1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for arcitectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statments if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180 } 181 #else 182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183 #endif 184 185 /* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201 #define MAPCOUNT_ELF_CORE_MARGIN (5) 202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204 extern int sysctl_max_map_count; 205 206 extern unsigned long sysctl_user_reserve_kbytes; 207 extern unsigned long sysctl_admin_reserve_kbytes; 208 209 extern int sysctl_overcommit_memory; 210 extern int sysctl_overcommit_ratio; 211 extern unsigned long sysctl_overcommit_kbytes; 212 213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 /* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 228 229 /* to align the pointer to the (next) page boundary */ 230 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 231 232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 233 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 234 235 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 236 237 /* 238 * Linux kernel virtual memory manager primitives. 239 * The idea being to have a "virtual" mm in the same way 240 * we have a virtual fs - giving a cleaner interface to the 241 * mm details, and allowing different kinds of memory mappings 242 * (from shared memory to executable loading to arbitrary 243 * mmap() functions). 244 */ 245 246 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 247 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 248 void vm_area_free(struct vm_area_struct *); 249 250 #ifndef CONFIG_MMU 251 extern struct rb_root nommu_region_tree; 252 extern struct rw_semaphore nommu_region_sem; 253 254 extern unsigned int kobjsize(const void *objp); 255 #endif 256 257 /* 258 * vm_flags in vm_area_struct, see mm_types.h. 259 * When changing, update also include/trace/events/mmflags.h 260 */ 261 #define VM_NONE 0x00000000 262 263 #define VM_READ 0x00000001 /* currently active flags */ 264 #define VM_WRITE 0x00000002 265 #define VM_EXEC 0x00000004 266 #define VM_SHARED 0x00000008 267 268 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 269 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 270 #define VM_MAYWRITE 0x00000020 271 #define VM_MAYEXEC 0x00000040 272 #define VM_MAYSHARE 0x00000080 273 274 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 275 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 276 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 277 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 278 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 279 280 #define VM_LOCKED 0x00002000 281 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 282 283 /* Used by sys_madvise() */ 284 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 285 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 286 287 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 288 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 289 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 290 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 291 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 292 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 293 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 294 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 295 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 296 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 297 298 #ifdef CONFIG_MEM_SOFT_DIRTY 299 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 300 #else 301 # define VM_SOFTDIRTY 0 302 #endif 303 304 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 305 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 306 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 307 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 308 309 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 310 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 311 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 312 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 314 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 315 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 316 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 317 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 318 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 319 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 320 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 321 322 #ifdef CONFIG_ARCH_HAS_PKEYS 323 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 324 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 325 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 326 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 327 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 328 #ifdef CONFIG_PPC 329 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 330 #else 331 # define VM_PKEY_BIT4 0 332 #endif 333 #endif /* CONFIG_ARCH_HAS_PKEYS */ 334 335 #if defined(CONFIG_X86) 336 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 337 #elif defined(CONFIG_PPC) 338 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 339 #elif defined(CONFIG_PARISC) 340 # define VM_GROWSUP VM_ARCH_1 341 #elif defined(CONFIG_IA64) 342 # define VM_GROWSUP VM_ARCH_1 343 #elif defined(CONFIG_SPARC64) 344 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 345 # define VM_ARCH_CLEAR VM_SPARC_ADI 346 #elif defined(CONFIG_ARM64) 347 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 348 # define VM_ARCH_CLEAR VM_ARM64_BTI 349 #elif !defined(CONFIG_MMU) 350 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 351 #endif 352 353 #if defined(CONFIG_ARM64_MTE) 354 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 355 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 356 #else 357 # define VM_MTE VM_NONE 358 # define VM_MTE_ALLOWED VM_NONE 359 #endif 360 361 #ifndef VM_GROWSUP 362 # define VM_GROWSUP VM_NONE 363 #endif 364 365 /* Bits set in the VMA until the stack is in its final location */ 366 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 367 368 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 369 370 /* Common data flag combinations */ 371 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 373 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 374 VM_MAYWRITE | VM_MAYEXEC) 375 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 377 378 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 379 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 380 #endif 381 382 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 383 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 384 #endif 385 386 #ifdef CONFIG_STACK_GROWSUP 387 #define VM_STACK VM_GROWSUP 388 #else 389 #define VM_STACK VM_GROWSDOWN 390 #endif 391 392 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 393 394 /* VMA basic access permission flags */ 395 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 396 397 398 /* 399 * Special vmas that are non-mergable, non-mlock()able. 400 */ 401 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 402 403 /* This mask prevents VMA from being scanned with khugepaged */ 404 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 405 406 /* This mask defines which mm->def_flags a process can inherit its parent */ 407 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 408 409 /* This mask is used to clear all the VMA flags used by mlock */ 410 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 411 412 /* Arch-specific flags to clear when updating VM flags on protection change */ 413 #ifndef VM_ARCH_CLEAR 414 # define VM_ARCH_CLEAR VM_NONE 415 #endif 416 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 417 418 /* 419 * mapping from the currently active vm_flags protection bits (the 420 * low four bits) to a page protection mask.. 421 */ 422 extern pgprot_t protection_map[16]; 423 424 /** 425 * Fault flag definitions. 426 * 427 * @FAULT_FLAG_WRITE: Fault was a write fault. 428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 432 * @FAULT_FLAG_TRIED: The fault has been tried once. 433 * @FAULT_FLAG_USER: The fault originated in userspace. 434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 437 * 438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 439 * whether we would allow page faults to retry by specifying these two 440 * fault flags correctly. Currently there can be three legal combinations: 441 * 442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 443 * this is the first try 444 * 445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 446 * we've already tried at least once 447 * 448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 449 * 450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 451 * be used. Note that page faults can be allowed to retry for multiple times, 452 * in which case we'll have an initial fault with flags (a) then later on 453 * continuous faults with flags (b). We should always try to detect pending 454 * signals before a retry to make sure the continuous page faults can still be 455 * interrupted if necessary. 456 */ 457 #define FAULT_FLAG_WRITE 0x01 458 #define FAULT_FLAG_MKWRITE 0x02 459 #define FAULT_FLAG_ALLOW_RETRY 0x04 460 #define FAULT_FLAG_RETRY_NOWAIT 0x08 461 #define FAULT_FLAG_KILLABLE 0x10 462 #define FAULT_FLAG_TRIED 0x20 463 #define FAULT_FLAG_USER 0x40 464 #define FAULT_FLAG_REMOTE 0x80 465 #define FAULT_FLAG_INSTRUCTION 0x100 466 #define FAULT_FLAG_INTERRUPTIBLE 0x200 467 468 /* 469 * The default fault flags that should be used by most of the 470 * arch-specific page fault handlers. 471 */ 472 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 473 FAULT_FLAG_KILLABLE | \ 474 FAULT_FLAG_INTERRUPTIBLE) 475 476 /** 477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 478 * 479 * This is mostly used for places where we want to try to avoid taking 480 * the mmap_lock for too long a time when waiting for another condition 481 * to change, in which case we can try to be polite to release the 482 * mmap_lock in the first round to avoid potential starvation of other 483 * processes that would also want the mmap_lock. 484 * 485 * Return: true if the page fault allows retry and this is the first 486 * attempt of the fault handling; false otherwise. 487 */ 488 static inline bool fault_flag_allow_retry_first(unsigned int flags) 489 { 490 return (flags & FAULT_FLAG_ALLOW_RETRY) && 491 (!(flags & FAULT_FLAG_TRIED)); 492 } 493 494 #define FAULT_FLAG_TRACE \ 495 { FAULT_FLAG_WRITE, "WRITE" }, \ 496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 500 { FAULT_FLAG_TRIED, "TRIED" }, \ 501 { FAULT_FLAG_USER, "USER" }, \ 502 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 505 506 /* 507 * vm_fault is filled by the pagefault handler and passed to the vma's 508 * ->fault function. The vma's ->fault is responsible for returning a bitmask 509 * of VM_FAULT_xxx flags that give details about how the fault was handled. 510 * 511 * MM layer fills up gfp_mask for page allocations but fault handler might 512 * alter it if its implementation requires a different allocation context. 513 * 514 * pgoff should be used in favour of virtual_address, if possible. 515 */ 516 struct vm_fault { 517 const struct { 518 struct vm_area_struct *vma; /* Target VMA */ 519 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 520 pgoff_t pgoff; /* Logical page offset based on vma */ 521 unsigned long address; /* Faulting virtual address */ 522 }; 523 unsigned int flags; /* FAULT_FLAG_xxx flags 524 * XXX: should really be 'const' */ 525 pmd_t *pmd; /* Pointer to pmd entry matching 526 * the 'address' */ 527 pud_t *pud; /* Pointer to pud entry matching 528 * the 'address' 529 */ 530 pte_t orig_pte; /* Value of PTE at the time of fault */ 531 532 struct page *cow_page; /* Page handler may use for COW fault */ 533 struct page *page; /* ->fault handlers should return a 534 * page here, unless VM_FAULT_NOPAGE 535 * is set (which is also implied by 536 * VM_FAULT_ERROR). 537 */ 538 /* These three entries are valid only while holding ptl lock */ 539 pte_t *pte; /* Pointer to pte entry matching 540 * the 'address'. NULL if the page 541 * table hasn't been allocated. 542 */ 543 spinlock_t *ptl; /* Page table lock. 544 * Protects pte page table if 'pte' 545 * is not NULL, otherwise pmd. 546 */ 547 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 548 * vm_ops->map_pages() sets up a page 549 * table from atomic context. 550 * do_fault_around() pre-allocates 551 * page table to avoid allocation from 552 * atomic context. 553 */ 554 }; 555 556 /* page entry size for vm->huge_fault() */ 557 enum page_entry_size { 558 PE_SIZE_PTE = 0, 559 PE_SIZE_PMD, 560 PE_SIZE_PUD, 561 }; 562 563 /* 564 * These are the virtual MM functions - opening of an area, closing and 565 * unmapping it (needed to keep files on disk up-to-date etc), pointer 566 * to the functions called when a no-page or a wp-page exception occurs. 567 */ 568 struct vm_operations_struct { 569 void (*open)(struct vm_area_struct * area); 570 void (*close)(struct vm_area_struct * area); 571 /* Called any time before splitting to check if it's allowed */ 572 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 573 int (*mremap)(struct vm_area_struct *area, unsigned long flags); 574 /* 575 * Called by mprotect() to make driver-specific permission 576 * checks before mprotect() is finalised. The VMA must not 577 * be modified. Returns 0 if eprotect() can proceed. 578 */ 579 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 580 unsigned long end, unsigned long newflags); 581 vm_fault_t (*fault)(struct vm_fault *vmf); 582 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 583 enum page_entry_size pe_size); 584 vm_fault_t (*map_pages)(struct vm_fault *vmf, 585 pgoff_t start_pgoff, pgoff_t end_pgoff); 586 unsigned long (*pagesize)(struct vm_area_struct * area); 587 588 /* notification that a previously read-only page is about to become 589 * writable, if an error is returned it will cause a SIGBUS */ 590 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 591 592 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 593 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 594 595 /* called by access_process_vm when get_user_pages() fails, typically 596 * for use by special VMAs. See also generic_access_phys() for a generic 597 * implementation useful for any iomem mapping. 598 */ 599 int (*access)(struct vm_area_struct *vma, unsigned long addr, 600 void *buf, int len, int write); 601 602 /* Called by the /proc/PID/maps code to ask the vma whether it 603 * has a special name. Returning non-NULL will also cause this 604 * vma to be dumped unconditionally. */ 605 const char *(*name)(struct vm_area_struct *vma); 606 607 #ifdef CONFIG_NUMA 608 /* 609 * set_policy() op must add a reference to any non-NULL @new mempolicy 610 * to hold the policy upon return. Caller should pass NULL @new to 611 * remove a policy and fall back to surrounding context--i.e. do not 612 * install a MPOL_DEFAULT policy, nor the task or system default 613 * mempolicy. 614 */ 615 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 616 617 /* 618 * get_policy() op must add reference [mpol_get()] to any policy at 619 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 620 * in mm/mempolicy.c will do this automatically. 621 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 622 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 623 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 624 * must return NULL--i.e., do not "fallback" to task or system default 625 * policy. 626 */ 627 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 628 unsigned long addr); 629 #endif 630 /* 631 * Called by vm_normal_page() for special PTEs to find the 632 * page for @addr. This is useful if the default behavior 633 * (using pte_page()) would not find the correct page. 634 */ 635 struct page *(*find_special_page)(struct vm_area_struct *vma, 636 unsigned long addr); 637 }; 638 639 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 640 { 641 static const struct vm_operations_struct dummy_vm_ops = {}; 642 643 memset(vma, 0, sizeof(*vma)); 644 vma->vm_mm = mm; 645 vma->vm_ops = &dummy_vm_ops; 646 INIT_LIST_HEAD(&vma->anon_vma_chain); 647 } 648 649 static inline void vma_set_anonymous(struct vm_area_struct *vma) 650 { 651 vma->vm_ops = NULL; 652 } 653 654 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 655 { 656 return !vma->vm_ops; 657 } 658 659 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 660 { 661 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 662 663 if (!maybe_stack) 664 return false; 665 666 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 667 VM_STACK_INCOMPLETE_SETUP) 668 return true; 669 670 return false; 671 } 672 673 static inline bool vma_is_foreign(struct vm_area_struct *vma) 674 { 675 if (!current->mm) 676 return true; 677 678 if (current->mm != vma->vm_mm) 679 return true; 680 681 return false; 682 } 683 684 static inline bool vma_is_accessible(struct vm_area_struct *vma) 685 { 686 return vma->vm_flags & VM_ACCESS_FLAGS; 687 } 688 689 #ifdef CONFIG_SHMEM 690 /* 691 * The vma_is_shmem is not inline because it is used only by slow 692 * paths in userfault. 693 */ 694 bool vma_is_shmem(struct vm_area_struct *vma); 695 #else 696 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 697 #endif 698 699 int vma_is_stack_for_current(struct vm_area_struct *vma); 700 701 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 702 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 703 704 struct mmu_gather; 705 struct inode; 706 707 #include <linux/huge_mm.h> 708 709 /* 710 * Methods to modify the page usage count. 711 * 712 * What counts for a page usage: 713 * - cache mapping (page->mapping) 714 * - private data (page->private) 715 * - page mapped in a task's page tables, each mapping 716 * is counted separately 717 * 718 * Also, many kernel routines increase the page count before a critical 719 * routine so they can be sure the page doesn't go away from under them. 720 */ 721 722 /* 723 * Drop a ref, return true if the refcount fell to zero (the page has no users) 724 */ 725 static inline int put_page_testzero(struct page *page) 726 { 727 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 728 return page_ref_dec_and_test(page); 729 } 730 731 /* 732 * Try to grab a ref unless the page has a refcount of zero, return false if 733 * that is the case. 734 * This can be called when MMU is off so it must not access 735 * any of the virtual mappings. 736 */ 737 static inline int get_page_unless_zero(struct page *page) 738 { 739 return page_ref_add_unless(page, 1, 0); 740 } 741 742 extern int page_is_ram(unsigned long pfn); 743 744 enum { 745 REGION_INTERSECTS, 746 REGION_DISJOINT, 747 REGION_MIXED, 748 }; 749 750 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 751 unsigned long desc); 752 753 /* Support for virtually mapped pages */ 754 struct page *vmalloc_to_page(const void *addr); 755 unsigned long vmalloc_to_pfn(const void *addr); 756 757 /* 758 * Determine if an address is within the vmalloc range 759 * 760 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 761 * is no special casing required. 762 */ 763 764 #ifndef is_ioremap_addr 765 #define is_ioremap_addr(x) is_vmalloc_addr(x) 766 #endif 767 768 #ifdef CONFIG_MMU 769 extern bool is_vmalloc_addr(const void *x); 770 extern int is_vmalloc_or_module_addr(const void *x); 771 #else 772 static inline bool is_vmalloc_addr(const void *x) 773 { 774 return false; 775 } 776 static inline int is_vmalloc_or_module_addr(const void *x) 777 { 778 return 0; 779 } 780 #endif 781 782 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 783 static inline void *kvmalloc(size_t size, gfp_t flags) 784 { 785 return kvmalloc_node(size, flags, NUMA_NO_NODE); 786 } 787 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 788 { 789 return kvmalloc_node(size, flags | __GFP_ZERO, node); 790 } 791 static inline void *kvzalloc(size_t size, gfp_t flags) 792 { 793 return kvmalloc(size, flags | __GFP_ZERO); 794 } 795 796 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 797 { 798 size_t bytes; 799 800 if (unlikely(check_mul_overflow(n, size, &bytes))) 801 return NULL; 802 803 return kvmalloc(bytes, flags); 804 } 805 806 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 807 { 808 return kvmalloc_array(n, size, flags | __GFP_ZERO); 809 } 810 811 extern void kvfree(const void *addr); 812 extern void kvfree_sensitive(const void *addr, size_t len); 813 814 static inline int head_compound_mapcount(struct page *head) 815 { 816 return atomic_read(compound_mapcount_ptr(head)) + 1; 817 } 818 819 /* 820 * Mapcount of compound page as a whole, does not include mapped sub-pages. 821 * 822 * Must be called only for compound pages or any their tail sub-pages. 823 */ 824 static inline int compound_mapcount(struct page *page) 825 { 826 VM_BUG_ON_PAGE(!PageCompound(page), page); 827 page = compound_head(page); 828 return head_compound_mapcount(page); 829 } 830 831 /* 832 * The atomic page->_mapcount, starts from -1: so that transitions 833 * both from it and to it can be tracked, using atomic_inc_and_test 834 * and atomic_add_negative(-1). 835 */ 836 static inline void page_mapcount_reset(struct page *page) 837 { 838 atomic_set(&(page)->_mapcount, -1); 839 } 840 841 int __page_mapcount(struct page *page); 842 843 /* 844 * Mapcount of 0-order page; when compound sub-page, includes 845 * compound_mapcount(). 846 * 847 * Result is undefined for pages which cannot be mapped into userspace. 848 * For example SLAB or special types of pages. See function page_has_type(). 849 * They use this place in struct page differently. 850 */ 851 static inline int page_mapcount(struct page *page) 852 { 853 if (unlikely(PageCompound(page))) 854 return __page_mapcount(page); 855 return atomic_read(&page->_mapcount) + 1; 856 } 857 858 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 859 int total_mapcount(struct page *page); 860 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 861 #else 862 static inline int total_mapcount(struct page *page) 863 { 864 return page_mapcount(page); 865 } 866 static inline int page_trans_huge_mapcount(struct page *page, 867 int *total_mapcount) 868 { 869 int mapcount = page_mapcount(page); 870 if (total_mapcount) 871 *total_mapcount = mapcount; 872 return mapcount; 873 } 874 #endif 875 876 static inline struct page *virt_to_head_page(const void *x) 877 { 878 struct page *page = virt_to_page(x); 879 880 return compound_head(page); 881 } 882 883 void __put_page(struct page *page); 884 885 void put_pages_list(struct list_head *pages); 886 887 void split_page(struct page *page, unsigned int order); 888 889 /* 890 * Compound pages have a destructor function. Provide a 891 * prototype for that function and accessor functions. 892 * These are _only_ valid on the head of a compound page. 893 */ 894 typedef void compound_page_dtor(struct page *); 895 896 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 897 enum compound_dtor_id { 898 NULL_COMPOUND_DTOR, 899 COMPOUND_PAGE_DTOR, 900 #ifdef CONFIG_HUGETLB_PAGE 901 HUGETLB_PAGE_DTOR, 902 #endif 903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 904 TRANSHUGE_PAGE_DTOR, 905 #endif 906 NR_COMPOUND_DTORS, 907 }; 908 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 909 910 static inline void set_compound_page_dtor(struct page *page, 911 enum compound_dtor_id compound_dtor) 912 { 913 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 914 page[1].compound_dtor = compound_dtor; 915 } 916 917 static inline void destroy_compound_page(struct page *page) 918 { 919 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 920 compound_page_dtors[page[1].compound_dtor](page); 921 } 922 923 static inline unsigned int compound_order(struct page *page) 924 { 925 if (!PageHead(page)) 926 return 0; 927 return page[1].compound_order; 928 } 929 930 static inline bool hpage_pincount_available(struct page *page) 931 { 932 /* 933 * Can the page->hpage_pinned_refcount field be used? That field is in 934 * the 3rd page of the compound page, so the smallest (2-page) compound 935 * pages cannot support it. 936 */ 937 page = compound_head(page); 938 return PageCompound(page) && compound_order(page) > 1; 939 } 940 941 static inline int head_compound_pincount(struct page *head) 942 { 943 return atomic_read(compound_pincount_ptr(head)); 944 } 945 946 static inline int compound_pincount(struct page *page) 947 { 948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 949 page = compound_head(page); 950 return head_compound_pincount(page); 951 } 952 953 static inline void set_compound_order(struct page *page, unsigned int order) 954 { 955 page[1].compound_order = order; 956 page[1].compound_nr = 1U << order; 957 } 958 959 /* Returns the number of pages in this potentially compound page. */ 960 static inline unsigned long compound_nr(struct page *page) 961 { 962 if (!PageHead(page)) 963 return 1; 964 return page[1].compound_nr; 965 } 966 967 /* Returns the number of bytes in this potentially compound page. */ 968 static inline unsigned long page_size(struct page *page) 969 { 970 return PAGE_SIZE << compound_order(page); 971 } 972 973 /* Returns the number of bits needed for the number of bytes in a page */ 974 static inline unsigned int page_shift(struct page *page) 975 { 976 return PAGE_SHIFT + compound_order(page); 977 } 978 979 void free_compound_page(struct page *page); 980 981 #ifdef CONFIG_MMU 982 /* 983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 984 * servicing faults for write access. In the normal case, do always want 985 * pte_mkwrite. But get_user_pages can cause write faults for mappings 986 * that do not have writing enabled, when used by access_process_vm. 987 */ 988 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 989 { 990 if (likely(vma->vm_flags & VM_WRITE)) 991 pte = pte_mkwrite(pte); 992 return pte; 993 } 994 995 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 996 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 997 998 vm_fault_t finish_fault(struct vm_fault *vmf); 999 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1000 #endif 1001 1002 /* 1003 * Multiple processes may "see" the same page. E.g. for untouched 1004 * mappings of /dev/null, all processes see the same page full of 1005 * zeroes, and text pages of executables and shared libraries have 1006 * only one copy in memory, at most, normally. 1007 * 1008 * For the non-reserved pages, page_count(page) denotes a reference count. 1009 * page_count() == 0 means the page is free. page->lru is then used for 1010 * freelist management in the buddy allocator. 1011 * page_count() > 0 means the page has been allocated. 1012 * 1013 * Pages are allocated by the slab allocator in order to provide memory 1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1016 * unless a particular usage is carefully commented. (the responsibility of 1017 * freeing the kmalloc memory is the caller's, of course). 1018 * 1019 * A page may be used by anyone else who does a __get_free_page(). 1020 * In this case, page_count still tracks the references, and should only 1021 * be used through the normal accessor functions. The top bits of page->flags 1022 * and page->virtual store page management information, but all other fields 1023 * are unused and could be used privately, carefully. The management of this 1024 * page is the responsibility of the one who allocated it, and those who have 1025 * subsequently been given references to it. 1026 * 1027 * The other pages (we may call them "pagecache pages") are completely 1028 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1029 * The following discussion applies only to them. 1030 * 1031 * A pagecache page contains an opaque `private' member, which belongs to the 1032 * page's address_space. Usually, this is the address of a circular list of 1033 * the page's disk buffers. PG_private must be set to tell the VM to call 1034 * into the filesystem to release these pages. 1035 * 1036 * A page may belong to an inode's memory mapping. In this case, page->mapping 1037 * is the pointer to the inode, and page->index is the file offset of the page, 1038 * in units of PAGE_SIZE. 1039 * 1040 * If pagecache pages are not associated with an inode, they are said to be 1041 * anonymous pages. These may become associated with the swapcache, and in that 1042 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1043 * 1044 * In either case (swapcache or inode backed), the pagecache itself holds one 1045 * reference to the page. Setting PG_private should also increment the 1046 * refcount. The each user mapping also has a reference to the page. 1047 * 1048 * The pagecache pages are stored in a per-mapping radix tree, which is 1049 * rooted at mapping->i_pages, and indexed by offset. 1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1051 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1052 * 1053 * All pagecache pages may be subject to I/O: 1054 * - inode pages may need to be read from disk, 1055 * - inode pages which have been modified and are MAP_SHARED may need 1056 * to be written back to the inode on disk, 1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1058 * modified may need to be swapped out to swap space and (later) to be read 1059 * back into memory. 1060 */ 1061 1062 /* 1063 * The zone field is never updated after free_area_init_core() 1064 * sets it, so none of the operations on it need to be atomic. 1065 */ 1066 1067 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1068 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1069 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1070 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1071 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1072 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1073 1074 /* 1075 * Define the bit shifts to access each section. For non-existent 1076 * sections we define the shift as 0; that plus a 0 mask ensures 1077 * the compiler will optimise away reference to them. 1078 */ 1079 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1080 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1081 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1082 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1083 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1084 1085 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1086 #ifdef NODE_NOT_IN_PAGE_FLAGS 1087 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1088 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1089 SECTIONS_PGOFF : ZONES_PGOFF) 1090 #else 1091 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1092 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1093 NODES_PGOFF : ZONES_PGOFF) 1094 #endif 1095 1096 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1097 1098 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1099 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1100 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1101 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1102 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1103 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1104 1105 static inline enum zone_type page_zonenum(const struct page *page) 1106 { 1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1109 } 1110 1111 #ifdef CONFIG_ZONE_DEVICE 1112 static inline bool is_zone_device_page(const struct page *page) 1113 { 1114 return page_zonenum(page) == ZONE_DEVICE; 1115 } 1116 extern void memmap_init_zone_device(struct zone *, unsigned long, 1117 unsigned long, struct dev_pagemap *); 1118 #else 1119 static inline bool is_zone_device_page(const struct page *page) 1120 { 1121 return false; 1122 } 1123 #endif 1124 1125 #ifdef CONFIG_DEV_PAGEMAP_OPS 1126 void free_devmap_managed_page(struct page *page); 1127 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1128 1129 static inline bool page_is_devmap_managed(struct page *page) 1130 { 1131 if (!static_branch_unlikely(&devmap_managed_key)) 1132 return false; 1133 if (!is_zone_device_page(page)) 1134 return false; 1135 switch (page->pgmap->type) { 1136 case MEMORY_DEVICE_PRIVATE: 1137 case MEMORY_DEVICE_FS_DAX: 1138 return true; 1139 default: 1140 break; 1141 } 1142 return false; 1143 } 1144 1145 void put_devmap_managed_page(struct page *page); 1146 1147 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1148 static inline bool page_is_devmap_managed(struct page *page) 1149 { 1150 return false; 1151 } 1152 1153 static inline void put_devmap_managed_page(struct page *page) 1154 { 1155 } 1156 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1157 1158 static inline bool is_device_private_page(const struct page *page) 1159 { 1160 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1161 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1162 is_zone_device_page(page) && 1163 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1164 } 1165 1166 static inline bool is_pci_p2pdma_page(const struct page *page) 1167 { 1168 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1169 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1170 is_zone_device_page(page) && 1171 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1172 } 1173 1174 /* 127: arbitrary random number, small enough to assemble well */ 1175 #define page_ref_zero_or_close_to_overflow(page) \ 1176 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1177 1178 static inline void get_page(struct page *page) 1179 { 1180 page = compound_head(page); 1181 /* 1182 * Getting a normal page or the head of a compound page 1183 * requires to already have an elevated page->_refcount. 1184 */ 1185 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1186 page_ref_inc(page); 1187 } 1188 1189 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1190 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1191 unsigned int flags); 1192 1193 1194 static inline __must_check bool try_get_page(struct page *page) 1195 { 1196 page = compound_head(page); 1197 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1198 return false; 1199 page_ref_inc(page); 1200 return true; 1201 } 1202 1203 static inline void put_page(struct page *page) 1204 { 1205 page = compound_head(page); 1206 1207 /* 1208 * For devmap managed pages we need to catch refcount transition from 1209 * 2 to 1, when refcount reach one it means the page is free and we 1210 * need to inform the device driver through callback. See 1211 * include/linux/memremap.h and HMM for details. 1212 */ 1213 if (page_is_devmap_managed(page)) { 1214 put_devmap_managed_page(page); 1215 return; 1216 } 1217 1218 if (put_page_testzero(page)) 1219 __put_page(page); 1220 } 1221 1222 /* 1223 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1224 * the page's refcount so that two separate items are tracked: the original page 1225 * reference count, and also a new count of how many pin_user_pages() calls were 1226 * made against the page. ("gup-pinned" is another term for the latter). 1227 * 1228 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1229 * distinct from normal pages. As such, the unpin_user_page() call (and its 1230 * variants) must be used in order to release gup-pinned pages. 1231 * 1232 * Choice of value: 1233 * 1234 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1235 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1236 * simpler, due to the fact that adding an even power of two to the page 1237 * refcount has the effect of using only the upper N bits, for the code that 1238 * counts up using the bias value. This means that the lower bits are left for 1239 * the exclusive use of the original code that increments and decrements by one 1240 * (or at least, by much smaller values than the bias value). 1241 * 1242 * Of course, once the lower bits overflow into the upper bits (and this is 1243 * OK, because subtraction recovers the original values), then visual inspection 1244 * no longer suffices to directly view the separate counts. However, for normal 1245 * applications that don't have huge page reference counts, this won't be an 1246 * issue. 1247 * 1248 * Locking: the lockless algorithm described in page_cache_get_speculative() 1249 * and page_cache_gup_pin_speculative() provides safe operation for 1250 * get_user_pages and page_mkclean and other calls that race to set up page 1251 * table entries. 1252 */ 1253 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1254 1255 void unpin_user_page(struct page *page); 1256 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1257 bool make_dirty); 1258 void unpin_user_pages(struct page **pages, unsigned long npages); 1259 1260 /** 1261 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1262 * 1263 * This function checks if a page has been pinned via a call to 1264 * pin_user_pages*(). 1265 * 1266 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1267 * because it means "definitely not pinned for DMA", but true means "probably 1268 * pinned for DMA, but possibly a false positive due to having at least 1269 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1270 * 1271 * False positives are OK, because: a) it's unlikely for a page to get that many 1272 * refcounts, and b) all the callers of this routine are expected to be able to 1273 * deal gracefully with a false positive. 1274 * 1275 * For huge pages, the result will be exactly correct. That's because we have 1276 * more tracking data available: the 3rd struct page in the compound page is 1277 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1278 * scheme). 1279 * 1280 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1281 * 1282 * @page: pointer to page to be queried. 1283 * @Return: True, if it is likely that the page has been "dma-pinned". 1284 * False, if the page is definitely not dma-pinned. 1285 */ 1286 static inline bool page_maybe_dma_pinned(struct page *page) 1287 { 1288 if (hpage_pincount_available(page)) 1289 return compound_pincount(page) > 0; 1290 1291 /* 1292 * page_ref_count() is signed. If that refcount overflows, then 1293 * page_ref_count() returns a negative value, and callers will avoid 1294 * further incrementing the refcount. 1295 * 1296 * Here, for that overflow case, use the signed bit to count a little 1297 * bit higher via unsigned math, and thus still get an accurate result. 1298 */ 1299 return ((unsigned int)page_ref_count(compound_head(page))) >= 1300 GUP_PIN_COUNTING_BIAS; 1301 } 1302 1303 static inline bool is_cow_mapping(vm_flags_t flags) 1304 { 1305 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1306 } 1307 1308 /* 1309 * This should most likely only be called during fork() to see whether we 1310 * should break the cow immediately for a page on the src mm. 1311 */ 1312 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1313 struct page *page) 1314 { 1315 if (!is_cow_mapping(vma->vm_flags)) 1316 return false; 1317 1318 if (!atomic_read(&vma->vm_mm->has_pinned)) 1319 return false; 1320 1321 return page_maybe_dma_pinned(page); 1322 } 1323 1324 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1325 #define SECTION_IN_PAGE_FLAGS 1326 #endif 1327 1328 /* 1329 * The identification function is mainly used by the buddy allocator for 1330 * determining if two pages could be buddies. We are not really identifying 1331 * the zone since we could be using the section number id if we do not have 1332 * node id available in page flags. 1333 * We only guarantee that it will return the same value for two combinable 1334 * pages in a zone. 1335 */ 1336 static inline int page_zone_id(struct page *page) 1337 { 1338 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1339 } 1340 1341 #ifdef NODE_NOT_IN_PAGE_FLAGS 1342 extern int page_to_nid(const struct page *page); 1343 #else 1344 static inline int page_to_nid(const struct page *page) 1345 { 1346 struct page *p = (struct page *)page; 1347 1348 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1349 } 1350 #endif 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1354 { 1355 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1356 } 1357 1358 static inline int cpupid_to_pid(int cpupid) 1359 { 1360 return cpupid & LAST__PID_MASK; 1361 } 1362 1363 static inline int cpupid_to_cpu(int cpupid) 1364 { 1365 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1366 } 1367 1368 static inline int cpupid_to_nid(int cpupid) 1369 { 1370 return cpu_to_node(cpupid_to_cpu(cpupid)); 1371 } 1372 1373 static inline bool cpupid_pid_unset(int cpupid) 1374 { 1375 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1376 } 1377 1378 static inline bool cpupid_cpu_unset(int cpupid) 1379 { 1380 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1381 } 1382 1383 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1384 { 1385 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1386 } 1387 1388 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1389 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1390 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1391 { 1392 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1393 } 1394 1395 static inline int page_cpupid_last(struct page *page) 1396 { 1397 return page->_last_cpupid; 1398 } 1399 static inline void page_cpupid_reset_last(struct page *page) 1400 { 1401 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1402 } 1403 #else 1404 static inline int page_cpupid_last(struct page *page) 1405 { 1406 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1407 } 1408 1409 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1410 1411 static inline void page_cpupid_reset_last(struct page *page) 1412 { 1413 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1414 } 1415 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1416 #else /* !CONFIG_NUMA_BALANCING */ 1417 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1418 { 1419 return page_to_nid(page); /* XXX */ 1420 } 1421 1422 static inline int page_cpupid_last(struct page *page) 1423 { 1424 return page_to_nid(page); /* XXX */ 1425 } 1426 1427 static inline int cpupid_to_nid(int cpupid) 1428 { 1429 return -1; 1430 } 1431 1432 static inline int cpupid_to_pid(int cpupid) 1433 { 1434 return -1; 1435 } 1436 1437 static inline int cpupid_to_cpu(int cpupid) 1438 { 1439 return -1; 1440 } 1441 1442 static inline int cpu_pid_to_cpupid(int nid, int pid) 1443 { 1444 return -1; 1445 } 1446 1447 static inline bool cpupid_pid_unset(int cpupid) 1448 { 1449 return true; 1450 } 1451 1452 static inline void page_cpupid_reset_last(struct page *page) 1453 { 1454 } 1455 1456 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1457 { 1458 return false; 1459 } 1460 #endif /* CONFIG_NUMA_BALANCING */ 1461 1462 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1463 1464 static inline u8 page_kasan_tag(const struct page *page) 1465 { 1466 if (kasan_enabled()) 1467 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1468 return 0xff; 1469 } 1470 1471 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1472 { 1473 if (kasan_enabled()) { 1474 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1475 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1476 } 1477 } 1478 1479 static inline void page_kasan_tag_reset(struct page *page) 1480 { 1481 if (kasan_enabled()) 1482 page_kasan_tag_set(page, 0xff); 1483 } 1484 1485 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1486 1487 static inline u8 page_kasan_tag(const struct page *page) 1488 { 1489 return 0xff; 1490 } 1491 1492 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1493 static inline void page_kasan_tag_reset(struct page *page) { } 1494 1495 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1496 1497 static inline struct zone *page_zone(const struct page *page) 1498 { 1499 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1500 } 1501 1502 static inline pg_data_t *page_pgdat(const struct page *page) 1503 { 1504 return NODE_DATA(page_to_nid(page)); 1505 } 1506 1507 #ifdef SECTION_IN_PAGE_FLAGS 1508 static inline void set_page_section(struct page *page, unsigned long section) 1509 { 1510 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1511 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1512 } 1513 1514 static inline unsigned long page_to_section(const struct page *page) 1515 { 1516 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1517 } 1518 #endif 1519 1520 static inline void set_page_zone(struct page *page, enum zone_type zone) 1521 { 1522 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1523 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1524 } 1525 1526 static inline void set_page_node(struct page *page, unsigned long node) 1527 { 1528 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1529 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1530 } 1531 1532 static inline void set_page_links(struct page *page, enum zone_type zone, 1533 unsigned long node, unsigned long pfn) 1534 { 1535 set_page_zone(page, zone); 1536 set_page_node(page, node); 1537 #ifdef SECTION_IN_PAGE_FLAGS 1538 set_page_section(page, pfn_to_section_nr(pfn)); 1539 #endif 1540 } 1541 1542 /* 1543 * Some inline functions in vmstat.h depend on page_zone() 1544 */ 1545 #include <linux/vmstat.h> 1546 1547 static __always_inline void *lowmem_page_address(const struct page *page) 1548 { 1549 return page_to_virt(page); 1550 } 1551 1552 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1553 #define HASHED_PAGE_VIRTUAL 1554 #endif 1555 1556 #if defined(WANT_PAGE_VIRTUAL) 1557 static inline void *page_address(const struct page *page) 1558 { 1559 return page->virtual; 1560 } 1561 static inline void set_page_address(struct page *page, void *address) 1562 { 1563 page->virtual = address; 1564 } 1565 #define page_address_init() do { } while(0) 1566 #endif 1567 1568 #if defined(HASHED_PAGE_VIRTUAL) 1569 void *page_address(const struct page *page); 1570 void set_page_address(struct page *page, void *virtual); 1571 void page_address_init(void); 1572 #endif 1573 1574 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1575 #define page_address(page) lowmem_page_address(page) 1576 #define set_page_address(page, address) do { } while(0) 1577 #define page_address_init() do { } while(0) 1578 #endif 1579 1580 extern void *page_rmapping(struct page *page); 1581 extern struct anon_vma *page_anon_vma(struct page *page); 1582 extern struct address_space *page_mapping(struct page *page); 1583 1584 extern struct address_space *__page_file_mapping(struct page *); 1585 1586 static inline 1587 struct address_space *page_file_mapping(struct page *page) 1588 { 1589 if (unlikely(PageSwapCache(page))) 1590 return __page_file_mapping(page); 1591 1592 return page->mapping; 1593 } 1594 1595 extern pgoff_t __page_file_index(struct page *page); 1596 1597 /* 1598 * Return the pagecache index of the passed page. Regular pagecache pages 1599 * use ->index whereas swapcache pages use swp_offset(->private) 1600 */ 1601 static inline pgoff_t page_index(struct page *page) 1602 { 1603 if (unlikely(PageSwapCache(page))) 1604 return __page_file_index(page); 1605 return page->index; 1606 } 1607 1608 bool page_mapped(struct page *page); 1609 struct address_space *page_mapping(struct page *page); 1610 struct address_space *page_mapping_file(struct page *page); 1611 1612 /* 1613 * Return true only if the page has been allocated with 1614 * ALLOC_NO_WATERMARKS and the low watermark was not 1615 * met implying that the system is under some pressure. 1616 */ 1617 static inline bool page_is_pfmemalloc(const struct page *page) 1618 { 1619 /* 1620 * Page index cannot be this large so this must be 1621 * a pfmemalloc page. 1622 */ 1623 return page->index == -1UL; 1624 } 1625 1626 /* 1627 * Only to be called by the page allocator on a freshly allocated 1628 * page. 1629 */ 1630 static inline void set_page_pfmemalloc(struct page *page) 1631 { 1632 page->index = -1UL; 1633 } 1634 1635 static inline void clear_page_pfmemalloc(struct page *page) 1636 { 1637 page->index = 0; 1638 } 1639 1640 /* 1641 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1642 */ 1643 extern void pagefault_out_of_memory(void); 1644 1645 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1646 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1647 1648 /* 1649 * Flags passed to show_mem() and show_free_areas() to suppress output in 1650 * various contexts. 1651 */ 1652 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1653 1654 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1655 1656 #ifdef CONFIG_MMU 1657 extern bool can_do_mlock(void); 1658 #else 1659 static inline bool can_do_mlock(void) { return false; } 1660 #endif 1661 extern int user_shm_lock(size_t, struct user_struct *); 1662 extern void user_shm_unlock(size_t, struct user_struct *); 1663 1664 /* 1665 * Parameter block passed down to zap_pte_range in exceptional cases. 1666 */ 1667 struct zap_details { 1668 struct address_space *check_mapping; /* Check page->mapping if set */ 1669 pgoff_t first_index; /* Lowest page->index to unmap */ 1670 pgoff_t last_index; /* Highest page->index to unmap */ 1671 }; 1672 1673 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1674 pte_t pte); 1675 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1676 pmd_t pmd); 1677 1678 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1679 unsigned long size); 1680 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1681 unsigned long size); 1682 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1683 unsigned long start, unsigned long end); 1684 1685 struct mmu_notifier_range; 1686 1687 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1688 unsigned long end, unsigned long floor, unsigned long ceiling); 1689 int 1690 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1691 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1692 struct mmu_notifier_range *range, pte_t **ptepp, 1693 pmd_t **pmdpp, spinlock_t **ptlp); 1694 int follow_pte(struct mm_struct *mm, unsigned long address, 1695 pte_t **ptepp, spinlock_t **ptlp); 1696 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1697 unsigned long *pfn); 1698 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1699 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1700 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1701 void *buf, int len, int write); 1702 1703 extern void truncate_pagecache(struct inode *inode, loff_t new); 1704 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1705 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1706 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1707 int truncate_inode_page(struct address_space *mapping, struct page *page); 1708 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1709 int invalidate_inode_page(struct page *page); 1710 1711 #ifdef CONFIG_MMU 1712 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1713 unsigned long address, unsigned int flags, 1714 struct pt_regs *regs); 1715 extern int fixup_user_fault(struct mm_struct *mm, 1716 unsigned long address, unsigned int fault_flags, 1717 bool *unlocked); 1718 void unmap_mapping_pages(struct address_space *mapping, 1719 pgoff_t start, pgoff_t nr, bool even_cows); 1720 void unmap_mapping_range(struct address_space *mapping, 1721 loff_t const holebegin, loff_t const holelen, int even_cows); 1722 #else 1723 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1724 unsigned long address, unsigned int flags, 1725 struct pt_regs *regs) 1726 { 1727 /* should never happen if there's no MMU */ 1728 BUG(); 1729 return VM_FAULT_SIGBUS; 1730 } 1731 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1732 unsigned int fault_flags, bool *unlocked) 1733 { 1734 /* should never happen if there's no MMU */ 1735 BUG(); 1736 return -EFAULT; 1737 } 1738 static inline void unmap_mapping_pages(struct address_space *mapping, 1739 pgoff_t start, pgoff_t nr, bool even_cows) { } 1740 static inline void unmap_mapping_range(struct address_space *mapping, 1741 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1742 #endif 1743 1744 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1745 loff_t const holebegin, loff_t const holelen) 1746 { 1747 unmap_mapping_range(mapping, holebegin, holelen, 0); 1748 } 1749 1750 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1751 void *buf, int len, unsigned int gup_flags); 1752 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1753 void *buf, int len, unsigned int gup_flags); 1754 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1755 void *buf, int len, unsigned int gup_flags); 1756 1757 long get_user_pages_remote(struct mm_struct *mm, 1758 unsigned long start, unsigned long nr_pages, 1759 unsigned int gup_flags, struct page **pages, 1760 struct vm_area_struct **vmas, int *locked); 1761 long pin_user_pages_remote(struct mm_struct *mm, 1762 unsigned long start, unsigned long nr_pages, 1763 unsigned int gup_flags, struct page **pages, 1764 struct vm_area_struct **vmas, int *locked); 1765 long get_user_pages(unsigned long start, unsigned long nr_pages, 1766 unsigned int gup_flags, struct page **pages, 1767 struct vm_area_struct **vmas); 1768 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1769 unsigned int gup_flags, struct page **pages, 1770 struct vm_area_struct **vmas); 1771 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1772 unsigned int gup_flags, struct page **pages, int *locked); 1773 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1774 unsigned int gup_flags, struct page **pages, int *locked); 1775 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1776 struct page **pages, unsigned int gup_flags); 1777 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1778 struct page **pages, unsigned int gup_flags); 1779 1780 int get_user_pages_fast(unsigned long start, int nr_pages, 1781 unsigned int gup_flags, struct page **pages); 1782 int pin_user_pages_fast(unsigned long start, int nr_pages, 1783 unsigned int gup_flags, struct page **pages); 1784 1785 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1786 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1787 struct task_struct *task, bool bypass_rlim); 1788 1789 struct kvec; 1790 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1791 struct page **pages); 1792 int get_kernel_page(unsigned long start, int write, struct page **pages); 1793 struct page *get_dump_page(unsigned long addr); 1794 1795 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1796 extern void do_invalidatepage(struct page *page, unsigned int offset, 1797 unsigned int length); 1798 1799 void __set_page_dirty(struct page *, struct address_space *, int warn); 1800 int __set_page_dirty_nobuffers(struct page *page); 1801 int __set_page_dirty_no_writeback(struct page *page); 1802 int redirty_page_for_writepage(struct writeback_control *wbc, 1803 struct page *page); 1804 void account_page_dirtied(struct page *page, struct address_space *mapping); 1805 void account_page_cleaned(struct page *page, struct address_space *mapping, 1806 struct bdi_writeback *wb); 1807 int set_page_dirty(struct page *page); 1808 int set_page_dirty_lock(struct page *page); 1809 void __cancel_dirty_page(struct page *page); 1810 static inline void cancel_dirty_page(struct page *page) 1811 { 1812 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1813 if (PageDirty(page)) 1814 __cancel_dirty_page(page); 1815 } 1816 int clear_page_dirty_for_io(struct page *page); 1817 1818 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1819 1820 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1821 unsigned long old_addr, struct vm_area_struct *new_vma, 1822 unsigned long new_addr, unsigned long len, 1823 bool need_rmap_locks); 1824 1825 /* 1826 * Flags used by change_protection(). For now we make it a bitmap so 1827 * that we can pass in multiple flags just like parameters. However 1828 * for now all the callers are only use one of the flags at the same 1829 * time. 1830 */ 1831 /* Whether we should allow dirty bit accounting */ 1832 #define MM_CP_DIRTY_ACCT (1UL << 0) 1833 /* Whether this protection change is for NUMA hints */ 1834 #define MM_CP_PROT_NUMA (1UL << 1) 1835 /* Whether this change is for write protecting */ 1836 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1837 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1838 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1839 MM_CP_UFFD_WP_RESOLVE) 1840 1841 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1842 unsigned long end, pgprot_t newprot, 1843 unsigned long cp_flags); 1844 extern int mprotect_fixup(struct vm_area_struct *vma, 1845 struct vm_area_struct **pprev, unsigned long start, 1846 unsigned long end, unsigned long newflags); 1847 1848 /* 1849 * doesn't attempt to fault and will return short. 1850 */ 1851 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1852 unsigned int gup_flags, struct page **pages); 1853 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1854 unsigned int gup_flags, struct page **pages); 1855 1856 static inline bool get_user_page_fast_only(unsigned long addr, 1857 unsigned int gup_flags, struct page **pagep) 1858 { 1859 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1860 } 1861 /* 1862 * per-process(per-mm_struct) statistics. 1863 */ 1864 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1865 { 1866 long val = atomic_long_read(&mm->rss_stat.count[member]); 1867 1868 #ifdef SPLIT_RSS_COUNTING 1869 /* 1870 * counter is updated in asynchronous manner and may go to minus. 1871 * But it's never be expected number for users. 1872 */ 1873 if (val < 0) 1874 val = 0; 1875 #endif 1876 return (unsigned long)val; 1877 } 1878 1879 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1880 1881 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1882 { 1883 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1884 1885 mm_trace_rss_stat(mm, member, count); 1886 } 1887 1888 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1889 { 1890 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1891 1892 mm_trace_rss_stat(mm, member, count); 1893 } 1894 1895 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1896 { 1897 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1898 1899 mm_trace_rss_stat(mm, member, count); 1900 } 1901 1902 /* Optimized variant when page is already known not to be PageAnon */ 1903 static inline int mm_counter_file(struct page *page) 1904 { 1905 if (PageSwapBacked(page)) 1906 return MM_SHMEMPAGES; 1907 return MM_FILEPAGES; 1908 } 1909 1910 static inline int mm_counter(struct page *page) 1911 { 1912 if (PageAnon(page)) 1913 return MM_ANONPAGES; 1914 return mm_counter_file(page); 1915 } 1916 1917 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1918 { 1919 return get_mm_counter(mm, MM_FILEPAGES) + 1920 get_mm_counter(mm, MM_ANONPAGES) + 1921 get_mm_counter(mm, MM_SHMEMPAGES); 1922 } 1923 1924 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1925 { 1926 return max(mm->hiwater_rss, get_mm_rss(mm)); 1927 } 1928 1929 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1930 { 1931 return max(mm->hiwater_vm, mm->total_vm); 1932 } 1933 1934 static inline void update_hiwater_rss(struct mm_struct *mm) 1935 { 1936 unsigned long _rss = get_mm_rss(mm); 1937 1938 if ((mm)->hiwater_rss < _rss) 1939 (mm)->hiwater_rss = _rss; 1940 } 1941 1942 static inline void update_hiwater_vm(struct mm_struct *mm) 1943 { 1944 if (mm->hiwater_vm < mm->total_vm) 1945 mm->hiwater_vm = mm->total_vm; 1946 } 1947 1948 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1949 { 1950 mm->hiwater_rss = get_mm_rss(mm); 1951 } 1952 1953 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1954 struct mm_struct *mm) 1955 { 1956 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1957 1958 if (*maxrss < hiwater_rss) 1959 *maxrss = hiwater_rss; 1960 } 1961 1962 #if defined(SPLIT_RSS_COUNTING) 1963 void sync_mm_rss(struct mm_struct *mm); 1964 #else 1965 static inline void sync_mm_rss(struct mm_struct *mm) 1966 { 1967 } 1968 #endif 1969 1970 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1971 static inline int pte_special(pte_t pte) 1972 { 1973 return 0; 1974 } 1975 1976 static inline pte_t pte_mkspecial(pte_t pte) 1977 { 1978 return pte; 1979 } 1980 #endif 1981 1982 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1983 static inline int pte_devmap(pte_t pte) 1984 { 1985 return 0; 1986 } 1987 #endif 1988 1989 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1990 1991 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1992 spinlock_t **ptl); 1993 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1994 spinlock_t **ptl) 1995 { 1996 pte_t *ptep; 1997 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1998 return ptep; 1999 } 2000 2001 #ifdef __PAGETABLE_P4D_FOLDED 2002 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2003 unsigned long address) 2004 { 2005 return 0; 2006 } 2007 #else 2008 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2009 #endif 2010 2011 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2012 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2013 unsigned long address) 2014 { 2015 return 0; 2016 } 2017 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2018 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2019 2020 #else 2021 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2022 2023 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2024 { 2025 if (mm_pud_folded(mm)) 2026 return; 2027 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2028 } 2029 2030 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2031 { 2032 if (mm_pud_folded(mm)) 2033 return; 2034 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2035 } 2036 #endif 2037 2038 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2039 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2040 unsigned long address) 2041 { 2042 return 0; 2043 } 2044 2045 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2046 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2047 2048 #else 2049 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2050 2051 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2052 { 2053 if (mm_pmd_folded(mm)) 2054 return; 2055 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2056 } 2057 2058 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2059 { 2060 if (mm_pmd_folded(mm)) 2061 return; 2062 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2063 } 2064 #endif 2065 2066 #ifdef CONFIG_MMU 2067 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2068 { 2069 atomic_long_set(&mm->pgtables_bytes, 0); 2070 } 2071 2072 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2073 { 2074 return atomic_long_read(&mm->pgtables_bytes); 2075 } 2076 2077 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2078 { 2079 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2080 } 2081 2082 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2083 { 2084 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2085 } 2086 #else 2087 2088 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2089 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2090 { 2091 return 0; 2092 } 2093 2094 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2095 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2096 #endif 2097 2098 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2099 int __pte_alloc_kernel(pmd_t *pmd); 2100 2101 #if defined(CONFIG_MMU) 2102 2103 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2104 unsigned long address) 2105 { 2106 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2107 NULL : p4d_offset(pgd, address); 2108 } 2109 2110 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2111 unsigned long address) 2112 { 2113 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2114 NULL : pud_offset(p4d, address); 2115 } 2116 2117 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2118 { 2119 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2120 NULL: pmd_offset(pud, address); 2121 } 2122 #endif /* CONFIG_MMU */ 2123 2124 #if USE_SPLIT_PTE_PTLOCKS 2125 #if ALLOC_SPLIT_PTLOCKS 2126 void __init ptlock_cache_init(void); 2127 extern bool ptlock_alloc(struct page *page); 2128 extern void ptlock_free(struct page *page); 2129 2130 static inline spinlock_t *ptlock_ptr(struct page *page) 2131 { 2132 return page->ptl; 2133 } 2134 #else /* ALLOC_SPLIT_PTLOCKS */ 2135 static inline void ptlock_cache_init(void) 2136 { 2137 } 2138 2139 static inline bool ptlock_alloc(struct page *page) 2140 { 2141 return true; 2142 } 2143 2144 static inline void ptlock_free(struct page *page) 2145 { 2146 } 2147 2148 static inline spinlock_t *ptlock_ptr(struct page *page) 2149 { 2150 return &page->ptl; 2151 } 2152 #endif /* ALLOC_SPLIT_PTLOCKS */ 2153 2154 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2155 { 2156 return ptlock_ptr(pmd_page(*pmd)); 2157 } 2158 2159 static inline bool ptlock_init(struct page *page) 2160 { 2161 /* 2162 * prep_new_page() initialize page->private (and therefore page->ptl) 2163 * with 0. Make sure nobody took it in use in between. 2164 * 2165 * It can happen if arch try to use slab for page table allocation: 2166 * slab code uses page->slab_cache, which share storage with page->ptl. 2167 */ 2168 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2169 if (!ptlock_alloc(page)) 2170 return false; 2171 spin_lock_init(ptlock_ptr(page)); 2172 return true; 2173 } 2174 2175 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2176 /* 2177 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2178 */ 2179 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2180 { 2181 return &mm->page_table_lock; 2182 } 2183 static inline void ptlock_cache_init(void) {} 2184 static inline bool ptlock_init(struct page *page) { return true; } 2185 static inline void ptlock_free(struct page *page) {} 2186 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2187 2188 static inline void pgtable_init(void) 2189 { 2190 ptlock_cache_init(); 2191 pgtable_cache_init(); 2192 } 2193 2194 static inline bool pgtable_pte_page_ctor(struct page *page) 2195 { 2196 if (!ptlock_init(page)) 2197 return false; 2198 __SetPageTable(page); 2199 inc_lruvec_page_state(page, NR_PAGETABLE); 2200 return true; 2201 } 2202 2203 static inline void pgtable_pte_page_dtor(struct page *page) 2204 { 2205 ptlock_free(page); 2206 __ClearPageTable(page); 2207 dec_lruvec_page_state(page, NR_PAGETABLE); 2208 } 2209 2210 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2211 ({ \ 2212 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2213 pte_t *__pte = pte_offset_map(pmd, address); \ 2214 *(ptlp) = __ptl; \ 2215 spin_lock(__ptl); \ 2216 __pte; \ 2217 }) 2218 2219 #define pte_unmap_unlock(pte, ptl) do { \ 2220 spin_unlock(ptl); \ 2221 pte_unmap(pte); \ 2222 } while (0) 2223 2224 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2225 2226 #define pte_alloc_map(mm, pmd, address) \ 2227 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2228 2229 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2230 (pte_alloc(mm, pmd) ? \ 2231 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2232 2233 #define pte_alloc_kernel(pmd, address) \ 2234 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2235 NULL: pte_offset_kernel(pmd, address)) 2236 2237 #if USE_SPLIT_PMD_PTLOCKS 2238 2239 static struct page *pmd_to_page(pmd_t *pmd) 2240 { 2241 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2242 return virt_to_page((void *)((unsigned long) pmd & mask)); 2243 } 2244 2245 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2246 { 2247 return ptlock_ptr(pmd_to_page(pmd)); 2248 } 2249 2250 static inline bool pmd_ptlock_init(struct page *page) 2251 { 2252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2253 page->pmd_huge_pte = NULL; 2254 #endif 2255 return ptlock_init(page); 2256 } 2257 2258 static inline void pmd_ptlock_free(struct page *page) 2259 { 2260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2261 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2262 #endif 2263 ptlock_free(page); 2264 } 2265 2266 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2267 2268 #else 2269 2270 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2271 { 2272 return &mm->page_table_lock; 2273 } 2274 2275 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2276 static inline void pmd_ptlock_free(struct page *page) {} 2277 2278 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2279 2280 #endif 2281 2282 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2283 { 2284 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2285 spin_lock(ptl); 2286 return ptl; 2287 } 2288 2289 static inline bool pgtable_pmd_page_ctor(struct page *page) 2290 { 2291 if (!pmd_ptlock_init(page)) 2292 return false; 2293 __SetPageTable(page); 2294 inc_lruvec_page_state(page, NR_PAGETABLE); 2295 return true; 2296 } 2297 2298 static inline void pgtable_pmd_page_dtor(struct page *page) 2299 { 2300 pmd_ptlock_free(page); 2301 __ClearPageTable(page); 2302 dec_lruvec_page_state(page, NR_PAGETABLE); 2303 } 2304 2305 /* 2306 * No scalability reason to split PUD locks yet, but follow the same pattern 2307 * as the PMD locks to make it easier if we decide to. The VM should not be 2308 * considered ready to switch to split PUD locks yet; there may be places 2309 * which need to be converted from page_table_lock. 2310 */ 2311 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2312 { 2313 return &mm->page_table_lock; 2314 } 2315 2316 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2317 { 2318 spinlock_t *ptl = pud_lockptr(mm, pud); 2319 2320 spin_lock(ptl); 2321 return ptl; 2322 } 2323 2324 extern void __init pagecache_init(void); 2325 extern void __init free_area_init_memoryless_node(int nid); 2326 extern void free_initmem(void); 2327 2328 /* 2329 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2330 * into the buddy system. The freed pages will be poisoned with pattern 2331 * "poison" if it's within range [0, UCHAR_MAX]. 2332 * Return pages freed into the buddy system. 2333 */ 2334 extern unsigned long free_reserved_area(void *start, void *end, 2335 int poison, const char *s); 2336 2337 extern void adjust_managed_page_count(struct page *page, long count); 2338 extern void mem_init_print_info(const char *str); 2339 2340 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2341 2342 /* Free the reserved page into the buddy system, so it gets managed. */ 2343 static inline void free_reserved_page(struct page *page) 2344 { 2345 ClearPageReserved(page); 2346 init_page_count(page); 2347 __free_page(page); 2348 adjust_managed_page_count(page, 1); 2349 } 2350 #define free_highmem_page(page) free_reserved_page(page) 2351 2352 static inline void mark_page_reserved(struct page *page) 2353 { 2354 SetPageReserved(page); 2355 adjust_managed_page_count(page, -1); 2356 } 2357 2358 /* 2359 * Default method to free all the __init memory into the buddy system. 2360 * The freed pages will be poisoned with pattern "poison" if it's within 2361 * range [0, UCHAR_MAX]. 2362 * Return pages freed into the buddy system. 2363 */ 2364 static inline unsigned long free_initmem_default(int poison) 2365 { 2366 extern char __init_begin[], __init_end[]; 2367 2368 return free_reserved_area(&__init_begin, &__init_end, 2369 poison, "unused kernel"); 2370 } 2371 2372 static inline unsigned long get_num_physpages(void) 2373 { 2374 int nid; 2375 unsigned long phys_pages = 0; 2376 2377 for_each_online_node(nid) 2378 phys_pages += node_present_pages(nid); 2379 2380 return phys_pages; 2381 } 2382 2383 /* 2384 * Using memblock node mappings, an architecture may initialise its 2385 * zones, allocate the backing mem_map and account for memory holes in an 2386 * architecture independent manner. 2387 * 2388 * An architecture is expected to register range of page frames backed by 2389 * physical memory with memblock_add[_node]() before calling 2390 * free_area_init() passing in the PFN each zone ends at. At a basic 2391 * usage, an architecture is expected to do something like 2392 * 2393 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2394 * max_highmem_pfn}; 2395 * for_each_valid_physical_page_range() 2396 * memblock_add_node(base, size, nid) 2397 * free_area_init(max_zone_pfns); 2398 */ 2399 void free_area_init(unsigned long *max_zone_pfn); 2400 unsigned long node_map_pfn_alignment(void); 2401 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2402 unsigned long end_pfn); 2403 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2404 unsigned long end_pfn); 2405 extern void get_pfn_range_for_nid(unsigned int nid, 2406 unsigned long *start_pfn, unsigned long *end_pfn); 2407 extern unsigned long find_min_pfn_with_active_regions(void); 2408 2409 #ifndef CONFIG_NEED_MULTIPLE_NODES 2410 static inline int early_pfn_to_nid(unsigned long pfn) 2411 { 2412 return 0; 2413 } 2414 #else 2415 /* please see mm/page_alloc.c */ 2416 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2417 #endif 2418 2419 extern void set_dma_reserve(unsigned long new_dma_reserve); 2420 extern void memmap_init_range(unsigned long, int, unsigned long, 2421 unsigned long, unsigned long, enum meminit_context, 2422 struct vmem_altmap *, int migratetype); 2423 extern void memmap_init_zone(struct zone *zone); 2424 extern void setup_per_zone_wmarks(void); 2425 extern int __meminit init_per_zone_wmark_min(void); 2426 extern void mem_init(void); 2427 extern void __init mmap_init(void); 2428 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2429 extern long si_mem_available(void); 2430 extern void si_meminfo(struct sysinfo * val); 2431 extern void si_meminfo_node(struct sysinfo *val, int nid); 2432 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2433 extern unsigned long arch_reserved_kernel_pages(void); 2434 #endif 2435 2436 extern __printf(3, 4) 2437 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2438 2439 extern void setup_per_cpu_pageset(void); 2440 2441 /* page_alloc.c */ 2442 extern int min_free_kbytes; 2443 extern int watermark_boost_factor; 2444 extern int watermark_scale_factor; 2445 extern bool arch_has_descending_max_zone_pfns(void); 2446 2447 /* nommu.c */ 2448 extern atomic_long_t mmap_pages_allocated; 2449 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2450 2451 /* interval_tree.c */ 2452 void vma_interval_tree_insert(struct vm_area_struct *node, 2453 struct rb_root_cached *root); 2454 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2455 struct vm_area_struct *prev, 2456 struct rb_root_cached *root); 2457 void vma_interval_tree_remove(struct vm_area_struct *node, 2458 struct rb_root_cached *root); 2459 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2460 unsigned long start, unsigned long last); 2461 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2462 unsigned long start, unsigned long last); 2463 2464 #define vma_interval_tree_foreach(vma, root, start, last) \ 2465 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2466 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2467 2468 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2469 struct rb_root_cached *root); 2470 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2471 struct rb_root_cached *root); 2472 struct anon_vma_chain * 2473 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2474 unsigned long start, unsigned long last); 2475 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2476 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2477 #ifdef CONFIG_DEBUG_VM_RB 2478 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2479 #endif 2480 2481 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2482 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2483 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2484 2485 /* mmap.c */ 2486 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2487 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2488 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2489 struct vm_area_struct *expand); 2490 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2492 { 2493 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2494 } 2495 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2496 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2497 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2498 struct mempolicy *, struct vm_userfaultfd_ctx); 2499 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2500 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2501 unsigned long addr, int new_below); 2502 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2503 unsigned long addr, int new_below); 2504 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2505 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2506 struct rb_node **, struct rb_node *); 2507 extern void unlink_file_vma(struct vm_area_struct *); 2508 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2509 unsigned long addr, unsigned long len, pgoff_t pgoff, 2510 bool *need_rmap_locks); 2511 extern void exit_mmap(struct mm_struct *); 2512 2513 static inline int check_data_rlimit(unsigned long rlim, 2514 unsigned long new, 2515 unsigned long start, 2516 unsigned long end_data, 2517 unsigned long start_data) 2518 { 2519 if (rlim < RLIM_INFINITY) { 2520 if (((new - start) + (end_data - start_data)) > rlim) 2521 return -ENOSPC; 2522 } 2523 2524 return 0; 2525 } 2526 2527 extern int mm_take_all_locks(struct mm_struct *mm); 2528 extern void mm_drop_all_locks(struct mm_struct *mm); 2529 2530 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2531 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2532 extern struct file *get_task_exe_file(struct task_struct *task); 2533 2534 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2535 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2536 2537 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2538 const struct vm_special_mapping *sm); 2539 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2540 unsigned long addr, unsigned long len, 2541 unsigned long flags, 2542 const struct vm_special_mapping *spec); 2543 /* This is an obsolete alternative to _install_special_mapping. */ 2544 extern int install_special_mapping(struct mm_struct *mm, 2545 unsigned long addr, unsigned long len, 2546 unsigned long flags, struct page **pages); 2547 2548 unsigned long randomize_stack_top(unsigned long stack_top); 2549 2550 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2551 2552 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2553 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2554 struct list_head *uf); 2555 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2556 unsigned long len, unsigned long prot, unsigned long flags, 2557 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2558 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2559 struct list_head *uf, bool downgrade); 2560 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2561 struct list_head *uf); 2562 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2563 2564 #ifdef CONFIG_MMU 2565 extern int __mm_populate(unsigned long addr, unsigned long len, 2566 int ignore_errors); 2567 static inline void mm_populate(unsigned long addr, unsigned long len) 2568 { 2569 /* Ignore errors */ 2570 (void) __mm_populate(addr, len, 1); 2571 } 2572 #else 2573 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2574 #endif 2575 2576 /* These take the mm semaphore themselves */ 2577 extern int __must_check vm_brk(unsigned long, unsigned long); 2578 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2579 extern int vm_munmap(unsigned long, size_t); 2580 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2581 unsigned long, unsigned long, 2582 unsigned long, unsigned long); 2583 2584 struct vm_unmapped_area_info { 2585 #define VM_UNMAPPED_AREA_TOPDOWN 1 2586 unsigned long flags; 2587 unsigned long length; 2588 unsigned long low_limit; 2589 unsigned long high_limit; 2590 unsigned long align_mask; 2591 unsigned long align_offset; 2592 }; 2593 2594 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2595 2596 /* truncate.c */ 2597 extern void truncate_inode_pages(struct address_space *, loff_t); 2598 extern void truncate_inode_pages_range(struct address_space *, 2599 loff_t lstart, loff_t lend); 2600 extern void truncate_inode_pages_final(struct address_space *); 2601 2602 /* generic vm_area_ops exported for stackable file systems */ 2603 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2604 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2605 pgoff_t start_pgoff, pgoff_t end_pgoff); 2606 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2607 2608 /* mm/page-writeback.c */ 2609 int __must_check write_one_page(struct page *page); 2610 void task_dirty_inc(struct task_struct *tsk); 2611 2612 extern unsigned long stack_guard_gap; 2613 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2614 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2615 2616 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2617 extern int expand_downwards(struct vm_area_struct *vma, 2618 unsigned long address); 2619 #if VM_GROWSUP 2620 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2621 #else 2622 #define expand_upwards(vma, address) (0) 2623 #endif 2624 2625 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2626 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2627 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2628 struct vm_area_struct **pprev); 2629 2630 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2631 NULL if none. Assume start_addr < end_addr. */ 2632 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2633 { 2634 struct vm_area_struct * vma = find_vma(mm,start_addr); 2635 2636 if (vma && end_addr <= vma->vm_start) 2637 vma = NULL; 2638 return vma; 2639 } 2640 2641 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2642 { 2643 unsigned long vm_start = vma->vm_start; 2644 2645 if (vma->vm_flags & VM_GROWSDOWN) { 2646 vm_start -= stack_guard_gap; 2647 if (vm_start > vma->vm_start) 2648 vm_start = 0; 2649 } 2650 return vm_start; 2651 } 2652 2653 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2654 { 2655 unsigned long vm_end = vma->vm_end; 2656 2657 if (vma->vm_flags & VM_GROWSUP) { 2658 vm_end += stack_guard_gap; 2659 if (vm_end < vma->vm_end) 2660 vm_end = -PAGE_SIZE; 2661 } 2662 return vm_end; 2663 } 2664 2665 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2666 { 2667 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2668 } 2669 2670 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2671 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2672 unsigned long vm_start, unsigned long vm_end) 2673 { 2674 struct vm_area_struct *vma = find_vma(mm, vm_start); 2675 2676 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2677 vma = NULL; 2678 2679 return vma; 2680 } 2681 2682 static inline bool range_in_vma(struct vm_area_struct *vma, 2683 unsigned long start, unsigned long end) 2684 { 2685 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2686 } 2687 2688 #ifdef CONFIG_MMU 2689 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2690 void vma_set_page_prot(struct vm_area_struct *vma); 2691 #else 2692 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2693 { 2694 return __pgprot(0); 2695 } 2696 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2697 { 2698 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2699 } 2700 #endif 2701 2702 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2703 2704 #ifdef CONFIG_NUMA_BALANCING 2705 unsigned long change_prot_numa(struct vm_area_struct *vma, 2706 unsigned long start, unsigned long end); 2707 #endif 2708 2709 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2710 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2711 unsigned long pfn, unsigned long size, pgprot_t); 2712 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2713 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2714 struct page **pages, unsigned long *num); 2715 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2716 unsigned long num); 2717 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2718 unsigned long num); 2719 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2720 unsigned long pfn); 2721 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2722 unsigned long pfn, pgprot_t pgprot); 2723 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2724 pfn_t pfn); 2725 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2726 pfn_t pfn, pgprot_t pgprot); 2727 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2728 unsigned long addr, pfn_t pfn); 2729 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2730 2731 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2732 unsigned long addr, struct page *page) 2733 { 2734 int err = vm_insert_page(vma, addr, page); 2735 2736 if (err == -ENOMEM) 2737 return VM_FAULT_OOM; 2738 if (err < 0 && err != -EBUSY) 2739 return VM_FAULT_SIGBUS; 2740 2741 return VM_FAULT_NOPAGE; 2742 } 2743 2744 #ifndef io_remap_pfn_range 2745 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2746 unsigned long addr, unsigned long pfn, 2747 unsigned long size, pgprot_t prot) 2748 { 2749 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2750 } 2751 #endif 2752 2753 static inline vm_fault_t vmf_error(int err) 2754 { 2755 if (err == -ENOMEM) 2756 return VM_FAULT_OOM; 2757 return VM_FAULT_SIGBUS; 2758 } 2759 2760 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2761 unsigned int foll_flags); 2762 2763 #define FOLL_WRITE 0x01 /* check pte is writable */ 2764 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2765 #define FOLL_GET 0x04 /* do get_page on page */ 2766 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2767 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2768 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2769 * and return without waiting upon it */ 2770 #define FOLL_POPULATE 0x40 /* fault in page */ 2771 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2772 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2773 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2774 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2775 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2776 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2777 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2778 #define FOLL_COW 0x4000 /* internal GUP flag */ 2779 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2780 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2781 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2782 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2783 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2784 2785 /* 2786 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2787 * other. Here is what they mean, and how to use them: 2788 * 2789 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2790 * period _often_ under userspace control. This is in contrast to 2791 * iov_iter_get_pages(), whose usages are transient. 2792 * 2793 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2794 * lifetime enforced by the filesystem and we need guarantees that longterm 2795 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2796 * the filesystem. Ideas for this coordination include revoking the longterm 2797 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2798 * added after the problem with filesystems was found FS DAX VMAs are 2799 * specifically failed. Filesystem pages are still subject to bugs and use of 2800 * FOLL_LONGTERM should be avoided on those pages. 2801 * 2802 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2803 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2804 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2805 * is due to an incompatibility with the FS DAX check and 2806 * FAULT_FLAG_ALLOW_RETRY. 2807 * 2808 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2809 * that region. And so, CMA attempts to migrate the page before pinning, when 2810 * FOLL_LONGTERM is specified. 2811 * 2812 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2813 * but an additional pin counting system) will be invoked. This is intended for 2814 * anything that gets a page reference and then touches page data (for example, 2815 * Direct IO). This lets the filesystem know that some non-file-system entity is 2816 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2817 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2818 * a call to unpin_user_page(). 2819 * 2820 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2821 * and separate refcounting mechanisms, however, and that means that each has 2822 * its own acquire and release mechanisms: 2823 * 2824 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2825 * 2826 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2827 * 2828 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2829 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2830 * calls applied to them, and that's perfectly OK. This is a constraint on the 2831 * callers, not on the pages.) 2832 * 2833 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2834 * directly by the caller. That's in order to help avoid mismatches when 2835 * releasing pages: get_user_pages*() pages must be released via put_page(), 2836 * while pin_user_pages*() pages must be released via unpin_user_page(). 2837 * 2838 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2839 */ 2840 2841 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2842 { 2843 if (vm_fault & VM_FAULT_OOM) 2844 return -ENOMEM; 2845 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2846 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2847 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2848 return -EFAULT; 2849 return 0; 2850 } 2851 2852 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2853 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2854 unsigned long size, pte_fn_t fn, void *data); 2855 extern int apply_to_existing_page_range(struct mm_struct *mm, 2856 unsigned long address, unsigned long size, 2857 pte_fn_t fn, void *data); 2858 2859 extern void init_mem_debugging_and_hardening(void); 2860 #ifdef CONFIG_PAGE_POISONING 2861 extern void __kernel_poison_pages(struct page *page, int numpages); 2862 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2863 extern bool _page_poisoning_enabled_early; 2864 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2865 static inline bool page_poisoning_enabled(void) 2866 { 2867 return _page_poisoning_enabled_early; 2868 } 2869 /* 2870 * For use in fast paths after init_mem_debugging() has run, or when a 2871 * false negative result is not harmful when called too early. 2872 */ 2873 static inline bool page_poisoning_enabled_static(void) 2874 { 2875 return static_branch_unlikely(&_page_poisoning_enabled); 2876 } 2877 static inline void kernel_poison_pages(struct page *page, int numpages) 2878 { 2879 if (page_poisoning_enabled_static()) 2880 __kernel_poison_pages(page, numpages); 2881 } 2882 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2883 { 2884 if (page_poisoning_enabled_static()) 2885 __kernel_unpoison_pages(page, numpages); 2886 } 2887 #else 2888 static inline bool page_poisoning_enabled(void) { return false; } 2889 static inline bool page_poisoning_enabled_static(void) { return false; } 2890 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2891 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2892 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2893 #endif 2894 2895 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2896 static inline bool want_init_on_alloc(gfp_t flags) 2897 { 2898 if (static_branch_unlikely(&init_on_alloc)) 2899 return true; 2900 return flags & __GFP_ZERO; 2901 } 2902 2903 DECLARE_STATIC_KEY_FALSE(init_on_free); 2904 static inline bool want_init_on_free(void) 2905 { 2906 return static_branch_unlikely(&init_on_free); 2907 } 2908 2909 extern bool _debug_pagealloc_enabled_early; 2910 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2911 2912 static inline bool debug_pagealloc_enabled(void) 2913 { 2914 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2915 _debug_pagealloc_enabled_early; 2916 } 2917 2918 /* 2919 * For use in fast paths after init_debug_pagealloc() has run, or when a 2920 * false negative result is not harmful when called too early. 2921 */ 2922 static inline bool debug_pagealloc_enabled_static(void) 2923 { 2924 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2925 return false; 2926 2927 return static_branch_unlikely(&_debug_pagealloc_enabled); 2928 } 2929 2930 #ifdef CONFIG_DEBUG_PAGEALLOC 2931 /* 2932 * To support DEBUG_PAGEALLOC architecture must ensure that 2933 * __kernel_map_pages() never fails 2934 */ 2935 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2936 2937 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2938 { 2939 if (debug_pagealloc_enabled_static()) 2940 __kernel_map_pages(page, numpages, 1); 2941 } 2942 2943 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2944 { 2945 if (debug_pagealloc_enabled_static()) 2946 __kernel_map_pages(page, numpages, 0); 2947 } 2948 #else /* CONFIG_DEBUG_PAGEALLOC */ 2949 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 2950 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 2951 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2952 2953 #ifdef __HAVE_ARCH_GATE_AREA 2954 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2955 extern int in_gate_area_no_mm(unsigned long addr); 2956 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2957 #else 2958 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2959 { 2960 return NULL; 2961 } 2962 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2963 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2964 { 2965 return 0; 2966 } 2967 #endif /* __HAVE_ARCH_GATE_AREA */ 2968 2969 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2970 2971 #ifdef CONFIG_SYSCTL 2972 extern int sysctl_drop_caches; 2973 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2974 loff_t *); 2975 #endif 2976 2977 void drop_slab(void); 2978 void drop_slab_node(int nid); 2979 2980 #ifndef CONFIG_MMU 2981 #define randomize_va_space 0 2982 #else 2983 extern int randomize_va_space; 2984 #endif 2985 2986 const char * arch_vma_name(struct vm_area_struct *vma); 2987 #ifdef CONFIG_MMU 2988 void print_vma_addr(char *prefix, unsigned long rip); 2989 #else 2990 static inline void print_vma_addr(char *prefix, unsigned long rip) 2991 { 2992 } 2993 #endif 2994 2995 void *sparse_buffer_alloc(unsigned long size); 2996 struct page * __populate_section_memmap(unsigned long pfn, 2997 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2998 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2999 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3000 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3001 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3002 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3003 struct vmem_altmap *altmap); 3004 void *vmemmap_alloc_block(unsigned long size, int node); 3005 struct vmem_altmap; 3006 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3007 struct vmem_altmap *altmap); 3008 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3009 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3010 int node, struct vmem_altmap *altmap); 3011 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3012 struct vmem_altmap *altmap); 3013 void vmemmap_populate_print_last(void); 3014 #ifdef CONFIG_MEMORY_HOTPLUG 3015 void vmemmap_free(unsigned long start, unsigned long end, 3016 struct vmem_altmap *altmap); 3017 #endif 3018 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3019 unsigned long nr_pages); 3020 3021 enum mf_flags { 3022 MF_COUNT_INCREASED = 1 << 0, 3023 MF_ACTION_REQUIRED = 1 << 1, 3024 MF_MUST_KILL = 1 << 2, 3025 MF_SOFT_OFFLINE = 1 << 3, 3026 }; 3027 extern int memory_failure(unsigned long pfn, int flags); 3028 extern void memory_failure_queue(unsigned long pfn, int flags); 3029 extern void memory_failure_queue_kick(int cpu); 3030 extern int unpoison_memory(unsigned long pfn); 3031 extern int sysctl_memory_failure_early_kill; 3032 extern int sysctl_memory_failure_recovery; 3033 extern void shake_page(struct page *p, int access); 3034 extern atomic_long_t num_poisoned_pages __read_mostly; 3035 extern int soft_offline_page(unsigned long pfn, int flags); 3036 3037 3038 /* 3039 * Error handlers for various types of pages. 3040 */ 3041 enum mf_result { 3042 MF_IGNORED, /* Error: cannot be handled */ 3043 MF_FAILED, /* Error: handling failed */ 3044 MF_DELAYED, /* Will be handled later */ 3045 MF_RECOVERED, /* Successfully recovered */ 3046 }; 3047 3048 enum mf_action_page_type { 3049 MF_MSG_KERNEL, 3050 MF_MSG_KERNEL_HIGH_ORDER, 3051 MF_MSG_SLAB, 3052 MF_MSG_DIFFERENT_COMPOUND, 3053 MF_MSG_POISONED_HUGE, 3054 MF_MSG_HUGE, 3055 MF_MSG_FREE_HUGE, 3056 MF_MSG_NON_PMD_HUGE, 3057 MF_MSG_UNMAP_FAILED, 3058 MF_MSG_DIRTY_SWAPCACHE, 3059 MF_MSG_CLEAN_SWAPCACHE, 3060 MF_MSG_DIRTY_MLOCKED_LRU, 3061 MF_MSG_CLEAN_MLOCKED_LRU, 3062 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3063 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3064 MF_MSG_DIRTY_LRU, 3065 MF_MSG_CLEAN_LRU, 3066 MF_MSG_TRUNCATED_LRU, 3067 MF_MSG_BUDDY, 3068 MF_MSG_BUDDY_2ND, 3069 MF_MSG_DAX, 3070 MF_MSG_UNSPLIT_THP, 3071 MF_MSG_UNKNOWN, 3072 }; 3073 3074 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3075 extern void clear_huge_page(struct page *page, 3076 unsigned long addr_hint, 3077 unsigned int pages_per_huge_page); 3078 extern void copy_user_huge_page(struct page *dst, struct page *src, 3079 unsigned long addr_hint, 3080 struct vm_area_struct *vma, 3081 unsigned int pages_per_huge_page); 3082 extern long copy_huge_page_from_user(struct page *dst_page, 3083 const void __user *usr_src, 3084 unsigned int pages_per_huge_page, 3085 bool allow_pagefault); 3086 3087 /** 3088 * vma_is_special_huge - Are transhuge page-table entries considered special? 3089 * @vma: Pointer to the struct vm_area_struct to consider 3090 * 3091 * Whether transhuge page-table entries are considered "special" following 3092 * the definition in vm_normal_page(). 3093 * 3094 * Return: true if transhuge page-table entries should be considered special, 3095 * false otherwise. 3096 */ 3097 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3098 { 3099 return vma_is_dax(vma) || (vma->vm_file && 3100 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3101 } 3102 3103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3104 3105 #ifdef CONFIG_DEBUG_PAGEALLOC 3106 extern unsigned int _debug_guardpage_minorder; 3107 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3108 3109 static inline unsigned int debug_guardpage_minorder(void) 3110 { 3111 return _debug_guardpage_minorder; 3112 } 3113 3114 static inline bool debug_guardpage_enabled(void) 3115 { 3116 return static_branch_unlikely(&_debug_guardpage_enabled); 3117 } 3118 3119 static inline bool page_is_guard(struct page *page) 3120 { 3121 if (!debug_guardpage_enabled()) 3122 return false; 3123 3124 return PageGuard(page); 3125 } 3126 #else 3127 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3128 static inline bool debug_guardpage_enabled(void) { return false; } 3129 static inline bool page_is_guard(struct page *page) { return false; } 3130 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3131 3132 #if MAX_NUMNODES > 1 3133 void __init setup_nr_node_ids(void); 3134 #else 3135 static inline void setup_nr_node_ids(void) {} 3136 #endif 3137 3138 extern int memcmp_pages(struct page *page1, struct page *page2); 3139 3140 static inline int pages_identical(struct page *page1, struct page *page2) 3141 { 3142 return !memcmp_pages(page1, page2); 3143 } 3144 3145 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3146 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3147 pgoff_t first_index, pgoff_t nr, 3148 pgoff_t bitmap_pgoff, 3149 unsigned long *bitmap, 3150 pgoff_t *start, 3151 pgoff_t *end); 3152 3153 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3154 pgoff_t first_index, pgoff_t nr); 3155 #endif 3156 3157 extern int sysctl_nr_trim_pages; 3158 3159 void mem_dump_obj(void *object); 3160 3161 #endif /* __KERNEL__ */ 3162 #endif /* _LINUX_MM_H */ 3163