1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/mutex.h> 14 #include <linux/debug_locks.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mm_types.h> 17 18 struct mempolicy; 19 struct anon_vma; 20 struct file_ra_state; 21 struct user_struct; 22 struct writeback_control; 23 24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25 extern unsigned long max_mapnr; 26 #endif 27 28 extern unsigned long num_physpages; 29 extern void * high_memory; 30 extern int page_cluster; 31 32 #ifdef CONFIG_SYSCTL 33 extern int sysctl_legacy_va_layout; 34 #else 35 #define sysctl_legacy_va_layout 0 36 #endif 37 38 #include <asm/page.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44 /* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53 extern struct kmem_cache *vm_area_cachep; 54 55 /* 56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 57 * disabled, then there's a single shared list of VMAs maintained by the 58 * system, and mm's subscribe to these individually 59 */ 60 struct vm_list_struct { 61 struct vm_list_struct *next; 62 struct vm_area_struct *vma; 63 }; 64 65 #ifndef CONFIG_MMU 66 extern struct rb_root nommu_vma_tree; 67 extern struct rw_semaphore nommu_vma_sem; 68 69 extern unsigned int kobjsize(const void *objp); 70 #endif 71 72 /* 73 * vm_flags.. 74 */ 75 #define VM_READ 0x00000001 /* currently active flags */ 76 #define VM_WRITE 0x00000002 77 #define VM_EXEC 0x00000004 78 #define VM_SHARED 0x00000008 79 80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82 #define VM_MAYWRITE 0x00000020 83 #define VM_MAYEXEC 0x00000040 84 #define VM_MAYSHARE 0x00000080 85 86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87 #define VM_GROWSUP 0x00000200 88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91 #define VM_EXECUTABLE 0x00001000 92 #define VM_LOCKED 0x00002000 93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 108 109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 110 111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 113 #endif 114 115 #ifdef CONFIG_STACK_GROWSUP 116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117 #else 118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 119 #endif 120 121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 126 127 /* 128 * mapping from the currently active vm_flags protection bits (the 129 * low four bits) to a page protection mask.. 130 */ 131 extern pgprot_t protection_map[16]; 132 133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 135 136 137 /* 138 * vm_fault is filled by the the pagefault handler and passed to the vma's 139 * ->fault function. The vma's ->fault is responsible for returning a bitmask 140 * of VM_FAULT_xxx flags that give details about how the fault was handled. 141 * 142 * pgoff should be used in favour of virtual_address, if possible. If pgoff 143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 144 * mapping support. 145 */ 146 struct vm_fault { 147 unsigned int flags; /* FAULT_FLAG_xxx flags */ 148 pgoff_t pgoff; /* Logical page offset based on vma */ 149 void __user *virtual_address; /* Faulting virtual address */ 150 151 struct page *page; /* ->fault handlers should return a 152 * page here, unless VM_FAULT_NOPAGE 153 * is set (which is also implied by 154 * VM_FAULT_ERROR). 155 */ 156 }; 157 158 /* 159 * These are the virtual MM functions - opening of an area, closing and 160 * unmapping it (needed to keep files on disk up-to-date etc), pointer 161 * to the functions called when a no-page or a wp-page exception occurs. 162 */ 163 struct vm_operations_struct { 164 void (*open)(struct vm_area_struct * area); 165 void (*close)(struct vm_area_struct * area); 166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 167 struct page *(*nopage)(struct vm_area_struct *area, 168 unsigned long address, int *type); 169 unsigned long (*nopfn)(struct vm_area_struct *area, 170 unsigned long address); 171 172 /* notification that a previously read-only page is about to become 173 * writable, if an error is returned it will cause a SIGBUS */ 174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 175 #ifdef CONFIG_NUMA 176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 178 unsigned long addr); 179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 180 const nodemask_t *to, unsigned long flags); 181 #endif 182 }; 183 184 struct mmu_gather; 185 struct inode; 186 187 #define page_private(page) ((page)->private) 188 #define set_page_private(page, v) ((page)->private = (v)) 189 190 /* 191 * FIXME: take this include out, include page-flags.h in 192 * files which need it (119 of them) 193 */ 194 #include <linux/page-flags.h> 195 196 #ifdef CONFIG_DEBUG_VM 197 #define VM_BUG_ON(cond) BUG_ON(cond) 198 #else 199 #define VM_BUG_ON(condition) do { } while(0) 200 #endif 201 202 /* 203 * Methods to modify the page usage count. 204 * 205 * What counts for a page usage: 206 * - cache mapping (page->mapping) 207 * - private data (page->private) 208 * - page mapped in a task's page tables, each mapping 209 * is counted separately 210 * 211 * Also, many kernel routines increase the page count before a critical 212 * routine so they can be sure the page doesn't go away from under them. 213 */ 214 215 /* 216 * Drop a ref, return true if the refcount fell to zero (the page has no users) 217 */ 218 static inline int put_page_testzero(struct page *page) 219 { 220 VM_BUG_ON(atomic_read(&page->_count) == 0); 221 return atomic_dec_and_test(&page->_count); 222 } 223 224 /* 225 * Try to grab a ref unless the page has a refcount of zero, return false if 226 * that is the case. 227 */ 228 static inline int get_page_unless_zero(struct page *page) 229 { 230 VM_BUG_ON(PageCompound(page)); 231 return atomic_inc_not_zero(&page->_count); 232 } 233 234 static inline struct page *compound_head(struct page *page) 235 { 236 if (unlikely(PageTail(page))) 237 return page->first_page; 238 return page; 239 } 240 241 static inline int page_count(struct page *page) 242 { 243 return atomic_read(&compound_head(page)->_count); 244 } 245 246 static inline void get_page(struct page *page) 247 { 248 page = compound_head(page); 249 VM_BUG_ON(atomic_read(&page->_count) == 0); 250 atomic_inc(&page->_count); 251 } 252 253 static inline struct page *virt_to_head_page(const void *x) 254 { 255 struct page *page = virt_to_page(x); 256 return compound_head(page); 257 } 258 259 /* 260 * Setup the page count before being freed into the page allocator for 261 * the first time (boot or memory hotplug) 262 */ 263 static inline void init_page_count(struct page *page) 264 { 265 atomic_set(&page->_count, 1); 266 } 267 268 void put_page(struct page *page); 269 void put_pages_list(struct list_head *pages); 270 271 void split_page(struct page *page, unsigned int order); 272 273 /* 274 * Compound pages have a destructor function. Provide a 275 * prototype for that function and accessor functions. 276 * These are _only_ valid on the head of a PG_compound page. 277 */ 278 typedef void compound_page_dtor(struct page *); 279 280 static inline void set_compound_page_dtor(struct page *page, 281 compound_page_dtor *dtor) 282 { 283 page[1].lru.next = (void *)dtor; 284 } 285 286 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 287 { 288 return (compound_page_dtor *)page[1].lru.next; 289 } 290 291 static inline int compound_order(struct page *page) 292 { 293 if (!PageHead(page)) 294 return 0; 295 return (unsigned long)page[1].lru.prev; 296 } 297 298 static inline void set_compound_order(struct page *page, unsigned long order) 299 { 300 page[1].lru.prev = (void *)order; 301 } 302 303 /* 304 * Multiple processes may "see" the same page. E.g. for untouched 305 * mappings of /dev/null, all processes see the same page full of 306 * zeroes, and text pages of executables and shared libraries have 307 * only one copy in memory, at most, normally. 308 * 309 * For the non-reserved pages, page_count(page) denotes a reference count. 310 * page_count() == 0 means the page is free. page->lru is then used for 311 * freelist management in the buddy allocator. 312 * page_count() > 0 means the page has been allocated. 313 * 314 * Pages are allocated by the slab allocator in order to provide memory 315 * to kmalloc and kmem_cache_alloc. In this case, the management of the 316 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 317 * unless a particular usage is carefully commented. (the responsibility of 318 * freeing the kmalloc memory is the caller's, of course). 319 * 320 * A page may be used by anyone else who does a __get_free_page(). 321 * In this case, page_count still tracks the references, and should only 322 * be used through the normal accessor functions. The top bits of page->flags 323 * and page->virtual store page management information, but all other fields 324 * are unused and could be used privately, carefully. The management of this 325 * page is the responsibility of the one who allocated it, and those who have 326 * subsequently been given references to it. 327 * 328 * The other pages (we may call them "pagecache pages") are completely 329 * managed by the Linux memory manager: I/O, buffers, swapping etc. 330 * The following discussion applies only to them. 331 * 332 * A pagecache page contains an opaque `private' member, which belongs to the 333 * page's address_space. Usually, this is the address of a circular list of 334 * the page's disk buffers. PG_private must be set to tell the VM to call 335 * into the filesystem to release these pages. 336 * 337 * A page may belong to an inode's memory mapping. In this case, page->mapping 338 * is the pointer to the inode, and page->index is the file offset of the page, 339 * in units of PAGE_CACHE_SIZE. 340 * 341 * If pagecache pages are not associated with an inode, they are said to be 342 * anonymous pages. These may become associated with the swapcache, and in that 343 * case PG_swapcache is set, and page->private is an offset into the swapcache. 344 * 345 * In either case (swapcache or inode backed), the pagecache itself holds one 346 * reference to the page. Setting PG_private should also increment the 347 * refcount. The each user mapping also has a reference to the page. 348 * 349 * The pagecache pages are stored in a per-mapping radix tree, which is 350 * rooted at mapping->page_tree, and indexed by offset. 351 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 352 * lists, we instead now tag pages as dirty/writeback in the radix tree. 353 * 354 * All pagecache pages may be subject to I/O: 355 * - inode pages may need to be read from disk, 356 * - inode pages which have been modified and are MAP_SHARED may need 357 * to be written back to the inode on disk, 358 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 359 * modified may need to be swapped out to swap space and (later) to be read 360 * back into memory. 361 */ 362 363 /* 364 * The zone field is never updated after free_area_init_core() 365 * sets it, so none of the operations on it need to be atomic. 366 */ 367 368 369 /* 370 * page->flags layout: 371 * 372 * There are three possibilities for how page->flags get 373 * laid out. The first is for the normal case, without 374 * sparsemem. The second is for sparsemem when there is 375 * plenty of space for node and section. The last is when 376 * we have run out of space and have to fall back to an 377 * alternate (slower) way of determining the node. 378 * 379 * No sparsemem: | NODE | ZONE | ... | FLAGS | 380 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 381 * no space for node: | SECTION | ZONE | ... | FLAGS | 382 */ 383 #ifdef CONFIG_SPARSEMEM 384 #define SECTIONS_WIDTH SECTIONS_SHIFT 385 #else 386 #define SECTIONS_WIDTH 0 387 #endif 388 389 #define ZONES_WIDTH ZONES_SHIFT 390 391 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 392 #define NODES_WIDTH NODES_SHIFT 393 #else 394 #define NODES_WIDTH 0 395 #endif 396 397 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 398 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 399 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 400 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 401 402 /* 403 * We are going to use the flags for the page to node mapping if its in 404 * there. This includes the case where there is no node, so it is implicit. 405 */ 406 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 407 #define NODE_NOT_IN_PAGE_FLAGS 408 #endif 409 410 #ifndef PFN_SECTION_SHIFT 411 #define PFN_SECTION_SHIFT 0 412 #endif 413 414 /* 415 * Define the bit shifts to access each section. For non-existant 416 * sections we define the shift as 0; that plus a 0 mask ensures 417 * the compiler will optimise away reference to them. 418 */ 419 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 420 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 421 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 422 423 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 424 #ifdef NODE_NOT_IN_PAGEFLAGS 425 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 426 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 427 SECTIONS_PGOFF : ZONES_PGOFF) 428 #else 429 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 430 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 431 NODES_PGOFF : ZONES_PGOFF) 432 #endif 433 434 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 435 436 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 437 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 438 #endif 439 440 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 441 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 442 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 443 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 444 445 static inline enum zone_type page_zonenum(struct page *page) 446 { 447 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 448 } 449 450 /* 451 * The identification function is only used by the buddy allocator for 452 * determining if two pages could be buddies. We are not really 453 * identifying a zone since we could be using a the section number 454 * id if we have not node id available in page flags. 455 * We guarantee only that it will return the same value for two 456 * combinable pages in a zone. 457 */ 458 static inline int page_zone_id(struct page *page) 459 { 460 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 461 } 462 463 static inline int zone_to_nid(struct zone *zone) 464 { 465 #ifdef CONFIG_NUMA 466 return zone->node; 467 #else 468 return 0; 469 #endif 470 } 471 472 #ifdef NODE_NOT_IN_PAGE_FLAGS 473 extern int page_to_nid(struct page *page); 474 #else 475 static inline int page_to_nid(struct page *page) 476 { 477 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 478 } 479 #endif 480 481 static inline struct zone *page_zone(struct page *page) 482 { 483 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 484 } 485 486 static inline unsigned long page_to_section(struct page *page) 487 { 488 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 489 } 490 491 static inline void set_page_zone(struct page *page, enum zone_type zone) 492 { 493 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 494 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 495 } 496 497 static inline void set_page_node(struct page *page, unsigned long node) 498 { 499 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 500 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 501 } 502 503 static inline void set_page_section(struct page *page, unsigned long section) 504 { 505 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 506 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 507 } 508 509 static inline void set_page_links(struct page *page, enum zone_type zone, 510 unsigned long node, unsigned long pfn) 511 { 512 set_page_zone(page, zone); 513 set_page_node(page, node); 514 set_page_section(page, pfn_to_section_nr(pfn)); 515 } 516 517 /* 518 * Some inline functions in vmstat.h depend on page_zone() 519 */ 520 #include <linux/vmstat.h> 521 522 static __always_inline void *lowmem_page_address(struct page *page) 523 { 524 return __va(page_to_pfn(page) << PAGE_SHIFT); 525 } 526 527 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 528 #define HASHED_PAGE_VIRTUAL 529 #endif 530 531 #if defined(WANT_PAGE_VIRTUAL) 532 #define page_address(page) ((page)->virtual) 533 #define set_page_address(page, address) \ 534 do { \ 535 (page)->virtual = (address); \ 536 } while(0) 537 #define page_address_init() do { } while(0) 538 #endif 539 540 #if defined(HASHED_PAGE_VIRTUAL) 541 void *page_address(struct page *page); 542 void set_page_address(struct page *page, void *virtual); 543 void page_address_init(void); 544 #endif 545 546 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 547 #define page_address(page) lowmem_page_address(page) 548 #define set_page_address(page, address) do { } while(0) 549 #define page_address_init() do { } while(0) 550 #endif 551 552 /* 553 * On an anonymous page mapped into a user virtual memory area, 554 * page->mapping points to its anon_vma, not to a struct address_space; 555 * with the PAGE_MAPPING_ANON bit set to distinguish it. 556 * 557 * Please note that, confusingly, "page_mapping" refers to the inode 558 * address_space which maps the page from disk; whereas "page_mapped" 559 * refers to user virtual address space into which the page is mapped. 560 */ 561 #define PAGE_MAPPING_ANON 1 562 563 extern struct address_space swapper_space; 564 static inline struct address_space *page_mapping(struct page *page) 565 { 566 struct address_space *mapping = page->mapping; 567 568 VM_BUG_ON(PageSlab(page)); 569 if (unlikely(PageSwapCache(page))) 570 mapping = &swapper_space; 571 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 572 mapping = NULL; 573 return mapping; 574 } 575 576 static inline int PageAnon(struct page *page) 577 { 578 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 579 } 580 581 /* 582 * Return the pagecache index of the passed page. Regular pagecache pages 583 * use ->index whereas swapcache pages use ->private 584 */ 585 static inline pgoff_t page_index(struct page *page) 586 { 587 if (unlikely(PageSwapCache(page))) 588 return page_private(page); 589 return page->index; 590 } 591 592 /* 593 * The atomic page->_mapcount, like _count, starts from -1: 594 * so that transitions both from it and to it can be tracked, 595 * using atomic_inc_and_test and atomic_add_negative(-1). 596 */ 597 static inline void reset_page_mapcount(struct page *page) 598 { 599 atomic_set(&(page)->_mapcount, -1); 600 } 601 602 static inline int page_mapcount(struct page *page) 603 { 604 return atomic_read(&(page)->_mapcount) + 1; 605 } 606 607 /* 608 * Return true if this page is mapped into pagetables. 609 */ 610 static inline int page_mapped(struct page *page) 611 { 612 return atomic_read(&(page)->_mapcount) >= 0; 613 } 614 615 /* 616 * Error return values for the *_nopage functions 617 */ 618 #define NOPAGE_SIGBUS (NULL) 619 #define NOPAGE_OOM ((struct page *) (-1)) 620 621 /* 622 * Error return values for the *_nopfn functions 623 */ 624 #define NOPFN_SIGBUS ((unsigned long) -1) 625 #define NOPFN_OOM ((unsigned long) -2) 626 #define NOPFN_REFAULT ((unsigned long) -3) 627 628 /* 629 * Different kinds of faults, as returned by handle_mm_fault(). 630 * Used to decide whether a process gets delivered SIGBUS or 631 * just gets major/minor fault counters bumped up. 632 */ 633 634 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 635 636 #define VM_FAULT_OOM 0x0001 637 #define VM_FAULT_SIGBUS 0x0002 638 #define VM_FAULT_MAJOR 0x0004 639 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 640 641 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 642 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 643 644 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 645 646 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 647 648 extern void show_free_areas(void); 649 650 #ifdef CONFIG_SHMEM 651 int shmem_lock(struct file *file, int lock, struct user_struct *user); 652 #else 653 static inline int shmem_lock(struct file *file, int lock, 654 struct user_struct *user) 655 { 656 return 0; 657 } 658 #endif 659 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 660 661 int shmem_zero_setup(struct vm_area_struct *); 662 663 #ifndef CONFIG_MMU 664 extern unsigned long shmem_get_unmapped_area(struct file *file, 665 unsigned long addr, 666 unsigned long len, 667 unsigned long pgoff, 668 unsigned long flags); 669 #endif 670 671 extern int can_do_mlock(void); 672 extern int user_shm_lock(size_t, struct user_struct *); 673 extern void user_shm_unlock(size_t, struct user_struct *); 674 675 /* 676 * Parameter block passed down to zap_pte_range in exceptional cases. 677 */ 678 struct zap_details { 679 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 680 struct address_space *check_mapping; /* Check page->mapping if set */ 681 pgoff_t first_index; /* Lowest page->index to unmap */ 682 pgoff_t last_index; /* Highest page->index to unmap */ 683 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 684 unsigned long truncate_count; /* Compare vm_truncate_count */ 685 }; 686 687 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 688 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 689 unsigned long size, struct zap_details *); 690 unsigned long unmap_vmas(struct mmu_gather **tlb, 691 struct vm_area_struct *start_vma, unsigned long start_addr, 692 unsigned long end_addr, unsigned long *nr_accounted, 693 struct zap_details *); 694 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 695 unsigned long end, unsigned long floor, unsigned long ceiling); 696 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 697 unsigned long floor, unsigned long ceiling); 698 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 699 struct vm_area_struct *vma); 700 void unmap_mapping_range(struct address_space *mapping, 701 loff_t const holebegin, loff_t const holelen, int even_cows); 702 703 static inline void unmap_shared_mapping_range(struct address_space *mapping, 704 loff_t const holebegin, loff_t const holelen) 705 { 706 unmap_mapping_range(mapping, holebegin, holelen, 0); 707 } 708 709 extern int vmtruncate(struct inode * inode, loff_t offset); 710 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 711 712 #ifdef CONFIG_MMU 713 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 714 unsigned long address, int write_access); 715 #else 716 static inline int handle_mm_fault(struct mm_struct *mm, 717 struct vm_area_struct *vma, unsigned long address, 718 int write_access) 719 { 720 /* should never happen if there's no MMU */ 721 BUG(); 722 return VM_FAULT_SIGBUS; 723 } 724 #endif 725 726 extern int make_pages_present(unsigned long addr, unsigned long end); 727 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 728 729 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 730 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 731 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 732 733 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 734 extern void do_invalidatepage(struct page *page, unsigned long offset); 735 736 int __set_page_dirty_nobuffers(struct page *page); 737 int __set_page_dirty_no_writeback(struct page *page); 738 int redirty_page_for_writepage(struct writeback_control *wbc, 739 struct page *page); 740 int FASTCALL(set_page_dirty(struct page *page)); 741 int set_page_dirty_lock(struct page *page); 742 int clear_page_dirty_for_io(struct page *page); 743 744 extern unsigned long move_page_tables(struct vm_area_struct *vma, 745 unsigned long old_addr, struct vm_area_struct *new_vma, 746 unsigned long new_addr, unsigned long len); 747 extern unsigned long do_mremap(unsigned long addr, 748 unsigned long old_len, unsigned long new_len, 749 unsigned long flags, unsigned long new_addr); 750 extern int mprotect_fixup(struct vm_area_struct *vma, 751 struct vm_area_struct **pprev, unsigned long start, 752 unsigned long end, unsigned long newflags); 753 754 /* 755 * A callback you can register to apply pressure to ageable caches. 756 * 757 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 758 * look through the least-recently-used 'nr_to_scan' entries and 759 * attempt to free them up. It should return the number of objects 760 * which remain in the cache. If it returns -1, it means it cannot do 761 * any scanning at this time (eg. there is a risk of deadlock). 762 * 763 * The 'gfpmask' refers to the allocation we are currently trying to 764 * fulfil. 765 * 766 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 767 * querying the cache size, so a fastpath for that case is appropriate. 768 */ 769 struct shrinker { 770 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 771 int seeks; /* seeks to recreate an obj */ 772 773 /* These are for internal use */ 774 struct list_head list; 775 long nr; /* objs pending delete */ 776 }; 777 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 778 extern void register_shrinker(struct shrinker *); 779 extern void unregister_shrinker(struct shrinker *); 780 781 int vma_wants_writenotify(struct vm_area_struct *vma); 782 783 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 784 785 #ifdef __PAGETABLE_PUD_FOLDED 786 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 787 unsigned long address) 788 { 789 return 0; 790 } 791 #else 792 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 793 #endif 794 795 #ifdef __PAGETABLE_PMD_FOLDED 796 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 797 unsigned long address) 798 { 799 return 0; 800 } 801 #else 802 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 803 #endif 804 805 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 806 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 807 808 /* 809 * The following ifdef needed to get the 4level-fixup.h header to work. 810 * Remove it when 4level-fixup.h has been removed. 811 */ 812 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 813 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 814 { 815 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 816 NULL: pud_offset(pgd, address); 817 } 818 819 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 820 { 821 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 822 NULL: pmd_offset(pud, address); 823 } 824 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 825 826 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 827 /* 828 * We tuck a spinlock to guard each pagetable page into its struct page, 829 * at page->private, with BUILD_BUG_ON to make sure that this will not 830 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 831 * When freeing, reset page->mapping so free_pages_check won't complain. 832 */ 833 #define __pte_lockptr(page) &((page)->ptl) 834 #define pte_lock_init(_page) do { \ 835 spin_lock_init(__pte_lockptr(_page)); \ 836 } while (0) 837 #define pte_lock_deinit(page) ((page)->mapping = NULL) 838 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 839 #else 840 /* 841 * We use mm->page_table_lock to guard all pagetable pages of the mm. 842 */ 843 #define pte_lock_init(page) do {} while (0) 844 #define pte_lock_deinit(page) do {} while (0) 845 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 846 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 847 848 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 849 ({ \ 850 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 851 pte_t *__pte = pte_offset_map(pmd, address); \ 852 *(ptlp) = __ptl; \ 853 spin_lock(__ptl); \ 854 __pte; \ 855 }) 856 857 #define pte_unmap_unlock(pte, ptl) do { \ 858 spin_unlock(ptl); \ 859 pte_unmap(pte); \ 860 } while (0) 861 862 #define pte_alloc_map(mm, pmd, address) \ 863 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 864 NULL: pte_offset_map(pmd, address)) 865 866 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 867 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 868 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 869 870 #define pte_alloc_kernel(pmd, address) \ 871 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 872 NULL: pte_offset_kernel(pmd, address)) 873 874 extern void free_area_init(unsigned long * zones_size); 875 extern void free_area_init_node(int nid, pg_data_t *pgdat, 876 unsigned long * zones_size, unsigned long zone_start_pfn, 877 unsigned long *zholes_size); 878 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 879 /* 880 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 881 * zones, allocate the backing mem_map and account for memory holes in a more 882 * architecture independent manner. This is a substitute for creating the 883 * zone_sizes[] and zholes_size[] arrays and passing them to 884 * free_area_init_node() 885 * 886 * An architecture is expected to register range of page frames backed by 887 * physical memory with add_active_range() before calling 888 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 889 * usage, an architecture is expected to do something like 890 * 891 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 892 * max_highmem_pfn}; 893 * for_each_valid_physical_page_range() 894 * add_active_range(node_id, start_pfn, end_pfn) 895 * free_area_init_nodes(max_zone_pfns); 896 * 897 * If the architecture guarantees that there are no holes in the ranges 898 * registered with add_active_range(), free_bootmem_active_regions() 899 * will call free_bootmem_node() for each registered physical page range. 900 * Similarly sparse_memory_present_with_active_regions() calls 901 * memory_present() for each range when SPARSEMEM is enabled. 902 * 903 * See mm/page_alloc.c for more information on each function exposed by 904 * CONFIG_ARCH_POPULATES_NODE_MAP 905 */ 906 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 907 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 908 unsigned long end_pfn); 909 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 910 unsigned long new_end_pfn); 911 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 912 unsigned long end_pfn); 913 extern void remove_all_active_ranges(void); 914 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 915 unsigned long end_pfn); 916 extern void get_pfn_range_for_nid(unsigned int nid, 917 unsigned long *start_pfn, unsigned long *end_pfn); 918 extern unsigned long find_min_pfn_with_active_regions(void); 919 extern unsigned long find_max_pfn_with_active_regions(void); 920 extern void free_bootmem_with_active_regions(int nid, 921 unsigned long max_low_pfn); 922 extern void sparse_memory_present_with_active_regions(int nid); 923 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 924 extern int early_pfn_to_nid(unsigned long pfn); 925 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 926 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 927 extern void set_dma_reserve(unsigned long new_dma_reserve); 928 extern void memmap_init_zone(unsigned long, int, unsigned long, 929 unsigned long, enum memmap_context); 930 extern void setup_per_zone_pages_min(void); 931 extern void mem_init(void); 932 extern void show_mem(void); 933 extern void si_meminfo(struct sysinfo * val); 934 extern void si_meminfo_node(struct sysinfo *val, int nid); 935 936 #ifdef CONFIG_NUMA 937 extern void setup_per_cpu_pageset(void); 938 #else 939 static inline void setup_per_cpu_pageset(void) {} 940 #endif 941 942 /* prio_tree.c */ 943 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 944 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 945 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 946 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 947 struct prio_tree_iter *iter); 948 949 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 950 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 951 (vma = vma_prio_tree_next(vma, iter)); ) 952 953 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 954 struct list_head *list) 955 { 956 vma->shared.vm_set.parent = NULL; 957 list_add_tail(&vma->shared.vm_set.list, list); 958 } 959 960 /* mmap.c */ 961 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 962 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 963 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 964 extern struct vm_area_struct *vma_merge(struct mm_struct *, 965 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 966 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 967 struct mempolicy *); 968 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 969 extern int split_vma(struct mm_struct *, 970 struct vm_area_struct *, unsigned long addr, int new_below); 971 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 972 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 973 struct rb_node **, struct rb_node *); 974 extern void unlink_file_vma(struct vm_area_struct *); 975 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 976 unsigned long addr, unsigned long len, pgoff_t pgoff); 977 extern void exit_mmap(struct mm_struct *); 978 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 979 extern int install_special_mapping(struct mm_struct *mm, 980 unsigned long addr, unsigned long len, 981 unsigned long flags, struct page **pages); 982 983 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 984 985 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 986 unsigned long len, unsigned long prot, 987 unsigned long flag, unsigned long pgoff); 988 extern unsigned long mmap_region(struct file *file, unsigned long addr, 989 unsigned long len, unsigned long flags, 990 unsigned int vm_flags, unsigned long pgoff, 991 int accountable); 992 993 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 994 unsigned long len, unsigned long prot, 995 unsigned long flag, unsigned long offset) 996 { 997 unsigned long ret = -EINVAL; 998 if ((offset + PAGE_ALIGN(len)) < offset) 999 goto out; 1000 if (!(offset & ~PAGE_MASK)) 1001 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1002 out: 1003 return ret; 1004 } 1005 1006 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1007 1008 extern unsigned long do_brk(unsigned long, unsigned long); 1009 1010 /* filemap.c */ 1011 extern unsigned long page_unuse(struct page *); 1012 extern void truncate_inode_pages(struct address_space *, loff_t); 1013 extern void truncate_inode_pages_range(struct address_space *, 1014 loff_t lstart, loff_t lend); 1015 1016 /* generic vm_area_ops exported for stackable file systems */ 1017 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1018 1019 /* mm/page-writeback.c */ 1020 int write_one_page(struct page *page, int wait); 1021 1022 /* readahead.c */ 1023 #define VM_MAX_READAHEAD 128 /* kbytes */ 1024 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1025 1026 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1027 pgoff_t offset, unsigned long nr_to_read); 1028 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1029 pgoff_t offset, unsigned long nr_to_read); 1030 1031 void page_cache_sync_readahead(struct address_space *mapping, 1032 struct file_ra_state *ra, 1033 struct file *filp, 1034 pgoff_t offset, 1035 unsigned long size); 1036 1037 void page_cache_async_readahead(struct address_space *mapping, 1038 struct file_ra_state *ra, 1039 struct file *filp, 1040 struct page *pg, 1041 pgoff_t offset, 1042 unsigned long size); 1043 1044 unsigned long max_sane_readahead(unsigned long nr); 1045 1046 /* Do stack extension */ 1047 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1048 #ifdef CONFIG_IA64 1049 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1050 #endif 1051 extern int expand_stack_downwards(struct vm_area_struct *vma, 1052 unsigned long address); 1053 1054 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1055 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1056 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1057 struct vm_area_struct **pprev); 1058 1059 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1060 NULL if none. Assume start_addr < end_addr. */ 1061 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1062 { 1063 struct vm_area_struct * vma = find_vma(mm,start_addr); 1064 1065 if (vma && end_addr <= vma->vm_start) 1066 vma = NULL; 1067 return vma; 1068 } 1069 1070 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1071 { 1072 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1073 } 1074 1075 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1076 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1077 struct page *vmalloc_to_page(void *addr); 1078 unsigned long vmalloc_to_pfn(void *addr); 1079 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1080 unsigned long pfn, unsigned long size, pgprot_t); 1081 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1082 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1083 unsigned long pfn); 1084 1085 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1086 unsigned int foll_flags); 1087 #define FOLL_WRITE 0x01 /* check pte is writable */ 1088 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1089 #define FOLL_GET 0x04 /* do get_page on page */ 1090 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1091 1092 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, 1093 void *data); 1094 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1095 unsigned long size, pte_fn_t fn, void *data); 1096 1097 #ifdef CONFIG_PROC_FS 1098 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1099 #else 1100 static inline void vm_stat_account(struct mm_struct *mm, 1101 unsigned long flags, struct file *file, long pages) 1102 { 1103 } 1104 #endif /* CONFIG_PROC_FS */ 1105 1106 #ifndef CONFIG_DEBUG_PAGEALLOC 1107 static inline void 1108 kernel_map_pages(struct page *page, int numpages, int enable) {} 1109 #endif 1110 1111 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1112 #ifdef __HAVE_ARCH_GATE_AREA 1113 int in_gate_area_no_task(unsigned long addr); 1114 int in_gate_area(struct task_struct *task, unsigned long addr); 1115 #else 1116 int in_gate_area_no_task(unsigned long addr); 1117 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1118 #endif /* __HAVE_ARCH_GATE_AREA */ 1119 1120 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1121 void __user *, size_t *, loff_t *); 1122 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1123 unsigned long lru_pages); 1124 void drop_pagecache(void); 1125 void drop_slab(void); 1126 1127 #ifndef CONFIG_MMU 1128 #define randomize_va_space 0 1129 #else 1130 extern int randomize_va_space; 1131 #endif 1132 1133 const char * arch_vma_name(struct vm_area_struct *vma); 1134 1135 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1136 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1137 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1138 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1139 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1140 void *vmemmap_alloc_block(unsigned long size, int node); 1141 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1142 int vmemmap_populate_basepages(struct page *start_page, 1143 unsigned long pages, int node); 1144 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1145 1146 #endif /* __KERNEL__ */ 1147 #endif /* _LINUX_MM_H */ 1148