1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct user_struct; 40 struct pt_regs; 41 struct folio_batch; 42 43 extern int sysctl_page_lock_unfairness; 44 45 void mm_core_init(void); 46 void init_mm_internals(void); 47 48 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 49 extern unsigned long max_mapnr; 50 51 static inline void set_max_mapnr(unsigned long limit) 52 { 53 max_mapnr = limit; 54 } 55 #else 56 static inline void set_max_mapnr(unsigned long limit) { } 57 #endif 58 59 extern atomic_long_t _totalram_pages; 60 static inline unsigned long totalram_pages(void) 61 { 62 return (unsigned long)atomic_long_read(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_inc(void) 66 { 67 atomic_long_inc(&_totalram_pages); 68 } 69 70 static inline void totalram_pages_dec(void) 71 { 72 atomic_long_dec(&_totalram_pages); 73 } 74 75 static inline void totalram_pages_add(long count) 76 { 77 atomic_long_add(count, &_totalram_pages); 78 } 79 80 extern void * high_memory; 81 extern int page_cluster; 82 extern const int page_cluster_max; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern int mmap_rnd_bits_max __ro_after_init; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #ifndef DIRECT_MAP_PHYSMEM_END 102 # ifdef MAX_PHYSMEM_BITS 103 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 104 # else 105 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 106 # endif 107 #endif 108 109 #include <asm/page.h> 110 #include <asm/processor.h> 111 112 #ifndef __pa_symbol 113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114 #endif 115 116 #ifndef page_to_virt 117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118 #endif 119 120 #ifndef lm_alias 121 #define lm_alias(x) __va(__pa_symbol(x)) 122 #endif 123 124 /* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131 #ifndef mm_forbids_zeropage 132 #define mm_forbids_zeropage(X) (0) 133 #endif 134 135 /* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141 #if BITS_PER_LONG == 64 142 /* This function must be updated when the size of struct page grows above 96 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statements if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149 static inline void __mm_zero_struct_page(struct page *page) 150 { 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 96); 157 158 switch (sizeof(struct page)) { 159 case 96: 160 _pp[11] = 0; 161 fallthrough; 162 case 88: 163 _pp[10] = 0; 164 fallthrough; 165 case 80: 166 _pp[9] = 0; 167 fallthrough; 168 case 72: 169 _pp[8] = 0; 170 fallthrough; 171 case 64: 172 _pp[7] = 0; 173 fallthrough; 174 case 56: 175 _pp[6] = 0; 176 _pp[5] = 0; 177 _pp[4] = 0; 178 _pp[3] = 0; 179 _pp[2] = 0; 180 _pp[1] = 0; 181 _pp[0] = 0; 182 } 183 } 184 #else 185 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 186 #endif 187 188 /* 189 * Default maximum number of active map areas, this limits the number of vmas 190 * per mm struct. Users can overwrite this number by sysctl but there is a 191 * problem. 192 * 193 * When a program's coredump is generated as ELF format, a section is created 194 * per a vma. In ELF, the number of sections is represented in unsigned short. 195 * This means the number of sections should be smaller than 65535 at coredump. 196 * Because the kernel adds some informative sections to a image of program at 197 * generating coredump, we need some margin. The number of extra sections is 198 * 1-3 now and depends on arch. We use "5" as safe margin, here. 199 * 200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 201 * not a hard limit any more. Although some userspace tools can be surprised by 202 * that. 203 */ 204 #define MAPCOUNT_ELF_CORE_MARGIN (5) 205 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 206 207 extern int sysctl_max_map_count; 208 209 extern unsigned long sysctl_user_reserve_kbytes; 210 extern unsigned long sysctl_admin_reserve_kbytes; 211 212 extern int sysctl_overcommit_memory; 213 extern int sysctl_overcommit_ratio; 214 extern unsigned long sysctl_overcommit_kbytes; 215 216 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 219 loff_t *); 220 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 221 loff_t *); 222 223 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 224 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 225 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 226 #else 227 #define nth_page(page,n) ((page) + (n)) 228 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 229 #endif 230 231 /* to align the pointer to the (next) page boundary */ 232 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 233 234 /* to align the pointer to the (prev) page boundary */ 235 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 236 237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 238 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 239 240 static inline struct folio *lru_to_folio(struct list_head *head) 241 { 242 return list_entry((head)->prev, struct folio, lru); 243 } 244 245 void setup_initial_init_mm(void *start_code, void *end_code, 246 void *end_data, void *brk); 247 248 /* 249 * Linux kernel virtual memory manager primitives. 250 * The idea being to have a "virtual" mm in the same way 251 * we have a virtual fs - giving a cleaner interface to the 252 * mm details, and allowing different kinds of memory mappings 253 * (from shared memory to executable loading to arbitrary 254 * mmap() functions). 255 */ 256 257 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 258 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 259 void vm_area_free(struct vm_area_struct *); 260 /* Use only if VMA has no other users */ 261 void __vm_area_free(struct vm_area_struct *vma); 262 263 #ifndef CONFIG_MMU 264 extern struct rb_root nommu_region_tree; 265 extern struct rw_semaphore nommu_region_sem; 266 267 extern unsigned int kobjsize(const void *objp); 268 #endif 269 270 /* 271 * vm_flags in vm_area_struct, see mm_types.h. 272 * When changing, update also include/trace/events/mmflags.h 273 */ 274 #define VM_NONE 0x00000000 275 276 #define VM_READ 0x00000001 /* currently active flags */ 277 #define VM_WRITE 0x00000002 278 #define VM_EXEC 0x00000004 279 #define VM_SHARED 0x00000008 280 281 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 282 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 283 #define VM_MAYWRITE 0x00000020 284 #define VM_MAYEXEC 0x00000040 285 #define VM_MAYSHARE 0x00000080 286 287 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 288 #ifdef CONFIG_MMU 289 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 290 #else /* CONFIG_MMU */ 291 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 292 #define VM_UFFD_MISSING 0 293 #endif /* CONFIG_MMU */ 294 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 295 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 296 297 #define VM_LOCKED 0x00002000 298 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 299 300 /* Used by sys_madvise() */ 301 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 302 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 303 304 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 305 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 306 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 307 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 308 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 309 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 310 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 311 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 312 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 313 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 314 315 #ifdef CONFIG_MEM_SOFT_DIRTY 316 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 317 #else 318 # define VM_SOFTDIRTY 0 319 #endif 320 321 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 322 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 323 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 324 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 325 326 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 327 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 328 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 329 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 330 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 331 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 332 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 333 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 334 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 335 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 336 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 337 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 338 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 339 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 340 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 341 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 342 343 #ifdef CONFIG_ARCH_HAS_PKEYS 344 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 345 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 346 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 347 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 348 #if CONFIG_ARCH_PKEY_BITS > 3 349 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 350 #else 351 # define VM_PKEY_BIT3 0 352 #endif 353 #if CONFIG_ARCH_PKEY_BITS > 4 354 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 355 #else 356 # define VM_PKEY_BIT4 0 357 #endif 358 #endif /* CONFIG_ARCH_HAS_PKEYS */ 359 360 #ifdef CONFIG_X86_USER_SHADOW_STACK 361 /* 362 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 363 * support core mm. 364 * 365 * These VMAs will get a single end guard page. This helps userspace protect 366 * itself from attacks. A single page is enough for current shadow stack archs 367 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 368 * for more details on the guard size. 369 */ 370 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 371 #endif 372 373 #if defined(CONFIG_ARM64_GCS) 374 /* 375 * arm64's Guarded Control Stack implements similar functionality and 376 * has similar constraints to shadow stacks. 377 */ 378 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 379 #endif 380 381 #ifndef VM_SHADOW_STACK 382 # define VM_SHADOW_STACK VM_NONE 383 #endif 384 385 #if defined(CONFIG_X86) 386 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 387 #elif defined(CONFIG_PPC64) 388 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 389 #elif defined(CONFIG_PARISC) 390 # define VM_GROWSUP VM_ARCH_1 391 #elif defined(CONFIG_SPARC64) 392 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 393 # define VM_ARCH_CLEAR VM_SPARC_ADI 394 #elif defined(CONFIG_ARM64) 395 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 396 # define VM_ARCH_CLEAR VM_ARM64_BTI 397 #elif !defined(CONFIG_MMU) 398 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 399 #endif 400 401 #if defined(CONFIG_ARM64_MTE) 402 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 403 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 404 #else 405 # define VM_MTE VM_NONE 406 # define VM_MTE_ALLOWED VM_NONE 407 #endif 408 409 #ifndef VM_GROWSUP 410 # define VM_GROWSUP VM_NONE 411 #endif 412 413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 414 # define VM_UFFD_MINOR_BIT 38 415 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 416 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 417 # define VM_UFFD_MINOR VM_NONE 418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 419 420 /* 421 * This flag is used to connect VFIO to arch specific KVM code. It 422 * indicates that the memory under this VMA is safe for use with any 423 * non-cachable memory type inside KVM. Some VFIO devices, on some 424 * platforms, are thought to be unsafe and can cause machine crashes 425 * if KVM does not lock down the memory type. 426 */ 427 #ifdef CONFIG_64BIT 428 #define VM_ALLOW_ANY_UNCACHED_BIT 39 429 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 430 #else 431 #define VM_ALLOW_ANY_UNCACHED VM_NONE 432 #endif 433 434 #ifdef CONFIG_64BIT 435 #define VM_DROPPABLE_BIT 40 436 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 437 #elif defined(CONFIG_PPC32) 438 #define VM_DROPPABLE VM_ARCH_1 439 #else 440 #define VM_DROPPABLE VM_NONE 441 #endif 442 443 #ifdef CONFIG_64BIT 444 /* VM is sealed, in vm_flags */ 445 #define VM_SEALED _BITUL(63) 446 #endif 447 448 /* Bits set in the VMA until the stack is in its final location */ 449 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 450 451 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 452 453 /* Common data flag combinations */ 454 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 455 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 456 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 457 VM_MAYWRITE | VM_MAYEXEC) 458 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 459 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 460 461 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 462 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 463 #endif 464 465 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 466 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 467 #endif 468 469 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 470 471 #ifdef CONFIG_STACK_GROWSUP 472 #define VM_STACK VM_GROWSUP 473 #define VM_STACK_EARLY VM_GROWSDOWN 474 #else 475 #define VM_STACK VM_GROWSDOWN 476 #define VM_STACK_EARLY 0 477 #endif 478 479 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 480 481 /* VMA basic access permission flags */ 482 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 483 484 485 /* 486 * Special vmas that are non-mergable, non-mlock()able. 487 */ 488 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 489 490 /* This mask prevents VMA from being scanned with khugepaged */ 491 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 492 493 /* This mask defines which mm->def_flags a process can inherit its parent */ 494 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 495 496 /* This mask represents all the VMA flag bits used by mlock */ 497 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 498 499 /* Arch-specific flags to clear when updating VM flags on protection change */ 500 #ifndef VM_ARCH_CLEAR 501 # define VM_ARCH_CLEAR VM_NONE 502 #endif 503 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 504 505 /* 506 * mapping from the currently active vm_flags protection bits (the 507 * low four bits) to a page protection mask.. 508 */ 509 510 /* 511 * The default fault flags that should be used by most of the 512 * arch-specific page fault handlers. 513 */ 514 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 515 FAULT_FLAG_KILLABLE | \ 516 FAULT_FLAG_INTERRUPTIBLE) 517 518 /** 519 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 520 * @flags: Fault flags. 521 * 522 * This is mostly used for places where we want to try to avoid taking 523 * the mmap_lock for too long a time when waiting for another condition 524 * to change, in which case we can try to be polite to release the 525 * mmap_lock in the first round to avoid potential starvation of other 526 * processes that would also want the mmap_lock. 527 * 528 * Return: true if the page fault allows retry and this is the first 529 * attempt of the fault handling; false otherwise. 530 */ 531 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 532 { 533 return (flags & FAULT_FLAG_ALLOW_RETRY) && 534 (!(flags & FAULT_FLAG_TRIED)); 535 } 536 537 #define FAULT_FLAG_TRACE \ 538 { FAULT_FLAG_WRITE, "WRITE" }, \ 539 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 540 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 541 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 542 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 543 { FAULT_FLAG_TRIED, "TRIED" }, \ 544 { FAULT_FLAG_USER, "USER" }, \ 545 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 546 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 547 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 548 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 549 550 /* 551 * vm_fault is filled by the pagefault handler and passed to the vma's 552 * ->fault function. The vma's ->fault is responsible for returning a bitmask 553 * of VM_FAULT_xxx flags that give details about how the fault was handled. 554 * 555 * MM layer fills up gfp_mask for page allocations but fault handler might 556 * alter it if its implementation requires a different allocation context. 557 * 558 * pgoff should be used in favour of virtual_address, if possible. 559 */ 560 struct vm_fault { 561 const struct { 562 struct vm_area_struct *vma; /* Target VMA */ 563 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 564 pgoff_t pgoff; /* Logical page offset based on vma */ 565 unsigned long address; /* Faulting virtual address - masked */ 566 unsigned long real_address; /* Faulting virtual address - unmasked */ 567 }; 568 enum fault_flag flags; /* FAULT_FLAG_xxx flags 569 * XXX: should really be 'const' */ 570 pmd_t *pmd; /* Pointer to pmd entry matching 571 * the 'address' */ 572 pud_t *pud; /* Pointer to pud entry matching 573 * the 'address' 574 */ 575 union { 576 pte_t orig_pte; /* Value of PTE at the time of fault */ 577 pmd_t orig_pmd; /* Value of PMD at the time of fault, 578 * used by PMD fault only. 579 */ 580 }; 581 582 struct page *cow_page; /* Page handler may use for COW fault */ 583 struct page *page; /* ->fault handlers should return a 584 * page here, unless VM_FAULT_NOPAGE 585 * is set (which is also implied by 586 * VM_FAULT_ERROR). 587 */ 588 /* These three entries are valid only while holding ptl lock */ 589 pte_t *pte; /* Pointer to pte entry matching 590 * the 'address'. NULL if the page 591 * table hasn't been allocated. 592 */ 593 spinlock_t *ptl; /* Page table lock. 594 * Protects pte page table if 'pte' 595 * is not NULL, otherwise pmd. 596 */ 597 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 598 * vm_ops->map_pages() sets up a page 599 * table from atomic context. 600 * do_fault_around() pre-allocates 601 * page table to avoid allocation from 602 * atomic context. 603 */ 604 }; 605 606 /* 607 * These are the virtual MM functions - opening of an area, closing and 608 * unmapping it (needed to keep files on disk up-to-date etc), pointer 609 * to the functions called when a no-page or a wp-page exception occurs. 610 */ 611 struct vm_operations_struct { 612 void (*open)(struct vm_area_struct * area); 613 /** 614 * @close: Called when the VMA is being removed from the MM. 615 * Context: User context. May sleep. Caller holds mmap_lock. 616 */ 617 void (*close)(struct vm_area_struct * area); 618 /* Called any time before splitting to check if it's allowed */ 619 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 620 int (*mremap)(struct vm_area_struct *area); 621 /* 622 * Called by mprotect() to make driver-specific permission 623 * checks before mprotect() is finalised. The VMA must not 624 * be modified. Returns 0 if mprotect() can proceed. 625 */ 626 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 627 unsigned long end, unsigned long newflags); 628 vm_fault_t (*fault)(struct vm_fault *vmf); 629 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 630 vm_fault_t (*map_pages)(struct vm_fault *vmf, 631 pgoff_t start_pgoff, pgoff_t end_pgoff); 632 unsigned long (*pagesize)(struct vm_area_struct * area); 633 634 /* notification that a previously read-only page is about to become 635 * writable, if an error is returned it will cause a SIGBUS */ 636 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 637 638 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 639 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 640 641 /* called by access_process_vm when get_user_pages() fails, typically 642 * for use by special VMAs. See also generic_access_phys() for a generic 643 * implementation useful for any iomem mapping. 644 */ 645 int (*access)(struct vm_area_struct *vma, unsigned long addr, 646 void *buf, int len, int write); 647 648 /* Called by the /proc/PID/maps code to ask the vma whether it 649 * has a special name. Returning non-NULL will also cause this 650 * vma to be dumped unconditionally. */ 651 const char *(*name)(struct vm_area_struct *vma); 652 653 #ifdef CONFIG_NUMA 654 /* 655 * set_policy() op must add a reference to any non-NULL @new mempolicy 656 * to hold the policy upon return. Caller should pass NULL @new to 657 * remove a policy and fall back to surrounding context--i.e. do not 658 * install a MPOL_DEFAULT policy, nor the task or system default 659 * mempolicy. 660 */ 661 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 662 663 /* 664 * get_policy() op must add reference [mpol_get()] to any policy at 665 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 666 * in mm/mempolicy.c will do this automatically. 667 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 668 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 669 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 670 * must return NULL--i.e., do not "fallback" to task or system default 671 * policy. 672 */ 673 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 674 unsigned long addr, pgoff_t *ilx); 675 #endif 676 /* 677 * Called by vm_normal_page() for special PTEs to find the 678 * page for @addr. This is useful if the default behavior 679 * (using pte_page()) would not find the correct page. 680 */ 681 struct page *(*find_special_page)(struct vm_area_struct *vma, 682 unsigned long addr); 683 }; 684 685 #ifdef CONFIG_NUMA_BALANCING 686 static inline void vma_numab_state_init(struct vm_area_struct *vma) 687 { 688 vma->numab_state = NULL; 689 } 690 static inline void vma_numab_state_free(struct vm_area_struct *vma) 691 { 692 kfree(vma->numab_state); 693 } 694 #else 695 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 696 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 697 #endif /* CONFIG_NUMA_BALANCING */ 698 699 #ifdef CONFIG_PER_VMA_LOCK 700 /* 701 * Try to read-lock a vma. The function is allowed to occasionally yield false 702 * locked result to avoid performance overhead, in which case we fall back to 703 * using mmap_lock. The function should never yield false unlocked result. 704 */ 705 static inline bool vma_start_read(struct vm_area_struct *vma) 706 { 707 /* 708 * Check before locking. A race might cause false locked result. 709 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 710 * ACQUIRE semantics, because this is just a lockless check whose result 711 * we don't rely on for anything - the mm_lock_seq read against which we 712 * need ordering is below. 713 */ 714 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 715 return false; 716 717 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 718 return false; 719 720 /* 721 * Overflow might produce false locked result. 722 * False unlocked result is impossible because we modify and check 723 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 724 * modification invalidates all existing locks. 725 * 726 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 727 * racing with vma_end_write_all(), we only start reading from the VMA 728 * after it has been unlocked. 729 * This pairs with RELEASE semantics in vma_end_write_all(). 730 */ 731 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 732 up_read(&vma->vm_lock->lock); 733 return false; 734 } 735 return true; 736 } 737 738 static inline void vma_end_read(struct vm_area_struct *vma) 739 { 740 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 741 up_read(&vma->vm_lock->lock); 742 rcu_read_unlock(); 743 } 744 745 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 746 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 747 { 748 mmap_assert_write_locked(vma->vm_mm); 749 750 /* 751 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 752 * mm->mm_lock_seq can't be concurrently modified. 753 */ 754 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 755 return (vma->vm_lock_seq == *mm_lock_seq); 756 } 757 758 /* 759 * Begin writing to a VMA. 760 * Exclude concurrent readers under the per-VMA lock until the currently 761 * write-locked mmap_lock is dropped or downgraded. 762 */ 763 static inline void vma_start_write(struct vm_area_struct *vma) 764 { 765 int mm_lock_seq; 766 767 if (__is_vma_write_locked(vma, &mm_lock_seq)) 768 return; 769 770 down_write(&vma->vm_lock->lock); 771 /* 772 * We should use WRITE_ONCE() here because we can have concurrent reads 773 * from the early lockless pessimistic check in vma_start_read(). 774 * We don't really care about the correctness of that early check, but 775 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 776 */ 777 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 778 up_write(&vma->vm_lock->lock); 779 } 780 781 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 782 { 783 int mm_lock_seq; 784 785 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 786 } 787 788 static inline void vma_assert_locked(struct vm_area_struct *vma) 789 { 790 if (!rwsem_is_locked(&vma->vm_lock->lock)) 791 vma_assert_write_locked(vma); 792 } 793 794 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 795 { 796 /* When detaching vma should be write-locked */ 797 if (detached) 798 vma_assert_write_locked(vma); 799 vma->detached = detached; 800 } 801 802 static inline void release_fault_lock(struct vm_fault *vmf) 803 { 804 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 805 vma_end_read(vmf->vma); 806 else 807 mmap_read_unlock(vmf->vma->vm_mm); 808 } 809 810 static inline void assert_fault_locked(struct vm_fault *vmf) 811 { 812 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 813 vma_assert_locked(vmf->vma); 814 else 815 mmap_assert_locked(vmf->vma->vm_mm); 816 } 817 818 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 819 unsigned long address); 820 821 #else /* CONFIG_PER_VMA_LOCK */ 822 823 static inline bool vma_start_read(struct vm_area_struct *vma) 824 { return false; } 825 static inline void vma_end_read(struct vm_area_struct *vma) {} 826 static inline void vma_start_write(struct vm_area_struct *vma) {} 827 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 828 { mmap_assert_write_locked(vma->vm_mm); } 829 static inline void vma_mark_detached(struct vm_area_struct *vma, 830 bool detached) {} 831 832 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 833 unsigned long address) 834 { 835 return NULL; 836 } 837 838 static inline void vma_assert_locked(struct vm_area_struct *vma) 839 { 840 mmap_assert_locked(vma->vm_mm); 841 } 842 843 static inline void release_fault_lock(struct vm_fault *vmf) 844 { 845 mmap_read_unlock(vmf->vma->vm_mm); 846 } 847 848 static inline void assert_fault_locked(struct vm_fault *vmf) 849 { 850 mmap_assert_locked(vmf->vma->vm_mm); 851 } 852 853 #endif /* CONFIG_PER_VMA_LOCK */ 854 855 extern const struct vm_operations_struct vma_dummy_vm_ops; 856 857 /* 858 * WARNING: vma_init does not initialize vma->vm_lock. 859 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 860 */ 861 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 862 { 863 memset(vma, 0, sizeof(*vma)); 864 vma->vm_mm = mm; 865 vma->vm_ops = &vma_dummy_vm_ops; 866 INIT_LIST_HEAD(&vma->anon_vma_chain); 867 vma_mark_detached(vma, false); 868 vma_numab_state_init(vma); 869 } 870 871 /* Use when VMA is not part of the VMA tree and needs no locking */ 872 static inline void vm_flags_init(struct vm_area_struct *vma, 873 vm_flags_t flags) 874 { 875 ACCESS_PRIVATE(vma, __vm_flags) = flags; 876 } 877 878 /* 879 * Use when VMA is part of the VMA tree and modifications need coordination 880 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 881 * it should be locked explicitly beforehand. 882 */ 883 static inline void vm_flags_reset(struct vm_area_struct *vma, 884 vm_flags_t flags) 885 { 886 vma_assert_write_locked(vma); 887 vm_flags_init(vma, flags); 888 } 889 890 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 891 vm_flags_t flags) 892 { 893 vma_assert_write_locked(vma); 894 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 895 } 896 897 static inline void vm_flags_set(struct vm_area_struct *vma, 898 vm_flags_t flags) 899 { 900 vma_start_write(vma); 901 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 902 } 903 904 static inline void vm_flags_clear(struct vm_area_struct *vma, 905 vm_flags_t flags) 906 { 907 vma_start_write(vma); 908 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 909 } 910 911 /* 912 * Use only if VMA is not part of the VMA tree or has no other users and 913 * therefore needs no locking. 914 */ 915 static inline void __vm_flags_mod(struct vm_area_struct *vma, 916 vm_flags_t set, vm_flags_t clear) 917 { 918 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 919 } 920 921 /* 922 * Use only when the order of set/clear operations is unimportant, otherwise 923 * use vm_flags_{set|clear} explicitly. 924 */ 925 static inline void vm_flags_mod(struct vm_area_struct *vma, 926 vm_flags_t set, vm_flags_t clear) 927 { 928 vma_start_write(vma); 929 __vm_flags_mod(vma, set, clear); 930 } 931 932 static inline void vma_set_anonymous(struct vm_area_struct *vma) 933 { 934 vma->vm_ops = NULL; 935 } 936 937 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 938 { 939 return !vma->vm_ops; 940 } 941 942 /* 943 * Indicate if the VMA is a heap for the given task; for 944 * /proc/PID/maps that is the heap of the main task. 945 */ 946 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 947 { 948 return vma->vm_start < vma->vm_mm->brk && 949 vma->vm_end > vma->vm_mm->start_brk; 950 } 951 952 /* 953 * Indicate if the VMA is a stack for the given task; for 954 * /proc/PID/maps that is the stack of the main task. 955 */ 956 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 957 { 958 /* 959 * We make no effort to guess what a given thread considers to be 960 * its "stack". It's not even well-defined for programs written 961 * languages like Go. 962 */ 963 return vma->vm_start <= vma->vm_mm->start_stack && 964 vma->vm_end >= vma->vm_mm->start_stack; 965 } 966 967 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 968 { 969 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 970 971 if (!maybe_stack) 972 return false; 973 974 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 975 VM_STACK_INCOMPLETE_SETUP) 976 return true; 977 978 return false; 979 } 980 981 static inline bool vma_is_foreign(struct vm_area_struct *vma) 982 { 983 if (!current->mm) 984 return true; 985 986 if (current->mm != vma->vm_mm) 987 return true; 988 989 return false; 990 } 991 992 static inline bool vma_is_accessible(struct vm_area_struct *vma) 993 { 994 return vma->vm_flags & VM_ACCESS_FLAGS; 995 } 996 997 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 998 { 999 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1000 (VM_SHARED | VM_MAYWRITE); 1001 } 1002 1003 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1004 { 1005 return is_shared_maywrite(vma->vm_flags); 1006 } 1007 1008 static inline 1009 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1010 { 1011 return mas_find(&vmi->mas, max - 1); 1012 } 1013 1014 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1015 { 1016 /* 1017 * Uses mas_find() to get the first VMA when the iterator starts. 1018 * Calling mas_next() could skip the first entry. 1019 */ 1020 return mas_find(&vmi->mas, ULONG_MAX); 1021 } 1022 1023 static inline 1024 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1025 { 1026 return mas_next_range(&vmi->mas, ULONG_MAX); 1027 } 1028 1029 1030 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1031 { 1032 return mas_prev(&vmi->mas, 0); 1033 } 1034 1035 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1036 unsigned long start, unsigned long end, gfp_t gfp) 1037 { 1038 __mas_set_range(&vmi->mas, start, end - 1); 1039 mas_store_gfp(&vmi->mas, NULL, gfp); 1040 if (unlikely(mas_is_err(&vmi->mas))) 1041 return -ENOMEM; 1042 1043 return 0; 1044 } 1045 1046 /* Free any unused preallocations */ 1047 static inline void vma_iter_free(struct vma_iterator *vmi) 1048 { 1049 mas_destroy(&vmi->mas); 1050 } 1051 1052 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1053 struct vm_area_struct *vma) 1054 { 1055 vmi->mas.index = vma->vm_start; 1056 vmi->mas.last = vma->vm_end - 1; 1057 mas_store(&vmi->mas, vma); 1058 if (unlikely(mas_is_err(&vmi->mas))) 1059 return -ENOMEM; 1060 1061 return 0; 1062 } 1063 1064 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1065 { 1066 mas_pause(&vmi->mas); 1067 } 1068 1069 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1070 { 1071 mas_set(&vmi->mas, addr); 1072 } 1073 1074 #define for_each_vma(__vmi, __vma) \ 1075 while (((__vma) = vma_next(&(__vmi))) != NULL) 1076 1077 /* The MM code likes to work with exclusive end addresses */ 1078 #define for_each_vma_range(__vmi, __vma, __end) \ 1079 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1080 1081 #ifdef CONFIG_SHMEM 1082 /* 1083 * The vma_is_shmem is not inline because it is used only by slow 1084 * paths in userfault. 1085 */ 1086 bool vma_is_shmem(struct vm_area_struct *vma); 1087 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1088 #else 1089 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1090 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1091 #endif 1092 1093 int vma_is_stack_for_current(struct vm_area_struct *vma); 1094 1095 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1096 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1097 1098 struct mmu_gather; 1099 struct inode; 1100 1101 /* 1102 * compound_order() can be called without holding a reference, which means 1103 * that niceties like page_folio() don't work. These callers should be 1104 * prepared to handle wild return values. For example, PG_head may be 1105 * set before the order is initialised, or this may be a tail page. 1106 * See compaction.c for some good examples. 1107 */ 1108 static inline unsigned int compound_order(struct page *page) 1109 { 1110 struct folio *folio = (struct folio *)page; 1111 1112 if (!test_bit(PG_head, &folio->flags)) 1113 return 0; 1114 return folio->_flags_1 & 0xff; 1115 } 1116 1117 /** 1118 * folio_order - The allocation order of a folio. 1119 * @folio: The folio. 1120 * 1121 * A folio is composed of 2^order pages. See get_order() for the definition 1122 * of order. 1123 * 1124 * Return: The order of the folio. 1125 */ 1126 static inline unsigned int folio_order(const struct folio *folio) 1127 { 1128 if (!folio_test_large(folio)) 1129 return 0; 1130 return folio->_flags_1 & 0xff; 1131 } 1132 1133 #include <linux/huge_mm.h> 1134 1135 /* 1136 * Methods to modify the page usage count. 1137 * 1138 * What counts for a page usage: 1139 * - cache mapping (page->mapping) 1140 * - private data (page->private) 1141 * - page mapped in a task's page tables, each mapping 1142 * is counted separately 1143 * 1144 * Also, many kernel routines increase the page count before a critical 1145 * routine so they can be sure the page doesn't go away from under them. 1146 */ 1147 1148 /* 1149 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1150 */ 1151 static inline int put_page_testzero(struct page *page) 1152 { 1153 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1154 return page_ref_dec_and_test(page); 1155 } 1156 1157 static inline int folio_put_testzero(struct folio *folio) 1158 { 1159 return put_page_testzero(&folio->page); 1160 } 1161 1162 /* 1163 * Try to grab a ref unless the page has a refcount of zero, return false if 1164 * that is the case. 1165 * This can be called when MMU is off so it must not access 1166 * any of the virtual mappings. 1167 */ 1168 static inline bool get_page_unless_zero(struct page *page) 1169 { 1170 return page_ref_add_unless(page, 1, 0); 1171 } 1172 1173 static inline struct folio *folio_get_nontail_page(struct page *page) 1174 { 1175 if (unlikely(!get_page_unless_zero(page))) 1176 return NULL; 1177 return (struct folio *)page; 1178 } 1179 1180 extern int page_is_ram(unsigned long pfn); 1181 1182 enum { 1183 REGION_INTERSECTS, 1184 REGION_DISJOINT, 1185 REGION_MIXED, 1186 }; 1187 1188 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1189 unsigned long desc); 1190 1191 /* Support for virtually mapped pages */ 1192 struct page *vmalloc_to_page(const void *addr); 1193 unsigned long vmalloc_to_pfn(const void *addr); 1194 1195 /* 1196 * Determine if an address is within the vmalloc range 1197 * 1198 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1199 * is no special casing required. 1200 */ 1201 #ifdef CONFIG_MMU 1202 extern bool is_vmalloc_addr(const void *x); 1203 extern int is_vmalloc_or_module_addr(const void *x); 1204 #else 1205 static inline bool is_vmalloc_addr(const void *x) 1206 { 1207 return false; 1208 } 1209 static inline int is_vmalloc_or_module_addr(const void *x) 1210 { 1211 return 0; 1212 } 1213 #endif 1214 1215 /* 1216 * How many times the entire folio is mapped as a single unit (eg by a 1217 * PMD or PUD entry). This is probably not what you want, except for 1218 * debugging purposes or implementation of other core folio_*() primitives. 1219 */ 1220 static inline int folio_entire_mapcount(const struct folio *folio) 1221 { 1222 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1223 return atomic_read(&folio->_entire_mapcount) + 1; 1224 } 1225 1226 static inline int folio_large_mapcount(const struct folio *folio) 1227 { 1228 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1229 return atomic_read(&folio->_large_mapcount) + 1; 1230 } 1231 1232 /** 1233 * folio_mapcount() - Number of mappings of this folio. 1234 * @folio: The folio. 1235 * 1236 * The folio mapcount corresponds to the number of present user page table 1237 * entries that reference any part of a folio. Each such present user page 1238 * table entry must be paired with exactly on folio reference. 1239 * 1240 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1241 * exactly once. 1242 * 1243 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1244 * references the entire folio counts exactly once, even when such special 1245 * page table entries are comprised of multiple ordinary page table entries. 1246 * 1247 * Will report 0 for pages which cannot be mapped into userspace, such as 1248 * slab, page tables and similar. 1249 * 1250 * Return: The number of times this folio is mapped. 1251 */ 1252 static inline int folio_mapcount(const struct folio *folio) 1253 { 1254 int mapcount; 1255 1256 if (likely(!folio_test_large(folio))) { 1257 mapcount = atomic_read(&folio->_mapcount) + 1; 1258 if (page_mapcount_is_type(mapcount)) 1259 mapcount = 0; 1260 return mapcount; 1261 } 1262 return folio_large_mapcount(folio); 1263 } 1264 1265 /** 1266 * folio_mapped - Is this folio mapped into userspace? 1267 * @folio: The folio. 1268 * 1269 * Return: True if any page in this folio is referenced by user page tables. 1270 */ 1271 static inline bool folio_mapped(const struct folio *folio) 1272 { 1273 return folio_mapcount(folio) >= 1; 1274 } 1275 1276 /* 1277 * Return true if this page is mapped into pagetables. 1278 * For compound page it returns true if any sub-page of compound page is mapped, 1279 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1280 */ 1281 static inline bool page_mapped(const struct page *page) 1282 { 1283 return folio_mapped(page_folio(page)); 1284 } 1285 1286 static inline struct page *virt_to_head_page(const void *x) 1287 { 1288 struct page *page = virt_to_page(x); 1289 1290 return compound_head(page); 1291 } 1292 1293 static inline struct folio *virt_to_folio(const void *x) 1294 { 1295 struct page *page = virt_to_page(x); 1296 1297 return page_folio(page); 1298 } 1299 1300 void __folio_put(struct folio *folio); 1301 1302 void split_page(struct page *page, unsigned int order); 1303 void folio_copy(struct folio *dst, struct folio *src); 1304 int folio_mc_copy(struct folio *dst, struct folio *src); 1305 1306 unsigned long nr_free_buffer_pages(void); 1307 1308 /* Returns the number of bytes in this potentially compound page. */ 1309 static inline unsigned long page_size(struct page *page) 1310 { 1311 return PAGE_SIZE << compound_order(page); 1312 } 1313 1314 /* Returns the number of bits needed for the number of bytes in a page */ 1315 static inline unsigned int page_shift(struct page *page) 1316 { 1317 return PAGE_SHIFT + compound_order(page); 1318 } 1319 1320 /** 1321 * thp_order - Order of a transparent huge page. 1322 * @page: Head page of a transparent huge page. 1323 */ 1324 static inline unsigned int thp_order(struct page *page) 1325 { 1326 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1327 return compound_order(page); 1328 } 1329 1330 /** 1331 * thp_size - Size of a transparent huge page. 1332 * @page: Head page of a transparent huge page. 1333 * 1334 * Return: Number of bytes in this page. 1335 */ 1336 static inline unsigned long thp_size(struct page *page) 1337 { 1338 return PAGE_SIZE << thp_order(page); 1339 } 1340 1341 #ifdef CONFIG_MMU 1342 /* 1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1344 * servicing faults for write access. In the normal case, do always want 1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1346 * that do not have writing enabled, when used by access_process_vm. 1347 */ 1348 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1349 { 1350 if (likely(vma->vm_flags & VM_WRITE)) 1351 pte = pte_mkwrite(pte, vma); 1352 return pte; 1353 } 1354 1355 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1356 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1357 struct page *page, unsigned int nr, unsigned long addr); 1358 1359 vm_fault_t finish_fault(struct vm_fault *vmf); 1360 #endif 1361 1362 /* 1363 * Multiple processes may "see" the same page. E.g. for untouched 1364 * mappings of /dev/null, all processes see the same page full of 1365 * zeroes, and text pages of executables and shared libraries have 1366 * only one copy in memory, at most, normally. 1367 * 1368 * For the non-reserved pages, page_count(page) denotes a reference count. 1369 * page_count() == 0 means the page is free. page->lru is then used for 1370 * freelist management in the buddy allocator. 1371 * page_count() > 0 means the page has been allocated. 1372 * 1373 * Pages are allocated by the slab allocator in order to provide memory 1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1376 * unless a particular usage is carefully commented. (the responsibility of 1377 * freeing the kmalloc memory is the caller's, of course). 1378 * 1379 * A page may be used by anyone else who does a __get_free_page(). 1380 * In this case, page_count still tracks the references, and should only 1381 * be used through the normal accessor functions. The top bits of page->flags 1382 * and page->virtual store page management information, but all other fields 1383 * are unused and could be used privately, carefully. The management of this 1384 * page is the responsibility of the one who allocated it, and those who have 1385 * subsequently been given references to it. 1386 * 1387 * The other pages (we may call them "pagecache pages") are completely 1388 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1389 * The following discussion applies only to them. 1390 * 1391 * A pagecache page contains an opaque `private' member, which belongs to the 1392 * page's address_space. Usually, this is the address of a circular list of 1393 * the page's disk buffers. PG_private must be set to tell the VM to call 1394 * into the filesystem to release these pages. 1395 * 1396 * A page may belong to an inode's memory mapping. In this case, page->mapping 1397 * is the pointer to the inode, and page->index is the file offset of the page, 1398 * in units of PAGE_SIZE. 1399 * 1400 * If pagecache pages are not associated with an inode, they are said to be 1401 * anonymous pages. These may become associated with the swapcache, and in that 1402 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1403 * 1404 * In either case (swapcache or inode backed), the pagecache itself holds one 1405 * reference to the page. Setting PG_private should also increment the 1406 * refcount. The each user mapping also has a reference to the page. 1407 * 1408 * The pagecache pages are stored in a per-mapping radix tree, which is 1409 * rooted at mapping->i_pages, and indexed by offset. 1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1411 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1412 * 1413 * All pagecache pages may be subject to I/O: 1414 * - inode pages may need to be read from disk, 1415 * - inode pages which have been modified and are MAP_SHARED may need 1416 * to be written back to the inode on disk, 1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1418 * modified may need to be swapped out to swap space and (later) to be read 1419 * back into memory. 1420 */ 1421 1422 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1423 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1424 1425 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1426 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1427 { 1428 if (!static_branch_unlikely(&devmap_managed_key)) 1429 return false; 1430 if (!folio_is_zone_device(folio)) 1431 return false; 1432 return __put_devmap_managed_folio_refs(folio, refs); 1433 } 1434 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1435 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1436 { 1437 return false; 1438 } 1439 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1440 1441 /* 127: arbitrary random number, small enough to assemble well */ 1442 #define folio_ref_zero_or_close_to_overflow(folio) \ 1443 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1444 1445 /** 1446 * folio_get - Increment the reference count on a folio. 1447 * @folio: The folio. 1448 * 1449 * Context: May be called in any context, as long as you know that 1450 * you have a refcount on the folio. If you do not already have one, 1451 * folio_try_get() may be the right interface for you to use. 1452 */ 1453 static inline void folio_get(struct folio *folio) 1454 { 1455 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1456 folio_ref_inc(folio); 1457 } 1458 1459 static inline void get_page(struct page *page) 1460 { 1461 folio_get(page_folio(page)); 1462 } 1463 1464 static inline __must_check bool try_get_page(struct page *page) 1465 { 1466 page = compound_head(page); 1467 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1468 return false; 1469 page_ref_inc(page); 1470 return true; 1471 } 1472 1473 /** 1474 * folio_put - Decrement the reference count on a folio. 1475 * @folio: The folio. 1476 * 1477 * If the folio's reference count reaches zero, the memory will be 1478 * released back to the page allocator and may be used by another 1479 * allocation immediately. Do not access the memory or the struct folio 1480 * after calling folio_put() unless you can be sure that it wasn't the 1481 * last reference. 1482 * 1483 * Context: May be called in process or interrupt context, but not in NMI 1484 * context. May be called while holding a spinlock. 1485 */ 1486 static inline void folio_put(struct folio *folio) 1487 { 1488 if (folio_put_testzero(folio)) 1489 __folio_put(folio); 1490 } 1491 1492 /** 1493 * folio_put_refs - Reduce the reference count on a folio. 1494 * @folio: The folio. 1495 * @refs: The amount to subtract from the folio's reference count. 1496 * 1497 * If the folio's reference count reaches zero, the memory will be 1498 * released back to the page allocator and may be used by another 1499 * allocation immediately. Do not access the memory or the struct folio 1500 * after calling folio_put_refs() unless you can be sure that these weren't 1501 * the last references. 1502 * 1503 * Context: May be called in process or interrupt context, but not in NMI 1504 * context. May be called while holding a spinlock. 1505 */ 1506 static inline void folio_put_refs(struct folio *folio, int refs) 1507 { 1508 if (folio_ref_sub_and_test(folio, refs)) 1509 __folio_put(folio); 1510 } 1511 1512 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1513 1514 /* 1515 * union release_pages_arg - an array of pages or folios 1516 * 1517 * release_pages() releases a simple array of multiple pages, and 1518 * accepts various different forms of said page array: either 1519 * a regular old boring array of pages, an array of folios, or 1520 * an array of encoded page pointers. 1521 * 1522 * The transparent union syntax for this kind of "any of these 1523 * argument types" is all kinds of ugly, so look away. 1524 */ 1525 typedef union { 1526 struct page **pages; 1527 struct folio **folios; 1528 struct encoded_page **encoded_pages; 1529 } release_pages_arg __attribute__ ((__transparent_union__)); 1530 1531 void release_pages(release_pages_arg, int nr); 1532 1533 /** 1534 * folios_put - Decrement the reference count on an array of folios. 1535 * @folios: The folios. 1536 * 1537 * Like folio_put(), but for a batch of folios. This is more efficient 1538 * than writing the loop yourself as it will optimise the locks which need 1539 * to be taken if the folios are freed. The folios batch is returned 1540 * empty and ready to be reused for another batch; there is no need to 1541 * reinitialise it. 1542 * 1543 * Context: May be called in process or interrupt context, but not in NMI 1544 * context. May be called while holding a spinlock. 1545 */ 1546 static inline void folios_put(struct folio_batch *folios) 1547 { 1548 folios_put_refs(folios, NULL); 1549 } 1550 1551 static inline void put_page(struct page *page) 1552 { 1553 struct folio *folio = page_folio(page); 1554 1555 /* 1556 * For some devmap managed pages we need to catch refcount transition 1557 * from 2 to 1: 1558 */ 1559 if (put_devmap_managed_folio_refs(folio, 1)) 1560 return; 1561 folio_put(folio); 1562 } 1563 1564 /* 1565 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1566 * the page's refcount so that two separate items are tracked: the original page 1567 * reference count, and also a new count of how many pin_user_pages() calls were 1568 * made against the page. ("gup-pinned" is another term for the latter). 1569 * 1570 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1571 * distinct from normal pages. As such, the unpin_user_page() call (and its 1572 * variants) must be used in order to release gup-pinned pages. 1573 * 1574 * Choice of value: 1575 * 1576 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1577 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1578 * simpler, due to the fact that adding an even power of two to the page 1579 * refcount has the effect of using only the upper N bits, for the code that 1580 * counts up using the bias value. This means that the lower bits are left for 1581 * the exclusive use of the original code that increments and decrements by one 1582 * (or at least, by much smaller values than the bias value). 1583 * 1584 * Of course, once the lower bits overflow into the upper bits (and this is 1585 * OK, because subtraction recovers the original values), then visual inspection 1586 * no longer suffices to directly view the separate counts. However, for normal 1587 * applications that don't have huge page reference counts, this won't be an 1588 * issue. 1589 * 1590 * Locking: the lockless algorithm described in folio_try_get_rcu() 1591 * provides safe operation for get_user_pages(), folio_mkclean() and 1592 * other calls that race to set up page table entries. 1593 */ 1594 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1595 1596 void unpin_user_page(struct page *page); 1597 void unpin_folio(struct folio *folio); 1598 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1599 bool make_dirty); 1600 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1601 bool make_dirty); 1602 void unpin_user_pages(struct page **pages, unsigned long npages); 1603 void unpin_user_folio(struct folio *folio, unsigned long npages); 1604 void unpin_folios(struct folio **folios, unsigned long nfolios); 1605 1606 static inline bool is_cow_mapping(vm_flags_t flags) 1607 { 1608 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1609 } 1610 1611 #ifndef CONFIG_MMU 1612 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1613 { 1614 /* 1615 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1616 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1617 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1618 * underlying memory if ptrace is active, so this is only possible if 1619 * ptrace does not apply. Note that there is no mprotect() to upgrade 1620 * write permissions later. 1621 */ 1622 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1623 } 1624 #endif 1625 1626 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1627 #define SECTION_IN_PAGE_FLAGS 1628 #endif 1629 1630 /* 1631 * The identification function is mainly used by the buddy allocator for 1632 * determining if two pages could be buddies. We are not really identifying 1633 * the zone since we could be using the section number id if we do not have 1634 * node id available in page flags. 1635 * We only guarantee that it will return the same value for two combinable 1636 * pages in a zone. 1637 */ 1638 static inline int page_zone_id(struct page *page) 1639 { 1640 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1641 } 1642 1643 #ifdef NODE_NOT_IN_PAGE_FLAGS 1644 int page_to_nid(const struct page *page); 1645 #else 1646 static inline int page_to_nid(const struct page *page) 1647 { 1648 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1649 } 1650 #endif 1651 1652 static inline int folio_nid(const struct folio *folio) 1653 { 1654 return page_to_nid(&folio->page); 1655 } 1656 1657 #ifdef CONFIG_NUMA_BALANCING 1658 /* page access time bits needs to hold at least 4 seconds */ 1659 #define PAGE_ACCESS_TIME_MIN_BITS 12 1660 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1661 #define PAGE_ACCESS_TIME_BUCKETS \ 1662 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1663 #else 1664 #define PAGE_ACCESS_TIME_BUCKETS 0 1665 #endif 1666 1667 #define PAGE_ACCESS_TIME_MASK \ 1668 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1669 1670 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1671 { 1672 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1673 } 1674 1675 static inline int cpupid_to_pid(int cpupid) 1676 { 1677 return cpupid & LAST__PID_MASK; 1678 } 1679 1680 static inline int cpupid_to_cpu(int cpupid) 1681 { 1682 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1683 } 1684 1685 static inline int cpupid_to_nid(int cpupid) 1686 { 1687 return cpu_to_node(cpupid_to_cpu(cpupid)); 1688 } 1689 1690 static inline bool cpupid_pid_unset(int cpupid) 1691 { 1692 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1693 } 1694 1695 static inline bool cpupid_cpu_unset(int cpupid) 1696 { 1697 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1698 } 1699 1700 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1701 { 1702 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1703 } 1704 1705 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1706 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1707 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1708 { 1709 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1710 } 1711 1712 static inline int folio_last_cpupid(struct folio *folio) 1713 { 1714 return folio->_last_cpupid; 1715 } 1716 static inline void page_cpupid_reset_last(struct page *page) 1717 { 1718 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1719 } 1720 #else 1721 static inline int folio_last_cpupid(struct folio *folio) 1722 { 1723 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1724 } 1725 1726 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1727 1728 static inline void page_cpupid_reset_last(struct page *page) 1729 { 1730 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1731 } 1732 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1733 1734 static inline int folio_xchg_access_time(struct folio *folio, int time) 1735 { 1736 int last_time; 1737 1738 last_time = folio_xchg_last_cpupid(folio, 1739 time >> PAGE_ACCESS_TIME_BUCKETS); 1740 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1741 } 1742 1743 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1744 { 1745 unsigned int pid_bit; 1746 1747 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1748 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1749 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1750 } 1751 } 1752 1753 bool folio_use_access_time(struct folio *folio); 1754 #else /* !CONFIG_NUMA_BALANCING */ 1755 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1756 { 1757 return folio_nid(folio); /* XXX */ 1758 } 1759 1760 static inline int folio_xchg_access_time(struct folio *folio, int time) 1761 { 1762 return 0; 1763 } 1764 1765 static inline int folio_last_cpupid(struct folio *folio) 1766 { 1767 return folio_nid(folio); /* XXX */ 1768 } 1769 1770 static inline int cpupid_to_nid(int cpupid) 1771 { 1772 return -1; 1773 } 1774 1775 static inline int cpupid_to_pid(int cpupid) 1776 { 1777 return -1; 1778 } 1779 1780 static inline int cpupid_to_cpu(int cpupid) 1781 { 1782 return -1; 1783 } 1784 1785 static inline int cpu_pid_to_cpupid(int nid, int pid) 1786 { 1787 return -1; 1788 } 1789 1790 static inline bool cpupid_pid_unset(int cpupid) 1791 { 1792 return true; 1793 } 1794 1795 static inline void page_cpupid_reset_last(struct page *page) 1796 { 1797 } 1798 1799 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1800 { 1801 return false; 1802 } 1803 1804 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1805 { 1806 } 1807 static inline bool folio_use_access_time(struct folio *folio) 1808 { 1809 return false; 1810 } 1811 #endif /* CONFIG_NUMA_BALANCING */ 1812 1813 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1814 1815 /* 1816 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1817 * setting tags for all pages to native kernel tag value 0xff, as the default 1818 * value 0x00 maps to 0xff. 1819 */ 1820 1821 static inline u8 page_kasan_tag(const struct page *page) 1822 { 1823 u8 tag = KASAN_TAG_KERNEL; 1824 1825 if (kasan_enabled()) { 1826 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1827 tag ^= 0xff; 1828 } 1829 1830 return tag; 1831 } 1832 1833 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1834 { 1835 unsigned long old_flags, flags; 1836 1837 if (!kasan_enabled()) 1838 return; 1839 1840 tag ^= 0xff; 1841 old_flags = READ_ONCE(page->flags); 1842 do { 1843 flags = old_flags; 1844 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1845 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1846 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1847 } 1848 1849 static inline void page_kasan_tag_reset(struct page *page) 1850 { 1851 if (kasan_enabled()) 1852 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1853 } 1854 1855 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1856 1857 static inline u8 page_kasan_tag(const struct page *page) 1858 { 1859 return 0xff; 1860 } 1861 1862 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1863 static inline void page_kasan_tag_reset(struct page *page) { } 1864 1865 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1866 1867 static inline struct zone *page_zone(const struct page *page) 1868 { 1869 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1870 } 1871 1872 static inline pg_data_t *page_pgdat(const struct page *page) 1873 { 1874 return NODE_DATA(page_to_nid(page)); 1875 } 1876 1877 static inline struct zone *folio_zone(const struct folio *folio) 1878 { 1879 return page_zone(&folio->page); 1880 } 1881 1882 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1883 { 1884 return page_pgdat(&folio->page); 1885 } 1886 1887 #ifdef SECTION_IN_PAGE_FLAGS 1888 static inline void set_page_section(struct page *page, unsigned long section) 1889 { 1890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1892 } 1893 1894 static inline unsigned long page_to_section(const struct page *page) 1895 { 1896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1897 } 1898 #endif 1899 1900 /** 1901 * folio_pfn - Return the Page Frame Number of a folio. 1902 * @folio: The folio. 1903 * 1904 * A folio may contain multiple pages. The pages have consecutive 1905 * Page Frame Numbers. 1906 * 1907 * Return: The Page Frame Number of the first page in the folio. 1908 */ 1909 static inline unsigned long folio_pfn(const struct folio *folio) 1910 { 1911 return page_to_pfn(&folio->page); 1912 } 1913 1914 static inline struct folio *pfn_folio(unsigned long pfn) 1915 { 1916 return page_folio(pfn_to_page(pfn)); 1917 } 1918 1919 /** 1920 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1921 * @folio: The folio. 1922 * 1923 * This function checks if a folio has been pinned via a call to 1924 * a function in the pin_user_pages() family. 1925 * 1926 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1927 * because it means "definitely not pinned for DMA", but true means "probably 1928 * pinned for DMA, but possibly a false positive due to having at least 1929 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1930 * 1931 * False positives are OK, because: a) it's unlikely for a folio to 1932 * get that many refcounts, and b) all the callers of this routine are 1933 * expected to be able to deal gracefully with a false positive. 1934 * 1935 * For large folios, the result will be exactly correct. That's because 1936 * we have more tracking data available: the _pincount field is used 1937 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1938 * 1939 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1940 * 1941 * Return: True, if it is likely that the folio has been "dma-pinned". 1942 * False, if the folio is definitely not dma-pinned. 1943 */ 1944 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1945 { 1946 if (folio_test_large(folio)) 1947 return atomic_read(&folio->_pincount) > 0; 1948 1949 /* 1950 * folio_ref_count() is signed. If that refcount overflows, then 1951 * folio_ref_count() returns a negative value, and callers will avoid 1952 * further incrementing the refcount. 1953 * 1954 * Here, for that overflow case, use the sign bit to count a little 1955 * bit higher via unsigned math, and thus still get an accurate result. 1956 */ 1957 return ((unsigned int)folio_ref_count(folio)) >= 1958 GUP_PIN_COUNTING_BIAS; 1959 } 1960 1961 /* 1962 * This should most likely only be called during fork() to see whether we 1963 * should break the cow immediately for an anon page on the src mm. 1964 * 1965 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1966 */ 1967 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1968 struct folio *folio) 1969 { 1970 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1971 1972 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1973 return false; 1974 1975 return folio_maybe_dma_pinned(folio); 1976 } 1977 1978 /** 1979 * is_zero_page - Query if a page is a zero page 1980 * @page: The page to query 1981 * 1982 * This returns true if @page is one of the permanent zero pages. 1983 */ 1984 static inline bool is_zero_page(const struct page *page) 1985 { 1986 return is_zero_pfn(page_to_pfn(page)); 1987 } 1988 1989 /** 1990 * is_zero_folio - Query if a folio is a zero page 1991 * @folio: The folio to query 1992 * 1993 * This returns true if @folio is one of the permanent zero pages. 1994 */ 1995 static inline bool is_zero_folio(const struct folio *folio) 1996 { 1997 return is_zero_page(&folio->page); 1998 } 1999 2000 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2001 #ifdef CONFIG_MIGRATION 2002 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2003 { 2004 #ifdef CONFIG_CMA 2005 int mt = folio_migratetype(folio); 2006 2007 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2008 return false; 2009 #endif 2010 /* The zero page can be "pinned" but gets special handling. */ 2011 if (is_zero_folio(folio)) 2012 return true; 2013 2014 /* Coherent device memory must always allow eviction. */ 2015 if (folio_is_device_coherent(folio)) 2016 return false; 2017 2018 /* Otherwise, non-movable zone folios can be pinned. */ 2019 return !folio_is_zone_movable(folio); 2020 2021 } 2022 #else 2023 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2024 { 2025 return true; 2026 } 2027 #endif 2028 2029 static inline void set_page_zone(struct page *page, enum zone_type zone) 2030 { 2031 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2032 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2033 } 2034 2035 static inline void set_page_node(struct page *page, unsigned long node) 2036 { 2037 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2038 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2039 } 2040 2041 static inline void set_page_links(struct page *page, enum zone_type zone, 2042 unsigned long node, unsigned long pfn) 2043 { 2044 set_page_zone(page, zone); 2045 set_page_node(page, node); 2046 #ifdef SECTION_IN_PAGE_FLAGS 2047 set_page_section(page, pfn_to_section_nr(pfn)); 2048 #endif 2049 } 2050 2051 /** 2052 * folio_nr_pages - The number of pages in the folio. 2053 * @folio: The folio. 2054 * 2055 * Return: A positive power of two. 2056 */ 2057 static inline long folio_nr_pages(const struct folio *folio) 2058 { 2059 if (!folio_test_large(folio)) 2060 return 1; 2061 #ifdef CONFIG_64BIT 2062 return folio->_folio_nr_pages; 2063 #else 2064 return 1L << (folio->_flags_1 & 0xff); 2065 #endif 2066 } 2067 2068 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2069 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2070 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2071 #else 2072 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2073 #endif 2074 2075 /* 2076 * compound_nr() returns the number of pages in this potentially compound 2077 * page. compound_nr() can be called on a tail page, and is defined to 2078 * return 1 in that case. 2079 */ 2080 static inline unsigned long compound_nr(struct page *page) 2081 { 2082 struct folio *folio = (struct folio *)page; 2083 2084 if (!test_bit(PG_head, &folio->flags)) 2085 return 1; 2086 #ifdef CONFIG_64BIT 2087 return folio->_folio_nr_pages; 2088 #else 2089 return 1L << (folio->_flags_1 & 0xff); 2090 #endif 2091 } 2092 2093 /** 2094 * thp_nr_pages - The number of regular pages in this huge page. 2095 * @page: The head page of a huge page. 2096 */ 2097 static inline int thp_nr_pages(struct page *page) 2098 { 2099 return folio_nr_pages((struct folio *)page); 2100 } 2101 2102 /** 2103 * folio_next - Move to the next physical folio. 2104 * @folio: The folio we're currently operating on. 2105 * 2106 * If you have physically contiguous memory which may span more than 2107 * one folio (eg a &struct bio_vec), use this function to move from one 2108 * folio to the next. Do not use it if the memory is only virtually 2109 * contiguous as the folios are almost certainly not adjacent to each 2110 * other. This is the folio equivalent to writing ``page++``. 2111 * 2112 * Context: We assume that the folios are refcounted and/or locked at a 2113 * higher level and do not adjust the reference counts. 2114 * Return: The next struct folio. 2115 */ 2116 static inline struct folio *folio_next(struct folio *folio) 2117 { 2118 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2119 } 2120 2121 /** 2122 * folio_shift - The size of the memory described by this folio. 2123 * @folio: The folio. 2124 * 2125 * A folio represents a number of bytes which is a power-of-two in size. 2126 * This function tells you which power-of-two the folio is. See also 2127 * folio_size() and folio_order(). 2128 * 2129 * Context: The caller should have a reference on the folio to prevent 2130 * it from being split. It is not necessary for the folio to be locked. 2131 * Return: The base-2 logarithm of the size of this folio. 2132 */ 2133 static inline unsigned int folio_shift(const struct folio *folio) 2134 { 2135 return PAGE_SHIFT + folio_order(folio); 2136 } 2137 2138 /** 2139 * folio_size - The number of bytes in a folio. 2140 * @folio: The folio. 2141 * 2142 * Context: The caller should have a reference on the folio to prevent 2143 * it from being split. It is not necessary for the folio to be locked. 2144 * Return: The number of bytes in this folio. 2145 */ 2146 static inline size_t folio_size(const struct folio *folio) 2147 { 2148 return PAGE_SIZE << folio_order(folio); 2149 } 2150 2151 /** 2152 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2153 * tables of more than one MM 2154 * @folio: The folio. 2155 * 2156 * This function checks if the folio is currently mapped into more than one 2157 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2158 * ("mapped exclusively"). 2159 * 2160 * For KSM folios, this function also returns "mapped shared" when a folio is 2161 * mapped multiple times into the same MM, because the individual page mappings 2162 * are independent. 2163 * 2164 * As precise information is not easily available for all folios, this function 2165 * estimates the number of MMs ("sharers") that are currently mapping a folio 2166 * using the number of times the first page of the folio is currently mapped 2167 * into page tables. 2168 * 2169 * For small anonymous folios and anonymous hugetlb folios, the return 2170 * value will be exactly correct: non-KSM folios can only be mapped at most once 2171 * into an MM, and they cannot be partially mapped. KSM folios are 2172 * considered shared even if mapped multiple times into the same MM. 2173 * 2174 * For other folios, the result can be fuzzy: 2175 * #. For partially-mappable large folios (THP), the return value can wrongly 2176 * indicate "mapped exclusively" (false negative) when the folio is 2177 * only partially mapped into at least one MM. 2178 * #. For pagecache folios (including hugetlb), the return value can wrongly 2179 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2180 * cover the same file range. 2181 * 2182 * Further, this function only considers current page table mappings that 2183 * are tracked using the folio mapcount(s). 2184 * 2185 * This function does not consider: 2186 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2187 * pagecache, temporary unmapping for migration). 2188 * #. If the folio is mapped differently (VM_PFNMAP). 2189 * #. If hugetlb page table sharing applies. Callers might want to check 2190 * hugetlb_pmd_shared(). 2191 * 2192 * Return: Whether the folio is estimated to be mapped into more than one MM. 2193 */ 2194 static inline bool folio_likely_mapped_shared(struct folio *folio) 2195 { 2196 int mapcount = folio_mapcount(folio); 2197 2198 /* Only partially-mappable folios require more care. */ 2199 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2200 return mapcount > 1; 2201 2202 /* A single mapping implies "mapped exclusively". */ 2203 if (mapcount <= 1) 2204 return false; 2205 2206 /* If any page is mapped more than once we treat it "mapped shared". */ 2207 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2208 return true; 2209 2210 /* Let's guess based on the first subpage. */ 2211 return atomic_read(&folio->_mapcount) > 0; 2212 } 2213 2214 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2215 static inline int arch_make_folio_accessible(struct folio *folio) 2216 { 2217 return 0; 2218 } 2219 #endif 2220 2221 /* 2222 * Some inline functions in vmstat.h depend on page_zone() 2223 */ 2224 #include <linux/vmstat.h> 2225 2226 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2227 #define HASHED_PAGE_VIRTUAL 2228 #endif 2229 2230 #if defined(WANT_PAGE_VIRTUAL) 2231 static inline void *page_address(const struct page *page) 2232 { 2233 return page->virtual; 2234 } 2235 static inline void set_page_address(struct page *page, void *address) 2236 { 2237 page->virtual = address; 2238 } 2239 #define page_address_init() do { } while(0) 2240 #endif 2241 2242 #if defined(HASHED_PAGE_VIRTUAL) 2243 void *page_address(const struct page *page); 2244 void set_page_address(struct page *page, void *virtual); 2245 void page_address_init(void); 2246 #endif 2247 2248 static __always_inline void *lowmem_page_address(const struct page *page) 2249 { 2250 return page_to_virt(page); 2251 } 2252 2253 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2254 #define page_address(page) lowmem_page_address(page) 2255 #define set_page_address(page, address) do { } while(0) 2256 #define page_address_init() do { } while(0) 2257 #endif 2258 2259 static inline void *folio_address(const struct folio *folio) 2260 { 2261 return page_address(&folio->page); 2262 } 2263 2264 /* 2265 * Return true only if the page has been allocated with 2266 * ALLOC_NO_WATERMARKS and the low watermark was not 2267 * met implying that the system is under some pressure. 2268 */ 2269 static inline bool page_is_pfmemalloc(const struct page *page) 2270 { 2271 /* 2272 * lru.next has bit 1 set if the page is allocated from the 2273 * pfmemalloc reserves. Callers may simply overwrite it if 2274 * they do not need to preserve that information. 2275 */ 2276 return (uintptr_t)page->lru.next & BIT(1); 2277 } 2278 2279 /* 2280 * Return true only if the folio has been allocated with 2281 * ALLOC_NO_WATERMARKS and the low watermark was not 2282 * met implying that the system is under some pressure. 2283 */ 2284 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2285 { 2286 /* 2287 * lru.next has bit 1 set if the page is allocated from the 2288 * pfmemalloc reserves. Callers may simply overwrite it if 2289 * they do not need to preserve that information. 2290 */ 2291 return (uintptr_t)folio->lru.next & BIT(1); 2292 } 2293 2294 /* 2295 * Only to be called by the page allocator on a freshly allocated 2296 * page. 2297 */ 2298 static inline void set_page_pfmemalloc(struct page *page) 2299 { 2300 page->lru.next = (void *)BIT(1); 2301 } 2302 2303 static inline void clear_page_pfmemalloc(struct page *page) 2304 { 2305 page->lru.next = NULL; 2306 } 2307 2308 /* 2309 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2310 */ 2311 extern void pagefault_out_of_memory(void); 2312 2313 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2314 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2315 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2316 2317 /* 2318 * Parameter block passed down to zap_pte_range in exceptional cases. 2319 */ 2320 struct zap_details { 2321 struct folio *single_folio; /* Locked folio to be unmapped */ 2322 bool even_cows; /* Zap COWed private pages too? */ 2323 zap_flags_t zap_flags; /* Extra flags for zapping */ 2324 }; 2325 2326 /* 2327 * Whether to drop the pte markers, for example, the uffd-wp information for 2328 * file-backed memory. This should only be specified when we will completely 2329 * drop the page in the mm, either by truncation or unmapping of the vma. By 2330 * default, the flag is not set. 2331 */ 2332 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2333 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2334 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2335 2336 #ifdef CONFIG_SCHED_MM_CID 2337 void sched_mm_cid_before_execve(struct task_struct *t); 2338 void sched_mm_cid_after_execve(struct task_struct *t); 2339 void sched_mm_cid_fork(struct task_struct *t); 2340 void sched_mm_cid_exit_signals(struct task_struct *t); 2341 static inline int task_mm_cid(struct task_struct *t) 2342 { 2343 return t->mm_cid; 2344 } 2345 #else 2346 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2347 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2348 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2349 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2350 static inline int task_mm_cid(struct task_struct *t) 2351 { 2352 /* 2353 * Use the processor id as a fall-back when the mm cid feature is 2354 * disabled. This provides functional per-cpu data structure accesses 2355 * in user-space, althrough it won't provide the memory usage benefits. 2356 */ 2357 return raw_smp_processor_id(); 2358 } 2359 #endif 2360 2361 #ifdef CONFIG_MMU 2362 extern bool can_do_mlock(void); 2363 #else 2364 static inline bool can_do_mlock(void) { return false; } 2365 #endif 2366 extern int user_shm_lock(size_t, struct ucounts *); 2367 extern void user_shm_unlock(size_t, struct ucounts *); 2368 2369 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2370 pte_t pte); 2371 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2372 pte_t pte); 2373 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2374 unsigned long addr, pmd_t pmd); 2375 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2376 pmd_t pmd); 2377 2378 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2379 unsigned long size); 2380 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2381 unsigned long size, struct zap_details *details); 2382 static inline void zap_vma_pages(struct vm_area_struct *vma) 2383 { 2384 zap_page_range_single(vma, vma->vm_start, 2385 vma->vm_end - vma->vm_start, NULL); 2386 } 2387 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2388 struct vm_area_struct *start_vma, unsigned long start, 2389 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2390 2391 struct mmu_notifier_range; 2392 2393 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2394 unsigned long end, unsigned long floor, unsigned long ceiling); 2395 int 2396 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2397 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2398 void *buf, int len, int write); 2399 2400 struct follow_pfnmap_args { 2401 /** 2402 * Inputs: 2403 * @vma: Pointer to @vm_area_struct struct 2404 * @address: the virtual address to walk 2405 */ 2406 struct vm_area_struct *vma; 2407 unsigned long address; 2408 /** 2409 * Internals: 2410 * 2411 * The caller shouldn't touch any of these. 2412 */ 2413 spinlock_t *lock; 2414 pte_t *ptep; 2415 /** 2416 * Outputs: 2417 * 2418 * @pfn: the PFN of the address 2419 * @pgprot: the pgprot_t of the mapping 2420 * @writable: whether the mapping is writable 2421 * @special: whether the mapping is a special mapping (real PFN maps) 2422 */ 2423 unsigned long pfn; 2424 pgprot_t pgprot; 2425 bool writable; 2426 bool special; 2427 }; 2428 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2429 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2430 2431 extern void truncate_pagecache(struct inode *inode, loff_t new); 2432 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2433 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2434 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2435 int generic_error_remove_folio(struct address_space *mapping, 2436 struct folio *folio); 2437 2438 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2439 unsigned long address, struct pt_regs *regs); 2440 2441 #ifdef CONFIG_MMU 2442 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2443 unsigned long address, unsigned int flags, 2444 struct pt_regs *regs); 2445 extern int fixup_user_fault(struct mm_struct *mm, 2446 unsigned long address, unsigned int fault_flags, 2447 bool *unlocked); 2448 void unmap_mapping_pages(struct address_space *mapping, 2449 pgoff_t start, pgoff_t nr, bool even_cows); 2450 void unmap_mapping_range(struct address_space *mapping, 2451 loff_t const holebegin, loff_t const holelen, int even_cows); 2452 #else 2453 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2454 unsigned long address, unsigned int flags, 2455 struct pt_regs *regs) 2456 { 2457 /* should never happen if there's no MMU */ 2458 BUG(); 2459 return VM_FAULT_SIGBUS; 2460 } 2461 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2462 unsigned int fault_flags, bool *unlocked) 2463 { 2464 /* should never happen if there's no MMU */ 2465 BUG(); 2466 return -EFAULT; 2467 } 2468 static inline void unmap_mapping_pages(struct address_space *mapping, 2469 pgoff_t start, pgoff_t nr, bool even_cows) { } 2470 static inline void unmap_mapping_range(struct address_space *mapping, 2471 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2472 #endif 2473 2474 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2475 loff_t const holebegin, loff_t const holelen) 2476 { 2477 unmap_mapping_range(mapping, holebegin, holelen, 0); 2478 } 2479 2480 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2481 unsigned long addr); 2482 2483 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2484 void *buf, int len, unsigned int gup_flags); 2485 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2486 void *buf, int len, unsigned int gup_flags); 2487 2488 long get_user_pages_remote(struct mm_struct *mm, 2489 unsigned long start, unsigned long nr_pages, 2490 unsigned int gup_flags, struct page **pages, 2491 int *locked); 2492 long pin_user_pages_remote(struct mm_struct *mm, 2493 unsigned long start, unsigned long nr_pages, 2494 unsigned int gup_flags, struct page **pages, 2495 int *locked); 2496 2497 /* 2498 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2499 */ 2500 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2501 unsigned long addr, 2502 int gup_flags, 2503 struct vm_area_struct **vmap) 2504 { 2505 struct page *page; 2506 struct vm_area_struct *vma; 2507 int got; 2508 2509 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2510 return ERR_PTR(-EINVAL); 2511 2512 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2513 2514 if (got < 0) 2515 return ERR_PTR(got); 2516 2517 vma = vma_lookup(mm, addr); 2518 if (WARN_ON_ONCE(!vma)) { 2519 put_page(page); 2520 return ERR_PTR(-EINVAL); 2521 } 2522 2523 *vmap = vma; 2524 return page; 2525 } 2526 2527 long get_user_pages(unsigned long start, unsigned long nr_pages, 2528 unsigned int gup_flags, struct page **pages); 2529 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2530 unsigned int gup_flags, struct page **pages); 2531 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2532 struct page **pages, unsigned int gup_flags); 2533 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2534 struct page **pages, unsigned int gup_flags); 2535 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2536 struct folio **folios, unsigned int max_folios, 2537 pgoff_t *offset); 2538 int folio_add_pins(struct folio *folio, unsigned int pins); 2539 2540 int get_user_pages_fast(unsigned long start, int nr_pages, 2541 unsigned int gup_flags, struct page **pages); 2542 int pin_user_pages_fast(unsigned long start, int nr_pages, 2543 unsigned int gup_flags, struct page **pages); 2544 void folio_add_pin(struct folio *folio); 2545 2546 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2547 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2548 struct task_struct *task, bool bypass_rlim); 2549 2550 struct kvec; 2551 struct page *get_dump_page(unsigned long addr); 2552 2553 bool folio_mark_dirty(struct folio *folio); 2554 bool folio_mark_dirty_lock(struct folio *folio); 2555 bool set_page_dirty(struct page *page); 2556 int set_page_dirty_lock(struct page *page); 2557 2558 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2559 2560 /* 2561 * Flags used by change_protection(). For now we make it a bitmap so 2562 * that we can pass in multiple flags just like parameters. However 2563 * for now all the callers are only use one of the flags at the same 2564 * time. 2565 */ 2566 /* 2567 * Whether we should manually check if we can map individual PTEs writable, 2568 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2569 * PTEs automatically in a writable mapping. 2570 */ 2571 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2572 /* Whether this protection change is for NUMA hints */ 2573 #define MM_CP_PROT_NUMA (1UL << 1) 2574 /* Whether this change is for write protecting */ 2575 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2576 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2577 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2578 MM_CP_UFFD_WP_RESOLVE) 2579 2580 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2581 pte_t pte); 2582 extern long change_protection(struct mmu_gather *tlb, 2583 struct vm_area_struct *vma, unsigned long start, 2584 unsigned long end, unsigned long cp_flags); 2585 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2586 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2587 unsigned long start, unsigned long end, unsigned long newflags); 2588 2589 /* 2590 * doesn't attempt to fault and will return short. 2591 */ 2592 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2593 unsigned int gup_flags, struct page **pages); 2594 2595 static inline bool get_user_page_fast_only(unsigned long addr, 2596 unsigned int gup_flags, struct page **pagep) 2597 { 2598 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2599 } 2600 /* 2601 * per-process(per-mm_struct) statistics. 2602 */ 2603 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2604 { 2605 return percpu_counter_read_positive(&mm->rss_stat[member]); 2606 } 2607 2608 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2609 2610 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2611 { 2612 percpu_counter_add(&mm->rss_stat[member], value); 2613 2614 mm_trace_rss_stat(mm, member); 2615 } 2616 2617 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2618 { 2619 percpu_counter_inc(&mm->rss_stat[member]); 2620 2621 mm_trace_rss_stat(mm, member); 2622 } 2623 2624 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2625 { 2626 percpu_counter_dec(&mm->rss_stat[member]); 2627 2628 mm_trace_rss_stat(mm, member); 2629 } 2630 2631 /* Optimized variant when folio is already known not to be anon */ 2632 static inline int mm_counter_file(struct folio *folio) 2633 { 2634 if (folio_test_swapbacked(folio)) 2635 return MM_SHMEMPAGES; 2636 return MM_FILEPAGES; 2637 } 2638 2639 static inline int mm_counter(struct folio *folio) 2640 { 2641 if (folio_test_anon(folio)) 2642 return MM_ANONPAGES; 2643 return mm_counter_file(folio); 2644 } 2645 2646 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2647 { 2648 return get_mm_counter(mm, MM_FILEPAGES) + 2649 get_mm_counter(mm, MM_ANONPAGES) + 2650 get_mm_counter(mm, MM_SHMEMPAGES); 2651 } 2652 2653 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2654 { 2655 return max(mm->hiwater_rss, get_mm_rss(mm)); 2656 } 2657 2658 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2659 { 2660 return max(mm->hiwater_vm, mm->total_vm); 2661 } 2662 2663 static inline void update_hiwater_rss(struct mm_struct *mm) 2664 { 2665 unsigned long _rss = get_mm_rss(mm); 2666 2667 if ((mm)->hiwater_rss < _rss) 2668 (mm)->hiwater_rss = _rss; 2669 } 2670 2671 static inline void update_hiwater_vm(struct mm_struct *mm) 2672 { 2673 if (mm->hiwater_vm < mm->total_vm) 2674 mm->hiwater_vm = mm->total_vm; 2675 } 2676 2677 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2678 { 2679 mm->hiwater_rss = get_mm_rss(mm); 2680 } 2681 2682 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2683 struct mm_struct *mm) 2684 { 2685 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2686 2687 if (*maxrss < hiwater_rss) 2688 *maxrss = hiwater_rss; 2689 } 2690 2691 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2692 static inline int pte_special(pte_t pte) 2693 { 2694 return 0; 2695 } 2696 2697 static inline pte_t pte_mkspecial(pte_t pte) 2698 { 2699 return pte; 2700 } 2701 #endif 2702 2703 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2704 static inline bool pmd_special(pmd_t pmd) 2705 { 2706 return false; 2707 } 2708 2709 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2710 { 2711 return pmd; 2712 } 2713 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2714 2715 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2716 static inline bool pud_special(pud_t pud) 2717 { 2718 return false; 2719 } 2720 2721 static inline pud_t pud_mkspecial(pud_t pud) 2722 { 2723 return pud; 2724 } 2725 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2726 2727 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2728 static inline int pte_devmap(pte_t pte) 2729 { 2730 return 0; 2731 } 2732 #endif 2733 2734 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2735 spinlock_t **ptl); 2736 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2737 spinlock_t **ptl) 2738 { 2739 pte_t *ptep; 2740 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2741 return ptep; 2742 } 2743 2744 #ifdef __PAGETABLE_P4D_FOLDED 2745 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2746 unsigned long address) 2747 { 2748 return 0; 2749 } 2750 #else 2751 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2752 #endif 2753 2754 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2755 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2756 unsigned long address) 2757 { 2758 return 0; 2759 } 2760 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2761 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2762 2763 #else 2764 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2765 2766 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2767 { 2768 if (mm_pud_folded(mm)) 2769 return; 2770 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2771 } 2772 2773 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2774 { 2775 if (mm_pud_folded(mm)) 2776 return; 2777 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2778 } 2779 #endif 2780 2781 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2782 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2783 unsigned long address) 2784 { 2785 return 0; 2786 } 2787 2788 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2789 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2790 2791 #else 2792 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2793 2794 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2795 { 2796 if (mm_pmd_folded(mm)) 2797 return; 2798 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2799 } 2800 2801 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2802 { 2803 if (mm_pmd_folded(mm)) 2804 return; 2805 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2806 } 2807 #endif 2808 2809 #ifdef CONFIG_MMU 2810 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2811 { 2812 atomic_long_set(&mm->pgtables_bytes, 0); 2813 } 2814 2815 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2816 { 2817 return atomic_long_read(&mm->pgtables_bytes); 2818 } 2819 2820 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2821 { 2822 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2823 } 2824 2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2826 { 2827 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2828 } 2829 #else 2830 2831 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2832 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2833 { 2834 return 0; 2835 } 2836 2837 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2838 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2839 #endif 2840 2841 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2842 int __pte_alloc_kernel(pmd_t *pmd); 2843 2844 #if defined(CONFIG_MMU) 2845 2846 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2847 unsigned long address) 2848 { 2849 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2850 NULL : p4d_offset(pgd, address); 2851 } 2852 2853 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2854 unsigned long address) 2855 { 2856 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2857 NULL : pud_offset(p4d, address); 2858 } 2859 2860 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2861 { 2862 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2863 NULL: pmd_offset(pud, address); 2864 } 2865 #endif /* CONFIG_MMU */ 2866 2867 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2868 { 2869 return page_ptdesc(virt_to_page(x)); 2870 } 2871 2872 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2873 { 2874 return page_to_virt(ptdesc_page(pt)); 2875 } 2876 2877 static inline void *ptdesc_address(const struct ptdesc *pt) 2878 { 2879 return folio_address(ptdesc_folio(pt)); 2880 } 2881 2882 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2883 { 2884 return folio_test_reserved(ptdesc_folio(pt)); 2885 } 2886 2887 /** 2888 * pagetable_alloc - Allocate pagetables 2889 * @gfp: GFP flags 2890 * @order: desired pagetable order 2891 * 2892 * pagetable_alloc allocates memory for page tables as well as a page table 2893 * descriptor to describe that memory. 2894 * 2895 * Return: The ptdesc describing the allocated page tables. 2896 */ 2897 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2898 { 2899 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2900 2901 return page_ptdesc(page); 2902 } 2903 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2904 2905 /** 2906 * pagetable_free - Free pagetables 2907 * @pt: The page table descriptor 2908 * 2909 * pagetable_free frees the memory of all page tables described by a page 2910 * table descriptor and the memory for the descriptor itself. 2911 */ 2912 static inline void pagetable_free(struct ptdesc *pt) 2913 { 2914 struct page *page = ptdesc_page(pt); 2915 2916 __free_pages(page, compound_order(page)); 2917 } 2918 2919 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2920 #if ALLOC_SPLIT_PTLOCKS 2921 void __init ptlock_cache_init(void); 2922 bool ptlock_alloc(struct ptdesc *ptdesc); 2923 void ptlock_free(struct ptdesc *ptdesc); 2924 2925 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2926 { 2927 return ptdesc->ptl; 2928 } 2929 #else /* ALLOC_SPLIT_PTLOCKS */ 2930 static inline void ptlock_cache_init(void) 2931 { 2932 } 2933 2934 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2935 { 2936 return true; 2937 } 2938 2939 static inline void ptlock_free(struct ptdesc *ptdesc) 2940 { 2941 } 2942 2943 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2944 { 2945 return &ptdesc->ptl; 2946 } 2947 #endif /* ALLOC_SPLIT_PTLOCKS */ 2948 2949 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2950 { 2951 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2952 } 2953 2954 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2955 { 2956 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2957 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2958 return ptlock_ptr(virt_to_ptdesc(pte)); 2959 } 2960 2961 static inline bool ptlock_init(struct ptdesc *ptdesc) 2962 { 2963 /* 2964 * prep_new_page() initialize page->private (and therefore page->ptl) 2965 * with 0. Make sure nobody took it in use in between. 2966 * 2967 * It can happen if arch try to use slab for page table allocation: 2968 * slab code uses page->slab_cache, which share storage with page->ptl. 2969 */ 2970 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2971 if (!ptlock_alloc(ptdesc)) 2972 return false; 2973 spin_lock_init(ptlock_ptr(ptdesc)); 2974 return true; 2975 } 2976 2977 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2978 /* 2979 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2980 */ 2981 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2982 { 2983 return &mm->page_table_lock; 2984 } 2985 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2986 { 2987 return &mm->page_table_lock; 2988 } 2989 static inline void ptlock_cache_init(void) {} 2990 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2991 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2992 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2993 2994 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2995 { 2996 struct folio *folio = ptdesc_folio(ptdesc); 2997 2998 if (!ptlock_init(ptdesc)) 2999 return false; 3000 __folio_set_pgtable(folio); 3001 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3002 return true; 3003 } 3004 3005 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 3006 { 3007 struct folio *folio = ptdesc_folio(ptdesc); 3008 3009 ptlock_free(ptdesc); 3010 __folio_clear_pgtable(folio); 3011 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3012 } 3013 3014 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3015 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3016 pmd_t *pmdvalp) 3017 { 3018 pte_t *pte; 3019 3020 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3021 return pte; 3022 } 3023 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3024 { 3025 return __pte_offset_map(pmd, addr, NULL); 3026 } 3027 3028 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3029 unsigned long addr, spinlock_t **ptlp); 3030 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3031 unsigned long addr, spinlock_t **ptlp) 3032 { 3033 pte_t *pte; 3034 3035 __cond_lock(RCU, __cond_lock(*ptlp, 3036 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3037 return pte; 3038 } 3039 3040 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3041 unsigned long addr, spinlock_t **ptlp); 3042 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3043 unsigned long addr, pmd_t *pmdvalp, 3044 spinlock_t **ptlp); 3045 3046 #define pte_unmap_unlock(pte, ptl) do { \ 3047 spin_unlock(ptl); \ 3048 pte_unmap(pte); \ 3049 } while (0) 3050 3051 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3052 3053 #define pte_alloc_map(mm, pmd, address) \ 3054 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3055 3056 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3057 (pte_alloc(mm, pmd) ? \ 3058 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3059 3060 #define pte_alloc_kernel(pmd, address) \ 3061 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3062 NULL: pte_offset_kernel(pmd, address)) 3063 3064 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3065 3066 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3067 { 3068 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3069 return virt_to_page((void *)((unsigned long) pmd & mask)); 3070 } 3071 3072 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3073 { 3074 return page_ptdesc(pmd_pgtable_page(pmd)); 3075 } 3076 3077 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3078 { 3079 return ptlock_ptr(pmd_ptdesc(pmd)); 3080 } 3081 3082 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3083 { 3084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3085 ptdesc->pmd_huge_pte = NULL; 3086 #endif 3087 return ptlock_init(ptdesc); 3088 } 3089 3090 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3091 { 3092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3093 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3094 #endif 3095 ptlock_free(ptdesc); 3096 } 3097 3098 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3099 3100 #else 3101 3102 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3103 { 3104 return &mm->page_table_lock; 3105 } 3106 3107 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3108 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3109 3110 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3111 3112 #endif 3113 3114 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3115 { 3116 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3117 spin_lock(ptl); 3118 return ptl; 3119 } 3120 3121 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3122 { 3123 struct folio *folio = ptdesc_folio(ptdesc); 3124 3125 if (!pmd_ptlock_init(ptdesc)) 3126 return false; 3127 __folio_set_pgtable(folio); 3128 ptdesc_pmd_pts_init(ptdesc); 3129 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3130 return true; 3131 } 3132 3133 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3134 { 3135 struct folio *folio = ptdesc_folio(ptdesc); 3136 3137 pmd_ptlock_free(ptdesc); 3138 __folio_clear_pgtable(folio); 3139 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3140 } 3141 3142 /* 3143 * No scalability reason to split PUD locks yet, but follow the same pattern 3144 * as the PMD locks to make it easier if we decide to. The VM should not be 3145 * considered ready to switch to split PUD locks yet; there may be places 3146 * which need to be converted from page_table_lock. 3147 */ 3148 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3149 { 3150 return &mm->page_table_lock; 3151 } 3152 3153 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3154 { 3155 spinlock_t *ptl = pud_lockptr(mm, pud); 3156 3157 spin_lock(ptl); 3158 return ptl; 3159 } 3160 3161 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3162 { 3163 struct folio *folio = ptdesc_folio(ptdesc); 3164 3165 __folio_set_pgtable(folio); 3166 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3167 } 3168 3169 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3170 { 3171 struct folio *folio = ptdesc_folio(ptdesc); 3172 3173 __folio_clear_pgtable(folio); 3174 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3175 } 3176 3177 extern void __init pagecache_init(void); 3178 extern void free_initmem(void); 3179 3180 /* 3181 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3182 * into the buddy system. The freed pages will be poisoned with pattern 3183 * "poison" if it's within range [0, UCHAR_MAX]. 3184 * Return pages freed into the buddy system. 3185 */ 3186 extern unsigned long free_reserved_area(void *start, void *end, 3187 int poison, const char *s); 3188 3189 extern void adjust_managed_page_count(struct page *page, long count); 3190 3191 extern void reserve_bootmem_region(phys_addr_t start, 3192 phys_addr_t end, int nid); 3193 3194 /* Free the reserved page into the buddy system, so it gets managed. */ 3195 void free_reserved_page(struct page *page); 3196 #define free_highmem_page(page) free_reserved_page(page) 3197 3198 static inline void mark_page_reserved(struct page *page) 3199 { 3200 SetPageReserved(page); 3201 adjust_managed_page_count(page, -1); 3202 } 3203 3204 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3205 { 3206 free_reserved_page(ptdesc_page(pt)); 3207 } 3208 3209 /* 3210 * Default method to free all the __init memory into the buddy system. 3211 * The freed pages will be poisoned with pattern "poison" if it's within 3212 * range [0, UCHAR_MAX]. 3213 * Return pages freed into the buddy system. 3214 */ 3215 static inline unsigned long free_initmem_default(int poison) 3216 { 3217 extern char __init_begin[], __init_end[]; 3218 3219 return free_reserved_area(&__init_begin, &__init_end, 3220 poison, "unused kernel image (initmem)"); 3221 } 3222 3223 static inline unsigned long get_num_physpages(void) 3224 { 3225 int nid; 3226 unsigned long phys_pages = 0; 3227 3228 for_each_online_node(nid) 3229 phys_pages += node_present_pages(nid); 3230 3231 return phys_pages; 3232 } 3233 3234 /* 3235 * Using memblock node mappings, an architecture may initialise its 3236 * zones, allocate the backing mem_map and account for memory holes in an 3237 * architecture independent manner. 3238 * 3239 * An architecture is expected to register range of page frames backed by 3240 * physical memory with memblock_add[_node]() before calling 3241 * free_area_init() passing in the PFN each zone ends at. At a basic 3242 * usage, an architecture is expected to do something like 3243 * 3244 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3245 * max_highmem_pfn}; 3246 * for_each_valid_physical_page_range() 3247 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3248 * free_area_init(max_zone_pfns); 3249 */ 3250 void free_area_init(unsigned long *max_zone_pfn); 3251 unsigned long node_map_pfn_alignment(void); 3252 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3253 unsigned long end_pfn); 3254 extern void get_pfn_range_for_nid(unsigned int nid, 3255 unsigned long *start_pfn, unsigned long *end_pfn); 3256 3257 #ifndef CONFIG_NUMA 3258 static inline int early_pfn_to_nid(unsigned long pfn) 3259 { 3260 return 0; 3261 } 3262 #else 3263 /* please see mm/page_alloc.c */ 3264 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3265 #endif 3266 3267 extern void mem_init(void); 3268 extern void __init mmap_init(void); 3269 3270 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3271 static inline void show_mem(void) 3272 { 3273 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3274 } 3275 extern long si_mem_available(void); 3276 extern void si_meminfo(struct sysinfo * val); 3277 extern void si_meminfo_node(struct sysinfo *val, int nid); 3278 3279 extern __printf(3, 4) 3280 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3281 3282 extern void setup_per_cpu_pageset(void); 3283 3284 /* nommu.c */ 3285 extern atomic_long_t mmap_pages_allocated; 3286 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3287 3288 /* interval_tree.c */ 3289 void vma_interval_tree_insert(struct vm_area_struct *node, 3290 struct rb_root_cached *root); 3291 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3292 struct vm_area_struct *prev, 3293 struct rb_root_cached *root); 3294 void vma_interval_tree_remove(struct vm_area_struct *node, 3295 struct rb_root_cached *root); 3296 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3297 unsigned long start, unsigned long last); 3298 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3299 unsigned long start, unsigned long last); 3300 3301 #define vma_interval_tree_foreach(vma, root, start, last) \ 3302 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3303 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3304 3305 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3306 struct rb_root_cached *root); 3307 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3308 struct rb_root_cached *root); 3309 struct anon_vma_chain * 3310 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3311 unsigned long start, unsigned long last); 3312 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3313 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3314 #ifdef CONFIG_DEBUG_VM_RB 3315 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3316 #endif 3317 3318 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3319 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3320 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3321 3322 /* mmap.c */ 3323 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3324 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3325 extern void exit_mmap(struct mm_struct *); 3326 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3327 3328 static inline int check_data_rlimit(unsigned long rlim, 3329 unsigned long new, 3330 unsigned long start, 3331 unsigned long end_data, 3332 unsigned long start_data) 3333 { 3334 if (rlim < RLIM_INFINITY) { 3335 if (((new - start) + (end_data - start_data)) > rlim) 3336 return -ENOSPC; 3337 } 3338 3339 return 0; 3340 } 3341 3342 extern int mm_take_all_locks(struct mm_struct *mm); 3343 extern void mm_drop_all_locks(struct mm_struct *mm); 3344 3345 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3346 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3347 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3348 extern struct file *get_task_exe_file(struct task_struct *task); 3349 3350 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3351 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3352 3353 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3354 const struct vm_special_mapping *sm); 3355 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3356 unsigned long addr, unsigned long len, 3357 unsigned long flags, 3358 const struct vm_special_mapping *spec); 3359 3360 unsigned long randomize_stack_top(unsigned long stack_top); 3361 unsigned long randomize_page(unsigned long start, unsigned long range); 3362 3363 unsigned long 3364 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3365 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3366 3367 static inline unsigned long 3368 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3369 unsigned long pgoff, unsigned long flags) 3370 { 3371 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3372 } 3373 3374 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3375 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3376 struct list_head *uf); 3377 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3378 unsigned long len, unsigned long prot, unsigned long flags, 3379 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3380 struct list_head *uf); 3381 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3382 unsigned long start, size_t len, struct list_head *uf, 3383 bool unlock); 3384 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3385 struct mm_struct *mm, unsigned long start, 3386 unsigned long end, struct list_head *uf, bool unlock); 3387 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3388 struct list_head *uf); 3389 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3390 3391 #ifdef CONFIG_MMU 3392 extern int __mm_populate(unsigned long addr, unsigned long len, 3393 int ignore_errors); 3394 static inline void mm_populate(unsigned long addr, unsigned long len) 3395 { 3396 /* Ignore errors */ 3397 (void) __mm_populate(addr, len, 1); 3398 } 3399 #else 3400 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3401 #endif 3402 3403 /* This takes the mm semaphore itself */ 3404 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3405 extern int vm_munmap(unsigned long, size_t); 3406 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3407 unsigned long, unsigned long, 3408 unsigned long, unsigned long); 3409 3410 struct vm_unmapped_area_info { 3411 #define VM_UNMAPPED_AREA_TOPDOWN 1 3412 unsigned long flags; 3413 unsigned long length; 3414 unsigned long low_limit; 3415 unsigned long high_limit; 3416 unsigned long align_mask; 3417 unsigned long align_offset; 3418 unsigned long start_gap; 3419 }; 3420 3421 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3422 3423 /* truncate.c */ 3424 extern void truncate_inode_pages(struct address_space *, loff_t); 3425 extern void truncate_inode_pages_range(struct address_space *, 3426 loff_t lstart, loff_t lend); 3427 extern void truncate_inode_pages_final(struct address_space *); 3428 3429 /* generic vm_area_ops exported for stackable file systems */ 3430 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3431 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3432 pgoff_t start_pgoff, pgoff_t end_pgoff); 3433 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3434 3435 extern unsigned long stack_guard_gap; 3436 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3437 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3438 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3439 3440 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3441 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3442 3443 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3444 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3445 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3446 struct vm_area_struct **pprev); 3447 3448 /* 3449 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3450 * NULL if none. Assume start_addr < end_addr. 3451 */ 3452 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3453 unsigned long start_addr, unsigned long end_addr); 3454 3455 /** 3456 * vma_lookup() - Find a VMA at a specific address 3457 * @mm: The process address space. 3458 * @addr: The user address. 3459 * 3460 * Return: The vm_area_struct at the given address, %NULL otherwise. 3461 */ 3462 static inline 3463 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3464 { 3465 return mtree_load(&mm->mm_mt, addr); 3466 } 3467 3468 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3469 { 3470 if (vma->vm_flags & VM_GROWSDOWN) 3471 return stack_guard_gap; 3472 3473 /* See reasoning around the VM_SHADOW_STACK definition */ 3474 if (vma->vm_flags & VM_SHADOW_STACK) 3475 return PAGE_SIZE; 3476 3477 return 0; 3478 } 3479 3480 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3481 { 3482 unsigned long gap = stack_guard_start_gap(vma); 3483 unsigned long vm_start = vma->vm_start; 3484 3485 vm_start -= gap; 3486 if (vm_start > vma->vm_start) 3487 vm_start = 0; 3488 return vm_start; 3489 } 3490 3491 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3492 { 3493 unsigned long vm_end = vma->vm_end; 3494 3495 if (vma->vm_flags & VM_GROWSUP) { 3496 vm_end += stack_guard_gap; 3497 if (vm_end < vma->vm_end) 3498 vm_end = -PAGE_SIZE; 3499 } 3500 return vm_end; 3501 } 3502 3503 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3504 { 3505 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3506 } 3507 3508 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3509 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3510 unsigned long vm_start, unsigned long vm_end) 3511 { 3512 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3513 3514 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3515 vma = NULL; 3516 3517 return vma; 3518 } 3519 3520 static inline bool range_in_vma(struct vm_area_struct *vma, 3521 unsigned long start, unsigned long end) 3522 { 3523 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3524 } 3525 3526 #ifdef CONFIG_MMU 3527 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3528 void vma_set_page_prot(struct vm_area_struct *vma); 3529 #else 3530 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3531 { 3532 return __pgprot(0); 3533 } 3534 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3535 { 3536 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3537 } 3538 #endif 3539 3540 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3541 3542 #ifdef CONFIG_NUMA_BALANCING 3543 unsigned long change_prot_numa(struct vm_area_struct *vma, 3544 unsigned long start, unsigned long end); 3545 #endif 3546 3547 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3548 unsigned long addr); 3549 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3550 unsigned long pfn, unsigned long size, pgprot_t); 3551 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3552 unsigned long pfn, unsigned long size, pgprot_t prot); 3553 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3554 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3555 struct page **pages, unsigned long *num); 3556 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3557 unsigned long num); 3558 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3559 unsigned long num); 3560 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3561 unsigned long pfn); 3562 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3563 unsigned long pfn, pgprot_t pgprot); 3564 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3565 pfn_t pfn); 3566 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3567 unsigned long addr, pfn_t pfn); 3568 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3569 3570 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3571 unsigned long addr, struct page *page) 3572 { 3573 int err = vm_insert_page(vma, addr, page); 3574 3575 if (err == -ENOMEM) 3576 return VM_FAULT_OOM; 3577 if (err < 0 && err != -EBUSY) 3578 return VM_FAULT_SIGBUS; 3579 3580 return VM_FAULT_NOPAGE; 3581 } 3582 3583 #ifndef io_remap_pfn_range 3584 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3585 unsigned long addr, unsigned long pfn, 3586 unsigned long size, pgprot_t prot) 3587 { 3588 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3589 } 3590 #endif 3591 3592 static inline vm_fault_t vmf_error(int err) 3593 { 3594 if (err == -ENOMEM) 3595 return VM_FAULT_OOM; 3596 else if (err == -EHWPOISON) 3597 return VM_FAULT_HWPOISON; 3598 return VM_FAULT_SIGBUS; 3599 } 3600 3601 /* 3602 * Convert errno to return value for ->page_mkwrite() calls. 3603 * 3604 * This should eventually be merged with vmf_error() above, but will need a 3605 * careful audit of all vmf_error() callers. 3606 */ 3607 static inline vm_fault_t vmf_fs_error(int err) 3608 { 3609 if (err == 0) 3610 return VM_FAULT_LOCKED; 3611 if (err == -EFAULT || err == -EAGAIN) 3612 return VM_FAULT_NOPAGE; 3613 if (err == -ENOMEM) 3614 return VM_FAULT_OOM; 3615 /* -ENOSPC, -EDQUOT, -EIO ... */ 3616 return VM_FAULT_SIGBUS; 3617 } 3618 3619 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3620 { 3621 if (vm_fault & VM_FAULT_OOM) 3622 return -ENOMEM; 3623 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3624 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3625 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3626 return -EFAULT; 3627 return 0; 3628 } 3629 3630 /* 3631 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3632 * a (NUMA hinting) fault is required. 3633 */ 3634 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3635 unsigned int flags) 3636 { 3637 /* 3638 * If callers don't want to honor NUMA hinting faults, no need to 3639 * determine if we would actually have to trigger a NUMA hinting fault. 3640 */ 3641 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3642 return true; 3643 3644 /* 3645 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3646 * 3647 * Requiring a fault here even for inaccessible VMAs would mean that 3648 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3649 * refuses to process NUMA hinting faults in inaccessible VMAs. 3650 */ 3651 return !vma_is_accessible(vma); 3652 } 3653 3654 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3655 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3656 unsigned long size, pte_fn_t fn, void *data); 3657 extern int apply_to_existing_page_range(struct mm_struct *mm, 3658 unsigned long address, unsigned long size, 3659 pte_fn_t fn, void *data); 3660 3661 #ifdef CONFIG_PAGE_POISONING 3662 extern void __kernel_poison_pages(struct page *page, int numpages); 3663 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3664 extern bool _page_poisoning_enabled_early; 3665 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3666 static inline bool page_poisoning_enabled(void) 3667 { 3668 return _page_poisoning_enabled_early; 3669 } 3670 /* 3671 * For use in fast paths after init_mem_debugging() has run, or when a 3672 * false negative result is not harmful when called too early. 3673 */ 3674 static inline bool page_poisoning_enabled_static(void) 3675 { 3676 return static_branch_unlikely(&_page_poisoning_enabled); 3677 } 3678 static inline void kernel_poison_pages(struct page *page, int numpages) 3679 { 3680 if (page_poisoning_enabled_static()) 3681 __kernel_poison_pages(page, numpages); 3682 } 3683 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3684 { 3685 if (page_poisoning_enabled_static()) 3686 __kernel_unpoison_pages(page, numpages); 3687 } 3688 #else 3689 static inline bool page_poisoning_enabled(void) { return false; } 3690 static inline bool page_poisoning_enabled_static(void) { return false; } 3691 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3692 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3693 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3694 #endif 3695 3696 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3697 static inline bool want_init_on_alloc(gfp_t flags) 3698 { 3699 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3700 &init_on_alloc)) 3701 return true; 3702 return flags & __GFP_ZERO; 3703 } 3704 3705 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3706 static inline bool want_init_on_free(void) 3707 { 3708 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3709 &init_on_free); 3710 } 3711 3712 extern bool _debug_pagealloc_enabled_early; 3713 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3714 3715 static inline bool debug_pagealloc_enabled(void) 3716 { 3717 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3718 _debug_pagealloc_enabled_early; 3719 } 3720 3721 /* 3722 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3723 * or when a false negative result is not harmful when called too early. 3724 */ 3725 static inline bool debug_pagealloc_enabled_static(void) 3726 { 3727 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3728 return false; 3729 3730 return static_branch_unlikely(&_debug_pagealloc_enabled); 3731 } 3732 3733 /* 3734 * To support DEBUG_PAGEALLOC architecture must ensure that 3735 * __kernel_map_pages() never fails 3736 */ 3737 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3738 #ifdef CONFIG_DEBUG_PAGEALLOC 3739 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3740 { 3741 if (debug_pagealloc_enabled_static()) 3742 __kernel_map_pages(page, numpages, 1); 3743 } 3744 3745 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3746 { 3747 if (debug_pagealloc_enabled_static()) 3748 __kernel_map_pages(page, numpages, 0); 3749 } 3750 3751 extern unsigned int _debug_guardpage_minorder; 3752 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3753 3754 static inline unsigned int debug_guardpage_minorder(void) 3755 { 3756 return _debug_guardpage_minorder; 3757 } 3758 3759 static inline bool debug_guardpage_enabled(void) 3760 { 3761 return static_branch_unlikely(&_debug_guardpage_enabled); 3762 } 3763 3764 static inline bool page_is_guard(struct page *page) 3765 { 3766 if (!debug_guardpage_enabled()) 3767 return false; 3768 3769 return PageGuard(page); 3770 } 3771 3772 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3773 static inline bool set_page_guard(struct zone *zone, struct page *page, 3774 unsigned int order) 3775 { 3776 if (!debug_guardpage_enabled()) 3777 return false; 3778 return __set_page_guard(zone, page, order); 3779 } 3780 3781 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3782 static inline void clear_page_guard(struct zone *zone, struct page *page, 3783 unsigned int order) 3784 { 3785 if (!debug_guardpage_enabled()) 3786 return; 3787 __clear_page_guard(zone, page, order); 3788 } 3789 3790 #else /* CONFIG_DEBUG_PAGEALLOC */ 3791 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3792 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3793 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3794 static inline bool debug_guardpage_enabled(void) { return false; } 3795 static inline bool page_is_guard(struct page *page) { return false; } 3796 static inline bool set_page_guard(struct zone *zone, struct page *page, 3797 unsigned int order) { return false; } 3798 static inline void clear_page_guard(struct zone *zone, struct page *page, 3799 unsigned int order) {} 3800 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3801 3802 #ifdef __HAVE_ARCH_GATE_AREA 3803 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3804 extern int in_gate_area_no_mm(unsigned long addr); 3805 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3806 #else 3807 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3808 { 3809 return NULL; 3810 } 3811 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3812 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3813 { 3814 return 0; 3815 } 3816 #endif /* __HAVE_ARCH_GATE_AREA */ 3817 3818 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3819 3820 #ifdef CONFIG_SYSCTL 3821 extern int sysctl_drop_caches; 3822 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3823 loff_t *); 3824 #endif 3825 3826 void drop_slab(void); 3827 3828 #ifndef CONFIG_MMU 3829 #define randomize_va_space 0 3830 #else 3831 extern int randomize_va_space; 3832 #endif 3833 3834 const char * arch_vma_name(struct vm_area_struct *vma); 3835 #ifdef CONFIG_MMU 3836 void print_vma_addr(char *prefix, unsigned long rip); 3837 #else 3838 static inline void print_vma_addr(char *prefix, unsigned long rip) 3839 { 3840 } 3841 #endif 3842 3843 void *sparse_buffer_alloc(unsigned long size); 3844 struct page * __populate_section_memmap(unsigned long pfn, 3845 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3846 struct dev_pagemap *pgmap); 3847 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3848 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3849 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3850 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3851 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3852 struct vmem_altmap *altmap, struct page *reuse); 3853 void *vmemmap_alloc_block(unsigned long size, int node); 3854 struct vmem_altmap; 3855 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3856 struct vmem_altmap *altmap); 3857 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3858 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3859 unsigned long addr, unsigned long next); 3860 int vmemmap_check_pmd(pmd_t *pmd, int node, 3861 unsigned long addr, unsigned long next); 3862 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3863 int node, struct vmem_altmap *altmap); 3864 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3865 int node, struct vmem_altmap *altmap); 3866 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3867 struct vmem_altmap *altmap); 3868 void vmemmap_populate_print_last(void); 3869 #ifdef CONFIG_MEMORY_HOTPLUG 3870 void vmemmap_free(unsigned long start, unsigned long end, 3871 struct vmem_altmap *altmap); 3872 #endif 3873 3874 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3875 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3876 { 3877 /* number of pfns from base where pfn_to_page() is valid */ 3878 if (altmap) 3879 return altmap->reserve + altmap->free; 3880 return 0; 3881 } 3882 3883 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3884 unsigned long nr_pfns) 3885 { 3886 altmap->alloc -= nr_pfns; 3887 } 3888 #else 3889 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3890 { 3891 return 0; 3892 } 3893 3894 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3895 unsigned long nr_pfns) 3896 { 3897 } 3898 #endif 3899 3900 #define VMEMMAP_RESERVE_NR 2 3901 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3902 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3903 struct dev_pagemap *pgmap) 3904 { 3905 unsigned long nr_pages; 3906 unsigned long nr_vmemmap_pages; 3907 3908 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3909 return false; 3910 3911 nr_pages = pgmap_vmemmap_nr(pgmap); 3912 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3913 /* 3914 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3915 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3916 */ 3917 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3918 } 3919 /* 3920 * If we don't have an architecture override, use the generic rule 3921 */ 3922 #ifndef vmemmap_can_optimize 3923 #define vmemmap_can_optimize __vmemmap_can_optimize 3924 #endif 3925 3926 #else 3927 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3928 struct dev_pagemap *pgmap) 3929 { 3930 return false; 3931 } 3932 #endif 3933 3934 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3935 unsigned long nr_pages); 3936 3937 enum mf_flags { 3938 MF_COUNT_INCREASED = 1 << 0, 3939 MF_ACTION_REQUIRED = 1 << 1, 3940 MF_MUST_KILL = 1 << 2, 3941 MF_SOFT_OFFLINE = 1 << 3, 3942 MF_UNPOISON = 1 << 4, 3943 MF_SW_SIMULATED = 1 << 5, 3944 MF_NO_RETRY = 1 << 6, 3945 MF_MEM_PRE_REMOVE = 1 << 7, 3946 }; 3947 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3948 unsigned long count, int mf_flags); 3949 extern int memory_failure(unsigned long pfn, int flags); 3950 extern void memory_failure_queue_kick(int cpu); 3951 extern int unpoison_memory(unsigned long pfn); 3952 extern atomic_long_t num_poisoned_pages __read_mostly; 3953 extern int soft_offline_page(unsigned long pfn, int flags); 3954 #ifdef CONFIG_MEMORY_FAILURE 3955 /* 3956 * Sysfs entries for memory failure handling statistics. 3957 */ 3958 extern const struct attribute_group memory_failure_attr_group; 3959 extern void memory_failure_queue(unsigned long pfn, int flags); 3960 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3961 bool *migratable_cleared); 3962 void num_poisoned_pages_inc(unsigned long pfn); 3963 void num_poisoned_pages_sub(unsigned long pfn, long i); 3964 #else 3965 static inline void memory_failure_queue(unsigned long pfn, int flags) 3966 { 3967 } 3968 3969 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3970 bool *migratable_cleared) 3971 { 3972 return 0; 3973 } 3974 3975 static inline void num_poisoned_pages_inc(unsigned long pfn) 3976 { 3977 } 3978 3979 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3980 { 3981 } 3982 #endif 3983 3984 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3985 extern void memblk_nr_poison_inc(unsigned long pfn); 3986 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3987 #else 3988 static inline void memblk_nr_poison_inc(unsigned long pfn) 3989 { 3990 } 3991 3992 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3993 { 3994 } 3995 #endif 3996 3997 #ifndef arch_memory_failure 3998 static inline int arch_memory_failure(unsigned long pfn, int flags) 3999 { 4000 return -ENXIO; 4001 } 4002 #endif 4003 4004 #ifndef arch_is_platform_page 4005 static inline bool arch_is_platform_page(u64 paddr) 4006 { 4007 return false; 4008 } 4009 #endif 4010 4011 /* 4012 * Error handlers for various types of pages. 4013 */ 4014 enum mf_result { 4015 MF_IGNORED, /* Error: cannot be handled */ 4016 MF_FAILED, /* Error: handling failed */ 4017 MF_DELAYED, /* Will be handled later */ 4018 MF_RECOVERED, /* Successfully recovered */ 4019 }; 4020 4021 enum mf_action_page_type { 4022 MF_MSG_KERNEL, 4023 MF_MSG_KERNEL_HIGH_ORDER, 4024 MF_MSG_DIFFERENT_COMPOUND, 4025 MF_MSG_HUGE, 4026 MF_MSG_FREE_HUGE, 4027 MF_MSG_GET_HWPOISON, 4028 MF_MSG_UNMAP_FAILED, 4029 MF_MSG_DIRTY_SWAPCACHE, 4030 MF_MSG_CLEAN_SWAPCACHE, 4031 MF_MSG_DIRTY_MLOCKED_LRU, 4032 MF_MSG_CLEAN_MLOCKED_LRU, 4033 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4034 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4035 MF_MSG_DIRTY_LRU, 4036 MF_MSG_CLEAN_LRU, 4037 MF_MSG_TRUNCATED_LRU, 4038 MF_MSG_BUDDY, 4039 MF_MSG_DAX, 4040 MF_MSG_UNSPLIT_THP, 4041 MF_MSG_ALREADY_POISONED, 4042 MF_MSG_UNKNOWN, 4043 }; 4044 4045 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4046 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4047 int copy_user_large_folio(struct folio *dst, struct folio *src, 4048 unsigned long addr_hint, 4049 struct vm_area_struct *vma); 4050 long copy_folio_from_user(struct folio *dst_folio, 4051 const void __user *usr_src, 4052 bool allow_pagefault); 4053 4054 /** 4055 * vma_is_special_huge - Are transhuge page-table entries considered special? 4056 * @vma: Pointer to the struct vm_area_struct to consider 4057 * 4058 * Whether transhuge page-table entries are considered "special" following 4059 * the definition in vm_normal_page(). 4060 * 4061 * Return: true if transhuge page-table entries should be considered special, 4062 * false otherwise. 4063 */ 4064 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4065 { 4066 return vma_is_dax(vma) || (vma->vm_file && 4067 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4068 } 4069 4070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4071 4072 #if MAX_NUMNODES > 1 4073 void __init setup_nr_node_ids(void); 4074 #else 4075 static inline void setup_nr_node_ids(void) {} 4076 #endif 4077 4078 extern int memcmp_pages(struct page *page1, struct page *page2); 4079 4080 static inline int pages_identical(struct page *page1, struct page *page2) 4081 { 4082 return !memcmp_pages(page1, page2); 4083 } 4084 4085 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4086 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4087 pgoff_t first_index, pgoff_t nr, 4088 pgoff_t bitmap_pgoff, 4089 unsigned long *bitmap, 4090 pgoff_t *start, 4091 pgoff_t *end); 4092 4093 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4094 pgoff_t first_index, pgoff_t nr); 4095 #endif 4096 4097 extern int sysctl_nr_trim_pages; 4098 4099 #ifdef CONFIG_PRINTK 4100 void mem_dump_obj(void *object); 4101 #else 4102 static inline void mem_dump_obj(void *object) {} 4103 #endif 4104 4105 static inline bool is_write_sealed(int seals) 4106 { 4107 return seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE); 4108 } 4109 4110 /** 4111 * is_readonly_sealed - Checks whether write-sealed but mapped read-only, 4112 * in which case writes should be disallowing moving 4113 * forwards. 4114 * @seals: the seals to check 4115 * @vm_flags: the VMA flags to check 4116 * 4117 * Returns whether readonly sealed, in which case writess should be disallowed 4118 * going forward. 4119 */ 4120 static inline bool is_readonly_sealed(int seals, vm_flags_t vm_flags) 4121 { 4122 /* 4123 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4124 * MAP_SHARED and read-only, take care to not allow mprotect to 4125 * revert protections on such mappings. Do this only for shared 4126 * mappings. For private mappings, don't need to mask 4127 * VM_MAYWRITE as we still want them to be COW-writable. 4128 */ 4129 if (is_write_sealed(seals) && 4130 ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_SHARED)) 4131 return true; 4132 4133 return false; 4134 } 4135 4136 /** 4137 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4138 * handle them. 4139 * @seals: the seals to check 4140 * @vma: the vma to operate on 4141 * 4142 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4143 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4144 */ 4145 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4146 { 4147 if (!is_write_sealed(seals)) 4148 return 0; 4149 4150 /* 4151 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4152 * write seals are active. 4153 */ 4154 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4155 return -EPERM; 4156 4157 return 0; 4158 } 4159 4160 #ifdef CONFIG_ANON_VMA_NAME 4161 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4162 unsigned long len_in, 4163 struct anon_vma_name *anon_name); 4164 #else 4165 static inline int 4166 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4167 unsigned long len_in, struct anon_vma_name *anon_name) { 4168 return 0; 4169 } 4170 #endif 4171 4172 #ifdef CONFIG_UNACCEPTED_MEMORY 4173 4174 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4175 void accept_memory(phys_addr_t start, unsigned long size); 4176 4177 #else 4178 4179 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4180 unsigned long size) 4181 { 4182 return false; 4183 } 4184 4185 static inline void accept_memory(phys_addr_t start, unsigned long size) 4186 { 4187 } 4188 4189 #endif 4190 4191 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4192 { 4193 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4194 } 4195 4196 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4197 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4198 4199 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4200 4201 #ifdef CONFIG_64BIT 4202 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4203 #else 4204 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4205 { 4206 /* noop on 32 bit */ 4207 return 0; 4208 } 4209 #endif 4210 4211 /* 4212 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4213 * be zeroed or not. 4214 */ 4215 static inline bool user_alloc_needs_zeroing(void) 4216 { 4217 /* 4218 * for user folios, arch with cache aliasing requires cache flush and 4219 * arc changes folio->flags to make icache coherent with dcache, so 4220 * always return false to make caller use 4221 * clear_user_page()/clear_user_highpage(). 4222 */ 4223 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4224 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4225 &init_on_alloc); 4226 } 4227 4228 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4229 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4230 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4231 4232 #endif /* _LINUX_MM_H */ 4233