xref: /linux-6.15/include/linux/mm.h (revision 43b3dfdd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328 
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
333 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4  0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341 
342 #if defined(CONFIG_X86)
343 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP	VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP	VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR	VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR	VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
358 #endif
359 
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
363 #else
364 # define VM_MTE		VM_NONE
365 # define VM_MTE_ALLOWED	VM_NONE
366 #endif
367 
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP	VM_NONE
370 #endif
371 
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT	37
374 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR		VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378 
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
381 
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383 
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
388 				 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
390 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391 
392 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
394 #endif
395 
396 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399 
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK	VM_GROWSUP
402 #define VM_STACK_EARLY	VM_GROWSDOWN
403 #else
404 #define VM_STACK	VM_GROWSDOWN
405 #define VM_STACK_EARLY	0
406 #endif
407 
408 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409 
410 /* VMA basic access permission flags */
411 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412 
413 
414 /*
415  * Special vmas that are non-mergable, non-mlock()able.
416  */
417 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
418 
419 /* This mask prevents VMA from being scanned with khugepaged */
420 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421 
422 /* This mask defines which mm->def_flags a process can inherit its parent */
423 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
424 
425 /* This mask represents all the VMA flag bits used by mlock */
426 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
427 
428 /* Arch-specific flags to clear when updating VM flags on protection change */
429 #ifndef VM_ARCH_CLEAR
430 # define VM_ARCH_CLEAR	VM_NONE
431 #endif
432 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433 
434 /*
435  * mapping from the currently active vm_flags protection bits (the
436  * low four bits) to a page protection mask..
437  */
438 
439 /*
440  * The default fault flags that should be used by most of the
441  * arch-specific page fault handlers.
442  */
443 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
444 			     FAULT_FLAG_KILLABLE | \
445 			     FAULT_FLAG_INTERRUPTIBLE)
446 
447 /**
448  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
449  * @flags: Fault flags.
450  *
451  * This is mostly used for places where we want to try to avoid taking
452  * the mmap_lock for too long a time when waiting for another condition
453  * to change, in which case we can try to be polite to release the
454  * mmap_lock in the first round to avoid potential starvation of other
455  * processes that would also want the mmap_lock.
456  *
457  * Return: true if the page fault allows retry and this is the first
458  * attempt of the fault handling; false otherwise.
459  */
460 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
461 {
462 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 	    (!(flags & FAULT_FLAG_TRIED));
464 }
465 
466 #define FAULT_FLAG_TRACE \
467 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
468 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
469 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
470 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
471 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
472 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
473 	{ FAULT_FLAG_USER,		"USER" }, \
474 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
475 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
476 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
477 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
478 
479 /*
480  * vm_fault is filled by the pagefault handler and passed to the vma's
481  * ->fault function. The vma's ->fault is responsible for returning a bitmask
482  * of VM_FAULT_xxx flags that give details about how the fault was handled.
483  *
484  * MM layer fills up gfp_mask for page allocations but fault handler might
485  * alter it if its implementation requires a different allocation context.
486  *
487  * pgoff should be used in favour of virtual_address, if possible.
488  */
489 struct vm_fault {
490 	const struct {
491 		struct vm_area_struct *vma;	/* Target VMA */
492 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
493 		pgoff_t pgoff;			/* Logical page offset based on vma */
494 		unsigned long address;		/* Faulting virtual address - masked */
495 		unsigned long real_address;	/* Faulting virtual address - unmasked */
496 	};
497 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
498 					 * XXX: should really be 'const' */
499 	pmd_t *pmd;			/* Pointer to pmd entry matching
500 					 * the 'address' */
501 	pud_t *pud;			/* Pointer to pud entry matching
502 					 * the 'address'
503 					 */
504 	union {
505 		pte_t orig_pte;		/* Value of PTE at the time of fault */
506 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
507 					 * used by PMD fault only.
508 					 */
509 	};
510 
511 	struct page *cow_page;		/* Page handler may use for COW fault */
512 	struct page *page;		/* ->fault handlers should return a
513 					 * page here, unless VM_FAULT_NOPAGE
514 					 * is set (which is also implied by
515 					 * VM_FAULT_ERROR).
516 					 */
517 	/* These three entries are valid only while holding ptl lock */
518 	pte_t *pte;			/* Pointer to pte entry matching
519 					 * the 'address'. NULL if the page
520 					 * table hasn't been allocated.
521 					 */
522 	spinlock_t *ptl;		/* Page table lock.
523 					 * Protects pte page table if 'pte'
524 					 * is not NULL, otherwise pmd.
525 					 */
526 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
527 					 * vm_ops->map_pages() sets up a page
528 					 * table from atomic context.
529 					 * do_fault_around() pre-allocates
530 					 * page table to avoid allocation from
531 					 * atomic context.
532 					 */
533 };
534 
535 /* page entry size for vm->huge_fault() */
536 enum page_entry_size {
537 	PE_SIZE_PTE = 0,
538 	PE_SIZE_PMD,
539 	PE_SIZE_PUD,
540 };
541 
542 /*
543  * These are the virtual MM functions - opening of an area, closing and
544  * unmapping it (needed to keep files on disk up-to-date etc), pointer
545  * to the functions called when a no-page or a wp-page exception occurs.
546  */
547 struct vm_operations_struct {
548 	void (*open)(struct vm_area_struct * area);
549 	/**
550 	 * @close: Called when the VMA is being removed from the MM.
551 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
552 	 */
553 	void (*close)(struct vm_area_struct * area);
554 	/* Called any time before splitting to check if it's allowed */
555 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
556 	int (*mremap)(struct vm_area_struct *area);
557 	/*
558 	 * Called by mprotect() to make driver-specific permission
559 	 * checks before mprotect() is finalised.   The VMA must not
560 	 * be modified.  Returns 0 if mprotect() can proceed.
561 	 */
562 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 			unsigned long end, unsigned long newflags);
564 	vm_fault_t (*fault)(struct vm_fault *vmf);
565 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 			enum page_entry_size pe_size);
567 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
568 			pgoff_t start_pgoff, pgoff_t end_pgoff);
569 	unsigned long (*pagesize)(struct vm_area_struct * area);
570 
571 	/* notification that a previously read-only page is about to become
572 	 * writable, if an error is returned it will cause a SIGBUS */
573 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
574 
575 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
576 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
577 
578 	/* called by access_process_vm when get_user_pages() fails, typically
579 	 * for use by special VMAs. See also generic_access_phys() for a generic
580 	 * implementation useful for any iomem mapping.
581 	 */
582 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 		      void *buf, int len, int write);
584 
585 	/* Called by the /proc/PID/maps code to ask the vma whether it
586 	 * has a special name.  Returning non-NULL will also cause this
587 	 * vma to be dumped unconditionally. */
588 	const char *(*name)(struct vm_area_struct *vma);
589 
590 #ifdef CONFIG_NUMA
591 	/*
592 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 	 * to hold the policy upon return.  Caller should pass NULL @new to
594 	 * remove a policy and fall back to surrounding context--i.e. do not
595 	 * install a MPOL_DEFAULT policy, nor the task or system default
596 	 * mempolicy.
597 	 */
598 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
599 
600 	/*
601 	 * get_policy() op must add reference [mpol_get()] to any policy at
602 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
603 	 * in mm/mempolicy.c will do this automatically.
604 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
605 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
606 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 	 * must return NULL--i.e., do not "fallback" to task or system default
608 	 * policy.
609 	 */
610 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 					unsigned long addr);
612 #endif
613 	/*
614 	 * Called by vm_normal_page() for special PTEs to find the
615 	 * page for @addr.  This is useful if the default behavior
616 	 * (using pte_page()) would not find the correct page.
617 	 */
618 	struct page *(*find_special_page)(struct vm_area_struct *vma,
619 					  unsigned long addr);
620 };
621 
622 #ifdef CONFIG_NUMA_BALANCING
623 static inline void vma_numab_state_init(struct vm_area_struct *vma)
624 {
625 	vma->numab_state = NULL;
626 }
627 static inline void vma_numab_state_free(struct vm_area_struct *vma)
628 {
629 	kfree(vma->numab_state);
630 }
631 #else
632 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634 #endif /* CONFIG_NUMA_BALANCING */
635 
636 #ifdef CONFIG_PER_VMA_LOCK
637 /*
638  * Try to read-lock a vma. The function is allowed to occasionally yield false
639  * locked result to avoid performance overhead, in which case we fall back to
640  * using mmap_lock. The function should never yield false unlocked result.
641  */
642 static inline bool vma_start_read(struct vm_area_struct *vma)
643 {
644 	/*
645 	 * Check before locking. A race might cause false locked result.
646 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
647 	 * ACQUIRE semantics, because this is just a lockless check whose result
648 	 * we don't rely on for anything - the mm_lock_seq read against which we
649 	 * need ordering is below.
650 	 */
651 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
652 		return false;
653 
654 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
655 		return false;
656 
657 	/*
658 	 * Overflow might produce false locked result.
659 	 * False unlocked result is impossible because we modify and check
660 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
661 	 * modification invalidates all existing locks.
662 	 *
663 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
664 	 * racing with vma_end_write_all(), we only start reading from the VMA
665 	 * after it has been unlocked.
666 	 * This pairs with RELEASE semantics in vma_end_write_all().
667 	 */
668 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
669 		up_read(&vma->vm_lock->lock);
670 		return false;
671 	}
672 	return true;
673 }
674 
675 static inline void vma_end_read(struct vm_area_struct *vma)
676 {
677 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
678 	up_read(&vma->vm_lock->lock);
679 	rcu_read_unlock();
680 }
681 
682 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
683 {
684 	mmap_assert_write_locked(vma->vm_mm);
685 
686 	/*
687 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
688 	 * mm->mm_lock_seq can't be concurrently modified.
689 	 */
690 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
691 	return (vma->vm_lock_seq == *mm_lock_seq);
692 }
693 
694 static inline void vma_start_write(struct vm_area_struct *vma)
695 {
696 	int mm_lock_seq;
697 
698 	if (__is_vma_write_locked(vma, &mm_lock_seq))
699 		return;
700 
701 	down_write(&vma->vm_lock->lock);
702 	/*
703 	 * We should use WRITE_ONCE() here because we can have concurrent reads
704 	 * from the early lockless pessimistic check in vma_start_read().
705 	 * We don't really care about the correctness of that early check, but
706 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
707 	 */
708 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
709 	up_write(&vma->vm_lock->lock);
710 }
711 
712 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
713 {
714 	int mm_lock_seq;
715 
716 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
717 }
718 
719 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
720 {
721 	/* When detaching vma should be write-locked */
722 	if (detached)
723 		vma_assert_write_locked(vma);
724 	vma->detached = detached;
725 }
726 
727 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
728 					  unsigned long address);
729 
730 #else /* CONFIG_PER_VMA_LOCK */
731 
732 static inline bool vma_start_read(struct vm_area_struct *vma)
733 		{ return false; }
734 static inline void vma_end_read(struct vm_area_struct *vma) {}
735 static inline void vma_start_write(struct vm_area_struct *vma) {}
736 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
737 static inline void vma_mark_detached(struct vm_area_struct *vma,
738 				     bool detached) {}
739 
740 #endif /* CONFIG_PER_VMA_LOCK */
741 
742 /*
743  * WARNING: vma_init does not initialize vma->vm_lock.
744  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
745  */
746 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
747 {
748 	static const struct vm_operations_struct dummy_vm_ops = {};
749 
750 	memset(vma, 0, sizeof(*vma));
751 	vma->vm_mm = mm;
752 	vma->vm_ops = &dummy_vm_ops;
753 	INIT_LIST_HEAD(&vma->anon_vma_chain);
754 	vma_mark_detached(vma, false);
755 	vma_numab_state_init(vma);
756 }
757 
758 /* Use when VMA is not part of the VMA tree and needs no locking */
759 static inline void vm_flags_init(struct vm_area_struct *vma,
760 				 vm_flags_t flags)
761 {
762 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
763 }
764 
765 /* Use when VMA is part of the VMA tree and modifications need coordination */
766 static inline void vm_flags_reset(struct vm_area_struct *vma,
767 				  vm_flags_t flags)
768 {
769 	vma_start_write(vma);
770 	vm_flags_init(vma, flags);
771 }
772 
773 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
774 				       vm_flags_t flags)
775 {
776 	vma_start_write(vma);
777 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
778 }
779 
780 static inline void vm_flags_set(struct vm_area_struct *vma,
781 				vm_flags_t flags)
782 {
783 	vma_start_write(vma);
784 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
785 }
786 
787 static inline void vm_flags_clear(struct vm_area_struct *vma,
788 				  vm_flags_t flags)
789 {
790 	vma_start_write(vma);
791 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
792 }
793 
794 /*
795  * Use only if VMA is not part of the VMA tree or has no other users and
796  * therefore needs no locking.
797  */
798 static inline void __vm_flags_mod(struct vm_area_struct *vma,
799 				  vm_flags_t set, vm_flags_t clear)
800 {
801 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
802 }
803 
804 /*
805  * Use only when the order of set/clear operations is unimportant, otherwise
806  * use vm_flags_{set|clear} explicitly.
807  */
808 static inline void vm_flags_mod(struct vm_area_struct *vma,
809 				vm_flags_t set, vm_flags_t clear)
810 {
811 	vma_start_write(vma);
812 	__vm_flags_mod(vma, set, clear);
813 }
814 
815 static inline void vma_set_anonymous(struct vm_area_struct *vma)
816 {
817 	vma->vm_ops = NULL;
818 }
819 
820 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
821 {
822 	return !vma->vm_ops;
823 }
824 
825 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
826 {
827 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
828 
829 	if (!maybe_stack)
830 		return false;
831 
832 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
833 						VM_STACK_INCOMPLETE_SETUP)
834 		return true;
835 
836 	return false;
837 }
838 
839 static inline bool vma_is_foreign(struct vm_area_struct *vma)
840 {
841 	if (!current->mm)
842 		return true;
843 
844 	if (current->mm != vma->vm_mm)
845 		return true;
846 
847 	return false;
848 }
849 
850 static inline bool vma_is_accessible(struct vm_area_struct *vma)
851 {
852 	return vma->vm_flags & VM_ACCESS_FLAGS;
853 }
854 
855 static inline
856 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
857 {
858 	return mas_find(&vmi->mas, max - 1);
859 }
860 
861 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
862 {
863 	/*
864 	 * Uses mas_find() to get the first VMA when the iterator starts.
865 	 * Calling mas_next() could skip the first entry.
866 	 */
867 	return mas_find(&vmi->mas, ULONG_MAX);
868 }
869 
870 static inline
871 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
872 {
873 	return mas_next_range(&vmi->mas, ULONG_MAX);
874 }
875 
876 
877 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
878 {
879 	return mas_prev(&vmi->mas, 0);
880 }
881 
882 static inline
883 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
884 {
885 	return mas_prev_range(&vmi->mas, 0);
886 }
887 
888 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
889 {
890 	return vmi->mas.index;
891 }
892 
893 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
894 {
895 	return vmi->mas.last + 1;
896 }
897 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
898 				      unsigned long count)
899 {
900 	return mas_expected_entries(&vmi->mas, count);
901 }
902 
903 /* Free any unused preallocations */
904 static inline void vma_iter_free(struct vma_iterator *vmi)
905 {
906 	mas_destroy(&vmi->mas);
907 }
908 
909 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
910 				      struct vm_area_struct *vma)
911 {
912 	vmi->mas.index = vma->vm_start;
913 	vmi->mas.last = vma->vm_end - 1;
914 	mas_store(&vmi->mas, vma);
915 	if (unlikely(mas_is_err(&vmi->mas)))
916 		return -ENOMEM;
917 
918 	return 0;
919 }
920 
921 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
922 {
923 	mas_pause(&vmi->mas);
924 }
925 
926 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
927 {
928 	mas_set(&vmi->mas, addr);
929 }
930 
931 #define for_each_vma(__vmi, __vma)					\
932 	while (((__vma) = vma_next(&(__vmi))) != NULL)
933 
934 /* The MM code likes to work with exclusive end addresses */
935 #define for_each_vma_range(__vmi, __vma, __end)				\
936 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
937 
938 #ifdef CONFIG_SHMEM
939 /*
940  * The vma_is_shmem is not inline because it is used only by slow
941  * paths in userfault.
942  */
943 bool vma_is_shmem(struct vm_area_struct *vma);
944 bool vma_is_anon_shmem(struct vm_area_struct *vma);
945 #else
946 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
947 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
948 #endif
949 
950 int vma_is_stack_for_current(struct vm_area_struct *vma);
951 
952 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
953 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
954 
955 struct mmu_gather;
956 struct inode;
957 
958 /*
959  * compound_order() can be called without holding a reference, which means
960  * that niceties like page_folio() don't work.  These callers should be
961  * prepared to handle wild return values.  For example, PG_head may be
962  * set before _folio_order is initialised, or this may be a tail page.
963  * See compaction.c for some good examples.
964  */
965 static inline unsigned int compound_order(struct page *page)
966 {
967 	struct folio *folio = (struct folio *)page;
968 
969 	if (!test_bit(PG_head, &folio->flags))
970 		return 0;
971 	return folio->_folio_order;
972 }
973 
974 /**
975  * folio_order - The allocation order of a folio.
976  * @folio: The folio.
977  *
978  * A folio is composed of 2^order pages.  See get_order() for the definition
979  * of order.
980  *
981  * Return: The order of the folio.
982  */
983 static inline unsigned int folio_order(struct folio *folio)
984 {
985 	if (!folio_test_large(folio))
986 		return 0;
987 	return folio->_folio_order;
988 }
989 
990 #include <linux/huge_mm.h>
991 
992 /*
993  * Methods to modify the page usage count.
994  *
995  * What counts for a page usage:
996  * - cache mapping   (page->mapping)
997  * - private data    (page->private)
998  * - page mapped in a task's page tables, each mapping
999  *   is counted separately
1000  *
1001  * Also, many kernel routines increase the page count before a critical
1002  * routine so they can be sure the page doesn't go away from under them.
1003  */
1004 
1005 /*
1006  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1007  */
1008 static inline int put_page_testzero(struct page *page)
1009 {
1010 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1011 	return page_ref_dec_and_test(page);
1012 }
1013 
1014 static inline int folio_put_testzero(struct folio *folio)
1015 {
1016 	return put_page_testzero(&folio->page);
1017 }
1018 
1019 /*
1020  * Try to grab a ref unless the page has a refcount of zero, return false if
1021  * that is the case.
1022  * This can be called when MMU is off so it must not access
1023  * any of the virtual mappings.
1024  */
1025 static inline bool get_page_unless_zero(struct page *page)
1026 {
1027 	return page_ref_add_unless(page, 1, 0);
1028 }
1029 
1030 static inline struct folio *folio_get_nontail_page(struct page *page)
1031 {
1032 	if (unlikely(!get_page_unless_zero(page)))
1033 		return NULL;
1034 	return (struct folio *)page;
1035 }
1036 
1037 extern int page_is_ram(unsigned long pfn);
1038 
1039 enum {
1040 	REGION_INTERSECTS,
1041 	REGION_DISJOINT,
1042 	REGION_MIXED,
1043 };
1044 
1045 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1046 		      unsigned long desc);
1047 
1048 /* Support for virtually mapped pages */
1049 struct page *vmalloc_to_page(const void *addr);
1050 unsigned long vmalloc_to_pfn(const void *addr);
1051 
1052 /*
1053  * Determine if an address is within the vmalloc range
1054  *
1055  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1056  * is no special casing required.
1057  */
1058 #ifdef CONFIG_MMU
1059 extern bool is_vmalloc_addr(const void *x);
1060 extern int is_vmalloc_or_module_addr(const void *x);
1061 #else
1062 static inline bool is_vmalloc_addr(const void *x)
1063 {
1064 	return false;
1065 }
1066 static inline int is_vmalloc_or_module_addr(const void *x)
1067 {
1068 	return 0;
1069 }
1070 #endif
1071 
1072 /*
1073  * How many times the entire folio is mapped as a single unit (eg by a
1074  * PMD or PUD entry).  This is probably not what you want, except for
1075  * debugging purposes - it does not include PTE-mapped sub-pages; look
1076  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1077  */
1078 static inline int folio_entire_mapcount(struct folio *folio)
1079 {
1080 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1081 	return atomic_read(&folio->_entire_mapcount) + 1;
1082 }
1083 
1084 /*
1085  * The atomic page->_mapcount, starts from -1: so that transitions
1086  * both from it and to it can be tracked, using atomic_inc_and_test
1087  * and atomic_add_negative(-1).
1088  */
1089 static inline void page_mapcount_reset(struct page *page)
1090 {
1091 	atomic_set(&(page)->_mapcount, -1);
1092 }
1093 
1094 /**
1095  * page_mapcount() - Number of times this precise page is mapped.
1096  * @page: The page.
1097  *
1098  * The number of times this page is mapped.  If this page is part of
1099  * a large folio, it includes the number of times this page is mapped
1100  * as part of that folio.
1101  *
1102  * The result is undefined for pages which cannot be mapped into userspace.
1103  * For example SLAB or special types of pages. See function page_has_type().
1104  * They use this field in struct page differently.
1105  */
1106 static inline int page_mapcount(struct page *page)
1107 {
1108 	int mapcount = atomic_read(&page->_mapcount) + 1;
1109 
1110 	if (unlikely(PageCompound(page)))
1111 		mapcount += folio_entire_mapcount(page_folio(page));
1112 
1113 	return mapcount;
1114 }
1115 
1116 int folio_total_mapcount(struct folio *folio);
1117 
1118 /**
1119  * folio_mapcount() - Calculate the number of mappings of this folio.
1120  * @folio: The folio.
1121  *
1122  * A large folio tracks both how many times the entire folio is mapped,
1123  * and how many times each individual page in the folio is mapped.
1124  * This function calculates the total number of times the folio is
1125  * mapped.
1126  *
1127  * Return: The number of times this folio is mapped.
1128  */
1129 static inline int folio_mapcount(struct folio *folio)
1130 {
1131 	if (likely(!folio_test_large(folio)))
1132 		return atomic_read(&folio->_mapcount) + 1;
1133 	return folio_total_mapcount(folio);
1134 }
1135 
1136 static inline int total_mapcount(struct page *page)
1137 {
1138 	if (likely(!PageCompound(page)))
1139 		return atomic_read(&page->_mapcount) + 1;
1140 	return folio_total_mapcount(page_folio(page));
1141 }
1142 
1143 static inline bool folio_large_is_mapped(struct folio *folio)
1144 {
1145 	/*
1146 	 * Reading _entire_mapcount below could be omitted if hugetlb
1147 	 * participated in incrementing nr_pages_mapped when compound mapped.
1148 	 */
1149 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1150 		atomic_read(&folio->_entire_mapcount) >= 0;
1151 }
1152 
1153 /**
1154  * folio_mapped - Is this folio mapped into userspace?
1155  * @folio: The folio.
1156  *
1157  * Return: True if any page in this folio is referenced by user page tables.
1158  */
1159 static inline bool folio_mapped(struct folio *folio)
1160 {
1161 	if (likely(!folio_test_large(folio)))
1162 		return atomic_read(&folio->_mapcount) >= 0;
1163 	return folio_large_is_mapped(folio);
1164 }
1165 
1166 /*
1167  * Return true if this page is mapped into pagetables.
1168  * For compound page it returns true if any sub-page of compound page is mapped,
1169  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1170  */
1171 static inline bool page_mapped(struct page *page)
1172 {
1173 	if (likely(!PageCompound(page)))
1174 		return atomic_read(&page->_mapcount) >= 0;
1175 	return folio_large_is_mapped(page_folio(page));
1176 }
1177 
1178 static inline struct page *virt_to_head_page(const void *x)
1179 {
1180 	struct page *page = virt_to_page(x);
1181 
1182 	return compound_head(page);
1183 }
1184 
1185 static inline struct folio *virt_to_folio(const void *x)
1186 {
1187 	struct page *page = virt_to_page(x);
1188 
1189 	return page_folio(page);
1190 }
1191 
1192 void __folio_put(struct folio *folio);
1193 
1194 void put_pages_list(struct list_head *pages);
1195 
1196 void split_page(struct page *page, unsigned int order);
1197 void folio_copy(struct folio *dst, struct folio *src);
1198 
1199 unsigned long nr_free_buffer_pages(void);
1200 
1201 /*
1202  * Compound pages have a destructor function.  Provide a
1203  * prototype for that function and accessor functions.
1204  * These are _only_ valid on the head of a compound page.
1205  */
1206 typedef void compound_page_dtor(struct page *);
1207 
1208 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1209 enum compound_dtor_id {
1210 	NULL_COMPOUND_DTOR,
1211 	COMPOUND_PAGE_DTOR,
1212 #ifdef CONFIG_HUGETLB_PAGE
1213 	HUGETLB_PAGE_DTOR,
1214 #endif
1215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1216 	TRANSHUGE_PAGE_DTOR,
1217 #endif
1218 	NR_COMPOUND_DTORS,
1219 };
1220 
1221 static inline void folio_set_compound_dtor(struct folio *folio,
1222 		enum compound_dtor_id compound_dtor)
1223 {
1224 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1225 	folio->_folio_dtor = compound_dtor;
1226 }
1227 
1228 void destroy_large_folio(struct folio *folio);
1229 
1230 /* Returns the number of bytes in this potentially compound page. */
1231 static inline unsigned long page_size(struct page *page)
1232 {
1233 	return PAGE_SIZE << compound_order(page);
1234 }
1235 
1236 /* Returns the number of bits needed for the number of bytes in a page */
1237 static inline unsigned int page_shift(struct page *page)
1238 {
1239 	return PAGE_SHIFT + compound_order(page);
1240 }
1241 
1242 /**
1243  * thp_order - Order of a transparent huge page.
1244  * @page: Head page of a transparent huge page.
1245  */
1246 static inline unsigned int thp_order(struct page *page)
1247 {
1248 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1249 	return compound_order(page);
1250 }
1251 
1252 /**
1253  * thp_size - Size of a transparent huge page.
1254  * @page: Head page of a transparent huge page.
1255  *
1256  * Return: Number of bytes in this page.
1257  */
1258 static inline unsigned long thp_size(struct page *page)
1259 {
1260 	return PAGE_SIZE << thp_order(page);
1261 }
1262 
1263 void free_compound_page(struct page *page);
1264 
1265 #ifdef CONFIG_MMU
1266 /*
1267  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1268  * servicing faults for write access.  In the normal case, do always want
1269  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1270  * that do not have writing enabled, when used by access_process_vm.
1271  */
1272 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1273 {
1274 	if (likely(vma->vm_flags & VM_WRITE))
1275 		pte = pte_mkwrite(pte);
1276 	return pte;
1277 }
1278 
1279 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1280 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1281 
1282 vm_fault_t finish_fault(struct vm_fault *vmf);
1283 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1284 #endif
1285 
1286 /*
1287  * Multiple processes may "see" the same page. E.g. for untouched
1288  * mappings of /dev/null, all processes see the same page full of
1289  * zeroes, and text pages of executables and shared libraries have
1290  * only one copy in memory, at most, normally.
1291  *
1292  * For the non-reserved pages, page_count(page) denotes a reference count.
1293  *   page_count() == 0 means the page is free. page->lru is then used for
1294  *   freelist management in the buddy allocator.
1295  *   page_count() > 0  means the page has been allocated.
1296  *
1297  * Pages are allocated by the slab allocator in order to provide memory
1298  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1299  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1300  * unless a particular usage is carefully commented. (the responsibility of
1301  * freeing the kmalloc memory is the caller's, of course).
1302  *
1303  * A page may be used by anyone else who does a __get_free_page().
1304  * In this case, page_count still tracks the references, and should only
1305  * be used through the normal accessor functions. The top bits of page->flags
1306  * and page->virtual store page management information, but all other fields
1307  * are unused and could be used privately, carefully. The management of this
1308  * page is the responsibility of the one who allocated it, and those who have
1309  * subsequently been given references to it.
1310  *
1311  * The other pages (we may call them "pagecache pages") are completely
1312  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1313  * The following discussion applies only to them.
1314  *
1315  * A pagecache page contains an opaque `private' member, which belongs to the
1316  * page's address_space. Usually, this is the address of a circular list of
1317  * the page's disk buffers. PG_private must be set to tell the VM to call
1318  * into the filesystem to release these pages.
1319  *
1320  * A page may belong to an inode's memory mapping. In this case, page->mapping
1321  * is the pointer to the inode, and page->index is the file offset of the page,
1322  * in units of PAGE_SIZE.
1323  *
1324  * If pagecache pages are not associated with an inode, they are said to be
1325  * anonymous pages. These may become associated with the swapcache, and in that
1326  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1327  *
1328  * In either case (swapcache or inode backed), the pagecache itself holds one
1329  * reference to the page. Setting PG_private should also increment the
1330  * refcount. The each user mapping also has a reference to the page.
1331  *
1332  * The pagecache pages are stored in a per-mapping radix tree, which is
1333  * rooted at mapping->i_pages, and indexed by offset.
1334  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1335  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1336  *
1337  * All pagecache pages may be subject to I/O:
1338  * - inode pages may need to be read from disk,
1339  * - inode pages which have been modified and are MAP_SHARED may need
1340  *   to be written back to the inode on disk,
1341  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1342  *   modified may need to be swapped out to swap space and (later) to be read
1343  *   back into memory.
1344  */
1345 
1346 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1347 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1348 
1349 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1350 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1351 {
1352 	if (!static_branch_unlikely(&devmap_managed_key))
1353 		return false;
1354 	if (!is_zone_device_page(page))
1355 		return false;
1356 	return __put_devmap_managed_page_refs(page, refs);
1357 }
1358 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1359 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1360 {
1361 	return false;
1362 }
1363 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1364 
1365 static inline bool put_devmap_managed_page(struct page *page)
1366 {
1367 	return put_devmap_managed_page_refs(page, 1);
1368 }
1369 
1370 /* 127: arbitrary random number, small enough to assemble well */
1371 #define folio_ref_zero_or_close_to_overflow(folio) \
1372 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1373 
1374 /**
1375  * folio_get - Increment the reference count on a folio.
1376  * @folio: The folio.
1377  *
1378  * Context: May be called in any context, as long as you know that
1379  * you have a refcount on the folio.  If you do not already have one,
1380  * folio_try_get() may be the right interface for you to use.
1381  */
1382 static inline void folio_get(struct folio *folio)
1383 {
1384 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1385 	folio_ref_inc(folio);
1386 }
1387 
1388 static inline void get_page(struct page *page)
1389 {
1390 	folio_get(page_folio(page));
1391 }
1392 
1393 static inline __must_check bool try_get_page(struct page *page)
1394 {
1395 	page = compound_head(page);
1396 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1397 		return false;
1398 	page_ref_inc(page);
1399 	return true;
1400 }
1401 
1402 /**
1403  * folio_put - Decrement the reference count on a folio.
1404  * @folio: The folio.
1405  *
1406  * If the folio's reference count reaches zero, the memory will be
1407  * released back to the page allocator and may be used by another
1408  * allocation immediately.  Do not access the memory or the struct folio
1409  * after calling folio_put() unless you can be sure that it wasn't the
1410  * last reference.
1411  *
1412  * Context: May be called in process or interrupt context, but not in NMI
1413  * context.  May be called while holding a spinlock.
1414  */
1415 static inline void folio_put(struct folio *folio)
1416 {
1417 	if (folio_put_testzero(folio))
1418 		__folio_put(folio);
1419 }
1420 
1421 /**
1422  * folio_put_refs - Reduce the reference count on a folio.
1423  * @folio: The folio.
1424  * @refs: The amount to subtract from the folio's reference count.
1425  *
1426  * If the folio's reference count reaches zero, the memory will be
1427  * released back to the page allocator and may be used by another
1428  * allocation immediately.  Do not access the memory or the struct folio
1429  * after calling folio_put_refs() unless you can be sure that these weren't
1430  * the last references.
1431  *
1432  * Context: May be called in process or interrupt context, but not in NMI
1433  * context.  May be called while holding a spinlock.
1434  */
1435 static inline void folio_put_refs(struct folio *folio, int refs)
1436 {
1437 	if (folio_ref_sub_and_test(folio, refs))
1438 		__folio_put(folio);
1439 }
1440 
1441 /*
1442  * union release_pages_arg - an array of pages or folios
1443  *
1444  * release_pages() releases a simple array of multiple pages, and
1445  * accepts various different forms of said page array: either
1446  * a regular old boring array of pages, an array of folios, or
1447  * an array of encoded page pointers.
1448  *
1449  * The transparent union syntax for this kind of "any of these
1450  * argument types" is all kinds of ugly, so look away.
1451  */
1452 typedef union {
1453 	struct page **pages;
1454 	struct folio **folios;
1455 	struct encoded_page **encoded_pages;
1456 } release_pages_arg __attribute__ ((__transparent_union__));
1457 
1458 void release_pages(release_pages_arg, int nr);
1459 
1460 /**
1461  * folios_put - Decrement the reference count on an array of folios.
1462  * @folios: The folios.
1463  * @nr: How many folios there are.
1464  *
1465  * Like folio_put(), but for an array of folios.  This is more efficient
1466  * than writing the loop yourself as it will optimise the locks which
1467  * need to be taken if the folios are freed.
1468  *
1469  * Context: May be called in process or interrupt context, but not in NMI
1470  * context.  May be called while holding a spinlock.
1471  */
1472 static inline void folios_put(struct folio **folios, unsigned int nr)
1473 {
1474 	release_pages(folios, nr);
1475 }
1476 
1477 static inline void put_page(struct page *page)
1478 {
1479 	struct folio *folio = page_folio(page);
1480 
1481 	/*
1482 	 * For some devmap managed pages we need to catch refcount transition
1483 	 * from 2 to 1:
1484 	 */
1485 	if (put_devmap_managed_page(&folio->page))
1486 		return;
1487 	folio_put(folio);
1488 }
1489 
1490 /*
1491  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1492  * the page's refcount so that two separate items are tracked: the original page
1493  * reference count, and also a new count of how many pin_user_pages() calls were
1494  * made against the page. ("gup-pinned" is another term for the latter).
1495  *
1496  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1497  * distinct from normal pages. As such, the unpin_user_page() call (and its
1498  * variants) must be used in order to release gup-pinned pages.
1499  *
1500  * Choice of value:
1501  *
1502  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1503  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1504  * simpler, due to the fact that adding an even power of two to the page
1505  * refcount has the effect of using only the upper N bits, for the code that
1506  * counts up using the bias value. This means that the lower bits are left for
1507  * the exclusive use of the original code that increments and decrements by one
1508  * (or at least, by much smaller values than the bias value).
1509  *
1510  * Of course, once the lower bits overflow into the upper bits (and this is
1511  * OK, because subtraction recovers the original values), then visual inspection
1512  * no longer suffices to directly view the separate counts. However, for normal
1513  * applications that don't have huge page reference counts, this won't be an
1514  * issue.
1515  *
1516  * Locking: the lockless algorithm described in folio_try_get_rcu()
1517  * provides safe operation for get_user_pages(), page_mkclean() and
1518  * other calls that race to set up page table entries.
1519  */
1520 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1521 
1522 void unpin_user_page(struct page *page);
1523 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1524 				 bool make_dirty);
1525 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1526 				      bool make_dirty);
1527 void unpin_user_pages(struct page **pages, unsigned long npages);
1528 
1529 static inline bool is_cow_mapping(vm_flags_t flags)
1530 {
1531 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1532 }
1533 
1534 #ifndef CONFIG_MMU
1535 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1536 {
1537 	/*
1538 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1539 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1540 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1541 	 * underlying memory if ptrace is active, so this is only possible if
1542 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1543 	 * write permissions later.
1544 	 */
1545 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1546 }
1547 #endif
1548 
1549 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1550 #define SECTION_IN_PAGE_FLAGS
1551 #endif
1552 
1553 /*
1554  * The identification function is mainly used by the buddy allocator for
1555  * determining if two pages could be buddies. We are not really identifying
1556  * the zone since we could be using the section number id if we do not have
1557  * node id available in page flags.
1558  * We only guarantee that it will return the same value for two combinable
1559  * pages in a zone.
1560  */
1561 static inline int page_zone_id(struct page *page)
1562 {
1563 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1564 }
1565 
1566 #ifdef NODE_NOT_IN_PAGE_FLAGS
1567 extern int page_to_nid(const struct page *page);
1568 #else
1569 static inline int page_to_nid(const struct page *page)
1570 {
1571 	struct page *p = (struct page *)page;
1572 
1573 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1574 }
1575 #endif
1576 
1577 static inline int folio_nid(const struct folio *folio)
1578 {
1579 	return page_to_nid(&folio->page);
1580 }
1581 
1582 #ifdef CONFIG_NUMA_BALANCING
1583 /* page access time bits needs to hold at least 4 seconds */
1584 #define PAGE_ACCESS_TIME_MIN_BITS	12
1585 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1586 #define PAGE_ACCESS_TIME_BUCKETS				\
1587 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1588 #else
1589 #define PAGE_ACCESS_TIME_BUCKETS	0
1590 #endif
1591 
1592 #define PAGE_ACCESS_TIME_MASK				\
1593 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1594 
1595 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1596 {
1597 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1598 }
1599 
1600 static inline int cpupid_to_pid(int cpupid)
1601 {
1602 	return cpupid & LAST__PID_MASK;
1603 }
1604 
1605 static inline int cpupid_to_cpu(int cpupid)
1606 {
1607 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1608 }
1609 
1610 static inline int cpupid_to_nid(int cpupid)
1611 {
1612 	return cpu_to_node(cpupid_to_cpu(cpupid));
1613 }
1614 
1615 static inline bool cpupid_pid_unset(int cpupid)
1616 {
1617 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1618 }
1619 
1620 static inline bool cpupid_cpu_unset(int cpupid)
1621 {
1622 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1623 }
1624 
1625 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1626 {
1627 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1628 }
1629 
1630 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1631 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1632 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1633 {
1634 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1635 }
1636 
1637 static inline int page_cpupid_last(struct page *page)
1638 {
1639 	return page->_last_cpupid;
1640 }
1641 static inline void page_cpupid_reset_last(struct page *page)
1642 {
1643 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1644 }
1645 #else
1646 static inline int page_cpupid_last(struct page *page)
1647 {
1648 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1649 }
1650 
1651 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1652 
1653 static inline void page_cpupid_reset_last(struct page *page)
1654 {
1655 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1656 }
1657 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1658 
1659 static inline int xchg_page_access_time(struct page *page, int time)
1660 {
1661 	int last_time;
1662 
1663 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1664 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1665 }
1666 
1667 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1668 {
1669 	unsigned int pid_bit;
1670 
1671 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1672 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1673 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1674 	}
1675 }
1676 #else /* !CONFIG_NUMA_BALANCING */
1677 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1678 {
1679 	return page_to_nid(page); /* XXX */
1680 }
1681 
1682 static inline int xchg_page_access_time(struct page *page, int time)
1683 {
1684 	return 0;
1685 }
1686 
1687 static inline int page_cpupid_last(struct page *page)
1688 {
1689 	return page_to_nid(page); /* XXX */
1690 }
1691 
1692 static inline int cpupid_to_nid(int cpupid)
1693 {
1694 	return -1;
1695 }
1696 
1697 static inline int cpupid_to_pid(int cpupid)
1698 {
1699 	return -1;
1700 }
1701 
1702 static inline int cpupid_to_cpu(int cpupid)
1703 {
1704 	return -1;
1705 }
1706 
1707 static inline int cpu_pid_to_cpupid(int nid, int pid)
1708 {
1709 	return -1;
1710 }
1711 
1712 static inline bool cpupid_pid_unset(int cpupid)
1713 {
1714 	return true;
1715 }
1716 
1717 static inline void page_cpupid_reset_last(struct page *page)
1718 {
1719 }
1720 
1721 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1722 {
1723 	return false;
1724 }
1725 
1726 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1727 {
1728 }
1729 #endif /* CONFIG_NUMA_BALANCING */
1730 
1731 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1732 
1733 /*
1734  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1735  * setting tags for all pages to native kernel tag value 0xff, as the default
1736  * value 0x00 maps to 0xff.
1737  */
1738 
1739 static inline u8 page_kasan_tag(const struct page *page)
1740 {
1741 	u8 tag = 0xff;
1742 
1743 	if (kasan_enabled()) {
1744 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1745 		tag ^= 0xff;
1746 	}
1747 
1748 	return tag;
1749 }
1750 
1751 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1752 {
1753 	unsigned long old_flags, flags;
1754 
1755 	if (!kasan_enabled())
1756 		return;
1757 
1758 	tag ^= 0xff;
1759 	old_flags = READ_ONCE(page->flags);
1760 	do {
1761 		flags = old_flags;
1762 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1763 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1764 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1765 }
1766 
1767 static inline void page_kasan_tag_reset(struct page *page)
1768 {
1769 	if (kasan_enabled())
1770 		page_kasan_tag_set(page, 0xff);
1771 }
1772 
1773 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1774 
1775 static inline u8 page_kasan_tag(const struct page *page)
1776 {
1777 	return 0xff;
1778 }
1779 
1780 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1781 static inline void page_kasan_tag_reset(struct page *page) { }
1782 
1783 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1784 
1785 static inline struct zone *page_zone(const struct page *page)
1786 {
1787 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1788 }
1789 
1790 static inline pg_data_t *page_pgdat(const struct page *page)
1791 {
1792 	return NODE_DATA(page_to_nid(page));
1793 }
1794 
1795 static inline struct zone *folio_zone(const struct folio *folio)
1796 {
1797 	return page_zone(&folio->page);
1798 }
1799 
1800 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1801 {
1802 	return page_pgdat(&folio->page);
1803 }
1804 
1805 #ifdef SECTION_IN_PAGE_FLAGS
1806 static inline void set_page_section(struct page *page, unsigned long section)
1807 {
1808 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1809 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1810 }
1811 
1812 static inline unsigned long page_to_section(const struct page *page)
1813 {
1814 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1815 }
1816 #endif
1817 
1818 /**
1819  * folio_pfn - Return the Page Frame Number of a folio.
1820  * @folio: The folio.
1821  *
1822  * A folio may contain multiple pages.  The pages have consecutive
1823  * Page Frame Numbers.
1824  *
1825  * Return: The Page Frame Number of the first page in the folio.
1826  */
1827 static inline unsigned long folio_pfn(struct folio *folio)
1828 {
1829 	return page_to_pfn(&folio->page);
1830 }
1831 
1832 static inline struct folio *pfn_folio(unsigned long pfn)
1833 {
1834 	return page_folio(pfn_to_page(pfn));
1835 }
1836 
1837 /**
1838  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1839  * @folio: The folio.
1840  *
1841  * This function checks if a folio has been pinned via a call to
1842  * a function in the pin_user_pages() family.
1843  *
1844  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1845  * because it means "definitely not pinned for DMA", but true means "probably
1846  * pinned for DMA, but possibly a false positive due to having at least
1847  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1848  *
1849  * False positives are OK, because: a) it's unlikely for a folio to
1850  * get that many refcounts, and b) all the callers of this routine are
1851  * expected to be able to deal gracefully with a false positive.
1852  *
1853  * For large folios, the result will be exactly correct. That's because
1854  * we have more tracking data available: the _pincount field is used
1855  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1856  *
1857  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1858  *
1859  * Return: True, if it is likely that the page has been "dma-pinned".
1860  * False, if the page is definitely not dma-pinned.
1861  */
1862 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1863 {
1864 	if (folio_test_large(folio))
1865 		return atomic_read(&folio->_pincount) > 0;
1866 
1867 	/*
1868 	 * folio_ref_count() is signed. If that refcount overflows, then
1869 	 * folio_ref_count() returns a negative value, and callers will avoid
1870 	 * further incrementing the refcount.
1871 	 *
1872 	 * Here, for that overflow case, use the sign bit to count a little
1873 	 * bit higher via unsigned math, and thus still get an accurate result.
1874 	 */
1875 	return ((unsigned int)folio_ref_count(folio)) >=
1876 		GUP_PIN_COUNTING_BIAS;
1877 }
1878 
1879 static inline bool page_maybe_dma_pinned(struct page *page)
1880 {
1881 	return folio_maybe_dma_pinned(page_folio(page));
1882 }
1883 
1884 /*
1885  * This should most likely only be called during fork() to see whether we
1886  * should break the cow immediately for an anon page on the src mm.
1887  *
1888  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1889  */
1890 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1891 					  struct page *page)
1892 {
1893 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1894 
1895 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1896 		return false;
1897 
1898 	return page_maybe_dma_pinned(page);
1899 }
1900 
1901 /**
1902  * is_zero_page - Query if a page is a zero page
1903  * @page: The page to query
1904  *
1905  * This returns true if @page is one of the permanent zero pages.
1906  */
1907 static inline bool is_zero_page(const struct page *page)
1908 {
1909 	return is_zero_pfn(page_to_pfn(page));
1910 }
1911 
1912 /**
1913  * is_zero_folio - Query if a folio is a zero page
1914  * @folio: The folio to query
1915  *
1916  * This returns true if @folio is one of the permanent zero pages.
1917  */
1918 static inline bool is_zero_folio(const struct folio *folio)
1919 {
1920 	return is_zero_page(&folio->page);
1921 }
1922 
1923 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1924 #ifdef CONFIG_MIGRATION
1925 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1926 {
1927 #ifdef CONFIG_CMA
1928 	int mt = folio_migratetype(folio);
1929 
1930 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1931 		return false;
1932 #endif
1933 	/* The zero page can be "pinned" but gets special handling. */
1934 	if (is_zero_folio(folio))
1935 		return true;
1936 
1937 	/* Coherent device memory must always allow eviction. */
1938 	if (folio_is_device_coherent(folio))
1939 		return false;
1940 
1941 	/* Otherwise, non-movable zone folios can be pinned. */
1942 	return !folio_is_zone_movable(folio);
1943 
1944 }
1945 #else
1946 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1947 {
1948 	return true;
1949 }
1950 #endif
1951 
1952 static inline void set_page_zone(struct page *page, enum zone_type zone)
1953 {
1954 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1955 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1956 }
1957 
1958 static inline void set_page_node(struct page *page, unsigned long node)
1959 {
1960 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1961 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1962 }
1963 
1964 static inline void set_page_links(struct page *page, enum zone_type zone,
1965 	unsigned long node, unsigned long pfn)
1966 {
1967 	set_page_zone(page, zone);
1968 	set_page_node(page, node);
1969 #ifdef SECTION_IN_PAGE_FLAGS
1970 	set_page_section(page, pfn_to_section_nr(pfn));
1971 #endif
1972 }
1973 
1974 /**
1975  * folio_nr_pages - The number of pages in the folio.
1976  * @folio: The folio.
1977  *
1978  * Return: A positive power of two.
1979  */
1980 static inline long folio_nr_pages(struct folio *folio)
1981 {
1982 	if (!folio_test_large(folio))
1983 		return 1;
1984 #ifdef CONFIG_64BIT
1985 	return folio->_folio_nr_pages;
1986 #else
1987 	return 1L << folio->_folio_order;
1988 #endif
1989 }
1990 
1991 /*
1992  * compound_nr() returns the number of pages in this potentially compound
1993  * page.  compound_nr() can be called on a tail page, and is defined to
1994  * return 1 in that case.
1995  */
1996 static inline unsigned long compound_nr(struct page *page)
1997 {
1998 	struct folio *folio = (struct folio *)page;
1999 
2000 	if (!test_bit(PG_head, &folio->flags))
2001 		return 1;
2002 #ifdef CONFIG_64BIT
2003 	return folio->_folio_nr_pages;
2004 #else
2005 	return 1L << folio->_folio_order;
2006 #endif
2007 }
2008 
2009 /**
2010  * thp_nr_pages - The number of regular pages in this huge page.
2011  * @page: The head page of a huge page.
2012  */
2013 static inline int thp_nr_pages(struct page *page)
2014 {
2015 	return folio_nr_pages((struct folio *)page);
2016 }
2017 
2018 /**
2019  * folio_next - Move to the next physical folio.
2020  * @folio: The folio we're currently operating on.
2021  *
2022  * If you have physically contiguous memory which may span more than
2023  * one folio (eg a &struct bio_vec), use this function to move from one
2024  * folio to the next.  Do not use it if the memory is only virtually
2025  * contiguous as the folios are almost certainly not adjacent to each
2026  * other.  This is the folio equivalent to writing ``page++``.
2027  *
2028  * Context: We assume that the folios are refcounted and/or locked at a
2029  * higher level and do not adjust the reference counts.
2030  * Return: The next struct folio.
2031  */
2032 static inline struct folio *folio_next(struct folio *folio)
2033 {
2034 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2035 }
2036 
2037 /**
2038  * folio_shift - The size of the memory described by this folio.
2039  * @folio: The folio.
2040  *
2041  * A folio represents a number of bytes which is a power-of-two in size.
2042  * This function tells you which power-of-two the folio is.  See also
2043  * folio_size() and folio_order().
2044  *
2045  * Context: The caller should have a reference on the folio to prevent
2046  * it from being split.  It is not necessary for the folio to be locked.
2047  * Return: The base-2 logarithm of the size of this folio.
2048  */
2049 static inline unsigned int folio_shift(struct folio *folio)
2050 {
2051 	return PAGE_SHIFT + folio_order(folio);
2052 }
2053 
2054 /**
2055  * folio_size - The number of bytes in a folio.
2056  * @folio: The folio.
2057  *
2058  * Context: The caller should have a reference on the folio to prevent
2059  * it from being split.  It is not necessary for the folio to be locked.
2060  * Return: The number of bytes in this folio.
2061  */
2062 static inline size_t folio_size(struct folio *folio)
2063 {
2064 	return PAGE_SIZE << folio_order(folio);
2065 }
2066 
2067 /**
2068  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2069  * @folio: The folio.
2070  *
2071  * folio_estimated_sharers() aims to serve as a function to efficiently
2072  * estimate the number of processes sharing a folio. This is done by
2073  * looking at the precise mapcount of the first subpage in the folio, and
2074  * assuming the other subpages are the same. This may not be true for large
2075  * folios. If you want exact mapcounts for exact calculations, look at
2076  * page_mapcount() or folio_total_mapcount().
2077  *
2078  * Return: The estimated number of processes sharing a folio.
2079  */
2080 static inline int folio_estimated_sharers(struct folio *folio)
2081 {
2082 	return page_mapcount(folio_page(folio, 0));
2083 }
2084 
2085 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2086 static inline int arch_make_page_accessible(struct page *page)
2087 {
2088 	return 0;
2089 }
2090 #endif
2091 
2092 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2093 static inline int arch_make_folio_accessible(struct folio *folio)
2094 {
2095 	int ret;
2096 	long i, nr = folio_nr_pages(folio);
2097 
2098 	for (i = 0; i < nr; i++) {
2099 		ret = arch_make_page_accessible(folio_page(folio, i));
2100 		if (ret)
2101 			break;
2102 	}
2103 
2104 	return ret;
2105 }
2106 #endif
2107 
2108 /*
2109  * Some inline functions in vmstat.h depend on page_zone()
2110  */
2111 #include <linux/vmstat.h>
2112 
2113 static __always_inline void *lowmem_page_address(const struct page *page)
2114 {
2115 	return page_to_virt(page);
2116 }
2117 
2118 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2119 #define HASHED_PAGE_VIRTUAL
2120 #endif
2121 
2122 #if defined(WANT_PAGE_VIRTUAL)
2123 static inline void *page_address(const struct page *page)
2124 {
2125 	return page->virtual;
2126 }
2127 static inline void set_page_address(struct page *page, void *address)
2128 {
2129 	page->virtual = address;
2130 }
2131 #define page_address_init()  do { } while(0)
2132 #endif
2133 
2134 #if defined(HASHED_PAGE_VIRTUAL)
2135 void *page_address(const struct page *page);
2136 void set_page_address(struct page *page, void *virtual);
2137 void page_address_init(void);
2138 #endif
2139 
2140 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2141 #define page_address(page) lowmem_page_address(page)
2142 #define set_page_address(page, address)  do { } while(0)
2143 #define page_address_init()  do { } while(0)
2144 #endif
2145 
2146 static inline void *folio_address(const struct folio *folio)
2147 {
2148 	return page_address(&folio->page);
2149 }
2150 
2151 extern pgoff_t __page_file_index(struct page *page);
2152 
2153 /*
2154  * Return the pagecache index of the passed page.  Regular pagecache pages
2155  * use ->index whereas swapcache pages use swp_offset(->private)
2156  */
2157 static inline pgoff_t page_index(struct page *page)
2158 {
2159 	if (unlikely(PageSwapCache(page)))
2160 		return __page_file_index(page);
2161 	return page->index;
2162 }
2163 
2164 /*
2165  * Return true only if the page has been allocated with
2166  * ALLOC_NO_WATERMARKS and the low watermark was not
2167  * met implying that the system is under some pressure.
2168  */
2169 static inline bool page_is_pfmemalloc(const struct page *page)
2170 {
2171 	/*
2172 	 * lru.next has bit 1 set if the page is allocated from the
2173 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2174 	 * they do not need to preserve that information.
2175 	 */
2176 	return (uintptr_t)page->lru.next & BIT(1);
2177 }
2178 
2179 /*
2180  * Return true only if the folio has been allocated with
2181  * ALLOC_NO_WATERMARKS and the low watermark was not
2182  * met implying that the system is under some pressure.
2183  */
2184 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2185 {
2186 	/*
2187 	 * lru.next has bit 1 set if the page is allocated from the
2188 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2189 	 * they do not need to preserve that information.
2190 	 */
2191 	return (uintptr_t)folio->lru.next & BIT(1);
2192 }
2193 
2194 /*
2195  * Only to be called by the page allocator on a freshly allocated
2196  * page.
2197  */
2198 static inline void set_page_pfmemalloc(struct page *page)
2199 {
2200 	page->lru.next = (void *)BIT(1);
2201 }
2202 
2203 static inline void clear_page_pfmemalloc(struct page *page)
2204 {
2205 	page->lru.next = NULL;
2206 }
2207 
2208 /*
2209  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2210  */
2211 extern void pagefault_out_of_memory(void);
2212 
2213 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2214 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2215 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2216 
2217 /*
2218  * Parameter block passed down to zap_pte_range in exceptional cases.
2219  */
2220 struct zap_details {
2221 	struct folio *single_folio;	/* Locked folio to be unmapped */
2222 	bool even_cows;			/* Zap COWed private pages too? */
2223 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2224 };
2225 
2226 /*
2227  * Whether to drop the pte markers, for example, the uffd-wp information for
2228  * file-backed memory.  This should only be specified when we will completely
2229  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2230  * default, the flag is not set.
2231  */
2232 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2233 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2234 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2235 
2236 #ifdef CONFIG_SCHED_MM_CID
2237 void sched_mm_cid_before_execve(struct task_struct *t);
2238 void sched_mm_cid_after_execve(struct task_struct *t);
2239 void sched_mm_cid_fork(struct task_struct *t);
2240 void sched_mm_cid_exit_signals(struct task_struct *t);
2241 static inline int task_mm_cid(struct task_struct *t)
2242 {
2243 	return t->mm_cid;
2244 }
2245 #else
2246 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2247 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2248 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2249 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2250 static inline int task_mm_cid(struct task_struct *t)
2251 {
2252 	/*
2253 	 * Use the processor id as a fall-back when the mm cid feature is
2254 	 * disabled. This provides functional per-cpu data structure accesses
2255 	 * in user-space, althrough it won't provide the memory usage benefits.
2256 	 */
2257 	return raw_smp_processor_id();
2258 }
2259 #endif
2260 
2261 #ifdef CONFIG_MMU
2262 extern bool can_do_mlock(void);
2263 #else
2264 static inline bool can_do_mlock(void) { return false; }
2265 #endif
2266 extern int user_shm_lock(size_t, struct ucounts *);
2267 extern void user_shm_unlock(size_t, struct ucounts *);
2268 
2269 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2270 			     pte_t pte);
2271 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2272 			     pte_t pte);
2273 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2274 				pmd_t pmd);
2275 
2276 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2277 		  unsigned long size);
2278 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2279 			   unsigned long size, struct zap_details *details);
2280 static inline void zap_vma_pages(struct vm_area_struct *vma)
2281 {
2282 	zap_page_range_single(vma, vma->vm_start,
2283 			      vma->vm_end - vma->vm_start, NULL);
2284 }
2285 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2286 		struct vm_area_struct *start_vma, unsigned long start,
2287 		unsigned long end, bool mm_wr_locked);
2288 
2289 struct mmu_notifier_range;
2290 
2291 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2292 		unsigned long end, unsigned long floor, unsigned long ceiling);
2293 int
2294 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2295 int follow_pte(struct mm_struct *mm, unsigned long address,
2296 	       pte_t **ptepp, spinlock_t **ptlp);
2297 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2298 	unsigned long *pfn);
2299 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2300 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2301 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2302 			void *buf, int len, int write);
2303 
2304 extern void truncate_pagecache(struct inode *inode, loff_t new);
2305 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2306 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2307 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2308 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2309 
2310 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2311 		unsigned long address, struct pt_regs *regs);
2312 
2313 #ifdef CONFIG_MMU
2314 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2315 				  unsigned long address, unsigned int flags,
2316 				  struct pt_regs *regs);
2317 extern int fixup_user_fault(struct mm_struct *mm,
2318 			    unsigned long address, unsigned int fault_flags,
2319 			    bool *unlocked);
2320 void unmap_mapping_pages(struct address_space *mapping,
2321 		pgoff_t start, pgoff_t nr, bool even_cows);
2322 void unmap_mapping_range(struct address_space *mapping,
2323 		loff_t const holebegin, loff_t const holelen, int even_cows);
2324 #else
2325 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2326 					 unsigned long address, unsigned int flags,
2327 					 struct pt_regs *regs)
2328 {
2329 	/* should never happen if there's no MMU */
2330 	BUG();
2331 	return VM_FAULT_SIGBUS;
2332 }
2333 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2334 		unsigned int fault_flags, bool *unlocked)
2335 {
2336 	/* should never happen if there's no MMU */
2337 	BUG();
2338 	return -EFAULT;
2339 }
2340 static inline void unmap_mapping_pages(struct address_space *mapping,
2341 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2342 static inline void unmap_mapping_range(struct address_space *mapping,
2343 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2344 #endif
2345 
2346 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2347 		loff_t const holebegin, loff_t const holelen)
2348 {
2349 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2350 }
2351 
2352 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2353 						unsigned long addr);
2354 
2355 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2356 		void *buf, int len, unsigned int gup_flags);
2357 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2358 		void *buf, int len, unsigned int gup_flags);
2359 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2360 			      void *buf, int len, unsigned int gup_flags);
2361 
2362 long get_user_pages_remote(struct mm_struct *mm,
2363 			   unsigned long start, unsigned long nr_pages,
2364 			   unsigned int gup_flags, struct page **pages,
2365 			   int *locked);
2366 long pin_user_pages_remote(struct mm_struct *mm,
2367 			   unsigned long start, unsigned long nr_pages,
2368 			   unsigned int gup_flags, struct page **pages,
2369 			   int *locked);
2370 
2371 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2372 						    unsigned long addr,
2373 						    int gup_flags,
2374 						    struct vm_area_struct **vmap)
2375 {
2376 	struct page *page;
2377 	struct vm_area_struct *vma;
2378 	int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2379 
2380 	if (got < 0)
2381 		return ERR_PTR(got);
2382 	if (got == 0)
2383 		return NULL;
2384 
2385 	vma = vma_lookup(mm, addr);
2386 	if (WARN_ON_ONCE(!vma)) {
2387 		put_page(page);
2388 		return ERR_PTR(-EINVAL);
2389 	}
2390 
2391 	*vmap = vma;
2392 	return page;
2393 }
2394 
2395 long get_user_pages(unsigned long start, unsigned long nr_pages,
2396 		    unsigned int gup_flags, struct page **pages);
2397 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2398 		    unsigned int gup_flags, struct page **pages);
2399 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2400 		    struct page **pages, unsigned int gup_flags);
2401 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2402 		    struct page **pages, unsigned int gup_flags);
2403 
2404 int get_user_pages_fast(unsigned long start, int nr_pages,
2405 			unsigned int gup_flags, struct page **pages);
2406 int pin_user_pages_fast(unsigned long start, int nr_pages,
2407 			unsigned int gup_flags, struct page **pages);
2408 void folio_add_pin(struct folio *folio);
2409 
2410 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2411 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2412 			struct task_struct *task, bool bypass_rlim);
2413 
2414 struct kvec;
2415 struct page *get_dump_page(unsigned long addr);
2416 
2417 bool folio_mark_dirty(struct folio *folio);
2418 bool set_page_dirty(struct page *page);
2419 int set_page_dirty_lock(struct page *page);
2420 
2421 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2422 
2423 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2424 		unsigned long old_addr, struct vm_area_struct *new_vma,
2425 		unsigned long new_addr, unsigned long len,
2426 		bool need_rmap_locks);
2427 
2428 /*
2429  * Flags used by change_protection().  For now we make it a bitmap so
2430  * that we can pass in multiple flags just like parameters.  However
2431  * for now all the callers are only use one of the flags at the same
2432  * time.
2433  */
2434 /*
2435  * Whether we should manually check if we can map individual PTEs writable,
2436  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2437  * PTEs automatically in a writable mapping.
2438  */
2439 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2440 /* Whether this protection change is for NUMA hints */
2441 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2442 /* Whether this change is for write protecting */
2443 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2444 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2445 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2446 					    MM_CP_UFFD_WP_RESOLVE)
2447 
2448 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2449 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2450 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2451 {
2452 	/*
2453 	 * We want to check manually if we can change individual PTEs writable
2454 	 * if we can't do that automatically for all PTEs in a mapping. For
2455 	 * private mappings, that's always the case when we have write
2456 	 * permissions as we properly have to handle COW.
2457 	 */
2458 	if (vma->vm_flags & VM_SHARED)
2459 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2460 	return !!(vma->vm_flags & VM_WRITE);
2461 
2462 }
2463 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2464 			     pte_t pte);
2465 extern long change_protection(struct mmu_gather *tlb,
2466 			      struct vm_area_struct *vma, unsigned long start,
2467 			      unsigned long end, unsigned long cp_flags);
2468 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2469 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2470 	  unsigned long start, unsigned long end, unsigned long newflags);
2471 
2472 /*
2473  * doesn't attempt to fault and will return short.
2474  */
2475 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2476 			     unsigned int gup_flags, struct page **pages);
2477 
2478 static inline bool get_user_page_fast_only(unsigned long addr,
2479 			unsigned int gup_flags, struct page **pagep)
2480 {
2481 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2482 }
2483 /*
2484  * per-process(per-mm_struct) statistics.
2485  */
2486 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2487 {
2488 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2489 }
2490 
2491 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2492 
2493 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2494 {
2495 	percpu_counter_add(&mm->rss_stat[member], value);
2496 
2497 	mm_trace_rss_stat(mm, member);
2498 }
2499 
2500 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2501 {
2502 	percpu_counter_inc(&mm->rss_stat[member]);
2503 
2504 	mm_trace_rss_stat(mm, member);
2505 }
2506 
2507 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2508 {
2509 	percpu_counter_dec(&mm->rss_stat[member]);
2510 
2511 	mm_trace_rss_stat(mm, member);
2512 }
2513 
2514 /* Optimized variant when page is already known not to be PageAnon */
2515 static inline int mm_counter_file(struct page *page)
2516 {
2517 	if (PageSwapBacked(page))
2518 		return MM_SHMEMPAGES;
2519 	return MM_FILEPAGES;
2520 }
2521 
2522 static inline int mm_counter(struct page *page)
2523 {
2524 	if (PageAnon(page))
2525 		return MM_ANONPAGES;
2526 	return mm_counter_file(page);
2527 }
2528 
2529 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2530 {
2531 	return get_mm_counter(mm, MM_FILEPAGES) +
2532 		get_mm_counter(mm, MM_ANONPAGES) +
2533 		get_mm_counter(mm, MM_SHMEMPAGES);
2534 }
2535 
2536 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2537 {
2538 	return max(mm->hiwater_rss, get_mm_rss(mm));
2539 }
2540 
2541 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2542 {
2543 	return max(mm->hiwater_vm, mm->total_vm);
2544 }
2545 
2546 static inline void update_hiwater_rss(struct mm_struct *mm)
2547 {
2548 	unsigned long _rss = get_mm_rss(mm);
2549 
2550 	if ((mm)->hiwater_rss < _rss)
2551 		(mm)->hiwater_rss = _rss;
2552 }
2553 
2554 static inline void update_hiwater_vm(struct mm_struct *mm)
2555 {
2556 	if (mm->hiwater_vm < mm->total_vm)
2557 		mm->hiwater_vm = mm->total_vm;
2558 }
2559 
2560 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2561 {
2562 	mm->hiwater_rss = get_mm_rss(mm);
2563 }
2564 
2565 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2566 					 struct mm_struct *mm)
2567 {
2568 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2569 
2570 	if (*maxrss < hiwater_rss)
2571 		*maxrss = hiwater_rss;
2572 }
2573 
2574 #if defined(SPLIT_RSS_COUNTING)
2575 void sync_mm_rss(struct mm_struct *mm);
2576 #else
2577 static inline void sync_mm_rss(struct mm_struct *mm)
2578 {
2579 }
2580 #endif
2581 
2582 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2583 static inline int pte_special(pte_t pte)
2584 {
2585 	return 0;
2586 }
2587 
2588 static inline pte_t pte_mkspecial(pte_t pte)
2589 {
2590 	return pte;
2591 }
2592 #endif
2593 
2594 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2595 static inline int pte_devmap(pte_t pte)
2596 {
2597 	return 0;
2598 }
2599 #endif
2600 
2601 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2602 			       spinlock_t **ptl);
2603 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2604 				    spinlock_t **ptl)
2605 {
2606 	pte_t *ptep;
2607 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2608 	return ptep;
2609 }
2610 
2611 #ifdef __PAGETABLE_P4D_FOLDED
2612 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2613 						unsigned long address)
2614 {
2615 	return 0;
2616 }
2617 #else
2618 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2619 #endif
2620 
2621 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2622 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2623 						unsigned long address)
2624 {
2625 	return 0;
2626 }
2627 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2628 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2629 
2630 #else
2631 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2632 
2633 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2634 {
2635 	if (mm_pud_folded(mm))
2636 		return;
2637 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2638 }
2639 
2640 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2641 {
2642 	if (mm_pud_folded(mm))
2643 		return;
2644 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2645 }
2646 #endif
2647 
2648 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2649 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2650 						unsigned long address)
2651 {
2652 	return 0;
2653 }
2654 
2655 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2656 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2657 
2658 #else
2659 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2660 
2661 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2662 {
2663 	if (mm_pmd_folded(mm))
2664 		return;
2665 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2666 }
2667 
2668 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2669 {
2670 	if (mm_pmd_folded(mm))
2671 		return;
2672 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2673 }
2674 #endif
2675 
2676 #ifdef CONFIG_MMU
2677 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2678 {
2679 	atomic_long_set(&mm->pgtables_bytes, 0);
2680 }
2681 
2682 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2683 {
2684 	return atomic_long_read(&mm->pgtables_bytes);
2685 }
2686 
2687 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2688 {
2689 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2690 }
2691 
2692 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2693 {
2694 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2695 }
2696 #else
2697 
2698 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2699 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2700 {
2701 	return 0;
2702 }
2703 
2704 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2705 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2706 #endif
2707 
2708 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2709 int __pte_alloc_kernel(pmd_t *pmd);
2710 
2711 #if defined(CONFIG_MMU)
2712 
2713 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2714 		unsigned long address)
2715 {
2716 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2717 		NULL : p4d_offset(pgd, address);
2718 }
2719 
2720 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2721 		unsigned long address)
2722 {
2723 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2724 		NULL : pud_offset(p4d, address);
2725 }
2726 
2727 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2728 {
2729 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2730 		NULL: pmd_offset(pud, address);
2731 }
2732 #endif /* CONFIG_MMU */
2733 
2734 #if USE_SPLIT_PTE_PTLOCKS
2735 #if ALLOC_SPLIT_PTLOCKS
2736 void __init ptlock_cache_init(void);
2737 extern bool ptlock_alloc(struct page *page);
2738 extern void ptlock_free(struct page *page);
2739 
2740 static inline spinlock_t *ptlock_ptr(struct page *page)
2741 {
2742 	return page->ptl;
2743 }
2744 #else /* ALLOC_SPLIT_PTLOCKS */
2745 static inline void ptlock_cache_init(void)
2746 {
2747 }
2748 
2749 static inline bool ptlock_alloc(struct page *page)
2750 {
2751 	return true;
2752 }
2753 
2754 static inline void ptlock_free(struct page *page)
2755 {
2756 }
2757 
2758 static inline spinlock_t *ptlock_ptr(struct page *page)
2759 {
2760 	return &page->ptl;
2761 }
2762 #endif /* ALLOC_SPLIT_PTLOCKS */
2763 
2764 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2765 {
2766 	return ptlock_ptr(pmd_page(*pmd));
2767 }
2768 
2769 static inline bool ptlock_init(struct page *page)
2770 {
2771 	/*
2772 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2773 	 * with 0. Make sure nobody took it in use in between.
2774 	 *
2775 	 * It can happen if arch try to use slab for page table allocation:
2776 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2777 	 */
2778 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2779 	if (!ptlock_alloc(page))
2780 		return false;
2781 	spin_lock_init(ptlock_ptr(page));
2782 	return true;
2783 }
2784 
2785 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2786 /*
2787  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2788  */
2789 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2790 {
2791 	return &mm->page_table_lock;
2792 }
2793 static inline void ptlock_cache_init(void) {}
2794 static inline bool ptlock_init(struct page *page) { return true; }
2795 static inline void ptlock_free(struct page *page) {}
2796 #endif /* USE_SPLIT_PTE_PTLOCKS */
2797 
2798 static inline bool pgtable_pte_page_ctor(struct page *page)
2799 {
2800 	if (!ptlock_init(page))
2801 		return false;
2802 	__SetPageTable(page);
2803 	inc_lruvec_page_state(page, NR_PAGETABLE);
2804 	return true;
2805 }
2806 
2807 static inline void pgtable_pte_page_dtor(struct page *page)
2808 {
2809 	ptlock_free(page);
2810 	__ClearPageTable(page);
2811 	dec_lruvec_page_state(page, NR_PAGETABLE);
2812 }
2813 
2814 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2815 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2816 {
2817 	return __pte_offset_map(pmd, addr, NULL);
2818 }
2819 
2820 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2821 			unsigned long addr, spinlock_t **ptlp);
2822 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2823 			unsigned long addr, spinlock_t **ptlp)
2824 {
2825 	pte_t *pte;
2826 
2827 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2828 	return pte;
2829 }
2830 
2831 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2832 			unsigned long addr, spinlock_t **ptlp);
2833 
2834 #define pte_unmap_unlock(pte, ptl)	do {		\
2835 	spin_unlock(ptl);				\
2836 	pte_unmap(pte);					\
2837 } while (0)
2838 
2839 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2840 
2841 #define pte_alloc_map(mm, pmd, address)			\
2842 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2843 
2844 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2845 	(pte_alloc(mm, pmd) ?			\
2846 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2847 
2848 #define pte_alloc_kernel(pmd, address)			\
2849 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2850 		NULL: pte_offset_kernel(pmd, address))
2851 
2852 #if USE_SPLIT_PMD_PTLOCKS
2853 
2854 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2855 {
2856 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2857 	return virt_to_page((void *)((unsigned long) pmd & mask));
2858 }
2859 
2860 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2861 {
2862 	return ptlock_ptr(pmd_pgtable_page(pmd));
2863 }
2864 
2865 static inline bool pmd_ptlock_init(struct page *page)
2866 {
2867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2868 	page->pmd_huge_pte = NULL;
2869 #endif
2870 	return ptlock_init(page);
2871 }
2872 
2873 static inline void pmd_ptlock_free(struct page *page)
2874 {
2875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2876 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2877 #endif
2878 	ptlock_free(page);
2879 }
2880 
2881 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2882 
2883 #else
2884 
2885 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2886 {
2887 	return &mm->page_table_lock;
2888 }
2889 
2890 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2891 static inline void pmd_ptlock_free(struct page *page) {}
2892 
2893 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2894 
2895 #endif
2896 
2897 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2898 {
2899 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2900 	spin_lock(ptl);
2901 	return ptl;
2902 }
2903 
2904 static inline bool pgtable_pmd_page_ctor(struct page *page)
2905 {
2906 	if (!pmd_ptlock_init(page))
2907 		return false;
2908 	__SetPageTable(page);
2909 	inc_lruvec_page_state(page, NR_PAGETABLE);
2910 	return true;
2911 }
2912 
2913 static inline void pgtable_pmd_page_dtor(struct page *page)
2914 {
2915 	pmd_ptlock_free(page);
2916 	__ClearPageTable(page);
2917 	dec_lruvec_page_state(page, NR_PAGETABLE);
2918 }
2919 
2920 /*
2921  * No scalability reason to split PUD locks yet, but follow the same pattern
2922  * as the PMD locks to make it easier if we decide to.  The VM should not be
2923  * considered ready to switch to split PUD locks yet; there may be places
2924  * which need to be converted from page_table_lock.
2925  */
2926 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2927 {
2928 	return &mm->page_table_lock;
2929 }
2930 
2931 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2932 {
2933 	spinlock_t *ptl = pud_lockptr(mm, pud);
2934 
2935 	spin_lock(ptl);
2936 	return ptl;
2937 }
2938 
2939 extern void __init pagecache_init(void);
2940 extern void free_initmem(void);
2941 
2942 /*
2943  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2944  * into the buddy system. The freed pages will be poisoned with pattern
2945  * "poison" if it's within range [0, UCHAR_MAX].
2946  * Return pages freed into the buddy system.
2947  */
2948 extern unsigned long free_reserved_area(void *start, void *end,
2949 					int poison, const char *s);
2950 
2951 extern void adjust_managed_page_count(struct page *page, long count);
2952 
2953 extern void reserve_bootmem_region(phys_addr_t start,
2954 				   phys_addr_t end, int nid);
2955 
2956 /* Free the reserved page into the buddy system, so it gets managed. */
2957 static inline void free_reserved_page(struct page *page)
2958 {
2959 	ClearPageReserved(page);
2960 	init_page_count(page);
2961 	__free_page(page);
2962 	adjust_managed_page_count(page, 1);
2963 }
2964 #define free_highmem_page(page) free_reserved_page(page)
2965 
2966 static inline void mark_page_reserved(struct page *page)
2967 {
2968 	SetPageReserved(page);
2969 	adjust_managed_page_count(page, -1);
2970 }
2971 
2972 /*
2973  * Default method to free all the __init memory into the buddy system.
2974  * The freed pages will be poisoned with pattern "poison" if it's within
2975  * range [0, UCHAR_MAX].
2976  * Return pages freed into the buddy system.
2977  */
2978 static inline unsigned long free_initmem_default(int poison)
2979 {
2980 	extern char __init_begin[], __init_end[];
2981 
2982 	return free_reserved_area(&__init_begin, &__init_end,
2983 				  poison, "unused kernel image (initmem)");
2984 }
2985 
2986 static inline unsigned long get_num_physpages(void)
2987 {
2988 	int nid;
2989 	unsigned long phys_pages = 0;
2990 
2991 	for_each_online_node(nid)
2992 		phys_pages += node_present_pages(nid);
2993 
2994 	return phys_pages;
2995 }
2996 
2997 /*
2998  * Using memblock node mappings, an architecture may initialise its
2999  * zones, allocate the backing mem_map and account for memory holes in an
3000  * architecture independent manner.
3001  *
3002  * An architecture is expected to register range of page frames backed by
3003  * physical memory with memblock_add[_node]() before calling
3004  * free_area_init() passing in the PFN each zone ends at. At a basic
3005  * usage, an architecture is expected to do something like
3006  *
3007  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3008  * 							 max_highmem_pfn};
3009  * for_each_valid_physical_page_range()
3010  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3011  * free_area_init(max_zone_pfns);
3012  */
3013 void free_area_init(unsigned long *max_zone_pfn);
3014 unsigned long node_map_pfn_alignment(void);
3015 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3016 						unsigned long end_pfn);
3017 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3018 						unsigned long end_pfn);
3019 extern void get_pfn_range_for_nid(unsigned int nid,
3020 			unsigned long *start_pfn, unsigned long *end_pfn);
3021 
3022 #ifndef CONFIG_NUMA
3023 static inline int early_pfn_to_nid(unsigned long pfn)
3024 {
3025 	return 0;
3026 }
3027 #else
3028 /* please see mm/page_alloc.c */
3029 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3030 #endif
3031 
3032 extern void set_dma_reserve(unsigned long new_dma_reserve);
3033 extern void mem_init(void);
3034 extern void __init mmap_init(void);
3035 
3036 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3037 static inline void show_mem(void)
3038 {
3039 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3040 }
3041 extern long si_mem_available(void);
3042 extern void si_meminfo(struct sysinfo * val);
3043 extern void si_meminfo_node(struct sysinfo *val, int nid);
3044 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3045 extern unsigned long arch_reserved_kernel_pages(void);
3046 #endif
3047 
3048 extern __printf(3, 4)
3049 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3050 
3051 extern void setup_per_cpu_pageset(void);
3052 
3053 /* nommu.c */
3054 extern atomic_long_t mmap_pages_allocated;
3055 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3056 
3057 /* interval_tree.c */
3058 void vma_interval_tree_insert(struct vm_area_struct *node,
3059 			      struct rb_root_cached *root);
3060 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3061 				    struct vm_area_struct *prev,
3062 				    struct rb_root_cached *root);
3063 void vma_interval_tree_remove(struct vm_area_struct *node,
3064 			      struct rb_root_cached *root);
3065 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3066 				unsigned long start, unsigned long last);
3067 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3068 				unsigned long start, unsigned long last);
3069 
3070 #define vma_interval_tree_foreach(vma, root, start, last)		\
3071 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3072 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3073 
3074 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3075 				   struct rb_root_cached *root);
3076 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3077 				   struct rb_root_cached *root);
3078 struct anon_vma_chain *
3079 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3080 				  unsigned long start, unsigned long last);
3081 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3082 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3083 #ifdef CONFIG_DEBUG_VM_RB
3084 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3085 #endif
3086 
3087 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3088 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3089 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3090 
3091 /* mmap.c */
3092 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3093 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3094 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3095 		      struct vm_area_struct *next);
3096 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3097 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3098 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3099 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3100 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3101 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3102 	struct anon_vma_name *);
3103 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3104 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3105 		       unsigned long addr, int new_below);
3106 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3107 			 unsigned long addr, int new_below);
3108 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3109 extern void unlink_file_vma(struct vm_area_struct *);
3110 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3111 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3112 	bool *need_rmap_locks);
3113 extern void exit_mmap(struct mm_struct *);
3114 
3115 static inline int check_data_rlimit(unsigned long rlim,
3116 				    unsigned long new,
3117 				    unsigned long start,
3118 				    unsigned long end_data,
3119 				    unsigned long start_data)
3120 {
3121 	if (rlim < RLIM_INFINITY) {
3122 		if (((new - start) + (end_data - start_data)) > rlim)
3123 			return -ENOSPC;
3124 	}
3125 
3126 	return 0;
3127 }
3128 
3129 extern int mm_take_all_locks(struct mm_struct *mm);
3130 extern void mm_drop_all_locks(struct mm_struct *mm);
3131 
3132 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3133 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3134 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3135 extern struct file *get_task_exe_file(struct task_struct *task);
3136 
3137 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3138 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3139 
3140 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3141 				   const struct vm_special_mapping *sm);
3142 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3143 				   unsigned long addr, unsigned long len,
3144 				   unsigned long flags,
3145 				   const struct vm_special_mapping *spec);
3146 /* This is an obsolete alternative to _install_special_mapping. */
3147 extern int install_special_mapping(struct mm_struct *mm,
3148 				   unsigned long addr, unsigned long len,
3149 				   unsigned long flags, struct page **pages);
3150 
3151 unsigned long randomize_stack_top(unsigned long stack_top);
3152 unsigned long randomize_page(unsigned long start, unsigned long range);
3153 
3154 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3155 
3156 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3157 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3158 	struct list_head *uf);
3159 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3160 	unsigned long len, unsigned long prot, unsigned long flags,
3161 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3162 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3163 			 unsigned long start, size_t len, struct list_head *uf,
3164 			 bool unlock);
3165 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3166 		     struct list_head *uf);
3167 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3168 
3169 #ifdef CONFIG_MMU
3170 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3171 			 unsigned long start, unsigned long end,
3172 			 struct list_head *uf, bool unlock);
3173 extern int __mm_populate(unsigned long addr, unsigned long len,
3174 			 int ignore_errors);
3175 static inline void mm_populate(unsigned long addr, unsigned long len)
3176 {
3177 	/* Ignore errors */
3178 	(void) __mm_populate(addr, len, 1);
3179 }
3180 #else
3181 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3182 #endif
3183 
3184 /* These take the mm semaphore themselves */
3185 extern int __must_check vm_brk(unsigned long, unsigned long);
3186 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3187 extern int vm_munmap(unsigned long, size_t);
3188 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3189         unsigned long, unsigned long,
3190         unsigned long, unsigned long);
3191 
3192 struct vm_unmapped_area_info {
3193 #define VM_UNMAPPED_AREA_TOPDOWN 1
3194 	unsigned long flags;
3195 	unsigned long length;
3196 	unsigned long low_limit;
3197 	unsigned long high_limit;
3198 	unsigned long align_mask;
3199 	unsigned long align_offset;
3200 };
3201 
3202 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3203 
3204 /* truncate.c */
3205 extern void truncate_inode_pages(struct address_space *, loff_t);
3206 extern void truncate_inode_pages_range(struct address_space *,
3207 				       loff_t lstart, loff_t lend);
3208 extern void truncate_inode_pages_final(struct address_space *);
3209 
3210 /* generic vm_area_ops exported for stackable file systems */
3211 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3212 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3213 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3214 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3215 
3216 extern unsigned long stack_guard_gap;
3217 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3218 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3219 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3220 
3221 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3222 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3223 
3224 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3225 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3226 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3227 					     struct vm_area_struct **pprev);
3228 
3229 /*
3230  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3231  * NULL if none.  Assume start_addr < end_addr.
3232  */
3233 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3234 			unsigned long start_addr, unsigned long end_addr);
3235 
3236 /**
3237  * vma_lookup() - Find a VMA at a specific address
3238  * @mm: The process address space.
3239  * @addr: The user address.
3240  *
3241  * Return: The vm_area_struct at the given address, %NULL otherwise.
3242  */
3243 static inline
3244 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3245 {
3246 	return mtree_load(&mm->mm_mt, addr);
3247 }
3248 
3249 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3250 {
3251 	unsigned long vm_start = vma->vm_start;
3252 
3253 	if (vma->vm_flags & VM_GROWSDOWN) {
3254 		vm_start -= stack_guard_gap;
3255 		if (vm_start > vma->vm_start)
3256 			vm_start = 0;
3257 	}
3258 	return vm_start;
3259 }
3260 
3261 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3262 {
3263 	unsigned long vm_end = vma->vm_end;
3264 
3265 	if (vma->vm_flags & VM_GROWSUP) {
3266 		vm_end += stack_guard_gap;
3267 		if (vm_end < vma->vm_end)
3268 			vm_end = -PAGE_SIZE;
3269 	}
3270 	return vm_end;
3271 }
3272 
3273 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3274 {
3275 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3276 }
3277 
3278 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3279 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3280 				unsigned long vm_start, unsigned long vm_end)
3281 {
3282 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3283 
3284 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3285 		vma = NULL;
3286 
3287 	return vma;
3288 }
3289 
3290 static inline bool range_in_vma(struct vm_area_struct *vma,
3291 				unsigned long start, unsigned long end)
3292 {
3293 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3294 }
3295 
3296 #ifdef CONFIG_MMU
3297 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3298 void vma_set_page_prot(struct vm_area_struct *vma);
3299 #else
3300 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3301 {
3302 	return __pgprot(0);
3303 }
3304 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3305 {
3306 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3307 }
3308 #endif
3309 
3310 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3311 
3312 #ifdef CONFIG_NUMA_BALANCING
3313 unsigned long change_prot_numa(struct vm_area_struct *vma,
3314 			unsigned long start, unsigned long end);
3315 #endif
3316 
3317 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3318 		unsigned long addr);
3319 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3320 			unsigned long pfn, unsigned long size, pgprot_t);
3321 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3322 		unsigned long pfn, unsigned long size, pgprot_t prot);
3323 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3324 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3325 			struct page **pages, unsigned long *num);
3326 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3327 				unsigned long num);
3328 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3329 				unsigned long num);
3330 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3331 			unsigned long pfn);
3332 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3333 			unsigned long pfn, pgprot_t pgprot);
3334 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3335 			pfn_t pfn);
3336 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3337 		unsigned long addr, pfn_t pfn);
3338 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3339 
3340 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3341 				unsigned long addr, struct page *page)
3342 {
3343 	int err = vm_insert_page(vma, addr, page);
3344 
3345 	if (err == -ENOMEM)
3346 		return VM_FAULT_OOM;
3347 	if (err < 0 && err != -EBUSY)
3348 		return VM_FAULT_SIGBUS;
3349 
3350 	return VM_FAULT_NOPAGE;
3351 }
3352 
3353 #ifndef io_remap_pfn_range
3354 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3355 				     unsigned long addr, unsigned long pfn,
3356 				     unsigned long size, pgprot_t prot)
3357 {
3358 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3359 }
3360 #endif
3361 
3362 static inline vm_fault_t vmf_error(int err)
3363 {
3364 	if (err == -ENOMEM)
3365 		return VM_FAULT_OOM;
3366 	else if (err == -EHWPOISON)
3367 		return VM_FAULT_HWPOISON;
3368 	return VM_FAULT_SIGBUS;
3369 }
3370 
3371 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3372 			 unsigned int foll_flags);
3373 
3374 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3375 {
3376 	if (vm_fault & VM_FAULT_OOM)
3377 		return -ENOMEM;
3378 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3379 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3380 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3381 		return -EFAULT;
3382 	return 0;
3383 }
3384 
3385 /*
3386  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3387  * a (NUMA hinting) fault is required.
3388  */
3389 static inline bool gup_can_follow_protnone(unsigned int flags)
3390 {
3391 	/*
3392 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3393 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3394 	 * application behaviour and we should avoid triggering NUMA hinting
3395 	 * faults.
3396 	 */
3397 	return flags & FOLL_FORCE;
3398 }
3399 
3400 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3401 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3402 			       unsigned long size, pte_fn_t fn, void *data);
3403 extern int apply_to_existing_page_range(struct mm_struct *mm,
3404 				   unsigned long address, unsigned long size,
3405 				   pte_fn_t fn, void *data);
3406 
3407 #ifdef CONFIG_PAGE_POISONING
3408 extern void __kernel_poison_pages(struct page *page, int numpages);
3409 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3410 extern bool _page_poisoning_enabled_early;
3411 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3412 static inline bool page_poisoning_enabled(void)
3413 {
3414 	return _page_poisoning_enabled_early;
3415 }
3416 /*
3417  * For use in fast paths after init_mem_debugging() has run, or when a
3418  * false negative result is not harmful when called too early.
3419  */
3420 static inline bool page_poisoning_enabled_static(void)
3421 {
3422 	return static_branch_unlikely(&_page_poisoning_enabled);
3423 }
3424 static inline void kernel_poison_pages(struct page *page, int numpages)
3425 {
3426 	if (page_poisoning_enabled_static())
3427 		__kernel_poison_pages(page, numpages);
3428 }
3429 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3430 {
3431 	if (page_poisoning_enabled_static())
3432 		__kernel_unpoison_pages(page, numpages);
3433 }
3434 #else
3435 static inline bool page_poisoning_enabled(void) { return false; }
3436 static inline bool page_poisoning_enabled_static(void) { return false; }
3437 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3438 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3439 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3440 #endif
3441 
3442 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3443 static inline bool want_init_on_alloc(gfp_t flags)
3444 {
3445 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3446 				&init_on_alloc))
3447 		return true;
3448 	return flags & __GFP_ZERO;
3449 }
3450 
3451 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3452 static inline bool want_init_on_free(void)
3453 {
3454 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3455 				   &init_on_free);
3456 }
3457 
3458 extern bool _debug_pagealloc_enabled_early;
3459 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3460 
3461 static inline bool debug_pagealloc_enabled(void)
3462 {
3463 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3464 		_debug_pagealloc_enabled_early;
3465 }
3466 
3467 /*
3468  * For use in fast paths after init_debug_pagealloc() has run, or when a
3469  * false negative result is not harmful when called too early.
3470  */
3471 static inline bool debug_pagealloc_enabled_static(void)
3472 {
3473 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3474 		return false;
3475 
3476 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3477 }
3478 
3479 /*
3480  * To support DEBUG_PAGEALLOC architecture must ensure that
3481  * __kernel_map_pages() never fails
3482  */
3483 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3484 #ifdef CONFIG_DEBUG_PAGEALLOC
3485 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3486 {
3487 	if (debug_pagealloc_enabled_static())
3488 		__kernel_map_pages(page, numpages, 1);
3489 }
3490 
3491 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3492 {
3493 	if (debug_pagealloc_enabled_static())
3494 		__kernel_map_pages(page, numpages, 0);
3495 }
3496 
3497 extern unsigned int _debug_guardpage_minorder;
3498 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3499 
3500 static inline unsigned int debug_guardpage_minorder(void)
3501 {
3502 	return _debug_guardpage_minorder;
3503 }
3504 
3505 static inline bool debug_guardpage_enabled(void)
3506 {
3507 	return static_branch_unlikely(&_debug_guardpage_enabled);
3508 }
3509 
3510 static inline bool page_is_guard(struct page *page)
3511 {
3512 	if (!debug_guardpage_enabled())
3513 		return false;
3514 
3515 	return PageGuard(page);
3516 }
3517 
3518 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3519 		      int migratetype);
3520 static inline bool set_page_guard(struct zone *zone, struct page *page,
3521 				  unsigned int order, int migratetype)
3522 {
3523 	if (!debug_guardpage_enabled())
3524 		return false;
3525 	return __set_page_guard(zone, page, order, migratetype);
3526 }
3527 
3528 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3529 			int migratetype);
3530 static inline void clear_page_guard(struct zone *zone, struct page *page,
3531 				    unsigned int order, int migratetype)
3532 {
3533 	if (!debug_guardpage_enabled())
3534 		return;
3535 	__clear_page_guard(zone, page, order, migratetype);
3536 }
3537 
3538 #else	/* CONFIG_DEBUG_PAGEALLOC */
3539 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3540 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3541 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3542 static inline bool debug_guardpage_enabled(void) { return false; }
3543 static inline bool page_is_guard(struct page *page) { return false; }
3544 static inline bool set_page_guard(struct zone *zone, struct page *page,
3545 			unsigned int order, int migratetype) { return false; }
3546 static inline void clear_page_guard(struct zone *zone, struct page *page,
3547 				unsigned int order, int migratetype) {}
3548 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3549 
3550 #ifdef __HAVE_ARCH_GATE_AREA
3551 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3552 extern int in_gate_area_no_mm(unsigned long addr);
3553 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3554 #else
3555 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3556 {
3557 	return NULL;
3558 }
3559 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3560 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3561 {
3562 	return 0;
3563 }
3564 #endif	/* __HAVE_ARCH_GATE_AREA */
3565 
3566 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3567 
3568 #ifdef CONFIG_SYSCTL
3569 extern int sysctl_drop_caches;
3570 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3571 		loff_t *);
3572 #endif
3573 
3574 void drop_slab(void);
3575 
3576 #ifndef CONFIG_MMU
3577 #define randomize_va_space 0
3578 #else
3579 extern int randomize_va_space;
3580 #endif
3581 
3582 const char * arch_vma_name(struct vm_area_struct *vma);
3583 #ifdef CONFIG_MMU
3584 void print_vma_addr(char *prefix, unsigned long rip);
3585 #else
3586 static inline void print_vma_addr(char *prefix, unsigned long rip)
3587 {
3588 }
3589 #endif
3590 
3591 void *sparse_buffer_alloc(unsigned long size);
3592 struct page * __populate_section_memmap(unsigned long pfn,
3593 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3594 		struct dev_pagemap *pgmap);
3595 void pmd_init(void *addr);
3596 void pud_init(void *addr);
3597 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3598 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3599 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3600 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3601 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3602 			    struct vmem_altmap *altmap, struct page *reuse);
3603 void *vmemmap_alloc_block(unsigned long size, int node);
3604 struct vmem_altmap;
3605 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3606 			      struct vmem_altmap *altmap);
3607 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3608 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3609 		     unsigned long addr, unsigned long next);
3610 int vmemmap_check_pmd(pmd_t *pmd, int node,
3611 		      unsigned long addr, unsigned long next);
3612 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3613 			       int node, struct vmem_altmap *altmap);
3614 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3615 			       int node, struct vmem_altmap *altmap);
3616 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3617 		struct vmem_altmap *altmap);
3618 void vmemmap_populate_print_last(void);
3619 #ifdef CONFIG_MEMORY_HOTPLUG
3620 void vmemmap_free(unsigned long start, unsigned long end,
3621 		struct vmem_altmap *altmap);
3622 #endif
3623 
3624 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3625 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3626 					   struct dev_pagemap *pgmap)
3627 {
3628 	return is_power_of_2(sizeof(struct page)) &&
3629 		pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3630 }
3631 #else
3632 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3633 					   struct dev_pagemap *pgmap)
3634 {
3635 	return false;
3636 }
3637 #endif
3638 
3639 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3640 				  unsigned long nr_pages);
3641 
3642 enum mf_flags {
3643 	MF_COUNT_INCREASED = 1 << 0,
3644 	MF_ACTION_REQUIRED = 1 << 1,
3645 	MF_MUST_KILL = 1 << 2,
3646 	MF_SOFT_OFFLINE = 1 << 3,
3647 	MF_UNPOISON = 1 << 4,
3648 	MF_SW_SIMULATED = 1 << 5,
3649 	MF_NO_RETRY = 1 << 6,
3650 };
3651 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3652 		      unsigned long count, int mf_flags);
3653 extern int memory_failure(unsigned long pfn, int flags);
3654 extern void memory_failure_queue_kick(int cpu);
3655 extern int unpoison_memory(unsigned long pfn);
3656 extern void shake_page(struct page *p);
3657 extern atomic_long_t num_poisoned_pages __read_mostly;
3658 extern int soft_offline_page(unsigned long pfn, int flags);
3659 #ifdef CONFIG_MEMORY_FAILURE
3660 /*
3661  * Sysfs entries for memory failure handling statistics.
3662  */
3663 extern const struct attribute_group memory_failure_attr_group;
3664 extern void memory_failure_queue(unsigned long pfn, int flags);
3665 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3666 					bool *migratable_cleared);
3667 void num_poisoned_pages_inc(unsigned long pfn);
3668 void num_poisoned_pages_sub(unsigned long pfn, long i);
3669 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3670 #else
3671 static inline void memory_failure_queue(unsigned long pfn, int flags)
3672 {
3673 }
3674 
3675 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3676 					bool *migratable_cleared)
3677 {
3678 	return 0;
3679 }
3680 
3681 static inline void num_poisoned_pages_inc(unsigned long pfn)
3682 {
3683 }
3684 
3685 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3686 {
3687 }
3688 #endif
3689 
3690 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3691 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3692 		     struct vm_area_struct *vma, struct list_head *to_kill,
3693 		     unsigned long ksm_addr);
3694 #endif
3695 
3696 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3697 extern void memblk_nr_poison_inc(unsigned long pfn);
3698 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3699 #else
3700 static inline void memblk_nr_poison_inc(unsigned long pfn)
3701 {
3702 }
3703 
3704 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3705 {
3706 }
3707 #endif
3708 
3709 #ifndef arch_memory_failure
3710 static inline int arch_memory_failure(unsigned long pfn, int flags)
3711 {
3712 	return -ENXIO;
3713 }
3714 #endif
3715 
3716 #ifndef arch_is_platform_page
3717 static inline bool arch_is_platform_page(u64 paddr)
3718 {
3719 	return false;
3720 }
3721 #endif
3722 
3723 /*
3724  * Error handlers for various types of pages.
3725  */
3726 enum mf_result {
3727 	MF_IGNORED,	/* Error: cannot be handled */
3728 	MF_FAILED,	/* Error: handling failed */
3729 	MF_DELAYED,	/* Will be handled later */
3730 	MF_RECOVERED,	/* Successfully recovered */
3731 };
3732 
3733 enum mf_action_page_type {
3734 	MF_MSG_KERNEL,
3735 	MF_MSG_KERNEL_HIGH_ORDER,
3736 	MF_MSG_SLAB,
3737 	MF_MSG_DIFFERENT_COMPOUND,
3738 	MF_MSG_HUGE,
3739 	MF_MSG_FREE_HUGE,
3740 	MF_MSG_UNMAP_FAILED,
3741 	MF_MSG_DIRTY_SWAPCACHE,
3742 	MF_MSG_CLEAN_SWAPCACHE,
3743 	MF_MSG_DIRTY_MLOCKED_LRU,
3744 	MF_MSG_CLEAN_MLOCKED_LRU,
3745 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3746 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3747 	MF_MSG_DIRTY_LRU,
3748 	MF_MSG_CLEAN_LRU,
3749 	MF_MSG_TRUNCATED_LRU,
3750 	MF_MSG_BUDDY,
3751 	MF_MSG_DAX,
3752 	MF_MSG_UNSPLIT_THP,
3753 	MF_MSG_UNKNOWN,
3754 };
3755 
3756 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3757 extern void clear_huge_page(struct page *page,
3758 			    unsigned long addr_hint,
3759 			    unsigned int pages_per_huge_page);
3760 int copy_user_large_folio(struct folio *dst, struct folio *src,
3761 			  unsigned long addr_hint,
3762 			  struct vm_area_struct *vma);
3763 long copy_folio_from_user(struct folio *dst_folio,
3764 			   const void __user *usr_src,
3765 			   bool allow_pagefault);
3766 
3767 /**
3768  * vma_is_special_huge - Are transhuge page-table entries considered special?
3769  * @vma: Pointer to the struct vm_area_struct to consider
3770  *
3771  * Whether transhuge page-table entries are considered "special" following
3772  * the definition in vm_normal_page().
3773  *
3774  * Return: true if transhuge page-table entries should be considered special,
3775  * false otherwise.
3776  */
3777 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3778 {
3779 	return vma_is_dax(vma) || (vma->vm_file &&
3780 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3781 }
3782 
3783 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3784 
3785 #if MAX_NUMNODES > 1
3786 void __init setup_nr_node_ids(void);
3787 #else
3788 static inline void setup_nr_node_ids(void) {}
3789 #endif
3790 
3791 extern int memcmp_pages(struct page *page1, struct page *page2);
3792 
3793 static inline int pages_identical(struct page *page1, struct page *page2)
3794 {
3795 	return !memcmp_pages(page1, page2);
3796 }
3797 
3798 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3799 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3800 						pgoff_t first_index, pgoff_t nr,
3801 						pgoff_t bitmap_pgoff,
3802 						unsigned long *bitmap,
3803 						pgoff_t *start,
3804 						pgoff_t *end);
3805 
3806 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3807 				      pgoff_t first_index, pgoff_t nr);
3808 #endif
3809 
3810 extern int sysctl_nr_trim_pages;
3811 
3812 #ifdef CONFIG_PRINTK
3813 void mem_dump_obj(void *object);
3814 #else
3815 static inline void mem_dump_obj(void *object) {}
3816 #endif
3817 
3818 /**
3819  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3820  * @seals: the seals to check
3821  * @vma: the vma to operate on
3822  *
3823  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3824  * the vma flags.  Return 0 if check pass, or <0 for errors.
3825  */
3826 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3827 {
3828 	if (seals & F_SEAL_FUTURE_WRITE) {
3829 		/*
3830 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3831 		 * "future write" seal active.
3832 		 */
3833 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3834 			return -EPERM;
3835 
3836 		/*
3837 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3838 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3839 		 * revert protections on such mappings. Do this only for shared
3840 		 * mappings. For private mappings, don't need to mask
3841 		 * VM_MAYWRITE as we still want them to be COW-writable.
3842 		 */
3843 		if (vma->vm_flags & VM_SHARED)
3844 			vm_flags_clear(vma, VM_MAYWRITE);
3845 	}
3846 
3847 	return 0;
3848 }
3849 
3850 #ifdef CONFIG_ANON_VMA_NAME
3851 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3852 			  unsigned long len_in,
3853 			  struct anon_vma_name *anon_name);
3854 #else
3855 static inline int
3856 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3857 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3858 	return 0;
3859 }
3860 #endif
3861 
3862 #ifdef CONFIG_UNACCEPTED_MEMORY
3863 
3864 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3865 void accept_memory(phys_addr_t start, phys_addr_t end);
3866 
3867 #else
3868 
3869 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3870 						    phys_addr_t end)
3871 {
3872 	return false;
3873 }
3874 
3875 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3876 {
3877 }
3878 
3879 #endif
3880 
3881 #endif /* _LINUX_MM_H */
3882