1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/range.h> 16 #include <linux/pfn.h> 17 #include <linux/bit_spinlock.h> 18 19 struct mempolicy; 20 struct anon_vma; 21 struct file_ra_state; 22 struct user_struct; 23 struct writeback_control; 24 25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 26 extern unsigned long max_mapnr; 27 #endif 28 29 extern unsigned long num_physpages; 30 extern unsigned long totalram_pages; 31 extern void * high_memory; 32 extern int page_cluster; 33 34 #ifdef CONFIG_SYSCTL 35 extern int sysctl_legacy_va_layout; 36 #else 37 #define sysctl_legacy_va_layout 0 38 #endif 39 40 #include <asm/page.h> 41 #include <asm/pgtable.h> 42 #include <asm/processor.h> 43 44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 45 46 /* to align the pointer to the (next) page boundary */ 47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 48 49 /* 50 * Linux kernel virtual memory manager primitives. 51 * The idea being to have a "virtual" mm in the same way 52 * we have a virtual fs - giving a cleaner interface to the 53 * mm details, and allowing different kinds of memory mappings 54 * (from shared memory to executable loading to arbitrary 55 * mmap() functions). 56 */ 57 58 extern struct kmem_cache *vm_area_cachep; 59 60 #ifndef CONFIG_MMU 61 extern struct rb_root nommu_region_tree; 62 extern struct rw_semaphore nommu_region_sem; 63 64 extern unsigned int kobjsize(const void *objp); 65 #endif 66 67 /* 68 * vm_flags in vm_area_struct, see mm_types.h. 69 */ 70 #define VM_READ 0x00000001 /* currently active flags */ 71 #define VM_WRITE 0x00000002 72 #define VM_EXEC 0x00000004 73 #define VM_SHARED 0x00000008 74 75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 77 #define VM_MAYWRITE 0x00000020 78 #define VM_MAYEXEC 0x00000040 79 #define VM_MAYSHARE 0x00000080 80 81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 83 #define VM_GROWSUP 0x00000200 84 #else 85 #define VM_GROWSUP 0x00000000 86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 87 #endif 88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91 #define VM_EXECUTABLE 0x00001000 92 #define VM_LOCKED 0x00002000 93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 108 #else 109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 110 #endif 111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 119 120 /* Bits set in the VMA until the stack is in its final location */ 121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 122 123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 125 #endif 126 127 #ifdef CONFIG_STACK_GROWSUP 128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 129 #else 130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 131 #endif 132 133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 138 139 /* 140 * Special vmas that are non-mergable, non-mlock()able. 141 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 142 */ 143 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 144 145 /* 146 * mapping from the currently active vm_flags protection bits (the 147 * low four bits) to a page protection mask.. 148 */ 149 extern pgprot_t protection_map[16]; 150 151 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 152 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 153 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 154 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 155 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 156 157 /* 158 * This interface is used by x86 PAT code to identify a pfn mapping that is 159 * linear over entire vma. This is to optimize PAT code that deals with 160 * marking the physical region with a particular prot. This is not for generic 161 * mm use. Note also that this check will not work if the pfn mapping is 162 * linear for a vma starting at physical address 0. In which case PAT code 163 * falls back to slow path of reserving physical range page by page. 164 */ 165 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 166 { 167 return (vma->vm_flags & VM_PFN_AT_MMAP); 168 } 169 170 static inline int is_pfn_mapping(struct vm_area_struct *vma) 171 { 172 return (vma->vm_flags & VM_PFNMAP); 173 } 174 175 /* 176 * vm_fault is filled by the the pagefault handler and passed to the vma's 177 * ->fault function. The vma's ->fault is responsible for returning a bitmask 178 * of VM_FAULT_xxx flags that give details about how the fault was handled. 179 * 180 * pgoff should be used in favour of virtual_address, if possible. If pgoff 181 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 182 * mapping support. 183 */ 184 struct vm_fault { 185 unsigned int flags; /* FAULT_FLAG_xxx flags */ 186 pgoff_t pgoff; /* Logical page offset based on vma */ 187 void __user *virtual_address; /* Faulting virtual address */ 188 189 struct page *page; /* ->fault handlers should return a 190 * page here, unless VM_FAULT_NOPAGE 191 * is set (which is also implied by 192 * VM_FAULT_ERROR). 193 */ 194 }; 195 196 /* 197 * These are the virtual MM functions - opening of an area, closing and 198 * unmapping it (needed to keep files on disk up-to-date etc), pointer 199 * to the functions called when a no-page or a wp-page exception occurs. 200 */ 201 struct vm_operations_struct { 202 void (*open)(struct vm_area_struct * area); 203 void (*close)(struct vm_area_struct * area); 204 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 205 206 /* notification that a previously read-only page is about to become 207 * writable, if an error is returned it will cause a SIGBUS */ 208 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 209 210 /* called by access_process_vm when get_user_pages() fails, typically 211 * for use by special VMAs that can switch between memory and hardware 212 */ 213 int (*access)(struct vm_area_struct *vma, unsigned long addr, 214 void *buf, int len, int write); 215 #ifdef CONFIG_NUMA 216 /* 217 * set_policy() op must add a reference to any non-NULL @new mempolicy 218 * to hold the policy upon return. Caller should pass NULL @new to 219 * remove a policy and fall back to surrounding context--i.e. do not 220 * install a MPOL_DEFAULT policy, nor the task or system default 221 * mempolicy. 222 */ 223 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 224 225 /* 226 * get_policy() op must add reference [mpol_get()] to any policy at 227 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 228 * in mm/mempolicy.c will do this automatically. 229 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 230 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 231 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 232 * must return NULL--i.e., do not "fallback" to task or system default 233 * policy. 234 */ 235 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 236 unsigned long addr); 237 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 238 const nodemask_t *to, unsigned long flags); 239 #endif 240 }; 241 242 struct mmu_gather; 243 struct inode; 244 245 #define page_private(page) ((page)->private) 246 #define set_page_private(page, v) ((page)->private = (v)) 247 248 /* 249 * FIXME: take this include out, include page-flags.h in 250 * files which need it (119 of them) 251 */ 252 #include <linux/page-flags.h> 253 #include <linux/huge_mm.h> 254 255 /* 256 * Methods to modify the page usage count. 257 * 258 * What counts for a page usage: 259 * - cache mapping (page->mapping) 260 * - private data (page->private) 261 * - page mapped in a task's page tables, each mapping 262 * is counted separately 263 * 264 * Also, many kernel routines increase the page count before a critical 265 * routine so they can be sure the page doesn't go away from under them. 266 */ 267 268 /* 269 * Drop a ref, return true if the refcount fell to zero (the page has no users) 270 */ 271 static inline int put_page_testzero(struct page *page) 272 { 273 VM_BUG_ON(atomic_read(&page->_count) == 0); 274 return atomic_dec_and_test(&page->_count); 275 } 276 277 /* 278 * Try to grab a ref unless the page has a refcount of zero, return false if 279 * that is the case. 280 */ 281 static inline int get_page_unless_zero(struct page *page) 282 { 283 return atomic_inc_not_zero(&page->_count); 284 } 285 286 extern int page_is_ram(unsigned long pfn); 287 288 /* Support for virtually mapped pages */ 289 struct page *vmalloc_to_page(const void *addr); 290 unsigned long vmalloc_to_pfn(const void *addr); 291 292 /* 293 * Determine if an address is within the vmalloc range 294 * 295 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 296 * is no special casing required. 297 */ 298 static inline int is_vmalloc_addr(const void *x) 299 { 300 #ifdef CONFIG_MMU 301 unsigned long addr = (unsigned long)x; 302 303 return addr >= VMALLOC_START && addr < VMALLOC_END; 304 #else 305 return 0; 306 #endif 307 } 308 #ifdef CONFIG_MMU 309 extern int is_vmalloc_or_module_addr(const void *x); 310 #else 311 static inline int is_vmalloc_or_module_addr(const void *x) 312 { 313 return 0; 314 } 315 #endif 316 317 static inline void compound_lock(struct page *page) 318 { 319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 320 bit_spin_lock(PG_compound_lock, &page->flags); 321 #endif 322 } 323 324 static inline void compound_unlock(struct page *page) 325 { 326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 327 bit_spin_unlock(PG_compound_lock, &page->flags); 328 #endif 329 } 330 331 static inline unsigned long compound_lock_irqsave(struct page *page) 332 { 333 unsigned long uninitialized_var(flags); 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 local_irq_save(flags); 336 compound_lock(page); 337 #endif 338 return flags; 339 } 340 341 static inline void compound_unlock_irqrestore(struct page *page, 342 unsigned long flags) 343 { 344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 345 compound_unlock(page); 346 local_irq_restore(flags); 347 #endif 348 } 349 350 static inline struct page *compound_head(struct page *page) 351 { 352 if (unlikely(PageTail(page))) 353 return page->first_page; 354 return page; 355 } 356 357 static inline int page_count(struct page *page) 358 { 359 return atomic_read(&compound_head(page)->_count); 360 } 361 362 static inline void get_page(struct page *page) 363 { 364 /* 365 * Getting a normal page or the head of a compound page 366 * requires to already have an elevated page->_count. Only if 367 * we're getting a tail page, the elevated page->_count is 368 * required only in the head page, so for tail pages the 369 * bugcheck only verifies that the page->_count isn't 370 * negative. 371 */ 372 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); 373 atomic_inc(&page->_count); 374 /* 375 * Getting a tail page will elevate both the head and tail 376 * page->_count(s). 377 */ 378 if (unlikely(PageTail(page))) { 379 /* 380 * This is safe only because 381 * __split_huge_page_refcount can't run under 382 * get_page(). 383 */ 384 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); 385 atomic_inc(&page->first_page->_count); 386 } 387 } 388 389 static inline struct page *virt_to_head_page(const void *x) 390 { 391 struct page *page = virt_to_page(x); 392 return compound_head(page); 393 } 394 395 /* 396 * Setup the page count before being freed into the page allocator for 397 * the first time (boot or memory hotplug) 398 */ 399 static inline void init_page_count(struct page *page) 400 { 401 atomic_set(&page->_count, 1); 402 } 403 404 /* 405 * PageBuddy() indicate that the page is free and in the buddy system 406 * (see mm/page_alloc.c). 407 * 408 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 409 * -2 so that an underflow of the page_mapcount() won't be mistaken 410 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 411 * efficiently by most CPU architectures. 412 */ 413 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 414 415 static inline int PageBuddy(struct page *page) 416 { 417 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 418 } 419 420 static inline void __SetPageBuddy(struct page *page) 421 { 422 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 423 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 424 } 425 426 static inline void __ClearPageBuddy(struct page *page) 427 { 428 VM_BUG_ON(!PageBuddy(page)); 429 atomic_set(&page->_mapcount, -1); 430 } 431 432 void put_page(struct page *page); 433 void put_pages_list(struct list_head *pages); 434 435 void split_page(struct page *page, unsigned int order); 436 int split_free_page(struct page *page); 437 438 /* 439 * Compound pages have a destructor function. Provide a 440 * prototype for that function and accessor functions. 441 * These are _only_ valid on the head of a PG_compound page. 442 */ 443 typedef void compound_page_dtor(struct page *); 444 445 static inline void set_compound_page_dtor(struct page *page, 446 compound_page_dtor *dtor) 447 { 448 page[1].lru.next = (void *)dtor; 449 } 450 451 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 452 { 453 return (compound_page_dtor *)page[1].lru.next; 454 } 455 456 static inline int compound_order(struct page *page) 457 { 458 if (!PageHead(page)) 459 return 0; 460 return (unsigned long)page[1].lru.prev; 461 } 462 463 static inline int compound_trans_order(struct page *page) 464 { 465 int order; 466 unsigned long flags; 467 468 if (!PageHead(page)) 469 return 0; 470 471 flags = compound_lock_irqsave(page); 472 order = compound_order(page); 473 compound_unlock_irqrestore(page, flags); 474 return order; 475 } 476 477 static inline void set_compound_order(struct page *page, unsigned long order) 478 { 479 page[1].lru.prev = (void *)order; 480 } 481 482 #ifdef CONFIG_MMU 483 /* 484 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 485 * servicing faults for write access. In the normal case, do always want 486 * pte_mkwrite. But get_user_pages can cause write faults for mappings 487 * that do not have writing enabled, when used by access_process_vm. 488 */ 489 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 490 { 491 if (likely(vma->vm_flags & VM_WRITE)) 492 pte = pte_mkwrite(pte); 493 return pte; 494 } 495 #endif 496 497 /* 498 * Multiple processes may "see" the same page. E.g. for untouched 499 * mappings of /dev/null, all processes see the same page full of 500 * zeroes, and text pages of executables and shared libraries have 501 * only one copy in memory, at most, normally. 502 * 503 * For the non-reserved pages, page_count(page) denotes a reference count. 504 * page_count() == 0 means the page is free. page->lru is then used for 505 * freelist management in the buddy allocator. 506 * page_count() > 0 means the page has been allocated. 507 * 508 * Pages are allocated by the slab allocator in order to provide memory 509 * to kmalloc and kmem_cache_alloc. In this case, the management of the 510 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 511 * unless a particular usage is carefully commented. (the responsibility of 512 * freeing the kmalloc memory is the caller's, of course). 513 * 514 * A page may be used by anyone else who does a __get_free_page(). 515 * In this case, page_count still tracks the references, and should only 516 * be used through the normal accessor functions. The top bits of page->flags 517 * and page->virtual store page management information, but all other fields 518 * are unused and could be used privately, carefully. The management of this 519 * page is the responsibility of the one who allocated it, and those who have 520 * subsequently been given references to it. 521 * 522 * The other pages (we may call them "pagecache pages") are completely 523 * managed by the Linux memory manager: I/O, buffers, swapping etc. 524 * The following discussion applies only to them. 525 * 526 * A pagecache page contains an opaque `private' member, which belongs to the 527 * page's address_space. Usually, this is the address of a circular list of 528 * the page's disk buffers. PG_private must be set to tell the VM to call 529 * into the filesystem to release these pages. 530 * 531 * A page may belong to an inode's memory mapping. In this case, page->mapping 532 * is the pointer to the inode, and page->index is the file offset of the page, 533 * in units of PAGE_CACHE_SIZE. 534 * 535 * If pagecache pages are not associated with an inode, they are said to be 536 * anonymous pages. These may become associated with the swapcache, and in that 537 * case PG_swapcache is set, and page->private is an offset into the swapcache. 538 * 539 * In either case (swapcache or inode backed), the pagecache itself holds one 540 * reference to the page. Setting PG_private should also increment the 541 * refcount. The each user mapping also has a reference to the page. 542 * 543 * The pagecache pages are stored in a per-mapping radix tree, which is 544 * rooted at mapping->page_tree, and indexed by offset. 545 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 546 * lists, we instead now tag pages as dirty/writeback in the radix tree. 547 * 548 * All pagecache pages may be subject to I/O: 549 * - inode pages may need to be read from disk, 550 * - inode pages which have been modified and are MAP_SHARED may need 551 * to be written back to the inode on disk, 552 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 553 * modified may need to be swapped out to swap space and (later) to be read 554 * back into memory. 555 */ 556 557 /* 558 * The zone field is never updated after free_area_init_core() 559 * sets it, so none of the operations on it need to be atomic. 560 */ 561 562 563 /* 564 * page->flags layout: 565 * 566 * There are three possibilities for how page->flags get 567 * laid out. The first is for the normal case, without 568 * sparsemem. The second is for sparsemem when there is 569 * plenty of space for node and section. The last is when 570 * we have run out of space and have to fall back to an 571 * alternate (slower) way of determining the node. 572 * 573 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 574 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 575 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 576 */ 577 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 578 #define SECTIONS_WIDTH SECTIONS_SHIFT 579 #else 580 #define SECTIONS_WIDTH 0 581 #endif 582 583 #define ZONES_WIDTH ZONES_SHIFT 584 585 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 586 #define NODES_WIDTH NODES_SHIFT 587 #else 588 #ifdef CONFIG_SPARSEMEM_VMEMMAP 589 #error "Vmemmap: No space for nodes field in page flags" 590 #endif 591 #define NODES_WIDTH 0 592 #endif 593 594 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 595 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 596 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 597 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 598 599 /* 600 * We are going to use the flags for the page to node mapping if its in 601 * there. This includes the case where there is no node, so it is implicit. 602 */ 603 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 604 #define NODE_NOT_IN_PAGE_FLAGS 605 #endif 606 607 #ifndef PFN_SECTION_SHIFT 608 #define PFN_SECTION_SHIFT 0 609 #endif 610 611 /* 612 * Define the bit shifts to access each section. For non-existent 613 * sections we define the shift as 0; that plus a 0 mask ensures 614 * the compiler will optimise away reference to them. 615 */ 616 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 617 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 618 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 619 620 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 621 #ifdef NODE_NOT_IN_PAGE_FLAGS 622 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 623 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 624 SECTIONS_PGOFF : ZONES_PGOFF) 625 #else 626 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 627 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 628 NODES_PGOFF : ZONES_PGOFF) 629 #endif 630 631 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 632 633 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 634 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 635 #endif 636 637 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 638 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 639 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 640 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 641 642 static inline enum zone_type page_zonenum(struct page *page) 643 { 644 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 645 } 646 647 /* 648 * The identification function is only used by the buddy allocator for 649 * determining if two pages could be buddies. We are not really 650 * identifying a zone since we could be using a the section number 651 * id if we have not node id available in page flags. 652 * We guarantee only that it will return the same value for two 653 * combinable pages in a zone. 654 */ 655 static inline int page_zone_id(struct page *page) 656 { 657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 658 } 659 660 static inline int zone_to_nid(struct zone *zone) 661 { 662 #ifdef CONFIG_NUMA 663 return zone->node; 664 #else 665 return 0; 666 #endif 667 } 668 669 #ifdef NODE_NOT_IN_PAGE_FLAGS 670 extern int page_to_nid(struct page *page); 671 #else 672 static inline int page_to_nid(struct page *page) 673 { 674 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 675 } 676 #endif 677 678 static inline struct zone *page_zone(struct page *page) 679 { 680 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 681 } 682 683 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 684 static inline unsigned long page_to_section(struct page *page) 685 { 686 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 687 } 688 #endif 689 690 static inline void set_page_zone(struct page *page, enum zone_type zone) 691 { 692 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 693 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 694 } 695 696 static inline void set_page_node(struct page *page, unsigned long node) 697 { 698 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 699 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 700 } 701 702 static inline void set_page_section(struct page *page, unsigned long section) 703 { 704 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 705 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 706 } 707 708 static inline void set_page_links(struct page *page, enum zone_type zone, 709 unsigned long node, unsigned long pfn) 710 { 711 set_page_zone(page, zone); 712 set_page_node(page, node); 713 set_page_section(page, pfn_to_section_nr(pfn)); 714 } 715 716 /* 717 * Some inline functions in vmstat.h depend on page_zone() 718 */ 719 #include <linux/vmstat.h> 720 721 static __always_inline void *lowmem_page_address(struct page *page) 722 { 723 return __va(PFN_PHYS(page_to_pfn(page))); 724 } 725 726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 727 #define HASHED_PAGE_VIRTUAL 728 #endif 729 730 #if defined(WANT_PAGE_VIRTUAL) 731 #define page_address(page) ((page)->virtual) 732 #define set_page_address(page, address) \ 733 do { \ 734 (page)->virtual = (address); \ 735 } while(0) 736 #define page_address_init() do { } while(0) 737 #endif 738 739 #if defined(HASHED_PAGE_VIRTUAL) 740 void *page_address(struct page *page); 741 void set_page_address(struct page *page, void *virtual); 742 void page_address_init(void); 743 #endif 744 745 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 746 #define page_address(page) lowmem_page_address(page) 747 #define set_page_address(page, address) do { } while(0) 748 #define page_address_init() do { } while(0) 749 #endif 750 751 /* 752 * On an anonymous page mapped into a user virtual memory area, 753 * page->mapping points to its anon_vma, not to a struct address_space; 754 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 755 * 756 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 757 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 758 * and then page->mapping points, not to an anon_vma, but to a private 759 * structure which KSM associates with that merged page. See ksm.h. 760 * 761 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 762 * 763 * Please note that, confusingly, "page_mapping" refers to the inode 764 * address_space which maps the page from disk; whereas "page_mapped" 765 * refers to user virtual address space into which the page is mapped. 766 */ 767 #define PAGE_MAPPING_ANON 1 768 #define PAGE_MAPPING_KSM 2 769 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 770 771 extern struct address_space swapper_space; 772 static inline struct address_space *page_mapping(struct page *page) 773 { 774 struct address_space *mapping = page->mapping; 775 776 VM_BUG_ON(PageSlab(page)); 777 if (unlikely(PageSwapCache(page))) 778 mapping = &swapper_space; 779 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 780 mapping = NULL; 781 return mapping; 782 } 783 784 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 785 static inline void *page_rmapping(struct page *page) 786 { 787 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 788 } 789 790 static inline int PageAnon(struct page *page) 791 { 792 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 793 } 794 795 /* 796 * Return the pagecache index of the passed page. Regular pagecache pages 797 * use ->index whereas swapcache pages use ->private 798 */ 799 static inline pgoff_t page_index(struct page *page) 800 { 801 if (unlikely(PageSwapCache(page))) 802 return page_private(page); 803 return page->index; 804 } 805 806 /* 807 * The atomic page->_mapcount, like _count, starts from -1: 808 * so that transitions both from it and to it can be tracked, 809 * using atomic_inc_and_test and atomic_add_negative(-1). 810 */ 811 static inline void reset_page_mapcount(struct page *page) 812 { 813 atomic_set(&(page)->_mapcount, -1); 814 } 815 816 static inline int page_mapcount(struct page *page) 817 { 818 return atomic_read(&(page)->_mapcount) + 1; 819 } 820 821 /* 822 * Return true if this page is mapped into pagetables. 823 */ 824 static inline int page_mapped(struct page *page) 825 { 826 return atomic_read(&(page)->_mapcount) >= 0; 827 } 828 829 /* 830 * Different kinds of faults, as returned by handle_mm_fault(). 831 * Used to decide whether a process gets delivered SIGBUS or 832 * just gets major/minor fault counters bumped up. 833 */ 834 835 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 836 837 #define VM_FAULT_OOM 0x0001 838 #define VM_FAULT_SIGBUS 0x0002 839 #define VM_FAULT_MAJOR 0x0004 840 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 841 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 842 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 843 844 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 845 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 846 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 847 848 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 849 850 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 851 VM_FAULT_HWPOISON_LARGE) 852 853 /* Encode hstate index for a hwpoisoned large page */ 854 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 855 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 856 857 /* 858 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 859 */ 860 extern void pagefault_out_of_memory(void); 861 862 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 863 864 /* 865 * Flags passed to show_mem() and __show_free_areas() to suppress output in 866 * various contexts. 867 */ 868 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 869 870 extern void show_free_areas(void); 871 extern void __show_free_areas(unsigned int flags); 872 873 int shmem_lock(struct file *file, int lock, struct user_struct *user); 874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 875 int shmem_zero_setup(struct vm_area_struct *); 876 877 #ifndef CONFIG_MMU 878 extern unsigned long shmem_get_unmapped_area(struct file *file, 879 unsigned long addr, 880 unsigned long len, 881 unsigned long pgoff, 882 unsigned long flags); 883 #endif 884 885 extern int can_do_mlock(void); 886 extern int user_shm_lock(size_t, struct user_struct *); 887 extern void user_shm_unlock(size_t, struct user_struct *); 888 889 /* 890 * Parameter block passed down to zap_pte_range in exceptional cases. 891 */ 892 struct zap_details { 893 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 894 struct address_space *check_mapping; /* Check page->mapping if set */ 895 pgoff_t first_index; /* Lowest page->index to unmap */ 896 pgoff_t last_index; /* Highest page->index to unmap */ 897 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 898 unsigned long truncate_count; /* Compare vm_truncate_count */ 899 }; 900 901 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 902 pte_t pte); 903 904 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 905 unsigned long size); 906 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 907 unsigned long size, struct zap_details *); 908 unsigned long unmap_vmas(struct mmu_gather **tlb, 909 struct vm_area_struct *start_vma, unsigned long start_addr, 910 unsigned long end_addr, unsigned long *nr_accounted, 911 struct zap_details *); 912 913 /** 914 * mm_walk - callbacks for walk_page_range 915 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 916 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 917 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 918 * this handler is required to be able to handle 919 * pmd_trans_huge() pmds. They may simply choose to 920 * split_huge_page() instead of handling it explicitly. 921 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 922 * @pte_hole: if set, called for each hole at all levels 923 * @hugetlb_entry: if set, called for each hugetlb entry 924 * 925 * (see walk_page_range for more details) 926 */ 927 struct mm_walk { 928 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 929 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 930 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 931 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 932 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 933 int (*hugetlb_entry)(pte_t *, unsigned long, 934 unsigned long, unsigned long, struct mm_walk *); 935 struct mm_struct *mm; 936 void *private; 937 }; 938 939 int walk_page_range(unsigned long addr, unsigned long end, 940 struct mm_walk *walk); 941 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 942 unsigned long end, unsigned long floor, unsigned long ceiling); 943 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 944 struct vm_area_struct *vma); 945 void unmap_mapping_range(struct address_space *mapping, 946 loff_t const holebegin, loff_t const holelen, int even_cows); 947 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 948 unsigned long *pfn); 949 int follow_phys(struct vm_area_struct *vma, unsigned long address, 950 unsigned int flags, unsigned long *prot, resource_size_t *phys); 951 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 952 void *buf, int len, int write); 953 954 static inline void unmap_shared_mapping_range(struct address_space *mapping, 955 loff_t const holebegin, loff_t const holelen) 956 { 957 unmap_mapping_range(mapping, holebegin, holelen, 0); 958 } 959 960 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 961 extern void truncate_setsize(struct inode *inode, loff_t newsize); 962 extern int vmtruncate(struct inode *inode, loff_t offset); 963 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 964 965 int truncate_inode_page(struct address_space *mapping, struct page *page); 966 int generic_error_remove_page(struct address_space *mapping, struct page *page); 967 968 int invalidate_inode_page(struct page *page); 969 970 #ifdef CONFIG_MMU 971 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 972 unsigned long address, unsigned int flags); 973 #else 974 static inline int handle_mm_fault(struct mm_struct *mm, 975 struct vm_area_struct *vma, unsigned long address, 976 unsigned int flags) 977 { 978 /* should never happen if there's no MMU */ 979 BUG(); 980 return VM_FAULT_SIGBUS; 981 } 982 #endif 983 984 extern int make_pages_present(unsigned long addr, unsigned long end); 985 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 986 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 987 void *buf, int len, int write); 988 989 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 990 unsigned long start, int len, unsigned int foll_flags, 991 struct page **pages, struct vm_area_struct **vmas, 992 int *nonblocking); 993 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 994 unsigned long start, int nr_pages, int write, int force, 995 struct page **pages, struct vm_area_struct **vmas); 996 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 997 struct page **pages); 998 struct page *get_dump_page(unsigned long addr); 999 1000 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1001 extern void do_invalidatepage(struct page *page, unsigned long offset); 1002 1003 int __set_page_dirty_nobuffers(struct page *page); 1004 int __set_page_dirty_no_writeback(struct page *page); 1005 int redirty_page_for_writepage(struct writeback_control *wbc, 1006 struct page *page); 1007 void account_page_dirtied(struct page *page, struct address_space *mapping); 1008 void account_page_writeback(struct page *page); 1009 int set_page_dirty(struct page *page); 1010 int set_page_dirty_lock(struct page *page); 1011 int clear_page_dirty_for_io(struct page *page); 1012 1013 /* Is the vma a continuation of the stack vma above it? */ 1014 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1015 { 1016 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1017 } 1018 1019 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1020 unsigned long addr) 1021 { 1022 return (vma->vm_flags & VM_GROWSDOWN) && 1023 (vma->vm_start == addr) && 1024 !vma_growsdown(vma->vm_prev, addr); 1025 } 1026 1027 /* Is the vma a continuation of the stack vma below it? */ 1028 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1029 { 1030 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1031 } 1032 1033 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1034 unsigned long addr) 1035 { 1036 return (vma->vm_flags & VM_GROWSUP) && 1037 (vma->vm_end == addr) && 1038 !vma_growsup(vma->vm_next, addr); 1039 } 1040 1041 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1042 unsigned long old_addr, struct vm_area_struct *new_vma, 1043 unsigned long new_addr, unsigned long len); 1044 extern unsigned long do_mremap(unsigned long addr, 1045 unsigned long old_len, unsigned long new_len, 1046 unsigned long flags, unsigned long new_addr); 1047 extern int mprotect_fixup(struct vm_area_struct *vma, 1048 struct vm_area_struct **pprev, unsigned long start, 1049 unsigned long end, unsigned long newflags); 1050 1051 /* 1052 * doesn't attempt to fault and will return short. 1053 */ 1054 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1055 struct page **pages); 1056 /* 1057 * per-process(per-mm_struct) statistics. 1058 */ 1059 #if defined(SPLIT_RSS_COUNTING) 1060 /* 1061 * The mm counters are not protected by its page_table_lock, 1062 * so must be incremented atomically. 1063 */ 1064 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1065 { 1066 atomic_long_set(&mm->rss_stat.count[member], value); 1067 } 1068 1069 unsigned long get_mm_counter(struct mm_struct *mm, int member); 1070 1071 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1072 { 1073 atomic_long_add(value, &mm->rss_stat.count[member]); 1074 } 1075 1076 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1077 { 1078 atomic_long_inc(&mm->rss_stat.count[member]); 1079 } 1080 1081 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1082 { 1083 atomic_long_dec(&mm->rss_stat.count[member]); 1084 } 1085 1086 #else /* !USE_SPLIT_PTLOCKS */ 1087 /* 1088 * The mm counters are protected by its page_table_lock, 1089 * so can be incremented directly. 1090 */ 1091 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1092 { 1093 mm->rss_stat.count[member] = value; 1094 } 1095 1096 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1097 { 1098 return mm->rss_stat.count[member]; 1099 } 1100 1101 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1102 { 1103 mm->rss_stat.count[member] += value; 1104 } 1105 1106 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1107 { 1108 mm->rss_stat.count[member]++; 1109 } 1110 1111 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1112 { 1113 mm->rss_stat.count[member]--; 1114 } 1115 1116 #endif /* !USE_SPLIT_PTLOCKS */ 1117 1118 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1119 { 1120 return get_mm_counter(mm, MM_FILEPAGES) + 1121 get_mm_counter(mm, MM_ANONPAGES); 1122 } 1123 1124 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1125 { 1126 return max(mm->hiwater_rss, get_mm_rss(mm)); 1127 } 1128 1129 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1130 { 1131 return max(mm->hiwater_vm, mm->total_vm); 1132 } 1133 1134 static inline void update_hiwater_rss(struct mm_struct *mm) 1135 { 1136 unsigned long _rss = get_mm_rss(mm); 1137 1138 if ((mm)->hiwater_rss < _rss) 1139 (mm)->hiwater_rss = _rss; 1140 } 1141 1142 static inline void update_hiwater_vm(struct mm_struct *mm) 1143 { 1144 if (mm->hiwater_vm < mm->total_vm) 1145 mm->hiwater_vm = mm->total_vm; 1146 } 1147 1148 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1149 struct mm_struct *mm) 1150 { 1151 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1152 1153 if (*maxrss < hiwater_rss) 1154 *maxrss = hiwater_rss; 1155 } 1156 1157 #if defined(SPLIT_RSS_COUNTING) 1158 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1159 #else 1160 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1161 { 1162 } 1163 #endif 1164 1165 /* 1166 * A callback you can register to apply pressure to ageable caches. 1167 * 1168 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 1169 * look through the least-recently-used 'nr_to_scan' entries and 1170 * attempt to free them up. It should return the number of objects 1171 * which remain in the cache. If it returns -1, it means it cannot do 1172 * any scanning at this time (eg. there is a risk of deadlock). 1173 * 1174 * The 'gfpmask' refers to the allocation we are currently trying to 1175 * fulfil. 1176 * 1177 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1178 * querying the cache size, so a fastpath for that case is appropriate. 1179 */ 1180 struct shrinker { 1181 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); 1182 int seeks; /* seeks to recreate an obj */ 1183 1184 /* These are for internal use */ 1185 struct list_head list; 1186 long nr; /* objs pending delete */ 1187 }; 1188 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1189 extern void register_shrinker(struct shrinker *); 1190 extern void unregister_shrinker(struct shrinker *); 1191 1192 int vma_wants_writenotify(struct vm_area_struct *vma); 1193 1194 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1195 spinlock_t **ptl); 1196 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1197 spinlock_t **ptl) 1198 { 1199 pte_t *ptep; 1200 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1201 return ptep; 1202 } 1203 1204 #ifdef __PAGETABLE_PUD_FOLDED 1205 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1206 unsigned long address) 1207 { 1208 return 0; 1209 } 1210 #else 1211 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1212 #endif 1213 1214 #ifdef __PAGETABLE_PMD_FOLDED 1215 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1216 unsigned long address) 1217 { 1218 return 0; 1219 } 1220 #else 1221 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1222 #endif 1223 1224 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1225 pmd_t *pmd, unsigned long address); 1226 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1227 1228 /* 1229 * The following ifdef needed to get the 4level-fixup.h header to work. 1230 * Remove it when 4level-fixup.h has been removed. 1231 */ 1232 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1233 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1234 { 1235 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1236 NULL: pud_offset(pgd, address); 1237 } 1238 1239 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1240 { 1241 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1242 NULL: pmd_offset(pud, address); 1243 } 1244 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1245 1246 #if USE_SPLIT_PTLOCKS 1247 /* 1248 * We tuck a spinlock to guard each pagetable page into its struct page, 1249 * at page->private, with BUILD_BUG_ON to make sure that this will not 1250 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1251 * When freeing, reset page->mapping so free_pages_check won't complain. 1252 */ 1253 #define __pte_lockptr(page) &((page)->ptl) 1254 #define pte_lock_init(_page) do { \ 1255 spin_lock_init(__pte_lockptr(_page)); \ 1256 } while (0) 1257 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1258 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1259 #else /* !USE_SPLIT_PTLOCKS */ 1260 /* 1261 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1262 */ 1263 #define pte_lock_init(page) do {} while (0) 1264 #define pte_lock_deinit(page) do {} while (0) 1265 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1266 #endif /* USE_SPLIT_PTLOCKS */ 1267 1268 static inline void pgtable_page_ctor(struct page *page) 1269 { 1270 pte_lock_init(page); 1271 inc_zone_page_state(page, NR_PAGETABLE); 1272 } 1273 1274 static inline void pgtable_page_dtor(struct page *page) 1275 { 1276 pte_lock_deinit(page); 1277 dec_zone_page_state(page, NR_PAGETABLE); 1278 } 1279 1280 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1281 ({ \ 1282 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1283 pte_t *__pte = pte_offset_map(pmd, address); \ 1284 *(ptlp) = __ptl; \ 1285 spin_lock(__ptl); \ 1286 __pte; \ 1287 }) 1288 1289 #define pte_unmap_unlock(pte, ptl) do { \ 1290 spin_unlock(ptl); \ 1291 pte_unmap(pte); \ 1292 } while (0) 1293 1294 #define pte_alloc_map(mm, vma, pmd, address) \ 1295 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1296 pmd, address))? \ 1297 NULL: pte_offset_map(pmd, address)) 1298 1299 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1300 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1301 pmd, address))? \ 1302 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1303 1304 #define pte_alloc_kernel(pmd, address) \ 1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1306 NULL: pte_offset_kernel(pmd, address)) 1307 1308 extern void free_area_init(unsigned long * zones_size); 1309 extern void free_area_init_node(int nid, unsigned long * zones_size, 1310 unsigned long zone_start_pfn, unsigned long *zholes_size); 1311 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1312 /* 1313 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1314 * zones, allocate the backing mem_map and account for memory holes in a more 1315 * architecture independent manner. This is a substitute for creating the 1316 * zone_sizes[] and zholes_size[] arrays and passing them to 1317 * free_area_init_node() 1318 * 1319 * An architecture is expected to register range of page frames backed by 1320 * physical memory with add_active_range() before calling 1321 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1322 * usage, an architecture is expected to do something like 1323 * 1324 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1325 * max_highmem_pfn}; 1326 * for_each_valid_physical_page_range() 1327 * add_active_range(node_id, start_pfn, end_pfn) 1328 * free_area_init_nodes(max_zone_pfns); 1329 * 1330 * If the architecture guarantees that there are no holes in the ranges 1331 * registered with add_active_range(), free_bootmem_active_regions() 1332 * will call free_bootmem_node() for each registered physical page range. 1333 * Similarly sparse_memory_present_with_active_regions() calls 1334 * memory_present() for each range when SPARSEMEM is enabled. 1335 * 1336 * See mm/page_alloc.c for more information on each function exposed by 1337 * CONFIG_ARCH_POPULATES_NODE_MAP 1338 */ 1339 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1340 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1341 unsigned long end_pfn); 1342 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1343 unsigned long end_pfn); 1344 extern void remove_all_active_ranges(void); 1345 void sort_node_map(void); 1346 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1347 unsigned long end_pfn); 1348 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1349 unsigned long end_pfn); 1350 extern void get_pfn_range_for_nid(unsigned int nid, 1351 unsigned long *start_pfn, unsigned long *end_pfn); 1352 extern unsigned long find_min_pfn_with_active_regions(void); 1353 extern void free_bootmem_with_active_regions(int nid, 1354 unsigned long max_low_pfn); 1355 int add_from_early_node_map(struct range *range, int az, 1356 int nr_range, int nid); 1357 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1358 u64 goal, u64 limit); 1359 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1360 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1361 extern void sparse_memory_present_with_active_regions(int nid); 1362 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1363 1364 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1365 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1366 static inline int __early_pfn_to_nid(unsigned long pfn) 1367 { 1368 return 0; 1369 } 1370 #else 1371 /* please see mm/page_alloc.c */ 1372 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1373 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1374 /* there is a per-arch backend function. */ 1375 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1376 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1377 #endif 1378 1379 extern void set_dma_reserve(unsigned long new_dma_reserve); 1380 extern void memmap_init_zone(unsigned long, int, unsigned long, 1381 unsigned long, enum memmap_context); 1382 extern void setup_per_zone_wmarks(void); 1383 extern void calculate_zone_inactive_ratio(struct zone *zone); 1384 extern void mem_init(void); 1385 extern void __init mmap_init(void); 1386 extern void show_mem(unsigned int flags); 1387 extern void si_meminfo(struct sysinfo * val); 1388 extern void si_meminfo_node(struct sysinfo *val, int nid); 1389 extern int after_bootmem; 1390 1391 extern void setup_per_cpu_pageset(void); 1392 1393 extern void zone_pcp_update(struct zone *zone); 1394 1395 /* nommu.c */ 1396 extern atomic_long_t mmap_pages_allocated; 1397 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1398 1399 /* prio_tree.c */ 1400 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1401 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1402 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1403 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1404 struct prio_tree_iter *iter); 1405 1406 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1407 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1408 (vma = vma_prio_tree_next(vma, iter)); ) 1409 1410 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1411 struct list_head *list) 1412 { 1413 vma->shared.vm_set.parent = NULL; 1414 list_add_tail(&vma->shared.vm_set.list, list); 1415 } 1416 1417 /* mmap.c */ 1418 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1419 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1420 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1421 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1422 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1423 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1424 struct mempolicy *); 1425 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1426 extern int split_vma(struct mm_struct *, 1427 struct vm_area_struct *, unsigned long addr, int new_below); 1428 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1429 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1430 struct rb_node **, struct rb_node *); 1431 extern void unlink_file_vma(struct vm_area_struct *); 1432 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1433 unsigned long addr, unsigned long len, pgoff_t pgoff); 1434 extern void exit_mmap(struct mm_struct *); 1435 1436 extern int mm_take_all_locks(struct mm_struct *mm); 1437 extern void mm_drop_all_locks(struct mm_struct *mm); 1438 1439 #ifdef CONFIG_PROC_FS 1440 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1441 extern void added_exe_file_vma(struct mm_struct *mm); 1442 extern void removed_exe_file_vma(struct mm_struct *mm); 1443 #else 1444 static inline void added_exe_file_vma(struct mm_struct *mm) 1445 {} 1446 1447 static inline void removed_exe_file_vma(struct mm_struct *mm) 1448 {} 1449 #endif /* CONFIG_PROC_FS */ 1450 1451 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1452 extern int install_special_mapping(struct mm_struct *mm, 1453 unsigned long addr, unsigned long len, 1454 unsigned long flags, struct page **pages); 1455 1456 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1457 1458 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1459 unsigned long len, unsigned long prot, 1460 unsigned long flag, unsigned long pgoff); 1461 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1462 unsigned long len, unsigned long flags, 1463 unsigned int vm_flags, unsigned long pgoff); 1464 1465 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1466 unsigned long len, unsigned long prot, 1467 unsigned long flag, unsigned long offset) 1468 { 1469 unsigned long ret = -EINVAL; 1470 if ((offset + PAGE_ALIGN(len)) < offset) 1471 goto out; 1472 if (!(offset & ~PAGE_MASK)) 1473 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1474 out: 1475 return ret; 1476 } 1477 1478 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1479 1480 extern unsigned long do_brk(unsigned long, unsigned long); 1481 1482 /* filemap.c */ 1483 extern unsigned long page_unuse(struct page *); 1484 extern void truncate_inode_pages(struct address_space *, loff_t); 1485 extern void truncate_inode_pages_range(struct address_space *, 1486 loff_t lstart, loff_t lend); 1487 1488 /* generic vm_area_ops exported for stackable file systems */ 1489 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1490 1491 /* mm/page-writeback.c */ 1492 int write_one_page(struct page *page, int wait); 1493 void task_dirty_inc(struct task_struct *tsk); 1494 1495 /* readahead.c */ 1496 #define VM_MAX_READAHEAD 128 /* kbytes */ 1497 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1498 1499 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1500 pgoff_t offset, unsigned long nr_to_read); 1501 1502 void page_cache_sync_readahead(struct address_space *mapping, 1503 struct file_ra_state *ra, 1504 struct file *filp, 1505 pgoff_t offset, 1506 unsigned long size); 1507 1508 void page_cache_async_readahead(struct address_space *mapping, 1509 struct file_ra_state *ra, 1510 struct file *filp, 1511 struct page *pg, 1512 pgoff_t offset, 1513 unsigned long size); 1514 1515 unsigned long max_sane_readahead(unsigned long nr); 1516 unsigned long ra_submit(struct file_ra_state *ra, 1517 struct address_space *mapping, 1518 struct file *filp); 1519 1520 /* Do stack extension */ 1521 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1522 #if VM_GROWSUP 1523 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1524 #else 1525 #define expand_upwards(vma, address) do { } while (0) 1526 #endif 1527 extern int expand_stack_downwards(struct vm_area_struct *vma, 1528 unsigned long address); 1529 1530 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1531 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1532 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1533 struct vm_area_struct **pprev); 1534 1535 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1536 NULL if none. Assume start_addr < end_addr. */ 1537 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1538 { 1539 struct vm_area_struct * vma = find_vma(mm,start_addr); 1540 1541 if (vma && end_addr <= vma->vm_start) 1542 vma = NULL; 1543 return vma; 1544 } 1545 1546 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1547 { 1548 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1549 } 1550 1551 #ifdef CONFIG_MMU 1552 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1553 #else 1554 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1555 { 1556 return __pgprot(0); 1557 } 1558 #endif 1559 1560 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1561 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1562 unsigned long pfn, unsigned long size, pgprot_t); 1563 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1564 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1565 unsigned long pfn); 1566 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1567 unsigned long pfn); 1568 1569 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1570 unsigned int foll_flags); 1571 #define FOLL_WRITE 0x01 /* check pte is writable */ 1572 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1573 #define FOLL_GET 0x04 /* do get_page on page */ 1574 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1575 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1576 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1577 * and return without waiting upon it */ 1578 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1579 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1580 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1581 1582 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1583 void *data); 1584 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1585 unsigned long size, pte_fn_t fn, void *data); 1586 1587 #ifdef CONFIG_PROC_FS 1588 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1589 #else 1590 static inline void vm_stat_account(struct mm_struct *mm, 1591 unsigned long flags, struct file *file, long pages) 1592 { 1593 } 1594 #endif /* CONFIG_PROC_FS */ 1595 1596 #ifdef CONFIG_DEBUG_PAGEALLOC 1597 extern int debug_pagealloc_enabled; 1598 1599 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1600 1601 static inline void enable_debug_pagealloc(void) 1602 { 1603 debug_pagealloc_enabled = 1; 1604 } 1605 #ifdef CONFIG_HIBERNATION 1606 extern bool kernel_page_present(struct page *page); 1607 #endif /* CONFIG_HIBERNATION */ 1608 #else 1609 static inline void 1610 kernel_map_pages(struct page *page, int numpages, int enable) {} 1611 static inline void enable_debug_pagealloc(void) 1612 { 1613 } 1614 #ifdef CONFIG_HIBERNATION 1615 static inline bool kernel_page_present(struct page *page) { return true; } 1616 #endif /* CONFIG_HIBERNATION */ 1617 #endif 1618 1619 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1620 #ifdef __HAVE_ARCH_GATE_AREA 1621 int in_gate_area_no_mm(unsigned long addr); 1622 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1623 #else 1624 int in_gate_area_no_mm(unsigned long addr); 1625 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1626 #endif /* __HAVE_ARCH_GATE_AREA */ 1627 1628 int drop_caches_sysctl_handler(struct ctl_table *, int, 1629 void __user *, size_t *, loff_t *); 1630 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1631 unsigned long lru_pages); 1632 1633 #ifndef CONFIG_MMU 1634 #define randomize_va_space 0 1635 #else 1636 extern int randomize_va_space; 1637 #endif 1638 1639 const char * arch_vma_name(struct vm_area_struct *vma); 1640 void print_vma_addr(char *prefix, unsigned long rip); 1641 1642 void sparse_mem_maps_populate_node(struct page **map_map, 1643 unsigned long pnum_begin, 1644 unsigned long pnum_end, 1645 unsigned long map_count, 1646 int nodeid); 1647 1648 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1649 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1650 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1651 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1652 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1653 void *vmemmap_alloc_block(unsigned long size, int node); 1654 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1655 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1656 int vmemmap_populate_basepages(struct page *start_page, 1657 unsigned long pages, int node); 1658 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1659 void vmemmap_populate_print_last(void); 1660 1661 1662 enum mf_flags { 1663 MF_COUNT_INCREASED = 1 << 0, 1664 }; 1665 extern void memory_failure(unsigned long pfn, int trapno); 1666 extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1667 extern int unpoison_memory(unsigned long pfn); 1668 extern int sysctl_memory_failure_early_kill; 1669 extern int sysctl_memory_failure_recovery; 1670 extern void shake_page(struct page *p, int access); 1671 extern atomic_long_t mce_bad_pages; 1672 extern int soft_offline_page(struct page *page, int flags); 1673 1674 extern void dump_page(struct page *page); 1675 1676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1677 extern void clear_huge_page(struct page *page, 1678 unsigned long addr, 1679 unsigned int pages_per_huge_page); 1680 extern void copy_user_huge_page(struct page *dst, struct page *src, 1681 unsigned long addr, struct vm_area_struct *vma, 1682 unsigned int pages_per_huge_page); 1683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1684 1685 #endif /* __KERNEL__ */ 1686 #endif /* _LINUX_MM_H */ 1687