1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331 #ifdef CONFIG_ARCH_HAS_PKEYS 332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337 #ifdef CONFIG_PPC 338 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339 #else 340 # define VM_PKEY_BIT4 0 341 #endif 342 #endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344 #ifdef CONFIG_X86_USER_SHADOW_STACK 345 /* 346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 347 * support core mm. 348 * 349 * These VMAs will get a single end guard page. This helps userspace protect 350 * itself from attacks. A single page is enough for current shadow stack archs 351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 352 * for more details on the guard size. 353 */ 354 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 355 #else 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* Bits set in the VMA until the stack is in its final location */ 395 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 396 397 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 398 399 /* Common data flag combinations */ 400 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 402 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 403 VM_MAYWRITE | VM_MAYEXEC) 404 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 405 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 406 407 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 408 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 409 #endif 410 411 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 412 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 413 #endif 414 415 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 416 417 #ifdef CONFIG_STACK_GROWSUP 418 #define VM_STACK VM_GROWSUP 419 #define VM_STACK_EARLY VM_GROWSDOWN 420 #else 421 #define VM_STACK VM_GROWSDOWN 422 #define VM_STACK_EARLY 0 423 #endif 424 425 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 426 427 /* VMA basic access permission flags */ 428 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 429 430 431 /* 432 * Special vmas that are non-mergable, non-mlock()able. 433 */ 434 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 435 436 /* This mask prevents VMA from being scanned with khugepaged */ 437 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 438 439 /* This mask defines which mm->def_flags a process can inherit its parent */ 440 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 441 442 /* This mask represents all the VMA flag bits used by mlock */ 443 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 444 445 /* Arch-specific flags to clear when updating VM flags on protection change */ 446 #ifndef VM_ARCH_CLEAR 447 # define VM_ARCH_CLEAR VM_NONE 448 #endif 449 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 450 451 /* 452 * mapping from the currently active vm_flags protection bits (the 453 * low four bits) to a page protection mask.. 454 */ 455 456 /* 457 * The default fault flags that should be used by most of the 458 * arch-specific page fault handlers. 459 */ 460 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 461 FAULT_FLAG_KILLABLE | \ 462 FAULT_FLAG_INTERRUPTIBLE) 463 464 /** 465 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 466 * @flags: Fault flags. 467 * 468 * This is mostly used for places where we want to try to avoid taking 469 * the mmap_lock for too long a time when waiting for another condition 470 * to change, in which case we can try to be polite to release the 471 * mmap_lock in the first round to avoid potential starvation of other 472 * processes that would also want the mmap_lock. 473 * 474 * Return: true if the page fault allows retry and this is the first 475 * attempt of the fault handling; false otherwise. 476 */ 477 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 478 { 479 return (flags & FAULT_FLAG_ALLOW_RETRY) && 480 (!(flags & FAULT_FLAG_TRIED)); 481 } 482 483 #define FAULT_FLAG_TRACE \ 484 { FAULT_FLAG_WRITE, "WRITE" }, \ 485 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 486 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 487 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 488 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 489 { FAULT_FLAG_TRIED, "TRIED" }, \ 490 { FAULT_FLAG_USER, "USER" }, \ 491 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 492 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 493 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 494 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 495 496 /* 497 * vm_fault is filled by the pagefault handler and passed to the vma's 498 * ->fault function. The vma's ->fault is responsible for returning a bitmask 499 * of VM_FAULT_xxx flags that give details about how the fault was handled. 500 * 501 * MM layer fills up gfp_mask for page allocations but fault handler might 502 * alter it if its implementation requires a different allocation context. 503 * 504 * pgoff should be used in favour of virtual_address, if possible. 505 */ 506 struct vm_fault { 507 const struct { 508 struct vm_area_struct *vma; /* Target VMA */ 509 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 510 pgoff_t pgoff; /* Logical page offset based on vma */ 511 unsigned long address; /* Faulting virtual address - masked */ 512 unsigned long real_address; /* Faulting virtual address - unmasked */ 513 }; 514 enum fault_flag flags; /* FAULT_FLAG_xxx flags 515 * XXX: should really be 'const' */ 516 pmd_t *pmd; /* Pointer to pmd entry matching 517 * the 'address' */ 518 pud_t *pud; /* Pointer to pud entry matching 519 * the 'address' 520 */ 521 union { 522 pte_t orig_pte; /* Value of PTE at the time of fault */ 523 pmd_t orig_pmd; /* Value of PMD at the time of fault, 524 * used by PMD fault only. 525 */ 526 }; 527 528 struct page *cow_page; /* Page handler may use for COW fault */ 529 struct page *page; /* ->fault handlers should return a 530 * page here, unless VM_FAULT_NOPAGE 531 * is set (which is also implied by 532 * VM_FAULT_ERROR). 533 */ 534 /* These three entries are valid only while holding ptl lock */ 535 pte_t *pte; /* Pointer to pte entry matching 536 * the 'address'. NULL if the page 537 * table hasn't been allocated. 538 */ 539 spinlock_t *ptl; /* Page table lock. 540 * Protects pte page table if 'pte' 541 * is not NULL, otherwise pmd. 542 */ 543 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 544 * vm_ops->map_pages() sets up a page 545 * table from atomic context. 546 * do_fault_around() pre-allocates 547 * page table to avoid allocation from 548 * atomic context. 549 */ 550 }; 551 552 /* 553 * These are the virtual MM functions - opening of an area, closing and 554 * unmapping it (needed to keep files on disk up-to-date etc), pointer 555 * to the functions called when a no-page or a wp-page exception occurs. 556 */ 557 struct vm_operations_struct { 558 void (*open)(struct vm_area_struct * area); 559 /** 560 * @close: Called when the VMA is being removed from the MM. 561 * Context: User context. May sleep. Caller holds mmap_lock. 562 */ 563 void (*close)(struct vm_area_struct * area); 564 /* Called any time before splitting to check if it's allowed */ 565 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 566 int (*mremap)(struct vm_area_struct *area); 567 /* 568 * Called by mprotect() to make driver-specific permission 569 * checks before mprotect() is finalised. The VMA must not 570 * be modified. Returns 0 if mprotect() can proceed. 571 */ 572 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 573 unsigned long end, unsigned long newflags); 574 vm_fault_t (*fault)(struct vm_fault *vmf); 575 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 576 vm_fault_t (*map_pages)(struct vm_fault *vmf, 577 pgoff_t start_pgoff, pgoff_t end_pgoff); 578 unsigned long (*pagesize)(struct vm_area_struct * area); 579 580 /* notification that a previously read-only page is about to become 581 * writable, if an error is returned it will cause a SIGBUS */ 582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 583 584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 586 587 /* called by access_process_vm when get_user_pages() fails, typically 588 * for use by special VMAs. See also generic_access_phys() for a generic 589 * implementation useful for any iomem mapping. 590 */ 591 int (*access)(struct vm_area_struct *vma, unsigned long addr, 592 void *buf, int len, int write); 593 594 /* Called by the /proc/PID/maps code to ask the vma whether it 595 * has a special name. Returning non-NULL will also cause this 596 * vma to be dumped unconditionally. */ 597 const char *(*name)(struct vm_area_struct *vma); 598 599 #ifdef CONFIG_NUMA 600 /* 601 * set_policy() op must add a reference to any non-NULL @new mempolicy 602 * to hold the policy upon return. Caller should pass NULL @new to 603 * remove a policy and fall back to surrounding context--i.e. do not 604 * install a MPOL_DEFAULT policy, nor the task or system default 605 * mempolicy. 606 */ 607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 608 609 /* 610 * get_policy() op must add reference [mpol_get()] to any policy at 611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 612 * in mm/mempolicy.c will do this automatically. 613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 616 * must return NULL--i.e., do not "fallback" to task or system default 617 * policy. 618 */ 619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 620 unsigned long addr, pgoff_t *ilx); 621 #endif 622 /* 623 * Called by vm_normal_page() for special PTEs to find the 624 * page for @addr. This is useful if the default behavior 625 * (using pte_page()) would not find the correct page. 626 */ 627 struct page *(*find_special_page)(struct vm_area_struct *vma, 628 unsigned long addr); 629 }; 630 631 #ifdef CONFIG_NUMA_BALANCING 632 static inline void vma_numab_state_init(struct vm_area_struct *vma) 633 { 634 vma->numab_state = NULL; 635 } 636 static inline void vma_numab_state_free(struct vm_area_struct *vma) 637 { 638 kfree(vma->numab_state); 639 } 640 #else 641 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 642 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 643 #endif /* CONFIG_NUMA_BALANCING */ 644 645 #ifdef CONFIG_PER_VMA_LOCK 646 /* 647 * Try to read-lock a vma. The function is allowed to occasionally yield false 648 * locked result to avoid performance overhead, in which case we fall back to 649 * using mmap_lock. The function should never yield false unlocked result. 650 */ 651 static inline bool vma_start_read(struct vm_area_struct *vma) 652 { 653 /* 654 * Check before locking. A race might cause false locked result. 655 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 656 * ACQUIRE semantics, because this is just a lockless check whose result 657 * we don't rely on for anything - the mm_lock_seq read against which we 658 * need ordering is below. 659 */ 660 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 661 return false; 662 663 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 664 return false; 665 666 /* 667 * Overflow might produce false locked result. 668 * False unlocked result is impossible because we modify and check 669 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 670 * modification invalidates all existing locks. 671 * 672 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 673 * racing with vma_end_write_all(), we only start reading from the VMA 674 * after it has been unlocked. 675 * This pairs with RELEASE semantics in vma_end_write_all(). 676 */ 677 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 678 up_read(&vma->vm_lock->lock); 679 return false; 680 } 681 return true; 682 } 683 684 static inline void vma_end_read(struct vm_area_struct *vma) 685 { 686 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 687 up_read(&vma->vm_lock->lock); 688 rcu_read_unlock(); 689 } 690 691 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 692 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 693 { 694 mmap_assert_write_locked(vma->vm_mm); 695 696 /* 697 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 698 * mm->mm_lock_seq can't be concurrently modified. 699 */ 700 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 701 return (vma->vm_lock_seq == *mm_lock_seq); 702 } 703 704 /* 705 * Begin writing to a VMA. 706 * Exclude concurrent readers under the per-VMA lock until the currently 707 * write-locked mmap_lock is dropped or downgraded. 708 */ 709 static inline void vma_start_write(struct vm_area_struct *vma) 710 { 711 int mm_lock_seq; 712 713 if (__is_vma_write_locked(vma, &mm_lock_seq)) 714 return; 715 716 down_write(&vma->vm_lock->lock); 717 /* 718 * We should use WRITE_ONCE() here because we can have concurrent reads 719 * from the early lockless pessimistic check in vma_start_read(). 720 * We don't really care about the correctness of that early check, but 721 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 722 */ 723 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 724 up_write(&vma->vm_lock->lock); 725 } 726 727 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 728 { 729 int mm_lock_seq; 730 731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 732 } 733 734 static inline void vma_assert_locked(struct vm_area_struct *vma) 735 { 736 if (!rwsem_is_locked(&vma->vm_lock->lock)) 737 vma_assert_write_locked(vma); 738 } 739 740 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 741 { 742 /* When detaching vma should be write-locked */ 743 if (detached) 744 vma_assert_write_locked(vma); 745 vma->detached = detached; 746 } 747 748 static inline void release_fault_lock(struct vm_fault *vmf) 749 { 750 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 751 vma_end_read(vmf->vma); 752 else 753 mmap_read_unlock(vmf->vma->vm_mm); 754 } 755 756 static inline void assert_fault_locked(struct vm_fault *vmf) 757 { 758 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 759 vma_assert_locked(vmf->vma); 760 else 761 mmap_assert_locked(vmf->vma->vm_mm); 762 } 763 764 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 765 unsigned long address); 766 767 #else /* CONFIG_PER_VMA_LOCK */ 768 769 static inline bool vma_start_read(struct vm_area_struct *vma) 770 { return false; } 771 static inline void vma_end_read(struct vm_area_struct *vma) {} 772 static inline void vma_start_write(struct vm_area_struct *vma) {} 773 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 774 { mmap_assert_write_locked(vma->vm_mm); } 775 static inline void vma_mark_detached(struct vm_area_struct *vma, 776 bool detached) {} 777 778 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 779 unsigned long address) 780 { 781 return NULL; 782 } 783 784 static inline void release_fault_lock(struct vm_fault *vmf) 785 { 786 mmap_read_unlock(vmf->vma->vm_mm); 787 } 788 789 static inline void assert_fault_locked(struct vm_fault *vmf) 790 { 791 mmap_assert_locked(vmf->vma->vm_mm); 792 } 793 794 #endif /* CONFIG_PER_VMA_LOCK */ 795 796 extern const struct vm_operations_struct vma_dummy_vm_ops; 797 798 /* 799 * WARNING: vma_init does not initialize vma->vm_lock. 800 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 801 */ 802 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 803 { 804 memset(vma, 0, sizeof(*vma)); 805 vma->vm_mm = mm; 806 vma->vm_ops = &vma_dummy_vm_ops; 807 INIT_LIST_HEAD(&vma->anon_vma_chain); 808 vma_mark_detached(vma, false); 809 vma_numab_state_init(vma); 810 } 811 812 /* Use when VMA is not part of the VMA tree and needs no locking */ 813 static inline void vm_flags_init(struct vm_area_struct *vma, 814 vm_flags_t flags) 815 { 816 ACCESS_PRIVATE(vma, __vm_flags) = flags; 817 } 818 819 /* 820 * Use when VMA is part of the VMA tree and modifications need coordination 821 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 822 * it should be locked explicitly beforehand. 823 */ 824 static inline void vm_flags_reset(struct vm_area_struct *vma, 825 vm_flags_t flags) 826 { 827 vma_assert_write_locked(vma); 828 vm_flags_init(vma, flags); 829 } 830 831 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 832 vm_flags_t flags) 833 { 834 vma_assert_write_locked(vma); 835 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 836 } 837 838 static inline void vm_flags_set(struct vm_area_struct *vma, 839 vm_flags_t flags) 840 { 841 vma_start_write(vma); 842 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 843 } 844 845 static inline void vm_flags_clear(struct vm_area_struct *vma, 846 vm_flags_t flags) 847 { 848 vma_start_write(vma); 849 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 850 } 851 852 /* 853 * Use only if VMA is not part of the VMA tree or has no other users and 854 * therefore needs no locking. 855 */ 856 static inline void __vm_flags_mod(struct vm_area_struct *vma, 857 vm_flags_t set, vm_flags_t clear) 858 { 859 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 860 } 861 862 /* 863 * Use only when the order of set/clear operations is unimportant, otherwise 864 * use vm_flags_{set|clear} explicitly. 865 */ 866 static inline void vm_flags_mod(struct vm_area_struct *vma, 867 vm_flags_t set, vm_flags_t clear) 868 { 869 vma_start_write(vma); 870 __vm_flags_mod(vma, set, clear); 871 } 872 873 static inline void vma_set_anonymous(struct vm_area_struct *vma) 874 { 875 vma->vm_ops = NULL; 876 } 877 878 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 879 { 880 return !vma->vm_ops; 881 } 882 883 /* 884 * Indicate if the VMA is a heap for the given task; for 885 * /proc/PID/maps that is the heap of the main task. 886 */ 887 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 888 { 889 return vma->vm_start <= vma->vm_mm->brk && 890 vma->vm_end >= vma->vm_mm->start_brk; 891 } 892 893 /* 894 * Indicate if the VMA is a stack for the given task; for 895 * /proc/PID/maps that is the stack of the main task. 896 */ 897 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 898 { 899 /* 900 * We make no effort to guess what a given thread considers to be 901 * its "stack". It's not even well-defined for programs written 902 * languages like Go. 903 */ 904 return vma->vm_start <= vma->vm_mm->start_stack && 905 vma->vm_end >= vma->vm_mm->start_stack; 906 } 907 908 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 909 { 910 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 911 912 if (!maybe_stack) 913 return false; 914 915 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 916 VM_STACK_INCOMPLETE_SETUP) 917 return true; 918 919 return false; 920 } 921 922 static inline bool vma_is_foreign(struct vm_area_struct *vma) 923 { 924 if (!current->mm) 925 return true; 926 927 if (current->mm != vma->vm_mm) 928 return true; 929 930 return false; 931 } 932 933 static inline bool vma_is_accessible(struct vm_area_struct *vma) 934 { 935 return vma->vm_flags & VM_ACCESS_FLAGS; 936 } 937 938 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 939 { 940 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 941 (VM_SHARED | VM_MAYWRITE); 942 } 943 944 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 945 { 946 return is_shared_maywrite(vma->vm_flags); 947 } 948 949 static inline 950 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 951 { 952 return mas_find(&vmi->mas, max - 1); 953 } 954 955 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 956 { 957 /* 958 * Uses mas_find() to get the first VMA when the iterator starts. 959 * Calling mas_next() could skip the first entry. 960 */ 961 return mas_find(&vmi->mas, ULONG_MAX); 962 } 963 964 static inline 965 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 966 { 967 return mas_next_range(&vmi->mas, ULONG_MAX); 968 } 969 970 971 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 972 { 973 return mas_prev(&vmi->mas, 0); 974 } 975 976 static inline 977 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 978 { 979 return mas_prev_range(&vmi->mas, 0); 980 } 981 982 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 983 { 984 return vmi->mas.index; 985 } 986 987 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 988 { 989 return vmi->mas.last + 1; 990 } 991 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 992 unsigned long count) 993 { 994 return mas_expected_entries(&vmi->mas, count); 995 } 996 997 /* Free any unused preallocations */ 998 static inline void vma_iter_free(struct vma_iterator *vmi) 999 { 1000 mas_destroy(&vmi->mas); 1001 } 1002 1003 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1004 struct vm_area_struct *vma) 1005 { 1006 vmi->mas.index = vma->vm_start; 1007 vmi->mas.last = vma->vm_end - 1; 1008 mas_store(&vmi->mas, vma); 1009 if (unlikely(mas_is_err(&vmi->mas))) 1010 return -ENOMEM; 1011 1012 return 0; 1013 } 1014 1015 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1016 { 1017 mas_pause(&vmi->mas); 1018 } 1019 1020 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1021 { 1022 mas_set(&vmi->mas, addr); 1023 } 1024 1025 #define for_each_vma(__vmi, __vma) \ 1026 while (((__vma) = vma_next(&(__vmi))) != NULL) 1027 1028 /* The MM code likes to work with exclusive end addresses */ 1029 #define for_each_vma_range(__vmi, __vma, __end) \ 1030 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1031 1032 #ifdef CONFIG_SHMEM 1033 /* 1034 * The vma_is_shmem is not inline because it is used only by slow 1035 * paths in userfault. 1036 */ 1037 bool vma_is_shmem(struct vm_area_struct *vma); 1038 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1039 #else 1040 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1041 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1042 #endif 1043 1044 int vma_is_stack_for_current(struct vm_area_struct *vma); 1045 1046 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1047 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1048 1049 struct mmu_gather; 1050 struct inode; 1051 1052 /* 1053 * compound_order() can be called without holding a reference, which means 1054 * that niceties like page_folio() don't work. These callers should be 1055 * prepared to handle wild return values. For example, PG_head may be 1056 * set before the order is initialised, or this may be a tail page. 1057 * See compaction.c for some good examples. 1058 */ 1059 static inline unsigned int compound_order(struct page *page) 1060 { 1061 struct folio *folio = (struct folio *)page; 1062 1063 if (!test_bit(PG_head, &folio->flags)) 1064 return 0; 1065 return folio->_flags_1 & 0xff; 1066 } 1067 1068 /** 1069 * folio_order - The allocation order of a folio. 1070 * @folio: The folio. 1071 * 1072 * A folio is composed of 2^order pages. See get_order() for the definition 1073 * of order. 1074 * 1075 * Return: The order of the folio. 1076 */ 1077 static inline unsigned int folio_order(struct folio *folio) 1078 { 1079 if (!folio_test_large(folio)) 1080 return 0; 1081 return folio->_flags_1 & 0xff; 1082 } 1083 1084 #include <linux/huge_mm.h> 1085 1086 /* 1087 * Methods to modify the page usage count. 1088 * 1089 * What counts for a page usage: 1090 * - cache mapping (page->mapping) 1091 * - private data (page->private) 1092 * - page mapped in a task's page tables, each mapping 1093 * is counted separately 1094 * 1095 * Also, many kernel routines increase the page count before a critical 1096 * routine so they can be sure the page doesn't go away from under them. 1097 */ 1098 1099 /* 1100 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1101 */ 1102 static inline int put_page_testzero(struct page *page) 1103 { 1104 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1105 return page_ref_dec_and_test(page); 1106 } 1107 1108 static inline int folio_put_testzero(struct folio *folio) 1109 { 1110 return put_page_testzero(&folio->page); 1111 } 1112 1113 /* 1114 * Try to grab a ref unless the page has a refcount of zero, return false if 1115 * that is the case. 1116 * This can be called when MMU is off so it must not access 1117 * any of the virtual mappings. 1118 */ 1119 static inline bool get_page_unless_zero(struct page *page) 1120 { 1121 return page_ref_add_unless(page, 1, 0); 1122 } 1123 1124 static inline struct folio *folio_get_nontail_page(struct page *page) 1125 { 1126 if (unlikely(!get_page_unless_zero(page))) 1127 return NULL; 1128 return (struct folio *)page; 1129 } 1130 1131 extern int page_is_ram(unsigned long pfn); 1132 1133 enum { 1134 REGION_INTERSECTS, 1135 REGION_DISJOINT, 1136 REGION_MIXED, 1137 }; 1138 1139 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1140 unsigned long desc); 1141 1142 /* Support for virtually mapped pages */ 1143 struct page *vmalloc_to_page(const void *addr); 1144 unsigned long vmalloc_to_pfn(const void *addr); 1145 1146 /* 1147 * Determine if an address is within the vmalloc range 1148 * 1149 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1150 * is no special casing required. 1151 */ 1152 #ifdef CONFIG_MMU 1153 extern bool is_vmalloc_addr(const void *x); 1154 extern int is_vmalloc_or_module_addr(const void *x); 1155 #else 1156 static inline bool is_vmalloc_addr(const void *x) 1157 { 1158 return false; 1159 } 1160 static inline int is_vmalloc_or_module_addr(const void *x) 1161 { 1162 return 0; 1163 } 1164 #endif 1165 1166 /* 1167 * How many times the entire folio is mapped as a single unit (eg by a 1168 * PMD or PUD entry). This is probably not what you want, except for 1169 * debugging purposes - it does not include PTE-mapped sub-pages; look 1170 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1171 */ 1172 static inline int folio_entire_mapcount(struct folio *folio) 1173 { 1174 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1175 return atomic_read(&folio->_entire_mapcount) + 1; 1176 } 1177 1178 /* 1179 * The atomic page->_mapcount, starts from -1: so that transitions 1180 * both from it and to it can be tracked, using atomic_inc_and_test 1181 * and atomic_add_negative(-1). 1182 */ 1183 static inline void page_mapcount_reset(struct page *page) 1184 { 1185 atomic_set(&(page)->_mapcount, -1); 1186 } 1187 1188 /** 1189 * page_mapcount() - Number of times this precise page is mapped. 1190 * @page: The page. 1191 * 1192 * The number of times this page is mapped. If this page is part of 1193 * a large folio, it includes the number of times this page is mapped 1194 * as part of that folio. 1195 * 1196 * The result is undefined for pages which cannot be mapped into userspace. 1197 * For example SLAB or special types of pages. See function page_has_type(). 1198 * They use this field in struct page differently. 1199 */ 1200 static inline int page_mapcount(struct page *page) 1201 { 1202 int mapcount = atomic_read(&page->_mapcount) + 1; 1203 1204 if (unlikely(PageCompound(page))) 1205 mapcount += folio_entire_mapcount(page_folio(page)); 1206 1207 return mapcount; 1208 } 1209 1210 int folio_total_mapcount(struct folio *folio); 1211 1212 /** 1213 * folio_mapcount() - Calculate the number of mappings of this folio. 1214 * @folio: The folio. 1215 * 1216 * A large folio tracks both how many times the entire folio is mapped, 1217 * and how many times each individual page in the folio is mapped. 1218 * This function calculates the total number of times the folio is 1219 * mapped. 1220 * 1221 * Return: The number of times this folio is mapped. 1222 */ 1223 static inline int folio_mapcount(struct folio *folio) 1224 { 1225 if (likely(!folio_test_large(folio))) 1226 return atomic_read(&folio->_mapcount) + 1; 1227 return folio_total_mapcount(folio); 1228 } 1229 1230 static inline int total_mapcount(struct page *page) 1231 { 1232 if (likely(!PageCompound(page))) 1233 return atomic_read(&page->_mapcount) + 1; 1234 return folio_total_mapcount(page_folio(page)); 1235 } 1236 1237 static inline bool folio_large_is_mapped(struct folio *folio) 1238 { 1239 /* 1240 * Reading _entire_mapcount below could be omitted if hugetlb 1241 * participated in incrementing nr_pages_mapped when compound mapped. 1242 */ 1243 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1244 atomic_read(&folio->_entire_mapcount) >= 0; 1245 } 1246 1247 /** 1248 * folio_mapped - Is this folio mapped into userspace? 1249 * @folio: The folio. 1250 * 1251 * Return: True if any page in this folio is referenced by user page tables. 1252 */ 1253 static inline bool folio_mapped(struct folio *folio) 1254 { 1255 if (likely(!folio_test_large(folio))) 1256 return atomic_read(&folio->_mapcount) >= 0; 1257 return folio_large_is_mapped(folio); 1258 } 1259 1260 /* 1261 * Return true if this page is mapped into pagetables. 1262 * For compound page it returns true if any sub-page of compound page is mapped, 1263 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1264 */ 1265 static inline bool page_mapped(struct page *page) 1266 { 1267 if (likely(!PageCompound(page))) 1268 return atomic_read(&page->_mapcount) >= 0; 1269 return folio_large_is_mapped(page_folio(page)); 1270 } 1271 1272 static inline struct page *virt_to_head_page(const void *x) 1273 { 1274 struct page *page = virt_to_page(x); 1275 1276 return compound_head(page); 1277 } 1278 1279 static inline struct folio *virt_to_folio(const void *x) 1280 { 1281 struct page *page = virt_to_page(x); 1282 1283 return page_folio(page); 1284 } 1285 1286 void __folio_put(struct folio *folio); 1287 1288 void put_pages_list(struct list_head *pages); 1289 1290 void split_page(struct page *page, unsigned int order); 1291 void folio_copy(struct folio *dst, struct folio *src); 1292 1293 unsigned long nr_free_buffer_pages(void); 1294 1295 void destroy_large_folio(struct folio *folio); 1296 1297 /* Returns the number of bytes in this potentially compound page. */ 1298 static inline unsigned long page_size(struct page *page) 1299 { 1300 return PAGE_SIZE << compound_order(page); 1301 } 1302 1303 /* Returns the number of bits needed for the number of bytes in a page */ 1304 static inline unsigned int page_shift(struct page *page) 1305 { 1306 return PAGE_SHIFT + compound_order(page); 1307 } 1308 1309 /** 1310 * thp_order - Order of a transparent huge page. 1311 * @page: Head page of a transparent huge page. 1312 */ 1313 static inline unsigned int thp_order(struct page *page) 1314 { 1315 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1316 return compound_order(page); 1317 } 1318 1319 /** 1320 * thp_size - Size of a transparent huge page. 1321 * @page: Head page of a transparent huge page. 1322 * 1323 * Return: Number of bytes in this page. 1324 */ 1325 static inline unsigned long thp_size(struct page *page) 1326 { 1327 return PAGE_SIZE << thp_order(page); 1328 } 1329 1330 #ifdef CONFIG_MMU 1331 /* 1332 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1333 * servicing faults for write access. In the normal case, do always want 1334 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1335 * that do not have writing enabled, when used by access_process_vm. 1336 */ 1337 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1338 { 1339 if (likely(vma->vm_flags & VM_WRITE)) 1340 pte = pte_mkwrite(pte, vma); 1341 return pte; 1342 } 1343 1344 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1345 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1346 struct page *page, unsigned int nr, unsigned long addr); 1347 1348 vm_fault_t finish_fault(struct vm_fault *vmf); 1349 #endif 1350 1351 /* 1352 * Multiple processes may "see" the same page. E.g. for untouched 1353 * mappings of /dev/null, all processes see the same page full of 1354 * zeroes, and text pages of executables and shared libraries have 1355 * only one copy in memory, at most, normally. 1356 * 1357 * For the non-reserved pages, page_count(page) denotes a reference count. 1358 * page_count() == 0 means the page is free. page->lru is then used for 1359 * freelist management in the buddy allocator. 1360 * page_count() > 0 means the page has been allocated. 1361 * 1362 * Pages are allocated by the slab allocator in order to provide memory 1363 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1364 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1365 * unless a particular usage is carefully commented. (the responsibility of 1366 * freeing the kmalloc memory is the caller's, of course). 1367 * 1368 * A page may be used by anyone else who does a __get_free_page(). 1369 * In this case, page_count still tracks the references, and should only 1370 * be used through the normal accessor functions. The top bits of page->flags 1371 * and page->virtual store page management information, but all other fields 1372 * are unused and could be used privately, carefully. The management of this 1373 * page is the responsibility of the one who allocated it, and those who have 1374 * subsequently been given references to it. 1375 * 1376 * The other pages (we may call them "pagecache pages") are completely 1377 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1378 * The following discussion applies only to them. 1379 * 1380 * A pagecache page contains an opaque `private' member, which belongs to the 1381 * page's address_space. Usually, this is the address of a circular list of 1382 * the page's disk buffers. PG_private must be set to tell the VM to call 1383 * into the filesystem to release these pages. 1384 * 1385 * A page may belong to an inode's memory mapping. In this case, page->mapping 1386 * is the pointer to the inode, and page->index is the file offset of the page, 1387 * in units of PAGE_SIZE. 1388 * 1389 * If pagecache pages are not associated with an inode, they are said to be 1390 * anonymous pages. These may become associated with the swapcache, and in that 1391 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1392 * 1393 * In either case (swapcache or inode backed), the pagecache itself holds one 1394 * reference to the page. Setting PG_private should also increment the 1395 * refcount. The each user mapping also has a reference to the page. 1396 * 1397 * The pagecache pages are stored in a per-mapping radix tree, which is 1398 * rooted at mapping->i_pages, and indexed by offset. 1399 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1400 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1401 * 1402 * All pagecache pages may be subject to I/O: 1403 * - inode pages may need to be read from disk, 1404 * - inode pages which have been modified and are MAP_SHARED may need 1405 * to be written back to the inode on disk, 1406 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1407 * modified may need to be swapped out to swap space and (later) to be read 1408 * back into memory. 1409 */ 1410 1411 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1412 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1413 1414 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1415 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1416 { 1417 if (!static_branch_unlikely(&devmap_managed_key)) 1418 return false; 1419 if (!is_zone_device_page(page)) 1420 return false; 1421 return __put_devmap_managed_page_refs(page, refs); 1422 } 1423 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1424 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1425 { 1426 return false; 1427 } 1428 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1429 1430 static inline bool put_devmap_managed_page(struct page *page) 1431 { 1432 return put_devmap_managed_page_refs(page, 1); 1433 } 1434 1435 /* 127: arbitrary random number, small enough to assemble well */ 1436 #define folio_ref_zero_or_close_to_overflow(folio) \ 1437 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1438 1439 /** 1440 * folio_get - Increment the reference count on a folio. 1441 * @folio: The folio. 1442 * 1443 * Context: May be called in any context, as long as you know that 1444 * you have a refcount on the folio. If you do not already have one, 1445 * folio_try_get() may be the right interface for you to use. 1446 */ 1447 static inline void folio_get(struct folio *folio) 1448 { 1449 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1450 folio_ref_inc(folio); 1451 } 1452 1453 static inline void get_page(struct page *page) 1454 { 1455 folio_get(page_folio(page)); 1456 } 1457 1458 static inline __must_check bool try_get_page(struct page *page) 1459 { 1460 page = compound_head(page); 1461 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1462 return false; 1463 page_ref_inc(page); 1464 return true; 1465 } 1466 1467 /** 1468 * folio_put - Decrement the reference count on a folio. 1469 * @folio: The folio. 1470 * 1471 * If the folio's reference count reaches zero, the memory will be 1472 * released back to the page allocator and may be used by another 1473 * allocation immediately. Do not access the memory or the struct folio 1474 * after calling folio_put() unless you can be sure that it wasn't the 1475 * last reference. 1476 * 1477 * Context: May be called in process or interrupt context, but not in NMI 1478 * context. May be called while holding a spinlock. 1479 */ 1480 static inline void folio_put(struct folio *folio) 1481 { 1482 if (folio_put_testzero(folio)) 1483 __folio_put(folio); 1484 } 1485 1486 /** 1487 * folio_put_refs - Reduce the reference count on a folio. 1488 * @folio: The folio. 1489 * @refs: The amount to subtract from the folio's reference count. 1490 * 1491 * If the folio's reference count reaches zero, the memory will be 1492 * released back to the page allocator and may be used by another 1493 * allocation immediately. Do not access the memory or the struct folio 1494 * after calling folio_put_refs() unless you can be sure that these weren't 1495 * the last references. 1496 * 1497 * Context: May be called in process or interrupt context, but not in NMI 1498 * context. May be called while holding a spinlock. 1499 */ 1500 static inline void folio_put_refs(struct folio *folio, int refs) 1501 { 1502 if (folio_ref_sub_and_test(folio, refs)) 1503 __folio_put(folio); 1504 } 1505 1506 /* 1507 * union release_pages_arg - an array of pages or folios 1508 * 1509 * release_pages() releases a simple array of multiple pages, and 1510 * accepts various different forms of said page array: either 1511 * a regular old boring array of pages, an array of folios, or 1512 * an array of encoded page pointers. 1513 * 1514 * The transparent union syntax for this kind of "any of these 1515 * argument types" is all kinds of ugly, so look away. 1516 */ 1517 typedef union { 1518 struct page **pages; 1519 struct folio **folios; 1520 struct encoded_page **encoded_pages; 1521 } release_pages_arg __attribute__ ((__transparent_union__)); 1522 1523 void release_pages(release_pages_arg, int nr); 1524 1525 /** 1526 * folios_put - Decrement the reference count on an array of folios. 1527 * @folios: The folios. 1528 * @nr: How many folios there are. 1529 * 1530 * Like folio_put(), but for an array of folios. This is more efficient 1531 * than writing the loop yourself as it will optimise the locks which 1532 * need to be taken if the folios are freed. 1533 * 1534 * Context: May be called in process or interrupt context, but not in NMI 1535 * context. May be called while holding a spinlock. 1536 */ 1537 static inline void folios_put(struct folio **folios, unsigned int nr) 1538 { 1539 release_pages(folios, nr); 1540 } 1541 1542 static inline void put_page(struct page *page) 1543 { 1544 struct folio *folio = page_folio(page); 1545 1546 /* 1547 * For some devmap managed pages we need to catch refcount transition 1548 * from 2 to 1: 1549 */ 1550 if (put_devmap_managed_page(&folio->page)) 1551 return; 1552 folio_put(folio); 1553 } 1554 1555 /* 1556 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1557 * the page's refcount so that two separate items are tracked: the original page 1558 * reference count, and also a new count of how many pin_user_pages() calls were 1559 * made against the page. ("gup-pinned" is another term for the latter). 1560 * 1561 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1562 * distinct from normal pages. As such, the unpin_user_page() call (and its 1563 * variants) must be used in order to release gup-pinned pages. 1564 * 1565 * Choice of value: 1566 * 1567 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1568 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1569 * simpler, due to the fact that adding an even power of two to the page 1570 * refcount has the effect of using only the upper N bits, for the code that 1571 * counts up using the bias value. This means that the lower bits are left for 1572 * the exclusive use of the original code that increments and decrements by one 1573 * (or at least, by much smaller values than the bias value). 1574 * 1575 * Of course, once the lower bits overflow into the upper bits (and this is 1576 * OK, because subtraction recovers the original values), then visual inspection 1577 * no longer suffices to directly view the separate counts. However, for normal 1578 * applications that don't have huge page reference counts, this won't be an 1579 * issue. 1580 * 1581 * Locking: the lockless algorithm described in folio_try_get_rcu() 1582 * provides safe operation for get_user_pages(), page_mkclean() and 1583 * other calls that race to set up page table entries. 1584 */ 1585 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1586 1587 void unpin_user_page(struct page *page); 1588 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1589 bool make_dirty); 1590 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1591 bool make_dirty); 1592 void unpin_user_pages(struct page **pages, unsigned long npages); 1593 1594 static inline bool is_cow_mapping(vm_flags_t flags) 1595 { 1596 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1597 } 1598 1599 #ifndef CONFIG_MMU 1600 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1601 { 1602 /* 1603 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1604 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1605 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1606 * underlying memory if ptrace is active, so this is only possible if 1607 * ptrace does not apply. Note that there is no mprotect() to upgrade 1608 * write permissions later. 1609 */ 1610 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1611 } 1612 #endif 1613 1614 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1615 #define SECTION_IN_PAGE_FLAGS 1616 #endif 1617 1618 /* 1619 * The identification function is mainly used by the buddy allocator for 1620 * determining if two pages could be buddies. We are not really identifying 1621 * the zone since we could be using the section number id if we do not have 1622 * node id available in page flags. 1623 * We only guarantee that it will return the same value for two combinable 1624 * pages in a zone. 1625 */ 1626 static inline int page_zone_id(struct page *page) 1627 { 1628 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1629 } 1630 1631 #ifdef NODE_NOT_IN_PAGE_FLAGS 1632 extern int page_to_nid(const struct page *page); 1633 #else 1634 static inline int page_to_nid(const struct page *page) 1635 { 1636 struct page *p = (struct page *)page; 1637 1638 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1639 } 1640 #endif 1641 1642 static inline int folio_nid(const struct folio *folio) 1643 { 1644 return page_to_nid(&folio->page); 1645 } 1646 1647 #ifdef CONFIG_NUMA_BALANCING 1648 /* page access time bits needs to hold at least 4 seconds */ 1649 #define PAGE_ACCESS_TIME_MIN_BITS 12 1650 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1651 #define PAGE_ACCESS_TIME_BUCKETS \ 1652 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1653 #else 1654 #define PAGE_ACCESS_TIME_BUCKETS 0 1655 #endif 1656 1657 #define PAGE_ACCESS_TIME_MASK \ 1658 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1659 1660 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1661 { 1662 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1663 } 1664 1665 static inline int cpupid_to_pid(int cpupid) 1666 { 1667 return cpupid & LAST__PID_MASK; 1668 } 1669 1670 static inline int cpupid_to_cpu(int cpupid) 1671 { 1672 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1673 } 1674 1675 static inline int cpupid_to_nid(int cpupid) 1676 { 1677 return cpu_to_node(cpupid_to_cpu(cpupid)); 1678 } 1679 1680 static inline bool cpupid_pid_unset(int cpupid) 1681 { 1682 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1683 } 1684 1685 static inline bool cpupid_cpu_unset(int cpupid) 1686 { 1687 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1688 } 1689 1690 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1691 { 1692 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1693 } 1694 1695 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1696 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1697 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1698 { 1699 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1700 } 1701 1702 static inline int folio_last_cpupid(struct folio *folio) 1703 { 1704 return folio->_last_cpupid; 1705 } 1706 static inline void page_cpupid_reset_last(struct page *page) 1707 { 1708 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1709 } 1710 #else 1711 static inline int folio_last_cpupid(struct folio *folio) 1712 { 1713 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1714 } 1715 1716 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1717 1718 static inline void page_cpupid_reset_last(struct page *page) 1719 { 1720 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1721 } 1722 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1723 1724 static inline int folio_xchg_access_time(struct folio *folio, int time) 1725 { 1726 int last_time; 1727 1728 last_time = folio_xchg_last_cpupid(folio, 1729 time >> PAGE_ACCESS_TIME_BUCKETS); 1730 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1731 } 1732 1733 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1734 { 1735 unsigned int pid_bit; 1736 1737 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1738 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1739 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1740 } 1741 } 1742 #else /* !CONFIG_NUMA_BALANCING */ 1743 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1744 { 1745 return folio_nid(folio); /* XXX */ 1746 } 1747 1748 static inline int folio_xchg_access_time(struct folio *folio, int time) 1749 { 1750 return 0; 1751 } 1752 1753 static inline int folio_last_cpupid(struct folio *folio) 1754 { 1755 return folio_nid(folio); /* XXX */ 1756 } 1757 1758 static inline int cpupid_to_nid(int cpupid) 1759 { 1760 return -1; 1761 } 1762 1763 static inline int cpupid_to_pid(int cpupid) 1764 { 1765 return -1; 1766 } 1767 1768 static inline int cpupid_to_cpu(int cpupid) 1769 { 1770 return -1; 1771 } 1772 1773 static inline int cpu_pid_to_cpupid(int nid, int pid) 1774 { 1775 return -1; 1776 } 1777 1778 static inline bool cpupid_pid_unset(int cpupid) 1779 { 1780 return true; 1781 } 1782 1783 static inline void page_cpupid_reset_last(struct page *page) 1784 { 1785 } 1786 1787 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1788 { 1789 return false; 1790 } 1791 1792 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1793 { 1794 } 1795 #endif /* CONFIG_NUMA_BALANCING */ 1796 1797 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1798 1799 /* 1800 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1801 * setting tags for all pages to native kernel tag value 0xff, as the default 1802 * value 0x00 maps to 0xff. 1803 */ 1804 1805 static inline u8 page_kasan_tag(const struct page *page) 1806 { 1807 u8 tag = 0xff; 1808 1809 if (kasan_enabled()) { 1810 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1811 tag ^= 0xff; 1812 } 1813 1814 return tag; 1815 } 1816 1817 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1818 { 1819 unsigned long old_flags, flags; 1820 1821 if (!kasan_enabled()) 1822 return; 1823 1824 tag ^= 0xff; 1825 old_flags = READ_ONCE(page->flags); 1826 do { 1827 flags = old_flags; 1828 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1829 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1830 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1831 } 1832 1833 static inline void page_kasan_tag_reset(struct page *page) 1834 { 1835 if (kasan_enabled()) 1836 page_kasan_tag_set(page, 0xff); 1837 } 1838 1839 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1840 1841 static inline u8 page_kasan_tag(const struct page *page) 1842 { 1843 return 0xff; 1844 } 1845 1846 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1847 static inline void page_kasan_tag_reset(struct page *page) { } 1848 1849 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1850 1851 static inline struct zone *page_zone(const struct page *page) 1852 { 1853 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1854 } 1855 1856 static inline pg_data_t *page_pgdat(const struct page *page) 1857 { 1858 return NODE_DATA(page_to_nid(page)); 1859 } 1860 1861 static inline struct zone *folio_zone(const struct folio *folio) 1862 { 1863 return page_zone(&folio->page); 1864 } 1865 1866 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1867 { 1868 return page_pgdat(&folio->page); 1869 } 1870 1871 #ifdef SECTION_IN_PAGE_FLAGS 1872 static inline void set_page_section(struct page *page, unsigned long section) 1873 { 1874 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1875 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1876 } 1877 1878 static inline unsigned long page_to_section(const struct page *page) 1879 { 1880 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1881 } 1882 #endif 1883 1884 /** 1885 * folio_pfn - Return the Page Frame Number of a folio. 1886 * @folio: The folio. 1887 * 1888 * A folio may contain multiple pages. The pages have consecutive 1889 * Page Frame Numbers. 1890 * 1891 * Return: The Page Frame Number of the first page in the folio. 1892 */ 1893 static inline unsigned long folio_pfn(struct folio *folio) 1894 { 1895 return page_to_pfn(&folio->page); 1896 } 1897 1898 static inline struct folio *pfn_folio(unsigned long pfn) 1899 { 1900 return page_folio(pfn_to_page(pfn)); 1901 } 1902 1903 /** 1904 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1905 * @folio: The folio. 1906 * 1907 * This function checks if a folio has been pinned via a call to 1908 * a function in the pin_user_pages() family. 1909 * 1910 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1911 * because it means "definitely not pinned for DMA", but true means "probably 1912 * pinned for DMA, but possibly a false positive due to having at least 1913 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1914 * 1915 * False positives are OK, because: a) it's unlikely for a folio to 1916 * get that many refcounts, and b) all the callers of this routine are 1917 * expected to be able to deal gracefully with a false positive. 1918 * 1919 * For large folios, the result will be exactly correct. That's because 1920 * we have more tracking data available: the _pincount field is used 1921 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1922 * 1923 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1924 * 1925 * Return: True, if it is likely that the page has been "dma-pinned". 1926 * False, if the page is definitely not dma-pinned. 1927 */ 1928 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1929 { 1930 if (folio_test_large(folio)) 1931 return atomic_read(&folio->_pincount) > 0; 1932 1933 /* 1934 * folio_ref_count() is signed. If that refcount overflows, then 1935 * folio_ref_count() returns a negative value, and callers will avoid 1936 * further incrementing the refcount. 1937 * 1938 * Here, for that overflow case, use the sign bit to count a little 1939 * bit higher via unsigned math, and thus still get an accurate result. 1940 */ 1941 return ((unsigned int)folio_ref_count(folio)) >= 1942 GUP_PIN_COUNTING_BIAS; 1943 } 1944 1945 static inline bool page_maybe_dma_pinned(struct page *page) 1946 { 1947 return folio_maybe_dma_pinned(page_folio(page)); 1948 } 1949 1950 /* 1951 * This should most likely only be called during fork() to see whether we 1952 * should break the cow immediately for an anon page on the src mm. 1953 * 1954 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1955 */ 1956 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1957 struct page *page) 1958 { 1959 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1960 1961 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1962 return false; 1963 1964 return page_maybe_dma_pinned(page); 1965 } 1966 1967 /** 1968 * is_zero_page - Query if a page is a zero page 1969 * @page: The page to query 1970 * 1971 * This returns true if @page is one of the permanent zero pages. 1972 */ 1973 static inline bool is_zero_page(const struct page *page) 1974 { 1975 return is_zero_pfn(page_to_pfn(page)); 1976 } 1977 1978 /** 1979 * is_zero_folio - Query if a folio is a zero page 1980 * @folio: The folio to query 1981 * 1982 * This returns true if @folio is one of the permanent zero pages. 1983 */ 1984 static inline bool is_zero_folio(const struct folio *folio) 1985 { 1986 return is_zero_page(&folio->page); 1987 } 1988 1989 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1990 #ifdef CONFIG_MIGRATION 1991 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1992 { 1993 #ifdef CONFIG_CMA 1994 int mt = folio_migratetype(folio); 1995 1996 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1997 return false; 1998 #endif 1999 /* The zero page can be "pinned" but gets special handling. */ 2000 if (is_zero_folio(folio)) 2001 return true; 2002 2003 /* Coherent device memory must always allow eviction. */ 2004 if (folio_is_device_coherent(folio)) 2005 return false; 2006 2007 /* Otherwise, non-movable zone folios can be pinned. */ 2008 return !folio_is_zone_movable(folio); 2009 2010 } 2011 #else 2012 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2013 { 2014 return true; 2015 } 2016 #endif 2017 2018 static inline void set_page_zone(struct page *page, enum zone_type zone) 2019 { 2020 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2021 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2022 } 2023 2024 static inline void set_page_node(struct page *page, unsigned long node) 2025 { 2026 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2027 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2028 } 2029 2030 static inline void set_page_links(struct page *page, enum zone_type zone, 2031 unsigned long node, unsigned long pfn) 2032 { 2033 set_page_zone(page, zone); 2034 set_page_node(page, node); 2035 #ifdef SECTION_IN_PAGE_FLAGS 2036 set_page_section(page, pfn_to_section_nr(pfn)); 2037 #endif 2038 } 2039 2040 /** 2041 * folio_nr_pages - The number of pages in the folio. 2042 * @folio: The folio. 2043 * 2044 * Return: A positive power of two. 2045 */ 2046 static inline long folio_nr_pages(struct folio *folio) 2047 { 2048 if (!folio_test_large(folio)) 2049 return 1; 2050 #ifdef CONFIG_64BIT 2051 return folio->_folio_nr_pages; 2052 #else 2053 return 1L << (folio->_flags_1 & 0xff); 2054 #endif 2055 } 2056 2057 /* 2058 * compound_nr() returns the number of pages in this potentially compound 2059 * page. compound_nr() can be called on a tail page, and is defined to 2060 * return 1 in that case. 2061 */ 2062 static inline unsigned long compound_nr(struct page *page) 2063 { 2064 struct folio *folio = (struct folio *)page; 2065 2066 if (!test_bit(PG_head, &folio->flags)) 2067 return 1; 2068 #ifdef CONFIG_64BIT 2069 return folio->_folio_nr_pages; 2070 #else 2071 return 1L << (folio->_flags_1 & 0xff); 2072 #endif 2073 } 2074 2075 /** 2076 * thp_nr_pages - The number of regular pages in this huge page. 2077 * @page: The head page of a huge page. 2078 */ 2079 static inline int thp_nr_pages(struct page *page) 2080 { 2081 return folio_nr_pages((struct folio *)page); 2082 } 2083 2084 /** 2085 * folio_next - Move to the next physical folio. 2086 * @folio: The folio we're currently operating on. 2087 * 2088 * If you have physically contiguous memory which may span more than 2089 * one folio (eg a &struct bio_vec), use this function to move from one 2090 * folio to the next. Do not use it if the memory is only virtually 2091 * contiguous as the folios are almost certainly not adjacent to each 2092 * other. This is the folio equivalent to writing ``page++``. 2093 * 2094 * Context: We assume that the folios are refcounted and/or locked at a 2095 * higher level and do not adjust the reference counts. 2096 * Return: The next struct folio. 2097 */ 2098 static inline struct folio *folio_next(struct folio *folio) 2099 { 2100 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2101 } 2102 2103 /** 2104 * folio_shift - The size of the memory described by this folio. 2105 * @folio: The folio. 2106 * 2107 * A folio represents a number of bytes which is a power-of-two in size. 2108 * This function tells you which power-of-two the folio is. See also 2109 * folio_size() and folio_order(). 2110 * 2111 * Context: The caller should have a reference on the folio to prevent 2112 * it from being split. It is not necessary for the folio to be locked. 2113 * Return: The base-2 logarithm of the size of this folio. 2114 */ 2115 static inline unsigned int folio_shift(struct folio *folio) 2116 { 2117 return PAGE_SHIFT + folio_order(folio); 2118 } 2119 2120 /** 2121 * folio_size - The number of bytes in a folio. 2122 * @folio: The folio. 2123 * 2124 * Context: The caller should have a reference on the folio to prevent 2125 * it from being split. It is not necessary for the folio to be locked. 2126 * Return: The number of bytes in this folio. 2127 */ 2128 static inline size_t folio_size(struct folio *folio) 2129 { 2130 return PAGE_SIZE << folio_order(folio); 2131 } 2132 2133 /** 2134 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2135 * @folio: The folio. 2136 * 2137 * folio_estimated_sharers() aims to serve as a function to efficiently 2138 * estimate the number of processes sharing a folio. This is done by 2139 * looking at the precise mapcount of the first subpage in the folio, and 2140 * assuming the other subpages are the same. This may not be true for large 2141 * folios. If you want exact mapcounts for exact calculations, look at 2142 * page_mapcount() or folio_total_mapcount(). 2143 * 2144 * Return: The estimated number of processes sharing a folio. 2145 */ 2146 static inline int folio_estimated_sharers(struct folio *folio) 2147 { 2148 return page_mapcount(folio_page(folio, 0)); 2149 } 2150 2151 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2152 static inline int arch_make_page_accessible(struct page *page) 2153 { 2154 return 0; 2155 } 2156 #endif 2157 2158 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2159 static inline int arch_make_folio_accessible(struct folio *folio) 2160 { 2161 int ret; 2162 long i, nr = folio_nr_pages(folio); 2163 2164 for (i = 0; i < nr; i++) { 2165 ret = arch_make_page_accessible(folio_page(folio, i)); 2166 if (ret) 2167 break; 2168 } 2169 2170 return ret; 2171 } 2172 #endif 2173 2174 /* 2175 * Some inline functions in vmstat.h depend on page_zone() 2176 */ 2177 #include <linux/vmstat.h> 2178 2179 static __always_inline void *lowmem_page_address(const struct page *page) 2180 { 2181 return page_to_virt(page); 2182 } 2183 2184 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2185 #define HASHED_PAGE_VIRTUAL 2186 #endif 2187 2188 #if defined(WANT_PAGE_VIRTUAL) 2189 static inline void *page_address(const struct page *page) 2190 { 2191 return page->virtual; 2192 } 2193 static inline void set_page_address(struct page *page, void *address) 2194 { 2195 page->virtual = address; 2196 } 2197 #define page_address_init() do { } while(0) 2198 #endif 2199 2200 #if defined(HASHED_PAGE_VIRTUAL) 2201 void *page_address(const struct page *page); 2202 void set_page_address(struct page *page, void *virtual); 2203 void page_address_init(void); 2204 #endif 2205 2206 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2207 #define page_address(page) lowmem_page_address(page) 2208 #define set_page_address(page, address) do { } while(0) 2209 #define page_address_init() do { } while(0) 2210 #endif 2211 2212 static inline void *folio_address(const struct folio *folio) 2213 { 2214 return page_address(&folio->page); 2215 } 2216 2217 extern pgoff_t __page_file_index(struct page *page); 2218 2219 /* 2220 * Return the pagecache index of the passed page. Regular pagecache pages 2221 * use ->index whereas swapcache pages use swp_offset(->private) 2222 */ 2223 static inline pgoff_t page_index(struct page *page) 2224 { 2225 if (unlikely(PageSwapCache(page))) 2226 return __page_file_index(page); 2227 return page->index; 2228 } 2229 2230 /* 2231 * Return true only if the page has been allocated with 2232 * ALLOC_NO_WATERMARKS and the low watermark was not 2233 * met implying that the system is under some pressure. 2234 */ 2235 static inline bool page_is_pfmemalloc(const struct page *page) 2236 { 2237 /* 2238 * lru.next has bit 1 set if the page is allocated from the 2239 * pfmemalloc reserves. Callers may simply overwrite it if 2240 * they do not need to preserve that information. 2241 */ 2242 return (uintptr_t)page->lru.next & BIT(1); 2243 } 2244 2245 /* 2246 * Return true only if the folio has been allocated with 2247 * ALLOC_NO_WATERMARKS and the low watermark was not 2248 * met implying that the system is under some pressure. 2249 */ 2250 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2251 { 2252 /* 2253 * lru.next has bit 1 set if the page is allocated from the 2254 * pfmemalloc reserves. Callers may simply overwrite it if 2255 * they do not need to preserve that information. 2256 */ 2257 return (uintptr_t)folio->lru.next & BIT(1); 2258 } 2259 2260 /* 2261 * Only to be called by the page allocator on a freshly allocated 2262 * page. 2263 */ 2264 static inline void set_page_pfmemalloc(struct page *page) 2265 { 2266 page->lru.next = (void *)BIT(1); 2267 } 2268 2269 static inline void clear_page_pfmemalloc(struct page *page) 2270 { 2271 page->lru.next = NULL; 2272 } 2273 2274 /* 2275 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2276 */ 2277 extern void pagefault_out_of_memory(void); 2278 2279 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2280 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2281 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2282 2283 /* 2284 * Parameter block passed down to zap_pte_range in exceptional cases. 2285 */ 2286 struct zap_details { 2287 struct folio *single_folio; /* Locked folio to be unmapped */ 2288 bool even_cows; /* Zap COWed private pages too? */ 2289 zap_flags_t zap_flags; /* Extra flags for zapping */ 2290 }; 2291 2292 /* 2293 * Whether to drop the pte markers, for example, the uffd-wp information for 2294 * file-backed memory. This should only be specified when we will completely 2295 * drop the page in the mm, either by truncation or unmapping of the vma. By 2296 * default, the flag is not set. 2297 */ 2298 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2299 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2300 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2301 2302 #ifdef CONFIG_SCHED_MM_CID 2303 void sched_mm_cid_before_execve(struct task_struct *t); 2304 void sched_mm_cid_after_execve(struct task_struct *t); 2305 void sched_mm_cid_fork(struct task_struct *t); 2306 void sched_mm_cid_exit_signals(struct task_struct *t); 2307 static inline int task_mm_cid(struct task_struct *t) 2308 { 2309 return t->mm_cid; 2310 } 2311 #else 2312 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2313 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2314 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2315 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2316 static inline int task_mm_cid(struct task_struct *t) 2317 { 2318 /* 2319 * Use the processor id as a fall-back when the mm cid feature is 2320 * disabled. This provides functional per-cpu data structure accesses 2321 * in user-space, althrough it won't provide the memory usage benefits. 2322 */ 2323 return raw_smp_processor_id(); 2324 } 2325 #endif 2326 2327 #ifdef CONFIG_MMU 2328 extern bool can_do_mlock(void); 2329 #else 2330 static inline bool can_do_mlock(void) { return false; } 2331 #endif 2332 extern int user_shm_lock(size_t, struct ucounts *); 2333 extern void user_shm_unlock(size_t, struct ucounts *); 2334 2335 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2336 pte_t pte); 2337 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2338 pte_t pte); 2339 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2340 unsigned long addr, pmd_t pmd); 2341 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2342 pmd_t pmd); 2343 2344 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2345 unsigned long size); 2346 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2347 unsigned long size, struct zap_details *details); 2348 static inline void zap_vma_pages(struct vm_area_struct *vma) 2349 { 2350 zap_page_range_single(vma, vma->vm_start, 2351 vma->vm_end - vma->vm_start, NULL); 2352 } 2353 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2354 struct vm_area_struct *start_vma, unsigned long start, 2355 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2356 2357 struct mmu_notifier_range; 2358 2359 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2360 unsigned long end, unsigned long floor, unsigned long ceiling); 2361 int 2362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2363 int follow_pte(struct mm_struct *mm, unsigned long address, 2364 pte_t **ptepp, spinlock_t **ptlp); 2365 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2366 unsigned long *pfn); 2367 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2368 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2369 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2370 void *buf, int len, int write); 2371 2372 extern void truncate_pagecache(struct inode *inode, loff_t new); 2373 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2374 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2375 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2376 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2377 2378 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2379 unsigned long address, struct pt_regs *regs); 2380 2381 #ifdef CONFIG_MMU 2382 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2383 unsigned long address, unsigned int flags, 2384 struct pt_regs *regs); 2385 extern int fixup_user_fault(struct mm_struct *mm, 2386 unsigned long address, unsigned int fault_flags, 2387 bool *unlocked); 2388 void unmap_mapping_pages(struct address_space *mapping, 2389 pgoff_t start, pgoff_t nr, bool even_cows); 2390 void unmap_mapping_range(struct address_space *mapping, 2391 loff_t const holebegin, loff_t const holelen, int even_cows); 2392 #else 2393 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2394 unsigned long address, unsigned int flags, 2395 struct pt_regs *regs) 2396 { 2397 /* should never happen if there's no MMU */ 2398 BUG(); 2399 return VM_FAULT_SIGBUS; 2400 } 2401 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2402 unsigned int fault_flags, bool *unlocked) 2403 { 2404 /* should never happen if there's no MMU */ 2405 BUG(); 2406 return -EFAULT; 2407 } 2408 static inline void unmap_mapping_pages(struct address_space *mapping, 2409 pgoff_t start, pgoff_t nr, bool even_cows) { } 2410 static inline void unmap_mapping_range(struct address_space *mapping, 2411 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2412 #endif 2413 2414 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2415 loff_t const holebegin, loff_t const holelen) 2416 { 2417 unmap_mapping_range(mapping, holebegin, holelen, 0); 2418 } 2419 2420 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2421 unsigned long addr); 2422 2423 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2424 void *buf, int len, unsigned int gup_flags); 2425 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2426 void *buf, int len, unsigned int gup_flags); 2427 2428 long get_user_pages_remote(struct mm_struct *mm, 2429 unsigned long start, unsigned long nr_pages, 2430 unsigned int gup_flags, struct page **pages, 2431 int *locked); 2432 long pin_user_pages_remote(struct mm_struct *mm, 2433 unsigned long start, unsigned long nr_pages, 2434 unsigned int gup_flags, struct page **pages, 2435 int *locked); 2436 2437 /* 2438 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2439 */ 2440 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2441 unsigned long addr, 2442 int gup_flags, 2443 struct vm_area_struct **vmap) 2444 { 2445 struct page *page; 2446 struct vm_area_struct *vma; 2447 int got; 2448 2449 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2450 return ERR_PTR(-EINVAL); 2451 2452 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2453 2454 if (got < 0) 2455 return ERR_PTR(got); 2456 2457 vma = vma_lookup(mm, addr); 2458 if (WARN_ON_ONCE(!vma)) { 2459 put_page(page); 2460 return ERR_PTR(-EINVAL); 2461 } 2462 2463 *vmap = vma; 2464 return page; 2465 } 2466 2467 long get_user_pages(unsigned long start, unsigned long nr_pages, 2468 unsigned int gup_flags, struct page **pages); 2469 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2470 unsigned int gup_flags, struct page **pages); 2471 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2472 struct page **pages, unsigned int gup_flags); 2473 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2474 struct page **pages, unsigned int gup_flags); 2475 2476 int get_user_pages_fast(unsigned long start, int nr_pages, 2477 unsigned int gup_flags, struct page **pages); 2478 int pin_user_pages_fast(unsigned long start, int nr_pages, 2479 unsigned int gup_flags, struct page **pages); 2480 void folio_add_pin(struct folio *folio); 2481 2482 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2483 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2484 struct task_struct *task, bool bypass_rlim); 2485 2486 struct kvec; 2487 struct page *get_dump_page(unsigned long addr); 2488 2489 bool folio_mark_dirty(struct folio *folio); 2490 bool set_page_dirty(struct page *page); 2491 int set_page_dirty_lock(struct page *page); 2492 2493 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2494 2495 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2496 unsigned long old_addr, struct vm_area_struct *new_vma, 2497 unsigned long new_addr, unsigned long len, 2498 bool need_rmap_locks, bool for_stack); 2499 2500 /* 2501 * Flags used by change_protection(). For now we make it a bitmap so 2502 * that we can pass in multiple flags just like parameters. However 2503 * for now all the callers are only use one of the flags at the same 2504 * time. 2505 */ 2506 /* 2507 * Whether we should manually check if we can map individual PTEs writable, 2508 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2509 * PTEs automatically in a writable mapping. 2510 */ 2511 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2512 /* Whether this protection change is for NUMA hints */ 2513 #define MM_CP_PROT_NUMA (1UL << 1) 2514 /* Whether this change is for write protecting */ 2515 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2516 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2517 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2518 MM_CP_UFFD_WP_RESOLVE) 2519 2520 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2521 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2522 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2523 { 2524 /* 2525 * We want to check manually if we can change individual PTEs writable 2526 * if we can't do that automatically for all PTEs in a mapping. For 2527 * private mappings, that's always the case when we have write 2528 * permissions as we properly have to handle COW. 2529 */ 2530 if (vma->vm_flags & VM_SHARED) 2531 return vma_wants_writenotify(vma, vma->vm_page_prot); 2532 return !!(vma->vm_flags & VM_WRITE); 2533 2534 } 2535 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2536 pte_t pte); 2537 extern long change_protection(struct mmu_gather *tlb, 2538 struct vm_area_struct *vma, unsigned long start, 2539 unsigned long end, unsigned long cp_flags); 2540 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2541 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2542 unsigned long start, unsigned long end, unsigned long newflags); 2543 2544 /* 2545 * doesn't attempt to fault and will return short. 2546 */ 2547 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2548 unsigned int gup_flags, struct page **pages); 2549 2550 static inline bool get_user_page_fast_only(unsigned long addr, 2551 unsigned int gup_flags, struct page **pagep) 2552 { 2553 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2554 } 2555 /* 2556 * per-process(per-mm_struct) statistics. 2557 */ 2558 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2559 { 2560 return percpu_counter_read_positive(&mm->rss_stat[member]); 2561 } 2562 2563 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2564 2565 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2566 { 2567 percpu_counter_add(&mm->rss_stat[member], value); 2568 2569 mm_trace_rss_stat(mm, member); 2570 } 2571 2572 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2573 { 2574 percpu_counter_inc(&mm->rss_stat[member]); 2575 2576 mm_trace_rss_stat(mm, member); 2577 } 2578 2579 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2580 { 2581 percpu_counter_dec(&mm->rss_stat[member]); 2582 2583 mm_trace_rss_stat(mm, member); 2584 } 2585 2586 /* Optimized variant when page is already known not to be PageAnon */ 2587 static inline int mm_counter_file(struct page *page) 2588 { 2589 if (PageSwapBacked(page)) 2590 return MM_SHMEMPAGES; 2591 return MM_FILEPAGES; 2592 } 2593 2594 static inline int mm_counter(struct page *page) 2595 { 2596 if (PageAnon(page)) 2597 return MM_ANONPAGES; 2598 return mm_counter_file(page); 2599 } 2600 2601 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2602 { 2603 return get_mm_counter(mm, MM_FILEPAGES) + 2604 get_mm_counter(mm, MM_ANONPAGES) + 2605 get_mm_counter(mm, MM_SHMEMPAGES); 2606 } 2607 2608 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2609 { 2610 return max(mm->hiwater_rss, get_mm_rss(mm)); 2611 } 2612 2613 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2614 { 2615 return max(mm->hiwater_vm, mm->total_vm); 2616 } 2617 2618 static inline void update_hiwater_rss(struct mm_struct *mm) 2619 { 2620 unsigned long _rss = get_mm_rss(mm); 2621 2622 if ((mm)->hiwater_rss < _rss) 2623 (mm)->hiwater_rss = _rss; 2624 } 2625 2626 static inline void update_hiwater_vm(struct mm_struct *mm) 2627 { 2628 if (mm->hiwater_vm < mm->total_vm) 2629 mm->hiwater_vm = mm->total_vm; 2630 } 2631 2632 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2633 { 2634 mm->hiwater_rss = get_mm_rss(mm); 2635 } 2636 2637 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2638 struct mm_struct *mm) 2639 { 2640 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2641 2642 if (*maxrss < hiwater_rss) 2643 *maxrss = hiwater_rss; 2644 } 2645 2646 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2647 static inline int pte_special(pte_t pte) 2648 { 2649 return 0; 2650 } 2651 2652 static inline pte_t pte_mkspecial(pte_t pte) 2653 { 2654 return pte; 2655 } 2656 #endif 2657 2658 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2659 static inline int pte_devmap(pte_t pte) 2660 { 2661 return 0; 2662 } 2663 #endif 2664 2665 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2666 spinlock_t **ptl); 2667 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2668 spinlock_t **ptl) 2669 { 2670 pte_t *ptep; 2671 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2672 return ptep; 2673 } 2674 2675 #ifdef __PAGETABLE_P4D_FOLDED 2676 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2677 unsigned long address) 2678 { 2679 return 0; 2680 } 2681 #else 2682 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2683 #endif 2684 2685 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2686 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2687 unsigned long address) 2688 { 2689 return 0; 2690 } 2691 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2692 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2693 2694 #else 2695 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2696 2697 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2698 { 2699 if (mm_pud_folded(mm)) 2700 return; 2701 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2702 } 2703 2704 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2705 { 2706 if (mm_pud_folded(mm)) 2707 return; 2708 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2709 } 2710 #endif 2711 2712 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2713 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2714 unsigned long address) 2715 { 2716 return 0; 2717 } 2718 2719 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2720 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2721 2722 #else 2723 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2724 2725 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2726 { 2727 if (mm_pmd_folded(mm)) 2728 return; 2729 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2730 } 2731 2732 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2733 { 2734 if (mm_pmd_folded(mm)) 2735 return; 2736 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2737 } 2738 #endif 2739 2740 #ifdef CONFIG_MMU 2741 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2742 { 2743 atomic_long_set(&mm->pgtables_bytes, 0); 2744 } 2745 2746 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2747 { 2748 return atomic_long_read(&mm->pgtables_bytes); 2749 } 2750 2751 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2752 { 2753 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2754 } 2755 2756 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2757 { 2758 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2759 } 2760 #else 2761 2762 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2763 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2764 { 2765 return 0; 2766 } 2767 2768 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2769 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2770 #endif 2771 2772 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2773 int __pte_alloc_kernel(pmd_t *pmd); 2774 2775 #if defined(CONFIG_MMU) 2776 2777 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2778 unsigned long address) 2779 { 2780 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2781 NULL : p4d_offset(pgd, address); 2782 } 2783 2784 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2785 unsigned long address) 2786 { 2787 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2788 NULL : pud_offset(p4d, address); 2789 } 2790 2791 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2792 { 2793 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2794 NULL: pmd_offset(pud, address); 2795 } 2796 #endif /* CONFIG_MMU */ 2797 2798 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2799 { 2800 return page_ptdesc(virt_to_page(x)); 2801 } 2802 2803 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2804 { 2805 return page_to_virt(ptdesc_page(pt)); 2806 } 2807 2808 static inline void *ptdesc_address(const struct ptdesc *pt) 2809 { 2810 return folio_address(ptdesc_folio(pt)); 2811 } 2812 2813 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2814 { 2815 return folio_test_reserved(ptdesc_folio(pt)); 2816 } 2817 2818 /** 2819 * pagetable_alloc - Allocate pagetables 2820 * @gfp: GFP flags 2821 * @order: desired pagetable order 2822 * 2823 * pagetable_alloc allocates memory for page tables as well as a page table 2824 * descriptor to describe that memory. 2825 * 2826 * Return: The ptdesc describing the allocated page tables. 2827 */ 2828 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order) 2829 { 2830 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2831 2832 return page_ptdesc(page); 2833 } 2834 2835 /** 2836 * pagetable_free - Free pagetables 2837 * @pt: The page table descriptor 2838 * 2839 * pagetable_free frees the memory of all page tables described by a page 2840 * table descriptor and the memory for the descriptor itself. 2841 */ 2842 static inline void pagetable_free(struct ptdesc *pt) 2843 { 2844 struct page *page = ptdesc_page(pt); 2845 2846 __free_pages(page, compound_order(page)); 2847 } 2848 2849 #if USE_SPLIT_PTE_PTLOCKS 2850 #if ALLOC_SPLIT_PTLOCKS 2851 void __init ptlock_cache_init(void); 2852 bool ptlock_alloc(struct ptdesc *ptdesc); 2853 void ptlock_free(struct ptdesc *ptdesc); 2854 2855 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2856 { 2857 return ptdesc->ptl; 2858 } 2859 #else /* ALLOC_SPLIT_PTLOCKS */ 2860 static inline void ptlock_cache_init(void) 2861 { 2862 } 2863 2864 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2865 { 2866 return true; 2867 } 2868 2869 static inline void ptlock_free(struct ptdesc *ptdesc) 2870 { 2871 } 2872 2873 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2874 { 2875 return &ptdesc->ptl; 2876 } 2877 #endif /* ALLOC_SPLIT_PTLOCKS */ 2878 2879 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2880 { 2881 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2882 } 2883 2884 static inline bool ptlock_init(struct ptdesc *ptdesc) 2885 { 2886 /* 2887 * prep_new_page() initialize page->private (and therefore page->ptl) 2888 * with 0. Make sure nobody took it in use in between. 2889 * 2890 * It can happen if arch try to use slab for page table allocation: 2891 * slab code uses page->slab_cache, which share storage with page->ptl. 2892 */ 2893 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2894 if (!ptlock_alloc(ptdesc)) 2895 return false; 2896 spin_lock_init(ptlock_ptr(ptdesc)); 2897 return true; 2898 } 2899 2900 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2901 /* 2902 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2903 */ 2904 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2905 { 2906 return &mm->page_table_lock; 2907 } 2908 static inline void ptlock_cache_init(void) {} 2909 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2910 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2911 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2912 2913 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2914 { 2915 struct folio *folio = ptdesc_folio(ptdesc); 2916 2917 if (!ptlock_init(ptdesc)) 2918 return false; 2919 __folio_set_pgtable(folio); 2920 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2921 return true; 2922 } 2923 2924 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2925 { 2926 struct folio *folio = ptdesc_folio(ptdesc); 2927 2928 ptlock_free(ptdesc); 2929 __folio_clear_pgtable(folio); 2930 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2931 } 2932 2933 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2934 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2935 { 2936 return __pte_offset_map(pmd, addr, NULL); 2937 } 2938 2939 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2940 unsigned long addr, spinlock_t **ptlp); 2941 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2942 unsigned long addr, spinlock_t **ptlp) 2943 { 2944 pte_t *pte; 2945 2946 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2947 return pte; 2948 } 2949 2950 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2951 unsigned long addr, spinlock_t **ptlp); 2952 2953 #define pte_unmap_unlock(pte, ptl) do { \ 2954 spin_unlock(ptl); \ 2955 pte_unmap(pte); \ 2956 } while (0) 2957 2958 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2959 2960 #define pte_alloc_map(mm, pmd, address) \ 2961 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2962 2963 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2964 (pte_alloc(mm, pmd) ? \ 2965 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2966 2967 #define pte_alloc_kernel(pmd, address) \ 2968 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2969 NULL: pte_offset_kernel(pmd, address)) 2970 2971 #if USE_SPLIT_PMD_PTLOCKS 2972 2973 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2974 { 2975 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2976 return virt_to_page((void *)((unsigned long) pmd & mask)); 2977 } 2978 2979 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 2980 { 2981 return page_ptdesc(pmd_pgtable_page(pmd)); 2982 } 2983 2984 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2985 { 2986 return ptlock_ptr(pmd_ptdesc(pmd)); 2987 } 2988 2989 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 2990 { 2991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2992 ptdesc->pmd_huge_pte = NULL; 2993 #endif 2994 return ptlock_init(ptdesc); 2995 } 2996 2997 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 2998 { 2999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3000 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3001 #endif 3002 ptlock_free(ptdesc); 3003 } 3004 3005 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3006 3007 #else 3008 3009 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3010 { 3011 return &mm->page_table_lock; 3012 } 3013 3014 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3015 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3016 3017 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3018 3019 #endif 3020 3021 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3022 { 3023 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3024 spin_lock(ptl); 3025 return ptl; 3026 } 3027 3028 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3029 { 3030 struct folio *folio = ptdesc_folio(ptdesc); 3031 3032 if (!pmd_ptlock_init(ptdesc)) 3033 return false; 3034 __folio_set_pgtable(folio); 3035 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3036 return true; 3037 } 3038 3039 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3040 { 3041 struct folio *folio = ptdesc_folio(ptdesc); 3042 3043 pmd_ptlock_free(ptdesc); 3044 __folio_clear_pgtable(folio); 3045 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3046 } 3047 3048 /* 3049 * No scalability reason to split PUD locks yet, but follow the same pattern 3050 * as the PMD locks to make it easier if we decide to. The VM should not be 3051 * considered ready to switch to split PUD locks yet; there may be places 3052 * which need to be converted from page_table_lock. 3053 */ 3054 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3055 { 3056 return &mm->page_table_lock; 3057 } 3058 3059 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3060 { 3061 spinlock_t *ptl = pud_lockptr(mm, pud); 3062 3063 spin_lock(ptl); 3064 return ptl; 3065 } 3066 3067 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3068 { 3069 struct folio *folio = ptdesc_folio(ptdesc); 3070 3071 __folio_set_pgtable(folio); 3072 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3073 } 3074 3075 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3076 { 3077 struct folio *folio = ptdesc_folio(ptdesc); 3078 3079 __folio_clear_pgtable(folio); 3080 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3081 } 3082 3083 extern void __init pagecache_init(void); 3084 extern void free_initmem(void); 3085 3086 /* 3087 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3088 * into the buddy system. The freed pages will be poisoned with pattern 3089 * "poison" if it's within range [0, UCHAR_MAX]. 3090 * Return pages freed into the buddy system. 3091 */ 3092 extern unsigned long free_reserved_area(void *start, void *end, 3093 int poison, const char *s); 3094 3095 extern void adjust_managed_page_count(struct page *page, long count); 3096 3097 extern void reserve_bootmem_region(phys_addr_t start, 3098 phys_addr_t end, int nid); 3099 3100 /* Free the reserved page into the buddy system, so it gets managed. */ 3101 static inline void free_reserved_page(struct page *page) 3102 { 3103 ClearPageReserved(page); 3104 init_page_count(page); 3105 __free_page(page); 3106 adjust_managed_page_count(page, 1); 3107 } 3108 #define free_highmem_page(page) free_reserved_page(page) 3109 3110 static inline void mark_page_reserved(struct page *page) 3111 { 3112 SetPageReserved(page); 3113 adjust_managed_page_count(page, -1); 3114 } 3115 3116 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3117 { 3118 free_reserved_page(ptdesc_page(pt)); 3119 } 3120 3121 /* 3122 * Default method to free all the __init memory into the buddy system. 3123 * The freed pages will be poisoned with pattern "poison" if it's within 3124 * range [0, UCHAR_MAX]. 3125 * Return pages freed into the buddy system. 3126 */ 3127 static inline unsigned long free_initmem_default(int poison) 3128 { 3129 extern char __init_begin[], __init_end[]; 3130 3131 return free_reserved_area(&__init_begin, &__init_end, 3132 poison, "unused kernel image (initmem)"); 3133 } 3134 3135 static inline unsigned long get_num_physpages(void) 3136 { 3137 int nid; 3138 unsigned long phys_pages = 0; 3139 3140 for_each_online_node(nid) 3141 phys_pages += node_present_pages(nid); 3142 3143 return phys_pages; 3144 } 3145 3146 /* 3147 * Using memblock node mappings, an architecture may initialise its 3148 * zones, allocate the backing mem_map and account for memory holes in an 3149 * architecture independent manner. 3150 * 3151 * An architecture is expected to register range of page frames backed by 3152 * physical memory with memblock_add[_node]() before calling 3153 * free_area_init() passing in the PFN each zone ends at. At a basic 3154 * usage, an architecture is expected to do something like 3155 * 3156 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3157 * max_highmem_pfn}; 3158 * for_each_valid_physical_page_range() 3159 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3160 * free_area_init(max_zone_pfns); 3161 */ 3162 void free_area_init(unsigned long *max_zone_pfn); 3163 unsigned long node_map_pfn_alignment(void); 3164 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3165 unsigned long end_pfn); 3166 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3167 unsigned long end_pfn); 3168 extern void get_pfn_range_for_nid(unsigned int nid, 3169 unsigned long *start_pfn, unsigned long *end_pfn); 3170 3171 #ifndef CONFIG_NUMA 3172 static inline int early_pfn_to_nid(unsigned long pfn) 3173 { 3174 return 0; 3175 } 3176 #else 3177 /* please see mm/page_alloc.c */ 3178 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3179 #endif 3180 3181 extern void set_dma_reserve(unsigned long new_dma_reserve); 3182 extern void mem_init(void); 3183 extern void __init mmap_init(void); 3184 3185 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3186 static inline void show_mem(void) 3187 { 3188 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3189 } 3190 extern long si_mem_available(void); 3191 extern void si_meminfo(struct sysinfo * val); 3192 extern void si_meminfo_node(struct sysinfo *val, int nid); 3193 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3194 extern unsigned long arch_reserved_kernel_pages(void); 3195 #endif 3196 3197 extern __printf(3, 4) 3198 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3199 3200 extern void setup_per_cpu_pageset(void); 3201 3202 /* nommu.c */ 3203 extern atomic_long_t mmap_pages_allocated; 3204 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3205 3206 /* interval_tree.c */ 3207 void vma_interval_tree_insert(struct vm_area_struct *node, 3208 struct rb_root_cached *root); 3209 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3210 struct vm_area_struct *prev, 3211 struct rb_root_cached *root); 3212 void vma_interval_tree_remove(struct vm_area_struct *node, 3213 struct rb_root_cached *root); 3214 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3215 unsigned long start, unsigned long last); 3216 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3217 unsigned long start, unsigned long last); 3218 3219 #define vma_interval_tree_foreach(vma, root, start, last) \ 3220 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3221 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3222 3223 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3224 struct rb_root_cached *root); 3225 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3226 struct rb_root_cached *root); 3227 struct anon_vma_chain * 3228 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3229 unsigned long start, unsigned long last); 3230 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3231 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3232 #ifdef CONFIG_DEBUG_VM_RB 3233 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3234 #endif 3235 3236 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3237 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3238 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3239 3240 /* mmap.c */ 3241 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3242 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3243 unsigned long start, unsigned long end, pgoff_t pgoff, 3244 struct vm_area_struct *next); 3245 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3246 unsigned long start, unsigned long end, pgoff_t pgoff); 3247 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3248 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3249 extern void unlink_file_vma(struct vm_area_struct *); 3250 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3251 unsigned long addr, unsigned long len, pgoff_t pgoff, 3252 bool *need_rmap_locks); 3253 extern void exit_mmap(struct mm_struct *); 3254 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3255 struct vm_area_struct *prev, 3256 struct vm_area_struct *vma, 3257 unsigned long start, unsigned long end, 3258 unsigned long vm_flags, 3259 struct mempolicy *policy, 3260 struct vm_userfaultfd_ctx uffd_ctx, 3261 struct anon_vma_name *anon_name); 3262 3263 /* We are about to modify the VMA's flags. */ 3264 static inline struct vm_area_struct 3265 *vma_modify_flags(struct vma_iterator *vmi, 3266 struct vm_area_struct *prev, 3267 struct vm_area_struct *vma, 3268 unsigned long start, unsigned long end, 3269 unsigned long new_flags) 3270 { 3271 return vma_modify(vmi, prev, vma, start, end, new_flags, 3272 vma_policy(vma), vma->vm_userfaultfd_ctx, 3273 anon_vma_name(vma)); 3274 } 3275 3276 /* We are about to modify the VMA's flags and/or anon_name. */ 3277 static inline struct vm_area_struct 3278 *vma_modify_flags_name(struct vma_iterator *vmi, 3279 struct vm_area_struct *prev, 3280 struct vm_area_struct *vma, 3281 unsigned long start, 3282 unsigned long end, 3283 unsigned long new_flags, 3284 struct anon_vma_name *new_name) 3285 { 3286 return vma_modify(vmi, prev, vma, start, end, new_flags, 3287 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3288 } 3289 3290 /* We are about to modify the VMA's memory policy. */ 3291 static inline struct vm_area_struct 3292 *vma_modify_policy(struct vma_iterator *vmi, 3293 struct vm_area_struct *prev, 3294 struct vm_area_struct *vma, 3295 unsigned long start, unsigned long end, 3296 struct mempolicy *new_pol) 3297 { 3298 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3299 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3300 } 3301 3302 /* We are about to modify the VMA's flags and/or uffd context. */ 3303 static inline struct vm_area_struct 3304 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3305 struct vm_area_struct *prev, 3306 struct vm_area_struct *vma, 3307 unsigned long start, unsigned long end, 3308 unsigned long new_flags, 3309 struct vm_userfaultfd_ctx new_ctx) 3310 { 3311 return vma_modify(vmi, prev, vma, start, end, new_flags, 3312 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3313 } 3314 3315 static inline int check_data_rlimit(unsigned long rlim, 3316 unsigned long new, 3317 unsigned long start, 3318 unsigned long end_data, 3319 unsigned long start_data) 3320 { 3321 if (rlim < RLIM_INFINITY) { 3322 if (((new - start) + (end_data - start_data)) > rlim) 3323 return -ENOSPC; 3324 } 3325 3326 return 0; 3327 } 3328 3329 extern int mm_take_all_locks(struct mm_struct *mm); 3330 extern void mm_drop_all_locks(struct mm_struct *mm); 3331 3332 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3333 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3334 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3335 extern struct file *get_task_exe_file(struct task_struct *task); 3336 3337 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3338 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3339 3340 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3341 const struct vm_special_mapping *sm); 3342 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3343 unsigned long addr, unsigned long len, 3344 unsigned long flags, 3345 const struct vm_special_mapping *spec); 3346 /* This is an obsolete alternative to _install_special_mapping. */ 3347 extern int install_special_mapping(struct mm_struct *mm, 3348 unsigned long addr, unsigned long len, 3349 unsigned long flags, struct page **pages); 3350 3351 unsigned long randomize_stack_top(unsigned long stack_top); 3352 unsigned long randomize_page(unsigned long start, unsigned long range); 3353 3354 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3355 3356 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3357 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3358 struct list_head *uf); 3359 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3360 unsigned long len, unsigned long prot, unsigned long flags, 3361 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3362 struct list_head *uf); 3363 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3364 unsigned long start, size_t len, struct list_head *uf, 3365 bool unlock); 3366 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3367 struct list_head *uf); 3368 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3369 3370 #ifdef CONFIG_MMU 3371 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3372 unsigned long start, unsigned long end, 3373 struct list_head *uf, bool unlock); 3374 extern int __mm_populate(unsigned long addr, unsigned long len, 3375 int ignore_errors); 3376 static inline void mm_populate(unsigned long addr, unsigned long len) 3377 { 3378 /* Ignore errors */ 3379 (void) __mm_populate(addr, len, 1); 3380 } 3381 #else 3382 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3383 #endif 3384 3385 /* This takes the mm semaphore itself */ 3386 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3387 extern int vm_munmap(unsigned long, size_t); 3388 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3389 unsigned long, unsigned long, 3390 unsigned long, unsigned long); 3391 3392 struct vm_unmapped_area_info { 3393 #define VM_UNMAPPED_AREA_TOPDOWN 1 3394 unsigned long flags; 3395 unsigned long length; 3396 unsigned long low_limit; 3397 unsigned long high_limit; 3398 unsigned long align_mask; 3399 unsigned long align_offset; 3400 }; 3401 3402 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3403 3404 /* truncate.c */ 3405 extern void truncate_inode_pages(struct address_space *, loff_t); 3406 extern void truncate_inode_pages_range(struct address_space *, 3407 loff_t lstart, loff_t lend); 3408 extern void truncate_inode_pages_final(struct address_space *); 3409 3410 /* generic vm_area_ops exported for stackable file systems */ 3411 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3412 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3413 pgoff_t start_pgoff, pgoff_t end_pgoff); 3414 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3415 3416 extern unsigned long stack_guard_gap; 3417 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3418 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3419 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3420 3421 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3422 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3423 3424 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3425 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3426 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3427 struct vm_area_struct **pprev); 3428 3429 /* 3430 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3431 * NULL if none. Assume start_addr < end_addr. 3432 */ 3433 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3434 unsigned long start_addr, unsigned long end_addr); 3435 3436 /** 3437 * vma_lookup() - Find a VMA at a specific address 3438 * @mm: The process address space. 3439 * @addr: The user address. 3440 * 3441 * Return: The vm_area_struct at the given address, %NULL otherwise. 3442 */ 3443 static inline 3444 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3445 { 3446 return mtree_load(&mm->mm_mt, addr); 3447 } 3448 3449 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3450 { 3451 if (vma->vm_flags & VM_GROWSDOWN) 3452 return stack_guard_gap; 3453 3454 /* See reasoning around the VM_SHADOW_STACK definition */ 3455 if (vma->vm_flags & VM_SHADOW_STACK) 3456 return PAGE_SIZE; 3457 3458 return 0; 3459 } 3460 3461 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3462 { 3463 unsigned long gap = stack_guard_start_gap(vma); 3464 unsigned long vm_start = vma->vm_start; 3465 3466 vm_start -= gap; 3467 if (vm_start > vma->vm_start) 3468 vm_start = 0; 3469 return vm_start; 3470 } 3471 3472 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3473 { 3474 unsigned long vm_end = vma->vm_end; 3475 3476 if (vma->vm_flags & VM_GROWSUP) { 3477 vm_end += stack_guard_gap; 3478 if (vm_end < vma->vm_end) 3479 vm_end = -PAGE_SIZE; 3480 } 3481 return vm_end; 3482 } 3483 3484 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3485 { 3486 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3487 } 3488 3489 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3490 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3491 unsigned long vm_start, unsigned long vm_end) 3492 { 3493 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3494 3495 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3496 vma = NULL; 3497 3498 return vma; 3499 } 3500 3501 static inline bool range_in_vma(struct vm_area_struct *vma, 3502 unsigned long start, unsigned long end) 3503 { 3504 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3505 } 3506 3507 #ifdef CONFIG_MMU 3508 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3509 void vma_set_page_prot(struct vm_area_struct *vma); 3510 #else 3511 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3512 { 3513 return __pgprot(0); 3514 } 3515 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3516 { 3517 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3518 } 3519 #endif 3520 3521 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3522 3523 #ifdef CONFIG_NUMA_BALANCING 3524 unsigned long change_prot_numa(struct vm_area_struct *vma, 3525 unsigned long start, unsigned long end); 3526 #endif 3527 3528 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3529 unsigned long addr); 3530 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3531 unsigned long pfn, unsigned long size, pgprot_t); 3532 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3533 unsigned long pfn, unsigned long size, pgprot_t prot); 3534 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3535 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3536 struct page **pages, unsigned long *num); 3537 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3538 unsigned long num); 3539 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3540 unsigned long num); 3541 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3542 unsigned long pfn); 3543 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3544 unsigned long pfn, pgprot_t pgprot); 3545 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3546 pfn_t pfn); 3547 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3548 unsigned long addr, pfn_t pfn); 3549 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3550 3551 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3552 unsigned long addr, struct page *page) 3553 { 3554 int err = vm_insert_page(vma, addr, page); 3555 3556 if (err == -ENOMEM) 3557 return VM_FAULT_OOM; 3558 if (err < 0 && err != -EBUSY) 3559 return VM_FAULT_SIGBUS; 3560 3561 return VM_FAULT_NOPAGE; 3562 } 3563 3564 #ifndef io_remap_pfn_range 3565 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3566 unsigned long addr, unsigned long pfn, 3567 unsigned long size, pgprot_t prot) 3568 { 3569 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3570 } 3571 #endif 3572 3573 static inline vm_fault_t vmf_error(int err) 3574 { 3575 if (err == -ENOMEM) 3576 return VM_FAULT_OOM; 3577 else if (err == -EHWPOISON) 3578 return VM_FAULT_HWPOISON; 3579 return VM_FAULT_SIGBUS; 3580 } 3581 3582 /* 3583 * Convert errno to return value for ->page_mkwrite() calls. 3584 * 3585 * This should eventually be merged with vmf_error() above, but will need a 3586 * careful audit of all vmf_error() callers. 3587 */ 3588 static inline vm_fault_t vmf_fs_error(int err) 3589 { 3590 if (err == 0) 3591 return VM_FAULT_LOCKED; 3592 if (err == -EFAULT || err == -EAGAIN) 3593 return VM_FAULT_NOPAGE; 3594 if (err == -ENOMEM) 3595 return VM_FAULT_OOM; 3596 /* -ENOSPC, -EDQUOT, -EIO ... */ 3597 return VM_FAULT_SIGBUS; 3598 } 3599 3600 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3601 unsigned int foll_flags); 3602 3603 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3604 { 3605 if (vm_fault & VM_FAULT_OOM) 3606 return -ENOMEM; 3607 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3608 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3609 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3610 return -EFAULT; 3611 return 0; 3612 } 3613 3614 /* 3615 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3616 * a (NUMA hinting) fault is required. 3617 */ 3618 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3619 unsigned int flags) 3620 { 3621 /* 3622 * If callers don't want to honor NUMA hinting faults, no need to 3623 * determine if we would actually have to trigger a NUMA hinting fault. 3624 */ 3625 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3626 return true; 3627 3628 /* 3629 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3630 * 3631 * Requiring a fault here even for inaccessible VMAs would mean that 3632 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3633 * refuses to process NUMA hinting faults in inaccessible VMAs. 3634 */ 3635 return !vma_is_accessible(vma); 3636 } 3637 3638 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3639 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3640 unsigned long size, pte_fn_t fn, void *data); 3641 extern int apply_to_existing_page_range(struct mm_struct *mm, 3642 unsigned long address, unsigned long size, 3643 pte_fn_t fn, void *data); 3644 3645 #ifdef CONFIG_PAGE_POISONING 3646 extern void __kernel_poison_pages(struct page *page, int numpages); 3647 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3648 extern bool _page_poisoning_enabled_early; 3649 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3650 static inline bool page_poisoning_enabled(void) 3651 { 3652 return _page_poisoning_enabled_early; 3653 } 3654 /* 3655 * For use in fast paths after init_mem_debugging() has run, or when a 3656 * false negative result is not harmful when called too early. 3657 */ 3658 static inline bool page_poisoning_enabled_static(void) 3659 { 3660 return static_branch_unlikely(&_page_poisoning_enabled); 3661 } 3662 static inline void kernel_poison_pages(struct page *page, int numpages) 3663 { 3664 if (page_poisoning_enabled_static()) 3665 __kernel_poison_pages(page, numpages); 3666 } 3667 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3668 { 3669 if (page_poisoning_enabled_static()) 3670 __kernel_unpoison_pages(page, numpages); 3671 } 3672 #else 3673 static inline bool page_poisoning_enabled(void) { return false; } 3674 static inline bool page_poisoning_enabled_static(void) { return false; } 3675 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3676 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3677 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3678 #endif 3679 3680 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3681 static inline bool want_init_on_alloc(gfp_t flags) 3682 { 3683 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3684 &init_on_alloc)) 3685 return true; 3686 return flags & __GFP_ZERO; 3687 } 3688 3689 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3690 static inline bool want_init_on_free(void) 3691 { 3692 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3693 &init_on_free); 3694 } 3695 3696 extern bool _debug_pagealloc_enabled_early; 3697 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3698 3699 static inline bool debug_pagealloc_enabled(void) 3700 { 3701 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3702 _debug_pagealloc_enabled_early; 3703 } 3704 3705 /* 3706 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3707 * or when a false negative result is not harmful when called too early. 3708 */ 3709 static inline bool debug_pagealloc_enabled_static(void) 3710 { 3711 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3712 return false; 3713 3714 return static_branch_unlikely(&_debug_pagealloc_enabled); 3715 } 3716 3717 /* 3718 * To support DEBUG_PAGEALLOC architecture must ensure that 3719 * __kernel_map_pages() never fails 3720 */ 3721 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3722 #ifdef CONFIG_DEBUG_PAGEALLOC 3723 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3724 { 3725 if (debug_pagealloc_enabled_static()) 3726 __kernel_map_pages(page, numpages, 1); 3727 } 3728 3729 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3730 { 3731 if (debug_pagealloc_enabled_static()) 3732 __kernel_map_pages(page, numpages, 0); 3733 } 3734 3735 extern unsigned int _debug_guardpage_minorder; 3736 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3737 3738 static inline unsigned int debug_guardpage_minorder(void) 3739 { 3740 return _debug_guardpage_minorder; 3741 } 3742 3743 static inline bool debug_guardpage_enabled(void) 3744 { 3745 return static_branch_unlikely(&_debug_guardpage_enabled); 3746 } 3747 3748 static inline bool page_is_guard(struct page *page) 3749 { 3750 if (!debug_guardpage_enabled()) 3751 return false; 3752 3753 return PageGuard(page); 3754 } 3755 3756 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3757 int migratetype); 3758 static inline bool set_page_guard(struct zone *zone, struct page *page, 3759 unsigned int order, int migratetype) 3760 { 3761 if (!debug_guardpage_enabled()) 3762 return false; 3763 return __set_page_guard(zone, page, order, migratetype); 3764 } 3765 3766 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3767 int migratetype); 3768 static inline void clear_page_guard(struct zone *zone, struct page *page, 3769 unsigned int order, int migratetype) 3770 { 3771 if (!debug_guardpage_enabled()) 3772 return; 3773 __clear_page_guard(zone, page, order, migratetype); 3774 } 3775 3776 #else /* CONFIG_DEBUG_PAGEALLOC */ 3777 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3778 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3779 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3780 static inline bool debug_guardpage_enabled(void) { return false; } 3781 static inline bool page_is_guard(struct page *page) { return false; } 3782 static inline bool set_page_guard(struct zone *zone, struct page *page, 3783 unsigned int order, int migratetype) { return false; } 3784 static inline void clear_page_guard(struct zone *zone, struct page *page, 3785 unsigned int order, int migratetype) {} 3786 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3787 3788 #ifdef __HAVE_ARCH_GATE_AREA 3789 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3790 extern int in_gate_area_no_mm(unsigned long addr); 3791 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3792 #else 3793 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3794 { 3795 return NULL; 3796 } 3797 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3798 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3799 { 3800 return 0; 3801 } 3802 #endif /* __HAVE_ARCH_GATE_AREA */ 3803 3804 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3805 3806 #ifdef CONFIG_SYSCTL 3807 extern int sysctl_drop_caches; 3808 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3809 loff_t *); 3810 #endif 3811 3812 void drop_slab(void); 3813 3814 #ifndef CONFIG_MMU 3815 #define randomize_va_space 0 3816 #else 3817 extern int randomize_va_space; 3818 #endif 3819 3820 const char * arch_vma_name(struct vm_area_struct *vma); 3821 #ifdef CONFIG_MMU 3822 void print_vma_addr(char *prefix, unsigned long rip); 3823 #else 3824 static inline void print_vma_addr(char *prefix, unsigned long rip) 3825 { 3826 } 3827 #endif 3828 3829 void *sparse_buffer_alloc(unsigned long size); 3830 struct page * __populate_section_memmap(unsigned long pfn, 3831 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3832 struct dev_pagemap *pgmap); 3833 void pmd_init(void *addr); 3834 void pud_init(void *addr); 3835 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3836 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3837 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3838 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3839 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3840 struct vmem_altmap *altmap, struct page *reuse); 3841 void *vmemmap_alloc_block(unsigned long size, int node); 3842 struct vmem_altmap; 3843 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3844 struct vmem_altmap *altmap); 3845 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3846 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3847 unsigned long addr, unsigned long next); 3848 int vmemmap_check_pmd(pmd_t *pmd, int node, 3849 unsigned long addr, unsigned long next); 3850 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3851 int node, struct vmem_altmap *altmap); 3852 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3853 int node, struct vmem_altmap *altmap); 3854 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3855 struct vmem_altmap *altmap); 3856 void vmemmap_populate_print_last(void); 3857 #ifdef CONFIG_MEMORY_HOTPLUG 3858 void vmemmap_free(unsigned long start, unsigned long end, 3859 struct vmem_altmap *altmap); 3860 #endif 3861 3862 #define VMEMMAP_RESERVE_NR 2 3863 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3864 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3865 struct dev_pagemap *pgmap) 3866 { 3867 unsigned long nr_pages; 3868 unsigned long nr_vmemmap_pages; 3869 3870 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3871 return false; 3872 3873 nr_pages = pgmap_vmemmap_nr(pgmap); 3874 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3875 /* 3876 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3877 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3878 */ 3879 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3880 } 3881 /* 3882 * If we don't have an architecture override, use the generic rule 3883 */ 3884 #ifndef vmemmap_can_optimize 3885 #define vmemmap_can_optimize __vmemmap_can_optimize 3886 #endif 3887 3888 #else 3889 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3890 struct dev_pagemap *pgmap) 3891 { 3892 return false; 3893 } 3894 #endif 3895 3896 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3897 unsigned long nr_pages); 3898 3899 enum mf_flags { 3900 MF_COUNT_INCREASED = 1 << 0, 3901 MF_ACTION_REQUIRED = 1 << 1, 3902 MF_MUST_KILL = 1 << 2, 3903 MF_SOFT_OFFLINE = 1 << 3, 3904 MF_UNPOISON = 1 << 4, 3905 MF_SW_SIMULATED = 1 << 5, 3906 MF_NO_RETRY = 1 << 6, 3907 }; 3908 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3909 unsigned long count, int mf_flags); 3910 extern int memory_failure(unsigned long pfn, int flags); 3911 extern void memory_failure_queue_kick(int cpu); 3912 extern int unpoison_memory(unsigned long pfn); 3913 extern void shake_page(struct page *p); 3914 extern atomic_long_t num_poisoned_pages __read_mostly; 3915 extern int soft_offline_page(unsigned long pfn, int flags); 3916 #ifdef CONFIG_MEMORY_FAILURE 3917 /* 3918 * Sysfs entries for memory failure handling statistics. 3919 */ 3920 extern const struct attribute_group memory_failure_attr_group; 3921 extern void memory_failure_queue(unsigned long pfn, int flags); 3922 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3923 bool *migratable_cleared); 3924 void num_poisoned_pages_inc(unsigned long pfn); 3925 void num_poisoned_pages_sub(unsigned long pfn, long i); 3926 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3927 #else 3928 static inline void memory_failure_queue(unsigned long pfn, int flags) 3929 { 3930 } 3931 3932 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3933 bool *migratable_cleared) 3934 { 3935 return 0; 3936 } 3937 3938 static inline void num_poisoned_pages_inc(unsigned long pfn) 3939 { 3940 } 3941 3942 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3943 { 3944 } 3945 #endif 3946 3947 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3948 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3949 struct vm_area_struct *vma, struct list_head *to_kill, 3950 unsigned long ksm_addr); 3951 #endif 3952 3953 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3954 extern void memblk_nr_poison_inc(unsigned long pfn); 3955 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3956 #else 3957 static inline void memblk_nr_poison_inc(unsigned long pfn) 3958 { 3959 } 3960 3961 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3962 { 3963 } 3964 #endif 3965 3966 #ifndef arch_memory_failure 3967 static inline int arch_memory_failure(unsigned long pfn, int flags) 3968 { 3969 return -ENXIO; 3970 } 3971 #endif 3972 3973 #ifndef arch_is_platform_page 3974 static inline bool arch_is_platform_page(u64 paddr) 3975 { 3976 return false; 3977 } 3978 #endif 3979 3980 /* 3981 * Error handlers for various types of pages. 3982 */ 3983 enum mf_result { 3984 MF_IGNORED, /* Error: cannot be handled */ 3985 MF_FAILED, /* Error: handling failed */ 3986 MF_DELAYED, /* Will be handled later */ 3987 MF_RECOVERED, /* Successfully recovered */ 3988 }; 3989 3990 enum mf_action_page_type { 3991 MF_MSG_KERNEL, 3992 MF_MSG_KERNEL_HIGH_ORDER, 3993 MF_MSG_SLAB, 3994 MF_MSG_DIFFERENT_COMPOUND, 3995 MF_MSG_HUGE, 3996 MF_MSG_FREE_HUGE, 3997 MF_MSG_UNMAP_FAILED, 3998 MF_MSG_DIRTY_SWAPCACHE, 3999 MF_MSG_CLEAN_SWAPCACHE, 4000 MF_MSG_DIRTY_MLOCKED_LRU, 4001 MF_MSG_CLEAN_MLOCKED_LRU, 4002 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4003 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4004 MF_MSG_DIRTY_LRU, 4005 MF_MSG_CLEAN_LRU, 4006 MF_MSG_TRUNCATED_LRU, 4007 MF_MSG_BUDDY, 4008 MF_MSG_DAX, 4009 MF_MSG_UNSPLIT_THP, 4010 MF_MSG_UNKNOWN, 4011 }; 4012 4013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4014 extern void clear_huge_page(struct page *page, 4015 unsigned long addr_hint, 4016 unsigned int pages_per_huge_page); 4017 int copy_user_large_folio(struct folio *dst, struct folio *src, 4018 unsigned long addr_hint, 4019 struct vm_area_struct *vma); 4020 long copy_folio_from_user(struct folio *dst_folio, 4021 const void __user *usr_src, 4022 bool allow_pagefault); 4023 4024 /** 4025 * vma_is_special_huge - Are transhuge page-table entries considered special? 4026 * @vma: Pointer to the struct vm_area_struct to consider 4027 * 4028 * Whether transhuge page-table entries are considered "special" following 4029 * the definition in vm_normal_page(). 4030 * 4031 * Return: true if transhuge page-table entries should be considered special, 4032 * false otherwise. 4033 */ 4034 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4035 { 4036 return vma_is_dax(vma) || (vma->vm_file && 4037 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4038 } 4039 4040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4041 4042 #if MAX_NUMNODES > 1 4043 void __init setup_nr_node_ids(void); 4044 #else 4045 static inline void setup_nr_node_ids(void) {} 4046 #endif 4047 4048 extern int memcmp_pages(struct page *page1, struct page *page2); 4049 4050 static inline int pages_identical(struct page *page1, struct page *page2) 4051 { 4052 return !memcmp_pages(page1, page2); 4053 } 4054 4055 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4056 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4057 pgoff_t first_index, pgoff_t nr, 4058 pgoff_t bitmap_pgoff, 4059 unsigned long *bitmap, 4060 pgoff_t *start, 4061 pgoff_t *end); 4062 4063 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4064 pgoff_t first_index, pgoff_t nr); 4065 #endif 4066 4067 extern int sysctl_nr_trim_pages; 4068 4069 #ifdef CONFIG_PRINTK 4070 void mem_dump_obj(void *object); 4071 #else 4072 static inline void mem_dump_obj(void *object) {} 4073 #endif 4074 4075 /** 4076 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4077 * handle them. 4078 * @seals: the seals to check 4079 * @vma: the vma to operate on 4080 * 4081 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4082 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4083 */ 4084 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4085 { 4086 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4087 /* 4088 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4089 * write seals are active. 4090 */ 4091 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4092 return -EPERM; 4093 4094 /* 4095 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4096 * MAP_SHARED and read-only, take care to not allow mprotect to 4097 * revert protections on such mappings. Do this only for shared 4098 * mappings. For private mappings, don't need to mask 4099 * VM_MAYWRITE as we still want them to be COW-writable. 4100 */ 4101 if (vma->vm_flags & VM_SHARED) 4102 vm_flags_clear(vma, VM_MAYWRITE); 4103 } 4104 4105 return 0; 4106 } 4107 4108 #ifdef CONFIG_ANON_VMA_NAME 4109 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4110 unsigned long len_in, 4111 struct anon_vma_name *anon_name); 4112 #else 4113 static inline int 4114 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4115 unsigned long len_in, struct anon_vma_name *anon_name) { 4116 return 0; 4117 } 4118 #endif 4119 4120 #ifdef CONFIG_UNACCEPTED_MEMORY 4121 4122 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4123 void accept_memory(phys_addr_t start, phys_addr_t end); 4124 4125 #else 4126 4127 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4128 phys_addr_t end) 4129 { 4130 return false; 4131 } 4132 4133 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4134 { 4135 } 4136 4137 #endif 4138 4139 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4140 { 4141 phys_addr_t paddr = pfn << PAGE_SHIFT; 4142 4143 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4144 } 4145 4146 #endif /* _LINUX_MM_H */ 4147