1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329 #ifdef CONFIG_ARCH_HAS_PKEYS 330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #ifdef CONFIG_PPC 336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337 #else 338 # define VM_PKEY_BIT4 0 339 #endif 340 #endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342 #if defined(CONFIG_X86) 343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344 #elif defined(CONFIG_PPC) 345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346 #elif defined(CONFIG_PARISC) 347 # define VM_GROWSUP VM_ARCH_1 348 #elif defined(CONFIG_IA64) 349 # define VM_GROWSUP VM_ARCH_1 350 #elif defined(CONFIG_SPARC64) 351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352 # define VM_ARCH_CLEAR VM_SPARC_ADI 353 #elif defined(CONFIG_ARM64) 354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355 # define VM_ARCH_CLEAR VM_ARM64_BTI 356 #elif !defined(CONFIG_MMU) 357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358 #endif 359 360 #if defined(CONFIG_ARM64_MTE) 361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363 #else 364 # define VM_MTE VM_NONE 365 # define VM_MTE_ALLOWED VM_NONE 366 #endif 367 368 #ifndef VM_GROWSUP 369 # define VM_GROWSUP VM_NONE 370 #endif 371 372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373 # define VM_UFFD_MINOR_BIT 37 374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376 # define VM_UFFD_MINOR VM_NONE 377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379 /* Bits set in the VMA until the stack is in its final location */ 380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 381 382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384 /* Common data flag combinations */ 385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394 #endif 395 396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398 #endif 399 400 #ifdef CONFIG_STACK_GROWSUP 401 #define VM_STACK VM_GROWSUP 402 #define VM_STACK_EARLY VM_GROWSDOWN 403 #else 404 #define VM_STACK VM_GROWSDOWN 405 #define VM_STACK_EARLY 0 406 #endif 407 408 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 409 410 /* VMA basic access permission flags */ 411 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 412 413 414 /* 415 * Special vmas that are non-mergable, non-mlock()able. 416 */ 417 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 418 419 /* This mask prevents VMA from being scanned with khugepaged */ 420 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 421 422 /* This mask defines which mm->def_flags a process can inherit its parent */ 423 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 424 425 /* This mask represents all the VMA flag bits used by mlock */ 426 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 427 428 /* Arch-specific flags to clear when updating VM flags on protection change */ 429 #ifndef VM_ARCH_CLEAR 430 # define VM_ARCH_CLEAR VM_NONE 431 #endif 432 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 433 434 /* 435 * mapping from the currently active vm_flags protection bits (the 436 * low four bits) to a page protection mask.. 437 */ 438 439 /* 440 * The default fault flags that should be used by most of the 441 * arch-specific page fault handlers. 442 */ 443 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 444 FAULT_FLAG_KILLABLE | \ 445 FAULT_FLAG_INTERRUPTIBLE) 446 447 /** 448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 449 * @flags: Fault flags. 450 * 451 * This is mostly used for places where we want to try to avoid taking 452 * the mmap_lock for too long a time when waiting for another condition 453 * to change, in which case we can try to be polite to release the 454 * mmap_lock in the first round to avoid potential starvation of other 455 * processes that would also want the mmap_lock. 456 * 457 * Return: true if the page fault allows retry and this is the first 458 * attempt of the fault handling; false otherwise. 459 */ 460 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 461 { 462 return (flags & FAULT_FLAG_ALLOW_RETRY) && 463 (!(flags & FAULT_FLAG_TRIED)); 464 } 465 466 #define FAULT_FLAG_TRACE \ 467 { FAULT_FLAG_WRITE, "WRITE" }, \ 468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 472 { FAULT_FLAG_TRIED, "TRIED" }, \ 473 { FAULT_FLAG_USER, "USER" }, \ 474 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 478 479 /* 480 * vm_fault is filled by the pagefault handler and passed to the vma's 481 * ->fault function. The vma's ->fault is responsible for returning a bitmask 482 * of VM_FAULT_xxx flags that give details about how the fault was handled. 483 * 484 * MM layer fills up gfp_mask for page allocations but fault handler might 485 * alter it if its implementation requires a different allocation context. 486 * 487 * pgoff should be used in favour of virtual_address, if possible. 488 */ 489 struct vm_fault { 490 const struct { 491 struct vm_area_struct *vma; /* Target VMA */ 492 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 493 pgoff_t pgoff; /* Logical page offset based on vma */ 494 unsigned long address; /* Faulting virtual address - masked */ 495 unsigned long real_address; /* Faulting virtual address - unmasked */ 496 }; 497 enum fault_flag flags; /* FAULT_FLAG_xxx flags 498 * XXX: should really be 'const' */ 499 pmd_t *pmd; /* Pointer to pmd entry matching 500 * the 'address' */ 501 pud_t *pud; /* Pointer to pud entry matching 502 * the 'address' 503 */ 504 union { 505 pte_t orig_pte; /* Value of PTE at the time of fault */ 506 pmd_t orig_pmd; /* Value of PMD at the time of fault, 507 * used by PMD fault only. 508 */ 509 }; 510 511 struct page *cow_page; /* Page handler may use for COW fault */ 512 struct page *page; /* ->fault handlers should return a 513 * page here, unless VM_FAULT_NOPAGE 514 * is set (which is also implied by 515 * VM_FAULT_ERROR). 516 */ 517 /* These three entries are valid only while holding ptl lock */ 518 pte_t *pte; /* Pointer to pte entry matching 519 * the 'address'. NULL if the page 520 * table hasn't been allocated. 521 */ 522 spinlock_t *ptl; /* Page table lock. 523 * Protects pte page table if 'pte' 524 * is not NULL, otherwise pmd. 525 */ 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 527 * vm_ops->map_pages() sets up a page 528 * table from atomic context. 529 * do_fault_around() pre-allocates 530 * page table to avoid allocation from 531 * atomic context. 532 */ 533 }; 534 535 /* page entry size for vm->huge_fault() */ 536 enum page_entry_size { 537 PE_SIZE_PTE = 0, 538 PE_SIZE_PMD, 539 PE_SIZE_PUD, 540 }; 541 542 /* 543 * These are the virtual MM functions - opening of an area, closing and 544 * unmapping it (needed to keep files on disk up-to-date etc), pointer 545 * to the functions called when a no-page or a wp-page exception occurs. 546 */ 547 struct vm_operations_struct { 548 void (*open)(struct vm_area_struct * area); 549 /** 550 * @close: Called when the VMA is being removed from the MM. 551 * Context: User context. May sleep. Caller holds mmap_lock. 552 */ 553 void (*close)(struct vm_area_struct * area); 554 /* Called any time before splitting to check if it's allowed */ 555 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 556 int (*mremap)(struct vm_area_struct *area); 557 /* 558 * Called by mprotect() to make driver-specific permission 559 * checks before mprotect() is finalised. The VMA must not 560 * be modified. Returns 0 if mprotect() can proceed. 561 */ 562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 563 unsigned long end, unsigned long newflags); 564 vm_fault_t (*fault)(struct vm_fault *vmf); 565 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 566 enum page_entry_size pe_size); 567 vm_fault_t (*map_pages)(struct vm_fault *vmf, 568 pgoff_t start_pgoff, pgoff_t end_pgoff); 569 unsigned long (*pagesize)(struct vm_area_struct * area); 570 571 /* notification that a previously read-only page is about to become 572 * writable, if an error is returned it will cause a SIGBUS */ 573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 574 575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 577 578 /* called by access_process_vm when get_user_pages() fails, typically 579 * for use by special VMAs. See also generic_access_phys() for a generic 580 * implementation useful for any iomem mapping. 581 */ 582 int (*access)(struct vm_area_struct *vma, unsigned long addr, 583 void *buf, int len, int write); 584 585 /* Called by the /proc/PID/maps code to ask the vma whether it 586 * has a special name. Returning non-NULL will also cause this 587 * vma to be dumped unconditionally. */ 588 const char *(*name)(struct vm_area_struct *vma); 589 590 #ifdef CONFIG_NUMA 591 /* 592 * set_policy() op must add a reference to any non-NULL @new mempolicy 593 * to hold the policy upon return. Caller should pass NULL @new to 594 * remove a policy and fall back to surrounding context--i.e. do not 595 * install a MPOL_DEFAULT policy, nor the task or system default 596 * mempolicy. 597 */ 598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 599 600 /* 601 * get_policy() op must add reference [mpol_get()] to any policy at 602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 603 * in mm/mempolicy.c will do this automatically. 604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 607 * must return NULL--i.e., do not "fallback" to task or system default 608 * policy. 609 */ 610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 611 unsigned long addr); 612 #endif 613 /* 614 * Called by vm_normal_page() for special PTEs to find the 615 * page for @addr. This is useful if the default behavior 616 * (using pte_page()) would not find the correct page. 617 */ 618 struct page *(*find_special_page)(struct vm_area_struct *vma, 619 unsigned long addr); 620 }; 621 622 #ifdef CONFIG_NUMA_BALANCING 623 static inline void vma_numab_state_init(struct vm_area_struct *vma) 624 { 625 vma->numab_state = NULL; 626 } 627 static inline void vma_numab_state_free(struct vm_area_struct *vma) 628 { 629 kfree(vma->numab_state); 630 } 631 #else 632 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 633 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 634 #endif /* CONFIG_NUMA_BALANCING */ 635 636 #ifdef CONFIG_PER_VMA_LOCK 637 /* 638 * Try to read-lock a vma. The function is allowed to occasionally yield false 639 * locked result to avoid performance overhead, in which case we fall back to 640 * using mmap_lock. The function should never yield false unlocked result. 641 */ 642 static inline bool vma_start_read(struct vm_area_struct *vma) 643 { 644 /* 645 * Check before locking. A race might cause false locked result. 646 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 647 * ACQUIRE semantics, because this is just a lockless check whose result 648 * we don't rely on for anything - the mm_lock_seq read against which we 649 * need ordering is below. 650 */ 651 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 652 return false; 653 654 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 655 return false; 656 657 /* 658 * Overflow might produce false locked result. 659 * False unlocked result is impossible because we modify and check 660 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 661 * modification invalidates all existing locks. 662 * 663 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 664 * racing with vma_end_write_all(), we only start reading from the VMA 665 * after it has been unlocked. 666 * This pairs with RELEASE semantics in vma_end_write_all(). 667 */ 668 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 669 up_read(&vma->vm_lock->lock); 670 return false; 671 } 672 return true; 673 } 674 675 static inline void vma_end_read(struct vm_area_struct *vma) 676 { 677 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 678 up_read(&vma->vm_lock->lock); 679 rcu_read_unlock(); 680 } 681 682 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 683 { 684 mmap_assert_write_locked(vma->vm_mm); 685 686 /* 687 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 688 * mm->mm_lock_seq can't be concurrently modified. 689 */ 690 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 691 return (vma->vm_lock_seq == *mm_lock_seq); 692 } 693 694 static inline void vma_start_write(struct vm_area_struct *vma) 695 { 696 int mm_lock_seq; 697 698 if (__is_vma_write_locked(vma, &mm_lock_seq)) 699 return; 700 701 down_write(&vma->vm_lock->lock); 702 /* 703 * We should use WRITE_ONCE() here because we can have concurrent reads 704 * from the early lockless pessimistic check in vma_start_read(). 705 * We don't really care about the correctness of that early check, but 706 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 707 */ 708 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 709 up_write(&vma->vm_lock->lock); 710 } 711 712 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 713 { 714 int mm_lock_seq; 715 716 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 717 } 718 719 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 720 { 721 /* When detaching vma should be write-locked */ 722 if (detached) 723 vma_assert_write_locked(vma); 724 vma->detached = detached; 725 } 726 727 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 728 unsigned long address); 729 730 #else /* CONFIG_PER_VMA_LOCK */ 731 732 static inline bool vma_start_read(struct vm_area_struct *vma) 733 { return false; } 734 static inline void vma_end_read(struct vm_area_struct *vma) {} 735 static inline void vma_start_write(struct vm_area_struct *vma) {} 736 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {} 737 static inline void vma_mark_detached(struct vm_area_struct *vma, 738 bool detached) {} 739 740 #endif /* CONFIG_PER_VMA_LOCK */ 741 742 /* 743 * WARNING: vma_init does not initialize vma->vm_lock. 744 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 745 */ 746 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 747 { 748 static const struct vm_operations_struct dummy_vm_ops = {}; 749 750 memset(vma, 0, sizeof(*vma)); 751 vma->vm_mm = mm; 752 vma->vm_ops = &dummy_vm_ops; 753 INIT_LIST_HEAD(&vma->anon_vma_chain); 754 vma_mark_detached(vma, false); 755 vma_numab_state_init(vma); 756 } 757 758 /* Use when VMA is not part of the VMA tree and needs no locking */ 759 static inline void vm_flags_init(struct vm_area_struct *vma, 760 vm_flags_t flags) 761 { 762 ACCESS_PRIVATE(vma, __vm_flags) = flags; 763 } 764 765 /* Use when VMA is part of the VMA tree and modifications need coordination */ 766 static inline void vm_flags_reset(struct vm_area_struct *vma, 767 vm_flags_t flags) 768 { 769 vma_start_write(vma); 770 vm_flags_init(vma, flags); 771 } 772 773 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 774 vm_flags_t flags) 775 { 776 vma_start_write(vma); 777 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 778 } 779 780 static inline void vm_flags_set(struct vm_area_struct *vma, 781 vm_flags_t flags) 782 { 783 vma_start_write(vma); 784 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 785 } 786 787 static inline void vm_flags_clear(struct vm_area_struct *vma, 788 vm_flags_t flags) 789 { 790 vma_start_write(vma); 791 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 792 } 793 794 /* 795 * Use only if VMA is not part of the VMA tree or has no other users and 796 * therefore needs no locking. 797 */ 798 static inline void __vm_flags_mod(struct vm_area_struct *vma, 799 vm_flags_t set, vm_flags_t clear) 800 { 801 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 802 } 803 804 /* 805 * Use only when the order of set/clear operations is unimportant, otherwise 806 * use vm_flags_{set|clear} explicitly. 807 */ 808 static inline void vm_flags_mod(struct vm_area_struct *vma, 809 vm_flags_t set, vm_flags_t clear) 810 { 811 vma_start_write(vma); 812 __vm_flags_mod(vma, set, clear); 813 } 814 815 static inline void vma_set_anonymous(struct vm_area_struct *vma) 816 { 817 vma->vm_ops = NULL; 818 } 819 820 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 821 { 822 return !vma->vm_ops; 823 } 824 825 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 826 { 827 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 828 829 if (!maybe_stack) 830 return false; 831 832 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 833 VM_STACK_INCOMPLETE_SETUP) 834 return true; 835 836 return false; 837 } 838 839 static inline bool vma_is_foreign(struct vm_area_struct *vma) 840 { 841 if (!current->mm) 842 return true; 843 844 if (current->mm != vma->vm_mm) 845 return true; 846 847 return false; 848 } 849 850 static inline bool vma_is_accessible(struct vm_area_struct *vma) 851 { 852 return vma->vm_flags & VM_ACCESS_FLAGS; 853 } 854 855 static inline 856 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 857 { 858 return mas_find(&vmi->mas, max - 1); 859 } 860 861 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 862 { 863 /* 864 * Uses mas_find() to get the first VMA when the iterator starts. 865 * Calling mas_next() could skip the first entry. 866 */ 867 return mas_find(&vmi->mas, ULONG_MAX); 868 } 869 870 static inline 871 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 872 { 873 return mas_next_range(&vmi->mas, ULONG_MAX); 874 } 875 876 877 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 878 { 879 return mas_prev(&vmi->mas, 0); 880 } 881 882 static inline 883 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 884 { 885 return mas_prev_range(&vmi->mas, 0); 886 } 887 888 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 889 { 890 return vmi->mas.index; 891 } 892 893 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 894 { 895 return vmi->mas.last + 1; 896 } 897 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 898 unsigned long count) 899 { 900 return mas_expected_entries(&vmi->mas, count); 901 } 902 903 /* Free any unused preallocations */ 904 static inline void vma_iter_free(struct vma_iterator *vmi) 905 { 906 mas_destroy(&vmi->mas); 907 } 908 909 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 910 struct vm_area_struct *vma) 911 { 912 vmi->mas.index = vma->vm_start; 913 vmi->mas.last = vma->vm_end - 1; 914 mas_store(&vmi->mas, vma); 915 if (unlikely(mas_is_err(&vmi->mas))) 916 return -ENOMEM; 917 918 return 0; 919 } 920 921 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 922 { 923 mas_pause(&vmi->mas); 924 } 925 926 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 927 { 928 mas_set(&vmi->mas, addr); 929 } 930 931 #define for_each_vma(__vmi, __vma) \ 932 while (((__vma) = vma_next(&(__vmi))) != NULL) 933 934 /* The MM code likes to work with exclusive end addresses */ 935 #define for_each_vma_range(__vmi, __vma, __end) \ 936 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 937 938 #ifdef CONFIG_SHMEM 939 /* 940 * The vma_is_shmem is not inline because it is used only by slow 941 * paths in userfault. 942 */ 943 bool vma_is_shmem(struct vm_area_struct *vma); 944 bool vma_is_anon_shmem(struct vm_area_struct *vma); 945 #else 946 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 947 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 948 #endif 949 950 int vma_is_stack_for_current(struct vm_area_struct *vma); 951 952 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 953 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 954 955 struct mmu_gather; 956 struct inode; 957 958 /* 959 * compound_order() can be called without holding a reference, which means 960 * that niceties like page_folio() don't work. These callers should be 961 * prepared to handle wild return values. For example, PG_head may be 962 * set before _folio_order is initialised, or this may be a tail page. 963 * See compaction.c for some good examples. 964 */ 965 static inline unsigned int compound_order(struct page *page) 966 { 967 struct folio *folio = (struct folio *)page; 968 969 if (!test_bit(PG_head, &folio->flags)) 970 return 0; 971 return folio->_folio_order; 972 } 973 974 /** 975 * folio_order - The allocation order of a folio. 976 * @folio: The folio. 977 * 978 * A folio is composed of 2^order pages. See get_order() for the definition 979 * of order. 980 * 981 * Return: The order of the folio. 982 */ 983 static inline unsigned int folio_order(struct folio *folio) 984 { 985 if (!folio_test_large(folio)) 986 return 0; 987 return folio->_folio_order; 988 } 989 990 #include <linux/huge_mm.h> 991 992 /* 993 * Methods to modify the page usage count. 994 * 995 * What counts for a page usage: 996 * - cache mapping (page->mapping) 997 * - private data (page->private) 998 * - page mapped in a task's page tables, each mapping 999 * is counted separately 1000 * 1001 * Also, many kernel routines increase the page count before a critical 1002 * routine so they can be sure the page doesn't go away from under them. 1003 */ 1004 1005 /* 1006 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1007 */ 1008 static inline int put_page_testzero(struct page *page) 1009 { 1010 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1011 return page_ref_dec_and_test(page); 1012 } 1013 1014 static inline int folio_put_testzero(struct folio *folio) 1015 { 1016 return put_page_testzero(&folio->page); 1017 } 1018 1019 /* 1020 * Try to grab a ref unless the page has a refcount of zero, return false if 1021 * that is the case. 1022 * This can be called when MMU is off so it must not access 1023 * any of the virtual mappings. 1024 */ 1025 static inline bool get_page_unless_zero(struct page *page) 1026 { 1027 return page_ref_add_unless(page, 1, 0); 1028 } 1029 1030 static inline struct folio *folio_get_nontail_page(struct page *page) 1031 { 1032 if (unlikely(!get_page_unless_zero(page))) 1033 return NULL; 1034 return (struct folio *)page; 1035 } 1036 1037 extern int page_is_ram(unsigned long pfn); 1038 1039 enum { 1040 REGION_INTERSECTS, 1041 REGION_DISJOINT, 1042 REGION_MIXED, 1043 }; 1044 1045 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1046 unsigned long desc); 1047 1048 /* Support for virtually mapped pages */ 1049 struct page *vmalloc_to_page(const void *addr); 1050 unsigned long vmalloc_to_pfn(const void *addr); 1051 1052 /* 1053 * Determine if an address is within the vmalloc range 1054 * 1055 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1056 * is no special casing required. 1057 */ 1058 #ifdef CONFIG_MMU 1059 extern bool is_vmalloc_addr(const void *x); 1060 extern int is_vmalloc_or_module_addr(const void *x); 1061 #else 1062 static inline bool is_vmalloc_addr(const void *x) 1063 { 1064 return false; 1065 } 1066 static inline int is_vmalloc_or_module_addr(const void *x) 1067 { 1068 return 0; 1069 } 1070 #endif 1071 1072 /* 1073 * How many times the entire folio is mapped as a single unit (eg by a 1074 * PMD or PUD entry). This is probably not what you want, except for 1075 * debugging purposes - it does not include PTE-mapped sub-pages; look 1076 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1077 */ 1078 static inline int folio_entire_mapcount(struct folio *folio) 1079 { 1080 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1081 return atomic_read(&folio->_entire_mapcount) + 1; 1082 } 1083 1084 /* 1085 * The atomic page->_mapcount, starts from -1: so that transitions 1086 * both from it and to it can be tracked, using atomic_inc_and_test 1087 * and atomic_add_negative(-1). 1088 */ 1089 static inline void page_mapcount_reset(struct page *page) 1090 { 1091 atomic_set(&(page)->_mapcount, -1); 1092 } 1093 1094 /** 1095 * page_mapcount() - Number of times this precise page is mapped. 1096 * @page: The page. 1097 * 1098 * The number of times this page is mapped. If this page is part of 1099 * a large folio, it includes the number of times this page is mapped 1100 * as part of that folio. 1101 * 1102 * The result is undefined for pages which cannot be mapped into userspace. 1103 * For example SLAB or special types of pages. See function page_has_type(). 1104 * They use this field in struct page differently. 1105 */ 1106 static inline int page_mapcount(struct page *page) 1107 { 1108 int mapcount = atomic_read(&page->_mapcount) + 1; 1109 1110 if (unlikely(PageCompound(page))) 1111 mapcount += folio_entire_mapcount(page_folio(page)); 1112 1113 return mapcount; 1114 } 1115 1116 int folio_total_mapcount(struct folio *folio); 1117 1118 /** 1119 * folio_mapcount() - Calculate the number of mappings of this folio. 1120 * @folio: The folio. 1121 * 1122 * A large folio tracks both how many times the entire folio is mapped, 1123 * and how many times each individual page in the folio is mapped. 1124 * This function calculates the total number of times the folio is 1125 * mapped. 1126 * 1127 * Return: The number of times this folio is mapped. 1128 */ 1129 static inline int folio_mapcount(struct folio *folio) 1130 { 1131 if (likely(!folio_test_large(folio))) 1132 return atomic_read(&folio->_mapcount) + 1; 1133 return folio_total_mapcount(folio); 1134 } 1135 1136 static inline int total_mapcount(struct page *page) 1137 { 1138 if (likely(!PageCompound(page))) 1139 return atomic_read(&page->_mapcount) + 1; 1140 return folio_total_mapcount(page_folio(page)); 1141 } 1142 1143 static inline bool folio_large_is_mapped(struct folio *folio) 1144 { 1145 /* 1146 * Reading _entire_mapcount below could be omitted if hugetlb 1147 * participated in incrementing nr_pages_mapped when compound mapped. 1148 */ 1149 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1150 atomic_read(&folio->_entire_mapcount) >= 0; 1151 } 1152 1153 /** 1154 * folio_mapped - Is this folio mapped into userspace? 1155 * @folio: The folio. 1156 * 1157 * Return: True if any page in this folio is referenced by user page tables. 1158 */ 1159 static inline bool folio_mapped(struct folio *folio) 1160 { 1161 if (likely(!folio_test_large(folio))) 1162 return atomic_read(&folio->_mapcount) >= 0; 1163 return folio_large_is_mapped(folio); 1164 } 1165 1166 /* 1167 * Return true if this page is mapped into pagetables. 1168 * For compound page it returns true if any sub-page of compound page is mapped, 1169 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1170 */ 1171 static inline bool page_mapped(struct page *page) 1172 { 1173 if (likely(!PageCompound(page))) 1174 return atomic_read(&page->_mapcount) >= 0; 1175 return folio_large_is_mapped(page_folio(page)); 1176 } 1177 1178 static inline struct page *virt_to_head_page(const void *x) 1179 { 1180 struct page *page = virt_to_page(x); 1181 1182 return compound_head(page); 1183 } 1184 1185 static inline struct folio *virt_to_folio(const void *x) 1186 { 1187 struct page *page = virt_to_page(x); 1188 1189 return page_folio(page); 1190 } 1191 1192 void __folio_put(struct folio *folio); 1193 1194 void put_pages_list(struct list_head *pages); 1195 1196 void split_page(struct page *page, unsigned int order); 1197 void folio_copy(struct folio *dst, struct folio *src); 1198 1199 unsigned long nr_free_buffer_pages(void); 1200 1201 /* 1202 * Compound pages have a destructor function. Provide a 1203 * prototype for that function and accessor functions. 1204 * These are _only_ valid on the head of a compound page. 1205 */ 1206 typedef void compound_page_dtor(struct page *); 1207 1208 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 1209 enum compound_dtor_id { 1210 NULL_COMPOUND_DTOR, 1211 COMPOUND_PAGE_DTOR, 1212 #ifdef CONFIG_HUGETLB_PAGE 1213 HUGETLB_PAGE_DTOR, 1214 #endif 1215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1216 TRANSHUGE_PAGE_DTOR, 1217 #endif 1218 NR_COMPOUND_DTORS, 1219 }; 1220 1221 static inline void folio_set_compound_dtor(struct folio *folio, 1222 enum compound_dtor_id compound_dtor) 1223 { 1224 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1225 folio->_folio_dtor = compound_dtor; 1226 } 1227 1228 void destroy_large_folio(struct folio *folio); 1229 1230 /* Returns the number of bytes in this potentially compound page. */ 1231 static inline unsigned long page_size(struct page *page) 1232 { 1233 return PAGE_SIZE << compound_order(page); 1234 } 1235 1236 /* Returns the number of bits needed for the number of bytes in a page */ 1237 static inline unsigned int page_shift(struct page *page) 1238 { 1239 return PAGE_SHIFT + compound_order(page); 1240 } 1241 1242 /** 1243 * thp_order - Order of a transparent huge page. 1244 * @page: Head page of a transparent huge page. 1245 */ 1246 static inline unsigned int thp_order(struct page *page) 1247 { 1248 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1249 return compound_order(page); 1250 } 1251 1252 /** 1253 * thp_size - Size of a transparent huge page. 1254 * @page: Head page of a transparent huge page. 1255 * 1256 * Return: Number of bytes in this page. 1257 */ 1258 static inline unsigned long thp_size(struct page *page) 1259 { 1260 return PAGE_SIZE << thp_order(page); 1261 } 1262 1263 void free_compound_page(struct page *page); 1264 1265 #ifdef CONFIG_MMU 1266 /* 1267 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1268 * servicing faults for write access. In the normal case, do always want 1269 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1270 * that do not have writing enabled, when used by access_process_vm. 1271 */ 1272 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1273 { 1274 if (likely(vma->vm_flags & VM_WRITE)) 1275 pte = pte_mkwrite(pte); 1276 return pte; 1277 } 1278 1279 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1280 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1281 1282 vm_fault_t finish_fault(struct vm_fault *vmf); 1283 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1284 #endif 1285 1286 /* 1287 * Multiple processes may "see" the same page. E.g. for untouched 1288 * mappings of /dev/null, all processes see the same page full of 1289 * zeroes, and text pages of executables and shared libraries have 1290 * only one copy in memory, at most, normally. 1291 * 1292 * For the non-reserved pages, page_count(page) denotes a reference count. 1293 * page_count() == 0 means the page is free. page->lru is then used for 1294 * freelist management in the buddy allocator. 1295 * page_count() > 0 means the page has been allocated. 1296 * 1297 * Pages are allocated by the slab allocator in order to provide memory 1298 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1299 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1300 * unless a particular usage is carefully commented. (the responsibility of 1301 * freeing the kmalloc memory is the caller's, of course). 1302 * 1303 * A page may be used by anyone else who does a __get_free_page(). 1304 * In this case, page_count still tracks the references, and should only 1305 * be used through the normal accessor functions. The top bits of page->flags 1306 * and page->virtual store page management information, but all other fields 1307 * are unused and could be used privately, carefully. The management of this 1308 * page is the responsibility of the one who allocated it, and those who have 1309 * subsequently been given references to it. 1310 * 1311 * The other pages (we may call them "pagecache pages") are completely 1312 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1313 * The following discussion applies only to them. 1314 * 1315 * A pagecache page contains an opaque `private' member, which belongs to the 1316 * page's address_space. Usually, this is the address of a circular list of 1317 * the page's disk buffers. PG_private must be set to tell the VM to call 1318 * into the filesystem to release these pages. 1319 * 1320 * A page may belong to an inode's memory mapping. In this case, page->mapping 1321 * is the pointer to the inode, and page->index is the file offset of the page, 1322 * in units of PAGE_SIZE. 1323 * 1324 * If pagecache pages are not associated with an inode, they are said to be 1325 * anonymous pages. These may become associated with the swapcache, and in that 1326 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1327 * 1328 * In either case (swapcache or inode backed), the pagecache itself holds one 1329 * reference to the page. Setting PG_private should also increment the 1330 * refcount. The each user mapping also has a reference to the page. 1331 * 1332 * The pagecache pages are stored in a per-mapping radix tree, which is 1333 * rooted at mapping->i_pages, and indexed by offset. 1334 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1335 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1336 * 1337 * All pagecache pages may be subject to I/O: 1338 * - inode pages may need to be read from disk, 1339 * - inode pages which have been modified and are MAP_SHARED may need 1340 * to be written back to the inode on disk, 1341 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1342 * modified may need to be swapped out to swap space and (later) to be read 1343 * back into memory. 1344 */ 1345 1346 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1347 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1348 1349 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1350 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1351 { 1352 if (!static_branch_unlikely(&devmap_managed_key)) 1353 return false; 1354 if (!is_zone_device_page(page)) 1355 return false; 1356 return __put_devmap_managed_page_refs(page, refs); 1357 } 1358 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1359 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1360 { 1361 return false; 1362 } 1363 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1364 1365 static inline bool put_devmap_managed_page(struct page *page) 1366 { 1367 return put_devmap_managed_page_refs(page, 1); 1368 } 1369 1370 /* 127: arbitrary random number, small enough to assemble well */ 1371 #define folio_ref_zero_or_close_to_overflow(folio) \ 1372 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1373 1374 /** 1375 * folio_get - Increment the reference count on a folio. 1376 * @folio: The folio. 1377 * 1378 * Context: May be called in any context, as long as you know that 1379 * you have a refcount on the folio. If you do not already have one, 1380 * folio_try_get() may be the right interface for you to use. 1381 */ 1382 static inline void folio_get(struct folio *folio) 1383 { 1384 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1385 folio_ref_inc(folio); 1386 } 1387 1388 static inline void get_page(struct page *page) 1389 { 1390 folio_get(page_folio(page)); 1391 } 1392 1393 static inline __must_check bool try_get_page(struct page *page) 1394 { 1395 page = compound_head(page); 1396 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1397 return false; 1398 page_ref_inc(page); 1399 return true; 1400 } 1401 1402 /** 1403 * folio_put - Decrement the reference count on a folio. 1404 * @folio: The folio. 1405 * 1406 * If the folio's reference count reaches zero, the memory will be 1407 * released back to the page allocator and may be used by another 1408 * allocation immediately. Do not access the memory or the struct folio 1409 * after calling folio_put() unless you can be sure that it wasn't the 1410 * last reference. 1411 * 1412 * Context: May be called in process or interrupt context, but not in NMI 1413 * context. May be called while holding a spinlock. 1414 */ 1415 static inline void folio_put(struct folio *folio) 1416 { 1417 if (folio_put_testzero(folio)) 1418 __folio_put(folio); 1419 } 1420 1421 /** 1422 * folio_put_refs - Reduce the reference count on a folio. 1423 * @folio: The folio. 1424 * @refs: The amount to subtract from the folio's reference count. 1425 * 1426 * If the folio's reference count reaches zero, the memory will be 1427 * released back to the page allocator and may be used by another 1428 * allocation immediately. Do not access the memory or the struct folio 1429 * after calling folio_put_refs() unless you can be sure that these weren't 1430 * the last references. 1431 * 1432 * Context: May be called in process or interrupt context, but not in NMI 1433 * context. May be called while holding a spinlock. 1434 */ 1435 static inline void folio_put_refs(struct folio *folio, int refs) 1436 { 1437 if (folio_ref_sub_and_test(folio, refs)) 1438 __folio_put(folio); 1439 } 1440 1441 /* 1442 * union release_pages_arg - an array of pages or folios 1443 * 1444 * release_pages() releases a simple array of multiple pages, and 1445 * accepts various different forms of said page array: either 1446 * a regular old boring array of pages, an array of folios, or 1447 * an array of encoded page pointers. 1448 * 1449 * The transparent union syntax for this kind of "any of these 1450 * argument types" is all kinds of ugly, so look away. 1451 */ 1452 typedef union { 1453 struct page **pages; 1454 struct folio **folios; 1455 struct encoded_page **encoded_pages; 1456 } release_pages_arg __attribute__ ((__transparent_union__)); 1457 1458 void release_pages(release_pages_arg, int nr); 1459 1460 /** 1461 * folios_put - Decrement the reference count on an array of folios. 1462 * @folios: The folios. 1463 * @nr: How many folios there are. 1464 * 1465 * Like folio_put(), but for an array of folios. This is more efficient 1466 * than writing the loop yourself as it will optimise the locks which 1467 * need to be taken if the folios are freed. 1468 * 1469 * Context: May be called in process or interrupt context, but not in NMI 1470 * context. May be called while holding a spinlock. 1471 */ 1472 static inline void folios_put(struct folio **folios, unsigned int nr) 1473 { 1474 release_pages(folios, nr); 1475 } 1476 1477 static inline void put_page(struct page *page) 1478 { 1479 struct folio *folio = page_folio(page); 1480 1481 /* 1482 * For some devmap managed pages we need to catch refcount transition 1483 * from 2 to 1: 1484 */ 1485 if (put_devmap_managed_page(&folio->page)) 1486 return; 1487 folio_put(folio); 1488 } 1489 1490 /* 1491 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1492 * the page's refcount so that two separate items are tracked: the original page 1493 * reference count, and also a new count of how many pin_user_pages() calls were 1494 * made against the page. ("gup-pinned" is another term for the latter). 1495 * 1496 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1497 * distinct from normal pages. As such, the unpin_user_page() call (and its 1498 * variants) must be used in order to release gup-pinned pages. 1499 * 1500 * Choice of value: 1501 * 1502 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1503 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1504 * simpler, due to the fact that adding an even power of two to the page 1505 * refcount has the effect of using only the upper N bits, for the code that 1506 * counts up using the bias value. This means that the lower bits are left for 1507 * the exclusive use of the original code that increments and decrements by one 1508 * (or at least, by much smaller values than the bias value). 1509 * 1510 * Of course, once the lower bits overflow into the upper bits (and this is 1511 * OK, because subtraction recovers the original values), then visual inspection 1512 * no longer suffices to directly view the separate counts. However, for normal 1513 * applications that don't have huge page reference counts, this won't be an 1514 * issue. 1515 * 1516 * Locking: the lockless algorithm described in folio_try_get_rcu() 1517 * provides safe operation for get_user_pages(), page_mkclean() and 1518 * other calls that race to set up page table entries. 1519 */ 1520 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1521 1522 void unpin_user_page(struct page *page); 1523 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1524 bool make_dirty); 1525 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1526 bool make_dirty); 1527 void unpin_user_pages(struct page **pages, unsigned long npages); 1528 1529 static inline bool is_cow_mapping(vm_flags_t flags) 1530 { 1531 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1532 } 1533 1534 #ifndef CONFIG_MMU 1535 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1536 { 1537 /* 1538 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1539 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1540 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1541 * underlying memory if ptrace is active, so this is only possible if 1542 * ptrace does not apply. Note that there is no mprotect() to upgrade 1543 * write permissions later. 1544 */ 1545 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1546 } 1547 #endif 1548 1549 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1550 #define SECTION_IN_PAGE_FLAGS 1551 #endif 1552 1553 /* 1554 * The identification function is mainly used by the buddy allocator for 1555 * determining if two pages could be buddies. We are not really identifying 1556 * the zone since we could be using the section number id if we do not have 1557 * node id available in page flags. 1558 * We only guarantee that it will return the same value for two combinable 1559 * pages in a zone. 1560 */ 1561 static inline int page_zone_id(struct page *page) 1562 { 1563 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1564 } 1565 1566 #ifdef NODE_NOT_IN_PAGE_FLAGS 1567 extern int page_to_nid(const struct page *page); 1568 #else 1569 static inline int page_to_nid(const struct page *page) 1570 { 1571 struct page *p = (struct page *)page; 1572 1573 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1574 } 1575 #endif 1576 1577 static inline int folio_nid(const struct folio *folio) 1578 { 1579 return page_to_nid(&folio->page); 1580 } 1581 1582 #ifdef CONFIG_NUMA_BALANCING 1583 /* page access time bits needs to hold at least 4 seconds */ 1584 #define PAGE_ACCESS_TIME_MIN_BITS 12 1585 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1586 #define PAGE_ACCESS_TIME_BUCKETS \ 1587 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1588 #else 1589 #define PAGE_ACCESS_TIME_BUCKETS 0 1590 #endif 1591 1592 #define PAGE_ACCESS_TIME_MASK \ 1593 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1594 1595 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1596 { 1597 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1598 } 1599 1600 static inline int cpupid_to_pid(int cpupid) 1601 { 1602 return cpupid & LAST__PID_MASK; 1603 } 1604 1605 static inline int cpupid_to_cpu(int cpupid) 1606 { 1607 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1608 } 1609 1610 static inline int cpupid_to_nid(int cpupid) 1611 { 1612 return cpu_to_node(cpupid_to_cpu(cpupid)); 1613 } 1614 1615 static inline bool cpupid_pid_unset(int cpupid) 1616 { 1617 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1618 } 1619 1620 static inline bool cpupid_cpu_unset(int cpupid) 1621 { 1622 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1623 } 1624 1625 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1626 { 1627 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1628 } 1629 1630 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1631 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1632 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1633 { 1634 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1635 } 1636 1637 static inline int page_cpupid_last(struct page *page) 1638 { 1639 return page->_last_cpupid; 1640 } 1641 static inline void page_cpupid_reset_last(struct page *page) 1642 { 1643 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1644 } 1645 #else 1646 static inline int page_cpupid_last(struct page *page) 1647 { 1648 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1649 } 1650 1651 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1652 1653 static inline void page_cpupid_reset_last(struct page *page) 1654 { 1655 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1656 } 1657 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1658 1659 static inline int xchg_page_access_time(struct page *page, int time) 1660 { 1661 int last_time; 1662 1663 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1664 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1665 } 1666 1667 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1668 { 1669 unsigned int pid_bit; 1670 1671 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1672 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1673 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1674 } 1675 } 1676 #else /* !CONFIG_NUMA_BALANCING */ 1677 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1678 { 1679 return page_to_nid(page); /* XXX */ 1680 } 1681 1682 static inline int xchg_page_access_time(struct page *page, int time) 1683 { 1684 return 0; 1685 } 1686 1687 static inline int page_cpupid_last(struct page *page) 1688 { 1689 return page_to_nid(page); /* XXX */ 1690 } 1691 1692 static inline int cpupid_to_nid(int cpupid) 1693 { 1694 return -1; 1695 } 1696 1697 static inline int cpupid_to_pid(int cpupid) 1698 { 1699 return -1; 1700 } 1701 1702 static inline int cpupid_to_cpu(int cpupid) 1703 { 1704 return -1; 1705 } 1706 1707 static inline int cpu_pid_to_cpupid(int nid, int pid) 1708 { 1709 return -1; 1710 } 1711 1712 static inline bool cpupid_pid_unset(int cpupid) 1713 { 1714 return true; 1715 } 1716 1717 static inline void page_cpupid_reset_last(struct page *page) 1718 { 1719 } 1720 1721 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1722 { 1723 return false; 1724 } 1725 1726 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1727 { 1728 } 1729 #endif /* CONFIG_NUMA_BALANCING */ 1730 1731 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1732 1733 /* 1734 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1735 * setting tags for all pages to native kernel tag value 0xff, as the default 1736 * value 0x00 maps to 0xff. 1737 */ 1738 1739 static inline u8 page_kasan_tag(const struct page *page) 1740 { 1741 u8 tag = 0xff; 1742 1743 if (kasan_enabled()) { 1744 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1745 tag ^= 0xff; 1746 } 1747 1748 return tag; 1749 } 1750 1751 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1752 { 1753 unsigned long old_flags, flags; 1754 1755 if (!kasan_enabled()) 1756 return; 1757 1758 tag ^= 0xff; 1759 old_flags = READ_ONCE(page->flags); 1760 do { 1761 flags = old_flags; 1762 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1763 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1764 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1765 } 1766 1767 static inline void page_kasan_tag_reset(struct page *page) 1768 { 1769 if (kasan_enabled()) 1770 page_kasan_tag_set(page, 0xff); 1771 } 1772 1773 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1774 1775 static inline u8 page_kasan_tag(const struct page *page) 1776 { 1777 return 0xff; 1778 } 1779 1780 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1781 static inline void page_kasan_tag_reset(struct page *page) { } 1782 1783 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1784 1785 static inline struct zone *page_zone(const struct page *page) 1786 { 1787 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1788 } 1789 1790 static inline pg_data_t *page_pgdat(const struct page *page) 1791 { 1792 return NODE_DATA(page_to_nid(page)); 1793 } 1794 1795 static inline struct zone *folio_zone(const struct folio *folio) 1796 { 1797 return page_zone(&folio->page); 1798 } 1799 1800 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1801 { 1802 return page_pgdat(&folio->page); 1803 } 1804 1805 #ifdef SECTION_IN_PAGE_FLAGS 1806 static inline void set_page_section(struct page *page, unsigned long section) 1807 { 1808 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1809 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1810 } 1811 1812 static inline unsigned long page_to_section(const struct page *page) 1813 { 1814 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1815 } 1816 #endif 1817 1818 /** 1819 * folio_pfn - Return the Page Frame Number of a folio. 1820 * @folio: The folio. 1821 * 1822 * A folio may contain multiple pages. The pages have consecutive 1823 * Page Frame Numbers. 1824 * 1825 * Return: The Page Frame Number of the first page in the folio. 1826 */ 1827 static inline unsigned long folio_pfn(struct folio *folio) 1828 { 1829 return page_to_pfn(&folio->page); 1830 } 1831 1832 static inline struct folio *pfn_folio(unsigned long pfn) 1833 { 1834 return page_folio(pfn_to_page(pfn)); 1835 } 1836 1837 /** 1838 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1839 * @folio: The folio. 1840 * 1841 * This function checks if a folio has been pinned via a call to 1842 * a function in the pin_user_pages() family. 1843 * 1844 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1845 * because it means "definitely not pinned for DMA", but true means "probably 1846 * pinned for DMA, but possibly a false positive due to having at least 1847 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1848 * 1849 * False positives are OK, because: a) it's unlikely for a folio to 1850 * get that many refcounts, and b) all the callers of this routine are 1851 * expected to be able to deal gracefully with a false positive. 1852 * 1853 * For large folios, the result will be exactly correct. That's because 1854 * we have more tracking data available: the _pincount field is used 1855 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1856 * 1857 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1858 * 1859 * Return: True, if it is likely that the page has been "dma-pinned". 1860 * False, if the page is definitely not dma-pinned. 1861 */ 1862 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1863 { 1864 if (folio_test_large(folio)) 1865 return atomic_read(&folio->_pincount) > 0; 1866 1867 /* 1868 * folio_ref_count() is signed. If that refcount overflows, then 1869 * folio_ref_count() returns a negative value, and callers will avoid 1870 * further incrementing the refcount. 1871 * 1872 * Here, for that overflow case, use the sign bit to count a little 1873 * bit higher via unsigned math, and thus still get an accurate result. 1874 */ 1875 return ((unsigned int)folio_ref_count(folio)) >= 1876 GUP_PIN_COUNTING_BIAS; 1877 } 1878 1879 static inline bool page_maybe_dma_pinned(struct page *page) 1880 { 1881 return folio_maybe_dma_pinned(page_folio(page)); 1882 } 1883 1884 /* 1885 * This should most likely only be called during fork() to see whether we 1886 * should break the cow immediately for an anon page on the src mm. 1887 * 1888 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1889 */ 1890 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1891 struct page *page) 1892 { 1893 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1894 1895 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1896 return false; 1897 1898 return page_maybe_dma_pinned(page); 1899 } 1900 1901 /** 1902 * is_zero_page - Query if a page is a zero page 1903 * @page: The page to query 1904 * 1905 * This returns true if @page is one of the permanent zero pages. 1906 */ 1907 static inline bool is_zero_page(const struct page *page) 1908 { 1909 return is_zero_pfn(page_to_pfn(page)); 1910 } 1911 1912 /** 1913 * is_zero_folio - Query if a folio is a zero page 1914 * @folio: The folio to query 1915 * 1916 * This returns true if @folio is one of the permanent zero pages. 1917 */ 1918 static inline bool is_zero_folio(const struct folio *folio) 1919 { 1920 return is_zero_page(&folio->page); 1921 } 1922 1923 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1924 #ifdef CONFIG_MIGRATION 1925 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1926 { 1927 #ifdef CONFIG_CMA 1928 int mt = folio_migratetype(folio); 1929 1930 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1931 return false; 1932 #endif 1933 /* The zero page can be "pinned" but gets special handling. */ 1934 if (is_zero_folio(folio)) 1935 return true; 1936 1937 /* Coherent device memory must always allow eviction. */ 1938 if (folio_is_device_coherent(folio)) 1939 return false; 1940 1941 /* Otherwise, non-movable zone folios can be pinned. */ 1942 return !folio_is_zone_movable(folio); 1943 1944 } 1945 #else 1946 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1947 { 1948 return true; 1949 } 1950 #endif 1951 1952 static inline void set_page_zone(struct page *page, enum zone_type zone) 1953 { 1954 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1955 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1956 } 1957 1958 static inline void set_page_node(struct page *page, unsigned long node) 1959 { 1960 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1961 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1962 } 1963 1964 static inline void set_page_links(struct page *page, enum zone_type zone, 1965 unsigned long node, unsigned long pfn) 1966 { 1967 set_page_zone(page, zone); 1968 set_page_node(page, node); 1969 #ifdef SECTION_IN_PAGE_FLAGS 1970 set_page_section(page, pfn_to_section_nr(pfn)); 1971 #endif 1972 } 1973 1974 /** 1975 * folio_nr_pages - The number of pages in the folio. 1976 * @folio: The folio. 1977 * 1978 * Return: A positive power of two. 1979 */ 1980 static inline long folio_nr_pages(struct folio *folio) 1981 { 1982 if (!folio_test_large(folio)) 1983 return 1; 1984 #ifdef CONFIG_64BIT 1985 return folio->_folio_nr_pages; 1986 #else 1987 return 1L << folio->_folio_order; 1988 #endif 1989 } 1990 1991 /* 1992 * compound_nr() returns the number of pages in this potentially compound 1993 * page. compound_nr() can be called on a tail page, and is defined to 1994 * return 1 in that case. 1995 */ 1996 static inline unsigned long compound_nr(struct page *page) 1997 { 1998 struct folio *folio = (struct folio *)page; 1999 2000 if (!test_bit(PG_head, &folio->flags)) 2001 return 1; 2002 #ifdef CONFIG_64BIT 2003 return folio->_folio_nr_pages; 2004 #else 2005 return 1L << folio->_folio_order; 2006 #endif 2007 } 2008 2009 /** 2010 * thp_nr_pages - The number of regular pages in this huge page. 2011 * @page: The head page of a huge page. 2012 */ 2013 static inline int thp_nr_pages(struct page *page) 2014 { 2015 return folio_nr_pages((struct folio *)page); 2016 } 2017 2018 /** 2019 * folio_next - Move to the next physical folio. 2020 * @folio: The folio we're currently operating on. 2021 * 2022 * If you have physically contiguous memory which may span more than 2023 * one folio (eg a &struct bio_vec), use this function to move from one 2024 * folio to the next. Do not use it if the memory is only virtually 2025 * contiguous as the folios are almost certainly not adjacent to each 2026 * other. This is the folio equivalent to writing ``page++``. 2027 * 2028 * Context: We assume that the folios are refcounted and/or locked at a 2029 * higher level and do not adjust the reference counts. 2030 * Return: The next struct folio. 2031 */ 2032 static inline struct folio *folio_next(struct folio *folio) 2033 { 2034 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2035 } 2036 2037 /** 2038 * folio_shift - The size of the memory described by this folio. 2039 * @folio: The folio. 2040 * 2041 * A folio represents a number of bytes which is a power-of-two in size. 2042 * This function tells you which power-of-two the folio is. See also 2043 * folio_size() and folio_order(). 2044 * 2045 * Context: The caller should have a reference on the folio to prevent 2046 * it from being split. It is not necessary for the folio to be locked. 2047 * Return: The base-2 logarithm of the size of this folio. 2048 */ 2049 static inline unsigned int folio_shift(struct folio *folio) 2050 { 2051 return PAGE_SHIFT + folio_order(folio); 2052 } 2053 2054 /** 2055 * folio_size - The number of bytes in a folio. 2056 * @folio: The folio. 2057 * 2058 * Context: The caller should have a reference on the folio to prevent 2059 * it from being split. It is not necessary for the folio to be locked. 2060 * Return: The number of bytes in this folio. 2061 */ 2062 static inline size_t folio_size(struct folio *folio) 2063 { 2064 return PAGE_SIZE << folio_order(folio); 2065 } 2066 2067 /** 2068 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2069 * @folio: The folio. 2070 * 2071 * folio_estimated_sharers() aims to serve as a function to efficiently 2072 * estimate the number of processes sharing a folio. This is done by 2073 * looking at the precise mapcount of the first subpage in the folio, and 2074 * assuming the other subpages are the same. This may not be true for large 2075 * folios. If you want exact mapcounts for exact calculations, look at 2076 * page_mapcount() or folio_total_mapcount(). 2077 * 2078 * Return: The estimated number of processes sharing a folio. 2079 */ 2080 static inline int folio_estimated_sharers(struct folio *folio) 2081 { 2082 return page_mapcount(folio_page(folio, 0)); 2083 } 2084 2085 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2086 static inline int arch_make_page_accessible(struct page *page) 2087 { 2088 return 0; 2089 } 2090 #endif 2091 2092 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2093 static inline int arch_make_folio_accessible(struct folio *folio) 2094 { 2095 int ret; 2096 long i, nr = folio_nr_pages(folio); 2097 2098 for (i = 0; i < nr; i++) { 2099 ret = arch_make_page_accessible(folio_page(folio, i)); 2100 if (ret) 2101 break; 2102 } 2103 2104 return ret; 2105 } 2106 #endif 2107 2108 /* 2109 * Some inline functions in vmstat.h depend on page_zone() 2110 */ 2111 #include <linux/vmstat.h> 2112 2113 static __always_inline void *lowmem_page_address(const struct page *page) 2114 { 2115 return page_to_virt(page); 2116 } 2117 2118 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2119 #define HASHED_PAGE_VIRTUAL 2120 #endif 2121 2122 #if defined(WANT_PAGE_VIRTUAL) 2123 static inline void *page_address(const struct page *page) 2124 { 2125 return page->virtual; 2126 } 2127 static inline void set_page_address(struct page *page, void *address) 2128 { 2129 page->virtual = address; 2130 } 2131 #define page_address_init() do { } while(0) 2132 #endif 2133 2134 #if defined(HASHED_PAGE_VIRTUAL) 2135 void *page_address(const struct page *page); 2136 void set_page_address(struct page *page, void *virtual); 2137 void page_address_init(void); 2138 #endif 2139 2140 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2141 #define page_address(page) lowmem_page_address(page) 2142 #define set_page_address(page, address) do { } while(0) 2143 #define page_address_init() do { } while(0) 2144 #endif 2145 2146 static inline void *folio_address(const struct folio *folio) 2147 { 2148 return page_address(&folio->page); 2149 } 2150 2151 extern pgoff_t __page_file_index(struct page *page); 2152 2153 /* 2154 * Return the pagecache index of the passed page. Regular pagecache pages 2155 * use ->index whereas swapcache pages use swp_offset(->private) 2156 */ 2157 static inline pgoff_t page_index(struct page *page) 2158 { 2159 if (unlikely(PageSwapCache(page))) 2160 return __page_file_index(page); 2161 return page->index; 2162 } 2163 2164 /* 2165 * Return true only if the page has been allocated with 2166 * ALLOC_NO_WATERMARKS and the low watermark was not 2167 * met implying that the system is under some pressure. 2168 */ 2169 static inline bool page_is_pfmemalloc(const struct page *page) 2170 { 2171 /* 2172 * lru.next has bit 1 set if the page is allocated from the 2173 * pfmemalloc reserves. Callers may simply overwrite it if 2174 * they do not need to preserve that information. 2175 */ 2176 return (uintptr_t)page->lru.next & BIT(1); 2177 } 2178 2179 /* 2180 * Return true only if the folio has been allocated with 2181 * ALLOC_NO_WATERMARKS and the low watermark was not 2182 * met implying that the system is under some pressure. 2183 */ 2184 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2185 { 2186 /* 2187 * lru.next has bit 1 set if the page is allocated from the 2188 * pfmemalloc reserves. Callers may simply overwrite it if 2189 * they do not need to preserve that information. 2190 */ 2191 return (uintptr_t)folio->lru.next & BIT(1); 2192 } 2193 2194 /* 2195 * Only to be called by the page allocator on a freshly allocated 2196 * page. 2197 */ 2198 static inline void set_page_pfmemalloc(struct page *page) 2199 { 2200 page->lru.next = (void *)BIT(1); 2201 } 2202 2203 static inline void clear_page_pfmemalloc(struct page *page) 2204 { 2205 page->lru.next = NULL; 2206 } 2207 2208 /* 2209 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2210 */ 2211 extern void pagefault_out_of_memory(void); 2212 2213 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2214 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2215 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2216 2217 /* 2218 * Parameter block passed down to zap_pte_range in exceptional cases. 2219 */ 2220 struct zap_details { 2221 struct folio *single_folio; /* Locked folio to be unmapped */ 2222 bool even_cows; /* Zap COWed private pages too? */ 2223 zap_flags_t zap_flags; /* Extra flags for zapping */ 2224 }; 2225 2226 /* 2227 * Whether to drop the pte markers, for example, the uffd-wp information for 2228 * file-backed memory. This should only be specified when we will completely 2229 * drop the page in the mm, either by truncation or unmapping of the vma. By 2230 * default, the flag is not set. 2231 */ 2232 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2233 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2234 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2235 2236 #ifdef CONFIG_SCHED_MM_CID 2237 void sched_mm_cid_before_execve(struct task_struct *t); 2238 void sched_mm_cid_after_execve(struct task_struct *t); 2239 void sched_mm_cid_fork(struct task_struct *t); 2240 void sched_mm_cid_exit_signals(struct task_struct *t); 2241 static inline int task_mm_cid(struct task_struct *t) 2242 { 2243 return t->mm_cid; 2244 } 2245 #else 2246 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2247 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2248 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2249 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2250 static inline int task_mm_cid(struct task_struct *t) 2251 { 2252 /* 2253 * Use the processor id as a fall-back when the mm cid feature is 2254 * disabled. This provides functional per-cpu data structure accesses 2255 * in user-space, althrough it won't provide the memory usage benefits. 2256 */ 2257 return raw_smp_processor_id(); 2258 } 2259 #endif 2260 2261 #ifdef CONFIG_MMU 2262 extern bool can_do_mlock(void); 2263 #else 2264 static inline bool can_do_mlock(void) { return false; } 2265 #endif 2266 extern int user_shm_lock(size_t, struct ucounts *); 2267 extern void user_shm_unlock(size_t, struct ucounts *); 2268 2269 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2270 pte_t pte); 2271 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2272 pte_t pte); 2273 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2274 pmd_t pmd); 2275 2276 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2277 unsigned long size); 2278 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2279 unsigned long size, struct zap_details *details); 2280 static inline void zap_vma_pages(struct vm_area_struct *vma) 2281 { 2282 zap_page_range_single(vma, vma->vm_start, 2283 vma->vm_end - vma->vm_start, NULL); 2284 } 2285 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2286 struct vm_area_struct *start_vma, unsigned long start, 2287 unsigned long end, bool mm_wr_locked); 2288 2289 struct mmu_notifier_range; 2290 2291 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2292 unsigned long end, unsigned long floor, unsigned long ceiling); 2293 int 2294 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2295 int follow_pte(struct mm_struct *mm, unsigned long address, 2296 pte_t **ptepp, spinlock_t **ptlp); 2297 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2298 unsigned long *pfn); 2299 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2300 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2301 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2302 void *buf, int len, int write); 2303 2304 extern void truncate_pagecache(struct inode *inode, loff_t new); 2305 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2306 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2307 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2308 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2309 2310 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2311 unsigned long address, struct pt_regs *regs); 2312 2313 #ifdef CONFIG_MMU 2314 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2315 unsigned long address, unsigned int flags, 2316 struct pt_regs *regs); 2317 extern int fixup_user_fault(struct mm_struct *mm, 2318 unsigned long address, unsigned int fault_flags, 2319 bool *unlocked); 2320 void unmap_mapping_pages(struct address_space *mapping, 2321 pgoff_t start, pgoff_t nr, bool even_cows); 2322 void unmap_mapping_range(struct address_space *mapping, 2323 loff_t const holebegin, loff_t const holelen, int even_cows); 2324 #else 2325 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2326 unsigned long address, unsigned int flags, 2327 struct pt_regs *regs) 2328 { 2329 /* should never happen if there's no MMU */ 2330 BUG(); 2331 return VM_FAULT_SIGBUS; 2332 } 2333 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2334 unsigned int fault_flags, bool *unlocked) 2335 { 2336 /* should never happen if there's no MMU */ 2337 BUG(); 2338 return -EFAULT; 2339 } 2340 static inline void unmap_mapping_pages(struct address_space *mapping, 2341 pgoff_t start, pgoff_t nr, bool even_cows) { } 2342 static inline void unmap_mapping_range(struct address_space *mapping, 2343 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2344 #endif 2345 2346 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2347 loff_t const holebegin, loff_t const holelen) 2348 { 2349 unmap_mapping_range(mapping, holebegin, holelen, 0); 2350 } 2351 2352 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2353 unsigned long addr); 2354 2355 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2356 void *buf, int len, unsigned int gup_flags); 2357 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2358 void *buf, int len, unsigned int gup_flags); 2359 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2360 void *buf, int len, unsigned int gup_flags); 2361 2362 long get_user_pages_remote(struct mm_struct *mm, 2363 unsigned long start, unsigned long nr_pages, 2364 unsigned int gup_flags, struct page **pages, 2365 int *locked); 2366 long pin_user_pages_remote(struct mm_struct *mm, 2367 unsigned long start, unsigned long nr_pages, 2368 unsigned int gup_flags, struct page **pages, 2369 int *locked); 2370 2371 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2372 unsigned long addr, 2373 int gup_flags, 2374 struct vm_area_struct **vmap) 2375 { 2376 struct page *page; 2377 struct vm_area_struct *vma; 2378 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2379 2380 if (got < 0) 2381 return ERR_PTR(got); 2382 if (got == 0) 2383 return NULL; 2384 2385 vma = vma_lookup(mm, addr); 2386 if (WARN_ON_ONCE(!vma)) { 2387 put_page(page); 2388 return ERR_PTR(-EINVAL); 2389 } 2390 2391 *vmap = vma; 2392 return page; 2393 } 2394 2395 long get_user_pages(unsigned long start, unsigned long nr_pages, 2396 unsigned int gup_flags, struct page **pages); 2397 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2398 unsigned int gup_flags, struct page **pages); 2399 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2400 struct page **pages, unsigned int gup_flags); 2401 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2402 struct page **pages, unsigned int gup_flags); 2403 2404 int get_user_pages_fast(unsigned long start, int nr_pages, 2405 unsigned int gup_flags, struct page **pages); 2406 int pin_user_pages_fast(unsigned long start, int nr_pages, 2407 unsigned int gup_flags, struct page **pages); 2408 void folio_add_pin(struct folio *folio); 2409 2410 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2411 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2412 struct task_struct *task, bool bypass_rlim); 2413 2414 struct kvec; 2415 struct page *get_dump_page(unsigned long addr); 2416 2417 bool folio_mark_dirty(struct folio *folio); 2418 bool set_page_dirty(struct page *page); 2419 int set_page_dirty_lock(struct page *page); 2420 2421 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2422 2423 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2424 unsigned long old_addr, struct vm_area_struct *new_vma, 2425 unsigned long new_addr, unsigned long len, 2426 bool need_rmap_locks); 2427 2428 /* 2429 * Flags used by change_protection(). For now we make it a bitmap so 2430 * that we can pass in multiple flags just like parameters. However 2431 * for now all the callers are only use one of the flags at the same 2432 * time. 2433 */ 2434 /* 2435 * Whether we should manually check if we can map individual PTEs writable, 2436 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2437 * PTEs automatically in a writable mapping. 2438 */ 2439 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2440 /* Whether this protection change is for NUMA hints */ 2441 #define MM_CP_PROT_NUMA (1UL << 1) 2442 /* Whether this change is for write protecting */ 2443 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2444 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2445 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2446 MM_CP_UFFD_WP_RESOLVE) 2447 2448 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2449 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2450 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2451 { 2452 /* 2453 * We want to check manually if we can change individual PTEs writable 2454 * if we can't do that automatically for all PTEs in a mapping. For 2455 * private mappings, that's always the case when we have write 2456 * permissions as we properly have to handle COW. 2457 */ 2458 if (vma->vm_flags & VM_SHARED) 2459 return vma_wants_writenotify(vma, vma->vm_page_prot); 2460 return !!(vma->vm_flags & VM_WRITE); 2461 2462 } 2463 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2464 pte_t pte); 2465 extern long change_protection(struct mmu_gather *tlb, 2466 struct vm_area_struct *vma, unsigned long start, 2467 unsigned long end, unsigned long cp_flags); 2468 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2469 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2470 unsigned long start, unsigned long end, unsigned long newflags); 2471 2472 /* 2473 * doesn't attempt to fault and will return short. 2474 */ 2475 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2476 unsigned int gup_flags, struct page **pages); 2477 2478 static inline bool get_user_page_fast_only(unsigned long addr, 2479 unsigned int gup_flags, struct page **pagep) 2480 { 2481 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2482 } 2483 /* 2484 * per-process(per-mm_struct) statistics. 2485 */ 2486 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2487 { 2488 return percpu_counter_read_positive(&mm->rss_stat[member]); 2489 } 2490 2491 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2492 2493 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2494 { 2495 percpu_counter_add(&mm->rss_stat[member], value); 2496 2497 mm_trace_rss_stat(mm, member); 2498 } 2499 2500 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2501 { 2502 percpu_counter_inc(&mm->rss_stat[member]); 2503 2504 mm_trace_rss_stat(mm, member); 2505 } 2506 2507 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2508 { 2509 percpu_counter_dec(&mm->rss_stat[member]); 2510 2511 mm_trace_rss_stat(mm, member); 2512 } 2513 2514 /* Optimized variant when page is already known not to be PageAnon */ 2515 static inline int mm_counter_file(struct page *page) 2516 { 2517 if (PageSwapBacked(page)) 2518 return MM_SHMEMPAGES; 2519 return MM_FILEPAGES; 2520 } 2521 2522 static inline int mm_counter(struct page *page) 2523 { 2524 if (PageAnon(page)) 2525 return MM_ANONPAGES; 2526 return mm_counter_file(page); 2527 } 2528 2529 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2530 { 2531 return get_mm_counter(mm, MM_FILEPAGES) + 2532 get_mm_counter(mm, MM_ANONPAGES) + 2533 get_mm_counter(mm, MM_SHMEMPAGES); 2534 } 2535 2536 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2537 { 2538 return max(mm->hiwater_rss, get_mm_rss(mm)); 2539 } 2540 2541 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2542 { 2543 return max(mm->hiwater_vm, mm->total_vm); 2544 } 2545 2546 static inline void update_hiwater_rss(struct mm_struct *mm) 2547 { 2548 unsigned long _rss = get_mm_rss(mm); 2549 2550 if ((mm)->hiwater_rss < _rss) 2551 (mm)->hiwater_rss = _rss; 2552 } 2553 2554 static inline void update_hiwater_vm(struct mm_struct *mm) 2555 { 2556 if (mm->hiwater_vm < mm->total_vm) 2557 mm->hiwater_vm = mm->total_vm; 2558 } 2559 2560 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2561 { 2562 mm->hiwater_rss = get_mm_rss(mm); 2563 } 2564 2565 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2566 struct mm_struct *mm) 2567 { 2568 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2569 2570 if (*maxrss < hiwater_rss) 2571 *maxrss = hiwater_rss; 2572 } 2573 2574 #if defined(SPLIT_RSS_COUNTING) 2575 void sync_mm_rss(struct mm_struct *mm); 2576 #else 2577 static inline void sync_mm_rss(struct mm_struct *mm) 2578 { 2579 } 2580 #endif 2581 2582 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2583 static inline int pte_special(pte_t pte) 2584 { 2585 return 0; 2586 } 2587 2588 static inline pte_t pte_mkspecial(pte_t pte) 2589 { 2590 return pte; 2591 } 2592 #endif 2593 2594 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2595 static inline int pte_devmap(pte_t pte) 2596 { 2597 return 0; 2598 } 2599 #endif 2600 2601 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2602 spinlock_t **ptl); 2603 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2604 spinlock_t **ptl) 2605 { 2606 pte_t *ptep; 2607 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2608 return ptep; 2609 } 2610 2611 #ifdef __PAGETABLE_P4D_FOLDED 2612 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2613 unsigned long address) 2614 { 2615 return 0; 2616 } 2617 #else 2618 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2619 #endif 2620 2621 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2622 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2623 unsigned long address) 2624 { 2625 return 0; 2626 } 2627 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2628 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2629 2630 #else 2631 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2632 2633 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2634 { 2635 if (mm_pud_folded(mm)) 2636 return; 2637 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2638 } 2639 2640 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2641 { 2642 if (mm_pud_folded(mm)) 2643 return; 2644 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2645 } 2646 #endif 2647 2648 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2649 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2650 unsigned long address) 2651 { 2652 return 0; 2653 } 2654 2655 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2656 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2657 2658 #else 2659 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2660 2661 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2662 { 2663 if (mm_pmd_folded(mm)) 2664 return; 2665 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2666 } 2667 2668 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2669 { 2670 if (mm_pmd_folded(mm)) 2671 return; 2672 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2673 } 2674 #endif 2675 2676 #ifdef CONFIG_MMU 2677 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2678 { 2679 atomic_long_set(&mm->pgtables_bytes, 0); 2680 } 2681 2682 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2683 { 2684 return atomic_long_read(&mm->pgtables_bytes); 2685 } 2686 2687 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2688 { 2689 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2690 } 2691 2692 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2693 { 2694 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2695 } 2696 #else 2697 2698 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2699 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2700 { 2701 return 0; 2702 } 2703 2704 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2705 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2706 #endif 2707 2708 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2709 int __pte_alloc_kernel(pmd_t *pmd); 2710 2711 #if defined(CONFIG_MMU) 2712 2713 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2714 unsigned long address) 2715 { 2716 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2717 NULL : p4d_offset(pgd, address); 2718 } 2719 2720 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2721 unsigned long address) 2722 { 2723 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2724 NULL : pud_offset(p4d, address); 2725 } 2726 2727 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2728 { 2729 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2730 NULL: pmd_offset(pud, address); 2731 } 2732 #endif /* CONFIG_MMU */ 2733 2734 #if USE_SPLIT_PTE_PTLOCKS 2735 #if ALLOC_SPLIT_PTLOCKS 2736 void __init ptlock_cache_init(void); 2737 extern bool ptlock_alloc(struct page *page); 2738 extern void ptlock_free(struct page *page); 2739 2740 static inline spinlock_t *ptlock_ptr(struct page *page) 2741 { 2742 return page->ptl; 2743 } 2744 #else /* ALLOC_SPLIT_PTLOCKS */ 2745 static inline void ptlock_cache_init(void) 2746 { 2747 } 2748 2749 static inline bool ptlock_alloc(struct page *page) 2750 { 2751 return true; 2752 } 2753 2754 static inline void ptlock_free(struct page *page) 2755 { 2756 } 2757 2758 static inline spinlock_t *ptlock_ptr(struct page *page) 2759 { 2760 return &page->ptl; 2761 } 2762 #endif /* ALLOC_SPLIT_PTLOCKS */ 2763 2764 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2765 { 2766 return ptlock_ptr(pmd_page(*pmd)); 2767 } 2768 2769 static inline bool ptlock_init(struct page *page) 2770 { 2771 /* 2772 * prep_new_page() initialize page->private (and therefore page->ptl) 2773 * with 0. Make sure nobody took it in use in between. 2774 * 2775 * It can happen if arch try to use slab for page table allocation: 2776 * slab code uses page->slab_cache, which share storage with page->ptl. 2777 */ 2778 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2779 if (!ptlock_alloc(page)) 2780 return false; 2781 spin_lock_init(ptlock_ptr(page)); 2782 return true; 2783 } 2784 2785 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2786 /* 2787 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2788 */ 2789 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2790 { 2791 return &mm->page_table_lock; 2792 } 2793 static inline void ptlock_cache_init(void) {} 2794 static inline bool ptlock_init(struct page *page) { return true; } 2795 static inline void ptlock_free(struct page *page) {} 2796 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2797 2798 static inline bool pgtable_pte_page_ctor(struct page *page) 2799 { 2800 if (!ptlock_init(page)) 2801 return false; 2802 __SetPageTable(page); 2803 inc_lruvec_page_state(page, NR_PAGETABLE); 2804 return true; 2805 } 2806 2807 static inline void pgtable_pte_page_dtor(struct page *page) 2808 { 2809 ptlock_free(page); 2810 __ClearPageTable(page); 2811 dec_lruvec_page_state(page, NR_PAGETABLE); 2812 } 2813 2814 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2815 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2816 { 2817 return __pte_offset_map(pmd, addr, NULL); 2818 } 2819 2820 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2821 unsigned long addr, spinlock_t **ptlp); 2822 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2823 unsigned long addr, spinlock_t **ptlp) 2824 { 2825 pte_t *pte; 2826 2827 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2828 return pte; 2829 } 2830 2831 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2832 unsigned long addr, spinlock_t **ptlp); 2833 2834 #define pte_unmap_unlock(pte, ptl) do { \ 2835 spin_unlock(ptl); \ 2836 pte_unmap(pte); \ 2837 } while (0) 2838 2839 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2840 2841 #define pte_alloc_map(mm, pmd, address) \ 2842 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2843 2844 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2845 (pte_alloc(mm, pmd) ? \ 2846 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2847 2848 #define pte_alloc_kernel(pmd, address) \ 2849 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2850 NULL: pte_offset_kernel(pmd, address)) 2851 2852 #if USE_SPLIT_PMD_PTLOCKS 2853 2854 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2855 { 2856 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2857 return virt_to_page((void *)((unsigned long) pmd & mask)); 2858 } 2859 2860 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2861 { 2862 return ptlock_ptr(pmd_pgtable_page(pmd)); 2863 } 2864 2865 static inline bool pmd_ptlock_init(struct page *page) 2866 { 2867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2868 page->pmd_huge_pte = NULL; 2869 #endif 2870 return ptlock_init(page); 2871 } 2872 2873 static inline void pmd_ptlock_free(struct page *page) 2874 { 2875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2876 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2877 #endif 2878 ptlock_free(page); 2879 } 2880 2881 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2882 2883 #else 2884 2885 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2886 { 2887 return &mm->page_table_lock; 2888 } 2889 2890 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2891 static inline void pmd_ptlock_free(struct page *page) {} 2892 2893 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2894 2895 #endif 2896 2897 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2898 { 2899 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2900 spin_lock(ptl); 2901 return ptl; 2902 } 2903 2904 static inline bool pgtable_pmd_page_ctor(struct page *page) 2905 { 2906 if (!pmd_ptlock_init(page)) 2907 return false; 2908 __SetPageTable(page); 2909 inc_lruvec_page_state(page, NR_PAGETABLE); 2910 return true; 2911 } 2912 2913 static inline void pgtable_pmd_page_dtor(struct page *page) 2914 { 2915 pmd_ptlock_free(page); 2916 __ClearPageTable(page); 2917 dec_lruvec_page_state(page, NR_PAGETABLE); 2918 } 2919 2920 /* 2921 * No scalability reason to split PUD locks yet, but follow the same pattern 2922 * as the PMD locks to make it easier if we decide to. The VM should not be 2923 * considered ready to switch to split PUD locks yet; there may be places 2924 * which need to be converted from page_table_lock. 2925 */ 2926 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2927 { 2928 return &mm->page_table_lock; 2929 } 2930 2931 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2932 { 2933 spinlock_t *ptl = pud_lockptr(mm, pud); 2934 2935 spin_lock(ptl); 2936 return ptl; 2937 } 2938 2939 extern void __init pagecache_init(void); 2940 extern void free_initmem(void); 2941 2942 /* 2943 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2944 * into the buddy system. The freed pages will be poisoned with pattern 2945 * "poison" if it's within range [0, UCHAR_MAX]. 2946 * Return pages freed into the buddy system. 2947 */ 2948 extern unsigned long free_reserved_area(void *start, void *end, 2949 int poison, const char *s); 2950 2951 extern void adjust_managed_page_count(struct page *page, long count); 2952 2953 extern void reserve_bootmem_region(phys_addr_t start, 2954 phys_addr_t end, int nid); 2955 2956 /* Free the reserved page into the buddy system, so it gets managed. */ 2957 static inline void free_reserved_page(struct page *page) 2958 { 2959 ClearPageReserved(page); 2960 init_page_count(page); 2961 __free_page(page); 2962 adjust_managed_page_count(page, 1); 2963 } 2964 #define free_highmem_page(page) free_reserved_page(page) 2965 2966 static inline void mark_page_reserved(struct page *page) 2967 { 2968 SetPageReserved(page); 2969 adjust_managed_page_count(page, -1); 2970 } 2971 2972 /* 2973 * Default method to free all the __init memory into the buddy system. 2974 * The freed pages will be poisoned with pattern "poison" if it's within 2975 * range [0, UCHAR_MAX]. 2976 * Return pages freed into the buddy system. 2977 */ 2978 static inline unsigned long free_initmem_default(int poison) 2979 { 2980 extern char __init_begin[], __init_end[]; 2981 2982 return free_reserved_area(&__init_begin, &__init_end, 2983 poison, "unused kernel image (initmem)"); 2984 } 2985 2986 static inline unsigned long get_num_physpages(void) 2987 { 2988 int nid; 2989 unsigned long phys_pages = 0; 2990 2991 for_each_online_node(nid) 2992 phys_pages += node_present_pages(nid); 2993 2994 return phys_pages; 2995 } 2996 2997 /* 2998 * Using memblock node mappings, an architecture may initialise its 2999 * zones, allocate the backing mem_map and account for memory holes in an 3000 * architecture independent manner. 3001 * 3002 * An architecture is expected to register range of page frames backed by 3003 * physical memory with memblock_add[_node]() before calling 3004 * free_area_init() passing in the PFN each zone ends at. At a basic 3005 * usage, an architecture is expected to do something like 3006 * 3007 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3008 * max_highmem_pfn}; 3009 * for_each_valid_physical_page_range() 3010 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3011 * free_area_init(max_zone_pfns); 3012 */ 3013 void free_area_init(unsigned long *max_zone_pfn); 3014 unsigned long node_map_pfn_alignment(void); 3015 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3016 unsigned long end_pfn); 3017 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3018 unsigned long end_pfn); 3019 extern void get_pfn_range_for_nid(unsigned int nid, 3020 unsigned long *start_pfn, unsigned long *end_pfn); 3021 3022 #ifndef CONFIG_NUMA 3023 static inline int early_pfn_to_nid(unsigned long pfn) 3024 { 3025 return 0; 3026 } 3027 #else 3028 /* please see mm/page_alloc.c */ 3029 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3030 #endif 3031 3032 extern void set_dma_reserve(unsigned long new_dma_reserve); 3033 extern void mem_init(void); 3034 extern void __init mmap_init(void); 3035 3036 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3037 static inline void show_mem(void) 3038 { 3039 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3040 } 3041 extern long si_mem_available(void); 3042 extern void si_meminfo(struct sysinfo * val); 3043 extern void si_meminfo_node(struct sysinfo *val, int nid); 3044 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3045 extern unsigned long arch_reserved_kernel_pages(void); 3046 #endif 3047 3048 extern __printf(3, 4) 3049 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3050 3051 extern void setup_per_cpu_pageset(void); 3052 3053 /* nommu.c */ 3054 extern atomic_long_t mmap_pages_allocated; 3055 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3056 3057 /* interval_tree.c */ 3058 void vma_interval_tree_insert(struct vm_area_struct *node, 3059 struct rb_root_cached *root); 3060 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3061 struct vm_area_struct *prev, 3062 struct rb_root_cached *root); 3063 void vma_interval_tree_remove(struct vm_area_struct *node, 3064 struct rb_root_cached *root); 3065 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3066 unsigned long start, unsigned long last); 3067 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3068 unsigned long start, unsigned long last); 3069 3070 #define vma_interval_tree_foreach(vma, root, start, last) \ 3071 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3072 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3073 3074 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3075 struct rb_root_cached *root); 3076 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3077 struct rb_root_cached *root); 3078 struct anon_vma_chain * 3079 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3080 unsigned long start, unsigned long last); 3081 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3082 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3083 #ifdef CONFIG_DEBUG_VM_RB 3084 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3085 #endif 3086 3087 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3088 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3089 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3090 3091 /* mmap.c */ 3092 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3093 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3094 unsigned long start, unsigned long end, pgoff_t pgoff, 3095 struct vm_area_struct *next); 3096 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3097 unsigned long start, unsigned long end, pgoff_t pgoff); 3098 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3099 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3100 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3101 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3102 struct anon_vma_name *); 3103 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3104 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3105 unsigned long addr, int new_below); 3106 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3107 unsigned long addr, int new_below); 3108 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3109 extern void unlink_file_vma(struct vm_area_struct *); 3110 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3111 unsigned long addr, unsigned long len, pgoff_t pgoff, 3112 bool *need_rmap_locks); 3113 extern void exit_mmap(struct mm_struct *); 3114 3115 static inline int check_data_rlimit(unsigned long rlim, 3116 unsigned long new, 3117 unsigned long start, 3118 unsigned long end_data, 3119 unsigned long start_data) 3120 { 3121 if (rlim < RLIM_INFINITY) { 3122 if (((new - start) + (end_data - start_data)) > rlim) 3123 return -ENOSPC; 3124 } 3125 3126 return 0; 3127 } 3128 3129 extern int mm_take_all_locks(struct mm_struct *mm); 3130 extern void mm_drop_all_locks(struct mm_struct *mm); 3131 3132 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3133 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3134 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3135 extern struct file *get_task_exe_file(struct task_struct *task); 3136 3137 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3138 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3139 3140 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3141 const struct vm_special_mapping *sm); 3142 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3143 unsigned long addr, unsigned long len, 3144 unsigned long flags, 3145 const struct vm_special_mapping *spec); 3146 /* This is an obsolete alternative to _install_special_mapping. */ 3147 extern int install_special_mapping(struct mm_struct *mm, 3148 unsigned long addr, unsigned long len, 3149 unsigned long flags, struct page **pages); 3150 3151 unsigned long randomize_stack_top(unsigned long stack_top); 3152 unsigned long randomize_page(unsigned long start, unsigned long range); 3153 3154 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3155 3156 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3157 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3158 struct list_head *uf); 3159 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3160 unsigned long len, unsigned long prot, unsigned long flags, 3161 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 3162 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3163 unsigned long start, size_t len, struct list_head *uf, 3164 bool unlock); 3165 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3166 struct list_head *uf); 3167 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3168 3169 #ifdef CONFIG_MMU 3170 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3171 unsigned long start, unsigned long end, 3172 struct list_head *uf, bool unlock); 3173 extern int __mm_populate(unsigned long addr, unsigned long len, 3174 int ignore_errors); 3175 static inline void mm_populate(unsigned long addr, unsigned long len) 3176 { 3177 /* Ignore errors */ 3178 (void) __mm_populate(addr, len, 1); 3179 } 3180 #else 3181 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3182 #endif 3183 3184 /* These take the mm semaphore themselves */ 3185 extern int __must_check vm_brk(unsigned long, unsigned long); 3186 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3187 extern int vm_munmap(unsigned long, size_t); 3188 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3189 unsigned long, unsigned long, 3190 unsigned long, unsigned long); 3191 3192 struct vm_unmapped_area_info { 3193 #define VM_UNMAPPED_AREA_TOPDOWN 1 3194 unsigned long flags; 3195 unsigned long length; 3196 unsigned long low_limit; 3197 unsigned long high_limit; 3198 unsigned long align_mask; 3199 unsigned long align_offset; 3200 }; 3201 3202 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3203 3204 /* truncate.c */ 3205 extern void truncate_inode_pages(struct address_space *, loff_t); 3206 extern void truncate_inode_pages_range(struct address_space *, 3207 loff_t lstart, loff_t lend); 3208 extern void truncate_inode_pages_final(struct address_space *); 3209 3210 /* generic vm_area_ops exported for stackable file systems */ 3211 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3212 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3213 pgoff_t start_pgoff, pgoff_t end_pgoff); 3214 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3215 3216 extern unsigned long stack_guard_gap; 3217 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3218 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3219 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3220 3221 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3222 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3223 3224 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3225 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3226 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3227 struct vm_area_struct **pprev); 3228 3229 /* 3230 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3231 * NULL if none. Assume start_addr < end_addr. 3232 */ 3233 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3234 unsigned long start_addr, unsigned long end_addr); 3235 3236 /** 3237 * vma_lookup() - Find a VMA at a specific address 3238 * @mm: The process address space. 3239 * @addr: The user address. 3240 * 3241 * Return: The vm_area_struct at the given address, %NULL otherwise. 3242 */ 3243 static inline 3244 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3245 { 3246 return mtree_load(&mm->mm_mt, addr); 3247 } 3248 3249 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3250 { 3251 unsigned long vm_start = vma->vm_start; 3252 3253 if (vma->vm_flags & VM_GROWSDOWN) { 3254 vm_start -= stack_guard_gap; 3255 if (vm_start > vma->vm_start) 3256 vm_start = 0; 3257 } 3258 return vm_start; 3259 } 3260 3261 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3262 { 3263 unsigned long vm_end = vma->vm_end; 3264 3265 if (vma->vm_flags & VM_GROWSUP) { 3266 vm_end += stack_guard_gap; 3267 if (vm_end < vma->vm_end) 3268 vm_end = -PAGE_SIZE; 3269 } 3270 return vm_end; 3271 } 3272 3273 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3274 { 3275 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3276 } 3277 3278 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3279 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3280 unsigned long vm_start, unsigned long vm_end) 3281 { 3282 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3283 3284 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3285 vma = NULL; 3286 3287 return vma; 3288 } 3289 3290 static inline bool range_in_vma(struct vm_area_struct *vma, 3291 unsigned long start, unsigned long end) 3292 { 3293 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3294 } 3295 3296 #ifdef CONFIG_MMU 3297 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3298 void vma_set_page_prot(struct vm_area_struct *vma); 3299 #else 3300 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3301 { 3302 return __pgprot(0); 3303 } 3304 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3305 { 3306 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3307 } 3308 #endif 3309 3310 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3311 3312 #ifdef CONFIG_NUMA_BALANCING 3313 unsigned long change_prot_numa(struct vm_area_struct *vma, 3314 unsigned long start, unsigned long end); 3315 #endif 3316 3317 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3318 unsigned long addr); 3319 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3320 unsigned long pfn, unsigned long size, pgprot_t); 3321 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3322 unsigned long pfn, unsigned long size, pgprot_t prot); 3323 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3324 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3325 struct page **pages, unsigned long *num); 3326 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3327 unsigned long num); 3328 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3329 unsigned long num); 3330 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3331 unsigned long pfn); 3332 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3333 unsigned long pfn, pgprot_t pgprot); 3334 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3335 pfn_t pfn); 3336 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3337 unsigned long addr, pfn_t pfn); 3338 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3339 3340 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3341 unsigned long addr, struct page *page) 3342 { 3343 int err = vm_insert_page(vma, addr, page); 3344 3345 if (err == -ENOMEM) 3346 return VM_FAULT_OOM; 3347 if (err < 0 && err != -EBUSY) 3348 return VM_FAULT_SIGBUS; 3349 3350 return VM_FAULT_NOPAGE; 3351 } 3352 3353 #ifndef io_remap_pfn_range 3354 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3355 unsigned long addr, unsigned long pfn, 3356 unsigned long size, pgprot_t prot) 3357 { 3358 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3359 } 3360 #endif 3361 3362 static inline vm_fault_t vmf_error(int err) 3363 { 3364 if (err == -ENOMEM) 3365 return VM_FAULT_OOM; 3366 else if (err == -EHWPOISON) 3367 return VM_FAULT_HWPOISON; 3368 return VM_FAULT_SIGBUS; 3369 } 3370 3371 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3372 unsigned int foll_flags); 3373 3374 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3375 { 3376 if (vm_fault & VM_FAULT_OOM) 3377 return -ENOMEM; 3378 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3379 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3380 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3381 return -EFAULT; 3382 return 0; 3383 } 3384 3385 /* 3386 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3387 * a (NUMA hinting) fault is required. 3388 */ 3389 static inline bool gup_can_follow_protnone(unsigned int flags) 3390 { 3391 /* 3392 * FOLL_FORCE has to be able to make progress even if the VMA is 3393 * inaccessible. Further, FOLL_FORCE access usually does not represent 3394 * application behaviour and we should avoid triggering NUMA hinting 3395 * faults. 3396 */ 3397 return flags & FOLL_FORCE; 3398 } 3399 3400 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3401 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3402 unsigned long size, pte_fn_t fn, void *data); 3403 extern int apply_to_existing_page_range(struct mm_struct *mm, 3404 unsigned long address, unsigned long size, 3405 pte_fn_t fn, void *data); 3406 3407 #ifdef CONFIG_PAGE_POISONING 3408 extern void __kernel_poison_pages(struct page *page, int numpages); 3409 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3410 extern bool _page_poisoning_enabled_early; 3411 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3412 static inline bool page_poisoning_enabled(void) 3413 { 3414 return _page_poisoning_enabled_early; 3415 } 3416 /* 3417 * For use in fast paths after init_mem_debugging() has run, or when a 3418 * false negative result is not harmful when called too early. 3419 */ 3420 static inline bool page_poisoning_enabled_static(void) 3421 { 3422 return static_branch_unlikely(&_page_poisoning_enabled); 3423 } 3424 static inline void kernel_poison_pages(struct page *page, int numpages) 3425 { 3426 if (page_poisoning_enabled_static()) 3427 __kernel_poison_pages(page, numpages); 3428 } 3429 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3430 { 3431 if (page_poisoning_enabled_static()) 3432 __kernel_unpoison_pages(page, numpages); 3433 } 3434 #else 3435 static inline bool page_poisoning_enabled(void) { return false; } 3436 static inline bool page_poisoning_enabled_static(void) { return false; } 3437 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3438 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3439 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3440 #endif 3441 3442 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3443 static inline bool want_init_on_alloc(gfp_t flags) 3444 { 3445 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3446 &init_on_alloc)) 3447 return true; 3448 return flags & __GFP_ZERO; 3449 } 3450 3451 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3452 static inline bool want_init_on_free(void) 3453 { 3454 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3455 &init_on_free); 3456 } 3457 3458 extern bool _debug_pagealloc_enabled_early; 3459 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3460 3461 static inline bool debug_pagealloc_enabled(void) 3462 { 3463 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3464 _debug_pagealloc_enabled_early; 3465 } 3466 3467 /* 3468 * For use in fast paths after init_debug_pagealloc() has run, or when a 3469 * false negative result is not harmful when called too early. 3470 */ 3471 static inline bool debug_pagealloc_enabled_static(void) 3472 { 3473 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3474 return false; 3475 3476 return static_branch_unlikely(&_debug_pagealloc_enabled); 3477 } 3478 3479 /* 3480 * To support DEBUG_PAGEALLOC architecture must ensure that 3481 * __kernel_map_pages() never fails 3482 */ 3483 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3484 #ifdef CONFIG_DEBUG_PAGEALLOC 3485 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3486 { 3487 if (debug_pagealloc_enabled_static()) 3488 __kernel_map_pages(page, numpages, 1); 3489 } 3490 3491 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3492 { 3493 if (debug_pagealloc_enabled_static()) 3494 __kernel_map_pages(page, numpages, 0); 3495 } 3496 3497 extern unsigned int _debug_guardpage_minorder; 3498 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3499 3500 static inline unsigned int debug_guardpage_minorder(void) 3501 { 3502 return _debug_guardpage_minorder; 3503 } 3504 3505 static inline bool debug_guardpage_enabled(void) 3506 { 3507 return static_branch_unlikely(&_debug_guardpage_enabled); 3508 } 3509 3510 static inline bool page_is_guard(struct page *page) 3511 { 3512 if (!debug_guardpage_enabled()) 3513 return false; 3514 3515 return PageGuard(page); 3516 } 3517 3518 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3519 int migratetype); 3520 static inline bool set_page_guard(struct zone *zone, struct page *page, 3521 unsigned int order, int migratetype) 3522 { 3523 if (!debug_guardpage_enabled()) 3524 return false; 3525 return __set_page_guard(zone, page, order, migratetype); 3526 } 3527 3528 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3529 int migratetype); 3530 static inline void clear_page_guard(struct zone *zone, struct page *page, 3531 unsigned int order, int migratetype) 3532 { 3533 if (!debug_guardpage_enabled()) 3534 return; 3535 __clear_page_guard(zone, page, order, migratetype); 3536 } 3537 3538 #else /* CONFIG_DEBUG_PAGEALLOC */ 3539 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3540 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3541 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3542 static inline bool debug_guardpage_enabled(void) { return false; } 3543 static inline bool page_is_guard(struct page *page) { return false; } 3544 static inline bool set_page_guard(struct zone *zone, struct page *page, 3545 unsigned int order, int migratetype) { return false; } 3546 static inline void clear_page_guard(struct zone *zone, struct page *page, 3547 unsigned int order, int migratetype) {} 3548 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3549 3550 #ifdef __HAVE_ARCH_GATE_AREA 3551 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3552 extern int in_gate_area_no_mm(unsigned long addr); 3553 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3554 #else 3555 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3556 { 3557 return NULL; 3558 } 3559 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3560 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3561 { 3562 return 0; 3563 } 3564 #endif /* __HAVE_ARCH_GATE_AREA */ 3565 3566 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3567 3568 #ifdef CONFIG_SYSCTL 3569 extern int sysctl_drop_caches; 3570 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3571 loff_t *); 3572 #endif 3573 3574 void drop_slab(void); 3575 3576 #ifndef CONFIG_MMU 3577 #define randomize_va_space 0 3578 #else 3579 extern int randomize_va_space; 3580 #endif 3581 3582 const char * arch_vma_name(struct vm_area_struct *vma); 3583 #ifdef CONFIG_MMU 3584 void print_vma_addr(char *prefix, unsigned long rip); 3585 #else 3586 static inline void print_vma_addr(char *prefix, unsigned long rip) 3587 { 3588 } 3589 #endif 3590 3591 void *sparse_buffer_alloc(unsigned long size); 3592 struct page * __populate_section_memmap(unsigned long pfn, 3593 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3594 struct dev_pagemap *pgmap); 3595 void pmd_init(void *addr); 3596 void pud_init(void *addr); 3597 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3598 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3599 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3600 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3601 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3602 struct vmem_altmap *altmap, struct page *reuse); 3603 void *vmemmap_alloc_block(unsigned long size, int node); 3604 struct vmem_altmap; 3605 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3606 struct vmem_altmap *altmap); 3607 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3608 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3609 unsigned long addr, unsigned long next); 3610 int vmemmap_check_pmd(pmd_t *pmd, int node, 3611 unsigned long addr, unsigned long next); 3612 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3613 int node, struct vmem_altmap *altmap); 3614 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3615 int node, struct vmem_altmap *altmap); 3616 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3617 struct vmem_altmap *altmap); 3618 void vmemmap_populate_print_last(void); 3619 #ifdef CONFIG_MEMORY_HOTPLUG 3620 void vmemmap_free(unsigned long start, unsigned long end, 3621 struct vmem_altmap *altmap); 3622 #endif 3623 3624 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP 3625 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3626 struct dev_pagemap *pgmap) 3627 { 3628 return is_power_of_2(sizeof(struct page)) && 3629 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap; 3630 } 3631 #else 3632 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3633 struct dev_pagemap *pgmap) 3634 { 3635 return false; 3636 } 3637 #endif 3638 3639 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3640 unsigned long nr_pages); 3641 3642 enum mf_flags { 3643 MF_COUNT_INCREASED = 1 << 0, 3644 MF_ACTION_REQUIRED = 1 << 1, 3645 MF_MUST_KILL = 1 << 2, 3646 MF_SOFT_OFFLINE = 1 << 3, 3647 MF_UNPOISON = 1 << 4, 3648 MF_SW_SIMULATED = 1 << 5, 3649 MF_NO_RETRY = 1 << 6, 3650 }; 3651 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3652 unsigned long count, int mf_flags); 3653 extern int memory_failure(unsigned long pfn, int flags); 3654 extern void memory_failure_queue_kick(int cpu); 3655 extern int unpoison_memory(unsigned long pfn); 3656 extern void shake_page(struct page *p); 3657 extern atomic_long_t num_poisoned_pages __read_mostly; 3658 extern int soft_offline_page(unsigned long pfn, int flags); 3659 #ifdef CONFIG_MEMORY_FAILURE 3660 /* 3661 * Sysfs entries for memory failure handling statistics. 3662 */ 3663 extern const struct attribute_group memory_failure_attr_group; 3664 extern void memory_failure_queue(unsigned long pfn, int flags); 3665 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3666 bool *migratable_cleared); 3667 void num_poisoned_pages_inc(unsigned long pfn); 3668 void num_poisoned_pages_sub(unsigned long pfn, long i); 3669 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3670 #else 3671 static inline void memory_failure_queue(unsigned long pfn, int flags) 3672 { 3673 } 3674 3675 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3676 bool *migratable_cleared) 3677 { 3678 return 0; 3679 } 3680 3681 static inline void num_poisoned_pages_inc(unsigned long pfn) 3682 { 3683 } 3684 3685 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3686 { 3687 } 3688 #endif 3689 3690 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3691 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3692 struct vm_area_struct *vma, struct list_head *to_kill, 3693 unsigned long ksm_addr); 3694 #endif 3695 3696 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3697 extern void memblk_nr_poison_inc(unsigned long pfn); 3698 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3699 #else 3700 static inline void memblk_nr_poison_inc(unsigned long pfn) 3701 { 3702 } 3703 3704 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3705 { 3706 } 3707 #endif 3708 3709 #ifndef arch_memory_failure 3710 static inline int arch_memory_failure(unsigned long pfn, int flags) 3711 { 3712 return -ENXIO; 3713 } 3714 #endif 3715 3716 #ifndef arch_is_platform_page 3717 static inline bool arch_is_platform_page(u64 paddr) 3718 { 3719 return false; 3720 } 3721 #endif 3722 3723 /* 3724 * Error handlers for various types of pages. 3725 */ 3726 enum mf_result { 3727 MF_IGNORED, /* Error: cannot be handled */ 3728 MF_FAILED, /* Error: handling failed */ 3729 MF_DELAYED, /* Will be handled later */ 3730 MF_RECOVERED, /* Successfully recovered */ 3731 }; 3732 3733 enum mf_action_page_type { 3734 MF_MSG_KERNEL, 3735 MF_MSG_KERNEL_HIGH_ORDER, 3736 MF_MSG_SLAB, 3737 MF_MSG_DIFFERENT_COMPOUND, 3738 MF_MSG_HUGE, 3739 MF_MSG_FREE_HUGE, 3740 MF_MSG_UNMAP_FAILED, 3741 MF_MSG_DIRTY_SWAPCACHE, 3742 MF_MSG_CLEAN_SWAPCACHE, 3743 MF_MSG_DIRTY_MLOCKED_LRU, 3744 MF_MSG_CLEAN_MLOCKED_LRU, 3745 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3746 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3747 MF_MSG_DIRTY_LRU, 3748 MF_MSG_CLEAN_LRU, 3749 MF_MSG_TRUNCATED_LRU, 3750 MF_MSG_BUDDY, 3751 MF_MSG_DAX, 3752 MF_MSG_UNSPLIT_THP, 3753 MF_MSG_UNKNOWN, 3754 }; 3755 3756 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3757 extern void clear_huge_page(struct page *page, 3758 unsigned long addr_hint, 3759 unsigned int pages_per_huge_page); 3760 int copy_user_large_folio(struct folio *dst, struct folio *src, 3761 unsigned long addr_hint, 3762 struct vm_area_struct *vma); 3763 long copy_folio_from_user(struct folio *dst_folio, 3764 const void __user *usr_src, 3765 bool allow_pagefault); 3766 3767 /** 3768 * vma_is_special_huge - Are transhuge page-table entries considered special? 3769 * @vma: Pointer to the struct vm_area_struct to consider 3770 * 3771 * Whether transhuge page-table entries are considered "special" following 3772 * the definition in vm_normal_page(). 3773 * 3774 * Return: true if transhuge page-table entries should be considered special, 3775 * false otherwise. 3776 */ 3777 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3778 { 3779 return vma_is_dax(vma) || (vma->vm_file && 3780 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3781 } 3782 3783 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3784 3785 #if MAX_NUMNODES > 1 3786 void __init setup_nr_node_ids(void); 3787 #else 3788 static inline void setup_nr_node_ids(void) {} 3789 #endif 3790 3791 extern int memcmp_pages(struct page *page1, struct page *page2); 3792 3793 static inline int pages_identical(struct page *page1, struct page *page2) 3794 { 3795 return !memcmp_pages(page1, page2); 3796 } 3797 3798 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3799 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3800 pgoff_t first_index, pgoff_t nr, 3801 pgoff_t bitmap_pgoff, 3802 unsigned long *bitmap, 3803 pgoff_t *start, 3804 pgoff_t *end); 3805 3806 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3807 pgoff_t first_index, pgoff_t nr); 3808 #endif 3809 3810 extern int sysctl_nr_trim_pages; 3811 3812 #ifdef CONFIG_PRINTK 3813 void mem_dump_obj(void *object); 3814 #else 3815 static inline void mem_dump_obj(void *object) {} 3816 #endif 3817 3818 /** 3819 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3820 * @seals: the seals to check 3821 * @vma: the vma to operate on 3822 * 3823 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3824 * the vma flags. Return 0 if check pass, or <0 for errors. 3825 */ 3826 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3827 { 3828 if (seals & F_SEAL_FUTURE_WRITE) { 3829 /* 3830 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3831 * "future write" seal active. 3832 */ 3833 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3834 return -EPERM; 3835 3836 /* 3837 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3838 * MAP_SHARED and read-only, take care to not allow mprotect to 3839 * revert protections on such mappings. Do this only for shared 3840 * mappings. For private mappings, don't need to mask 3841 * VM_MAYWRITE as we still want them to be COW-writable. 3842 */ 3843 if (vma->vm_flags & VM_SHARED) 3844 vm_flags_clear(vma, VM_MAYWRITE); 3845 } 3846 3847 return 0; 3848 } 3849 3850 #ifdef CONFIG_ANON_VMA_NAME 3851 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3852 unsigned long len_in, 3853 struct anon_vma_name *anon_name); 3854 #else 3855 static inline int 3856 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3857 unsigned long len_in, struct anon_vma_name *anon_name) { 3858 return 0; 3859 } 3860 #endif 3861 3862 #ifdef CONFIG_UNACCEPTED_MEMORY 3863 3864 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 3865 void accept_memory(phys_addr_t start, phys_addr_t end); 3866 3867 #else 3868 3869 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 3870 phys_addr_t end) 3871 { 3872 return false; 3873 } 3874 3875 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 3876 { 3877 } 3878 3879 #endif 3880 3881 #endif /* _LINUX_MM_H */ 3882