xref: /linux-6.15/include/linux/mm.h (revision 443a6312)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32 
33 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35 
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 	max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43 
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47 
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53 
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 
58 #ifndef __pa_symbol
59 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
60 #endif
61 
62 /*
63  * To prevent common memory management code establishing
64  * a zero page mapping on a read fault.
65  * This macro should be defined within <asm/pgtable.h>.
66  * s390 does this to prevent multiplexing of hardware bits
67  * related to the physical page in case of virtualization.
68  */
69 #ifndef mm_forbids_zeropage
70 #define mm_forbids_zeropage(X)	(0)
71 #endif
72 
73 extern unsigned long sysctl_user_reserve_kbytes;
74 extern unsigned long sysctl_admin_reserve_kbytes;
75 
76 extern int sysctl_overcommit_memory;
77 extern int sysctl_overcommit_ratio;
78 extern unsigned long sysctl_overcommit_kbytes;
79 
80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 				    size_t *, loff_t *);
82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 				    size_t *, loff_t *);
84 
85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86 
87 /* to align the pointer to the (next) page boundary */
88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89 
90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92 
93 /*
94  * Linux kernel virtual memory manager primitives.
95  * The idea being to have a "virtual" mm in the same way
96  * we have a virtual fs - giving a cleaner interface to the
97  * mm details, and allowing different kinds of memory mappings
98  * (from shared memory to executable loading to arbitrary
99  * mmap() functions).
100  */
101 
102 extern struct kmem_cache *vm_area_cachep;
103 
104 #ifndef CONFIG_MMU
105 extern struct rb_root nommu_region_tree;
106 extern struct rw_semaphore nommu_region_sem;
107 
108 extern unsigned int kobjsize(const void *objp);
109 #endif
110 
111 /*
112  * vm_flags in vm_area_struct, see mm_types.h.
113  */
114 #define VM_NONE		0x00000000
115 
116 #define VM_READ		0x00000001	/* currently active flags */
117 #define VM_WRITE	0x00000002
118 #define VM_EXEC		0x00000004
119 #define VM_SHARED	0x00000008
120 
121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
122 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
123 #define VM_MAYWRITE	0x00000020
124 #define VM_MAYEXEC	0x00000040
125 #define VM_MAYSHARE	0x00000080
126 
127 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
128 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
129 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
130 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
131 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
132 
133 #define VM_LOCKED	0x00002000
134 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
135 
136 					/* Used by sys_madvise() */
137 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
138 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
139 
140 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
141 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
142 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
143 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
144 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
145 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
146 #define VM_ARCH_2	0x02000000
147 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
148 
149 #ifdef CONFIG_MEM_SOFT_DIRTY
150 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
151 #else
152 # define VM_SOFTDIRTY	0
153 #endif
154 
155 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
156 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
157 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
158 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
159 
160 #if defined(CONFIG_X86)
161 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
162 #elif defined(CONFIG_PPC)
163 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
164 #elif defined(CONFIG_PARISC)
165 # define VM_GROWSUP	VM_ARCH_1
166 #elif defined(CONFIG_METAG)
167 # define VM_GROWSUP	VM_ARCH_1
168 #elif defined(CONFIG_IA64)
169 # define VM_GROWSUP	VM_ARCH_1
170 #elif !defined(CONFIG_MMU)
171 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
172 #endif
173 
174 #if defined(CONFIG_X86)
175 /* MPX specific bounds table or bounds directory */
176 # define VM_MPX		VM_ARCH_2
177 #endif
178 
179 #ifndef VM_GROWSUP
180 # define VM_GROWSUP	VM_NONE
181 #endif
182 
183 /* Bits set in the VMA until the stack is in its final location */
184 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
185 
186 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
187 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
188 #endif
189 
190 #ifdef CONFIG_STACK_GROWSUP
191 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
192 #else
193 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
194 #endif
195 
196 /*
197  * Special vmas that are non-mergable, non-mlock()able.
198  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
199  */
200 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
201 
202 /* This mask defines which mm->def_flags a process can inherit its parent */
203 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
204 
205 /*
206  * mapping from the currently active vm_flags protection bits (the
207  * low four bits) to a page protection mask..
208  */
209 extern pgprot_t protection_map[16];
210 
211 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
212 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
213 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
214 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
215 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
216 #define FAULT_FLAG_TRIED	0x20	/* Second try */
217 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
218 
219 /*
220  * vm_fault is filled by the the pagefault handler and passed to the vma's
221  * ->fault function. The vma's ->fault is responsible for returning a bitmask
222  * of VM_FAULT_xxx flags that give details about how the fault was handled.
223  *
224  * pgoff should be used in favour of virtual_address, if possible.
225  */
226 struct vm_fault {
227 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
228 	pgoff_t pgoff;			/* Logical page offset based on vma */
229 	void __user *virtual_address;	/* Faulting virtual address */
230 
231 	struct page *cow_page;		/* Handler may choose to COW */
232 	struct page *page;		/* ->fault handlers should return a
233 					 * page here, unless VM_FAULT_NOPAGE
234 					 * is set (which is also implied by
235 					 * VM_FAULT_ERROR).
236 					 */
237 	/* for ->map_pages() only */
238 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
239 					 * max_pgoff inclusive */
240 	pte_t *pte;			/* pte entry associated with ->pgoff */
241 };
242 
243 /*
244  * These are the virtual MM functions - opening of an area, closing and
245  * unmapping it (needed to keep files on disk up-to-date etc), pointer
246  * to the functions called when a no-page or a wp-page exception occurs.
247  */
248 struct vm_operations_struct {
249 	void (*open)(struct vm_area_struct * area);
250 	void (*close)(struct vm_area_struct * area);
251 	int (*mremap)(struct vm_area_struct * area);
252 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
253 	int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
254 						pmd_t *, unsigned int flags);
255 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
256 
257 	/* notification that a previously read-only page is about to become
258 	 * writable, if an error is returned it will cause a SIGBUS */
259 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
260 
261 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
262 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
263 
264 	/* called by access_process_vm when get_user_pages() fails, typically
265 	 * for use by special VMAs that can switch between memory and hardware
266 	 */
267 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
268 		      void *buf, int len, int write);
269 
270 	/* Called by the /proc/PID/maps code to ask the vma whether it
271 	 * has a special name.  Returning non-NULL will also cause this
272 	 * vma to be dumped unconditionally. */
273 	const char *(*name)(struct vm_area_struct *vma);
274 
275 #ifdef CONFIG_NUMA
276 	/*
277 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
278 	 * to hold the policy upon return.  Caller should pass NULL @new to
279 	 * remove a policy and fall back to surrounding context--i.e. do not
280 	 * install a MPOL_DEFAULT policy, nor the task or system default
281 	 * mempolicy.
282 	 */
283 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
284 
285 	/*
286 	 * get_policy() op must add reference [mpol_get()] to any policy at
287 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
288 	 * in mm/mempolicy.c will do this automatically.
289 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
290 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
291 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
292 	 * must return NULL--i.e., do not "fallback" to task or system default
293 	 * policy.
294 	 */
295 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
296 					unsigned long addr);
297 #endif
298 	/*
299 	 * Called by vm_normal_page() for special PTEs to find the
300 	 * page for @addr.  This is useful if the default behavior
301 	 * (using pte_page()) would not find the correct page.
302 	 */
303 	struct page *(*find_special_page)(struct vm_area_struct *vma,
304 					  unsigned long addr);
305 };
306 
307 struct mmu_gather;
308 struct inode;
309 
310 #define page_private(page)		((page)->private)
311 #define set_page_private(page, v)	((page)->private = (v))
312 
313 /*
314  * FIXME: take this include out, include page-flags.h in
315  * files which need it (119 of them)
316  */
317 #include <linux/page-flags.h>
318 #include <linux/huge_mm.h>
319 
320 /*
321  * Methods to modify the page usage count.
322  *
323  * What counts for a page usage:
324  * - cache mapping   (page->mapping)
325  * - private data    (page->private)
326  * - page mapped in a task's page tables, each mapping
327  *   is counted separately
328  *
329  * Also, many kernel routines increase the page count before a critical
330  * routine so they can be sure the page doesn't go away from under them.
331  */
332 
333 /*
334  * Drop a ref, return true if the refcount fell to zero (the page has no users)
335  */
336 static inline int put_page_testzero(struct page *page)
337 {
338 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
339 	return atomic_dec_and_test(&page->_count);
340 }
341 
342 /*
343  * Try to grab a ref unless the page has a refcount of zero, return false if
344  * that is the case.
345  * This can be called when MMU is off so it must not access
346  * any of the virtual mappings.
347  */
348 static inline int get_page_unless_zero(struct page *page)
349 {
350 	return atomic_inc_not_zero(&page->_count);
351 }
352 
353 extern int page_is_ram(unsigned long pfn);
354 
355 enum {
356 	REGION_INTERSECTS,
357 	REGION_DISJOINT,
358 	REGION_MIXED,
359 };
360 
361 int region_intersects(resource_size_t offset, size_t size, const char *type);
362 
363 /* Support for virtually mapped pages */
364 struct page *vmalloc_to_page(const void *addr);
365 unsigned long vmalloc_to_pfn(const void *addr);
366 
367 /*
368  * Determine if an address is within the vmalloc range
369  *
370  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
371  * is no special casing required.
372  */
373 static inline int is_vmalloc_addr(const void *x)
374 {
375 #ifdef CONFIG_MMU
376 	unsigned long addr = (unsigned long)x;
377 
378 	return addr >= VMALLOC_START && addr < VMALLOC_END;
379 #else
380 	return 0;
381 #endif
382 }
383 #ifdef CONFIG_MMU
384 extern int is_vmalloc_or_module_addr(const void *x);
385 #else
386 static inline int is_vmalloc_or_module_addr(const void *x)
387 {
388 	return 0;
389 }
390 #endif
391 
392 extern void kvfree(const void *addr);
393 
394 static inline void compound_lock(struct page *page)
395 {
396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
397 	VM_BUG_ON_PAGE(PageSlab(page), page);
398 	bit_spin_lock(PG_compound_lock, &page->flags);
399 #endif
400 }
401 
402 static inline void compound_unlock(struct page *page)
403 {
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 	VM_BUG_ON_PAGE(PageSlab(page), page);
406 	bit_spin_unlock(PG_compound_lock, &page->flags);
407 #endif
408 }
409 
410 static inline unsigned long compound_lock_irqsave(struct page *page)
411 {
412 	unsigned long uninitialized_var(flags);
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 	local_irq_save(flags);
415 	compound_lock(page);
416 #endif
417 	return flags;
418 }
419 
420 static inline void compound_unlock_irqrestore(struct page *page,
421 					      unsigned long flags)
422 {
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 	compound_unlock(page);
425 	local_irq_restore(flags);
426 #endif
427 }
428 
429 static inline struct page *compound_head_by_tail(struct page *tail)
430 {
431 	struct page *head = tail->first_page;
432 
433 	/*
434 	 * page->first_page may be a dangling pointer to an old
435 	 * compound page, so recheck that it is still a tail
436 	 * page before returning.
437 	 */
438 	smp_rmb();
439 	if (likely(PageTail(tail)))
440 		return head;
441 	return tail;
442 }
443 
444 /*
445  * Since either compound page could be dismantled asynchronously in THP
446  * or we access asynchronously arbitrary positioned struct page, there
447  * would be tail flag race. To handle this race, we should call
448  * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
449  */
450 static inline struct page *compound_head(struct page *page)
451 {
452 	if (unlikely(PageTail(page)))
453 		return compound_head_by_tail(page);
454 	return page;
455 }
456 
457 /*
458  * If we access compound page synchronously such as access to
459  * allocated page, there is no need to handle tail flag race, so we can
460  * check tail flag directly without any synchronization primitive.
461  */
462 static inline struct page *compound_head_fast(struct page *page)
463 {
464 	if (unlikely(PageTail(page)))
465 		return page->first_page;
466 	return page;
467 }
468 
469 /*
470  * The atomic page->_mapcount, starts from -1: so that transitions
471  * both from it and to it can be tracked, using atomic_inc_and_test
472  * and atomic_add_negative(-1).
473  */
474 static inline void page_mapcount_reset(struct page *page)
475 {
476 	atomic_set(&(page)->_mapcount, -1);
477 }
478 
479 static inline int page_mapcount(struct page *page)
480 {
481 	VM_BUG_ON_PAGE(PageSlab(page), page);
482 	return atomic_read(&page->_mapcount) + 1;
483 }
484 
485 static inline int page_count(struct page *page)
486 {
487 	return atomic_read(&compound_head(page)->_count);
488 }
489 
490 static inline bool __compound_tail_refcounted(struct page *page)
491 {
492 	return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
493 }
494 
495 /*
496  * This takes a head page as parameter and tells if the
497  * tail page reference counting can be skipped.
498  *
499  * For this to be safe, PageSlab and PageHeadHuge must remain true on
500  * any given page where they return true here, until all tail pins
501  * have been released.
502  */
503 static inline bool compound_tail_refcounted(struct page *page)
504 {
505 	VM_BUG_ON_PAGE(!PageHead(page), page);
506 	return __compound_tail_refcounted(page);
507 }
508 
509 static inline void get_huge_page_tail(struct page *page)
510 {
511 	/*
512 	 * __split_huge_page_refcount() cannot run from under us.
513 	 */
514 	VM_BUG_ON_PAGE(!PageTail(page), page);
515 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
516 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
517 	if (compound_tail_refcounted(page->first_page))
518 		atomic_inc(&page->_mapcount);
519 }
520 
521 extern bool __get_page_tail(struct page *page);
522 
523 static inline void get_page(struct page *page)
524 {
525 	if (unlikely(PageTail(page)))
526 		if (likely(__get_page_tail(page)))
527 			return;
528 	/*
529 	 * Getting a normal page or the head of a compound page
530 	 * requires to already have an elevated page->_count.
531 	 */
532 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
533 	atomic_inc(&page->_count);
534 }
535 
536 static inline struct page *virt_to_head_page(const void *x)
537 {
538 	struct page *page = virt_to_page(x);
539 
540 	/*
541 	 * We don't need to worry about synchronization of tail flag
542 	 * when we call virt_to_head_page() since it is only called for
543 	 * already allocated page and this page won't be freed until
544 	 * this virt_to_head_page() is finished. So use _fast variant.
545 	 */
546 	return compound_head_fast(page);
547 }
548 
549 /*
550  * Setup the page count before being freed into the page allocator for
551  * the first time (boot or memory hotplug)
552  */
553 static inline void init_page_count(struct page *page)
554 {
555 	atomic_set(&page->_count, 1);
556 }
557 
558 void put_page(struct page *page);
559 void put_pages_list(struct list_head *pages);
560 
561 void split_page(struct page *page, unsigned int order);
562 int split_free_page(struct page *page);
563 
564 /*
565  * Compound pages have a destructor function.  Provide a
566  * prototype for that function and accessor functions.
567  * These are _only_ valid on the head of a PG_compound page.
568  */
569 
570 static inline void set_compound_page_dtor(struct page *page,
571 						compound_page_dtor *dtor)
572 {
573 	page[1].compound_dtor = dtor;
574 }
575 
576 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
577 {
578 	return page[1].compound_dtor;
579 }
580 
581 static inline int compound_order(struct page *page)
582 {
583 	if (!PageHead(page))
584 		return 0;
585 	return page[1].compound_order;
586 }
587 
588 static inline void set_compound_order(struct page *page, unsigned long order)
589 {
590 	page[1].compound_order = order;
591 }
592 
593 #ifdef CONFIG_MMU
594 /*
595  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
596  * servicing faults for write access.  In the normal case, do always want
597  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
598  * that do not have writing enabled, when used by access_process_vm.
599  */
600 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
601 {
602 	if (likely(vma->vm_flags & VM_WRITE))
603 		pte = pte_mkwrite(pte);
604 	return pte;
605 }
606 
607 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
608 		struct page *page, pte_t *pte, bool write, bool anon);
609 #endif
610 
611 /*
612  * Multiple processes may "see" the same page. E.g. for untouched
613  * mappings of /dev/null, all processes see the same page full of
614  * zeroes, and text pages of executables and shared libraries have
615  * only one copy in memory, at most, normally.
616  *
617  * For the non-reserved pages, page_count(page) denotes a reference count.
618  *   page_count() == 0 means the page is free. page->lru is then used for
619  *   freelist management in the buddy allocator.
620  *   page_count() > 0  means the page has been allocated.
621  *
622  * Pages are allocated by the slab allocator in order to provide memory
623  * to kmalloc and kmem_cache_alloc. In this case, the management of the
624  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
625  * unless a particular usage is carefully commented. (the responsibility of
626  * freeing the kmalloc memory is the caller's, of course).
627  *
628  * A page may be used by anyone else who does a __get_free_page().
629  * In this case, page_count still tracks the references, and should only
630  * be used through the normal accessor functions. The top bits of page->flags
631  * and page->virtual store page management information, but all other fields
632  * are unused and could be used privately, carefully. The management of this
633  * page is the responsibility of the one who allocated it, and those who have
634  * subsequently been given references to it.
635  *
636  * The other pages (we may call them "pagecache pages") are completely
637  * managed by the Linux memory manager: I/O, buffers, swapping etc.
638  * The following discussion applies only to them.
639  *
640  * A pagecache page contains an opaque `private' member, which belongs to the
641  * page's address_space. Usually, this is the address of a circular list of
642  * the page's disk buffers. PG_private must be set to tell the VM to call
643  * into the filesystem to release these pages.
644  *
645  * A page may belong to an inode's memory mapping. In this case, page->mapping
646  * is the pointer to the inode, and page->index is the file offset of the page,
647  * in units of PAGE_CACHE_SIZE.
648  *
649  * If pagecache pages are not associated with an inode, they are said to be
650  * anonymous pages. These may become associated with the swapcache, and in that
651  * case PG_swapcache is set, and page->private is an offset into the swapcache.
652  *
653  * In either case (swapcache or inode backed), the pagecache itself holds one
654  * reference to the page. Setting PG_private should also increment the
655  * refcount. The each user mapping also has a reference to the page.
656  *
657  * The pagecache pages are stored in a per-mapping radix tree, which is
658  * rooted at mapping->page_tree, and indexed by offset.
659  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
660  * lists, we instead now tag pages as dirty/writeback in the radix tree.
661  *
662  * All pagecache pages may be subject to I/O:
663  * - inode pages may need to be read from disk,
664  * - inode pages which have been modified and are MAP_SHARED may need
665  *   to be written back to the inode on disk,
666  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
667  *   modified may need to be swapped out to swap space and (later) to be read
668  *   back into memory.
669  */
670 
671 /*
672  * The zone field is never updated after free_area_init_core()
673  * sets it, so none of the operations on it need to be atomic.
674  */
675 
676 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
677 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
678 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
679 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
680 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
681 
682 /*
683  * Define the bit shifts to access each section.  For non-existent
684  * sections we define the shift as 0; that plus a 0 mask ensures
685  * the compiler will optimise away reference to them.
686  */
687 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
688 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
689 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
690 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
691 
692 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
693 #ifdef NODE_NOT_IN_PAGE_FLAGS
694 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
695 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
696 						SECTIONS_PGOFF : ZONES_PGOFF)
697 #else
698 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
699 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
700 						NODES_PGOFF : ZONES_PGOFF)
701 #endif
702 
703 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
704 
705 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
706 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
707 #endif
708 
709 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
710 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
711 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
712 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
713 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
714 
715 static inline enum zone_type page_zonenum(const struct page *page)
716 {
717 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
718 }
719 
720 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
721 #define SECTION_IN_PAGE_FLAGS
722 #endif
723 
724 /*
725  * The identification function is mainly used by the buddy allocator for
726  * determining if two pages could be buddies. We are not really identifying
727  * the zone since we could be using the section number id if we do not have
728  * node id available in page flags.
729  * We only guarantee that it will return the same value for two combinable
730  * pages in a zone.
731  */
732 static inline int page_zone_id(struct page *page)
733 {
734 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
735 }
736 
737 static inline int zone_to_nid(struct zone *zone)
738 {
739 #ifdef CONFIG_NUMA
740 	return zone->node;
741 #else
742 	return 0;
743 #endif
744 }
745 
746 #ifdef NODE_NOT_IN_PAGE_FLAGS
747 extern int page_to_nid(const struct page *page);
748 #else
749 static inline int page_to_nid(const struct page *page)
750 {
751 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
752 }
753 #endif
754 
755 #ifdef CONFIG_NUMA_BALANCING
756 static inline int cpu_pid_to_cpupid(int cpu, int pid)
757 {
758 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
759 }
760 
761 static inline int cpupid_to_pid(int cpupid)
762 {
763 	return cpupid & LAST__PID_MASK;
764 }
765 
766 static inline int cpupid_to_cpu(int cpupid)
767 {
768 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
769 }
770 
771 static inline int cpupid_to_nid(int cpupid)
772 {
773 	return cpu_to_node(cpupid_to_cpu(cpupid));
774 }
775 
776 static inline bool cpupid_pid_unset(int cpupid)
777 {
778 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
779 }
780 
781 static inline bool cpupid_cpu_unset(int cpupid)
782 {
783 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
784 }
785 
786 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
787 {
788 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
789 }
790 
791 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
792 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
793 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
794 {
795 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
796 }
797 
798 static inline int page_cpupid_last(struct page *page)
799 {
800 	return page->_last_cpupid;
801 }
802 static inline void page_cpupid_reset_last(struct page *page)
803 {
804 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
805 }
806 #else
807 static inline int page_cpupid_last(struct page *page)
808 {
809 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
810 }
811 
812 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
813 
814 static inline void page_cpupid_reset_last(struct page *page)
815 {
816 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
817 
818 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
819 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
820 }
821 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
822 #else /* !CONFIG_NUMA_BALANCING */
823 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
824 {
825 	return page_to_nid(page); /* XXX */
826 }
827 
828 static inline int page_cpupid_last(struct page *page)
829 {
830 	return page_to_nid(page); /* XXX */
831 }
832 
833 static inline int cpupid_to_nid(int cpupid)
834 {
835 	return -1;
836 }
837 
838 static inline int cpupid_to_pid(int cpupid)
839 {
840 	return -1;
841 }
842 
843 static inline int cpupid_to_cpu(int cpupid)
844 {
845 	return -1;
846 }
847 
848 static inline int cpu_pid_to_cpupid(int nid, int pid)
849 {
850 	return -1;
851 }
852 
853 static inline bool cpupid_pid_unset(int cpupid)
854 {
855 	return 1;
856 }
857 
858 static inline void page_cpupid_reset_last(struct page *page)
859 {
860 }
861 
862 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
863 {
864 	return false;
865 }
866 #endif /* CONFIG_NUMA_BALANCING */
867 
868 static inline struct zone *page_zone(const struct page *page)
869 {
870 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
871 }
872 
873 #ifdef SECTION_IN_PAGE_FLAGS
874 static inline void set_page_section(struct page *page, unsigned long section)
875 {
876 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
877 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
878 }
879 
880 static inline unsigned long page_to_section(const struct page *page)
881 {
882 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
883 }
884 #endif
885 
886 static inline void set_page_zone(struct page *page, enum zone_type zone)
887 {
888 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
889 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
890 }
891 
892 static inline void set_page_node(struct page *page, unsigned long node)
893 {
894 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
895 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
896 }
897 
898 static inline void set_page_links(struct page *page, enum zone_type zone,
899 	unsigned long node, unsigned long pfn)
900 {
901 	set_page_zone(page, zone);
902 	set_page_node(page, node);
903 #ifdef SECTION_IN_PAGE_FLAGS
904 	set_page_section(page, pfn_to_section_nr(pfn));
905 #endif
906 }
907 
908 #ifdef CONFIG_MEMCG
909 static inline struct mem_cgroup *page_memcg(struct page *page)
910 {
911 	return page->mem_cgroup;
912 }
913 
914 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
915 {
916 	page->mem_cgroup = memcg;
917 }
918 #else
919 static inline struct mem_cgroup *page_memcg(struct page *page)
920 {
921 	return NULL;
922 }
923 
924 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
925 {
926 }
927 #endif
928 
929 /*
930  * Some inline functions in vmstat.h depend on page_zone()
931  */
932 #include <linux/vmstat.h>
933 
934 static __always_inline void *lowmem_page_address(const struct page *page)
935 {
936 	return __va(PFN_PHYS(page_to_pfn(page)));
937 }
938 
939 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
940 #define HASHED_PAGE_VIRTUAL
941 #endif
942 
943 #if defined(WANT_PAGE_VIRTUAL)
944 static inline void *page_address(const struct page *page)
945 {
946 	return page->virtual;
947 }
948 static inline void set_page_address(struct page *page, void *address)
949 {
950 	page->virtual = address;
951 }
952 #define page_address_init()  do { } while(0)
953 #endif
954 
955 #if defined(HASHED_PAGE_VIRTUAL)
956 void *page_address(const struct page *page);
957 void set_page_address(struct page *page, void *virtual);
958 void page_address_init(void);
959 #endif
960 
961 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
962 #define page_address(page) lowmem_page_address(page)
963 #define set_page_address(page, address)  do { } while(0)
964 #define page_address_init()  do { } while(0)
965 #endif
966 
967 extern void *page_rmapping(struct page *page);
968 extern struct anon_vma *page_anon_vma(struct page *page);
969 extern struct address_space *page_mapping(struct page *page);
970 
971 extern struct address_space *__page_file_mapping(struct page *);
972 
973 static inline
974 struct address_space *page_file_mapping(struct page *page)
975 {
976 	if (unlikely(PageSwapCache(page)))
977 		return __page_file_mapping(page);
978 
979 	return page->mapping;
980 }
981 
982 /*
983  * Return the pagecache index of the passed page.  Regular pagecache pages
984  * use ->index whereas swapcache pages use ->private
985  */
986 static inline pgoff_t page_index(struct page *page)
987 {
988 	if (unlikely(PageSwapCache(page)))
989 		return page_private(page);
990 	return page->index;
991 }
992 
993 extern pgoff_t __page_file_index(struct page *page);
994 
995 /*
996  * Return the file index of the page. Regular pagecache pages use ->index
997  * whereas swapcache pages use swp_offset(->private)
998  */
999 static inline pgoff_t page_file_index(struct page *page)
1000 {
1001 	if (unlikely(PageSwapCache(page)))
1002 		return __page_file_index(page);
1003 
1004 	return page->index;
1005 }
1006 
1007 /*
1008  * Return true if this page is mapped into pagetables.
1009  */
1010 static inline int page_mapped(struct page *page)
1011 {
1012 	return atomic_read(&(page)->_mapcount) >= 0;
1013 }
1014 
1015 /*
1016  * Return true only if the page has been allocated with
1017  * ALLOC_NO_WATERMARKS and the low watermark was not
1018  * met implying that the system is under some pressure.
1019  */
1020 static inline bool page_is_pfmemalloc(struct page *page)
1021 {
1022 	/*
1023 	 * Page index cannot be this large so this must be
1024 	 * a pfmemalloc page.
1025 	 */
1026 	return page->index == -1UL;
1027 }
1028 
1029 /*
1030  * Only to be called by the page allocator on a freshly allocated
1031  * page.
1032  */
1033 static inline void set_page_pfmemalloc(struct page *page)
1034 {
1035 	page->index = -1UL;
1036 }
1037 
1038 static inline void clear_page_pfmemalloc(struct page *page)
1039 {
1040 	page->index = 0;
1041 }
1042 
1043 /*
1044  * Different kinds of faults, as returned by handle_mm_fault().
1045  * Used to decide whether a process gets delivered SIGBUS or
1046  * just gets major/minor fault counters bumped up.
1047  */
1048 
1049 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1050 
1051 #define VM_FAULT_OOM	0x0001
1052 #define VM_FAULT_SIGBUS	0x0002
1053 #define VM_FAULT_MAJOR	0x0004
1054 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1055 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1056 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1057 #define VM_FAULT_SIGSEGV 0x0040
1058 
1059 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1060 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1061 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1062 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1063 
1064 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1065 
1066 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1067 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1068 			 VM_FAULT_FALLBACK)
1069 
1070 /* Encode hstate index for a hwpoisoned large page */
1071 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1072 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1073 
1074 /*
1075  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1076  */
1077 extern void pagefault_out_of_memory(void);
1078 
1079 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1080 
1081 /*
1082  * Flags passed to show_mem() and show_free_areas() to suppress output in
1083  * various contexts.
1084  */
1085 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1086 
1087 extern void show_free_areas(unsigned int flags);
1088 extern bool skip_free_areas_node(unsigned int flags, int nid);
1089 
1090 int shmem_zero_setup(struct vm_area_struct *);
1091 #ifdef CONFIG_SHMEM
1092 bool shmem_mapping(struct address_space *mapping);
1093 #else
1094 static inline bool shmem_mapping(struct address_space *mapping)
1095 {
1096 	return false;
1097 }
1098 #endif
1099 
1100 extern int can_do_mlock(void);
1101 extern int user_shm_lock(size_t, struct user_struct *);
1102 extern void user_shm_unlock(size_t, struct user_struct *);
1103 
1104 /*
1105  * Parameter block passed down to zap_pte_range in exceptional cases.
1106  */
1107 struct zap_details {
1108 	struct address_space *check_mapping;	/* Check page->mapping if set */
1109 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1110 	pgoff_t last_index;			/* Highest page->index to unmap */
1111 };
1112 
1113 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1114 		pte_t pte);
1115 
1116 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1117 		unsigned long size);
1118 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1119 		unsigned long size, struct zap_details *);
1120 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1121 		unsigned long start, unsigned long end);
1122 
1123 /**
1124  * mm_walk - callbacks for walk_page_range
1125  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1126  *	       this handler is required to be able to handle
1127  *	       pmd_trans_huge() pmds.  They may simply choose to
1128  *	       split_huge_page() instead of handling it explicitly.
1129  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1130  * @pte_hole: if set, called for each hole at all levels
1131  * @hugetlb_entry: if set, called for each hugetlb entry
1132  * @test_walk: caller specific callback function to determine whether
1133  *             we walk over the current vma or not. A positive returned
1134  *             value means "do page table walk over the current vma,"
1135  *             and a negative one means "abort current page table walk
1136  *             right now." 0 means "skip the current vma."
1137  * @mm:        mm_struct representing the target process of page table walk
1138  * @vma:       vma currently walked (NULL if walking outside vmas)
1139  * @private:   private data for callbacks' usage
1140  *
1141  * (see the comment on walk_page_range() for more details)
1142  */
1143 struct mm_walk {
1144 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1145 			 unsigned long next, struct mm_walk *walk);
1146 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1147 			 unsigned long next, struct mm_walk *walk);
1148 	int (*pte_hole)(unsigned long addr, unsigned long next,
1149 			struct mm_walk *walk);
1150 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1151 			     unsigned long addr, unsigned long next,
1152 			     struct mm_walk *walk);
1153 	int (*test_walk)(unsigned long addr, unsigned long next,
1154 			struct mm_walk *walk);
1155 	struct mm_struct *mm;
1156 	struct vm_area_struct *vma;
1157 	void *private;
1158 };
1159 
1160 int walk_page_range(unsigned long addr, unsigned long end,
1161 		struct mm_walk *walk);
1162 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1163 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1164 		unsigned long end, unsigned long floor, unsigned long ceiling);
1165 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1166 			struct vm_area_struct *vma);
1167 void unmap_mapping_range(struct address_space *mapping,
1168 		loff_t const holebegin, loff_t const holelen, int even_cows);
1169 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1170 	unsigned long *pfn);
1171 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1172 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1173 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1174 			void *buf, int len, int write);
1175 
1176 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1177 		loff_t const holebegin, loff_t const holelen)
1178 {
1179 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1180 }
1181 
1182 extern void truncate_pagecache(struct inode *inode, loff_t new);
1183 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1184 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1185 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1186 int truncate_inode_page(struct address_space *mapping, struct page *page);
1187 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1188 int invalidate_inode_page(struct page *page);
1189 
1190 #ifdef CONFIG_MMU
1191 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1192 			unsigned long address, unsigned int flags);
1193 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1194 			    unsigned long address, unsigned int fault_flags);
1195 #else
1196 static inline int handle_mm_fault(struct mm_struct *mm,
1197 			struct vm_area_struct *vma, unsigned long address,
1198 			unsigned int flags)
1199 {
1200 	/* should never happen if there's no MMU */
1201 	BUG();
1202 	return VM_FAULT_SIGBUS;
1203 }
1204 static inline int fixup_user_fault(struct task_struct *tsk,
1205 		struct mm_struct *mm, unsigned long address,
1206 		unsigned int fault_flags)
1207 {
1208 	/* should never happen if there's no MMU */
1209 	BUG();
1210 	return -EFAULT;
1211 }
1212 #endif
1213 
1214 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1215 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1216 		void *buf, int len, int write);
1217 
1218 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1219 		      unsigned long start, unsigned long nr_pages,
1220 		      unsigned int foll_flags, struct page **pages,
1221 		      struct vm_area_struct **vmas, int *nonblocking);
1222 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 		    unsigned long start, unsigned long nr_pages,
1224 		    int write, int force, struct page **pages,
1225 		    struct vm_area_struct **vmas);
1226 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1227 		    unsigned long start, unsigned long nr_pages,
1228 		    int write, int force, struct page **pages,
1229 		    int *locked);
1230 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1231 			       unsigned long start, unsigned long nr_pages,
1232 			       int write, int force, struct page **pages,
1233 			       unsigned int gup_flags);
1234 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 		    unsigned long start, unsigned long nr_pages,
1236 		    int write, int force, struct page **pages);
1237 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1238 			struct page **pages);
1239 
1240 /* Container for pinned pfns / pages */
1241 struct frame_vector {
1242 	unsigned int nr_allocated;	/* Number of frames we have space for */
1243 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1244 	bool got_ref;		/* Did we pin pages by getting page ref? */
1245 	bool is_pfns;		/* Does array contain pages or pfns? */
1246 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1247 				 * pfns_vector_pages() or pfns_vector_pfns()
1248 				 * for access */
1249 };
1250 
1251 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1252 void frame_vector_destroy(struct frame_vector *vec);
1253 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1254 		     bool write, bool force, struct frame_vector *vec);
1255 void put_vaddr_frames(struct frame_vector *vec);
1256 int frame_vector_to_pages(struct frame_vector *vec);
1257 void frame_vector_to_pfns(struct frame_vector *vec);
1258 
1259 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1260 {
1261 	return vec->nr_frames;
1262 }
1263 
1264 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1265 {
1266 	if (vec->is_pfns) {
1267 		int err = frame_vector_to_pages(vec);
1268 
1269 		if (err)
1270 			return ERR_PTR(err);
1271 	}
1272 	return (struct page **)(vec->ptrs);
1273 }
1274 
1275 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1276 {
1277 	if (!vec->is_pfns)
1278 		frame_vector_to_pfns(vec);
1279 	return (unsigned long *)(vec->ptrs);
1280 }
1281 
1282 struct kvec;
1283 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1284 			struct page **pages);
1285 int get_kernel_page(unsigned long start, int write, struct page **pages);
1286 struct page *get_dump_page(unsigned long addr);
1287 
1288 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1289 extern void do_invalidatepage(struct page *page, unsigned int offset,
1290 			      unsigned int length);
1291 
1292 int __set_page_dirty_nobuffers(struct page *page);
1293 int __set_page_dirty_no_writeback(struct page *page);
1294 int redirty_page_for_writepage(struct writeback_control *wbc,
1295 				struct page *page);
1296 void account_page_dirtied(struct page *page, struct address_space *mapping,
1297 			  struct mem_cgroup *memcg);
1298 void account_page_cleaned(struct page *page, struct address_space *mapping,
1299 			  struct mem_cgroup *memcg, struct bdi_writeback *wb);
1300 int set_page_dirty(struct page *page);
1301 int set_page_dirty_lock(struct page *page);
1302 void cancel_dirty_page(struct page *page);
1303 int clear_page_dirty_for_io(struct page *page);
1304 
1305 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1306 
1307 /* Is the vma a continuation of the stack vma above it? */
1308 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1309 {
1310 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1311 }
1312 
1313 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1314 {
1315 	return !vma->vm_ops;
1316 }
1317 
1318 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1319 					     unsigned long addr)
1320 {
1321 	return (vma->vm_flags & VM_GROWSDOWN) &&
1322 		(vma->vm_start == addr) &&
1323 		!vma_growsdown(vma->vm_prev, addr);
1324 }
1325 
1326 /* Is the vma a continuation of the stack vma below it? */
1327 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1328 {
1329 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1330 }
1331 
1332 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1333 					   unsigned long addr)
1334 {
1335 	return (vma->vm_flags & VM_GROWSUP) &&
1336 		(vma->vm_end == addr) &&
1337 		!vma_growsup(vma->vm_next, addr);
1338 }
1339 
1340 extern struct task_struct *task_of_stack(struct task_struct *task,
1341 				struct vm_area_struct *vma, bool in_group);
1342 
1343 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1344 		unsigned long old_addr, struct vm_area_struct *new_vma,
1345 		unsigned long new_addr, unsigned long len,
1346 		bool need_rmap_locks);
1347 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1348 			      unsigned long end, pgprot_t newprot,
1349 			      int dirty_accountable, int prot_numa);
1350 extern int mprotect_fixup(struct vm_area_struct *vma,
1351 			  struct vm_area_struct **pprev, unsigned long start,
1352 			  unsigned long end, unsigned long newflags);
1353 
1354 /*
1355  * doesn't attempt to fault and will return short.
1356  */
1357 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1358 			  struct page **pages);
1359 /*
1360  * per-process(per-mm_struct) statistics.
1361  */
1362 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1363 {
1364 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1365 
1366 #ifdef SPLIT_RSS_COUNTING
1367 	/*
1368 	 * counter is updated in asynchronous manner and may go to minus.
1369 	 * But it's never be expected number for users.
1370 	 */
1371 	if (val < 0)
1372 		val = 0;
1373 #endif
1374 	return (unsigned long)val;
1375 }
1376 
1377 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1378 {
1379 	atomic_long_add(value, &mm->rss_stat.count[member]);
1380 }
1381 
1382 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1383 {
1384 	atomic_long_inc(&mm->rss_stat.count[member]);
1385 }
1386 
1387 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1388 {
1389 	atomic_long_dec(&mm->rss_stat.count[member]);
1390 }
1391 
1392 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1393 {
1394 	return get_mm_counter(mm, MM_FILEPAGES) +
1395 		get_mm_counter(mm, MM_ANONPAGES);
1396 }
1397 
1398 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1399 {
1400 	return max(mm->hiwater_rss, get_mm_rss(mm));
1401 }
1402 
1403 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1404 {
1405 	return max(mm->hiwater_vm, mm->total_vm);
1406 }
1407 
1408 static inline void update_hiwater_rss(struct mm_struct *mm)
1409 {
1410 	unsigned long _rss = get_mm_rss(mm);
1411 
1412 	if ((mm)->hiwater_rss < _rss)
1413 		(mm)->hiwater_rss = _rss;
1414 }
1415 
1416 static inline void update_hiwater_vm(struct mm_struct *mm)
1417 {
1418 	if (mm->hiwater_vm < mm->total_vm)
1419 		mm->hiwater_vm = mm->total_vm;
1420 }
1421 
1422 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1423 {
1424 	mm->hiwater_rss = get_mm_rss(mm);
1425 }
1426 
1427 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1428 					 struct mm_struct *mm)
1429 {
1430 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1431 
1432 	if (*maxrss < hiwater_rss)
1433 		*maxrss = hiwater_rss;
1434 }
1435 
1436 #if defined(SPLIT_RSS_COUNTING)
1437 void sync_mm_rss(struct mm_struct *mm);
1438 #else
1439 static inline void sync_mm_rss(struct mm_struct *mm)
1440 {
1441 }
1442 #endif
1443 
1444 int vma_wants_writenotify(struct vm_area_struct *vma);
1445 
1446 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1447 			       spinlock_t **ptl);
1448 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1449 				    spinlock_t **ptl)
1450 {
1451 	pte_t *ptep;
1452 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1453 	return ptep;
1454 }
1455 
1456 #ifdef __PAGETABLE_PUD_FOLDED
1457 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1458 						unsigned long address)
1459 {
1460 	return 0;
1461 }
1462 #else
1463 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1464 #endif
1465 
1466 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1467 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1468 						unsigned long address)
1469 {
1470 	return 0;
1471 }
1472 
1473 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1474 
1475 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1476 {
1477 	return 0;
1478 }
1479 
1480 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1481 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1482 
1483 #else
1484 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1485 
1486 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1487 {
1488 	atomic_long_set(&mm->nr_pmds, 0);
1489 }
1490 
1491 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1492 {
1493 	return atomic_long_read(&mm->nr_pmds);
1494 }
1495 
1496 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1497 {
1498 	atomic_long_inc(&mm->nr_pmds);
1499 }
1500 
1501 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1502 {
1503 	atomic_long_dec(&mm->nr_pmds);
1504 }
1505 #endif
1506 
1507 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1508 		pmd_t *pmd, unsigned long address);
1509 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1510 
1511 /*
1512  * The following ifdef needed to get the 4level-fixup.h header to work.
1513  * Remove it when 4level-fixup.h has been removed.
1514  */
1515 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1516 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1517 {
1518 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1519 		NULL: pud_offset(pgd, address);
1520 }
1521 
1522 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1523 {
1524 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1525 		NULL: pmd_offset(pud, address);
1526 }
1527 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1528 
1529 #if USE_SPLIT_PTE_PTLOCKS
1530 #if ALLOC_SPLIT_PTLOCKS
1531 void __init ptlock_cache_init(void);
1532 extern bool ptlock_alloc(struct page *page);
1533 extern void ptlock_free(struct page *page);
1534 
1535 static inline spinlock_t *ptlock_ptr(struct page *page)
1536 {
1537 	return page->ptl;
1538 }
1539 #else /* ALLOC_SPLIT_PTLOCKS */
1540 static inline void ptlock_cache_init(void)
1541 {
1542 }
1543 
1544 static inline bool ptlock_alloc(struct page *page)
1545 {
1546 	return true;
1547 }
1548 
1549 static inline void ptlock_free(struct page *page)
1550 {
1551 }
1552 
1553 static inline spinlock_t *ptlock_ptr(struct page *page)
1554 {
1555 	return &page->ptl;
1556 }
1557 #endif /* ALLOC_SPLIT_PTLOCKS */
1558 
1559 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1560 {
1561 	return ptlock_ptr(pmd_page(*pmd));
1562 }
1563 
1564 static inline bool ptlock_init(struct page *page)
1565 {
1566 	/*
1567 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1568 	 * with 0. Make sure nobody took it in use in between.
1569 	 *
1570 	 * It can happen if arch try to use slab for page table allocation:
1571 	 * slab code uses page->slab_cache and page->first_page (for tail
1572 	 * pages), which share storage with page->ptl.
1573 	 */
1574 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1575 	if (!ptlock_alloc(page))
1576 		return false;
1577 	spin_lock_init(ptlock_ptr(page));
1578 	return true;
1579 }
1580 
1581 /* Reset page->mapping so free_pages_check won't complain. */
1582 static inline void pte_lock_deinit(struct page *page)
1583 {
1584 	page->mapping = NULL;
1585 	ptlock_free(page);
1586 }
1587 
1588 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1589 /*
1590  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1591  */
1592 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1593 {
1594 	return &mm->page_table_lock;
1595 }
1596 static inline void ptlock_cache_init(void) {}
1597 static inline bool ptlock_init(struct page *page) { return true; }
1598 static inline void pte_lock_deinit(struct page *page) {}
1599 #endif /* USE_SPLIT_PTE_PTLOCKS */
1600 
1601 static inline void pgtable_init(void)
1602 {
1603 	ptlock_cache_init();
1604 	pgtable_cache_init();
1605 }
1606 
1607 static inline bool pgtable_page_ctor(struct page *page)
1608 {
1609 	inc_zone_page_state(page, NR_PAGETABLE);
1610 	return ptlock_init(page);
1611 }
1612 
1613 static inline void pgtable_page_dtor(struct page *page)
1614 {
1615 	pte_lock_deinit(page);
1616 	dec_zone_page_state(page, NR_PAGETABLE);
1617 }
1618 
1619 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1620 ({							\
1621 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1622 	pte_t *__pte = pte_offset_map(pmd, address);	\
1623 	*(ptlp) = __ptl;				\
1624 	spin_lock(__ptl);				\
1625 	__pte;						\
1626 })
1627 
1628 #define pte_unmap_unlock(pte, ptl)	do {		\
1629 	spin_unlock(ptl);				\
1630 	pte_unmap(pte);					\
1631 } while (0)
1632 
1633 #define pte_alloc_map(mm, vma, pmd, address)				\
1634 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1635 							pmd, address))?	\
1636 	 NULL: pte_offset_map(pmd, address))
1637 
1638 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1639 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1640 							pmd, address))?	\
1641 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1642 
1643 #define pte_alloc_kernel(pmd, address)			\
1644 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1645 		NULL: pte_offset_kernel(pmd, address))
1646 
1647 #if USE_SPLIT_PMD_PTLOCKS
1648 
1649 static struct page *pmd_to_page(pmd_t *pmd)
1650 {
1651 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1652 	return virt_to_page((void *)((unsigned long) pmd & mask));
1653 }
1654 
1655 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1656 {
1657 	return ptlock_ptr(pmd_to_page(pmd));
1658 }
1659 
1660 static inline bool pgtable_pmd_page_ctor(struct page *page)
1661 {
1662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1663 	page->pmd_huge_pte = NULL;
1664 #endif
1665 	return ptlock_init(page);
1666 }
1667 
1668 static inline void pgtable_pmd_page_dtor(struct page *page)
1669 {
1670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1671 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1672 #endif
1673 	ptlock_free(page);
1674 }
1675 
1676 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1677 
1678 #else
1679 
1680 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1681 {
1682 	return &mm->page_table_lock;
1683 }
1684 
1685 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1686 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1687 
1688 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1689 
1690 #endif
1691 
1692 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1693 {
1694 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1695 	spin_lock(ptl);
1696 	return ptl;
1697 }
1698 
1699 extern void free_area_init(unsigned long * zones_size);
1700 extern void free_area_init_node(int nid, unsigned long * zones_size,
1701 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1702 extern void free_initmem(void);
1703 
1704 /*
1705  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1706  * into the buddy system. The freed pages will be poisoned with pattern
1707  * "poison" if it's within range [0, UCHAR_MAX].
1708  * Return pages freed into the buddy system.
1709  */
1710 extern unsigned long free_reserved_area(void *start, void *end,
1711 					int poison, char *s);
1712 
1713 #ifdef	CONFIG_HIGHMEM
1714 /*
1715  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1716  * and totalram_pages.
1717  */
1718 extern void free_highmem_page(struct page *page);
1719 #endif
1720 
1721 extern void adjust_managed_page_count(struct page *page, long count);
1722 extern void mem_init_print_info(const char *str);
1723 
1724 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1725 
1726 /* Free the reserved page into the buddy system, so it gets managed. */
1727 static inline void __free_reserved_page(struct page *page)
1728 {
1729 	ClearPageReserved(page);
1730 	init_page_count(page);
1731 	__free_page(page);
1732 }
1733 
1734 static inline void free_reserved_page(struct page *page)
1735 {
1736 	__free_reserved_page(page);
1737 	adjust_managed_page_count(page, 1);
1738 }
1739 
1740 static inline void mark_page_reserved(struct page *page)
1741 {
1742 	SetPageReserved(page);
1743 	adjust_managed_page_count(page, -1);
1744 }
1745 
1746 /*
1747  * Default method to free all the __init memory into the buddy system.
1748  * The freed pages will be poisoned with pattern "poison" if it's within
1749  * range [0, UCHAR_MAX].
1750  * Return pages freed into the buddy system.
1751  */
1752 static inline unsigned long free_initmem_default(int poison)
1753 {
1754 	extern char __init_begin[], __init_end[];
1755 
1756 	return free_reserved_area(&__init_begin, &__init_end,
1757 				  poison, "unused kernel");
1758 }
1759 
1760 static inline unsigned long get_num_physpages(void)
1761 {
1762 	int nid;
1763 	unsigned long phys_pages = 0;
1764 
1765 	for_each_online_node(nid)
1766 		phys_pages += node_present_pages(nid);
1767 
1768 	return phys_pages;
1769 }
1770 
1771 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1772 /*
1773  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1774  * zones, allocate the backing mem_map and account for memory holes in a more
1775  * architecture independent manner. This is a substitute for creating the
1776  * zone_sizes[] and zholes_size[] arrays and passing them to
1777  * free_area_init_node()
1778  *
1779  * An architecture is expected to register range of page frames backed by
1780  * physical memory with memblock_add[_node]() before calling
1781  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1782  * usage, an architecture is expected to do something like
1783  *
1784  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1785  * 							 max_highmem_pfn};
1786  * for_each_valid_physical_page_range()
1787  * 	memblock_add_node(base, size, nid)
1788  * free_area_init_nodes(max_zone_pfns);
1789  *
1790  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1791  * registered physical page range.  Similarly
1792  * sparse_memory_present_with_active_regions() calls memory_present() for
1793  * each range when SPARSEMEM is enabled.
1794  *
1795  * See mm/page_alloc.c for more information on each function exposed by
1796  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1797  */
1798 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1799 unsigned long node_map_pfn_alignment(void);
1800 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1801 						unsigned long end_pfn);
1802 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1803 						unsigned long end_pfn);
1804 extern void get_pfn_range_for_nid(unsigned int nid,
1805 			unsigned long *start_pfn, unsigned long *end_pfn);
1806 extern unsigned long find_min_pfn_with_active_regions(void);
1807 extern void free_bootmem_with_active_regions(int nid,
1808 						unsigned long max_low_pfn);
1809 extern void sparse_memory_present_with_active_regions(int nid);
1810 
1811 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1812 
1813 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1814     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1815 static inline int __early_pfn_to_nid(unsigned long pfn,
1816 					struct mminit_pfnnid_cache *state)
1817 {
1818 	return 0;
1819 }
1820 #else
1821 /* please see mm/page_alloc.c */
1822 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1823 /* there is a per-arch backend function. */
1824 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1825 					struct mminit_pfnnid_cache *state);
1826 #endif
1827 
1828 extern void set_dma_reserve(unsigned long new_dma_reserve);
1829 extern void memmap_init_zone(unsigned long, int, unsigned long,
1830 				unsigned long, enum memmap_context);
1831 extern void setup_per_zone_wmarks(void);
1832 extern int __meminit init_per_zone_wmark_min(void);
1833 extern void mem_init(void);
1834 extern void __init mmap_init(void);
1835 extern void show_mem(unsigned int flags);
1836 extern void si_meminfo(struct sysinfo * val);
1837 extern void si_meminfo_node(struct sysinfo *val, int nid);
1838 
1839 extern __printf(3, 4)
1840 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1841 
1842 extern void setup_per_cpu_pageset(void);
1843 
1844 extern void zone_pcp_update(struct zone *zone);
1845 extern void zone_pcp_reset(struct zone *zone);
1846 
1847 /* page_alloc.c */
1848 extern int min_free_kbytes;
1849 
1850 /* nommu.c */
1851 extern atomic_long_t mmap_pages_allocated;
1852 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1853 
1854 /* interval_tree.c */
1855 void vma_interval_tree_insert(struct vm_area_struct *node,
1856 			      struct rb_root *root);
1857 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1858 				    struct vm_area_struct *prev,
1859 				    struct rb_root *root);
1860 void vma_interval_tree_remove(struct vm_area_struct *node,
1861 			      struct rb_root *root);
1862 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1863 				unsigned long start, unsigned long last);
1864 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1865 				unsigned long start, unsigned long last);
1866 
1867 #define vma_interval_tree_foreach(vma, root, start, last)		\
1868 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1869 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1870 
1871 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1872 				   struct rb_root *root);
1873 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1874 				   struct rb_root *root);
1875 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1876 	struct rb_root *root, unsigned long start, unsigned long last);
1877 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1878 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1879 #ifdef CONFIG_DEBUG_VM_RB
1880 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1881 #endif
1882 
1883 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1884 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1885 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1886 
1887 /* mmap.c */
1888 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1889 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1890 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1891 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1892 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1893 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1894 	struct mempolicy *, struct vm_userfaultfd_ctx);
1895 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1896 extern int split_vma(struct mm_struct *,
1897 	struct vm_area_struct *, unsigned long addr, int new_below);
1898 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1899 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1900 	struct rb_node **, struct rb_node *);
1901 extern void unlink_file_vma(struct vm_area_struct *);
1902 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1903 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1904 	bool *need_rmap_locks);
1905 extern void exit_mmap(struct mm_struct *);
1906 
1907 static inline int check_data_rlimit(unsigned long rlim,
1908 				    unsigned long new,
1909 				    unsigned long start,
1910 				    unsigned long end_data,
1911 				    unsigned long start_data)
1912 {
1913 	if (rlim < RLIM_INFINITY) {
1914 		if (((new - start) + (end_data - start_data)) > rlim)
1915 			return -ENOSPC;
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 extern int mm_take_all_locks(struct mm_struct *mm);
1922 extern void mm_drop_all_locks(struct mm_struct *mm);
1923 
1924 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1925 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1926 
1927 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1928 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1929 				   unsigned long addr, unsigned long len,
1930 				   unsigned long flags,
1931 				   const struct vm_special_mapping *spec);
1932 /* This is an obsolete alternative to _install_special_mapping. */
1933 extern int install_special_mapping(struct mm_struct *mm,
1934 				   unsigned long addr, unsigned long len,
1935 				   unsigned long flags, struct page **pages);
1936 
1937 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1938 
1939 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1940 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1941 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1942 	unsigned long len, unsigned long prot, unsigned long flags,
1943 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1944 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1945 
1946 static inline unsigned long
1947 do_mmap_pgoff(struct file *file, unsigned long addr,
1948 	unsigned long len, unsigned long prot, unsigned long flags,
1949 	unsigned long pgoff, unsigned long *populate)
1950 {
1951 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1952 }
1953 
1954 #ifdef CONFIG_MMU
1955 extern int __mm_populate(unsigned long addr, unsigned long len,
1956 			 int ignore_errors);
1957 static inline void mm_populate(unsigned long addr, unsigned long len)
1958 {
1959 	/* Ignore errors */
1960 	(void) __mm_populate(addr, len, 1);
1961 }
1962 #else
1963 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1964 #endif
1965 
1966 /* These take the mm semaphore themselves */
1967 extern unsigned long vm_brk(unsigned long, unsigned long);
1968 extern int vm_munmap(unsigned long, size_t);
1969 extern unsigned long vm_mmap(struct file *, unsigned long,
1970         unsigned long, unsigned long,
1971         unsigned long, unsigned long);
1972 
1973 struct vm_unmapped_area_info {
1974 #define VM_UNMAPPED_AREA_TOPDOWN 1
1975 	unsigned long flags;
1976 	unsigned long length;
1977 	unsigned long low_limit;
1978 	unsigned long high_limit;
1979 	unsigned long align_mask;
1980 	unsigned long align_offset;
1981 };
1982 
1983 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1984 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1985 
1986 /*
1987  * Search for an unmapped address range.
1988  *
1989  * We are looking for a range that:
1990  * - does not intersect with any VMA;
1991  * - is contained within the [low_limit, high_limit) interval;
1992  * - is at least the desired size.
1993  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1994  */
1995 static inline unsigned long
1996 vm_unmapped_area(struct vm_unmapped_area_info *info)
1997 {
1998 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1999 		return unmapped_area_topdown(info);
2000 	else
2001 		return unmapped_area(info);
2002 }
2003 
2004 /* truncate.c */
2005 extern void truncate_inode_pages(struct address_space *, loff_t);
2006 extern void truncate_inode_pages_range(struct address_space *,
2007 				       loff_t lstart, loff_t lend);
2008 extern void truncate_inode_pages_final(struct address_space *);
2009 
2010 /* generic vm_area_ops exported for stackable file systems */
2011 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2012 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2013 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2014 
2015 /* mm/page-writeback.c */
2016 int write_one_page(struct page *page, int wait);
2017 void task_dirty_inc(struct task_struct *tsk);
2018 
2019 /* readahead.c */
2020 #define VM_MAX_READAHEAD	128	/* kbytes */
2021 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2022 
2023 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2024 			pgoff_t offset, unsigned long nr_to_read);
2025 
2026 void page_cache_sync_readahead(struct address_space *mapping,
2027 			       struct file_ra_state *ra,
2028 			       struct file *filp,
2029 			       pgoff_t offset,
2030 			       unsigned long size);
2031 
2032 void page_cache_async_readahead(struct address_space *mapping,
2033 				struct file_ra_state *ra,
2034 				struct file *filp,
2035 				struct page *pg,
2036 				pgoff_t offset,
2037 				unsigned long size);
2038 
2039 unsigned long max_sane_readahead(unsigned long nr);
2040 
2041 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2042 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2043 
2044 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2045 extern int expand_downwards(struct vm_area_struct *vma,
2046 		unsigned long address);
2047 #if VM_GROWSUP
2048 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2049 #else
2050   #define expand_upwards(vma, address) (0)
2051 #endif
2052 
2053 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2054 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2055 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2056 					     struct vm_area_struct **pprev);
2057 
2058 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2059    NULL if none.  Assume start_addr < end_addr. */
2060 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2061 {
2062 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2063 
2064 	if (vma && end_addr <= vma->vm_start)
2065 		vma = NULL;
2066 	return vma;
2067 }
2068 
2069 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2070 {
2071 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2072 }
2073 
2074 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2075 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2076 				unsigned long vm_start, unsigned long vm_end)
2077 {
2078 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2079 
2080 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2081 		vma = NULL;
2082 
2083 	return vma;
2084 }
2085 
2086 #ifdef CONFIG_MMU
2087 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2088 void vma_set_page_prot(struct vm_area_struct *vma);
2089 #else
2090 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2091 {
2092 	return __pgprot(0);
2093 }
2094 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2095 {
2096 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2097 }
2098 #endif
2099 
2100 #ifdef CONFIG_NUMA_BALANCING
2101 unsigned long change_prot_numa(struct vm_area_struct *vma,
2102 			unsigned long start, unsigned long end);
2103 #endif
2104 
2105 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2106 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2107 			unsigned long pfn, unsigned long size, pgprot_t);
2108 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2109 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2110 			unsigned long pfn);
2111 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2112 			unsigned long pfn);
2113 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2114 
2115 
2116 struct page *follow_page_mask(struct vm_area_struct *vma,
2117 			      unsigned long address, unsigned int foll_flags,
2118 			      unsigned int *page_mask);
2119 
2120 static inline struct page *follow_page(struct vm_area_struct *vma,
2121 		unsigned long address, unsigned int foll_flags)
2122 {
2123 	unsigned int unused_page_mask;
2124 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2125 }
2126 
2127 #define FOLL_WRITE	0x01	/* check pte is writable */
2128 #define FOLL_TOUCH	0x02	/* mark page accessed */
2129 #define FOLL_GET	0x04	/* do get_page on page */
2130 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2131 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2132 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2133 				 * and return without waiting upon it */
2134 #define FOLL_POPULATE	0x40	/* fault in page */
2135 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2136 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2137 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2138 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2139 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2140 
2141 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2142 			void *data);
2143 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2144 			       unsigned long size, pte_fn_t fn, void *data);
2145 
2146 #ifdef CONFIG_PROC_FS
2147 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2148 #else
2149 static inline void vm_stat_account(struct mm_struct *mm,
2150 			unsigned long flags, struct file *file, long pages)
2151 {
2152 	mm->total_vm += pages;
2153 }
2154 #endif /* CONFIG_PROC_FS */
2155 
2156 #ifdef CONFIG_DEBUG_PAGEALLOC
2157 extern bool _debug_pagealloc_enabled;
2158 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2159 
2160 static inline bool debug_pagealloc_enabled(void)
2161 {
2162 	return _debug_pagealloc_enabled;
2163 }
2164 
2165 static inline void
2166 kernel_map_pages(struct page *page, int numpages, int enable)
2167 {
2168 	if (!debug_pagealloc_enabled())
2169 		return;
2170 
2171 	__kernel_map_pages(page, numpages, enable);
2172 }
2173 #ifdef CONFIG_HIBERNATION
2174 extern bool kernel_page_present(struct page *page);
2175 #endif /* CONFIG_HIBERNATION */
2176 #else
2177 static inline void
2178 kernel_map_pages(struct page *page, int numpages, int enable) {}
2179 #ifdef CONFIG_HIBERNATION
2180 static inline bool kernel_page_present(struct page *page) { return true; }
2181 #endif /* CONFIG_HIBERNATION */
2182 #endif
2183 
2184 #ifdef __HAVE_ARCH_GATE_AREA
2185 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2186 extern int in_gate_area_no_mm(unsigned long addr);
2187 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2188 #else
2189 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2190 {
2191 	return NULL;
2192 }
2193 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2194 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2195 {
2196 	return 0;
2197 }
2198 #endif	/* __HAVE_ARCH_GATE_AREA */
2199 
2200 #ifdef CONFIG_SYSCTL
2201 extern int sysctl_drop_caches;
2202 int drop_caches_sysctl_handler(struct ctl_table *, int,
2203 					void __user *, size_t *, loff_t *);
2204 #endif
2205 
2206 void drop_slab(void);
2207 void drop_slab_node(int nid);
2208 
2209 #ifndef CONFIG_MMU
2210 #define randomize_va_space 0
2211 #else
2212 extern int randomize_va_space;
2213 #endif
2214 
2215 const char * arch_vma_name(struct vm_area_struct *vma);
2216 void print_vma_addr(char *prefix, unsigned long rip);
2217 
2218 void sparse_mem_maps_populate_node(struct page **map_map,
2219 				   unsigned long pnum_begin,
2220 				   unsigned long pnum_end,
2221 				   unsigned long map_count,
2222 				   int nodeid);
2223 
2224 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2225 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2226 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2227 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2228 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2229 void *vmemmap_alloc_block(unsigned long size, int node);
2230 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2231 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2232 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2233 			       int node);
2234 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2235 void vmemmap_populate_print_last(void);
2236 #ifdef CONFIG_MEMORY_HOTPLUG
2237 void vmemmap_free(unsigned long start, unsigned long end);
2238 #endif
2239 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2240 				  unsigned long size);
2241 
2242 enum mf_flags {
2243 	MF_COUNT_INCREASED = 1 << 0,
2244 	MF_ACTION_REQUIRED = 1 << 1,
2245 	MF_MUST_KILL = 1 << 2,
2246 	MF_SOFT_OFFLINE = 1 << 3,
2247 };
2248 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2249 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2250 extern int unpoison_memory(unsigned long pfn);
2251 extern int get_hwpoison_page(struct page *page);
2252 extern void put_hwpoison_page(struct page *page);
2253 extern int sysctl_memory_failure_early_kill;
2254 extern int sysctl_memory_failure_recovery;
2255 extern void shake_page(struct page *p, int access);
2256 extern atomic_long_t num_poisoned_pages;
2257 extern int soft_offline_page(struct page *page, int flags);
2258 
2259 
2260 /*
2261  * Error handlers for various types of pages.
2262  */
2263 enum mf_result {
2264 	MF_IGNORED,	/* Error: cannot be handled */
2265 	MF_FAILED,	/* Error: handling failed */
2266 	MF_DELAYED,	/* Will be handled later */
2267 	MF_RECOVERED,	/* Successfully recovered */
2268 };
2269 
2270 enum mf_action_page_type {
2271 	MF_MSG_KERNEL,
2272 	MF_MSG_KERNEL_HIGH_ORDER,
2273 	MF_MSG_SLAB,
2274 	MF_MSG_DIFFERENT_COMPOUND,
2275 	MF_MSG_POISONED_HUGE,
2276 	MF_MSG_HUGE,
2277 	MF_MSG_FREE_HUGE,
2278 	MF_MSG_UNMAP_FAILED,
2279 	MF_MSG_DIRTY_SWAPCACHE,
2280 	MF_MSG_CLEAN_SWAPCACHE,
2281 	MF_MSG_DIRTY_MLOCKED_LRU,
2282 	MF_MSG_CLEAN_MLOCKED_LRU,
2283 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2284 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2285 	MF_MSG_DIRTY_LRU,
2286 	MF_MSG_CLEAN_LRU,
2287 	MF_MSG_TRUNCATED_LRU,
2288 	MF_MSG_BUDDY,
2289 	MF_MSG_BUDDY_2ND,
2290 	MF_MSG_UNKNOWN,
2291 };
2292 
2293 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2294 extern void clear_huge_page(struct page *page,
2295 			    unsigned long addr,
2296 			    unsigned int pages_per_huge_page);
2297 extern void copy_user_huge_page(struct page *dst, struct page *src,
2298 				unsigned long addr, struct vm_area_struct *vma,
2299 				unsigned int pages_per_huge_page);
2300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2301 
2302 extern struct page_ext_operations debug_guardpage_ops;
2303 extern struct page_ext_operations page_poisoning_ops;
2304 
2305 #ifdef CONFIG_DEBUG_PAGEALLOC
2306 extern unsigned int _debug_guardpage_minorder;
2307 extern bool _debug_guardpage_enabled;
2308 
2309 static inline unsigned int debug_guardpage_minorder(void)
2310 {
2311 	return _debug_guardpage_minorder;
2312 }
2313 
2314 static inline bool debug_guardpage_enabled(void)
2315 {
2316 	return _debug_guardpage_enabled;
2317 }
2318 
2319 static inline bool page_is_guard(struct page *page)
2320 {
2321 	struct page_ext *page_ext;
2322 
2323 	if (!debug_guardpage_enabled())
2324 		return false;
2325 
2326 	page_ext = lookup_page_ext(page);
2327 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2328 }
2329 #else
2330 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2331 static inline bool debug_guardpage_enabled(void) { return false; }
2332 static inline bool page_is_guard(struct page *page) { return false; }
2333 #endif /* CONFIG_DEBUG_PAGEALLOC */
2334 
2335 #if MAX_NUMNODES > 1
2336 void __init setup_nr_node_ids(void);
2337 #else
2338 static inline void setup_nr_node_ids(void) {}
2339 #endif
2340 
2341 #endif /* __KERNEL__ */
2342 #endif /* _LINUX_MM_H */
2343