xref: /linux-6.15/include/linux/mm.h (revision 42fda663)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/mutex.h>
14 #include <linux/debug_locks.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mm_types.h>
17 
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
23 
24 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27 
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern int page_cluster;
31 
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37 
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 
44 /*
45  * Linux kernel virtual memory manager primitives.
46  * The idea being to have a "virtual" mm in the same way
47  * we have a virtual fs - giving a cleaner interface to the
48  * mm details, and allowing different kinds of memory mappings
49  * (from shared memory to executable loading to arbitrary
50  * mmap() functions).
51  */
52 
53 extern struct kmem_cache *vm_area_cachep;
54 
55 /*
56  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57  * disabled, then there's a single shared list of VMAs maintained by the
58  * system, and mm's subscribe to these individually
59  */
60 struct vm_list_struct {
61 	struct vm_list_struct	*next;
62 	struct vm_area_struct	*vma;
63 };
64 
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_vma_tree;
67 extern struct rw_semaphore nommu_vma_sem;
68 
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71 
72 /*
73  * vm_flags..
74  */
75 #define VM_READ		0x00000001	/* currently active flags */
76 #define VM_WRITE	0x00000002
77 #define VM_EXEC		0x00000004
78 #define VM_SHARED	0x00000008
79 
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
82 #define VM_MAYWRITE	0x00000020
83 #define VM_MAYEXEC	0x00000040
84 #define VM_MAYSHARE	0x00000080
85 
86 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
87 #define VM_GROWSUP	0x00000200
88 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
90 
91 #define VM_EXECUTABLE	0x00001000
92 #define VM_LOCKED	0x00002000
93 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
94 
95 					/* Used by sys_madvise() */
96 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
97 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
98 
99 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
101 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
102 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
103 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
104 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
108 
109 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
110 
111 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
114 
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
120 
121 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
126 
127 /*
128  * mapping from the currently active vm_flags protection bits (the
129  * low four bits) to a page protection mask..
130  */
131 extern pgprot_t protection_map[16];
132 
133 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
135 
136 
137 /*
138  * vm_fault is filled by the the pagefault handler and passed to the vma's
139  * ->fault function. The vma's ->fault is responsible for returning a bitmask
140  * of VM_FAULT_xxx flags that give details about how the fault was handled.
141  *
142  * pgoff should be used in favour of virtual_address, if possible. If pgoff
143  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144  * mapping support.
145  */
146 struct vm_fault {
147 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
148 	pgoff_t pgoff;			/* Logical page offset based on vma */
149 	void __user *virtual_address;	/* Faulting virtual address */
150 
151 	struct page *page;		/* ->fault handlers should return a
152 					 * page here, unless VM_FAULT_NOPAGE
153 					 * is set (which is also implied by
154 					 * VM_FAULT_ERROR).
155 					 */
156 };
157 
158 /*
159  * These are the virtual MM functions - opening of an area, closing and
160  * unmapping it (needed to keep files on disk up-to-date etc), pointer
161  * to the functions called when a no-page or a wp-page exception occurs.
162  */
163 struct vm_operations_struct {
164 	void (*open)(struct vm_area_struct * area);
165 	void (*close)(struct vm_area_struct * area);
166 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167 	struct page *(*nopage)(struct vm_area_struct *area,
168 			unsigned long address, int *type);
169 	unsigned long (*nopfn)(struct vm_area_struct *area,
170 			unsigned long address);
171 
172 	/* notification that a previously read-only page is about to become
173 	 * writable, if an error is returned it will cause a SIGBUS */
174 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178 					unsigned long addr);
179 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180 		const nodemask_t *to, unsigned long flags);
181 #endif
182 };
183 
184 struct mmu_gather;
185 struct inode;
186 
187 #define page_private(page)		((page)->private)
188 #define set_page_private(page, v)	((page)->private = (v))
189 
190 /*
191  * FIXME: take this include out, include page-flags.h in
192  * files which need it (119 of them)
193  */
194 #include <linux/page-flags.h>
195 
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
201 
202 /*
203  * Methods to modify the page usage count.
204  *
205  * What counts for a page usage:
206  * - cache mapping   (page->mapping)
207  * - private data    (page->private)
208  * - page mapped in a task's page tables, each mapping
209  *   is counted separately
210  *
211  * Also, many kernel routines increase the page count before a critical
212  * routine so they can be sure the page doesn't go away from under them.
213  */
214 
215 /*
216  * Drop a ref, return true if the refcount fell to zero (the page has no users)
217  */
218 static inline int put_page_testzero(struct page *page)
219 {
220 	VM_BUG_ON(atomic_read(&page->_count) == 0);
221 	return atomic_dec_and_test(&page->_count);
222 }
223 
224 /*
225  * Try to grab a ref unless the page has a refcount of zero, return false if
226  * that is the case.
227  */
228 static inline int get_page_unless_zero(struct page *page)
229 {
230 	VM_BUG_ON(PageCompound(page));
231 	return atomic_inc_not_zero(&page->_count);
232 }
233 
234 static inline struct page *compound_head(struct page *page)
235 {
236 	if (unlikely(PageTail(page)))
237 		return page->first_page;
238 	return page;
239 }
240 
241 static inline int page_count(struct page *page)
242 {
243 	return atomic_read(&compound_head(page)->_count);
244 }
245 
246 static inline void get_page(struct page *page)
247 {
248 	page = compound_head(page);
249 	VM_BUG_ON(atomic_read(&page->_count) == 0);
250 	atomic_inc(&page->_count);
251 }
252 
253 static inline struct page *virt_to_head_page(const void *x)
254 {
255 	struct page *page = virt_to_page(x);
256 	return compound_head(page);
257 }
258 
259 /*
260  * Setup the page count before being freed into the page allocator for
261  * the first time (boot or memory hotplug)
262  */
263 static inline void init_page_count(struct page *page)
264 {
265 	atomic_set(&page->_count, 1);
266 }
267 
268 void put_page(struct page *page);
269 void put_pages_list(struct list_head *pages);
270 
271 void split_page(struct page *page, unsigned int order);
272 
273 /*
274  * Compound pages have a destructor function.  Provide a
275  * prototype for that function and accessor functions.
276  * These are _only_ valid on the head of a PG_compound page.
277  */
278 typedef void compound_page_dtor(struct page *);
279 
280 static inline void set_compound_page_dtor(struct page *page,
281 						compound_page_dtor *dtor)
282 {
283 	page[1].lru.next = (void *)dtor;
284 }
285 
286 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
287 {
288 	return (compound_page_dtor *)page[1].lru.next;
289 }
290 
291 static inline int compound_order(struct page *page)
292 {
293 	if (!PageHead(page))
294 		return 0;
295 	return (unsigned long)page[1].lru.prev;
296 }
297 
298 static inline void set_compound_order(struct page *page, unsigned long order)
299 {
300 	page[1].lru.prev = (void *)order;
301 }
302 
303 /*
304  * Multiple processes may "see" the same page. E.g. for untouched
305  * mappings of /dev/null, all processes see the same page full of
306  * zeroes, and text pages of executables and shared libraries have
307  * only one copy in memory, at most, normally.
308  *
309  * For the non-reserved pages, page_count(page) denotes a reference count.
310  *   page_count() == 0 means the page is free. page->lru is then used for
311  *   freelist management in the buddy allocator.
312  *   page_count() > 0  means the page has been allocated.
313  *
314  * Pages are allocated by the slab allocator in order to provide memory
315  * to kmalloc and kmem_cache_alloc. In this case, the management of the
316  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
317  * unless a particular usage is carefully commented. (the responsibility of
318  * freeing the kmalloc memory is the caller's, of course).
319  *
320  * A page may be used by anyone else who does a __get_free_page().
321  * In this case, page_count still tracks the references, and should only
322  * be used through the normal accessor functions. The top bits of page->flags
323  * and page->virtual store page management information, but all other fields
324  * are unused and could be used privately, carefully. The management of this
325  * page is the responsibility of the one who allocated it, and those who have
326  * subsequently been given references to it.
327  *
328  * The other pages (we may call them "pagecache pages") are completely
329  * managed by the Linux memory manager: I/O, buffers, swapping etc.
330  * The following discussion applies only to them.
331  *
332  * A pagecache page contains an opaque `private' member, which belongs to the
333  * page's address_space. Usually, this is the address of a circular list of
334  * the page's disk buffers. PG_private must be set to tell the VM to call
335  * into the filesystem to release these pages.
336  *
337  * A page may belong to an inode's memory mapping. In this case, page->mapping
338  * is the pointer to the inode, and page->index is the file offset of the page,
339  * in units of PAGE_CACHE_SIZE.
340  *
341  * If pagecache pages are not associated with an inode, they are said to be
342  * anonymous pages. These may become associated with the swapcache, and in that
343  * case PG_swapcache is set, and page->private is an offset into the swapcache.
344  *
345  * In either case (swapcache or inode backed), the pagecache itself holds one
346  * reference to the page. Setting PG_private should also increment the
347  * refcount. The each user mapping also has a reference to the page.
348  *
349  * The pagecache pages are stored in a per-mapping radix tree, which is
350  * rooted at mapping->page_tree, and indexed by offset.
351  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
352  * lists, we instead now tag pages as dirty/writeback in the radix tree.
353  *
354  * All pagecache pages may be subject to I/O:
355  * - inode pages may need to be read from disk,
356  * - inode pages which have been modified and are MAP_SHARED may need
357  *   to be written back to the inode on disk,
358  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
359  *   modified may need to be swapped out to swap space and (later) to be read
360  *   back into memory.
361  */
362 
363 /*
364  * The zone field is never updated after free_area_init_core()
365  * sets it, so none of the operations on it need to be atomic.
366  */
367 
368 
369 /*
370  * page->flags layout:
371  *
372  * There are three possibilities for how page->flags get
373  * laid out.  The first is for the normal case, without
374  * sparsemem.  The second is for sparsemem when there is
375  * plenty of space for node and section.  The last is when
376  * we have run out of space and have to fall back to an
377  * alternate (slower) way of determining the node.
378  *
379  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
380  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
381  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
382  */
383 #ifdef CONFIG_SPARSEMEM
384 #define SECTIONS_WIDTH		SECTIONS_SHIFT
385 #else
386 #define SECTIONS_WIDTH		0
387 #endif
388 
389 #define ZONES_WIDTH		ZONES_SHIFT
390 
391 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
392 #define NODES_WIDTH		NODES_SHIFT
393 #else
394 #define NODES_WIDTH		0
395 #endif
396 
397 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
398 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
399 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
400 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
401 
402 /*
403  * We are going to use the flags for the page to node mapping if its in
404  * there.  This includes the case where there is no node, so it is implicit.
405  */
406 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
407 #define NODE_NOT_IN_PAGE_FLAGS
408 #endif
409 
410 #ifndef PFN_SECTION_SHIFT
411 #define PFN_SECTION_SHIFT 0
412 #endif
413 
414 /*
415  * Define the bit shifts to access each section.  For non-existant
416  * sections we define the shift as 0; that plus a 0 mask ensures
417  * the compiler will optimise away reference to them.
418  */
419 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
420 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
421 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
422 
423 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
424 #ifdef NODE_NOT_IN_PAGEFLAGS
425 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
426 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
427 						SECTIONS_PGOFF : ZONES_PGOFF)
428 #else
429 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
430 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
431 						NODES_PGOFF : ZONES_PGOFF)
432 #endif
433 
434 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
435 
436 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
437 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
438 #endif
439 
440 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
441 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
442 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
443 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
444 
445 static inline enum zone_type page_zonenum(struct page *page)
446 {
447 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
448 }
449 
450 /*
451  * The identification function is only used by the buddy allocator for
452  * determining if two pages could be buddies. We are not really
453  * identifying a zone since we could be using a the section number
454  * id if we have not node id available in page flags.
455  * We guarantee only that it will return the same value for two
456  * combinable pages in a zone.
457  */
458 static inline int page_zone_id(struct page *page)
459 {
460 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
461 }
462 
463 static inline int zone_to_nid(struct zone *zone)
464 {
465 #ifdef CONFIG_NUMA
466 	return zone->node;
467 #else
468 	return 0;
469 #endif
470 }
471 
472 #ifdef NODE_NOT_IN_PAGE_FLAGS
473 extern int page_to_nid(struct page *page);
474 #else
475 static inline int page_to_nid(struct page *page)
476 {
477 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
478 }
479 #endif
480 
481 static inline struct zone *page_zone(struct page *page)
482 {
483 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
484 }
485 
486 static inline unsigned long page_to_section(struct page *page)
487 {
488 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
489 }
490 
491 static inline void set_page_zone(struct page *page, enum zone_type zone)
492 {
493 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
494 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
495 }
496 
497 static inline void set_page_node(struct page *page, unsigned long node)
498 {
499 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
500 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
501 }
502 
503 static inline void set_page_section(struct page *page, unsigned long section)
504 {
505 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
506 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
507 }
508 
509 static inline void set_page_links(struct page *page, enum zone_type zone,
510 	unsigned long node, unsigned long pfn)
511 {
512 	set_page_zone(page, zone);
513 	set_page_node(page, node);
514 	set_page_section(page, pfn_to_section_nr(pfn));
515 }
516 
517 /*
518  * Some inline functions in vmstat.h depend on page_zone()
519  */
520 #include <linux/vmstat.h>
521 
522 static __always_inline void *lowmem_page_address(struct page *page)
523 {
524 	return __va(page_to_pfn(page) << PAGE_SHIFT);
525 }
526 
527 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
528 #define HASHED_PAGE_VIRTUAL
529 #endif
530 
531 #if defined(WANT_PAGE_VIRTUAL)
532 #define page_address(page) ((page)->virtual)
533 #define set_page_address(page, address)			\
534 	do {						\
535 		(page)->virtual = (address);		\
536 	} while(0)
537 #define page_address_init()  do { } while(0)
538 #endif
539 
540 #if defined(HASHED_PAGE_VIRTUAL)
541 void *page_address(struct page *page);
542 void set_page_address(struct page *page, void *virtual);
543 void page_address_init(void);
544 #endif
545 
546 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
547 #define page_address(page) lowmem_page_address(page)
548 #define set_page_address(page, address)  do { } while(0)
549 #define page_address_init()  do { } while(0)
550 #endif
551 
552 /*
553  * On an anonymous page mapped into a user virtual memory area,
554  * page->mapping points to its anon_vma, not to a struct address_space;
555  * with the PAGE_MAPPING_ANON bit set to distinguish it.
556  *
557  * Please note that, confusingly, "page_mapping" refers to the inode
558  * address_space which maps the page from disk; whereas "page_mapped"
559  * refers to user virtual address space into which the page is mapped.
560  */
561 #define PAGE_MAPPING_ANON	1
562 
563 extern struct address_space swapper_space;
564 static inline struct address_space *page_mapping(struct page *page)
565 {
566 	struct address_space *mapping = page->mapping;
567 
568 	VM_BUG_ON(PageSlab(page));
569 	if (unlikely(PageSwapCache(page)))
570 		mapping = &swapper_space;
571 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
572 		mapping = NULL;
573 	return mapping;
574 }
575 
576 static inline int PageAnon(struct page *page)
577 {
578 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
579 }
580 
581 /*
582  * Return the pagecache index of the passed page.  Regular pagecache pages
583  * use ->index whereas swapcache pages use ->private
584  */
585 static inline pgoff_t page_index(struct page *page)
586 {
587 	if (unlikely(PageSwapCache(page)))
588 		return page_private(page);
589 	return page->index;
590 }
591 
592 /*
593  * The atomic page->_mapcount, like _count, starts from -1:
594  * so that transitions both from it and to it can be tracked,
595  * using atomic_inc_and_test and atomic_add_negative(-1).
596  */
597 static inline void reset_page_mapcount(struct page *page)
598 {
599 	atomic_set(&(page)->_mapcount, -1);
600 }
601 
602 static inline int page_mapcount(struct page *page)
603 {
604 	return atomic_read(&(page)->_mapcount) + 1;
605 }
606 
607 /*
608  * Return true if this page is mapped into pagetables.
609  */
610 static inline int page_mapped(struct page *page)
611 {
612 	return atomic_read(&(page)->_mapcount) >= 0;
613 }
614 
615 /*
616  * Error return values for the *_nopage functions
617  */
618 #define NOPAGE_SIGBUS	(NULL)
619 #define NOPAGE_OOM	((struct page *) (-1))
620 
621 /*
622  * Error return values for the *_nopfn functions
623  */
624 #define NOPFN_SIGBUS	((unsigned long) -1)
625 #define NOPFN_OOM	((unsigned long) -2)
626 #define NOPFN_REFAULT	((unsigned long) -3)
627 
628 /*
629  * Different kinds of faults, as returned by handle_mm_fault().
630  * Used to decide whether a process gets delivered SIGBUS or
631  * just gets major/minor fault counters bumped up.
632  */
633 
634 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
635 
636 #define VM_FAULT_OOM	0x0001
637 #define VM_FAULT_SIGBUS	0x0002
638 #define VM_FAULT_MAJOR	0x0004
639 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
640 
641 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
642 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
643 
644 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS)
645 
646 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
647 
648 extern void show_free_areas(void);
649 
650 #ifdef CONFIG_SHMEM
651 int shmem_lock(struct file *file, int lock, struct user_struct *user);
652 #else
653 static inline int shmem_lock(struct file *file, int lock,
654 			     struct user_struct *user)
655 {
656 	return 0;
657 }
658 #endif
659 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
660 
661 int shmem_zero_setup(struct vm_area_struct *);
662 
663 #ifndef CONFIG_MMU
664 extern unsigned long shmem_get_unmapped_area(struct file *file,
665 					     unsigned long addr,
666 					     unsigned long len,
667 					     unsigned long pgoff,
668 					     unsigned long flags);
669 #endif
670 
671 extern int can_do_mlock(void);
672 extern int user_shm_lock(size_t, struct user_struct *);
673 extern void user_shm_unlock(size_t, struct user_struct *);
674 
675 /*
676  * Parameter block passed down to zap_pte_range in exceptional cases.
677  */
678 struct zap_details {
679 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
680 	struct address_space *check_mapping;	/* Check page->mapping if set */
681 	pgoff_t	first_index;			/* Lowest page->index to unmap */
682 	pgoff_t last_index;			/* Highest page->index to unmap */
683 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
684 	unsigned long truncate_count;		/* Compare vm_truncate_count */
685 };
686 
687 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
688 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
689 		unsigned long size, struct zap_details *);
690 unsigned long unmap_vmas(struct mmu_gather **tlb,
691 		struct vm_area_struct *start_vma, unsigned long start_addr,
692 		unsigned long end_addr, unsigned long *nr_accounted,
693 		struct zap_details *);
694 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
695 		unsigned long end, unsigned long floor, unsigned long ceiling);
696 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
697 		unsigned long floor, unsigned long ceiling);
698 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
699 			struct vm_area_struct *vma);
700 void unmap_mapping_range(struct address_space *mapping,
701 		loff_t const holebegin, loff_t const holelen, int even_cows);
702 
703 static inline void unmap_shared_mapping_range(struct address_space *mapping,
704 		loff_t const holebegin, loff_t const holelen)
705 {
706 	unmap_mapping_range(mapping, holebegin, holelen, 0);
707 }
708 
709 extern int vmtruncate(struct inode * inode, loff_t offset);
710 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
711 
712 #ifdef CONFIG_MMU
713 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
714 			unsigned long address, int write_access);
715 #else
716 static inline int handle_mm_fault(struct mm_struct *mm,
717 			struct vm_area_struct *vma, unsigned long address,
718 			int write_access)
719 {
720 	/* should never happen if there's no MMU */
721 	BUG();
722 	return VM_FAULT_SIGBUS;
723 }
724 #endif
725 
726 extern int make_pages_present(unsigned long addr, unsigned long end);
727 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
728 
729 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
730 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
731 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
732 
733 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
734 extern void do_invalidatepage(struct page *page, unsigned long offset);
735 
736 int __set_page_dirty_nobuffers(struct page *page);
737 int __set_page_dirty_no_writeback(struct page *page);
738 int redirty_page_for_writepage(struct writeback_control *wbc,
739 				struct page *page);
740 int FASTCALL(set_page_dirty(struct page *page));
741 int set_page_dirty_lock(struct page *page);
742 int clear_page_dirty_for_io(struct page *page);
743 
744 extern unsigned long move_page_tables(struct vm_area_struct *vma,
745 		unsigned long old_addr, struct vm_area_struct *new_vma,
746 		unsigned long new_addr, unsigned long len);
747 extern unsigned long do_mremap(unsigned long addr,
748 			       unsigned long old_len, unsigned long new_len,
749 			       unsigned long flags, unsigned long new_addr);
750 extern int mprotect_fixup(struct vm_area_struct *vma,
751 			  struct vm_area_struct **pprev, unsigned long start,
752 			  unsigned long end, unsigned long newflags);
753 
754 /*
755  * A callback you can register to apply pressure to ageable caches.
756  *
757  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
758  * look through the least-recently-used 'nr_to_scan' entries and
759  * attempt to free them up.  It should return the number of objects
760  * which remain in the cache.  If it returns -1, it means it cannot do
761  * any scanning at this time (eg. there is a risk of deadlock).
762  *
763  * The 'gfpmask' refers to the allocation we are currently trying to
764  * fulfil.
765  *
766  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
767  * querying the cache size, so a fastpath for that case is appropriate.
768  */
769 struct shrinker {
770 	int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
771 	int seeks;	/* seeks to recreate an obj */
772 
773 	/* These are for internal use */
774 	struct list_head list;
775 	long nr;	/* objs pending delete */
776 };
777 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
778 extern void register_shrinker(struct shrinker *);
779 extern void unregister_shrinker(struct shrinker *);
780 
781 int vma_wants_writenotify(struct vm_area_struct *vma);
782 
783 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
784 
785 #ifdef __PAGETABLE_PUD_FOLDED
786 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
787 						unsigned long address)
788 {
789 	return 0;
790 }
791 #else
792 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
793 #endif
794 
795 #ifdef __PAGETABLE_PMD_FOLDED
796 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
797 						unsigned long address)
798 {
799 	return 0;
800 }
801 #else
802 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
803 #endif
804 
805 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
806 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
807 
808 /*
809  * The following ifdef needed to get the 4level-fixup.h header to work.
810  * Remove it when 4level-fixup.h has been removed.
811  */
812 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
813 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
814 {
815 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
816 		NULL: pud_offset(pgd, address);
817 }
818 
819 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
820 {
821 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
822 		NULL: pmd_offset(pud, address);
823 }
824 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
825 
826 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
827 /*
828  * We tuck a spinlock to guard each pagetable page into its struct page,
829  * at page->private, with BUILD_BUG_ON to make sure that this will not
830  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
831  * When freeing, reset page->mapping so free_pages_check won't complain.
832  */
833 #define __pte_lockptr(page)	&((page)->ptl)
834 #define pte_lock_init(_page)	do {					\
835 	spin_lock_init(__pte_lockptr(_page));				\
836 } while (0)
837 #define pte_lock_deinit(page)	((page)->mapping = NULL)
838 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
839 #else
840 /*
841  * We use mm->page_table_lock to guard all pagetable pages of the mm.
842  */
843 #define pte_lock_init(page)	do {} while (0)
844 #define pte_lock_deinit(page)	do {} while (0)
845 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
846 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
847 
848 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
849 ({							\
850 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
851 	pte_t *__pte = pte_offset_map(pmd, address);	\
852 	*(ptlp) = __ptl;				\
853 	spin_lock(__ptl);				\
854 	__pte;						\
855 })
856 
857 #define pte_unmap_unlock(pte, ptl)	do {		\
858 	spin_unlock(ptl);				\
859 	pte_unmap(pte);					\
860 } while (0)
861 
862 #define pte_alloc_map(mm, pmd, address)			\
863 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
864 		NULL: pte_offset_map(pmd, address))
865 
866 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
867 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
868 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
869 
870 #define pte_alloc_kernel(pmd, address)			\
871 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
872 		NULL: pte_offset_kernel(pmd, address))
873 
874 extern void free_area_init(unsigned long * zones_size);
875 extern void free_area_init_node(int nid, pg_data_t *pgdat,
876 	unsigned long * zones_size, unsigned long zone_start_pfn,
877 	unsigned long *zholes_size);
878 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
879 /*
880  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
881  * zones, allocate the backing mem_map and account for memory holes in a more
882  * architecture independent manner. This is a substitute for creating the
883  * zone_sizes[] and zholes_size[] arrays and passing them to
884  * free_area_init_node()
885  *
886  * An architecture is expected to register range of page frames backed by
887  * physical memory with add_active_range() before calling
888  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
889  * usage, an architecture is expected to do something like
890  *
891  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
892  * 							 max_highmem_pfn};
893  * for_each_valid_physical_page_range()
894  * 	add_active_range(node_id, start_pfn, end_pfn)
895  * free_area_init_nodes(max_zone_pfns);
896  *
897  * If the architecture guarantees that there are no holes in the ranges
898  * registered with add_active_range(), free_bootmem_active_regions()
899  * will call free_bootmem_node() for each registered physical page range.
900  * Similarly sparse_memory_present_with_active_regions() calls
901  * memory_present() for each range when SPARSEMEM is enabled.
902  *
903  * See mm/page_alloc.c for more information on each function exposed by
904  * CONFIG_ARCH_POPULATES_NODE_MAP
905  */
906 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
907 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
908 					unsigned long end_pfn);
909 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
910 						unsigned long new_end_pfn);
911 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
912 					unsigned long end_pfn);
913 extern void remove_all_active_ranges(void);
914 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
915 						unsigned long end_pfn);
916 extern void get_pfn_range_for_nid(unsigned int nid,
917 			unsigned long *start_pfn, unsigned long *end_pfn);
918 extern unsigned long find_min_pfn_with_active_regions(void);
919 extern unsigned long find_max_pfn_with_active_regions(void);
920 extern void free_bootmem_with_active_regions(int nid,
921 						unsigned long max_low_pfn);
922 extern void sparse_memory_present_with_active_regions(int nid);
923 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
924 extern int early_pfn_to_nid(unsigned long pfn);
925 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
926 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
927 extern void set_dma_reserve(unsigned long new_dma_reserve);
928 extern void memmap_init_zone(unsigned long, int, unsigned long,
929 				unsigned long, enum memmap_context);
930 extern void setup_per_zone_pages_min(void);
931 extern void mem_init(void);
932 extern void show_mem(void);
933 extern void si_meminfo(struct sysinfo * val);
934 extern void si_meminfo_node(struct sysinfo *val, int nid);
935 
936 #ifdef CONFIG_NUMA
937 extern void setup_per_cpu_pageset(void);
938 #else
939 static inline void setup_per_cpu_pageset(void) {}
940 #endif
941 
942 /* prio_tree.c */
943 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
944 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
945 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
946 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
947 	struct prio_tree_iter *iter);
948 
949 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
950 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
951 		(vma = vma_prio_tree_next(vma, iter)); )
952 
953 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
954 					struct list_head *list)
955 {
956 	vma->shared.vm_set.parent = NULL;
957 	list_add_tail(&vma->shared.vm_set.list, list);
958 }
959 
960 /* mmap.c */
961 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
962 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
963 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
964 extern struct vm_area_struct *vma_merge(struct mm_struct *,
965 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
966 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
967 	struct mempolicy *);
968 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
969 extern int split_vma(struct mm_struct *,
970 	struct vm_area_struct *, unsigned long addr, int new_below);
971 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
972 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
973 	struct rb_node **, struct rb_node *);
974 extern void unlink_file_vma(struct vm_area_struct *);
975 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
976 	unsigned long addr, unsigned long len, pgoff_t pgoff);
977 extern void exit_mmap(struct mm_struct *);
978 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
979 extern int install_special_mapping(struct mm_struct *mm,
980 				   unsigned long addr, unsigned long len,
981 				   unsigned long flags, struct page **pages);
982 
983 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
984 
985 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
986 	unsigned long len, unsigned long prot,
987 	unsigned long flag, unsigned long pgoff);
988 extern unsigned long mmap_region(struct file *file, unsigned long addr,
989 	unsigned long len, unsigned long flags,
990 	unsigned int vm_flags, unsigned long pgoff,
991 	int accountable);
992 
993 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
994 	unsigned long len, unsigned long prot,
995 	unsigned long flag, unsigned long offset)
996 {
997 	unsigned long ret = -EINVAL;
998 	if ((offset + PAGE_ALIGN(len)) < offset)
999 		goto out;
1000 	if (!(offset & ~PAGE_MASK))
1001 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1002 out:
1003 	return ret;
1004 }
1005 
1006 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1007 
1008 extern unsigned long do_brk(unsigned long, unsigned long);
1009 
1010 /* filemap.c */
1011 extern unsigned long page_unuse(struct page *);
1012 extern void truncate_inode_pages(struct address_space *, loff_t);
1013 extern void truncate_inode_pages_range(struct address_space *,
1014 				       loff_t lstart, loff_t lend);
1015 
1016 /* generic vm_area_ops exported for stackable file systems */
1017 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1018 
1019 /* mm/page-writeback.c */
1020 int write_one_page(struct page *page, int wait);
1021 
1022 /* readahead.c */
1023 #define VM_MAX_READAHEAD	128	/* kbytes */
1024 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1025 
1026 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1027 			pgoff_t offset, unsigned long nr_to_read);
1028 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1029 			pgoff_t offset, unsigned long nr_to_read);
1030 
1031 void page_cache_sync_readahead(struct address_space *mapping,
1032 			       struct file_ra_state *ra,
1033 			       struct file *filp,
1034 			       pgoff_t offset,
1035 			       unsigned long size);
1036 
1037 void page_cache_async_readahead(struct address_space *mapping,
1038 				struct file_ra_state *ra,
1039 				struct file *filp,
1040 				struct page *pg,
1041 				pgoff_t offset,
1042 				unsigned long size);
1043 
1044 unsigned long max_sane_readahead(unsigned long nr);
1045 
1046 /* Do stack extension */
1047 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1048 #ifdef CONFIG_IA64
1049 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1050 #endif
1051 extern int expand_stack_downwards(struct vm_area_struct *vma,
1052 				  unsigned long address);
1053 
1054 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1055 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1056 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1057 					     struct vm_area_struct **pprev);
1058 
1059 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1060    NULL if none.  Assume start_addr < end_addr. */
1061 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1062 {
1063 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1064 
1065 	if (vma && end_addr <= vma->vm_start)
1066 		vma = NULL;
1067 	return vma;
1068 }
1069 
1070 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1071 {
1072 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1073 }
1074 
1075 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1076 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1077 struct page *vmalloc_to_page(void *addr);
1078 unsigned long vmalloc_to_pfn(void *addr);
1079 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1080 			unsigned long pfn, unsigned long size, pgprot_t);
1081 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1082 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1083 			unsigned long pfn);
1084 
1085 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1086 			unsigned int foll_flags);
1087 #define FOLL_WRITE	0x01	/* check pte is writable */
1088 #define FOLL_TOUCH	0x02	/* mark page accessed */
1089 #define FOLL_GET	0x04	/* do get_page on page */
1090 #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */
1091 
1092 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1093 			void *data);
1094 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1095 			       unsigned long size, pte_fn_t fn, void *data);
1096 
1097 #ifdef CONFIG_PROC_FS
1098 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1099 #else
1100 static inline void vm_stat_account(struct mm_struct *mm,
1101 			unsigned long flags, struct file *file, long pages)
1102 {
1103 }
1104 #endif /* CONFIG_PROC_FS */
1105 
1106 #ifndef CONFIG_DEBUG_PAGEALLOC
1107 static inline void
1108 kernel_map_pages(struct page *page, int numpages, int enable) {}
1109 #endif
1110 
1111 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1112 #ifdef	__HAVE_ARCH_GATE_AREA
1113 int in_gate_area_no_task(unsigned long addr);
1114 int in_gate_area(struct task_struct *task, unsigned long addr);
1115 #else
1116 int in_gate_area_no_task(unsigned long addr);
1117 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1118 #endif	/* __HAVE_ARCH_GATE_AREA */
1119 
1120 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1121 					void __user *, size_t *, loff_t *);
1122 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1123 			unsigned long lru_pages);
1124 void drop_pagecache(void);
1125 void drop_slab(void);
1126 
1127 #ifndef CONFIG_MMU
1128 #define randomize_va_space 0
1129 #else
1130 extern int randomize_va_space;
1131 #endif
1132 
1133 const char * arch_vma_name(struct vm_area_struct *vma);
1134 
1135 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1136 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1137 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1138 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1139 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1140 void *vmemmap_alloc_block(unsigned long size, int node);
1141 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1142 int vmemmap_populate_basepages(struct page *start_page,
1143 						unsigned long pages, int node);
1144 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1145 
1146 #endif /* __KERNEL__ */
1147 #endif /* _LINUX_MM_H */
1148