1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 30 struct mempolicy; 31 struct anon_vma; 32 struct anon_vma_chain; 33 struct file_ra_state; 34 struct user_struct; 35 struct writeback_control; 36 struct bdi_writeback; 37 38 void init_mm_internals(void); 39 40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41 extern unsigned long max_mapnr; 42 43 static inline void set_max_mapnr(unsigned long limit) 44 { 45 max_mapnr = limit; 46 } 47 #else 48 static inline void set_max_mapnr(unsigned long limit) { } 49 #endif 50 51 extern atomic_long_t _totalram_pages; 52 static inline unsigned long totalram_pages(void) 53 { 54 return (unsigned long)atomic_long_read(&_totalram_pages); 55 } 56 57 static inline void totalram_pages_inc(void) 58 { 59 atomic_long_inc(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_dec(void) 63 { 64 atomic_long_dec(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_add(long count) 68 { 69 atomic_long_add(count, &_totalram_pages); 70 } 71 72 static inline void totalram_pages_set(long val) 73 { 74 atomic_long_set(&_totalram_pages, val); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 80 #ifdef CONFIG_SYSCTL 81 extern int sysctl_legacy_va_layout; 82 #else 83 #define sysctl_legacy_va_layout 0 84 #endif 85 86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 87 extern const int mmap_rnd_bits_min; 88 extern const int mmap_rnd_bits_max; 89 extern int mmap_rnd_bits __read_mostly; 90 #endif 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 92 extern const int mmap_rnd_compat_bits_min; 93 extern const int mmap_rnd_compat_bits_max; 94 extern int mmap_rnd_compat_bits __read_mostly; 95 #endif 96 97 #include <asm/page.h> 98 #include <asm/pgtable.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * Those architectures should provide their own implementation of "struct page" 127 * zeroing by defining this macro in <asm/pgtable.h>. 128 */ 129 #ifndef mm_zero_struct_page 130 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 131 #endif 132 133 /* 134 * Default maximum number of active map areas, this limits the number of vmas 135 * per mm struct. Users can overwrite this number by sysctl but there is a 136 * problem. 137 * 138 * When a program's coredump is generated as ELF format, a section is created 139 * per a vma. In ELF, the number of sections is represented in unsigned short. 140 * This means the number of sections should be smaller than 65535 at coredump. 141 * Because the kernel adds some informative sections to a image of program at 142 * generating coredump, we need some margin. The number of extra sections is 143 * 1-3 now and depends on arch. We use "5" as safe margin, here. 144 * 145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 146 * not a hard limit any more. Although some userspace tools can be surprised by 147 * that. 148 */ 149 #define MAPCOUNT_ELF_CORE_MARGIN (5) 150 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 151 152 extern int sysctl_max_map_count; 153 154 extern unsigned long sysctl_user_reserve_kbytes; 155 extern unsigned long sysctl_admin_reserve_kbytes; 156 157 extern int sysctl_overcommit_memory; 158 extern int sysctl_overcommit_ratio; 159 extern unsigned long sysctl_overcommit_kbytes; 160 161 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 162 size_t *, loff_t *); 163 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 164 size_t *, loff_t *); 165 166 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 167 168 /* to align the pointer to the (next) page boundary */ 169 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 170 171 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 172 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 173 174 /* 175 * Linux kernel virtual memory manager primitives. 176 * The idea being to have a "virtual" mm in the same way 177 * we have a virtual fs - giving a cleaner interface to the 178 * mm details, and allowing different kinds of memory mappings 179 * (from shared memory to executable loading to arbitrary 180 * mmap() functions). 181 */ 182 183 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 184 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 185 void vm_area_free(struct vm_area_struct *); 186 187 #ifndef CONFIG_MMU 188 extern struct rb_root nommu_region_tree; 189 extern struct rw_semaphore nommu_region_sem; 190 191 extern unsigned int kobjsize(const void *objp); 192 #endif 193 194 /* 195 * vm_flags in vm_area_struct, see mm_types.h. 196 * When changing, update also include/trace/events/mmflags.h 197 */ 198 #define VM_NONE 0x00000000 199 200 #define VM_READ 0x00000001 /* currently active flags */ 201 #define VM_WRITE 0x00000002 202 #define VM_EXEC 0x00000004 203 #define VM_SHARED 0x00000008 204 205 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 206 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 207 #define VM_MAYWRITE 0x00000020 208 #define VM_MAYEXEC 0x00000040 209 #define VM_MAYSHARE 0x00000080 210 211 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 212 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 213 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 214 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 215 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 216 217 #define VM_LOCKED 0x00002000 218 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 219 220 /* Used by sys_madvise() */ 221 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 222 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 223 224 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 225 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 226 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 227 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 228 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 229 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 230 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 231 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 232 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 233 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 234 235 #ifdef CONFIG_MEM_SOFT_DIRTY 236 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 237 #else 238 # define VM_SOFTDIRTY 0 239 #endif 240 241 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 242 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 243 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 244 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 245 246 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 247 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 248 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 249 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 250 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 251 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 252 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 253 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 254 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 255 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 256 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 257 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 258 259 #ifdef CONFIG_ARCH_HAS_PKEYS 260 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 261 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 262 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 263 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 264 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 265 #ifdef CONFIG_PPC 266 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 267 #else 268 # define VM_PKEY_BIT4 0 269 #endif 270 #endif /* CONFIG_ARCH_HAS_PKEYS */ 271 272 #if defined(CONFIG_X86) 273 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 274 #elif defined(CONFIG_PPC) 275 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 276 #elif defined(CONFIG_PARISC) 277 # define VM_GROWSUP VM_ARCH_1 278 #elif defined(CONFIG_IA64) 279 # define VM_GROWSUP VM_ARCH_1 280 #elif defined(CONFIG_SPARC64) 281 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 282 # define VM_ARCH_CLEAR VM_SPARC_ADI 283 #elif !defined(CONFIG_MMU) 284 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 285 #endif 286 287 #if defined(CONFIG_X86_INTEL_MPX) 288 /* MPX specific bounds table or bounds directory */ 289 # define VM_MPX VM_HIGH_ARCH_4 290 #else 291 # define VM_MPX VM_NONE 292 #endif 293 294 #ifndef VM_GROWSUP 295 # define VM_GROWSUP VM_NONE 296 #endif 297 298 /* Bits set in the VMA until the stack is in its final location */ 299 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 300 301 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 302 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 303 #endif 304 305 #ifdef CONFIG_STACK_GROWSUP 306 #define VM_STACK VM_GROWSUP 307 #else 308 #define VM_STACK VM_GROWSDOWN 309 #endif 310 311 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 312 313 /* 314 * Special vmas that are non-mergable, non-mlock()able. 315 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 316 */ 317 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 318 319 /* This mask defines which mm->def_flags a process can inherit its parent */ 320 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 321 322 /* This mask is used to clear all the VMA flags used by mlock */ 323 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 324 325 /* Arch-specific flags to clear when updating VM flags on protection change */ 326 #ifndef VM_ARCH_CLEAR 327 # define VM_ARCH_CLEAR VM_NONE 328 #endif 329 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 330 331 /* 332 * mapping from the currently active vm_flags protection bits (the 333 * low four bits) to a page protection mask.. 334 */ 335 extern pgprot_t protection_map[16]; 336 337 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 338 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 339 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 340 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 341 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 342 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 343 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 344 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 345 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 346 347 #define FAULT_FLAG_TRACE \ 348 { FAULT_FLAG_WRITE, "WRITE" }, \ 349 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 350 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 351 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 352 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 353 { FAULT_FLAG_TRIED, "TRIED" }, \ 354 { FAULT_FLAG_USER, "USER" }, \ 355 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 356 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 357 358 /* 359 * vm_fault is filled by the the pagefault handler and passed to the vma's 360 * ->fault function. The vma's ->fault is responsible for returning a bitmask 361 * of VM_FAULT_xxx flags that give details about how the fault was handled. 362 * 363 * MM layer fills up gfp_mask for page allocations but fault handler might 364 * alter it if its implementation requires a different allocation context. 365 * 366 * pgoff should be used in favour of virtual_address, if possible. 367 */ 368 struct vm_fault { 369 struct vm_area_struct *vma; /* Target VMA */ 370 unsigned int flags; /* FAULT_FLAG_xxx flags */ 371 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 372 pgoff_t pgoff; /* Logical page offset based on vma */ 373 unsigned long address; /* Faulting virtual address */ 374 pmd_t *pmd; /* Pointer to pmd entry matching 375 * the 'address' */ 376 pud_t *pud; /* Pointer to pud entry matching 377 * the 'address' 378 */ 379 pte_t orig_pte; /* Value of PTE at the time of fault */ 380 381 struct page *cow_page; /* Page handler may use for COW fault */ 382 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 383 struct page *page; /* ->fault handlers should return a 384 * page here, unless VM_FAULT_NOPAGE 385 * is set (which is also implied by 386 * VM_FAULT_ERROR). 387 */ 388 /* These three entries are valid only while holding ptl lock */ 389 pte_t *pte; /* Pointer to pte entry matching 390 * the 'address'. NULL if the page 391 * table hasn't been allocated. 392 */ 393 spinlock_t *ptl; /* Page table lock. 394 * Protects pte page table if 'pte' 395 * is not NULL, otherwise pmd. 396 */ 397 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 398 * vm_ops->map_pages() calls 399 * alloc_set_pte() from atomic context. 400 * do_fault_around() pre-allocates 401 * page table to avoid allocation from 402 * atomic context. 403 */ 404 }; 405 406 /* page entry size for vm->huge_fault() */ 407 enum page_entry_size { 408 PE_SIZE_PTE = 0, 409 PE_SIZE_PMD, 410 PE_SIZE_PUD, 411 }; 412 413 /* 414 * These are the virtual MM functions - opening of an area, closing and 415 * unmapping it (needed to keep files on disk up-to-date etc), pointer 416 * to the functions called when a no-page or a wp-page exception occurs. 417 */ 418 struct vm_operations_struct { 419 void (*open)(struct vm_area_struct * area); 420 void (*close)(struct vm_area_struct * area); 421 int (*split)(struct vm_area_struct * area, unsigned long addr); 422 int (*mremap)(struct vm_area_struct * area); 423 vm_fault_t (*fault)(struct vm_fault *vmf); 424 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 425 enum page_entry_size pe_size); 426 void (*map_pages)(struct vm_fault *vmf, 427 pgoff_t start_pgoff, pgoff_t end_pgoff); 428 unsigned long (*pagesize)(struct vm_area_struct * area); 429 430 /* notification that a previously read-only page is about to become 431 * writable, if an error is returned it will cause a SIGBUS */ 432 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 433 434 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 435 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 436 437 /* called by access_process_vm when get_user_pages() fails, typically 438 * for use by special VMAs that can switch between memory and hardware 439 */ 440 int (*access)(struct vm_area_struct *vma, unsigned long addr, 441 void *buf, int len, int write); 442 443 /* Called by the /proc/PID/maps code to ask the vma whether it 444 * has a special name. Returning non-NULL will also cause this 445 * vma to be dumped unconditionally. */ 446 const char *(*name)(struct vm_area_struct *vma); 447 448 #ifdef CONFIG_NUMA 449 /* 450 * set_policy() op must add a reference to any non-NULL @new mempolicy 451 * to hold the policy upon return. Caller should pass NULL @new to 452 * remove a policy and fall back to surrounding context--i.e. do not 453 * install a MPOL_DEFAULT policy, nor the task or system default 454 * mempolicy. 455 */ 456 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 457 458 /* 459 * get_policy() op must add reference [mpol_get()] to any policy at 460 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 461 * in mm/mempolicy.c will do this automatically. 462 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 463 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 464 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 465 * must return NULL--i.e., do not "fallback" to task or system default 466 * policy. 467 */ 468 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 469 unsigned long addr); 470 #endif 471 /* 472 * Called by vm_normal_page() for special PTEs to find the 473 * page for @addr. This is useful if the default behavior 474 * (using pte_page()) would not find the correct page. 475 */ 476 struct page *(*find_special_page)(struct vm_area_struct *vma, 477 unsigned long addr); 478 }; 479 480 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 481 { 482 static const struct vm_operations_struct dummy_vm_ops = {}; 483 484 memset(vma, 0, sizeof(*vma)); 485 vma->vm_mm = mm; 486 vma->vm_ops = &dummy_vm_ops; 487 INIT_LIST_HEAD(&vma->anon_vma_chain); 488 } 489 490 static inline void vma_set_anonymous(struct vm_area_struct *vma) 491 { 492 vma->vm_ops = NULL; 493 } 494 495 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 496 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 497 498 struct mmu_gather; 499 struct inode; 500 501 #define page_private(page) ((page)->private) 502 #define set_page_private(page, v) ((page)->private = (v)) 503 504 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 505 static inline int pmd_devmap(pmd_t pmd) 506 { 507 return 0; 508 } 509 static inline int pud_devmap(pud_t pud) 510 { 511 return 0; 512 } 513 static inline int pgd_devmap(pgd_t pgd) 514 { 515 return 0; 516 } 517 #endif 518 519 /* 520 * FIXME: take this include out, include page-flags.h in 521 * files which need it (119 of them) 522 */ 523 #include <linux/page-flags.h> 524 #include <linux/huge_mm.h> 525 526 /* 527 * Methods to modify the page usage count. 528 * 529 * What counts for a page usage: 530 * - cache mapping (page->mapping) 531 * - private data (page->private) 532 * - page mapped in a task's page tables, each mapping 533 * is counted separately 534 * 535 * Also, many kernel routines increase the page count before a critical 536 * routine so they can be sure the page doesn't go away from under them. 537 */ 538 539 /* 540 * Drop a ref, return true if the refcount fell to zero (the page has no users) 541 */ 542 static inline int put_page_testzero(struct page *page) 543 { 544 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 545 return page_ref_dec_and_test(page); 546 } 547 548 /* 549 * Try to grab a ref unless the page has a refcount of zero, return false if 550 * that is the case. 551 * This can be called when MMU is off so it must not access 552 * any of the virtual mappings. 553 */ 554 static inline int get_page_unless_zero(struct page *page) 555 { 556 return page_ref_add_unless(page, 1, 0); 557 } 558 559 extern int page_is_ram(unsigned long pfn); 560 561 enum { 562 REGION_INTERSECTS, 563 REGION_DISJOINT, 564 REGION_MIXED, 565 }; 566 567 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 568 unsigned long desc); 569 570 /* Support for virtually mapped pages */ 571 struct page *vmalloc_to_page(const void *addr); 572 unsigned long vmalloc_to_pfn(const void *addr); 573 574 /* 575 * Determine if an address is within the vmalloc range 576 * 577 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 578 * is no special casing required. 579 */ 580 static inline bool is_vmalloc_addr(const void *x) 581 { 582 #ifdef CONFIG_MMU 583 unsigned long addr = (unsigned long)x; 584 585 return addr >= VMALLOC_START && addr < VMALLOC_END; 586 #else 587 return false; 588 #endif 589 } 590 #ifdef CONFIG_MMU 591 extern int is_vmalloc_or_module_addr(const void *x); 592 #else 593 static inline int is_vmalloc_or_module_addr(const void *x) 594 { 595 return 0; 596 } 597 #endif 598 599 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 600 static inline void *kvmalloc(size_t size, gfp_t flags) 601 { 602 return kvmalloc_node(size, flags, NUMA_NO_NODE); 603 } 604 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 605 { 606 return kvmalloc_node(size, flags | __GFP_ZERO, node); 607 } 608 static inline void *kvzalloc(size_t size, gfp_t flags) 609 { 610 return kvmalloc(size, flags | __GFP_ZERO); 611 } 612 613 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 614 { 615 size_t bytes; 616 617 if (unlikely(check_mul_overflow(n, size, &bytes))) 618 return NULL; 619 620 return kvmalloc(bytes, flags); 621 } 622 623 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 624 { 625 return kvmalloc_array(n, size, flags | __GFP_ZERO); 626 } 627 628 extern void kvfree(const void *addr); 629 630 static inline atomic_t *compound_mapcount_ptr(struct page *page) 631 { 632 return &page[1].compound_mapcount; 633 } 634 635 static inline int compound_mapcount(struct page *page) 636 { 637 VM_BUG_ON_PAGE(!PageCompound(page), page); 638 page = compound_head(page); 639 return atomic_read(compound_mapcount_ptr(page)) + 1; 640 } 641 642 /* 643 * The atomic page->_mapcount, starts from -1: so that transitions 644 * both from it and to it can be tracked, using atomic_inc_and_test 645 * and atomic_add_negative(-1). 646 */ 647 static inline void page_mapcount_reset(struct page *page) 648 { 649 atomic_set(&(page)->_mapcount, -1); 650 } 651 652 int __page_mapcount(struct page *page); 653 654 static inline int page_mapcount(struct page *page) 655 { 656 VM_BUG_ON_PAGE(PageSlab(page), page); 657 658 if (unlikely(PageCompound(page))) 659 return __page_mapcount(page); 660 return atomic_read(&page->_mapcount) + 1; 661 } 662 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 int total_mapcount(struct page *page); 665 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 666 #else 667 static inline int total_mapcount(struct page *page) 668 { 669 return page_mapcount(page); 670 } 671 static inline int page_trans_huge_mapcount(struct page *page, 672 int *total_mapcount) 673 { 674 int mapcount = page_mapcount(page); 675 if (total_mapcount) 676 *total_mapcount = mapcount; 677 return mapcount; 678 } 679 #endif 680 681 static inline struct page *virt_to_head_page(const void *x) 682 { 683 struct page *page = virt_to_page(x); 684 685 return compound_head(page); 686 } 687 688 void __put_page(struct page *page); 689 690 void put_pages_list(struct list_head *pages); 691 692 void split_page(struct page *page, unsigned int order); 693 694 /* 695 * Compound pages have a destructor function. Provide a 696 * prototype for that function and accessor functions. 697 * These are _only_ valid on the head of a compound page. 698 */ 699 typedef void compound_page_dtor(struct page *); 700 701 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 702 enum compound_dtor_id { 703 NULL_COMPOUND_DTOR, 704 COMPOUND_PAGE_DTOR, 705 #ifdef CONFIG_HUGETLB_PAGE 706 HUGETLB_PAGE_DTOR, 707 #endif 708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 709 TRANSHUGE_PAGE_DTOR, 710 #endif 711 NR_COMPOUND_DTORS, 712 }; 713 extern compound_page_dtor * const compound_page_dtors[]; 714 715 static inline void set_compound_page_dtor(struct page *page, 716 enum compound_dtor_id compound_dtor) 717 { 718 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 719 page[1].compound_dtor = compound_dtor; 720 } 721 722 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 723 { 724 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 725 return compound_page_dtors[page[1].compound_dtor]; 726 } 727 728 static inline unsigned int compound_order(struct page *page) 729 { 730 if (!PageHead(page)) 731 return 0; 732 return page[1].compound_order; 733 } 734 735 static inline void set_compound_order(struct page *page, unsigned int order) 736 { 737 page[1].compound_order = order; 738 } 739 740 void free_compound_page(struct page *page); 741 742 #ifdef CONFIG_MMU 743 /* 744 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 745 * servicing faults for write access. In the normal case, do always want 746 * pte_mkwrite. But get_user_pages can cause write faults for mappings 747 * that do not have writing enabled, when used by access_process_vm. 748 */ 749 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 750 { 751 if (likely(vma->vm_flags & VM_WRITE)) 752 pte = pte_mkwrite(pte); 753 return pte; 754 } 755 756 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 757 struct page *page); 758 vm_fault_t finish_fault(struct vm_fault *vmf); 759 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 760 #endif 761 762 /* 763 * Multiple processes may "see" the same page. E.g. for untouched 764 * mappings of /dev/null, all processes see the same page full of 765 * zeroes, and text pages of executables and shared libraries have 766 * only one copy in memory, at most, normally. 767 * 768 * For the non-reserved pages, page_count(page) denotes a reference count. 769 * page_count() == 0 means the page is free. page->lru is then used for 770 * freelist management in the buddy allocator. 771 * page_count() > 0 means the page has been allocated. 772 * 773 * Pages are allocated by the slab allocator in order to provide memory 774 * to kmalloc and kmem_cache_alloc. In this case, the management of the 775 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 776 * unless a particular usage is carefully commented. (the responsibility of 777 * freeing the kmalloc memory is the caller's, of course). 778 * 779 * A page may be used by anyone else who does a __get_free_page(). 780 * In this case, page_count still tracks the references, and should only 781 * be used through the normal accessor functions. The top bits of page->flags 782 * and page->virtual store page management information, but all other fields 783 * are unused and could be used privately, carefully. The management of this 784 * page is the responsibility of the one who allocated it, and those who have 785 * subsequently been given references to it. 786 * 787 * The other pages (we may call them "pagecache pages") are completely 788 * managed by the Linux memory manager: I/O, buffers, swapping etc. 789 * The following discussion applies only to them. 790 * 791 * A pagecache page contains an opaque `private' member, which belongs to the 792 * page's address_space. Usually, this is the address of a circular list of 793 * the page's disk buffers. PG_private must be set to tell the VM to call 794 * into the filesystem to release these pages. 795 * 796 * A page may belong to an inode's memory mapping. In this case, page->mapping 797 * is the pointer to the inode, and page->index is the file offset of the page, 798 * in units of PAGE_SIZE. 799 * 800 * If pagecache pages are not associated with an inode, they are said to be 801 * anonymous pages. These may become associated with the swapcache, and in that 802 * case PG_swapcache is set, and page->private is an offset into the swapcache. 803 * 804 * In either case (swapcache or inode backed), the pagecache itself holds one 805 * reference to the page. Setting PG_private should also increment the 806 * refcount. The each user mapping also has a reference to the page. 807 * 808 * The pagecache pages are stored in a per-mapping radix tree, which is 809 * rooted at mapping->i_pages, and indexed by offset. 810 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 811 * lists, we instead now tag pages as dirty/writeback in the radix tree. 812 * 813 * All pagecache pages may be subject to I/O: 814 * - inode pages may need to be read from disk, 815 * - inode pages which have been modified and are MAP_SHARED may need 816 * to be written back to the inode on disk, 817 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 818 * modified may need to be swapped out to swap space and (later) to be read 819 * back into memory. 820 */ 821 822 /* 823 * The zone field is never updated after free_area_init_core() 824 * sets it, so none of the operations on it need to be atomic. 825 */ 826 827 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 828 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 829 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 830 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 831 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 832 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 833 834 /* 835 * Define the bit shifts to access each section. For non-existent 836 * sections we define the shift as 0; that plus a 0 mask ensures 837 * the compiler will optimise away reference to them. 838 */ 839 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 840 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 841 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 842 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 843 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 844 845 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 846 #ifdef NODE_NOT_IN_PAGE_FLAGS 847 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 848 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 849 SECTIONS_PGOFF : ZONES_PGOFF) 850 #else 851 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 852 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 853 NODES_PGOFF : ZONES_PGOFF) 854 #endif 855 856 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 857 858 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 859 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 860 #endif 861 862 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 863 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 864 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 865 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 866 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 867 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 868 869 static inline enum zone_type page_zonenum(const struct page *page) 870 { 871 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 872 } 873 874 #ifdef CONFIG_ZONE_DEVICE 875 static inline bool is_zone_device_page(const struct page *page) 876 { 877 return page_zonenum(page) == ZONE_DEVICE; 878 } 879 extern void memmap_init_zone_device(struct zone *, unsigned long, 880 unsigned long, struct dev_pagemap *); 881 #else 882 static inline bool is_zone_device_page(const struct page *page) 883 { 884 return false; 885 } 886 #endif 887 888 #ifdef CONFIG_DEV_PAGEMAP_OPS 889 void dev_pagemap_get_ops(void); 890 void dev_pagemap_put_ops(void); 891 void __put_devmap_managed_page(struct page *page); 892 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 893 static inline bool put_devmap_managed_page(struct page *page) 894 { 895 if (!static_branch_unlikely(&devmap_managed_key)) 896 return false; 897 if (!is_zone_device_page(page)) 898 return false; 899 switch (page->pgmap->type) { 900 case MEMORY_DEVICE_PRIVATE: 901 case MEMORY_DEVICE_PUBLIC: 902 case MEMORY_DEVICE_FS_DAX: 903 __put_devmap_managed_page(page); 904 return true; 905 default: 906 break; 907 } 908 return false; 909 } 910 911 static inline bool is_device_private_page(const struct page *page) 912 { 913 return is_zone_device_page(page) && 914 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 915 } 916 917 static inline bool is_device_public_page(const struct page *page) 918 { 919 return is_zone_device_page(page) && 920 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 921 } 922 923 #ifdef CONFIG_PCI_P2PDMA 924 static inline bool is_pci_p2pdma_page(const struct page *page) 925 { 926 return is_zone_device_page(page) && 927 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 928 } 929 #else /* CONFIG_PCI_P2PDMA */ 930 static inline bool is_pci_p2pdma_page(const struct page *page) 931 { 932 return false; 933 } 934 #endif /* CONFIG_PCI_P2PDMA */ 935 936 #else /* CONFIG_DEV_PAGEMAP_OPS */ 937 static inline void dev_pagemap_get_ops(void) 938 { 939 } 940 941 static inline void dev_pagemap_put_ops(void) 942 { 943 } 944 945 static inline bool put_devmap_managed_page(struct page *page) 946 { 947 return false; 948 } 949 950 static inline bool is_device_private_page(const struct page *page) 951 { 952 return false; 953 } 954 955 static inline bool is_device_public_page(const struct page *page) 956 { 957 return false; 958 } 959 960 static inline bool is_pci_p2pdma_page(const struct page *page) 961 { 962 return false; 963 } 964 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 965 966 static inline void get_page(struct page *page) 967 { 968 page = compound_head(page); 969 /* 970 * Getting a normal page or the head of a compound page 971 * requires to already have an elevated page->_refcount. 972 */ 973 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 974 page_ref_inc(page); 975 } 976 977 static inline void put_page(struct page *page) 978 { 979 page = compound_head(page); 980 981 /* 982 * For devmap managed pages we need to catch refcount transition from 983 * 2 to 1, when refcount reach one it means the page is free and we 984 * need to inform the device driver through callback. See 985 * include/linux/memremap.h and HMM for details. 986 */ 987 if (put_devmap_managed_page(page)) 988 return; 989 990 if (put_page_testzero(page)) 991 __put_page(page); 992 } 993 994 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 995 #define SECTION_IN_PAGE_FLAGS 996 #endif 997 998 /* 999 * The identification function is mainly used by the buddy allocator for 1000 * determining if two pages could be buddies. We are not really identifying 1001 * the zone since we could be using the section number id if we do not have 1002 * node id available in page flags. 1003 * We only guarantee that it will return the same value for two combinable 1004 * pages in a zone. 1005 */ 1006 static inline int page_zone_id(struct page *page) 1007 { 1008 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1009 } 1010 1011 #ifdef NODE_NOT_IN_PAGE_FLAGS 1012 extern int page_to_nid(const struct page *page); 1013 #else 1014 static inline int page_to_nid(const struct page *page) 1015 { 1016 struct page *p = (struct page *)page; 1017 1018 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1019 } 1020 #endif 1021 1022 #ifdef CONFIG_NUMA_BALANCING 1023 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1024 { 1025 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1026 } 1027 1028 static inline int cpupid_to_pid(int cpupid) 1029 { 1030 return cpupid & LAST__PID_MASK; 1031 } 1032 1033 static inline int cpupid_to_cpu(int cpupid) 1034 { 1035 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1036 } 1037 1038 static inline int cpupid_to_nid(int cpupid) 1039 { 1040 return cpu_to_node(cpupid_to_cpu(cpupid)); 1041 } 1042 1043 static inline bool cpupid_pid_unset(int cpupid) 1044 { 1045 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1046 } 1047 1048 static inline bool cpupid_cpu_unset(int cpupid) 1049 { 1050 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1051 } 1052 1053 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1054 { 1055 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1056 } 1057 1058 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1059 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1060 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1061 { 1062 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1063 } 1064 1065 static inline int page_cpupid_last(struct page *page) 1066 { 1067 return page->_last_cpupid; 1068 } 1069 static inline void page_cpupid_reset_last(struct page *page) 1070 { 1071 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1072 } 1073 #else 1074 static inline int page_cpupid_last(struct page *page) 1075 { 1076 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1077 } 1078 1079 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1080 1081 static inline void page_cpupid_reset_last(struct page *page) 1082 { 1083 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1084 } 1085 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1086 #else /* !CONFIG_NUMA_BALANCING */ 1087 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1088 { 1089 return page_to_nid(page); /* XXX */ 1090 } 1091 1092 static inline int page_cpupid_last(struct page *page) 1093 { 1094 return page_to_nid(page); /* XXX */ 1095 } 1096 1097 static inline int cpupid_to_nid(int cpupid) 1098 { 1099 return -1; 1100 } 1101 1102 static inline int cpupid_to_pid(int cpupid) 1103 { 1104 return -1; 1105 } 1106 1107 static inline int cpupid_to_cpu(int cpupid) 1108 { 1109 return -1; 1110 } 1111 1112 static inline int cpu_pid_to_cpupid(int nid, int pid) 1113 { 1114 return -1; 1115 } 1116 1117 static inline bool cpupid_pid_unset(int cpupid) 1118 { 1119 return 1; 1120 } 1121 1122 static inline void page_cpupid_reset_last(struct page *page) 1123 { 1124 } 1125 1126 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1127 { 1128 return false; 1129 } 1130 #endif /* CONFIG_NUMA_BALANCING */ 1131 1132 #ifdef CONFIG_KASAN_SW_TAGS 1133 static inline u8 page_kasan_tag(const struct page *page) 1134 { 1135 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1136 } 1137 1138 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1139 { 1140 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1141 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1142 } 1143 1144 static inline void page_kasan_tag_reset(struct page *page) 1145 { 1146 page_kasan_tag_set(page, 0xff); 1147 } 1148 #else 1149 static inline u8 page_kasan_tag(const struct page *page) 1150 { 1151 return 0xff; 1152 } 1153 1154 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1155 static inline void page_kasan_tag_reset(struct page *page) { } 1156 #endif 1157 1158 static inline struct zone *page_zone(const struct page *page) 1159 { 1160 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1161 } 1162 1163 static inline pg_data_t *page_pgdat(const struct page *page) 1164 { 1165 return NODE_DATA(page_to_nid(page)); 1166 } 1167 1168 #ifdef SECTION_IN_PAGE_FLAGS 1169 static inline void set_page_section(struct page *page, unsigned long section) 1170 { 1171 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1172 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1173 } 1174 1175 static inline unsigned long page_to_section(const struct page *page) 1176 { 1177 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1178 } 1179 #endif 1180 1181 static inline void set_page_zone(struct page *page, enum zone_type zone) 1182 { 1183 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1184 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1185 } 1186 1187 static inline void set_page_node(struct page *page, unsigned long node) 1188 { 1189 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1190 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1191 } 1192 1193 static inline void set_page_links(struct page *page, enum zone_type zone, 1194 unsigned long node, unsigned long pfn) 1195 { 1196 set_page_zone(page, zone); 1197 set_page_node(page, node); 1198 #ifdef SECTION_IN_PAGE_FLAGS 1199 set_page_section(page, pfn_to_section_nr(pfn)); 1200 #endif 1201 } 1202 1203 #ifdef CONFIG_MEMCG 1204 static inline struct mem_cgroup *page_memcg(struct page *page) 1205 { 1206 return page->mem_cgroup; 1207 } 1208 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1209 { 1210 WARN_ON_ONCE(!rcu_read_lock_held()); 1211 return READ_ONCE(page->mem_cgroup); 1212 } 1213 #else 1214 static inline struct mem_cgroup *page_memcg(struct page *page) 1215 { 1216 return NULL; 1217 } 1218 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1219 { 1220 WARN_ON_ONCE(!rcu_read_lock_held()); 1221 return NULL; 1222 } 1223 #endif 1224 1225 /* 1226 * Some inline functions in vmstat.h depend on page_zone() 1227 */ 1228 #include <linux/vmstat.h> 1229 1230 static __always_inline void *lowmem_page_address(const struct page *page) 1231 { 1232 return page_to_virt(page); 1233 } 1234 1235 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1236 #define HASHED_PAGE_VIRTUAL 1237 #endif 1238 1239 #if defined(WANT_PAGE_VIRTUAL) 1240 static inline void *page_address(const struct page *page) 1241 { 1242 return page->virtual; 1243 } 1244 static inline void set_page_address(struct page *page, void *address) 1245 { 1246 page->virtual = address; 1247 } 1248 #define page_address_init() do { } while(0) 1249 #endif 1250 1251 #if defined(HASHED_PAGE_VIRTUAL) 1252 void *page_address(const struct page *page); 1253 void set_page_address(struct page *page, void *virtual); 1254 void page_address_init(void); 1255 #endif 1256 1257 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1258 #define page_address(page) lowmem_page_address(page) 1259 #define set_page_address(page, address) do { } while(0) 1260 #define page_address_init() do { } while(0) 1261 #endif 1262 1263 extern void *page_rmapping(struct page *page); 1264 extern struct anon_vma *page_anon_vma(struct page *page); 1265 extern struct address_space *page_mapping(struct page *page); 1266 1267 extern struct address_space *__page_file_mapping(struct page *); 1268 1269 static inline 1270 struct address_space *page_file_mapping(struct page *page) 1271 { 1272 if (unlikely(PageSwapCache(page))) 1273 return __page_file_mapping(page); 1274 1275 return page->mapping; 1276 } 1277 1278 extern pgoff_t __page_file_index(struct page *page); 1279 1280 /* 1281 * Return the pagecache index of the passed page. Regular pagecache pages 1282 * use ->index whereas swapcache pages use swp_offset(->private) 1283 */ 1284 static inline pgoff_t page_index(struct page *page) 1285 { 1286 if (unlikely(PageSwapCache(page))) 1287 return __page_file_index(page); 1288 return page->index; 1289 } 1290 1291 bool page_mapped(struct page *page); 1292 struct address_space *page_mapping(struct page *page); 1293 struct address_space *page_mapping_file(struct page *page); 1294 1295 /* 1296 * Return true only if the page has been allocated with 1297 * ALLOC_NO_WATERMARKS and the low watermark was not 1298 * met implying that the system is under some pressure. 1299 */ 1300 static inline bool page_is_pfmemalloc(struct page *page) 1301 { 1302 /* 1303 * Page index cannot be this large so this must be 1304 * a pfmemalloc page. 1305 */ 1306 return page->index == -1UL; 1307 } 1308 1309 /* 1310 * Only to be called by the page allocator on a freshly allocated 1311 * page. 1312 */ 1313 static inline void set_page_pfmemalloc(struct page *page) 1314 { 1315 page->index = -1UL; 1316 } 1317 1318 static inline void clear_page_pfmemalloc(struct page *page) 1319 { 1320 page->index = 0; 1321 } 1322 1323 /* 1324 * Different kinds of faults, as returned by handle_mm_fault(). 1325 * Used to decide whether a process gets delivered SIGBUS or 1326 * just gets major/minor fault counters bumped up. 1327 */ 1328 1329 #define VM_FAULT_OOM 0x0001 1330 #define VM_FAULT_SIGBUS 0x0002 1331 #define VM_FAULT_MAJOR 0x0004 1332 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1333 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1334 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1335 #define VM_FAULT_SIGSEGV 0x0040 1336 1337 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1338 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1339 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1340 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1341 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1342 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1343 * and needs fsync() to complete (for 1344 * synchronous page faults in DAX) */ 1345 1346 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1347 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1348 VM_FAULT_FALLBACK) 1349 1350 #define VM_FAULT_RESULT_TRACE \ 1351 { VM_FAULT_OOM, "OOM" }, \ 1352 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1353 { VM_FAULT_MAJOR, "MAJOR" }, \ 1354 { VM_FAULT_WRITE, "WRITE" }, \ 1355 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1356 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1357 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1358 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1359 { VM_FAULT_LOCKED, "LOCKED" }, \ 1360 { VM_FAULT_RETRY, "RETRY" }, \ 1361 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1362 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1363 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1364 1365 /* Encode hstate index for a hwpoisoned large page */ 1366 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1367 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1368 1369 /* 1370 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1371 */ 1372 extern void pagefault_out_of_memory(void); 1373 1374 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1375 1376 /* 1377 * Flags passed to show_mem() and show_free_areas() to suppress output in 1378 * various contexts. 1379 */ 1380 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1381 1382 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1383 1384 extern bool can_do_mlock(void); 1385 extern int user_shm_lock(size_t, struct user_struct *); 1386 extern void user_shm_unlock(size_t, struct user_struct *); 1387 1388 /* 1389 * Parameter block passed down to zap_pte_range in exceptional cases. 1390 */ 1391 struct zap_details { 1392 struct address_space *check_mapping; /* Check page->mapping if set */ 1393 pgoff_t first_index; /* Lowest page->index to unmap */ 1394 pgoff_t last_index; /* Highest page->index to unmap */ 1395 }; 1396 1397 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1398 pte_t pte, bool with_public_device); 1399 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1400 1401 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1402 pmd_t pmd); 1403 1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size); 1406 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1407 unsigned long size); 1408 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1409 unsigned long start, unsigned long end); 1410 1411 /** 1412 * mm_walk - callbacks for walk_page_range 1413 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1414 * this handler should only handle pud_trans_huge() puds. 1415 * the pmd_entry or pte_entry callbacks will be used for 1416 * regular PUDs. 1417 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1418 * this handler is required to be able to handle 1419 * pmd_trans_huge() pmds. They may simply choose to 1420 * split_huge_page() instead of handling it explicitly. 1421 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1422 * @pte_hole: if set, called for each hole at all levels 1423 * @hugetlb_entry: if set, called for each hugetlb entry 1424 * @test_walk: caller specific callback function to determine whether 1425 * we walk over the current vma or not. Returning 0 1426 * value means "do page table walk over the current vma," 1427 * and a negative one means "abort current page table walk 1428 * right now." 1 means "skip the current vma." 1429 * @mm: mm_struct representing the target process of page table walk 1430 * @vma: vma currently walked (NULL if walking outside vmas) 1431 * @private: private data for callbacks' usage 1432 * 1433 * (see the comment on walk_page_range() for more details) 1434 */ 1435 struct mm_walk { 1436 int (*pud_entry)(pud_t *pud, unsigned long addr, 1437 unsigned long next, struct mm_walk *walk); 1438 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1439 unsigned long next, struct mm_walk *walk); 1440 int (*pte_entry)(pte_t *pte, unsigned long addr, 1441 unsigned long next, struct mm_walk *walk); 1442 int (*pte_hole)(unsigned long addr, unsigned long next, 1443 struct mm_walk *walk); 1444 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1445 unsigned long addr, unsigned long next, 1446 struct mm_walk *walk); 1447 int (*test_walk)(unsigned long addr, unsigned long next, 1448 struct mm_walk *walk); 1449 struct mm_struct *mm; 1450 struct vm_area_struct *vma; 1451 void *private; 1452 }; 1453 1454 struct mmu_notifier_range; 1455 1456 int walk_page_range(unsigned long addr, unsigned long end, 1457 struct mm_walk *walk); 1458 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1459 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1460 unsigned long end, unsigned long floor, unsigned long ceiling); 1461 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1462 struct vm_area_struct *vma); 1463 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1464 struct mmu_notifier_range *range, 1465 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1466 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1467 unsigned long *pfn); 1468 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1469 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1470 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1471 void *buf, int len, int write); 1472 1473 extern void truncate_pagecache(struct inode *inode, loff_t new); 1474 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1475 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1476 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1477 int truncate_inode_page(struct address_space *mapping, struct page *page); 1478 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1479 int invalidate_inode_page(struct page *page); 1480 1481 #ifdef CONFIG_MMU 1482 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1483 unsigned long address, unsigned int flags); 1484 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1485 unsigned long address, unsigned int fault_flags, 1486 bool *unlocked); 1487 void unmap_mapping_pages(struct address_space *mapping, 1488 pgoff_t start, pgoff_t nr, bool even_cows); 1489 void unmap_mapping_range(struct address_space *mapping, 1490 loff_t const holebegin, loff_t const holelen, int even_cows); 1491 #else 1492 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1493 unsigned long address, unsigned int flags) 1494 { 1495 /* should never happen if there's no MMU */ 1496 BUG(); 1497 return VM_FAULT_SIGBUS; 1498 } 1499 static inline int fixup_user_fault(struct task_struct *tsk, 1500 struct mm_struct *mm, unsigned long address, 1501 unsigned int fault_flags, bool *unlocked) 1502 { 1503 /* should never happen if there's no MMU */ 1504 BUG(); 1505 return -EFAULT; 1506 } 1507 static inline void unmap_mapping_pages(struct address_space *mapping, 1508 pgoff_t start, pgoff_t nr, bool even_cows) { } 1509 static inline void unmap_mapping_range(struct address_space *mapping, 1510 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1511 #endif 1512 1513 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1514 loff_t const holebegin, loff_t const holelen) 1515 { 1516 unmap_mapping_range(mapping, holebegin, holelen, 0); 1517 } 1518 1519 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1520 void *buf, int len, unsigned int gup_flags); 1521 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1522 void *buf, int len, unsigned int gup_flags); 1523 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1524 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1525 1526 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1527 unsigned long start, unsigned long nr_pages, 1528 unsigned int gup_flags, struct page **pages, 1529 struct vm_area_struct **vmas, int *locked); 1530 long get_user_pages(unsigned long start, unsigned long nr_pages, 1531 unsigned int gup_flags, struct page **pages, 1532 struct vm_area_struct **vmas); 1533 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1534 unsigned int gup_flags, struct page **pages, int *locked); 1535 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1536 struct page **pages, unsigned int gup_flags); 1537 #ifdef CONFIG_FS_DAX 1538 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1539 unsigned int gup_flags, struct page **pages, 1540 struct vm_area_struct **vmas); 1541 #else 1542 static inline long get_user_pages_longterm(unsigned long start, 1543 unsigned long nr_pages, unsigned int gup_flags, 1544 struct page **pages, struct vm_area_struct **vmas) 1545 { 1546 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1547 } 1548 #endif /* CONFIG_FS_DAX */ 1549 1550 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1551 struct page **pages); 1552 1553 /* Container for pinned pfns / pages */ 1554 struct frame_vector { 1555 unsigned int nr_allocated; /* Number of frames we have space for */ 1556 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1557 bool got_ref; /* Did we pin pages by getting page ref? */ 1558 bool is_pfns; /* Does array contain pages or pfns? */ 1559 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1560 * pfns_vector_pages() or pfns_vector_pfns() 1561 * for access */ 1562 }; 1563 1564 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1565 void frame_vector_destroy(struct frame_vector *vec); 1566 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1567 unsigned int gup_flags, struct frame_vector *vec); 1568 void put_vaddr_frames(struct frame_vector *vec); 1569 int frame_vector_to_pages(struct frame_vector *vec); 1570 void frame_vector_to_pfns(struct frame_vector *vec); 1571 1572 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1573 { 1574 return vec->nr_frames; 1575 } 1576 1577 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1578 { 1579 if (vec->is_pfns) { 1580 int err = frame_vector_to_pages(vec); 1581 1582 if (err) 1583 return ERR_PTR(err); 1584 } 1585 return (struct page **)(vec->ptrs); 1586 } 1587 1588 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1589 { 1590 if (!vec->is_pfns) 1591 frame_vector_to_pfns(vec); 1592 return (unsigned long *)(vec->ptrs); 1593 } 1594 1595 struct kvec; 1596 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1597 struct page **pages); 1598 int get_kernel_page(unsigned long start, int write, struct page **pages); 1599 struct page *get_dump_page(unsigned long addr); 1600 1601 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1602 extern void do_invalidatepage(struct page *page, unsigned int offset, 1603 unsigned int length); 1604 1605 void __set_page_dirty(struct page *, struct address_space *, int warn); 1606 int __set_page_dirty_nobuffers(struct page *page); 1607 int __set_page_dirty_no_writeback(struct page *page); 1608 int redirty_page_for_writepage(struct writeback_control *wbc, 1609 struct page *page); 1610 void account_page_dirtied(struct page *page, struct address_space *mapping); 1611 void account_page_cleaned(struct page *page, struct address_space *mapping, 1612 struct bdi_writeback *wb); 1613 int set_page_dirty(struct page *page); 1614 int set_page_dirty_lock(struct page *page); 1615 void __cancel_dirty_page(struct page *page); 1616 static inline void cancel_dirty_page(struct page *page) 1617 { 1618 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1619 if (PageDirty(page)) 1620 __cancel_dirty_page(page); 1621 } 1622 int clear_page_dirty_for_io(struct page *page); 1623 1624 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1625 1626 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1627 { 1628 return !vma->vm_ops; 1629 } 1630 1631 #ifdef CONFIG_SHMEM 1632 /* 1633 * The vma_is_shmem is not inline because it is used only by slow 1634 * paths in userfault. 1635 */ 1636 bool vma_is_shmem(struct vm_area_struct *vma); 1637 #else 1638 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1639 #endif 1640 1641 int vma_is_stack_for_current(struct vm_area_struct *vma); 1642 1643 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1644 unsigned long old_addr, struct vm_area_struct *new_vma, 1645 unsigned long new_addr, unsigned long len, 1646 bool need_rmap_locks); 1647 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1648 unsigned long end, pgprot_t newprot, 1649 int dirty_accountable, int prot_numa); 1650 extern int mprotect_fixup(struct vm_area_struct *vma, 1651 struct vm_area_struct **pprev, unsigned long start, 1652 unsigned long end, unsigned long newflags); 1653 1654 /* 1655 * doesn't attempt to fault and will return short. 1656 */ 1657 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1658 struct page **pages); 1659 /* 1660 * per-process(per-mm_struct) statistics. 1661 */ 1662 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1663 { 1664 long val = atomic_long_read(&mm->rss_stat.count[member]); 1665 1666 #ifdef SPLIT_RSS_COUNTING 1667 /* 1668 * counter is updated in asynchronous manner and may go to minus. 1669 * But it's never be expected number for users. 1670 */ 1671 if (val < 0) 1672 val = 0; 1673 #endif 1674 return (unsigned long)val; 1675 } 1676 1677 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1678 { 1679 atomic_long_add(value, &mm->rss_stat.count[member]); 1680 } 1681 1682 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1683 { 1684 atomic_long_inc(&mm->rss_stat.count[member]); 1685 } 1686 1687 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1688 { 1689 atomic_long_dec(&mm->rss_stat.count[member]); 1690 } 1691 1692 /* Optimized variant when page is already known not to be PageAnon */ 1693 static inline int mm_counter_file(struct page *page) 1694 { 1695 if (PageSwapBacked(page)) 1696 return MM_SHMEMPAGES; 1697 return MM_FILEPAGES; 1698 } 1699 1700 static inline int mm_counter(struct page *page) 1701 { 1702 if (PageAnon(page)) 1703 return MM_ANONPAGES; 1704 return mm_counter_file(page); 1705 } 1706 1707 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1708 { 1709 return get_mm_counter(mm, MM_FILEPAGES) + 1710 get_mm_counter(mm, MM_ANONPAGES) + 1711 get_mm_counter(mm, MM_SHMEMPAGES); 1712 } 1713 1714 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1715 { 1716 return max(mm->hiwater_rss, get_mm_rss(mm)); 1717 } 1718 1719 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1720 { 1721 return max(mm->hiwater_vm, mm->total_vm); 1722 } 1723 1724 static inline void update_hiwater_rss(struct mm_struct *mm) 1725 { 1726 unsigned long _rss = get_mm_rss(mm); 1727 1728 if ((mm)->hiwater_rss < _rss) 1729 (mm)->hiwater_rss = _rss; 1730 } 1731 1732 static inline void update_hiwater_vm(struct mm_struct *mm) 1733 { 1734 if (mm->hiwater_vm < mm->total_vm) 1735 mm->hiwater_vm = mm->total_vm; 1736 } 1737 1738 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1739 { 1740 mm->hiwater_rss = get_mm_rss(mm); 1741 } 1742 1743 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1744 struct mm_struct *mm) 1745 { 1746 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1747 1748 if (*maxrss < hiwater_rss) 1749 *maxrss = hiwater_rss; 1750 } 1751 1752 #if defined(SPLIT_RSS_COUNTING) 1753 void sync_mm_rss(struct mm_struct *mm); 1754 #else 1755 static inline void sync_mm_rss(struct mm_struct *mm) 1756 { 1757 } 1758 #endif 1759 1760 #ifndef __HAVE_ARCH_PTE_DEVMAP 1761 static inline int pte_devmap(pte_t pte) 1762 { 1763 return 0; 1764 } 1765 #endif 1766 1767 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1768 1769 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1770 spinlock_t **ptl); 1771 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1772 spinlock_t **ptl) 1773 { 1774 pte_t *ptep; 1775 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1776 return ptep; 1777 } 1778 1779 #ifdef __PAGETABLE_P4D_FOLDED 1780 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1781 unsigned long address) 1782 { 1783 return 0; 1784 } 1785 #else 1786 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1787 #endif 1788 1789 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1790 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1791 unsigned long address) 1792 { 1793 return 0; 1794 } 1795 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1796 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1797 1798 #else 1799 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1800 1801 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1802 { 1803 if (mm_pud_folded(mm)) 1804 return; 1805 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1806 } 1807 1808 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1809 { 1810 if (mm_pud_folded(mm)) 1811 return; 1812 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1813 } 1814 #endif 1815 1816 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1817 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1818 unsigned long address) 1819 { 1820 return 0; 1821 } 1822 1823 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1824 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1825 1826 #else 1827 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1828 1829 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1830 { 1831 if (mm_pmd_folded(mm)) 1832 return; 1833 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1834 } 1835 1836 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1837 { 1838 if (mm_pmd_folded(mm)) 1839 return; 1840 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1841 } 1842 #endif 1843 1844 #ifdef CONFIG_MMU 1845 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1846 { 1847 atomic_long_set(&mm->pgtables_bytes, 0); 1848 } 1849 1850 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1851 { 1852 return atomic_long_read(&mm->pgtables_bytes); 1853 } 1854 1855 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1856 { 1857 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1858 } 1859 1860 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1861 { 1862 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1863 } 1864 #else 1865 1866 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1867 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1868 { 1869 return 0; 1870 } 1871 1872 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1873 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1874 #endif 1875 1876 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1877 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1878 1879 /* 1880 * The following ifdef needed to get the 4level-fixup.h header to work. 1881 * Remove it when 4level-fixup.h has been removed. 1882 */ 1883 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1884 1885 #ifndef __ARCH_HAS_5LEVEL_HACK 1886 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1887 unsigned long address) 1888 { 1889 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1890 NULL : p4d_offset(pgd, address); 1891 } 1892 1893 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1894 unsigned long address) 1895 { 1896 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1897 NULL : pud_offset(p4d, address); 1898 } 1899 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1900 1901 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1902 { 1903 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1904 NULL: pmd_offset(pud, address); 1905 } 1906 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1907 1908 #if USE_SPLIT_PTE_PTLOCKS 1909 #if ALLOC_SPLIT_PTLOCKS 1910 void __init ptlock_cache_init(void); 1911 extern bool ptlock_alloc(struct page *page); 1912 extern void ptlock_free(struct page *page); 1913 1914 static inline spinlock_t *ptlock_ptr(struct page *page) 1915 { 1916 return page->ptl; 1917 } 1918 #else /* ALLOC_SPLIT_PTLOCKS */ 1919 static inline void ptlock_cache_init(void) 1920 { 1921 } 1922 1923 static inline bool ptlock_alloc(struct page *page) 1924 { 1925 return true; 1926 } 1927 1928 static inline void ptlock_free(struct page *page) 1929 { 1930 } 1931 1932 static inline spinlock_t *ptlock_ptr(struct page *page) 1933 { 1934 return &page->ptl; 1935 } 1936 #endif /* ALLOC_SPLIT_PTLOCKS */ 1937 1938 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1939 { 1940 return ptlock_ptr(pmd_page(*pmd)); 1941 } 1942 1943 static inline bool ptlock_init(struct page *page) 1944 { 1945 /* 1946 * prep_new_page() initialize page->private (and therefore page->ptl) 1947 * with 0. Make sure nobody took it in use in between. 1948 * 1949 * It can happen if arch try to use slab for page table allocation: 1950 * slab code uses page->slab_cache, which share storage with page->ptl. 1951 */ 1952 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1953 if (!ptlock_alloc(page)) 1954 return false; 1955 spin_lock_init(ptlock_ptr(page)); 1956 return true; 1957 } 1958 1959 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1960 /* 1961 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1962 */ 1963 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1964 { 1965 return &mm->page_table_lock; 1966 } 1967 static inline void ptlock_cache_init(void) {} 1968 static inline bool ptlock_init(struct page *page) { return true; } 1969 static inline void ptlock_free(struct page *page) {} 1970 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1971 1972 static inline void pgtable_init(void) 1973 { 1974 ptlock_cache_init(); 1975 pgtable_cache_init(); 1976 } 1977 1978 static inline bool pgtable_page_ctor(struct page *page) 1979 { 1980 if (!ptlock_init(page)) 1981 return false; 1982 __SetPageTable(page); 1983 inc_zone_page_state(page, NR_PAGETABLE); 1984 return true; 1985 } 1986 1987 static inline void pgtable_page_dtor(struct page *page) 1988 { 1989 ptlock_free(page); 1990 __ClearPageTable(page); 1991 dec_zone_page_state(page, NR_PAGETABLE); 1992 } 1993 1994 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1995 ({ \ 1996 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1997 pte_t *__pte = pte_offset_map(pmd, address); \ 1998 *(ptlp) = __ptl; \ 1999 spin_lock(__ptl); \ 2000 __pte; \ 2001 }) 2002 2003 #define pte_unmap_unlock(pte, ptl) do { \ 2004 spin_unlock(ptl); \ 2005 pte_unmap(pte); \ 2006 } while (0) 2007 2008 #define pte_alloc(mm, pmd, address) \ 2009 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 2010 2011 #define pte_alloc_map(mm, pmd, address) \ 2012 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 2013 2014 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2015 (pte_alloc(mm, pmd, address) ? \ 2016 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2017 2018 #define pte_alloc_kernel(pmd, address) \ 2019 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 2020 NULL: pte_offset_kernel(pmd, address)) 2021 2022 #if USE_SPLIT_PMD_PTLOCKS 2023 2024 static struct page *pmd_to_page(pmd_t *pmd) 2025 { 2026 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2027 return virt_to_page((void *)((unsigned long) pmd & mask)); 2028 } 2029 2030 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2031 { 2032 return ptlock_ptr(pmd_to_page(pmd)); 2033 } 2034 2035 static inline bool pgtable_pmd_page_ctor(struct page *page) 2036 { 2037 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2038 page->pmd_huge_pte = NULL; 2039 #endif 2040 return ptlock_init(page); 2041 } 2042 2043 static inline void pgtable_pmd_page_dtor(struct page *page) 2044 { 2045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2046 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2047 #endif 2048 ptlock_free(page); 2049 } 2050 2051 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2052 2053 #else 2054 2055 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2056 { 2057 return &mm->page_table_lock; 2058 } 2059 2060 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2061 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2062 2063 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2064 2065 #endif 2066 2067 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2068 { 2069 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2070 spin_lock(ptl); 2071 return ptl; 2072 } 2073 2074 /* 2075 * No scalability reason to split PUD locks yet, but follow the same pattern 2076 * as the PMD locks to make it easier if we decide to. The VM should not be 2077 * considered ready to switch to split PUD locks yet; there may be places 2078 * which need to be converted from page_table_lock. 2079 */ 2080 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2081 { 2082 return &mm->page_table_lock; 2083 } 2084 2085 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2086 { 2087 spinlock_t *ptl = pud_lockptr(mm, pud); 2088 2089 spin_lock(ptl); 2090 return ptl; 2091 } 2092 2093 extern void __init pagecache_init(void); 2094 extern void free_area_init(unsigned long * zones_size); 2095 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2096 unsigned long zone_start_pfn, unsigned long *zholes_size); 2097 extern void free_initmem(void); 2098 2099 /* 2100 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2101 * into the buddy system. The freed pages will be poisoned with pattern 2102 * "poison" if it's within range [0, UCHAR_MAX]. 2103 * Return pages freed into the buddy system. 2104 */ 2105 extern unsigned long free_reserved_area(void *start, void *end, 2106 int poison, const char *s); 2107 2108 #ifdef CONFIG_HIGHMEM 2109 /* 2110 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2111 * and totalram_pages. 2112 */ 2113 extern void free_highmem_page(struct page *page); 2114 #endif 2115 2116 extern void adjust_managed_page_count(struct page *page, long count); 2117 extern void mem_init_print_info(const char *str); 2118 2119 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2120 2121 /* Free the reserved page into the buddy system, so it gets managed. */ 2122 static inline void __free_reserved_page(struct page *page) 2123 { 2124 ClearPageReserved(page); 2125 init_page_count(page); 2126 __free_page(page); 2127 } 2128 2129 static inline void free_reserved_page(struct page *page) 2130 { 2131 __free_reserved_page(page); 2132 adjust_managed_page_count(page, 1); 2133 } 2134 2135 static inline void mark_page_reserved(struct page *page) 2136 { 2137 SetPageReserved(page); 2138 adjust_managed_page_count(page, -1); 2139 } 2140 2141 /* 2142 * Default method to free all the __init memory into the buddy system. 2143 * The freed pages will be poisoned with pattern "poison" if it's within 2144 * range [0, UCHAR_MAX]. 2145 * Return pages freed into the buddy system. 2146 */ 2147 static inline unsigned long free_initmem_default(int poison) 2148 { 2149 extern char __init_begin[], __init_end[]; 2150 2151 return free_reserved_area(&__init_begin, &__init_end, 2152 poison, "unused kernel"); 2153 } 2154 2155 static inline unsigned long get_num_physpages(void) 2156 { 2157 int nid; 2158 unsigned long phys_pages = 0; 2159 2160 for_each_online_node(nid) 2161 phys_pages += node_present_pages(nid); 2162 2163 return phys_pages; 2164 } 2165 2166 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2167 /* 2168 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2169 * zones, allocate the backing mem_map and account for memory holes in a more 2170 * architecture independent manner. This is a substitute for creating the 2171 * zone_sizes[] and zholes_size[] arrays and passing them to 2172 * free_area_init_node() 2173 * 2174 * An architecture is expected to register range of page frames backed by 2175 * physical memory with memblock_add[_node]() before calling 2176 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2177 * usage, an architecture is expected to do something like 2178 * 2179 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2180 * max_highmem_pfn}; 2181 * for_each_valid_physical_page_range() 2182 * memblock_add_node(base, size, nid) 2183 * free_area_init_nodes(max_zone_pfns); 2184 * 2185 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2186 * registered physical page range. Similarly 2187 * sparse_memory_present_with_active_regions() calls memory_present() for 2188 * each range when SPARSEMEM is enabled. 2189 * 2190 * See mm/page_alloc.c for more information on each function exposed by 2191 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2192 */ 2193 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2194 unsigned long node_map_pfn_alignment(void); 2195 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2196 unsigned long end_pfn); 2197 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2198 unsigned long end_pfn); 2199 extern void get_pfn_range_for_nid(unsigned int nid, 2200 unsigned long *start_pfn, unsigned long *end_pfn); 2201 extern unsigned long find_min_pfn_with_active_regions(void); 2202 extern void free_bootmem_with_active_regions(int nid, 2203 unsigned long max_low_pfn); 2204 extern void sparse_memory_present_with_active_regions(int nid); 2205 2206 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2207 2208 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2209 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2210 static inline int __early_pfn_to_nid(unsigned long pfn, 2211 struct mminit_pfnnid_cache *state) 2212 { 2213 return 0; 2214 } 2215 #else 2216 /* please see mm/page_alloc.c */ 2217 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2218 /* there is a per-arch backend function. */ 2219 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2220 struct mminit_pfnnid_cache *state); 2221 #endif 2222 2223 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2224 void zero_resv_unavail(void); 2225 #else 2226 static inline void zero_resv_unavail(void) {} 2227 #endif 2228 2229 extern void set_dma_reserve(unsigned long new_dma_reserve); 2230 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2231 enum memmap_context, struct vmem_altmap *); 2232 extern void setup_per_zone_wmarks(void); 2233 extern int __meminit init_per_zone_wmark_min(void); 2234 extern void mem_init(void); 2235 extern void __init mmap_init(void); 2236 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2237 extern long si_mem_available(void); 2238 extern void si_meminfo(struct sysinfo * val); 2239 extern void si_meminfo_node(struct sysinfo *val, int nid); 2240 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2241 extern unsigned long arch_reserved_kernel_pages(void); 2242 #endif 2243 2244 extern __printf(3, 4) 2245 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2246 2247 extern void setup_per_cpu_pageset(void); 2248 2249 extern void zone_pcp_update(struct zone *zone); 2250 extern void zone_pcp_reset(struct zone *zone); 2251 2252 /* page_alloc.c */ 2253 extern int min_free_kbytes; 2254 extern int watermark_boost_factor; 2255 extern int watermark_scale_factor; 2256 2257 /* nommu.c */ 2258 extern atomic_long_t mmap_pages_allocated; 2259 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2260 2261 /* interval_tree.c */ 2262 void vma_interval_tree_insert(struct vm_area_struct *node, 2263 struct rb_root_cached *root); 2264 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2265 struct vm_area_struct *prev, 2266 struct rb_root_cached *root); 2267 void vma_interval_tree_remove(struct vm_area_struct *node, 2268 struct rb_root_cached *root); 2269 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2270 unsigned long start, unsigned long last); 2271 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2272 unsigned long start, unsigned long last); 2273 2274 #define vma_interval_tree_foreach(vma, root, start, last) \ 2275 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2276 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2277 2278 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2279 struct rb_root_cached *root); 2280 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2281 struct rb_root_cached *root); 2282 struct anon_vma_chain * 2283 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2284 unsigned long start, unsigned long last); 2285 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2286 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2287 #ifdef CONFIG_DEBUG_VM_RB 2288 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2289 #endif 2290 2291 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2292 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2293 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2294 2295 /* mmap.c */ 2296 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2297 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2298 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2299 struct vm_area_struct *expand); 2300 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2301 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2302 { 2303 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2304 } 2305 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2306 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2307 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2308 struct mempolicy *, struct vm_userfaultfd_ctx); 2309 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2310 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2311 unsigned long addr, int new_below); 2312 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2313 unsigned long addr, int new_below); 2314 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2315 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2316 struct rb_node **, struct rb_node *); 2317 extern void unlink_file_vma(struct vm_area_struct *); 2318 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2319 unsigned long addr, unsigned long len, pgoff_t pgoff, 2320 bool *need_rmap_locks); 2321 extern void exit_mmap(struct mm_struct *); 2322 2323 static inline int check_data_rlimit(unsigned long rlim, 2324 unsigned long new, 2325 unsigned long start, 2326 unsigned long end_data, 2327 unsigned long start_data) 2328 { 2329 if (rlim < RLIM_INFINITY) { 2330 if (((new - start) + (end_data - start_data)) > rlim) 2331 return -ENOSPC; 2332 } 2333 2334 return 0; 2335 } 2336 2337 extern int mm_take_all_locks(struct mm_struct *mm); 2338 extern void mm_drop_all_locks(struct mm_struct *mm); 2339 2340 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2341 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2342 extern struct file *get_task_exe_file(struct task_struct *task); 2343 2344 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2345 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2346 2347 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2348 const struct vm_special_mapping *sm); 2349 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2350 unsigned long addr, unsigned long len, 2351 unsigned long flags, 2352 const struct vm_special_mapping *spec); 2353 /* This is an obsolete alternative to _install_special_mapping. */ 2354 extern int install_special_mapping(struct mm_struct *mm, 2355 unsigned long addr, unsigned long len, 2356 unsigned long flags, struct page **pages); 2357 2358 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2359 2360 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2361 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2362 struct list_head *uf); 2363 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2364 unsigned long len, unsigned long prot, unsigned long flags, 2365 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2366 struct list_head *uf); 2367 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2368 struct list_head *uf, bool downgrade); 2369 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2370 struct list_head *uf); 2371 2372 static inline unsigned long 2373 do_mmap_pgoff(struct file *file, unsigned long addr, 2374 unsigned long len, unsigned long prot, unsigned long flags, 2375 unsigned long pgoff, unsigned long *populate, 2376 struct list_head *uf) 2377 { 2378 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2379 } 2380 2381 #ifdef CONFIG_MMU 2382 extern int __mm_populate(unsigned long addr, unsigned long len, 2383 int ignore_errors); 2384 static inline void mm_populate(unsigned long addr, unsigned long len) 2385 { 2386 /* Ignore errors */ 2387 (void) __mm_populate(addr, len, 1); 2388 } 2389 #else 2390 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2391 #endif 2392 2393 /* These take the mm semaphore themselves */ 2394 extern int __must_check vm_brk(unsigned long, unsigned long); 2395 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2396 extern int vm_munmap(unsigned long, size_t); 2397 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2398 unsigned long, unsigned long, 2399 unsigned long, unsigned long); 2400 2401 struct vm_unmapped_area_info { 2402 #define VM_UNMAPPED_AREA_TOPDOWN 1 2403 unsigned long flags; 2404 unsigned long length; 2405 unsigned long low_limit; 2406 unsigned long high_limit; 2407 unsigned long align_mask; 2408 unsigned long align_offset; 2409 }; 2410 2411 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2412 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2413 2414 /* 2415 * Search for an unmapped address range. 2416 * 2417 * We are looking for a range that: 2418 * - does not intersect with any VMA; 2419 * - is contained within the [low_limit, high_limit) interval; 2420 * - is at least the desired size. 2421 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2422 */ 2423 static inline unsigned long 2424 vm_unmapped_area(struct vm_unmapped_area_info *info) 2425 { 2426 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2427 return unmapped_area_topdown(info); 2428 else 2429 return unmapped_area(info); 2430 } 2431 2432 /* truncate.c */ 2433 extern void truncate_inode_pages(struct address_space *, loff_t); 2434 extern void truncate_inode_pages_range(struct address_space *, 2435 loff_t lstart, loff_t lend); 2436 extern void truncate_inode_pages_final(struct address_space *); 2437 2438 /* generic vm_area_ops exported for stackable file systems */ 2439 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2440 extern void filemap_map_pages(struct vm_fault *vmf, 2441 pgoff_t start_pgoff, pgoff_t end_pgoff); 2442 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2443 2444 /* mm/page-writeback.c */ 2445 int __must_check write_one_page(struct page *page); 2446 void task_dirty_inc(struct task_struct *tsk); 2447 2448 /* readahead.c */ 2449 #define VM_MAX_READAHEAD 128 /* kbytes */ 2450 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2451 2452 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2453 pgoff_t offset, unsigned long nr_to_read); 2454 2455 void page_cache_sync_readahead(struct address_space *mapping, 2456 struct file_ra_state *ra, 2457 struct file *filp, 2458 pgoff_t offset, 2459 unsigned long size); 2460 2461 void page_cache_async_readahead(struct address_space *mapping, 2462 struct file_ra_state *ra, 2463 struct file *filp, 2464 struct page *pg, 2465 pgoff_t offset, 2466 unsigned long size); 2467 2468 extern unsigned long stack_guard_gap; 2469 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2470 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2471 2472 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2473 extern int expand_downwards(struct vm_area_struct *vma, 2474 unsigned long address); 2475 #if VM_GROWSUP 2476 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2477 #else 2478 #define expand_upwards(vma, address) (0) 2479 #endif 2480 2481 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2482 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2483 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2484 struct vm_area_struct **pprev); 2485 2486 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2487 NULL if none. Assume start_addr < end_addr. */ 2488 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2489 { 2490 struct vm_area_struct * vma = find_vma(mm,start_addr); 2491 2492 if (vma && end_addr <= vma->vm_start) 2493 vma = NULL; 2494 return vma; 2495 } 2496 2497 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2498 { 2499 unsigned long vm_start = vma->vm_start; 2500 2501 if (vma->vm_flags & VM_GROWSDOWN) { 2502 vm_start -= stack_guard_gap; 2503 if (vm_start > vma->vm_start) 2504 vm_start = 0; 2505 } 2506 return vm_start; 2507 } 2508 2509 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2510 { 2511 unsigned long vm_end = vma->vm_end; 2512 2513 if (vma->vm_flags & VM_GROWSUP) { 2514 vm_end += stack_guard_gap; 2515 if (vm_end < vma->vm_end) 2516 vm_end = -PAGE_SIZE; 2517 } 2518 return vm_end; 2519 } 2520 2521 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2522 { 2523 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2524 } 2525 2526 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2527 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2528 unsigned long vm_start, unsigned long vm_end) 2529 { 2530 struct vm_area_struct *vma = find_vma(mm, vm_start); 2531 2532 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2533 vma = NULL; 2534 2535 return vma; 2536 } 2537 2538 static inline bool range_in_vma(struct vm_area_struct *vma, 2539 unsigned long start, unsigned long end) 2540 { 2541 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2542 } 2543 2544 #ifdef CONFIG_MMU 2545 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2546 void vma_set_page_prot(struct vm_area_struct *vma); 2547 #else 2548 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2549 { 2550 return __pgprot(0); 2551 } 2552 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2553 { 2554 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2555 } 2556 #endif 2557 2558 #ifdef CONFIG_NUMA_BALANCING 2559 unsigned long change_prot_numa(struct vm_area_struct *vma, 2560 unsigned long start, unsigned long end); 2561 #endif 2562 2563 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2564 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2565 unsigned long pfn, unsigned long size, pgprot_t); 2566 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2567 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2568 unsigned long pfn); 2569 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2570 unsigned long pfn, pgprot_t pgprot); 2571 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2572 pfn_t pfn); 2573 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2574 unsigned long addr, pfn_t pfn); 2575 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2576 2577 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2578 unsigned long addr, struct page *page) 2579 { 2580 int err = vm_insert_page(vma, addr, page); 2581 2582 if (err == -ENOMEM) 2583 return VM_FAULT_OOM; 2584 if (err < 0 && err != -EBUSY) 2585 return VM_FAULT_SIGBUS; 2586 2587 return VM_FAULT_NOPAGE; 2588 } 2589 2590 static inline vm_fault_t vmf_error(int err) 2591 { 2592 if (err == -ENOMEM) 2593 return VM_FAULT_OOM; 2594 return VM_FAULT_SIGBUS; 2595 } 2596 2597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2598 unsigned int foll_flags); 2599 2600 #define FOLL_WRITE 0x01 /* check pte is writable */ 2601 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2602 #define FOLL_GET 0x04 /* do get_page on page */ 2603 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2604 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2605 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2606 * and return without waiting upon it */ 2607 #define FOLL_POPULATE 0x40 /* fault in page */ 2608 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2609 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2610 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2611 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2612 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2613 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2614 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2615 #define FOLL_COW 0x4000 /* internal GUP flag */ 2616 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2617 2618 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2619 { 2620 if (vm_fault & VM_FAULT_OOM) 2621 return -ENOMEM; 2622 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2623 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2624 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2625 return -EFAULT; 2626 return 0; 2627 } 2628 2629 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2630 void *data); 2631 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2632 unsigned long size, pte_fn_t fn, void *data); 2633 2634 2635 #ifdef CONFIG_PAGE_POISONING 2636 extern bool page_poisoning_enabled(void); 2637 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2638 #else 2639 static inline bool page_poisoning_enabled(void) { return false; } 2640 static inline void kernel_poison_pages(struct page *page, int numpages, 2641 int enable) { } 2642 #endif 2643 2644 #ifdef CONFIG_DEBUG_PAGEALLOC 2645 extern bool _debug_pagealloc_enabled; 2646 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2647 2648 static inline bool debug_pagealloc_enabled(void) 2649 { 2650 return _debug_pagealloc_enabled; 2651 } 2652 2653 static inline void 2654 kernel_map_pages(struct page *page, int numpages, int enable) 2655 { 2656 if (!debug_pagealloc_enabled()) 2657 return; 2658 2659 __kernel_map_pages(page, numpages, enable); 2660 } 2661 #ifdef CONFIG_HIBERNATION 2662 extern bool kernel_page_present(struct page *page); 2663 #endif /* CONFIG_HIBERNATION */ 2664 #else /* CONFIG_DEBUG_PAGEALLOC */ 2665 static inline void 2666 kernel_map_pages(struct page *page, int numpages, int enable) {} 2667 #ifdef CONFIG_HIBERNATION 2668 static inline bool kernel_page_present(struct page *page) { return true; } 2669 #endif /* CONFIG_HIBERNATION */ 2670 static inline bool debug_pagealloc_enabled(void) 2671 { 2672 return false; 2673 } 2674 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2675 2676 #ifdef __HAVE_ARCH_GATE_AREA 2677 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2678 extern int in_gate_area_no_mm(unsigned long addr); 2679 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2680 #else 2681 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2682 { 2683 return NULL; 2684 } 2685 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2686 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2687 { 2688 return 0; 2689 } 2690 #endif /* __HAVE_ARCH_GATE_AREA */ 2691 2692 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2693 2694 #ifdef CONFIG_SYSCTL 2695 extern int sysctl_drop_caches; 2696 int drop_caches_sysctl_handler(struct ctl_table *, int, 2697 void __user *, size_t *, loff_t *); 2698 #endif 2699 2700 void drop_slab(void); 2701 void drop_slab_node(int nid); 2702 2703 #ifndef CONFIG_MMU 2704 #define randomize_va_space 0 2705 #else 2706 extern int randomize_va_space; 2707 #endif 2708 2709 const char * arch_vma_name(struct vm_area_struct *vma); 2710 void print_vma_addr(char *prefix, unsigned long rip); 2711 2712 void *sparse_buffer_alloc(unsigned long size); 2713 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2714 struct vmem_altmap *altmap); 2715 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2716 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2717 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2718 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2719 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2720 void *vmemmap_alloc_block(unsigned long size, int node); 2721 struct vmem_altmap; 2722 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2723 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2724 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2725 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2726 int node); 2727 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2728 struct vmem_altmap *altmap); 2729 void vmemmap_populate_print_last(void); 2730 #ifdef CONFIG_MEMORY_HOTPLUG 2731 void vmemmap_free(unsigned long start, unsigned long end, 2732 struct vmem_altmap *altmap); 2733 #endif 2734 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2735 unsigned long nr_pages); 2736 2737 enum mf_flags { 2738 MF_COUNT_INCREASED = 1 << 0, 2739 MF_ACTION_REQUIRED = 1 << 1, 2740 MF_MUST_KILL = 1 << 2, 2741 MF_SOFT_OFFLINE = 1 << 3, 2742 }; 2743 extern int memory_failure(unsigned long pfn, int flags); 2744 extern void memory_failure_queue(unsigned long pfn, int flags); 2745 extern int unpoison_memory(unsigned long pfn); 2746 extern int get_hwpoison_page(struct page *page); 2747 #define put_hwpoison_page(page) put_page(page) 2748 extern int sysctl_memory_failure_early_kill; 2749 extern int sysctl_memory_failure_recovery; 2750 extern void shake_page(struct page *p, int access); 2751 extern atomic_long_t num_poisoned_pages __read_mostly; 2752 extern int soft_offline_page(struct page *page, int flags); 2753 2754 2755 /* 2756 * Error handlers for various types of pages. 2757 */ 2758 enum mf_result { 2759 MF_IGNORED, /* Error: cannot be handled */ 2760 MF_FAILED, /* Error: handling failed */ 2761 MF_DELAYED, /* Will be handled later */ 2762 MF_RECOVERED, /* Successfully recovered */ 2763 }; 2764 2765 enum mf_action_page_type { 2766 MF_MSG_KERNEL, 2767 MF_MSG_KERNEL_HIGH_ORDER, 2768 MF_MSG_SLAB, 2769 MF_MSG_DIFFERENT_COMPOUND, 2770 MF_MSG_POISONED_HUGE, 2771 MF_MSG_HUGE, 2772 MF_MSG_FREE_HUGE, 2773 MF_MSG_NON_PMD_HUGE, 2774 MF_MSG_UNMAP_FAILED, 2775 MF_MSG_DIRTY_SWAPCACHE, 2776 MF_MSG_CLEAN_SWAPCACHE, 2777 MF_MSG_DIRTY_MLOCKED_LRU, 2778 MF_MSG_CLEAN_MLOCKED_LRU, 2779 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2780 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2781 MF_MSG_DIRTY_LRU, 2782 MF_MSG_CLEAN_LRU, 2783 MF_MSG_TRUNCATED_LRU, 2784 MF_MSG_BUDDY, 2785 MF_MSG_BUDDY_2ND, 2786 MF_MSG_DAX, 2787 MF_MSG_UNKNOWN, 2788 }; 2789 2790 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2791 extern void clear_huge_page(struct page *page, 2792 unsigned long addr_hint, 2793 unsigned int pages_per_huge_page); 2794 extern void copy_user_huge_page(struct page *dst, struct page *src, 2795 unsigned long addr_hint, 2796 struct vm_area_struct *vma, 2797 unsigned int pages_per_huge_page); 2798 extern long copy_huge_page_from_user(struct page *dst_page, 2799 const void __user *usr_src, 2800 unsigned int pages_per_huge_page, 2801 bool allow_pagefault); 2802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2803 2804 extern struct page_ext_operations debug_guardpage_ops; 2805 2806 #ifdef CONFIG_DEBUG_PAGEALLOC 2807 extern unsigned int _debug_guardpage_minorder; 2808 extern bool _debug_guardpage_enabled; 2809 2810 static inline unsigned int debug_guardpage_minorder(void) 2811 { 2812 return _debug_guardpage_minorder; 2813 } 2814 2815 static inline bool debug_guardpage_enabled(void) 2816 { 2817 return _debug_guardpage_enabled; 2818 } 2819 2820 static inline bool page_is_guard(struct page *page) 2821 { 2822 struct page_ext *page_ext; 2823 2824 if (!debug_guardpage_enabled()) 2825 return false; 2826 2827 page_ext = lookup_page_ext(page); 2828 if (unlikely(!page_ext)) 2829 return false; 2830 2831 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2832 } 2833 #else 2834 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2835 static inline bool debug_guardpage_enabled(void) { return false; } 2836 static inline bool page_is_guard(struct page *page) { return false; } 2837 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2838 2839 #if MAX_NUMNODES > 1 2840 void __init setup_nr_node_ids(void); 2841 #else 2842 static inline void setup_nr_node_ids(void) {} 2843 #endif 2844 2845 #endif /* __KERNEL__ */ 2846 #endif /* _LINUX_MM_H */ 2847