xref: /linux-6.15/include/linux/mm.h (revision 4494ce4f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37 
38 void init_mm_internals(void);
39 
40 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42 
43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 	max_mapnr = limit;
46 }
47 #else
48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50 
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
54 
55 #ifdef CONFIG_SYSCTL
56 extern int sysctl_legacy_va_layout;
57 #else
58 #define sysctl_legacy_va_layout 0
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
70 #endif
71 
72 #include <asm/page.h>
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
75 
76 #ifndef __pa_symbol
77 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #endif
79 
80 #ifndef page_to_virt
81 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
82 #endif
83 
84 #ifndef lm_alias
85 #define lm_alias(x)	__va(__pa_symbol(x))
86 #endif
87 
88 /*
89  * To prevent common memory management code establishing
90  * a zero page mapping on a read fault.
91  * This macro should be defined within <asm/pgtable.h>.
92  * s390 does this to prevent multiplexing of hardware bits
93  * related to the physical page in case of virtualization.
94  */
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X)	(0)
97 #endif
98 
99 /*
100  * On some architectures it is expensive to call memset() for small sizes.
101  * Those architectures should provide their own implementation of "struct page"
102  * zeroing by defining this macro in <asm/pgtable.h>.
103  */
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
106 #endif
107 
108 /*
109  * Default maximum number of active map areas, this limits the number of vmas
110  * per mm struct. Users can overwrite this number by sysctl but there is a
111  * problem.
112  *
113  * When a program's coredump is generated as ELF format, a section is created
114  * per a vma. In ELF, the number of sections is represented in unsigned short.
115  * This means the number of sections should be smaller than 65535 at coredump.
116  * Because the kernel adds some informative sections to a image of program at
117  * generating coredump, we need some margin. The number of extra sections is
118  * 1-3 now and depends on arch. We use "5" as safe margin, here.
119  *
120  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121  * not a hard limit any more. Although some userspace tools can be surprised by
122  * that.
123  */
124 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
125 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126 
127 extern int sysctl_max_map_count;
128 
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
131 
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
135 
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 				    size_t *, loff_t *);
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 				    size_t *, loff_t *);
140 
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142 
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145 
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148 
149 /*
150  * Linux kernel virtual memory manager primitives.
151  * The idea being to have a "virtual" mm in the same way
152  * we have a virtual fs - giving a cleaner interface to the
153  * mm details, and allowing different kinds of memory mappings
154  * (from shared memory to executable loading to arbitrary
155  * mmap() functions).
156  */
157 
158 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160 void vm_area_free(struct vm_area_struct *);
161 
162 #ifndef CONFIG_MMU
163 extern struct rb_root nommu_region_tree;
164 extern struct rw_semaphore nommu_region_sem;
165 
166 extern unsigned int kobjsize(const void *objp);
167 #endif
168 
169 /*
170  * vm_flags in vm_area_struct, see mm_types.h.
171  * When changing, update also include/trace/events/mmflags.h
172  */
173 #define VM_NONE		0x00000000
174 
175 #define VM_READ		0x00000001	/* currently active flags */
176 #define VM_WRITE	0x00000002
177 #define VM_EXEC		0x00000004
178 #define VM_SHARED	0x00000008
179 
180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
182 #define VM_MAYWRITE	0x00000020
183 #define VM_MAYEXEC	0x00000040
184 #define VM_MAYSHARE	0x00000080
185 
186 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
187 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
188 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
189 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
190 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
191 
192 #define VM_LOCKED	0x00002000
193 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
194 
195 					/* Used by sys_madvise() */
196 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
197 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
198 
199 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
200 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
201 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
202 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
203 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
204 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
205 #define VM_SYNC		0x00800000	/* Synchronous page faults */
206 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
207 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
208 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
209 
210 #ifdef CONFIG_MEM_SOFT_DIRTY
211 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
212 #else
213 # define VM_SOFTDIRTY	0
214 #endif
215 
216 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
217 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
218 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
219 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
220 
221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
227 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
228 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
229 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
230 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
231 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233 
234 #ifdef CONFIG_ARCH_HAS_PKEYS
235 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
236 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
237 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
238 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
239 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
240 #ifdef CONFIG_PPC
241 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
242 #else
243 # define VM_PKEY_BIT4  0
244 #endif
245 #endif /* CONFIG_ARCH_HAS_PKEYS */
246 
247 #if defined(CONFIG_X86)
248 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
249 #elif defined(CONFIG_PPC)
250 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
251 #elif defined(CONFIG_PARISC)
252 # define VM_GROWSUP	VM_ARCH_1
253 #elif defined(CONFIG_IA64)
254 # define VM_GROWSUP	VM_ARCH_1
255 #elif defined(CONFIG_SPARC64)
256 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
257 # define VM_ARCH_CLEAR	VM_SPARC_ADI
258 #elif !defined(CONFIG_MMU)
259 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
260 #endif
261 
262 #if defined(CONFIG_X86_INTEL_MPX)
263 /* MPX specific bounds table or bounds directory */
264 # define VM_MPX		VM_HIGH_ARCH_4
265 #else
266 # define VM_MPX		VM_NONE
267 #endif
268 
269 #ifndef VM_GROWSUP
270 # define VM_GROWSUP	VM_NONE
271 #endif
272 
273 /* Bits set in the VMA until the stack is in its final location */
274 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
275 
276 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278 #endif
279 
280 #ifdef CONFIG_STACK_GROWSUP
281 #define VM_STACK	VM_GROWSUP
282 #else
283 #define VM_STACK	VM_GROWSDOWN
284 #endif
285 
286 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287 
288 /*
289  * Special vmas that are non-mergable, non-mlock()able.
290  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
291  */
292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
293 
294 /* This mask defines which mm->def_flags a process can inherit its parent */
295 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
296 
297 /* This mask is used to clear all the VMA flags used by mlock */
298 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
299 
300 /* Arch-specific flags to clear when updating VM flags on protection change */
301 #ifndef VM_ARCH_CLEAR
302 # define VM_ARCH_CLEAR	VM_NONE
303 #endif
304 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305 
306 /*
307  * mapping from the currently active vm_flags protection bits (the
308  * low four bits) to a page protection mask..
309  */
310 extern pgprot_t protection_map[16];
311 
312 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
313 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
314 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
315 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
316 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
317 #define FAULT_FLAG_TRIED	0x20	/* Second try */
318 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
319 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
320 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
321 
322 #define FAULT_FLAG_TRACE \
323 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
324 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
325 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
326 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
327 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
328 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
329 	{ FAULT_FLAG_USER,		"USER" }, \
330 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
331 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
332 
333 /*
334  * vm_fault is filled by the the pagefault handler and passed to the vma's
335  * ->fault function. The vma's ->fault is responsible for returning a bitmask
336  * of VM_FAULT_xxx flags that give details about how the fault was handled.
337  *
338  * MM layer fills up gfp_mask for page allocations but fault handler might
339  * alter it if its implementation requires a different allocation context.
340  *
341  * pgoff should be used in favour of virtual_address, if possible.
342  */
343 struct vm_fault {
344 	struct vm_area_struct *vma;	/* Target VMA */
345 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
346 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
347 	pgoff_t pgoff;			/* Logical page offset based on vma */
348 	unsigned long address;		/* Faulting virtual address */
349 	pmd_t *pmd;			/* Pointer to pmd entry matching
350 					 * the 'address' */
351 	pud_t *pud;			/* Pointer to pud entry matching
352 					 * the 'address'
353 					 */
354 	pte_t orig_pte;			/* Value of PTE at the time of fault */
355 
356 	struct page *cow_page;		/* Page handler may use for COW fault */
357 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
358 	struct page *page;		/* ->fault handlers should return a
359 					 * page here, unless VM_FAULT_NOPAGE
360 					 * is set (which is also implied by
361 					 * VM_FAULT_ERROR).
362 					 */
363 	/* These three entries are valid only while holding ptl lock */
364 	pte_t *pte;			/* Pointer to pte entry matching
365 					 * the 'address'. NULL if the page
366 					 * table hasn't been allocated.
367 					 */
368 	spinlock_t *ptl;		/* Page table lock.
369 					 * Protects pte page table if 'pte'
370 					 * is not NULL, otherwise pmd.
371 					 */
372 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
373 					 * vm_ops->map_pages() calls
374 					 * alloc_set_pte() from atomic context.
375 					 * do_fault_around() pre-allocates
376 					 * page table to avoid allocation from
377 					 * atomic context.
378 					 */
379 };
380 
381 /* page entry size for vm->huge_fault() */
382 enum page_entry_size {
383 	PE_SIZE_PTE = 0,
384 	PE_SIZE_PMD,
385 	PE_SIZE_PUD,
386 };
387 
388 /*
389  * These are the virtual MM functions - opening of an area, closing and
390  * unmapping it (needed to keep files on disk up-to-date etc), pointer
391  * to the functions called when a no-page or a wp-page exception occurs.
392  */
393 struct vm_operations_struct {
394 	void (*open)(struct vm_area_struct * area);
395 	void (*close)(struct vm_area_struct * area);
396 	int (*split)(struct vm_area_struct * area, unsigned long addr);
397 	int (*mremap)(struct vm_area_struct * area);
398 	vm_fault_t (*fault)(struct vm_fault *vmf);
399 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 			enum page_entry_size pe_size);
401 	void (*map_pages)(struct vm_fault *vmf,
402 			pgoff_t start_pgoff, pgoff_t end_pgoff);
403 	unsigned long (*pagesize)(struct vm_area_struct * area);
404 
405 	/* notification that a previously read-only page is about to become
406 	 * writable, if an error is returned it will cause a SIGBUS */
407 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
408 
409 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
411 
412 	/* called by access_process_vm when get_user_pages() fails, typically
413 	 * for use by special VMAs that can switch between memory and hardware
414 	 */
415 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 		      void *buf, int len, int write);
417 
418 	/* Called by the /proc/PID/maps code to ask the vma whether it
419 	 * has a special name.  Returning non-NULL will also cause this
420 	 * vma to be dumped unconditionally. */
421 	const char *(*name)(struct vm_area_struct *vma);
422 
423 #ifdef CONFIG_NUMA
424 	/*
425 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 	 * to hold the policy upon return.  Caller should pass NULL @new to
427 	 * remove a policy and fall back to surrounding context--i.e. do not
428 	 * install a MPOL_DEFAULT policy, nor the task or system default
429 	 * mempolicy.
430 	 */
431 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
432 
433 	/*
434 	 * get_policy() op must add reference [mpol_get()] to any policy at
435 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
436 	 * in mm/mempolicy.c will do this automatically.
437 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 	 * must return NULL--i.e., do not "fallback" to task or system default
441 	 * policy.
442 	 */
443 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 					unsigned long addr);
445 #endif
446 	/*
447 	 * Called by vm_normal_page() for special PTEs to find the
448 	 * page for @addr.  This is useful if the default behavior
449 	 * (using pte_page()) would not find the correct page.
450 	 */
451 	struct page *(*find_special_page)(struct vm_area_struct *vma,
452 					  unsigned long addr);
453 };
454 
455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456 {
457 	static const struct vm_operations_struct dummy_vm_ops = {};
458 
459 	memset(vma, 0, sizeof(*vma));
460 	vma->vm_mm = mm;
461 	vma->vm_ops = &dummy_vm_ops;
462 	INIT_LIST_HEAD(&vma->anon_vma_chain);
463 }
464 
465 static inline void vma_set_anonymous(struct vm_area_struct *vma)
466 {
467 	vma->vm_ops = NULL;
468 }
469 
470 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
471 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
472 
473 struct mmu_gather;
474 struct inode;
475 
476 #define page_private(page)		((page)->private)
477 #define set_page_private(page, v)	((page)->private = (v))
478 
479 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
480 static inline int pmd_devmap(pmd_t pmd)
481 {
482 	return 0;
483 }
484 static inline int pud_devmap(pud_t pud)
485 {
486 	return 0;
487 }
488 static inline int pgd_devmap(pgd_t pgd)
489 {
490 	return 0;
491 }
492 #endif
493 
494 /*
495  * FIXME: take this include out, include page-flags.h in
496  * files which need it (119 of them)
497  */
498 #include <linux/page-flags.h>
499 #include <linux/huge_mm.h>
500 
501 /*
502  * Methods to modify the page usage count.
503  *
504  * What counts for a page usage:
505  * - cache mapping   (page->mapping)
506  * - private data    (page->private)
507  * - page mapped in a task's page tables, each mapping
508  *   is counted separately
509  *
510  * Also, many kernel routines increase the page count before a critical
511  * routine so they can be sure the page doesn't go away from under them.
512  */
513 
514 /*
515  * Drop a ref, return true if the refcount fell to zero (the page has no users)
516  */
517 static inline int put_page_testzero(struct page *page)
518 {
519 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
520 	return page_ref_dec_and_test(page);
521 }
522 
523 /*
524  * Try to grab a ref unless the page has a refcount of zero, return false if
525  * that is the case.
526  * This can be called when MMU is off so it must not access
527  * any of the virtual mappings.
528  */
529 static inline int get_page_unless_zero(struct page *page)
530 {
531 	return page_ref_add_unless(page, 1, 0);
532 }
533 
534 extern int page_is_ram(unsigned long pfn);
535 
536 enum {
537 	REGION_INTERSECTS,
538 	REGION_DISJOINT,
539 	REGION_MIXED,
540 };
541 
542 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
543 		      unsigned long desc);
544 
545 /* Support for virtually mapped pages */
546 struct page *vmalloc_to_page(const void *addr);
547 unsigned long vmalloc_to_pfn(const void *addr);
548 
549 /*
550  * Determine if an address is within the vmalloc range
551  *
552  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
553  * is no special casing required.
554  */
555 static inline bool is_vmalloc_addr(const void *x)
556 {
557 #ifdef CONFIG_MMU
558 	unsigned long addr = (unsigned long)x;
559 
560 	return addr >= VMALLOC_START && addr < VMALLOC_END;
561 #else
562 	return false;
563 #endif
564 }
565 #ifdef CONFIG_MMU
566 extern int is_vmalloc_or_module_addr(const void *x);
567 #else
568 static inline int is_vmalloc_or_module_addr(const void *x)
569 {
570 	return 0;
571 }
572 #endif
573 
574 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
575 static inline void *kvmalloc(size_t size, gfp_t flags)
576 {
577 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
578 }
579 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
580 {
581 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
582 }
583 static inline void *kvzalloc(size_t size, gfp_t flags)
584 {
585 	return kvmalloc(size, flags | __GFP_ZERO);
586 }
587 
588 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
589 {
590 	size_t bytes;
591 
592 	if (unlikely(check_mul_overflow(n, size, &bytes)))
593 		return NULL;
594 
595 	return kvmalloc(bytes, flags);
596 }
597 
598 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
599 {
600 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
601 }
602 
603 extern void kvfree(const void *addr);
604 
605 static inline atomic_t *compound_mapcount_ptr(struct page *page)
606 {
607 	return &page[1].compound_mapcount;
608 }
609 
610 static inline int compound_mapcount(struct page *page)
611 {
612 	VM_BUG_ON_PAGE(!PageCompound(page), page);
613 	page = compound_head(page);
614 	return atomic_read(compound_mapcount_ptr(page)) + 1;
615 }
616 
617 /*
618  * The atomic page->_mapcount, starts from -1: so that transitions
619  * both from it and to it can be tracked, using atomic_inc_and_test
620  * and atomic_add_negative(-1).
621  */
622 static inline void page_mapcount_reset(struct page *page)
623 {
624 	atomic_set(&(page)->_mapcount, -1);
625 }
626 
627 int __page_mapcount(struct page *page);
628 
629 static inline int page_mapcount(struct page *page)
630 {
631 	VM_BUG_ON_PAGE(PageSlab(page), page);
632 
633 	if (unlikely(PageCompound(page)))
634 		return __page_mapcount(page);
635 	return atomic_read(&page->_mapcount) + 1;
636 }
637 
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 int total_mapcount(struct page *page);
640 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
641 #else
642 static inline int total_mapcount(struct page *page)
643 {
644 	return page_mapcount(page);
645 }
646 static inline int page_trans_huge_mapcount(struct page *page,
647 					   int *total_mapcount)
648 {
649 	int mapcount = page_mapcount(page);
650 	if (total_mapcount)
651 		*total_mapcount = mapcount;
652 	return mapcount;
653 }
654 #endif
655 
656 static inline struct page *virt_to_head_page(const void *x)
657 {
658 	struct page *page = virt_to_page(x);
659 
660 	return compound_head(page);
661 }
662 
663 void __put_page(struct page *page);
664 
665 void put_pages_list(struct list_head *pages);
666 
667 void split_page(struct page *page, unsigned int order);
668 
669 /*
670  * Compound pages have a destructor function.  Provide a
671  * prototype for that function and accessor functions.
672  * These are _only_ valid on the head of a compound page.
673  */
674 typedef void compound_page_dtor(struct page *);
675 
676 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
677 enum compound_dtor_id {
678 	NULL_COMPOUND_DTOR,
679 	COMPOUND_PAGE_DTOR,
680 #ifdef CONFIG_HUGETLB_PAGE
681 	HUGETLB_PAGE_DTOR,
682 #endif
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 	TRANSHUGE_PAGE_DTOR,
685 #endif
686 	NR_COMPOUND_DTORS,
687 };
688 extern compound_page_dtor * const compound_page_dtors[];
689 
690 static inline void set_compound_page_dtor(struct page *page,
691 		enum compound_dtor_id compound_dtor)
692 {
693 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
694 	page[1].compound_dtor = compound_dtor;
695 }
696 
697 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
698 {
699 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
700 	return compound_page_dtors[page[1].compound_dtor];
701 }
702 
703 static inline unsigned int compound_order(struct page *page)
704 {
705 	if (!PageHead(page))
706 		return 0;
707 	return page[1].compound_order;
708 }
709 
710 static inline void set_compound_order(struct page *page, unsigned int order)
711 {
712 	page[1].compound_order = order;
713 }
714 
715 void free_compound_page(struct page *page);
716 
717 #ifdef CONFIG_MMU
718 /*
719  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
720  * servicing faults for write access.  In the normal case, do always want
721  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
722  * that do not have writing enabled, when used by access_process_vm.
723  */
724 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
725 {
726 	if (likely(vma->vm_flags & VM_WRITE))
727 		pte = pte_mkwrite(pte);
728 	return pte;
729 }
730 
731 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
732 		struct page *page);
733 vm_fault_t finish_fault(struct vm_fault *vmf);
734 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
735 #endif
736 
737 /*
738  * Multiple processes may "see" the same page. E.g. for untouched
739  * mappings of /dev/null, all processes see the same page full of
740  * zeroes, and text pages of executables and shared libraries have
741  * only one copy in memory, at most, normally.
742  *
743  * For the non-reserved pages, page_count(page) denotes a reference count.
744  *   page_count() == 0 means the page is free. page->lru is then used for
745  *   freelist management in the buddy allocator.
746  *   page_count() > 0  means the page has been allocated.
747  *
748  * Pages are allocated by the slab allocator in order to provide memory
749  * to kmalloc and kmem_cache_alloc. In this case, the management of the
750  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
751  * unless a particular usage is carefully commented. (the responsibility of
752  * freeing the kmalloc memory is the caller's, of course).
753  *
754  * A page may be used by anyone else who does a __get_free_page().
755  * In this case, page_count still tracks the references, and should only
756  * be used through the normal accessor functions. The top bits of page->flags
757  * and page->virtual store page management information, but all other fields
758  * are unused and could be used privately, carefully. The management of this
759  * page is the responsibility of the one who allocated it, and those who have
760  * subsequently been given references to it.
761  *
762  * The other pages (we may call them "pagecache pages") are completely
763  * managed by the Linux memory manager: I/O, buffers, swapping etc.
764  * The following discussion applies only to them.
765  *
766  * A pagecache page contains an opaque `private' member, which belongs to the
767  * page's address_space. Usually, this is the address of a circular list of
768  * the page's disk buffers. PG_private must be set to tell the VM to call
769  * into the filesystem to release these pages.
770  *
771  * A page may belong to an inode's memory mapping. In this case, page->mapping
772  * is the pointer to the inode, and page->index is the file offset of the page,
773  * in units of PAGE_SIZE.
774  *
775  * If pagecache pages are not associated with an inode, they are said to be
776  * anonymous pages. These may become associated with the swapcache, and in that
777  * case PG_swapcache is set, and page->private is an offset into the swapcache.
778  *
779  * In either case (swapcache or inode backed), the pagecache itself holds one
780  * reference to the page. Setting PG_private should also increment the
781  * refcount. The each user mapping also has a reference to the page.
782  *
783  * The pagecache pages are stored in a per-mapping radix tree, which is
784  * rooted at mapping->i_pages, and indexed by offset.
785  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
786  * lists, we instead now tag pages as dirty/writeback in the radix tree.
787  *
788  * All pagecache pages may be subject to I/O:
789  * - inode pages may need to be read from disk,
790  * - inode pages which have been modified and are MAP_SHARED may need
791  *   to be written back to the inode on disk,
792  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
793  *   modified may need to be swapped out to swap space and (later) to be read
794  *   back into memory.
795  */
796 
797 /*
798  * The zone field is never updated after free_area_init_core()
799  * sets it, so none of the operations on it need to be atomic.
800  */
801 
802 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
803 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
804 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
805 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
806 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
807 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
808 
809 /*
810  * Define the bit shifts to access each section.  For non-existent
811  * sections we define the shift as 0; that plus a 0 mask ensures
812  * the compiler will optimise away reference to them.
813  */
814 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
815 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
816 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
817 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
818 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
819 
820 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
821 #ifdef NODE_NOT_IN_PAGE_FLAGS
822 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
823 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
824 						SECTIONS_PGOFF : ZONES_PGOFF)
825 #else
826 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
827 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
828 						NODES_PGOFF : ZONES_PGOFF)
829 #endif
830 
831 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
832 
833 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
834 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
835 #endif
836 
837 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
838 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
839 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
840 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
841 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
842 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
843 
844 static inline enum zone_type page_zonenum(const struct page *page)
845 {
846 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
847 }
848 
849 #ifdef CONFIG_ZONE_DEVICE
850 static inline bool is_zone_device_page(const struct page *page)
851 {
852 	return page_zonenum(page) == ZONE_DEVICE;
853 }
854 extern void memmap_init_zone_device(struct zone *, unsigned long,
855 				    unsigned long, struct dev_pagemap *);
856 #else
857 static inline bool is_zone_device_page(const struct page *page)
858 {
859 	return false;
860 }
861 #endif
862 
863 #ifdef CONFIG_DEV_PAGEMAP_OPS
864 void dev_pagemap_get_ops(void);
865 void dev_pagemap_put_ops(void);
866 void __put_devmap_managed_page(struct page *page);
867 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
868 static inline bool put_devmap_managed_page(struct page *page)
869 {
870 	if (!static_branch_unlikely(&devmap_managed_key))
871 		return false;
872 	if (!is_zone_device_page(page))
873 		return false;
874 	switch (page->pgmap->type) {
875 	case MEMORY_DEVICE_PRIVATE:
876 	case MEMORY_DEVICE_PUBLIC:
877 	case MEMORY_DEVICE_FS_DAX:
878 		__put_devmap_managed_page(page);
879 		return true;
880 	default:
881 		break;
882 	}
883 	return false;
884 }
885 
886 static inline bool is_device_private_page(const struct page *page)
887 {
888 	return is_zone_device_page(page) &&
889 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
890 }
891 
892 static inline bool is_device_public_page(const struct page *page)
893 {
894 	return is_zone_device_page(page) &&
895 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
896 }
897 
898 #ifdef CONFIG_PCI_P2PDMA
899 static inline bool is_pci_p2pdma_page(const struct page *page)
900 {
901 	return is_zone_device_page(page) &&
902 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
903 }
904 #else /* CONFIG_PCI_P2PDMA */
905 static inline bool is_pci_p2pdma_page(const struct page *page)
906 {
907 	return false;
908 }
909 #endif /* CONFIG_PCI_P2PDMA */
910 
911 #else /* CONFIG_DEV_PAGEMAP_OPS */
912 static inline void dev_pagemap_get_ops(void)
913 {
914 }
915 
916 static inline void dev_pagemap_put_ops(void)
917 {
918 }
919 
920 static inline bool put_devmap_managed_page(struct page *page)
921 {
922 	return false;
923 }
924 
925 static inline bool is_device_private_page(const struct page *page)
926 {
927 	return false;
928 }
929 
930 static inline bool is_device_public_page(const struct page *page)
931 {
932 	return false;
933 }
934 
935 static inline bool is_pci_p2pdma_page(const struct page *page)
936 {
937 	return false;
938 }
939 #endif /* CONFIG_DEV_PAGEMAP_OPS */
940 
941 static inline void get_page(struct page *page)
942 {
943 	page = compound_head(page);
944 	/*
945 	 * Getting a normal page or the head of a compound page
946 	 * requires to already have an elevated page->_refcount.
947 	 */
948 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
949 	page_ref_inc(page);
950 }
951 
952 static inline void put_page(struct page *page)
953 {
954 	page = compound_head(page);
955 
956 	/*
957 	 * For devmap managed pages we need to catch refcount transition from
958 	 * 2 to 1, when refcount reach one it means the page is free and we
959 	 * need to inform the device driver through callback. See
960 	 * include/linux/memremap.h and HMM for details.
961 	 */
962 	if (put_devmap_managed_page(page))
963 		return;
964 
965 	if (put_page_testzero(page))
966 		__put_page(page);
967 }
968 
969 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
970 #define SECTION_IN_PAGE_FLAGS
971 #endif
972 
973 /*
974  * The identification function is mainly used by the buddy allocator for
975  * determining if two pages could be buddies. We are not really identifying
976  * the zone since we could be using the section number id if we do not have
977  * node id available in page flags.
978  * We only guarantee that it will return the same value for two combinable
979  * pages in a zone.
980  */
981 static inline int page_zone_id(struct page *page)
982 {
983 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
984 }
985 
986 #ifdef NODE_NOT_IN_PAGE_FLAGS
987 extern int page_to_nid(const struct page *page);
988 #else
989 static inline int page_to_nid(const struct page *page)
990 {
991 	struct page *p = (struct page *)page;
992 
993 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
994 }
995 #endif
996 
997 #ifdef CONFIG_NUMA_BALANCING
998 static inline int cpu_pid_to_cpupid(int cpu, int pid)
999 {
1000 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1001 }
1002 
1003 static inline int cpupid_to_pid(int cpupid)
1004 {
1005 	return cpupid & LAST__PID_MASK;
1006 }
1007 
1008 static inline int cpupid_to_cpu(int cpupid)
1009 {
1010 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1011 }
1012 
1013 static inline int cpupid_to_nid(int cpupid)
1014 {
1015 	return cpu_to_node(cpupid_to_cpu(cpupid));
1016 }
1017 
1018 static inline bool cpupid_pid_unset(int cpupid)
1019 {
1020 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1021 }
1022 
1023 static inline bool cpupid_cpu_unset(int cpupid)
1024 {
1025 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1026 }
1027 
1028 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1029 {
1030 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1031 }
1032 
1033 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1034 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1035 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1036 {
1037 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1038 }
1039 
1040 static inline int page_cpupid_last(struct page *page)
1041 {
1042 	return page->_last_cpupid;
1043 }
1044 static inline void page_cpupid_reset_last(struct page *page)
1045 {
1046 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1047 }
1048 #else
1049 static inline int page_cpupid_last(struct page *page)
1050 {
1051 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1052 }
1053 
1054 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1055 
1056 static inline void page_cpupid_reset_last(struct page *page)
1057 {
1058 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1059 }
1060 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1061 #else /* !CONFIG_NUMA_BALANCING */
1062 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1063 {
1064 	return page_to_nid(page); /* XXX */
1065 }
1066 
1067 static inline int page_cpupid_last(struct page *page)
1068 {
1069 	return page_to_nid(page); /* XXX */
1070 }
1071 
1072 static inline int cpupid_to_nid(int cpupid)
1073 {
1074 	return -1;
1075 }
1076 
1077 static inline int cpupid_to_pid(int cpupid)
1078 {
1079 	return -1;
1080 }
1081 
1082 static inline int cpupid_to_cpu(int cpupid)
1083 {
1084 	return -1;
1085 }
1086 
1087 static inline int cpu_pid_to_cpupid(int nid, int pid)
1088 {
1089 	return -1;
1090 }
1091 
1092 static inline bool cpupid_pid_unset(int cpupid)
1093 {
1094 	return 1;
1095 }
1096 
1097 static inline void page_cpupid_reset_last(struct page *page)
1098 {
1099 }
1100 
1101 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1102 {
1103 	return false;
1104 }
1105 #endif /* CONFIG_NUMA_BALANCING */
1106 
1107 #ifdef CONFIG_KASAN_SW_TAGS
1108 static inline u8 page_kasan_tag(const struct page *page)
1109 {
1110 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1111 }
1112 
1113 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1114 {
1115 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1116 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1117 }
1118 
1119 static inline void page_kasan_tag_reset(struct page *page)
1120 {
1121 	page_kasan_tag_set(page, 0xff);
1122 }
1123 #else
1124 static inline u8 page_kasan_tag(const struct page *page)
1125 {
1126 	return 0xff;
1127 }
1128 
1129 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1130 static inline void page_kasan_tag_reset(struct page *page) { }
1131 #endif
1132 
1133 static inline struct zone *page_zone(const struct page *page)
1134 {
1135 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1136 }
1137 
1138 static inline pg_data_t *page_pgdat(const struct page *page)
1139 {
1140 	return NODE_DATA(page_to_nid(page));
1141 }
1142 
1143 #ifdef SECTION_IN_PAGE_FLAGS
1144 static inline void set_page_section(struct page *page, unsigned long section)
1145 {
1146 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1147 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1148 }
1149 
1150 static inline unsigned long page_to_section(const struct page *page)
1151 {
1152 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1153 }
1154 #endif
1155 
1156 static inline void set_page_zone(struct page *page, enum zone_type zone)
1157 {
1158 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1159 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1160 }
1161 
1162 static inline void set_page_node(struct page *page, unsigned long node)
1163 {
1164 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1165 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1166 }
1167 
1168 static inline void set_page_links(struct page *page, enum zone_type zone,
1169 	unsigned long node, unsigned long pfn)
1170 {
1171 	set_page_zone(page, zone);
1172 	set_page_node(page, node);
1173 #ifdef SECTION_IN_PAGE_FLAGS
1174 	set_page_section(page, pfn_to_section_nr(pfn));
1175 #endif
1176 }
1177 
1178 #ifdef CONFIG_MEMCG
1179 static inline struct mem_cgroup *page_memcg(struct page *page)
1180 {
1181 	return page->mem_cgroup;
1182 }
1183 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1184 {
1185 	WARN_ON_ONCE(!rcu_read_lock_held());
1186 	return READ_ONCE(page->mem_cgroup);
1187 }
1188 #else
1189 static inline struct mem_cgroup *page_memcg(struct page *page)
1190 {
1191 	return NULL;
1192 }
1193 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1194 {
1195 	WARN_ON_ONCE(!rcu_read_lock_held());
1196 	return NULL;
1197 }
1198 #endif
1199 
1200 /*
1201  * Some inline functions in vmstat.h depend on page_zone()
1202  */
1203 #include <linux/vmstat.h>
1204 
1205 static __always_inline void *lowmem_page_address(const struct page *page)
1206 {
1207 	return page_to_virt(page);
1208 }
1209 
1210 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1211 #define HASHED_PAGE_VIRTUAL
1212 #endif
1213 
1214 #if defined(WANT_PAGE_VIRTUAL)
1215 static inline void *page_address(const struct page *page)
1216 {
1217 	return page->virtual;
1218 }
1219 static inline void set_page_address(struct page *page, void *address)
1220 {
1221 	page->virtual = address;
1222 }
1223 #define page_address_init()  do { } while(0)
1224 #endif
1225 
1226 #if defined(HASHED_PAGE_VIRTUAL)
1227 void *page_address(const struct page *page);
1228 void set_page_address(struct page *page, void *virtual);
1229 void page_address_init(void);
1230 #endif
1231 
1232 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1233 #define page_address(page) lowmem_page_address(page)
1234 #define set_page_address(page, address)  do { } while(0)
1235 #define page_address_init()  do { } while(0)
1236 #endif
1237 
1238 extern void *page_rmapping(struct page *page);
1239 extern struct anon_vma *page_anon_vma(struct page *page);
1240 extern struct address_space *page_mapping(struct page *page);
1241 
1242 extern struct address_space *__page_file_mapping(struct page *);
1243 
1244 static inline
1245 struct address_space *page_file_mapping(struct page *page)
1246 {
1247 	if (unlikely(PageSwapCache(page)))
1248 		return __page_file_mapping(page);
1249 
1250 	return page->mapping;
1251 }
1252 
1253 extern pgoff_t __page_file_index(struct page *page);
1254 
1255 /*
1256  * Return the pagecache index of the passed page.  Regular pagecache pages
1257  * use ->index whereas swapcache pages use swp_offset(->private)
1258  */
1259 static inline pgoff_t page_index(struct page *page)
1260 {
1261 	if (unlikely(PageSwapCache(page)))
1262 		return __page_file_index(page);
1263 	return page->index;
1264 }
1265 
1266 bool page_mapped(struct page *page);
1267 struct address_space *page_mapping(struct page *page);
1268 struct address_space *page_mapping_file(struct page *page);
1269 
1270 /*
1271  * Return true only if the page has been allocated with
1272  * ALLOC_NO_WATERMARKS and the low watermark was not
1273  * met implying that the system is under some pressure.
1274  */
1275 static inline bool page_is_pfmemalloc(struct page *page)
1276 {
1277 	/*
1278 	 * Page index cannot be this large so this must be
1279 	 * a pfmemalloc page.
1280 	 */
1281 	return page->index == -1UL;
1282 }
1283 
1284 /*
1285  * Only to be called by the page allocator on a freshly allocated
1286  * page.
1287  */
1288 static inline void set_page_pfmemalloc(struct page *page)
1289 {
1290 	page->index = -1UL;
1291 }
1292 
1293 static inline void clear_page_pfmemalloc(struct page *page)
1294 {
1295 	page->index = 0;
1296 }
1297 
1298 /*
1299  * Different kinds of faults, as returned by handle_mm_fault().
1300  * Used to decide whether a process gets delivered SIGBUS or
1301  * just gets major/minor fault counters bumped up.
1302  */
1303 
1304 #define VM_FAULT_OOM	0x0001
1305 #define VM_FAULT_SIGBUS	0x0002
1306 #define VM_FAULT_MAJOR	0x0004
1307 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1308 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1309 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1310 #define VM_FAULT_SIGSEGV 0x0040
1311 
1312 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1313 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1314 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1315 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1316 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1317 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1318 					 * and needs fsync() to complete (for
1319 					 * synchronous page faults in DAX) */
1320 
1321 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1322 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1323 			 VM_FAULT_FALLBACK)
1324 
1325 #define VM_FAULT_RESULT_TRACE \
1326 	{ VM_FAULT_OOM,			"OOM" }, \
1327 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1328 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1329 	{ VM_FAULT_WRITE,		"WRITE" }, \
1330 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1331 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1332 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1333 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1334 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1335 	{ VM_FAULT_RETRY,		"RETRY" }, \
1336 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1337 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1338 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1339 
1340 /* Encode hstate index for a hwpoisoned large page */
1341 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1342 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1343 
1344 /*
1345  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1346  */
1347 extern void pagefault_out_of_memory(void);
1348 
1349 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1350 
1351 /*
1352  * Flags passed to show_mem() and show_free_areas() to suppress output in
1353  * various contexts.
1354  */
1355 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1356 
1357 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1358 
1359 extern bool can_do_mlock(void);
1360 extern int user_shm_lock(size_t, struct user_struct *);
1361 extern void user_shm_unlock(size_t, struct user_struct *);
1362 
1363 /*
1364  * Parameter block passed down to zap_pte_range in exceptional cases.
1365  */
1366 struct zap_details {
1367 	struct address_space *check_mapping;	/* Check page->mapping if set */
1368 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1369 	pgoff_t last_index;			/* Highest page->index to unmap */
1370 };
1371 
1372 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1373 			     pte_t pte, bool with_public_device);
1374 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1375 
1376 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1377 				pmd_t pmd);
1378 
1379 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1380 		  unsigned long size);
1381 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1382 		    unsigned long size);
1383 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1384 		unsigned long start, unsigned long end);
1385 
1386 /**
1387  * mm_walk - callbacks for walk_page_range
1388  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1389  *	       this handler should only handle pud_trans_huge() puds.
1390  *	       the pmd_entry or pte_entry callbacks will be used for
1391  *	       regular PUDs.
1392  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1393  *	       this handler is required to be able to handle
1394  *	       pmd_trans_huge() pmds.  They may simply choose to
1395  *	       split_huge_page() instead of handling it explicitly.
1396  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1397  * @pte_hole: if set, called for each hole at all levels
1398  * @hugetlb_entry: if set, called for each hugetlb entry
1399  * @test_walk: caller specific callback function to determine whether
1400  *             we walk over the current vma or not. Returning 0
1401  *             value means "do page table walk over the current vma,"
1402  *             and a negative one means "abort current page table walk
1403  *             right now." 1 means "skip the current vma."
1404  * @mm:        mm_struct representing the target process of page table walk
1405  * @vma:       vma currently walked (NULL if walking outside vmas)
1406  * @private:   private data for callbacks' usage
1407  *
1408  * (see the comment on walk_page_range() for more details)
1409  */
1410 struct mm_walk {
1411 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1412 			 unsigned long next, struct mm_walk *walk);
1413 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1414 			 unsigned long next, struct mm_walk *walk);
1415 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1416 			 unsigned long next, struct mm_walk *walk);
1417 	int (*pte_hole)(unsigned long addr, unsigned long next,
1418 			struct mm_walk *walk);
1419 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1420 			     unsigned long addr, unsigned long next,
1421 			     struct mm_walk *walk);
1422 	int (*test_walk)(unsigned long addr, unsigned long next,
1423 			struct mm_walk *walk);
1424 	struct mm_struct *mm;
1425 	struct vm_area_struct *vma;
1426 	void *private;
1427 };
1428 
1429 int walk_page_range(unsigned long addr, unsigned long end,
1430 		struct mm_walk *walk);
1431 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1432 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1433 		unsigned long end, unsigned long floor, unsigned long ceiling);
1434 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1435 			struct vm_area_struct *vma);
1436 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1437 			     unsigned long *start, unsigned long *end,
1438 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1439 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1440 	unsigned long *pfn);
1441 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1442 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1443 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1444 			void *buf, int len, int write);
1445 
1446 extern void truncate_pagecache(struct inode *inode, loff_t new);
1447 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1448 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1449 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1450 int truncate_inode_page(struct address_space *mapping, struct page *page);
1451 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1452 int invalidate_inode_page(struct page *page);
1453 
1454 #ifdef CONFIG_MMU
1455 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1456 			unsigned long address, unsigned int flags);
1457 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1458 			    unsigned long address, unsigned int fault_flags,
1459 			    bool *unlocked);
1460 void unmap_mapping_pages(struct address_space *mapping,
1461 		pgoff_t start, pgoff_t nr, bool even_cows);
1462 void unmap_mapping_range(struct address_space *mapping,
1463 		loff_t const holebegin, loff_t const holelen, int even_cows);
1464 #else
1465 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1466 		unsigned long address, unsigned int flags)
1467 {
1468 	/* should never happen if there's no MMU */
1469 	BUG();
1470 	return VM_FAULT_SIGBUS;
1471 }
1472 static inline int fixup_user_fault(struct task_struct *tsk,
1473 		struct mm_struct *mm, unsigned long address,
1474 		unsigned int fault_flags, bool *unlocked)
1475 {
1476 	/* should never happen if there's no MMU */
1477 	BUG();
1478 	return -EFAULT;
1479 }
1480 static inline void unmap_mapping_pages(struct address_space *mapping,
1481 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1482 static inline void unmap_mapping_range(struct address_space *mapping,
1483 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1484 #endif
1485 
1486 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1487 		loff_t const holebegin, loff_t const holelen)
1488 {
1489 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1490 }
1491 
1492 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1493 		void *buf, int len, unsigned int gup_flags);
1494 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1495 		void *buf, int len, unsigned int gup_flags);
1496 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1497 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1498 
1499 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1500 			    unsigned long start, unsigned long nr_pages,
1501 			    unsigned int gup_flags, struct page **pages,
1502 			    struct vm_area_struct **vmas, int *locked);
1503 long get_user_pages(unsigned long start, unsigned long nr_pages,
1504 			    unsigned int gup_flags, struct page **pages,
1505 			    struct vm_area_struct **vmas);
1506 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1507 		    unsigned int gup_flags, struct page **pages, int *locked);
1508 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1509 		    struct page **pages, unsigned int gup_flags);
1510 #ifdef CONFIG_FS_DAX
1511 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1512 			    unsigned int gup_flags, struct page **pages,
1513 			    struct vm_area_struct **vmas);
1514 #else
1515 static inline long get_user_pages_longterm(unsigned long start,
1516 		unsigned long nr_pages, unsigned int gup_flags,
1517 		struct page **pages, struct vm_area_struct **vmas)
1518 {
1519 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1520 }
1521 #endif /* CONFIG_FS_DAX */
1522 
1523 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1524 			struct page **pages);
1525 
1526 /* Container for pinned pfns / pages */
1527 struct frame_vector {
1528 	unsigned int nr_allocated;	/* Number of frames we have space for */
1529 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1530 	bool got_ref;		/* Did we pin pages by getting page ref? */
1531 	bool is_pfns;		/* Does array contain pages or pfns? */
1532 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1533 				 * pfns_vector_pages() or pfns_vector_pfns()
1534 				 * for access */
1535 };
1536 
1537 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1538 void frame_vector_destroy(struct frame_vector *vec);
1539 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1540 		     unsigned int gup_flags, struct frame_vector *vec);
1541 void put_vaddr_frames(struct frame_vector *vec);
1542 int frame_vector_to_pages(struct frame_vector *vec);
1543 void frame_vector_to_pfns(struct frame_vector *vec);
1544 
1545 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1546 {
1547 	return vec->nr_frames;
1548 }
1549 
1550 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1551 {
1552 	if (vec->is_pfns) {
1553 		int err = frame_vector_to_pages(vec);
1554 
1555 		if (err)
1556 			return ERR_PTR(err);
1557 	}
1558 	return (struct page **)(vec->ptrs);
1559 }
1560 
1561 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1562 {
1563 	if (!vec->is_pfns)
1564 		frame_vector_to_pfns(vec);
1565 	return (unsigned long *)(vec->ptrs);
1566 }
1567 
1568 struct kvec;
1569 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1570 			struct page **pages);
1571 int get_kernel_page(unsigned long start, int write, struct page **pages);
1572 struct page *get_dump_page(unsigned long addr);
1573 
1574 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1575 extern void do_invalidatepage(struct page *page, unsigned int offset,
1576 			      unsigned int length);
1577 
1578 void __set_page_dirty(struct page *, struct address_space *, int warn);
1579 int __set_page_dirty_nobuffers(struct page *page);
1580 int __set_page_dirty_no_writeback(struct page *page);
1581 int redirty_page_for_writepage(struct writeback_control *wbc,
1582 				struct page *page);
1583 void account_page_dirtied(struct page *page, struct address_space *mapping);
1584 void account_page_cleaned(struct page *page, struct address_space *mapping,
1585 			  struct bdi_writeback *wb);
1586 int set_page_dirty(struct page *page);
1587 int set_page_dirty_lock(struct page *page);
1588 void __cancel_dirty_page(struct page *page);
1589 static inline void cancel_dirty_page(struct page *page)
1590 {
1591 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1592 	if (PageDirty(page))
1593 		__cancel_dirty_page(page);
1594 }
1595 int clear_page_dirty_for_io(struct page *page);
1596 
1597 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1598 
1599 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1600 {
1601 	return !vma->vm_ops;
1602 }
1603 
1604 #ifdef CONFIG_SHMEM
1605 /*
1606  * The vma_is_shmem is not inline because it is used only by slow
1607  * paths in userfault.
1608  */
1609 bool vma_is_shmem(struct vm_area_struct *vma);
1610 #else
1611 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1612 #endif
1613 
1614 int vma_is_stack_for_current(struct vm_area_struct *vma);
1615 
1616 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1617 		unsigned long old_addr, struct vm_area_struct *new_vma,
1618 		unsigned long new_addr, unsigned long len,
1619 		bool need_rmap_locks);
1620 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1621 			      unsigned long end, pgprot_t newprot,
1622 			      int dirty_accountable, int prot_numa);
1623 extern int mprotect_fixup(struct vm_area_struct *vma,
1624 			  struct vm_area_struct **pprev, unsigned long start,
1625 			  unsigned long end, unsigned long newflags);
1626 
1627 /*
1628  * doesn't attempt to fault and will return short.
1629  */
1630 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1631 			  struct page **pages);
1632 /*
1633  * per-process(per-mm_struct) statistics.
1634  */
1635 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1636 {
1637 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1638 
1639 #ifdef SPLIT_RSS_COUNTING
1640 	/*
1641 	 * counter is updated in asynchronous manner and may go to minus.
1642 	 * But it's never be expected number for users.
1643 	 */
1644 	if (val < 0)
1645 		val = 0;
1646 #endif
1647 	return (unsigned long)val;
1648 }
1649 
1650 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1651 {
1652 	atomic_long_add(value, &mm->rss_stat.count[member]);
1653 }
1654 
1655 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1656 {
1657 	atomic_long_inc(&mm->rss_stat.count[member]);
1658 }
1659 
1660 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1661 {
1662 	atomic_long_dec(&mm->rss_stat.count[member]);
1663 }
1664 
1665 /* Optimized variant when page is already known not to be PageAnon */
1666 static inline int mm_counter_file(struct page *page)
1667 {
1668 	if (PageSwapBacked(page))
1669 		return MM_SHMEMPAGES;
1670 	return MM_FILEPAGES;
1671 }
1672 
1673 static inline int mm_counter(struct page *page)
1674 {
1675 	if (PageAnon(page))
1676 		return MM_ANONPAGES;
1677 	return mm_counter_file(page);
1678 }
1679 
1680 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1681 {
1682 	return get_mm_counter(mm, MM_FILEPAGES) +
1683 		get_mm_counter(mm, MM_ANONPAGES) +
1684 		get_mm_counter(mm, MM_SHMEMPAGES);
1685 }
1686 
1687 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1688 {
1689 	return max(mm->hiwater_rss, get_mm_rss(mm));
1690 }
1691 
1692 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1693 {
1694 	return max(mm->hiwater_vm, mm->total_vm);
1695 }
1696 
1697 static inline void update_hiwater_rss(struct mm_struct *mm)
1698 {
1699 	unsigned long _rss = get_mm_rss(mm);
1700 
1701 	if ((mm)->hiwater_rss < _rss)
1702 		(mm)->hiwater_rss = _rss;
1703 }
1704 
1705 static inline void update_hiwater_vm(struct mm_struct *mm)
1706 {
1707 	if (mm->hiwater_vm < mm->total_vm)
1708 		mm->hiwater_vm = mm->total_vm;
1709 }
1710 
1711 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1712 {
1713 	mm->hiwater_rss = get_mm_rss(mm);
1714 }
1715 
1716 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1717 					 struct mm_struct *mm)
1718 {
1719 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1720 
1721 	if (*maxrss < hiwater_rss)
1722 		*maxrss = hiwater_rss;
1723 }
1724 
1725 #if defined(SPLIT_RSS_COUNTING)
1726 void sync_mm_rss(struct mm_struct *mm);
1727 #else
1728 static inline void sync_mm_rss(struct mm_struct *mm)
1729 {
1730 }
1731 #endif
1732 
1733 #ifndef __HAVE_ARCH_PTE_DEVMAP
1734 static inline int pte_devmap(pte_t pte)
1735 {
1736 	return 0;
1737 }
1738 #endif
1739 
1740 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1741 
1742 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1743 			       spinlock_t **ptl);
1744 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1745 				    spinlock_t **ptl)
1746 {
1747 	pte_t *ptep;
1748 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1749 	return ptep;
1750 }
1751 
1752 #ifdef __PAGETABLE_P4D_FOLDED
1753 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1754 						unsigned long address)
1755 {
1756 	return 0;
1757 }
1758 #else
1759 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1760 #endif
1761 
1762 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1763 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1764 						unsigned long address)
1765 {
1766 	return 0;
1767 }
1768 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1769 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1770 
1771 #else
1772 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1773 
1774 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1775 {
1776 	if (mm_pud_folded(mm))
1777 		return;
1778 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1779 }
1780 
1781 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1782 {
1783 	if (mm_pud_folded(mm))
1784 		return;
1785 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1786 }
1787 #endif
1788 
1789 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1790 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1791 						unsigned long address)
1792 {
1793 	return 0;
1794 }
1795 
1796 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1797 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1798 
1799 #else
1800 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1801 
1802 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1803 {
1804 	if (mm_pmd_folded(mm))
1805 		return;
1806 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1807 }
1808 
1809 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1810 {
1811 	if (mm_pmd_folded(mm))
1812 		return;
1813 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1814 }
1815 #endif
1816 
1817 #ifdef CONFIG_MMU
1818 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1819 {
1820 	atomic_long_set(&mm->pgtables_bytes, 0);
1821 }
1822 
1823 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1824 {
1825 	return atomic_long_read(&mm->pgtables_bytes);
1826 }
1827 
1828 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1829 {
1830 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1831 }
1832 
1833 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1834 {
1835 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1836 }
1837 #else
1838 
1839 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1840 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1841 {
1842 	return 0;
1843 }
1844 
1845 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1846 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1847 #endif
1848 
1849 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1850 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1851 
1852 /*
1853  * The following ifdef needed to get the 4level-fixup.h header to work.
1854  * Remove it when 4level-fixup.h has been removed.
1855  */
1856 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1857 
1858 #ifndef __ARCH_HAS_5LEVEL_HACK
1859 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1860 		unsigned long address)
1861 {
1862 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1863 		NULL : p4d_offset(pgd, address);
1864 }
1865 
1866 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1867 		unsigned long address)
1868 {
1869 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1870 		NULL : pud_offset(p4d, address);
1871 }
1872 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1873 
1874 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1875 {
1876 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1877 		NULL: pmd_offset(pud, address);
1878 }
1879 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1880 
1881 #if USE_SPLIT_PTE_PTLOCKS
1882 #if ALLOC_SPLIT_PTLOCKS
1883 void __init ptlock_cache_init(void);
1884 extern bool ptlock_alloc(struct page *page);
1885 extern void ptlock_free(struct page *page);
1886 
1887 static inline spinlock_t *ptlock_ptr(struct page *page)
1888 {
1889 	return page->ptl;
1890 }
1891 #else /* ALLOC_SPLIT_PTLOCKS */
1892 static inline void ptlock_cache_init(void)
1893 {
1894 }
1895 
1896 static inline bool ptlock_alloc(struct page *page)
1897 {
1898 	return true;
1899 }
1900 
1901 static inline void ptlock_free(struct page *page)
1902 {
1903 }
1904 
1905 static inline spinlock_t *ptlock_ptr(struct page *page)
1906 {
1907 	return &page->ptl;
1908 }
1909 #endif /* ALLOC_SPLIT_PTLOCKS */
1910 
1911 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1912 {
1913 	return ptlock_ptr(pmd_page(*pmd));
1914 }
1915 
1916 static inline bool ptlock_init(struct page *page)
1917 {
1918 	/*
1919 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1920 	 * with 0. Make sure nobody took it in use in between.
1921 	 *
1922 	 * It can happen if arch try to use slab for page table allocation:
1923 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1924 	 */
1925 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1926 	if (!ptlock_alloc(page))
1927 		return false;
1928 	spin_lock_init(ptlock_ptr(page));
1929 	return true;
1930 }
1931 
1932 /* Reset page->mapping so free_pages_check won't complain. */
1933 static inline void pte_lock_deinit(struct page *page)
1934 {
1935 	page->mapping = NULL;
1936 	ptlock_free(page);
1937 }
1938 
1939 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1940 /*
1941  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1942  */
1943 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1944 {
1945 	return &mm->page_table_lock;
1946 }
1947 static inline void ptlock_cache_init(void) {}
1948 static inline bool ptlock_init(struct page *page) { return true; }
1949 static inline void pte_lock_deinit(struct page *page) {}
1950 #endif /* USE_SPLIT_PTE_PTLOCKS */
1951 
1952 static inline void pgtable_init(void)
1953 {
1954 	ptlock_cache_init();
1955 	pgtable_cache_init();
1956 }
1957 
1958 static inline bool pgtable_page_ctor(struct page *page)
1959 {
1960 	if (!ptlock_init(page))
1961 		return false;
1962 	__SetPageTable(page);
1963 	inc_zone_page_state(page, NR_PAGETABLE);
1964 	return true;
1965 }
1966 
1967 static inline void pgtable_page_dtor(struct page *page)
1968 {
1969 	pte_lock_deinit(page);
1970 	__ClearPageTable(page);
1971 	dec_zone_page_state(page, NR_PAGETABLE);
1972 }
1973 
1974 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1975 ({							\
1976 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1977 	pte_t *__pte = pte_offset_map(pmd, address);	\
1978 	*(ptlp) = __ptl;				\
1979 	spin_lock(__ptl);				\
1980 	__pte;						\
1981 })
1982 
1983 #define pte_unmap_unlock(pte, ptl)	do {		\
1984 	spin_unlock(ptl);				\
1985 	pte_unmap(pte);					\
1986 } while (0)
1987 
1988 #define pte_alloc(mm, pmd, address)			\
1989 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1990 
1991 #define pte_alloc_map(mm, pmd, address)			\
1992 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1993 
1994 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1995 	(pte_alloc(mm, pmd, address) ?			\
1996 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1997 
1998 #define pte_alloc_kernel(pmd, address)			\
1999 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
2000 		NULL: pte_offset_kernel(pmd, address))
2001 
2002 #if USE_SPLIT_PMD_PTLOCKS
2003 
2004 static struct page *pmd_to_page(pmd_t *pmd)
2005 {
2006 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2007 	return virt_to_page((void *)((unsigned long) pmd & mask));
2008 }
2009 
2010 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2011 {
2012 	return ptlock_ptr(pmd_to_page(pmd));
2013 }
2014 
2015 static inline bool pgtable_pmd_page_ctor(struct page *page)
2016 {
2017 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2018 	page->pmd_huge_pte = NULL;
2019 #endif
2020 	return ptlock_init(page);
2021 }
2022 
2023 static inline void pgtable_pmd_page_dtor(struct page *page)
2024 {
2025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2026 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2027 #endif
2028 	ptlock_free(page);
2029 }
2030 
2031 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2032 
2033 #else
2034 
2035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2036 {
2037 	return &mm->page_table_lock;
2038 }
2039 
2040 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2041 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2042 
2043 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2044 
2045 #endif
2046 
2047 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2048 {
2049 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2050 	spin_lock(ptl);
2051 	return ptl;
2052 }
2053 
2054 /*
2055  * No scalability reason to split PUD locks yet, but follow the same pattern
2056  * as the PMD locks to make it easier if we decide to.  The VM should not be
2057  * considered ready to switch to split PUD locks yet; there may be places
2058  * which need to be converted from page_table_lock.
2059  */
2060 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2061 {
2062 	return &mm->page_table_lock;
2063 }
2064 
2065 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2066 {
2067 	spinlock_t *ptl = pud_lockptr(mm, pud);
2068 
2069 	spin_lock(ptl);
2070 	return ptl;
2071 }
2072 
2073 extern void __init pagecache_init(void);
2074 extern void free_area_init(unsigned long * zones_size);
2075 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2076 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2077 extern void free_initmem(void);
2078 
2079 /*
2080  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2081  * into the buddy system. The freed pages will be poisoned with pattern
2082  * "poison" if it's within range [0, UCHAR_MAX].
2083  * Return pages freed into the buddy system.
2084  */
2085 extern unsigned long free_reserved_area(void *start, void *end,
2086 					int poison, char *s);
2087 
2088 #ifdef	CONFIG_HIGHMEM
2089 /*
2090  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2091  * and totalram_pages.
2092  */
2093 extern void free_highmem_page(struct page *page);
2094 #endif
2095 
2096 extern void adjust_managed_page_count(struct page *page, long count);
2097 extern void mem_init_print_info(const char *str);
2098 
2099 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2100 
2101 /* Free the reserved page into the buddy system, so it gets managed. */
2102 static inline void __free_reserved_page(struct page *page)
2103 {
2104 	ClearPageReserved(page);
2105 	init_page_count(page);
2106 	__free_page(page);
2107 }
2108 
2109 static inline void free_reserved_page(struct page *page)
2110 {
2111 	__free_reserved_page(page);
2112 	adjust_managed_page_count(page, 1);
2113 }
2114 
2115 static inline void mark_page_reserved(struct page *page)
2116 {
2117 	SetPageReserved(page);
2118 	adjust_managed_page_count(page, -1);
2119 }
2120 
2121 /*
2122  * Default method to free all the __init memory into the buddy system.
2123  * The freed pages will be poisoned with pattern "poison" if it's within
2124  * range [0, UCHAR_MAX].
2125  * Return pages freed into the buddy system.
2126  */
2127 static inline unsigned long free_initmem_default(int poison)
2128 {
2129 	extern char __init_begin[], __init_end[];
2130 
2131 	return free_reserved_area(&__init_begin, &__init_end,
2132 				  poison, "unused kernel");
2133 }
2134 
2135 static inline unsigned long get_num_physpages(void)
2136 {
2137 	int nid;
2138 	unsigned long phys_pages = 0;
2139 
2140 	for_each_online_node(nid)
2141 		phys_pages += node_present_pages(nid);
2142 
2143 	return phys_pages;
2144 }
2145 
2146 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2147 /*
2148  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2149  * zones, allocate the backing mem_map and account for memory holes in a more
2150  * architecture independent manner. This is a substitute for creating the
2151  * zone_sizes[] and zholes_size[] arrays and passing them to
2152  * free_area_init_node()
2153  *
2154  * An architecture is expected to register range of page frames backed by
2155  * physical memory with memblock_add[_node]() before calling
2156  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2157  * usage, an architecture is expected to do something like
2158  *
2159  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2160  * 							 max_highmem_pfn};
2161  * for_each_valid_physical_page_range()
2162  * 	memblock_add_node(base, size, nid)
2163  * free_area_init_nodes(max_zone_pfns);
2164  *
2165  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2166  * registered physical page range.  Similarly
2167  * sparse_memory_present_with_active_regions() calls memory_present() for
2168  * each range when SPARSEMEM is enabled.
2169  *
2170  * See mm/page_alloc.c for more information on each function exposed by
2171  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2172  */
2173 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2174 unsigned long node_map_pfn_alignment(void);
2175 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2176 						unsigned long end_pfn);
2177 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2178 						unsigned long end_pfn);
2179 extern void get_pfn_range_for_nid(unsigned int nid,
2180 			unsigned long *start_pfn, unsigned long *end_pfn);
2181 extern unsigned long find_min_pfn_with_active_regions(void);
2182 extern void free_bootmem_with_active_regions(int nid,
2183 						unsigned long max_low_pfn);
2184 extern void sparse_memory_present_with_active_regions(int nid);
2185 
2186 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2187 
2188 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2189     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2190 static inline int __early_pfn_to_nid(unsigned long pfn,
2191 					struct mminit_pfnnid_cache *state)
2192 {
2193 	return 0;
2194 }
2195 #else
2196 /* please see mm/page_alloc.c */
2197 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2198 /* there is a per-arch backend function. */
2199 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2200 					struct mminit_pfnnid_cache *state);
2201 #endif
2202 
2203 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2204 void zero_resv_unavail(void);
2205 #else
2206 static inline void zero_resv_unavail(void) {}
2207 #endif
2208 
2209 extern void set_dma_reserve(unsigned long new_dma_reserve);
2210 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2211 		enum memmap_context, struct vmem_altmap *);
2212 extern void setup_per_zone_wmarks(void);
2213 extern int __meminit init_per_zone_wmark_min(void);
2214 extern void mem_init(void);
2215 extern void __init mmap_init(void);
2216 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2217 extern long si_mem_available(void);
2218 extern void si_meminfo(struct sysinfo * val);
2219 extern void si_meminfo_node(struct sysinfo *val, int nid);
2220 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2221 extern unsigned long arch_reserved_kernel_pages(void);
2222 #endif
2223 
2224 extern __printf(3, 4)
2225 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2226 
2227 extern void setup_per_cpu_pageset(void);
2228 
2229 extern void zone_pcp_update(struct zone *zone);
2230 extern void zone_pcp_reset(struct zone *zone);
2231 
2232 /* page_alloc.c */
2233 extern int min_free_kbytes;
2234 extern int watermark_scale_factor;
2235 
2236 /* nommu.c */
2237 extern atomic_long_t mmap_pages_allocated;
2238 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2239 
2240 /* interval_tree.c */
2241 void vma_interval_tree_insert(struct vm_area_struct *node,
2242 			      struct rb_root_cached *root);
2243 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2244 				    struct vm_area_struct *prev,
2245 				    struct rb_root_cached *root);
2246 void vma_interval_tree_remove(struct vm_area_struct *node,
2247 			      struct rb_root_cached *root);
2248 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2249 				unsigned long start, unsigned long last);
2250 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2251 				unsigned long start, unsigned long last);
2252 
2253 #define vma_interval_tree_foreach(vma, root, start, last)		\
2254 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2255 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2256 
2257 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2258 				   struct rb_root_cached *root);
2259 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2260 				   struct rb_root_cached *root);
2261 struct anon_vma_chain *
2262 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2263 				  unsigned long start, unsigned long last);
2264 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2265 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2266 #ifdef CONFIG_DEBUG_VM_RB
2267 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2268 #endif
2269 
2270 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2271 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2272 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2273 
2274 /* mmap.c */
2275 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2276 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2277 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2278 	struct vm_area_struct *expand);
2279 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2280 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2281 {
2282 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2283 }
2284 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2285 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2286 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2287 	struct mempolicy *, struct vm_userfaultfd_ctx);
2288 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2289 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2290 	unsigned long addr, int new_below);
2291 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2292 	unsigned long addr, int new_below);
2293 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2294 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2295 	struct rb_node **, struct rb_node *);
2296 extern void unlink_file_vma(struct vm_area_struct *);
2297 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2298 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2299 	bool *need_rmap_locks);
2300 extern void exit_mmap(struct mm_struct *);
2301 
2302 static inline int check_data_rlimit(unsigned long rlim,
2303 				    unsigned long new,
2304 				    unsigned long start,
2305 				    unsigned long end_data,
2306 				    unsigned long start_data)
2307 {
2308 	if (rlim < RLIM_INFINITY) {
2309 		if (((new - start) + (end_data - start_data)) > rlim)
2310 			return -ENOSPC;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 extern int mm_take_all_locks(struct mm_struct *mm);
2317 extern void mm_drop_all_locks(struct mm_struct *mm);
2318 
2319 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2320 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2321 extern struct file *get_task_exe_file(struct task_struct *task);
2322 
2323 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2324 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2325 
2326 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2327 				   const struct vm_special_mapping *sm);
2328 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2329 				   unsigned long addr, unsigned long len,
2330 				   unsigned long flags,
2331 				   const struct vm_special_mapping *spec);
2332 /* This is an obsolete alternative to _install_special_mapping. */
2333 extern int install_special_mapping(struct mm_struct *mm,
2334 				   unsigned long addr, unsigned long len,
2335 				   unsigned long flags, struct page **pages);
2336 
2337 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2338 
2339 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2340 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2341 	struct list_head *uf);
2342 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2343 	unsigned long len, unsigned long prot, unsigned long flags,
2344 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2345 	struct list_head *uf);
2346 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2347 		       struct list_head *uf, bool downgrade);
2348 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2349 		     struct list_head *uf);
2350 
2351 static inline unsigned long
2352 do_mmap_pgoff(struct file *file, unsigned long addr,
2353 	unsigned long len, unsigned long prot, unsigned long flags,
2354 	unsigned long pgoff, unsigned long *populate,
2355 	struct list_head *uf)
2356 {
2357 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2358 }
2359 
2360 #ifdef CONFIG_MMU
2361 extern int __mm_populate(unsigned long addr, unsigned long len,
2362 			 int ignore_errors);
2363 static inline void mm_populate(unsigned long addr, unsigned long len)
2364 {
2365 	/* Ignore errors */
2366 	(void) __mm_populate(addr, len, 1);
2367 }
2368 #else
2369 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2370 #endif
2371 
2372 /* These take the mm semaphore themselves */
2373 extern int __must_check vm_brk(unsigned long, unsigned long);
2374 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2375 extern int vm_munmap(unsigned long, size_t);
2376 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2377         unsigned long, unsigned long,
2378         unsigned long, unsigned long);
2379 
2380 struct vm_unmapped_area_info {
2381 #define VM_UNMAPPED_AREA_TOPDOWN 1
2382 	unsigned long flags;
2383 	unsigned long length;
2384 	unsigned long low_limit;
2385 	unsigned long high_limit;
2386 	unsigned long align_mask;
2387 	unsigned long align_offset;
2388 };
2389 
2390 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2391 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2392 
2393 /*
2394  * Search for an unmapped address range.
2395  *
2396  * We are looking for a range that:
2397  * - does not intersect with any VMA;
2398  * - is contained within the [low_limit, high_limit) interval;
2399  * - is at least the desired size.
2400  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2401  */
2402 static inline unsigned long
2403 vm_unmapped_area(struct vm_unmapped_area_info *info)
2404 {
2405 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2406 		return unmapped_area_topdown(info);
2407 	else
2408 		return unmapped_area(info);
2409 }
2410 
2411 /* truncate.c */
2412 extern void truncate_inode_pages(struct address_space *, loff_t);
2413 extern void truncate_inode_pages_range(struct address_space *,
2414 				       loff_t lstart, loff_t lend);
2415 extern void truncate_inode_pages_final(struct address_space *);
2416 
2417 /* generic vm_area_ops exported for stackable file systems */
2418 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2419 extern void filemap_map_pages(struct vm_fault *vmf,
2420 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2421 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2422 
2423 /* mm/page-writeback.c */
2424 int __must_check write_one_page(struct page *page);
2425 void task_dirty_inc(struct task_struct *tsk);
2426 
2427 /* readahead.c */
2428 #define VM_MAX_READAHEAD	128	/* kbytes */
2429 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2430 
2431 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2432 			pgoff_t offset, unsigned long nr_to_read);
2433 
2434 void page_cache_sync_readahead(struct address_space *mapping,
2435 			       struct file_ra_state *ra,
2436 			       struct file *filp,
2437 			       pgoff_t offset,
2438 			       unsigned long size);
2439 
2440 void page_cache_async_readahead(struct address_space *mapping,
2441 				struct file_ra_state *ra,
2442 				struct file *filp,
2443 				struct page *pg,
2444 				pgoff_t offset,
2445 				unsigned long size);
2446 
2447 extern unsigned long stack_guard_gap;
2448 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2449 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2450 
2451 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2452 extern int expand_downwards(struct vm_area_struct *vma,
2453 		unsigned long address);
2454 #if VM_GROWSUP
2455 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2456 #else
2457   #define expand_upwards(vma, address) (0)
2458 #endif
2459 
2460 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2461 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2462 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2463 					     struct vm_area_struct **pprev);
2464 
2465 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2466    NULL if none.  Assume start_addr < end_addr. */
2467 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2468 {
2469 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2470 
2471 	if (vma && end_addr <= vma->vm_start)
2472 		vma = NULL;
2473 	return vma;
2474 }
2475 
2476 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2477 {
2478 	unsigned long vm_start = vma->vm_start;
2479 
2480 	if (vma->vm_flags & VM_GROWSDOWN) {
2481 		vm_start -= stack_guard_gap;
2482 		if (vm_start > vma->vm_start)
2483 			vm_start = 0;
2484 	}
2485 	return vm_start;
2486 }
2487 
2488 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2489 {
2490 	unsigned long vm_end = vma->vm_end;
2491 
2492 	if (vma->vm_flags & VM_GROWSUP) {
2493 		vm_end += stack_guard_gap;
2494 		if (vm_end < vma->vm_end)
2495 			vm_end = -PAGE_SIZE;
2496 	}
2497 	return vm_end;
2498 }
2499 
2500 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2501 {
2502 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2503 }
2504 
2505 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2506 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2507 				unsigned long vm_start, unsigned long vm_end)
2508 {
2509 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2510 
2511 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2512 		vma = NULL;
2513 
2514 	return vma;
2515 }
2516 
2517 static inline bool range_in_vma(struct vm_area_struct *vma,
2518 				unsigned long start, unsigned long end)
2519 {
2520 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2521 }
2522 
2523 #ifdef CONFIG_MMU
2524 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2525 void vma_set_page_prot(struct vm_area_struct *vma);
2526 #else
2527 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2528 {
2529 	return __pgprot(0);
2530 }
2531 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2532 {
2533 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2534 }
2535 #endif
2536 
2537 #ifdef CONFIG_NUMA_BALANCING
2538 unsigned long change_prot_numa(struct vm_area_struct *vma,
2539 			unsigned long start, unsigned long end);
2540 #endif
2541 
2542 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2543 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2544 			unsigned long pfn, unsigned long size, pgprot_t);
2545 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2546 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2547 			unsigned long pfn);
2548 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2549 			unsigned long pfn, pgprot_t pgprot);
2550 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2551 			pfn_t pfn);
2552 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2553 		unsigned long addr, pfn_t pfn);
2554 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2555 
2556 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2557 				unsigned long addr, struct page *page)
2558 {
2559 	int err = vm_insert_page(vma, addr, page);
2560 
2561 	if (err == -ENOMEM)
2562 		return VM_FAULT_OOM;
2563 	if (err < 0 && err != -EBUSY)
2564 		return VM_FAULT_SIGBUS;
2565 
2566 	return VM_FAULT_NOPAGE;
2567 }
2568 
2569 static inline vm_fault_t vmf_error(int err)
2570 {
2571 	if (err == -ENOMEM)
2572 		return VM_FAULT_OOM;
2573 	return VM_FAULT_SIGBUS;
2574 }
2575 
2576 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2577 			 unsigned int foll_flags);
2578 
2579 #define FOLL_WRITE	0x01	/* check pte is writable */
2580 #define FOLL_TOUCH	0x02	/* mark page accessed */
2581 #define FOLL_GET	0x04	/* do get_page on page */
2582 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2583 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2584 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2585 				 * and return without waiting upon it */
2586 #define FOLL_POPULATE	0x40	/* fault in page */
2587 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2588 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2589 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2590 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2591 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2592 #define FOLL_MLOCK	0x1000	/* lock present pages */
2593 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2594 #define FOLL_COW	0x4000	/* internal GUP flag */
2595 #define FOLL_ANON	0x8000	/* don't do file mappings */
2596 
2597 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2598 {
2599 	if (vm_fault & VM_FAULT_OOM)
2600 		return -ENOMEM;
2601 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2602 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2603 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2604 		return -EFAULT;
2605 	return 0;
2606 }
2607 
2608 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2609 			void *data);
2610 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2611 			       unsigned long size, pte_fn_t fn, void *data);
2612 
2613 
2614 #ifdef CONFIG_PAGE_POISONING
2615 extern bool page_poisoning_enabled(void);
2616 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2617 #else
2618 static inline bool page_poisoning_enabled(void) { return false; }
2619 static inline void kernel_poison_pages(struct page *page, int numpages,
2620 					int enable) { }
2621 #endif
2622 
2623 #ifdef CONFIG_DEBUG_PAGEALLOC
2624 extern bool _debug_pagealloc_enabled;
2625 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2626 
2627 static inline bool debug_pagealloc_enabled(void)
2628 {
2629 	return _debug_pagealloc_enabled;
2630 }
2631 
2632 static inline void
2633 kernel_map_pages(struct page *page, int numpages, int enable)
2634 {
2635 	if (!debug_pagealloc_enabled())
2636 		return;
2637 
2638 	__kernel_map_pages(page, numpages, enable);
2639 }
2640 #ifdef CONFIG_HIBERNATION
2641 extern bool kernel_page_present(struct page *page);
2642 #endif	/* CONFIG_HIBERNATION */
2643 #else	/* CONFIG_DEBUG_PAGEALLOC */
2644 static inline void
2645 kernel_map_pages(struct page *page, int numpages, int enable) {}
2646 #ifdef CONFIG_HIBERNATION
2647 static inline bool kernel_page_present(struct page *page) { return true; }
2648 #endif	/* CONFIG_HIBERNATION */
2649 static inline bool debug_pagealloc_enabled(void)
2650 {
2651 	return false;
2652 }
2653 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2654 
2655 #ifdef __HAVE_ARCH_GATE_AREA
2656 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2657 extern int in_gate_area_no_mm(unsigned long addr);
2658 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2659 #else
2660 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2661 {
2662 	return NULL;
2663 }
2664 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2665 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2666 {
2667 	return 0;
2668 }
2669 #endif	/* __HAVE_ARCH_GATE_AREA */
2670 
2671 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2672 
2673 #ifdef CONFIG_SYSCTL
2674 extern int sysctl_drop_caches;
2675 int drop_caches_sysctl_handler(struct ctl_table *, int,
2676 					void __user *, size_t *, loff_t *);
2677 #endif
2678 
2679 void drop_slab(void);
2680 void drop_slab_node(int nid);
2681 
2682 #ifndef CONFIG_MMU
2683 #define randomize_va_space 0
2684 #else
2685 extern int randomize_va_space;
2686 #endif
2687 
2688 const char * arch_vma_name(struct vm_area_struct *vma);
2689 void print_vma_addr(char *prefix, unsigned long rip);
2690 
2691 void *sparse_buffer_alloc(unsigned long size);
2692 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2693 		struct vmem_altmap *altmap);
2694 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2695 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2696 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2697 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2698 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2699 void *vmemmap_alloc_block(unsigned long size, int node);
2700 struct vmem_altmap;
2701 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2702 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2703 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2704 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2705 			       int node);
2706 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2707 		struct vmem_altmap *altmap);
2708 void vmemmap_populate_print_last(void);
2709 #ifdef CONFIG_MEMORY_HOTPLUG
2710 void vmemmap_free(unsigned long start, unsigned long end,
2711 		struct vmem_altmap *altmap);
2712 #endif
2713 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2714 				  unsigned long nr_pages);
2715 
2716 enum mf_flags {
2717 	MF_COUNT_INCREASED = 1 << 0,
2718 	MF_ACTION_REQUIRED = 1 << 1,
2719 	MF_MUST_KILL = 1 << 2,
2720 	MF_SOFT_OFFLINE = 1 << 3,
2721 };
2722 extern int memory_failure(unsigned long pfn, int flags);
2723 extern void memory_failure_queue(unsigned long pfn, int flags);
2724 extern int unpoison_memory(unsigned long pfn);
2725 extern int get_hwpoison_page(struct page *page);
2726 #define put_hwpoison_page(page)	put_page(page)
2727 extern int sysctl_memory_failure_early_kill;
2728 extern int sysctl_memory_failure_recovery;
2729 extern void shake_page(struct page *p, int access);
2730 extern atomic_long_t num_poisoned_pages __read_mostly;
2731 extern int soft_offline_page(struct page *page, int flags);
2732 
2733 
2734 /*
2735  * Error handlers for various types of pages.
2736  */
2737 enum mf_result {
2738 	MF_IGNORED,	/* Error: cannot be handled */
2739 	MF_FAILED,	/* Error: handling failed */
2740 	MF_DELAYED,	/* Will be handled later */
2741 	MF_RECOVERED,	/* Successfully recovered */
2742 };
2743 
2744 enum mf_action_page_type {
2745 	MF_MSG_KERNEL,
2746 	MF_MSG_KERNEL_HIGH_ORDER,
2747 	MF_MSG_SLAB,
2748 	MF_MSG_DIFFERENT_COMPOUND,
2749 	MF_MSG_POISONED_HUGE,
2750 	MF_MSG_HUGE,
2751 	MF_MSG_FREE_HUGE,
2752 	MF_MSG_NON_PMD_HUGE,
2753 	MF_MSG_UNMAP_FAILED,
2754 	MF_MSG_DIRTY_SWAPCACHE,
2755 	MF_MSG_CLEAN_SWAPCACHE,
2756 	MF_MSG_DIRTY_MLOCKED_LRU,
2757 	MF_MSG_CLEAN_MLOCKED_LRU,
2758 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2759 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2760 	MF_MSG_DIRTY_LRU,
2761 	MF_MSG_CLEAN_LRU,
2762 	MF_MSG_TRUNCATED_LRU,
2763 	MF_MSG_BUDDY,
2764 	MF_MSG_BUDDY_2ND,
2765 	MF_MSG_DAX,
2766 	MF_MSG_UNKNOWN,
2767 };
2768 
2769 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2770 extern void clear_huge_page(struct page *page,
2771 			    unsigned long addr_hint,
2772 			    unsigned int pages_per_huge_page);
2773 extern void copy_user_huge_page(struct page *dst, struct page *src,
2774 				unsigned long addr_hint,
2775 				struct vm_area_struct *vma,
2776 				unsigned int pages_per_huge_page);
2777 extern long copy_huge_page_from_user(struct page *dst_page,
2778 				const void __user *usr_src,
2779 				unsigned int pages_per_huge_page,
2780 				bool allow_pagefault);
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2782 
2783 extern struct page_ext_operations debug_guardpage_ops;
2784 
2785 #ifdef CONFIG_DEBUG_PAGEALLOC
2786 extern unsigned int _debug_guardpage_minorder;
2787 extern bool _debug_guardpage_enabled;
2788 
2789 static inline unsigned int debug_guardpage_minorder(void)
2790 {
2791 	return _debug_guardpage_minorder;
2792 }
2793 
2794 static inline bool debug_guardpage_enabled(void)
2795 {
2796 	return _debug_guardpage_enabled;
2797 }
2798 
2799 static inline bool page_is_guard(struct page *page)
2800 {
2801 	struct page_ext *page_ext;
2802 
2803 	if (!debug_guardpage_enabled())
2804 		return false;
2805 
2806 	page_ext = lookup_page_ext(page);
2807 	if (unlikely(!page_ext))
2808 		return false;
2809 
2810 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2811 }
2812 #else
2813 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2814 static inline bool debug_guardpage_enabled(void) { return false; }
2815 static inline bool page_is_guard(struct page *page) { return false; }
2816 #endif /* CONFIG_DEBUG_PAGEALLOC */
2817 
2818 #if MAX_NUMNODES > 1
2819 void __init setup_nr_node_ids(void);
2820 #else
2821 static inline void setup_nr_node_ids(void) {}
2822 #endif
2823 
2824 #endif /* __KERNEL__ */
2825 #endif /* _LINUX_MM_H */
2826