699 void *vmemmap_alloc_block(unsigned long size, int node); 2700 struct vmem_altmap; 2701 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2702 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2703 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2704 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2705 int node); 2706 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2707 struct vmem_altmap *altmap); 2708 void vmemmap_populate_print_last(void); 2709 #ifdef CONFIG_MEMORY_HOTPLUG 2710 void vmemmap_free(unsigned long start, unsigned long end, 2711 struct vmem_altmap *altmap); 2712 #endif 2713 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2714 unsigned long nr_pages); 2715 2716 enum mf_flags { 2717 MF_COUNT_INCREASED = 1 << 0, 2718 MF_ACTION_REQUIRED = 1 << 1, 2719 MF_MUST_KILL = 1 << 2, 2720 MF_SOFT_OFFLINE = 1 << 3, 2721 }; 2722 extern int memory_failure(unsigned long pfn, int flags); 2723 extern void memory_failure_queue(unsigned long pfn, int flags); 2724 extern int unpoison_memory(unsigned long pfn); 2725 extern int get_hwpoison_page(struct page *page); 2726 #define put_hwpoison_page(page) put_page(page) 2727 extern int sysctl_memory_failure_early_kill; 2728 extern int sysctl_memory_failure_recovery; 2729 extern void shake_page(struct page *p, int access); 2730 extern atomic_long_t num_poisoned_pages __read_mostly; 2731 extern int soft_offline_page(struct page *page, int flags); 2732 2733 2734 /* 2735 * Error handlers for various types of pages. 2736 */ 2737 enum mf_result { 2738 MF_IGNORED, /* Error: cannot be handled */ 2739 MF_FAILED, /* Error: handling failed */ 2740 MF_DELAYED, /* Will be handled later */ 2741 MF_RECOVERED, /* Successfully recovered */ 2742 }; 2743 2744 enum mf_action_page_type { 2745 MF_MSG_KERNEL, 2746 MF_MSG_KERNEL_HIGH_ORDER, 2747 MF_MSG_SLAB, 2748 MF_MSG_DIFFERENT_COMPOUND, 2749 MF_MSG_POISONED_HUGE, 2750 MF_MSG_HUGE, 2751 MF_MSG_FREE_HUGE, 2752 MF_MSG_NON_PMD_HUGE, 2753 MF_MSG_UNMAP_FAILED, 2754 MF_MSG_DIRTY_SWAPCACHE, 2755 MF_MSG_CLEAN_SWAPCACHE, 2756 MF_MSG_DIRTY_MLOCKED_LRU, 2757 MF_MSG_CLEAN_MLOCKED_LRU, 2758 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2759 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2760 MF_MSG_DIRTY_LRU, 2761 MF_MSG_CLEAN_LRU, 2762 MF_MSG_TRUNCATED_LRU, 2763 MF_MSG_BUDDY, 2764 MF_MSG_BUDDY_2ND, 2765 MF_MSG_DAX, 2766 MF_MSG_UNKNOWN, 2767 }; 2768 2769 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2770 extern void clear_huge_page(struct page *page, 2771 unsigned long addr_hint, 2772 unsigned int pages_per_huge_page); 2773 extern void copy_user_huge_page(struct page *dst, struct page *src, 2774 unsigned long addr_hint, 2775 struct vm_area_struct *vma, 2776 unsigned int pages_per_huge_page); 2777 extern long copy_huge_page_from_user(struct page *dst_page, 2778 const void __user *usr_src, 2779 unsigned int pages_per_huge_page, 2780 bool allow_pagefault); 2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2782 2783 extern struct page_ext_operations debug_guardpage_ops; 2784 2785 #ifdef CONFIG_DEBUG_PAGEALLOC 2786 extern unsigned int _debug_guardpage_minorder; 2787 extern bool _debug_guardpage_enabled; 2788 2789 static inline unsigned int debug_guardpage_minorder(void) 2790 { 2791 return _debug_guardpage_minorder; 2792 } 2793 2794 static inline bool debug_guardpage_enabled(void) 2795 { 2796 return _debug_guardpage_enabled; 2797 } 2798 2799 static inline bool page_is_guard(struct page *page) 2800 { 2801 struct page_ext *page_ext; 2802 2803 if (!debug_guardpage_enabled()) 2804 return false; 2805 2806 page_ext = lookup_page_ext(page); 2807 if (unlikely(!page_ext)) 2808 return false; 2809 2810 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2811 } 2812 #else 2813 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2814 static inline bool debug_guardpage_enabled(void) { return false; } 2815 static inline bool page_is_guard(struct page *page) { return false; } 2816 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2817 2818 #if MAX_NUMNODES > 1 2819 void __init setup_nr_node_ids(void); 2820 #else 2821 static inline void setup_nr_node_ids(void) {} 2822 #endif 2823 2824 #endif /* __KERNEL__ */ 2825 #endif /* _LINUX_MM_H */ 2826